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Abstract (EN)

Nowadays more and more companies use agile software development to build software

in short release cycles. Monolithic applications are split into microservices, which can

independently be maintained and deployed by agile teams. Modern platforms like Docker

support this process. Docker offers services to containerize such services and orchestrate

them in a container cluster. A software supply chain is the umbrella term for the process

of developing, automated building and testing, as well as deploying a complete applica-

tion. By combining a software supply chain and Docker, those processes can be automated

in standardized environments. Since Docker is a young technology and software supply

chains are critical processes in organizations, security needs to be reviewed. In this work

a software supply chain based on Docker is built and a threat modeling process is used

to assess its security. The main components are modeled and threats are identified using

STRIDE. Afterwards risks are calculated and methods to secure the software supply chain

based on security objectives confidentiality, integrity and availability are discussed. As

a result, some components require special treatments in security context since they have

a high residual risk of being targeted by an attacker. This work can be used as basis to

build and secure the main components of a software supply chain. However additional

components such as logging, monitoring as well as integration into existing business pro-

cesses need to be reviewed.

Abstract (DE)

Heutzutage nutzen mehr und mehr Firmen agile Softwareentwicklung, um Software in

kurzen Release-Zyklen zu entwickeln. Monotlithische Anwendungen werden in Microser-

vices aufgeteilt, welche unabhängig voneinander erstellt und veröffentlicht werden können.

Moderne Plattformen wie Docker unterstützen diesen Prozess. Docker bietet Dienste an,

um solche Anwendungen in Container zu verpacken und sie auf Container Clustern zu

orchestrieren. Eine Software Supply Chain ist der Überbegriff für den Prozess der Herstel-

lung, des automatisierten Bauens und Testens, sowie der Veröffentlichung von Software.

Durch die Kombination aus Software Supply Chains und Docker können diese Prozesse

in standardisierten Umgebungen automatisiert werden. Da Docker eine junge Technolo-

gie ist und Software Supply Chains einen kritischen Prozess im Unternehmen darstellen,

muss zunächst die Sicherheit überprüft werden. In dieser Arbeit wird Bedrohungsmodel-

lierung verwendet, um eine Software Supply Chain auf Basis von Docker zu bauen und

abzusichern. Die Hauptkomponenten werden modelliert und Bedrohungen mit Hilfe von

STRIDE identifiziert. Daraufhin werden Risiken berechnet und Möglichkeiten diskutiert,

die Software Supply Chain auf Basis der Sicherheitsziele Vertraulichkeit, Integrität und



Verfügbarkeit abzusichern. Als Resultat dieser Arbeit stellte sich heraus, dass einige Kom-

ponenten eine spezielle Behandlung im Sicherheitskontext benötigen, da sie über ein hohes

Restrisiko verfügen, Ziel eines Angriffes zu werden. Diese Arbeit kann als Basis für den

Bau und die Absicherung einer Software Supply Chain genutzt werden. Jedoch müssen

zusätzliche Komponenten, wie beispielsweise ein Monitoring- und Logging-Prozess, oder

die Integration in bestehende Business-Prozesse überprüft werden.
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1 Introduction

Agile software development has been in mainstream for a few years now [120]. Accord-

ing to the survey The 10th annual State of Agile Report [116] 62% of the participating

companies use this approach to speed up their product delivery chain and increase team

productivity. To establish agile processes in the enterprise, containerization is often used

[42]. Containerization offers isolation of an application into its own environment based

on container technology like LinuX Containers (LXC), as an alternative to hypervisor

virtualization [114]. These containers are light weight and easier to rollout due to encap-

sulation of their dependencies compared to classical virtual machines [114]. Additionally,

applications running on the same host can be isolated from each other and from the

host, as well as their permissions can be reduced to a minimum, which brings a benefit

in security terms [42]. According to the survey Container Market Adoption Survey 2016

[12] with 310 participating companies, Docker is the leading container technology. The

survey shows that 94% of the companies use Docker as container technology, especially

to increase efficiency of the development process and to support microservices. For these

reasons the Docker ecosystem is used as basis for this work. According to an evaluation

from Datadog [20], approximately 10,7% of their clients already adopted Docker in their

company, which means that container technology is still in its beginnings and companies

just started to deal with this topic. The growth rate of the adoption from May 2015 to

May 2016 lies around 30%, which shows the importance of the technology. But at this

point security issues could arise, since new processes aren’t always build with security in

mind. Six of the most used Docker images [20] have been scanned by Docker Security

Scanner [111], whereat all of them had at least one or more critical vulnerabilities in the

latest tag [63, 60, 62, 58, 59, 61]. From a companies’ view, a survey from 2011 shows that

59% of participating companies are aware of targeted attacks [109]. Docker itself offers

an approach for a software supply chain with its enterprise solution with some security

features included [110], which have been continuously evolving over the last months and

years. Some examples are an identity and access management, consistent builds and tests,

automated security scanning, as well as signed images.
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1 Introduction

1.1 Motivation

Due to the rising interests of companies, the growth rate and the young presence of Docker

on the market, this topic offers possibilities to do research. Companies are just beginning

to use the technology, therefore not many matured and secured processes (particularly in

the area of software supply chains) have been established. Also companies are getting hit

by cyber attacks [5] and suffer from data breaches [10], for example Yahoo [92].

Software supply chains are collections of processes and components to continuously

test, build and deliver software releases to customers. They are critical processes in the

company, since source code and sensitive information are transferred from one component

to another. New security concepts and processes are required to protect supply chains

from attacks and to ensure confidentiality, integrity and availability of data [77]. In the last

months Docker released some new features like secrets management [87] and announced

the split in Docker Enterprise and Community Edition [30]. In the past researchers

successfully demonstrated attacks on Docker, as for example an attack on host systems

by using devices, which have not been namespaced [117]. Papers like To Docker or not

to Docker [16] show the need of additional research and security concepts by pointing

out existing security issues. Another challenge is the integration of new concepts (like for

example containerization or microservices) into existing company infrastructures.

1.2 Contribution

Readers of this work will gain knowledge in the field of agile software development, con-

tainer virtualization, the Docker ecosystem and information security. This work will

illustrate possible attacks like for example Denial of Service (DoS), code injection or ex-

ploiting vulnerabilities on a software supply chain and discuss security mitigations. The

reader will be able to use this work as a guideline on how to reduce the overall risk of an

attack on the main components. The problems which will be addressed are as follows:

• Unawareness of companies of possible risks and attacks, as well as consequences of

an attack on software supply chains

• Insecurity of critical software supply chains based on Docker

• Complexity of software supply chains

• Lack of guidelines and best practices in secure software supply chains based on

Docker

The research questions for this work are as follows:

2



1.3 Requirements

• How to design and build a secure software supply chain based on Docker?

• How to secure each step and component of the software supply chain to guarantee

confidentially, integrity and availability?

• How to secure communication between components?

• Can a Software Supply Chain be completely secure?

1.3 Requirements

The main goals of this work are to build and secure a software supply chain based on

Docker. Each requirement has a unique number and will be discussed in the final Chapter

Conclusion.

#1 Understand the Background and the Docker Ecosystem

The first requirement is to gain basic knowledge which is required to achieve the main

goals. This is for example the concept of container virtualization and its use in agile

software development, microservices and continuous integration (CI) pipelines as well as

the Docker environment. To analyze possible threats and risks, knowledge about infor-

mation security, security objectives, security principles and attacks on computer systems

is required. Also a structured scientific process is required to identify threats, calculate

risks and discuss mitigation strategies.

#2 Build a Software Supply Chain

After explaining background information, a typical software supply chain has to be de-

scribed. The descriptions should be limited to the main components and processes.

#3 Secure the Software Supply Chain

After explaining the software supply chain, a threat modeling process has to be applied to

find threats. The threat model should be based on the main security objectives confiden-

tiality, integrity and availability [77]. After the main components and threats have been

identified, they need to be assessed and possible countermeasures described to reduce the

overall attack surface to a minimum.

3



1 Introduction

#4 Use Docker as base Technology

Since Docker is the leading container technology on the market, it is used as base technol-

ogy for this work [12]. It should be used to containerize and run components of a software

supply chain, as well as the application which is developed.

#5 Use Open Source / Free software

To allow a cost efficient and open software supply chain which can be used by everybody,

only open source or free software should be used. This excludes software like Docker

Enterprise or other commercial pre-built solutions from the scope of this work. However,

proposed concepts are designed to be adaptable to other products as well.

1.4 Related Work

Docker Scan, Claire and Docker Bench for Security

Docker Scan [19], Claire [17] and Docker Bench for Security [40] are security analysis

tools for the Docker ecosystem. Docker Scan and Claire provide analysis for Docker

images and the Docker Registry. Claire focuses on static analysis of Docker images, while

Docker Scan also allows to scan registries. Docker Bench for Security checks for common

best-practices around containers in production. These tools help to analyze sub-aspects

of this work, but not the complete software supply chain.

To Docker or not to Docker

The paper To Docker or not to Docker [16] analyzes parts of the Docker ecosystem, as for

example the Docker Daemon, Docker Hub or networking in terms of security and shows

some vulnerabilities which still need to be addressed. This paper provides a good basis

for additional research as it shows some basic weaknesses. This work will inspect all

components and processes of a software supply chain, including the subset of this paper.

Understanding and Hardening Linux Containers

The whitepaper Understanding and Hardening Linux Containers [33] discusses basic con-

tainer technologies, evaluates them and discusses security features. This whitepaper pro-

vides good basic knowledge about Docker containers and will be used to describe Docker

images in context of security and how to reduce the attack surface.
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1.5 Structure of this Work

CIS Docker 1.13.0 Benchmark

The CIS Docker 1.13.0 Benchmark [22] describes requirements and configurations for a

secure Docker environment. This guidelines can be used to harden hosts in a Docker

environment.

Securing Jenkins CI Systems

The article Securing Jenkins CI Systems [82] describes how to reduce the attack surface

of a Jenkins build server. It describes general approaches like enabling Jenkins security,

SSL encryption or disabling the CLI. This article can be used to apply basic hardening

to the build server used in this work.

Security Assurance of Docker Containers

The article Security Assurance of Docker Containers [84] reviews security aspects of

Docker containers. It describes Notary, Docker Security Scanning and different secu-

rity scanners. This article helps to get basic knowledge about Docker Content Trust and

Container Scanners, which will be discussed when securing the software supply chain.

1.5 Structure of this Work

In Chapter Agile Software Development and Docker background knowledge to agile soft-

ware development, container virtualization and Docker is explained. In the next Chapter

Methodology the basic threat modeling process which is used to identify threats and cal-

culate risks is described. Afterwards in Chapter Modeling a Software Supply Chain the

software supply chain is described and the main components are identified. The follow-

ing Chapter Threat Analysis first creates a list of components, users, data flows and trust

boundaries. Afterwards, possible threats and attack vectors are elaborated. These threats

are then analyzed, rated and countermeasures discussed in Chapter Securing the Software

Supply Chain. In the last Chapter Conclusion a final conclusion is given and results are

discussed.
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2 Agile Software Development and

Docker

This chapter provides basic knowledge. First, agile software development and microser-

vices are described. It is explained why this approach combined with a continuous inte-

gration (CI) pipeline helps to deliver software of higher quality. Afterwards, differences

between hypervisor and container virtualization and its integration into agile software

development are explained. Finally, an overview of the Docker ecosystem is given.

2.1 Agile Software Development

Agile software development defines values and principles to develop valuable software in

an iterative and quick process, while facing continuously changing requirements [90]. An

agile software development process aids to help teams to respond to unpredictability by

using an iterative workflow with continuous feedback [90]. It uses light-but-sufficient and

human- and communication-oriented rules to stay slim and efficient without increasing

the risk of mistakes [13]. This has proven to be more successful for specific projects than

other approaches, therefore more and more companies are starting to use it [116]. In

2001, the Agile Alliance developed a statement of values which are used to work quickly

and respond to change. This statement is called The Manifesto of the Agile Alliance. It

describes four rules (quoted from Agile software development: principles, patterns, and

practices [90]):

• “Individuals and interactions over processes and tools”

• “Working software over comprehensive documentation”

• “Customer collaboration over contract negotiation”

• “Responding to change over following a plan”

The meaning of the four rules are explained in the following paragraphs. The descrip-

tions are based on sources: [90, 13].
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Individuals and interactions over processes and tools

This value means that good processes are relevant for the project, but they don’t guar-

antee success. More important than processes and used tools is the team itself. Good

communication and team building increase efficiency and reduce mistakes caused by mis-

understandings.

Working software over comprehensive documentation

Documentation is required all over the project to pass information from one person to

another. Missing documentation can lead to misunderstandings and reduce quality of the

project. On the other hand, if there is too much detailed documentation, efficiency is

decreasing. For this reason, short, concise and meaningful documentation is required.

Customer collaboration over contract negotiation

This value describes the relationship between developers and customers. Contracts are

useful to mark borders, but software cannot be completely defined from the beginning.

Hence regular customer feedback and collaboration needs to be part of the process.

Responding to change over following a plan

Change is an essential part in agile projects. For this reason plans need to be flexible and

able to adapt to each change in technology and business.

Multiple processes and frameworks have been developed which follow the agile approach:

Scrum [106], Crystal [14], Adaptive Software Development [37] or Extreme Programming

(XP) [3].

As the survey Agile Development: Mainstream Adoption Has Changed Agility from

Forrester has found out, Scrum is the most popular agile development process with 10.9%

that is used by organizations [120]. It is a software development framework based on

interoperable teams which work together to reach a common goal [105]. It defines member

roles, such as a product owner, a scrum master and the development team [105]. It also

defines artifacts, like for example the product backlog, the sprint backlog and burn-up /

-down charts to manage the product and measure results of each work package [105]. All

work is done in sprints, which is a planned period of time (for example 14 days) in which

items of the sprint backlog are completed [105].
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2.2 Microservices

Microservices are an approach to cut down monolithic applications into small parts that

work together, called microservices [29]. A monolithic application is one single executable

unit which can grow over time [29]. For every change the whole application has to be

deployed [96]. Microservices instead are small and lightweight applications, which are

independently maintainable and deployable [4]. They often communicate via REST and

can be developed in any programming language [29]. The key benefits of microservices

are listed in Table 2.1.

Benefit Explanation
Technology Heterogeneity A system can consist of services based on

different technologies, each optimized for
its use case and people working on the ser-
vice.

Resilience If one system fails, the failure does not cas-
cade and the problem can be isolated.

Scaling Each service can be scaled independently
to fit the requirements.

Ease of Deployment Services can be deployed independently,
which speeds up the deployment process.

Organizational Alignment Smaller teams are working on smaller
codebases, which is more productive and
can be better aligned to the architecture
of the organization.

Composability Services can be reused for different pur-
poses since interfaces have to be docu-
mented.

Optimizing for Replaceability Replacing a small microservice is easier
and less critical than replacing an old
monolith.

Table 2.1: Key Benefits of Microservices ([96])

Agile software development processes, like for example Scrum define small interdis-

ciplinary teams which are responsible for a single product [105]. If a product consists

of multiple microservices, each service can be managed by a Scrum team. By using

this approach, features can independently be developed and deployed. Additionally, con-

tainerization can be used to package those microservices including all its dependencies

into small and isolated containers, which makes them suitable for big container clusters,

like for example Docker Swarm or Kubernetes [33].
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2.3 Continuous Integration / Deployment

Agile software development processes nowadays use CI to frequently build and test work

done by developers. This integration is described in the book Continuous Delivery: Re-

liable Software Releases through Build, Test, and Deployment Automation [38], which is

used as basis for this chapter. Using CI increases overall software quality and reduces

release cycles. CI stands for the collection of techniques, tools and processes to automati-

cally build and test software on each change. A deployment pipeline is the implementation

of such an automated build, test, deploy and release process. Figure 2.1 shows a typical

deployment pipeline.

Figure 2.1: The Deployment Pipeline ([38, p. 4])

It starts with a Commit state in which developers compile source code, run tests and

analysis tools and build an installer. The following steps (Automated acceptance testing,

Automated capacity testing and Manual testing) are a series of tests to prove that the

software is ready to be released. The final step is to release the software. This process

allows to find errors as quickly as possible because it automatically stops and notifies

developers, if a test fails [28]. Typically a build server is required to automatically build

software on a regular basis. This server runs tests for each component (unit tests) or tests

for the collaboration of different components (integration testing).

CD extends a CI process by automatically deploying each change to the target environ-

ment after tests and build succeeded. This step is possible, if the included unit, component

and acceptance tests are in high quality and cover a big part of the application.

2.4 Software Supply Chain

The term supply chain management (SCM) is defined as the concatenation of systems

and processes to fulfill an order [119]. SCM ranges from the Source of Supply to the

Point of Consumption [119]. The goal of SCM is the supply, removal and recycling of

organizational activities [119]. Different components have to be analyzed, like for example

quantities, qualities, prices, delivery and storage locations as well as delivery dates [119].
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Derived from traditional SCM, a software supply chain (SSC) is a combination of processes

and required resources to deliver software. The derived components are software quality,

licenses, infrastructure and release dates. The complete process of traditional SCM and

a modern SSC can be matched with each other, as shown in Figure 2.2.

Figure 2.2: Software Supply Chain ([110])

SCM has to identify raw materials (in SSC: sources and dependencies), assemble them

(in SSC: build systems and engineers), ship the item (in SSC: network), store the item (in

SSC: application repository) and finally sell it (in SSC: deploy) [110]. The build and ship

process can be mapped onto a CI pipeline to automatically build and deliver software

regularly. The main objectives which are addressed when realizing a SSC are listed in

Table 2.2. Those objectives are achieved using the key principles of a supply chain, which

are listed in Table 2.3.

Factor Explanation
Efficiency Doing the right things and Doing the

things right to increase overall efficiency.
Managing Competition Factors Watching the key factors and knowledge

about competition.
Costs Reduce delivery, storing or hosting costs.
Time Optimizing throughput time of the soft-

ware.
Quality Increasing software quality.
Flexibility Reacting to changes.

Table 2.2: Objectives of a SSC ([110])
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Principle Explanation
Compression Reducing the number of steps which are

required to build the software.
Cooperation Usage of partners to achieve the objec-

tives.
Virtualization Combine competences and build virtual

networks to act as a single unit.
Standardization Use standardized modules to optimize ex-

change of parameters within the supply
chain and reduce delivery times.

Client orientation Changes are triggered when client need ex-
ists (pull principle).

Optimization Optimization based on experiences and
calculations.

Table 2.3: Key Principles of a SSC ([110])

2.5 Virtualization

To create a dynamic SSC, microservices in combination with container virtualization is

used, to better use available hardware resources. Virtualization in general is an approach

to divide hardware resources into multiple environments [2]. Gartner says that the market

has matured over the last years and many organizations have virtualization rates bigger

than 75% in their data centers [74]. Cloud providers, like Amazon AWS or Microsoft

Azure use virtualization in their data center which helps them to provide infrastructure

as a service (IaaS) [7]. Virtualization can be found on both, client side and server side. The

server side virtualization can be divided into two classes: hypervisor based virtualization

and container based virtualization [7]. Hypervisor based virtualization depends on a piece

of software called hypervisor, which abstracts hardware resources for virtual machines.

Container based virtualization defines so called containers, which can be used to isolate

applications from each other on the same OS kernel [7].

2.5.1 Hypervisor Virtualization

Hypervisor based virtualization allows complete virtual machines (VMs) to run on a

hypervisor. Those VMs consist of a complete OS, including a kernel, dependencies and

applications [7]. The hypervisor itself is a piece of software which either runs directly on

hardware or in an operating system [7]. Two classes of hypervisors exist: Type 1 and

Type 2 (Figure 2.3).

Type 1 hypervisors (also known as bare metal hypervisors) run directly on hardware. An

example for a Type 1 hypervisor would be VMWare ESXi or Xen Hypervisor [33, 7]. Type

2 hypervisors (also known as hosted hypervisors) run on top of a host operating system.
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Figure 2.3: Hypervisor based Virtualization

Examples for a Type 2 hypervisor would be VirtualBox, VMWare Workstation or QEMU

[75, 93]. The isolation degree is quite robust, since special CPU instructions provide

hardware isolation and the hypervisor itself offers a small attack surface [33]. Nevertheless

researches have shown successful attacks (for example VENOM [95] on QEMU), although

they are rare [33].

2.5.2 Container Virtualization

Container virtualization (also called containerization) uses kernel functionality to isolate

groups of processes from each other [33]. This provides the basis for technologies like for

example Docker or Rkt. The isolated environments are called containers. They are created

using a combination of multiple kernel features, such as kernel namespaces, cgroups or

root capabilities. They share the same OS kernel, so no hypervisor is required [7, 93].

Figure 2.4 shows multiple application containers (boxes with double lines) which run on

the same host OS.

Compared to hypervisor virtualization, footprints of applications are smaller, since no

additional OS and kernel is required in-between [33]. Container virtualization offers higher

performance and faster start up times since the applications run directly on the kernel.

This is why it is preferred over hypervisor virtualization when performance is needed

[75, 33].

Container technologies as LXC, Docker or Rkt offer platforms and definitions for con-
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Figure 2.4: Container Virtualization

tainers and images. Those approaches gained popularity in the last years, since the

ongoing shift from traditional three tier datacenters to large computers running multi-

ple virtual machine instances [33]. Container technologies abstract many details of how

containers are created and managed away from developers [8].

Mechanisms for Container Virtualization

Containers are mainly created by using the following kernel features: Kernel namespaces

and Control Groups (cgroups) [33]. These features focus on creating process groups which

are isolated from each other (kernel namespaces) and imposing resource limits (control

groups) [33].

Kernel Namespaces

Kernel namespaces provide isolation feature of container technology. They isolate multiple

processes by logically dividing their kernel space into multiple environments (for example

network, processes or file system) [7]. This causes processes to not be able to see or

manipulate other processes running on the same host [53]. Isolation is achieved by splitting

the global resource identifier table of the kernel and other structures like for example

networks into multiple instances (one per process). This creates a per-process view of

the kernel [33]. However, not all kernel functionalities as for instance devices, time,

syslog or proc and sys pseudo file systems support namespaces [33]. The main namespace

features are mount namespaces, inter-process communication (IPC) namespaces, UNIX

Timesharing System (UTS) namespaces, process identifier (PID) namespaces, network

namespaces and user namespaces [33]. Mount namespaces provide a specific view to the

file system. IPC namespaces allows the creation of objects which are visible to members of

the same group, but not to others. This is often used to share memory between processes

[7]. UTS namespaces allow to set a custom domain or hostname for each member, which is

useful for example for hosting a web application or logging [7]. PID namespaces are used

to create new processes using a PID starting at 1, which is useful for porting applications
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from one host to the other, while maintaining the PIDs of running processes [7].

Control Groups

Control Groups (or cgroups) are used to limit hardware resources like CPU count and

usage, disk performance or memory to control performance or security [7]. Those restric-

tions can be applied to a single process or a collection of processes. Cgroups can be used

to ensure that a single container cannot exhaust the system by using all of its resources

[53]. The rules are organized in a tree structure and they are inheritable and optionally

nestable. Cgroups can be seen as an enhancement to basic ulimits / rlimits and can be

used as an additional security mechanism besides kernel namespaces [33]. The config-

uration is done via a special virtual file system mounted in /sys/fs/cgroup and can

be changed at any time [33]. The main cgroup subsystems are CPU, memory, BLKIO,

devices, network and freezer. If configured wrong, this can also be a security issue, since

it can be used for a container escape [36]. In context of container technology, most of

cgroups management is abstracted away, with the exception of LXC [33].

Security of Container Virtualization

Compared to hypervisor virtualization, container virtualization offers less isolation since

no hypervisor is in between containers [33]. While in hypervisor virtualization an attacker

would have to break the OS kernel and additionally the hypervisor, the only layer of

security in container virtualization is the OS kernel itself [33]. If an application inside a

container contains an exploitable bug, an attacker can get access to it [33]. From there it

is possible to either attack the kernel with a kernel vulnerability or scan the network for

other containers or hosts who could also be compromisable or contain sensitive data [33].

If a kernel vulnerability exists, all applications sharing the same kernel are affected and

isolation mechanisms could be bypassed. This would be a compromise of all containers

running on the same kernel and the complete host system [33]. To improve isolation

capabilities and prevent container to host escapes, the following kernel features are used:

Linux capabilities, Mandatory Access Control (MAC) and Seccomp [33].

Linux Capabilities

Linux Capabilities are attributes which limit privileges of processes run by the root user

[7]. They help to enforce namespaces by restricting powers of the root user in containers

[7]. This is for example problematic if the setuid bit is used in combination with root owner

to execute a binary with root privileges [33]. If the binary contains a memory vulnerability,

root access can be obtained by everyone who has access to the binary [33]. By limiting
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capabilities of the binary to for example only access to a raw socket (CAP NET RAW),

damage which can be done by abusing the vulnerability is reduced, since the attacker now

has limited access to raw sockets [33]. Linux Capabilities are stored using the extended

attributes (xattr) in the security namespace of the binary. Additionally, when starting

the binary, a capability bitmap is created for the process and then enforced by the kernel

[33]. Some examples for capabilities which were randomly picked for this work are listed

in Table 2.4.

Capability Explanation
CAP SETCAP Change UIDs / GIDs of files.
CAP KILL Send the kill signal to a process.
CAP SYS CHROOT Use chroot to change root directory.
CAP SYS MODULE Load and unload kernel modules.
CAP SYS RAWIO Perform I/O port operations, for example

on /dev/mem.

Table 2.4: Linux Capabilities ([33])

Mandatory Access Control (MAC)

Mandatory Access Control (MAC) is an optional security feature for containers [33]. It

controls access to objects (files, sockets or directories) by using subjects (processes or

users) based on security contexts [34]. The default rule is denying each object access,

unless not explicitly allowed. This feature is fully integrated into the kernel, so it is

possible to reach and control every access made [33]. Due to the complex rules, it can be

hard to configure [33]. The most common frameworks are AppArmor or SELinux [7].

Syscall Filtering with Seccomp

Seccomp is a kernel feature which allows the transition of a process into a secure com-

puting mode [33]. In this mode the process is only able to make the following system

calls: exit(), sigreturn(), read() and write() [33]. This mode is also called SEC-

COMP MODE STRICT [33]. If the process attempts to make another system call,

the kernel will terminate the process with a SIGKILL [33]. Another mode is SEC-

COMP MODE FILTER, which allows to filter system calls for a process using Berkeley

Packet Filter (BPF) rules. This mode requires the kernel extension seccomp-bpf [33].

BPF is a pseudo-language which was designed to allow performant in-kernel bytecode

evaluation in a safe and simple language [33].
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2.6 Docker Ecosystem

After describing the core concepts of container virtualization, Docker which is based on

those concepts is described in this chapter. It adds an abstraction layer on top of the earlier

described container virtualization mechanisms. Docker is a platform to develop, ship and

distribute applications [51]. It allows to package applications into containers, which can

be run isolated from each other on the same host without the need of a hypervisor [7, 42].

It provides tooling and the platform to manage the lifecycle of containers [51]. Docker also

allows to combine multiple hosts into one single cluster and distribute applications onto

this cluster [71]. Docker can be used to create standardized environments for applications

and integrate those into a CI workflow, to automatically test, deploy and scale them

[71]. This helps developers to develop applications in the same environment as used in

production [51]. In this work, Docker is used to containerize an exemplary application

which is then built and shipped using a SSC. It is also used to run and scale the application

in a Docker swarm, as well as for running components of a SSC. The central part of Docker

is Docker Engine, as explained in Chapter Docker Engine in more detail. The latest release

of Docker is used in this work (17.06). An overview of the main services offered by Docker

is shown in the following list [51]:

• Docker Engine (core of the Docker ecosystem)

• Docker Compose (definition of one or multiple services in a single file)

• Docker Swarm (orchestration of containers on highly available clusters)

• Docker Registry (storage of Docker images)

• Universal Control Plane (management of containers and container clusters in busi-

ness environments)

• Docker Secrets (management of secrets in a swarm)

• Docker Content Trust (store and validate signed Docker tags)

2.6.1 Docker Engine

The Docker Engine is the core of the Docker ecosystem. It is a client server application

which has three major components, as shown in Figure 2.5: the Docker Daemon which

runs on the host, a REST API provided by the Docker Daemon and a command line

interface (CLI) (the docker command) [51]. The REST API takes commands from the

CLI and processes them further [51]. The API can be exposed either via local socket

on the same host or a network exposed port [51]. The CLI offers commands to manage
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networks, containers and images or volumes for containers [51]. The Docker Engine needs

to be installed on each system, which interacts with Docker.

Figure 2.5: Docker Overview ([51])

Docker Daemon

The Docker Daemon runs on the host (as root) and is responsible for listening and pro-

cessing API requests from the Docker Client [53]. It also manages Docker Objects as for

instance images, containers, networks and volumes. To build images it parses a so called

Dockerfile and executes the instructions [33]. Trusted users should be allowed to control

the Docker Daemon, since if someone controls the dockerd process, he is able to spawn

a privileged container, which is able to mount the root filesystem of the host as writable

[33].

Docker Client

The Docker Client (or the docker command) is used to communicate with the Docker

Daemon. The Docker Client is the primary way to run a command in the Docker world

[51]. If a docker command is run, the client sends it to the Docker Daemon, which directs

all further actions [51].

2.6.2 Docker Images

Docker Images are read-only templates (blueprints) for running a container [51]. They

contain the root file system for the container plus some additional parameters and a config-

18



2.6 Docker Ecosystem

uration file [51]. To build an image, a Dockerfile with instructions is used in combination

with the docker build command [51]. This will result in a multi-layered read-only file

system representing the Dockerfile. Each instruction in the Dockerfile will create another

layer on top of the layered file system [51]. To speed up the build process, each layer

is cached [51]. If another docker build command is executed, only those layers which

have changed are rebuilt [51]. An image is identified by an image record identifier, like

for example mydomain.de:5000/my-image:v1 [45].

2.6.3 Containers

Containers are a runnable instance of an image with a lifecycle, which is shown in Fig-

ure 2.6 [51].

Figure 2.6: Docker Container Events and States ([104])

The most main states of a Docker container are created, running, paused, stopped and

deleted [104]. The Docker CLI offers commands to control the creation, execution, stop-

ping or deletion of containers [51]. To access network or data, it is possible to attach

networks or volumes to the container [51].

2.6.4 File Formats

Dockerfile

The Dockerfile is a plaintext file which contains directives on how to build a Docker image,

each in a new line [55]. Each instruction (with some exceptions) creates a new layer on

the layered file system of the image [55]. The Docker Engine is responsible for parsing and
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interpreting those instructions, then building the final Docker image from it [55]. Those

directives can for example define the base operating system (FROM), run a command in the

image (RUN), expose a port to the network (EXPOSE), add a volume (VOLUME) or define the

initial command to be executed when the image is started (CMD) [33, 55]. Listing 2.1 shows

a sample Dockerfile for a Python application, which is based on the official python image

([68]) with the tag 3.4-alpine. It first copies the current working directory into a path

called /code in the image and defines this folder as the working directory. Afterwards it

runs pip install -r requirements.txt in the image to install dependencies, assuming

the file requirements.txt exists in the /code folder. Afterwards, the command which is

executed when the container is started is defined. The Dockerfile is used in this work

to build each component that is based on Docker.

Listing 2.1: Sample Dockerfile

FROM python :3.4- alpine

ADD . /code

WORKDIR /code

RUN pip install -r requirements.txt

CMD [" python", "app.py"]

Compose file

The Compose file defines an application which is made of one or multiple services [44].

A service is for example a database (communicating on port 3306 and backed by a NFS

volume), a frontend (listening on port 80 and 443 and communicating with the backend

service) or a backend service. The Compose file describes parameters, such as listen-

ing ports, the Docker image, build context or resource limits, which are passed to the

containers when they run in a Docker environment [44]. It also defines the networking

environment, as well as which service is placed into which network and whether they are

able to communicate with each other [44, 49]. To share data between containers, it is

possible to define data volumes. Local volumes can only be used in non-swarm mode,

whereas in swarm mode shared volume drivers can be used, like for example NFS, SMB

or iSCSI [44]. Beginning with version 3 of the Compose file reference, deployment pa-

rameters can also be defined, as for instance rolling update policies, replication counters

or placement constraints [44]. Listing 2.2 shows a basic Compose file which defines two

services: redis and web. The redis service is just a reference to the redis:alpine image

from Docker Hub, whereas the web service is built from the Dockerfile in the current

directory. Additionally, the web service has a volume and an exposed port 5000, which is

20



2.6 Docker Ecosystem

mapped to port 5000 on the current host. In this work, the Compose file is used to define

services which are required for the components of a SSC.

Listing 2.2: Sample Compose file

version: "2"

services:

web:

build: .

ports:

- "5000:5000"

volumes:

- .:/ code

redis:

image: "redis:alpine"

2.6.5 Docker Compose

Docker Compose is a CLI application written in Python, that parses a Compose file

and builds a multi-container environment from it [67]. Docker Compose parses a given

Compose file, translates the service, networking and volume definitions into docker run,

docker volume create and docker network create commands and executes them [67].

2.6.6 Docker Registry

An image registry is a central repository for container images [43]. The Docker Registry

is an image registry maintained by Docker Inc [51]. Typically images are built locally or

by a special build server and afterwards pushed into a registry [43]. From here images

can be pulled and run in a container cluster like Docker Swarm [43]. Docker Hub [41]

and Quay.io [18] are two examples of cloud-hosted public registries. If no other registry

is specified in the Docker Engine, Docker Hub is used as default [43].

2.6.7 Docker Swarm

Docker Swarm is the functionality to manage and orchestrate services over multiple nodes

which are running the Docker Daemon [71]. It allows distributing workloads across mul-

tiple nodes which act together as a single unit [51]. As shown in Figure 2.7, a Docker

Swarm consists of multiple manager nodes which share a common state using the Raft

Consensus Algorithm [97] and worker nodes which can receive tasks [56].

The swarm and its services can be controlled using the Docker Engine CLI and API

[71]. Those features are encapsulated in a package called SwarmKit and shipped with the

latest version of the Docker Engine (Version ≥ 1.12) [48]. In this work Docker Swarm is
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Figure 2.7: Docker Swarm Overview ([56])

used to run components of a SSC. These are for example the development environment

including the version control system, the build environment containing the build server

and the testing and production clusters, which are used to provide the application to

testers and end users.

Services

Services define how to run an existing Docker image, the command and parameters

(such as port, resource limit or volumes) and the desired state in the cluster [57]. A

manager node accepts a service definition by an API call and splits this service into tasks,

who are scheduled on available worker nodes [57].

Figure 2.8 shows how one replicated nginx service is split into multiple tasks, each

running on a different node [57]. The scheduler of the manager is responsible for scheduling

tasks onto nodes with available resources [57]. Services marked as global are running on

each node available [57]. To an end user it looks like he is communicating with a single

node of the application.

Nodes

Nodes which are participating in the cluster are running the Docker Daemon in swarm

mode [71]. Nodes can be distributed across multiple physical hosts and cloud machines
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Figure 2.8: Services, Tasks and Containers ([57])

[71].

Manager nodes are responsible for maintaining the status of the cluster, scheduling

services and providing the API which is used to control the cluster [56]. Every manager

node has access to the state of the cluster by the shared Raft log [56]. By default, manager

nodes are also able to execute workloads, this can be disabled in the configuration [56].

Worker nodes receive and execute tasks from the manager nodes [71]. They are running

an agent which receives commands from the manager node and reports back the current

state of the tasks they execute [56].

Overlay Networks

Overlay networks are used to enable communication between containers in Docker Swarms

and to route incoming traffic to the correct container which can be distributed over mul-

tiple nodes [49]. Docker Swarm managers are responsible for sharing the same overlay

network among all required nodes [49]. Only swarm services are able to connect to over-

lay networks, no standalone containers [49]. If the user wants to use overlay networks in

non-swarm mode, an external key-value storage like etcd is required [49]. When swarm

mode is enabled, Docker automatically creates a default overlay network (called Ingress)

to route incoming traffic to the corresponding container which has published a specific
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port [49].

2.6.8 Docker Secrets

Some services need additional credentials, for example a database username and password

[66]. Credentials are blobs of data (for example passwords or SSL certificates) which need

to be securely provided to the containers [66]. Those secrets should not be transmitted

or stored unencrypted in a Dockerfile or the application source code [66].

Docker Secrets is a solution of Docker for secret management which is built into

SwarmKit [66]. It was introduced in Docker version 1.13 [66]. Secrets are centrally

managed in the encrypted swarm’s Raft log, which is replicated across all manager nodes

[66]. By running the CLI command docker secret create, the secret is sent to a swarm

manager over a mutual TLS connection [66]. A secret can be up to 500kb large and can

only be used by swarm services, not by single run containers [66]. If a service has been

granted access to a secret (for example by using the --secret parameter when running a

service), a manager pushes it securely to the corresponding Docker Daemon, which then

mounts it in an in-memory file system into the container [66]. The container is then able

to access the secret in the path /run/secrets/<my secret> [66]. It is possible to grant

and revoke secrets to a service at runtime, but all containers of a service are restarted

[66]. To change a secret while the service is running, it needs to be rotated [66]. When

a container stops, the decrypted secret is automatically unmounted and flushed from the

nodes memory [66]. Docker Secrets can also be used to store non-sensitive data, as for

instance configuration files [66].

2.6.9 Docker Content Trust

This chapter is based on the Docker documentation [45, 65] and the article Security

Assurance of Docker Containers [84].

Docker Content Trust (DCT) is a mechanism to sign and verify image tag. When

pushing an image into a registry, the image can be signed. After pulling an image out of a

registry, this signature can be verified. Notary is the client and server utility behind DCT.

It is used to verify content which can be distributed over an insecure network. It is based

on The Update Framework (TUF). Figure 2.9 shows repositories bound to a single person

or to an organization. A repository can have multiple tags, both signed and unsigned. A

signature of an image is always assigned to a tag.

To force verification of each pulled image on client side, the environment variable

DOCKER CONTENT TRUST=1 can be set. This is disabled by default. If DCT on client

side is enabled, unsigned images of a repository are ignored.

Figure 2.10 shows different keys used to sign image tags. Each repository has a set of
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Figure 2.9: Docker Content Trust ([45])

keys which are used by developers to sign their tags. The keys are created in an interactive

process when an operation using DCT (docker push, docker build, docker create,

docker pull or docker run) is executed for the first time. The following different keys

exist:

Offline / Root Keys

Offline keys are the root keys for creating content trust. They are bound to a specific

person or an organization and used to create tagging keys for repositories. They should

be stored at a safe place and backed up securely.

Targets Key

The targets key, which resides on client side, is bound to a specific repository and is

used by a developer to sign and push image tags.
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Figure 2.10: Signing Keys ([45])

Snapshot Keys

Those keys allow signing the current collection of image tags to prevent mix and match

attacks.

Timestamp Keys

Timestamp Keys are bound to a specific repository and reside on the server. They are

generated by Docker and used to guarantee freshness.
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Delegation Keys

Those keys are optional and allow to delegate signing to other publishers without shar-

ing the targets key.

2.7 Immutable Infrastructure

The immutable infrastructure paradigm provides stable, efficient and version controlled

infrastructure [108]. The main statement of this approach is that once a component (a

host or a container) has been started, it should not be manually changed [108]. If some

configuration has to be altered, the running instance has to be replaced with a new one

[108]. This approach requires full automation and versioning of each component [21],

which can be achieved by using technologies as for example ansible [103] or Docker [100].

In this work the immutable infrastructure paradigm helps to avoid manual interaction

with a running container or a node of a container cluster. It aids to continuously roll out

security patches and reduce the overall risk of vulnerabilities in one of the components.
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Before this work goes into SSCs, the methodology needs to be defined. It is started by

explaining why and how information needs to be protected and by defining the main

security objectives. Secure design principles and attacks on systems are described to later

use them in the threat modeling process. Afterwards the threat modeling process which

will be used to build and secure a SSC is explained.

3.1 Information Security

Before talking about threat modeling, an overview about information security in general

and security objectives is required. This section provides background knowledge to in-

formation security. A definition of information and security objectives is given, the main

security principles are described and an overview over the main attacks is shown.

3.1.1 Definitions

Asset

An asset is something of value for an organization [78]. Many types of assets exist, such

as machines, facilities, software, services, people, reputation or knowledge [78].

Information

Information is an essential asset in an organization’s business which needs to be protected

in an appropriate way. They can be stored in many forms, for example in digital or

material form [81]. The information to protect in this work is the source code of the

application.

Information Security

Information security is the implementation and management of security measures with the

aim of ensuring business success and continuity and minimizing impacts of information

security incidents [81]. It includes three main objectives: confidentiality, integrity and

availability [81]. Those objectives are also referred as CIA in this work.
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Trust Boundary

A trust boundary is the place where multiple entities interact [107]. Threats often involve

actions across trust boundaries [107]. A trust boundary is for instance a network firewall,

which filters incoming and outgoing traffic [107].

Attack

Attacks in general are maliciously intended actions against one or multiple components

[31]. They are attempts to steal, destroy, manipulate or expose an asset [81]. An at-

tack consists of motivations like stealing money and one or many subgoals [31]. Multiple

activities can be engaged which result in events, like for example unauthorized access

to a system or halting of an application [31]. As a result, consequences like for exam-

ple unavailability of a computer system occur and different impacts on business can be

measured. A direct impact would be loss of revenue due to the inability to process a

business transaction, an indirect impact would be negative impact on the reputation of

the company [31].

Attack Vector

An attack vector is a way by which an attacker could be able to gain unauthorized access

to a computer or network to do harm [80].

Attack Surface

The attack surface is the sum of places where trust boundaries can be crossed, either on

purpose or by accident [107]. It describes how exposed a system is [107]. Applications

with more exposed interfaces have a higher attack surface than applications with less

exposed interfaces [107].

Threat

Threats describe possible events which could lead to harm of a system or an organization

[81]. An example for a threat would be an attacker who is able to bypass the authorization

system by abusing a vulnerability in the software.

Risk

A risk in terms of information security is the chance or probability of loss [79]. The

magnitude of risk can be expressed by the combination of the likelihood of the occurrence

of an event and its impact [79]. The risk level calculation is done using the formula shown

in Figure 3.1.
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Listing 3.1: Risk Calculation

Risk = Likelihood x Impact

Residual Risk

The residual risk is the remaining risk after risk treatment [79].

Security Objectives

The three main security objectives are confidentiality, integrity and availability. Confi-

dentiality is the property that information has to be protected from unauthorized access

[77]. This can be achieved by encrypting the information or keeping it at a safe place.

Also authentication and authorization mechanisms can be used to grant access to specific

people. Integrity is the property of being complete and unmodified [77]. It involves

maintaining consistency and trustworthiness over the entire life cycle. Data should be

protected from modifications when transferred from one person to another. This can for

example be achieved by using checksums or appropriate protocols to transfer data. Avail-

ability is the property of information being available to authorized entities on demand

[77]. An example for providing availability would be to replicate data into multiple data

centers or making sure the network has enough bandwidth to serve data on high load.

3.1.2 Security Principles

To protect data and achieve the CIA objectives, multiple design principles exist. They

help developers, architects and solution providers to create secure systems by design and

avoid common mistakes when working on sensitive data. By using design principles and

standards, misunderstandings can be prevented and compliance increased [26]. These

principles are later used to design, build and secure the SSC. The following security

principles are based on Writing secure code and Security by Design Principles [86, 26].

Minimize Attack Surface Area

Adding a new feature or component means adding an additional attack surface for at-

tackers. This increases the overall risk of the system being compromised. The goal in

designing a secure system is minimizing the overall risk by reducing the attack surface.

An example would be adding a search feature to a web application. The search func-

tion could include a SQL injection vulnerability, which could lead to information leakage

(confidentiality) or data modification (integrity). To reduce the likelihood of an attack,

the search functionality could be allowed for authenticated and authorized users only and
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input data validation could be added. To completely eliminate the attack surface area,

the feature could be removed.

Establish Secure Defaults

When the application or system is shipped to the client, the components should be config-

ured as secure by default. This means that all configurations should be set to values which

provide the least attack surface and highest security standards possible. Clients might

then be allowed to change configuration to a lower security level, while knowing they in-

crease the risk. Secure defaults also means disabling features that are not commonly used

and enabling them when needed. This can also have a positive impact on performance of

a component. An example for a secure default would be a password policy, which is by

default set to a complex password requirement. Administrators might be able to simplify

this policy to improve the login experience for end users, with the cost of increasing the

risk of compromised accounts.

Principle of Least Privilege

This principle recommends reducing privileges of each entity to a minimum which is

required to complete their work. These privileges could be for example access to resources,

other components or to specific files on the filesystem. If a vulnerability was discovered

in a component, damage can only be done in this context, not in context of a higher

privileged component. To integrate this principle, additional planning is required. It

needs to be documented, which component or user can access which resources and why.

Another example for this principle would be that an end user is allowed to use a specific

component, but is not allowed to change administrative settings.

Principle of Defense in Depth

The Principle of Defense in Depth recommends to implement a defense mechanism as if

it would be the last instance and no other protection mechanisms are in front. Adding

controls to reduce risks in multiple ways is more effective than a single regulating control

or even completely relying on external defense mechanisms. This reduces the likelihood

of a single point of failure and vulnerabilities are getting more unlikely and harder to

exploit. An example would be an administrative page which is protected by an authen-

tication / authorization mechanism, as well as audit logging. This reduces the likelihood

of an anonymous attacker gaining access to this page, since he would have to bypass all

mechanisms to stay undetected.
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Fail Securely

The Fail Securely design principle recommends that if a component fails, it should not

disclose data which normally would not be disclosed. It should just show an error message

and log the rest into a different channel. If a component fails and prints out too much

information, this could create new attack vectors for an attacker or leak sensitive infor-

mation. In Listing 3.2 an example is shown, which makes the user an admin per default.

If an attacker could force the functions codeWhichMayFail or isUserInRole to fail, the

attacker would be able to bypass the authorization mechanism.

Listing 3.2: Failing Insecurely ([86])

isAdmin = true;

try {

codeWhichMayFail ();

isAdmin = isUserInRole( A d m i n i s t r a t o r );

}

catch (Exception ex) {

log.write(ex.toString ());

}

Don’t Trust Services

Don’t trust services means that all external third party components and partners should

be treated as untrustworthy. They most likely have other security policies and cannot

be controlled. They could be compromised and send malicious input to the component.

In general, every data received from an external system could be an attack. This design

principle is related to Principle of Defense in Depth, since the assumption that every input

is not to be trusted is also a defense mechanism. An example for this principle would be

a third party API which provides some kind of reward points. Every input received from

the API should be checked and sanitized before displaying it to an end user.

Separation of Duties

A mechanism to prevent fraud is the definition of different roles for different actions. For

example the entity who carries out the action should be different from the entity that

approves or monitors the action. This means that an administrator who maintains the

infrastructure and database of the shop system should not be able to buy from the shop,

since he could abuse his privileges to buy items in the shop for free.
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Avoid Security by Obscurity

Securing a system by hiding implementation details or implementing own mechanisms

which are already covered by standards is bad security practice, since they are more likely

to fail. The principle Avoid Security by Obscurity is similar to the Kerckhoffs’s principle

[83], which states that a cryptosystem has to be secure if everything is known about

the system, except the key. Key system’s security should not rely on hiding information

such as source code but instead use principles like Principle of Defense in Depth, fraud

and audit controls or secure password policies. It should be assumed that an attacker

knows everything an administrator knows and has access to all source code and designs.

By using this strategy, additional mechanisms are implemented to secure the component

which reduces the overall risk.

Keep it Simple

By keeping implementations and architectures simple, failures and errors can be reduced.

It is easier to keep an overview of a simple architecture and things are easier to maintain

and control. Complex approaches also increase the attack surface, which increases the

overall risk of an attack.

Fix Security Issues Correctly

When a security issue is identified, it needs to be fixed correctly to prevent further misuse.

If the issue is involved in multiple components, all other related components need to be

tested as well. For example it is assumed that a flaw has been found that one user can

hijack another user session by modifying the session cookie. If the cookie handling code

is also used in other components, all components need to be tested after a fix has been

issued.

3.1.3 Attacks

This section explains the main attacks on architectures and operations. These attacks

are later used to identify potential threats in the threat analysis process. The attacks are

based on Secure coding: principles and practices [31].

Man-in-the-middle Attack

A man-in-the-middle (MITM) attack is possible if an attacker is able to intercept net-

work traffic between two hosts. He is then able to masquerade as one of the parties and

manipulate data exchanged between the two hosts. As a defense mechanism, compo-
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nents should implement cryptographic algorithms such as transport layer security (TLS),

authentication, session checksums or shared secrets, as for instance cookies.

Race Condition Attack

A race condition attack, also known as Time-of-Check-to-Time-of-Use-Problem (TOCT-

TOU) involves multiple processes which run in parallel. It could be for example possible

to replace an existing file which is already validated and used by another process to by-

pass initial security checks by the first process. To defend against a race condition attack,

developers need to be aware of differences between atomic an non-atomic operations and

avoid non-atomic operations if possible.

Replay Attack

A replay attack is a network attack which repeats or delays data transmission. It tries to

fool participants into thinking they have successfully completed a protocol transaction.

An example would be the transmission of a password hash, which was used for authen-

tication and has been eavesdropped by an attacker in the network. After saving the

transmission packets, the attacker can start another authentication request and resend

the saved packets containing the password hash to successfully authenticate. Possible

countermeasures are session identifiers, nonces or timestamps which should be integrated

in the authentication process.

Sniffer Attack

Sniffers are tools which allow to monitor network traffic. They can be used by adminis-

trators to diagnose networks, but also by attackers to record sensitive information which

is transmitted in clear text. To defend against a sniffer attack, switches and routers need

to be configured correctly. On application level, TLS can be used to transmit sensitive

data in encrypted form.

Session Hijacking Attack

A session hijacking attack exploits session control mechanisms. For example a web service

needs cookies to identify a user across multiple HTTP requests. If an attacker is able to

steal this cookie, he could use it to establish a valid session and gain access to the web

server.

Denial-of-service Attack

By sending a high amount of traffic to an application, host or network, an attacker could

make a service unavailable for legitimate users. To defend against a Denial-of-service
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Attack (DoS), architecture and network need to be planned to moderately use resources.

CPU, file and memory limits should be applied so that one application is not able to

overload the whole system. A process is needed to monitor resource usage and block

specific incoming traffic if a DoS attack is happening.

Default Accounts Attack

Components are often shipped with default credentials to simplify initial configuration

and installation. Default credentials are an attack vector for attackers, since many lists

with default credentials for all kinds of software already exist. To prevent Default Ac-

counts Attack, default accounts need to be removed in the initial configuration process.

Also processes which automatically test the architecture for default credentials can be

implemented.

Password Cracking Attack

Password Cracking Attacks are a possibility to get access to protected systems which

require credentials. Tools can be used to guess username and password combinations,

either by randomly generating passwords (brute force) or using lists with predefined pass-

words (dictionary attack). To prevent this attack, users need to be trained to use strong

passwords or password policies need to be defined. Also using additional factors, like for

instance biometric characteristics or additional hardware can help to reduce the risk of

this kind of attack.

3.2 Threat Modeling

The basic security objectives and attacks have been defined in the last chapter. In this

chapter a process is defined to find the main threats and to protect information against

those threats.

Threat Modeling is a structured approach to identify threats, risks and mitigations for

a given component or system [107]. It uses abstractions which aid to help thinking about

risks [107]. The main reason for threat modeling is the fact, that secure systems cannot be

built until potential threats for the system are identified and understood [86]. In general a

threat model consists of two models: a model of what is built and a model of threats [107].

The first model is a detailed documentation of the product itself, containing its external

dependencies, the assets and entry points [107]. This information can be used to determine

weak spots, vulnerabilities or risks early and to better understand security requirements

[107]. A threat model can be integrated into an existing software development lifecycle

(SDLC) to increase overall security from the beginning [25]. The model of threats is a
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detailed list of what can go wrong, once the product has been built [107]. The list of threats

can also be categorized and ranked, which can be used to implement countermeasures and

mitigate those risks [25]. Multiple types of threat modeling exist [27]:

• Software Centric

• Security Centric

• Risk Centric

A software centric approach prioritizes threats upon their effect on functional use cases

or impact on for example reliability of the software [27]. Security centric threat modeling

ranks upon how easy it is to exploit a threat or the technical impact on the product [27].

A risk centric threat model (like for example PASTA) prioritizes after information owners,

business or other stakeholders [25]. In this work a security centric threat modeling process

is used to identify threats on a SSC, since it has a technical focus. A threat modeling

process can be divided into multiple steps:

3.2.1 Step 1: Model System

The first step is necessary to gain an overall understanding of the system and how it

interacts with external entities [107]. It is a structured approach to gain as much in-

formation as possible about the product [107]. To identify how, by whom and in which

circumstances the product is used, use cases can be created as a first step [25]. Also entry

points, assets and trust levels have to be identified and described in an overall threat

model documentation [107]. To easily see how data is passed through the application and

through trust boundaries, data flow diagrams (DFD) can be created [25]. To improve

the models further and to get an overview of potential attack vectors, trust boundaries

should be added [107].

3.2.2 Step 2: Identify Threats

The second step uses a methodology, as for instance STRIDE from the attacker’s point

of view or Application Security Frame (ASF) from the defender’s point of view, in combi-

nation with the created models from the previous step to find possible targets and threats

[25]. Afterwards a ranking methodology, like DREAD can be applied to calculate the

level of risk those threats impose [25].
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3.2.3 STRIDE

SRIDE is used in this work to find potential threats. It is an acronym which aims to help

to identify threats imposed to a product. The description of STRIDE and the explanation

of each letter is based on the sources [107, 86]. The acronym STRIDE stands for:

• S: Spoofing (pretending to be someone else)

• T: Tampering with Data (data is manipulated)

• R: Repudiation (actions are audited and a user can be identified)

• I: Information Disclosure (user gets more information than needed)

• D: Denial of Service (data is not available)

• E: Elevation of Privilege (user is able to gain more privileges)

It was invented by Loren Kohnfelder and Praerit Garg in 1999 [107]. It was designed

to aid people identifying and enumerating types of attacks which threaten systems and

things that could go wrong [107]. It is not intended to be a categorization method, since

many threats cannot be assigned to a single category [107]. In the following paragraphs,

the meaning of each letter in the acronym is explained in detail.

Spoofing

In general, spoofing means an attacker pretends to be something or someone different than

himself. Spoofing can be divided into three basic categories: spoofing a file or process,

spoofing a machine or spoofing a person. Spoofing a file or process can be achieved

by creating a malicious file which has the same name and attributes as the original file,

tricking an application or person into executing it. An example would be renaming a file

to a common name, such as sshd. Spoofing a machine is possible on multiple layers

of a network stack, as for example spoofing ARP requests on layer 2, IP addresses on

layer 3, or DNS packets on layer 7. After a machine has been spoofed, it is possible to

act as a MITM instance and modify network communication. Spoofing a person can

be achieved by using someone’s credentials which have for example been stolen due to

a phishing attack. This could then be used to initiate further attacks with using the

privileges of the spoofed person.

Tampering with Data

Tampering with data means that something is modified in a malicious way. Typically

this happens on local disk, in memory or in the network. An example of a local file is
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a configuration file, which could be modified to lower the encryption strength or allow

anonymous access to a component. If a bug in an application is found, sensitive data in

memory could be modified or stolen. A network attack could involve manipulating data

on the transport way or redirecting traffic to another host machine which is in control of

the attacker.

Repudiation

Repudiation is the act of claiming that a person (not limited to attackers) did not do

something even if they did. This often appears in the business layer, which is above the

application layer. An example would be that someone claims he did not click on the

email attachment after a malware infection. Another example would be, a person claims

that he or she did not accept a package from UPS, although it has been delivered by the

postman. Nonrepudiation could be achieved by using processes to log, retain and analyze

all events which happen throughout the system.

Information Disclosure

Information disclosure happens when an attacker receives information which he is not

authorized to see. This could occur if he has access to processes, data stores or is able to

analyze data flows in the network. Processes can leak information like memory addresses,

which could be used in a later attack to bypass security mechanisms, such as address space

layout randomization (ASLR). Also sensitive data could be leaked in error messages and

stack traces, for example credentials to access a database. Data stores as for instance

databases, swap files, temporary files or hardware devices like USB devices could also

contain sensitive information. They should be protected by setting correct permissions

and adding additional security mechanisms, like for example encryption. Data which is

transmitted unencrypted over the network could also lead to information disclosure.

Denial of Service

As already described in Paragraph Denial-of-service Attack, a denial of service (DoS)

attack is taking all resources of a service to make it unavailable for others. Those re-

sources could be memory, CPU, disk space or network resources. Two categories of DoS

attacks exist: persistent and distributed denial of service (DDoS). Persistent attacks are

for instance cronjobs which survive reboots and create endless loops to consume all CPU

resources. DDoS attacks are done by sending as much traffic as possible to an application

or host to make it inaccessible for others.
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Elevation of Privilege

An Elevation of Privilege attack means an attacker is able to do something he is not

authorized to do. This could be for example executing code as admin user being logged

in as a standard user. Two main ways exist to achieve a privilege escalation: corrupting

processes or bypassing authorization checks. Corrupting a process means sending invalid

input to a process which cannot be interpreted correctly and leads to a buffer overflow.

This could give an attacker control of the application flow and allow him to run custom

code on the host. Bypassing authorization could be possible due to missing authorization

checks or bugs in the authorization component.

3.2.4 Step 3: Address Threats

In step three, the found threats from the previous step are addressed and mitigations are

defined [107]. Different mitigation strategies are listed in Table 3.1 ([107]). The decision

which mitigation strategy should be used for which threat is based on multiple factors,

such as costs of transferring the threat to another party, the likelihood of its occurrence

or costs for avoiding the threat [107]. As a result, a complete list with all threats and

calculated risk levels mapped onto the mitigation strategies is created [107]. The final

resulting document is the threat model for the given product [25].

Method Explanation
Mitigating Threats Make it harder to take advantage of a

threat, for example by adding an addi-
tional layer of security.

Eliminating Threats Eliminate the threat completely, for exam-
ple by removing the feature which is in-
volved.

Transferring Threats Transfer risk to someone else, for example
an insurance.

Accepting Threats Do nothing.

Table 3.1: Mitigation Strategies

3.2.5 Step 4: Validate

The last step is to validate the work which was done in the previous steps [107]. The

initial model and the threats have to be reviewed and updated in an iterative process

[107]. For example complete data flows can be added based on the additional information

gained in step two or three [107].
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3.2.6 Detailed Approach

The approach in this work follows the described threat modeling process from the last

chapters. First, a SSC is described and models are created to show the overall attack

surface and trust boundaries. Afterwards, threats are identified using attacks described

earlier as an aid. Based on the likelihood and impact the final risk levels are calculated

afterwards. To get an overview of the risks exposed to each component, the values low,

medium and high can be assigned to the likelihood and impact. The meaning of the

values for likelihood are explained in Table 3.2. The values for impact are explained

in Table 3.3. The final risk value can be calculated using the 3x3 matrix shown in

Figure 3.1. This matrix is used to illustrate the level of risk which can then be discussed.

The meaning of the calculated risk values are defined in Table 3.4. After calculating

the risk, treatments are assigned, countermeasures and methods are explained and the

residual risk is discussed. Step four is done implicitly in this work by iteratively reviewing

the found threats and comparing them to the countermeasures which have been discussed.

Value Explanation
Low Unlikely, there is a small possibility it might occur.
Medium It is likely to occur as there is a history of casual occurrences.
High The threat is expected to occur, since it happened frequently in the past.

Table 3.2: Values for Likelihood

Value Explanation
Low Minor financial or reputational impact.
Medium Moderate financial or reputational impact.
High High financial or reputational impact.

Table 3.3: Values for Impact

Value Explanation
Low The risk is acceptable as it is unlikely to occur or cause damage.
Medium The risk can cause damage, and should be addressed.
High Not acceptable, likely to cause damage and it needs to be addressed.

Table 3.4: Risk Level Values
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Figure 3.1: Risk Matrix
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This chapter describes and models a SSC. Since the SSC is built on Docker as base

technology, this work focuses on technical aspects of a SSC. Therefore topics as for instance

integration into business processes, key management strategies or compliance rules are out

of scope. Topics such as logging and monitoring processes are also out of scope, since they

should be implemented organization-wide, not limited to SSCs. This chapter is the first

step of the threat modeling process. As described in Chapter Software Supply Chain, a

SSC consists of the following parts: sources and dependencies, build systems and engineers,

network, application repository and deployed system. This chapter’s structure is based on

the parts of the SSC.

4.1 Overview

A general overview of environments of a SSC and its borders can be found in Figure 4.1.

The local environment is the laptop or stationary machine for each developer, which

provides tools to maintain the application. The development environment contains the

central VCS, which is used to share code among developers. To ensure high code quality

and continuous builds, a CI pipeline is required, which is mainly located in the build

environment. The central part of the CI pipeline is the build server running an automation

software. The testing environment runs the application in a Docker Swarm which is

similar to the production environment, but access is limited to the testing teams (labeled

as Tester). It is a flattened clone of the production environment and is used to test

the latest features within a production-like environment. The database data is copied

from the production database, but typically anonymized. This means that the real data

cannot be reconstructed. The production environment is the main container cluster which

provides access to the application for the end user. It uses real data and is typically scaled

across multiple nodes behind a load balancer to handle incoming traffic bursts.

4.2 Sources / Dependencies

In this chapter all topics related to source code and dependencies are explained. These

are the source code of the application itself and the Docker images which are used to run
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Figure 4.1: General Overview

the application in a container cluster.

4.2.1 The Source Code

The source code is the main asset in the SSC and needs to be protected using the CIA

objectives. The application which is exemplary used is shown in Figure 4.2. It consists

of a single container which provides a web application on port 80. For this work a small

HTML document is used, which shows a simple Hello World (Attachment 1). As shown in

Figure 4.2, the end user can access the application container on port 80. The application

Docker image installs some additional dependencies, such as nginx onto the OS base

image.

Figure 4.2: Application Overview
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The complete application can be found in the attached source code in the application/

folder. To build and run the application, Docker Compose can be used. The file docker-

compose.yml (Attachment 9) describes a single service called application. The code within

the containers is located in the folder /var/www/app. The docker-compose.yml file is

used for development, this is why the local code folder is mounted as a volume into both

services. This allows the developer to change the source code and see the changes directly

in the browser, without the need to rebuild the containers. The docker-compose.prod.

yml (Attachment 8) has the same structure as the docker-compose.yml, but uses the

Dockerfile which resides in the docker/production/application/ folder (Attachment

4). Those Dockerfiles additionally copy the whole code/ folder into the final image, to

make sure it has access to the source code when running in the testing or production

environment.

4.2.2 Docker Images

Docker images provide a consistent environment for an application or service and bundle

all required dependencies. These images can be used to run a complete application on

different infrastructures, such as a local Docker Engine installation for development or a

productive Docker Swarm.

OS Base Image

The OS base image is used as basis for all further Docker images. It is used for the

following components:

• The sample application

• The build server

• The VCS server

• The Registries

It provides the basic OS layer which is comparable to for example the Ubuntu [73] or

Debian base image [46]. It needs to provide basic OS functionality, as for instance a

network stack. It should be as small as possible to save disk space and contain only the

required dependencies to reduce the overall attack surface. The base image should be

built from SCRATCH ([69]) in a separate CI pipeline, which is out of scope of this work

since this image should be built organization-wide and not only for this SSC. Instead of

the OS base image, this work uses images from Docker Hub to run the application.
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Application Docker Image

The application image is used to containerize the sample application. It is based on

the OS base image and contains additional dependencies like nginx to run the frontend.

Nginx runs in background and listens on port 80.

Build Server Docker Image

The build server image is based on the OS base image and contains the automation

software plus additional dependencies, as for example Apache Ant or Python. In this

work, Jenkins is used, as explained in Chapter Build Server. More dependencies can

be required if for example additional security checks are applied on the source code.

To build and deploy the testing image, access to a Docker Engine is required. In this

work the Docker socket (/var/run/docker.sock) from the build server is mounted into

the Jenkins container, to allow the container to get access to the host’s Docker En-

gine. The docker-compose.yml file for this example (Attachment 12) can be found in

the buildserver/ folder in the attachment. To run the Jenkins server, docker stack

deploy --compose-file docker-compose.yml jenkins needs to be run.

VCS Docker Image

The VCS image is also based on the OS base image and contains additional software

and dependencies to provide a VCS server. Software that might be used is for example

gitolite ([11]) or GitLab ([9]). As described in Chapter VCS, gitolite is used in this work.

The docker-compose.yml file for the gitolite repository can be found in the attached

source code in the vcs/ folder (Attachment 13). To start the sample gitolite repository,

the command docker stack deploy --compose-file docker-compose.yml gitolite

can be run in a Docker Swarm cluster.

Registry Docker Image

In this work the Docker Registry is used as described in Chapter Registry. The docker-

compose.yml file for the registry can be found in the attached folder registry/ (Attach-

ment 14). To run the registry, docker stack deploy --compose-file docker-compose.yml

registry has to be executed in a Docker Swarm.

4.3 Build Systems / Engineers

This section describes all topics related to build systems or engineers. These are for

example the general development, build and deployment processes, local environments

which are used to develop applications, or the build server.
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4.3.1 The CI Pipeline

Development Process

Developers regularly push their changes into the central VCS, as shown in the general

development workflow in Figure 4.3. The VCS then notifies the build server to trigger a

pull, test and build. This is described in more detail in Chapter Build Process. After the

tests and build have been finished, the developer receives a notification whether it was

successful or not. This is done by a notification service, such as be Slack [76] or email.

To provide a better overview, the deployment step was omitted in Figure 4.3.

Figure 4.3: Development Process

Build Process

When a push into the VCS happens, the build server is notified by the VCS. When

receiving such a notification, the build process is triggered, as shown in Figure 4.4. It

starts by pulling the latest changes out of the VCS. Next, tests are executed, which could

for example be unit, integration or smoke tests. Afterwards, source code analysis tools can

be run, as for instance phpcs ([85]) or phpmd ([102]) in case of a PHP application. After

running the tests and checks, the results are parsed and interpreted by the automation

software. If one of the tests failed or the source code analysis has thrown warnings above

a certain threshold, the build server stops and sends a notification. This notification is

sent to the developer who was responsible for the last push. He then needs to fix the

source code until the tests work again.

If the tests and source code analysis tools successfully finished their work, the Docker im-

ages for the application are built. In general, docker build -t <tag> -f <Dockerfile>

can be executed to build a Docker image. This command parses the Dockerfile, builds
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Figure 4.4: Build Process

a new Docker image and copies the source code into the new image. Docker Compose

simplifies the build process by providing all necessary information in a single docker-

compose.yml file. To build the application, docker-compose build can be run in the

application/ folder. To build the image for the testing environment, the file docker-

compose.prod.yml is required. It extends the regular docker-compose.yml file by copy-

ing the source code into the image. The necessary commands are bundled in the attached

build.sh file (Attachment 6), which automatically uses the docker-compose.prod.yml

file.

Deployment to Testing

When the build process has been completed, the image can be pushed into the testing

registry. This step is included in Figure 4.4. Pushing the image into the testing registry

is achieved by running docker-compose push and using the docker-compose.prod.yml

file. The combined command can be found in the push.sh file (Attachment 11). If auto-

mated deployment is enabled, the automation software calls the deployment script, which

tells the testing container cluster to pull and run the latest image version. In general, a de-

ployment works by running docker stack deploy --compose-file <docker-compose

file> <app name> on the host machine. To execute the command, the build server needs

SSH access to the testing swarm. The deployment command is included in the deploy.sh

script (Attachment 7). It copies the current docker-compose.prod.yml onto the test-

ing host and runs docker stack deploy --compose-file docker-compose.prod.yml

application. After deploying the latest image to the testing cluster, the testers are now

able to test this version.
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Deployment to Production

After the application image has been tested by the testing team, it needs to be deployed

to the production environment. This process is shown in Figure 4.5. An operator pulls the

image from the testing registry and pushes it into the production registry. After the im-

age has been pushed, the operator needs to run docker stack deploy --compose-file

docker-compose.prod.yml <app name> on the production swarm to pull and roll out

the new containers.

Figure 4.5: Deployment to Production

4.3.2 Local Environment

The local environment is used to work on the source code of the application. It represents

the computer or laptop of each developer. It needs to support developers at their daily

work and make development as easy as possible. If possible, all developers should work

on the same operating system and use the same toolset to make the whole process as

consistent as possible. To build and run images locally, Docker Engine needs to be

installed. The software versions used to run the application have to be the same as in

testing / production to avoid errors based on different versions of the server software.

This is achieved by using Dockerfiles which are similar to those which are used for

production (Attachment 2). On the contrary to the testing / production environment,

the local environment should offer additional features like debugging or syntax checking.

Debug information of the application should be limited to this environment to avoid

unwanted information leaks. The database data used while developing should be sample

data or a fully anonymized production dump.
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4.3.3 Build Server

The build server plays a central role in the SSC. As the name implies, it is used to

regularly build, test and deploy the application. Its central part is an automation software

which runs as a container in a Docker Swarm and listens to changes in the VCS. If

a change occurs, it automatically pulls the latest source code and processes it further.

Some exemplary automation servers are Jenkins [24], Travis CI [113], Buildbot [94] or

Bamboo [1]. In this work Jenkins is used as the automation server, as it is open source

and one of the most distributed automation software with over 100,000 installations [82].

4.4 Network

In this section the communication of the components in the SSC is described. It is based

on the general overview, which is shown in Figure 4.1. A developer needs to access the

VCS to push the source code. The build server needs to communicate with the VCS to

exchange notifications and the source code. It also needs to push the resulting Docker

images into the testing registry. The end user needs to be able to access the application

in the production environment. The complete and secured network layout is described in

Chapter Network Overview, after the threat modeling process.

4.5 Application Repository

The application repository section contains all topics which are related to providing access

to source code or to Docker images. These are the central VCS and different image

registries.

4.5.1 VCS

The VCS is the central code repository for developers. It is run as a Docker container

in a Docker Swarm. In this work, gitolite [11] (On Docker Hub: [50]) is used as a

sample repository, as it provides the required functionalities like for example public key

authentication.

4.5.2 Registry

In this work Docker Registry is used, as it provides the basic functionalities. Multiple

registries are required:

• Testing Registry
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• Production Registry

• Internal Registry

The testing and production registries hold Docker images for their environments. They

run in the corresponding Docker swarm to limit access to the registries. In addition to the

swarm, the testing registry should be accessible for the build server and operators to allow

pushes. The production registry access should be limited to operators for deployment.

Internal is a general purpose registry, which is used to save additional images like for the

VCS or build server. Since the internal registry does not only contain images for the SSC

and can be used organization-wide, it is out of scope of this work.

4.6 Deployed Systems

In this section the deployed systems are described. These are mainly container clusters

which are used to run application containers. Since Docker abstracts away the infrastruc-

ture and Docker Engine runs on different operating systems, the base infrastructure is

out of scope of this work.

4.6.1 Docker Swarm

Container clusters are required to run and schedule an application image onto multiple

nodes. An overview of required container clusters and the applications which run in those

clusters is shown in Table 4.1.

Environment Application
Development VCS
Build Build Server
Testing Sample Application, Testing Registry
Production Sample Application, Production Registry

Table 4.1: Required Container Clusters

Since this work is based on Docker, Docker Swarm is used as container cluster (both

denominations are used as synonyms, as well as swarm). Docker Engine needs to be

installed on all nodes to form a swarm.
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This chapter is step two in the threat modeling process. First, the main components,

users, dataflows and trust boundaries are listed based on Chapter Modeling a Software

Supply Chain. Afterwards the main components of the SSC are analyzed and threats are

identified using STRIDE.

5.1 Components, Users and Trust Boundaries

This chapter lists the main components, users, trust boundaries and dataflows which are

required for a SSC. All are labeled with a unique ID in ascending order to later reference

them.

5.1.1 Exclusions

Table 5.1 shows components which are excluded as well as the reasons for excluding them.

Excluded Component Reason
Sample Application As the name states, this is an exemplary

application which does not contain sensi-
tive data. The threat model of the sam-
ple application is out of scope of this
work, since analyzing the sample applica-
tion does not provide an additional value
for the SSC.

Table 5.1: Excluded Components

5.1.2 List of Components

In Table 5.2 the main components of the SSC are listed and a unique identifier is assigned.

5.1.3 List of Users

In Table 5.3 the main users which are part of the SSC are listed and a unique identifier

is assigned.
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Component ID
Docker Images C1
Local Environment C2
VCS C3
Build Server C4
Registry C5
Docker Swarm C6

Table 5.2: List of Components

User ID
Developer U1
Tester U2
End User U3
Infrastructure Operator U4

Table 5.3: List of Users

5.1.4 List of Dataflows

In Table 5.4 all dataflows of a SSC are listed and a unique identifier is assigned. It is

based on the description of Chapter Network.

Source Destination Protocol Description ID
Local Environ-
ment

VCS SSH Push and pull
source code

D1

VCS Build Server HTTP / HTTPS Notify change D2
Build Server VCS SSH Pull source code D3
Build Server Testing Registry Docker Registry

HTTP API V2
Push image D4

Build Server Testing Docker
Swarm

SSH Deploy D5

Tester Application
(Testing)

Any Test application D6

End User Application (Pro-
duction)

Any Use application D7

Infastructure Op-
erator

All SSH Build and main-
tain infrastruc-
ture, manage
credentials.

D8

Table 5.4: List of Dataflows
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5.1.5 List of Trust Boundaries

In Table 5.5 relevant trust boundaries of a SSC are listed and a unique identifier is

assigned. In Figure 5.1 the boundaries are shown visually. Trust boundaries are defined

according to the data they contain. The local and development environment contain

the source code of the application but no real user data. The build server processes the

source code, and additionally has access to the testing registry and testing swarm. The

testing environment hosts the application for the testers. The production environment is

a completely separated trust boundary since real data is used.

Figure 5.1: Trust Boundaries

Components and Users ID
Development Environment TB1
Build Environment TB2
Testing Environment TB3
Production Environment TB4
External / End User TB5

Table 5.5: List of Trust Boundaries

55



5 Threat Analysis

5.1.6 Data Flow Diagram

The data flow diagram for a SSC is shown in Figure 5.2. All data flows from Table 5.4,

trust boundaries from Table 5.5 and users from Table 5.3 are included, except dataflow

D8, which accesses all environments and user U4 for the same reason.

Figure 5.2: Data Flow Diagram

5.2 Threat Modeling

This chapter analyzes the components listed in Chapter Components, Users and Trust

Boundaries and identifies threats. To find threats, STRIDE in combination with the

defined attacks from Chapter Attacks is used. The base layout for the threat analysis for

each component is a table consisting of rows representing each letter of the word STRIDE.

Additionally, each threat is labeled with a unique identifier (starting with T), which will

be used as a reference in later chapters.

5.2.1 Exclusions

To simplify the threat models, common threats, as for example default credentials are

excluded. A list of excluded threats and the reasons are listed in Table 5.6.

5.2.2 Components

Docker Images (C1)

The threat model for the Docker images is shown in Table 5.7.

Local Environment (C2)

The threat model for the local environment is shown in Table 5.8. Threats such as

malware or local privilege escalation vulnerabilities are not listed, since they belong to

the excluded category OS level threats.
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Excluded Threat Reason
Default credentials Default credentials are excluded, because

this threat can be addressed by setting up
the infrastructure in an automated process
and should be taken care of in each com-
ponent.

OS level threats OS level threats like for example SSH or
bash vulnerabilities are excluded to reduce
the focus on the main components of a
SSC. On each OS, base hardening mech-
anisms should be applied.

Disabled (audit) logs Logs should be enabled everywhere and
a central logging service should be estab-
lished. Since a central logging infrastruc-
ture is a separate mechanism, it is out of
scope of this work.

Rogue internal Rogue internals, as for instance a rogue
operator are not a threat limited to SSCs.
They should be mitigated organization-
wide.

Table 5.6: Excluded Threats

S -
T * Backdoored images in public registries (T1.1)

* Image forgery while transmitting (T1.2)
R -
I * Vulnerabilities (T1.3)

* Backdoors (T1.1)
* Hardcoded information (for example credentials or IPs) (T1.4)

D * Vulnerabilities (T1.3)
* Untested latest tag (T1.5)

E * Privilege escalation vulnerability (T1.3)

Table 5.7: Threat Analysis for Docker Base Image

S -
T * Source code manipulation (T2.1)
R -
I * Credential leak (T2.2)

* Source code leak (T2.3)
D * Loss of credentials (T2.4)
E * Vulnerability in development tools (T2.5)

* Misconfigured Docker Engine (Socket exposed to network) (T2.6)

Table 5.8: Threat Analysis for Local Environment
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VCS (C3)

The threat model for the VCS is shown in Table 5.9.

S * Authentication / authorization bypass (T3.1)
T * Unauthorized push (T3.2)

* MITM while pulling / pushing source code (T3.3)
* Destroying source code (T3.6)

R -
I * Vulnerability in software (T3.4)
D * Too many interactions at the same time (T3.5)
E * Vulnerability in software (T3.4)

* Authentication / authorization bypass (T3.1)

Table 5.9: Threat Analysis for the VCS

Build Server (C4)

The threat model for the build server is shown in Table 5.10. The OWASP Top 10 security

risks for web applications is used to analyze the web interface [99].

S * Broken authentication or session management (T4.1)
* Leaked credentials (T4.2)
* Cross-Site Scripting (XSS) (T4.3)

T * Unauthenticated access (T4.4)
* MITM (T4.5)

R -
I * Injection attack (T4.6)

* MITM (T4.5)
* XSS (T4.3)
* Leaked credentials (T4.2)

D * Too many parallel builds (T4.7)
* Vulnerability in software (T4.8)

E * Broken authentication or session management (T4.1)
* Vulnerability in software (T4.8)
* Injection attack (T4.6)
* Cross-Site Request Forgery (CSRF) (T4.9)
* XSS (T4.3)
* Host compromise with Docker socket (T4.10)

Table 5.10: Threat Analysis for the Build Server

Registry (C5)

The threat model for image registries in testing and production environment is shown in

Table 5.11.
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S * Broken authentication (T5.1)
T * Unauthenticated push (T5.2)

* Image forgery while pushing / pulling (T5.3)
R -
I * Vulnerabilty in registry software (T5.4)

* MITM while pushing or pulling images (T5.5)
D * Too many interactions (T5.6)

* Image use too much space (T5.7)
E * Vulnerability in registry software (T5.4)

Table 5.11: Threat Analysis for the Registry

Docker Swarm (C6)

The threat model for the Docker Swarm which runs in testing and production is shown

in Table 5.12.

S -
T * Network exposed Docker socket (T6.1)
R -
I * Network exposed Docker socket (T6.1)

* MITM between master and nodes (T6.2)
* Leaked credentials (for example for DB) (T6.3)

D * Network exposed Docker socket (T6.1)
* Container memory / CPU exhaustion (T6.4)

E * Network exposed Docker socket (T6.1)
* Container to host breakout (T6.5)

Table 5.12: Threat Analysis for the Docker Swarm
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Based on the identified threats, this chapter calculates the risks, discusses security mech-

anisms to mitigate, eliminate, transfer or accept those risks and assesses the residual risk.

The discussion includes security design principles which were introduced in Chapter Se-

curity Principles. The general goal of this chapter is to show the residual risk of an attack

on each component and possible solutions to secure information which is passed through

the SSC regarding the CIA objectives.

6.1 Network Overview

Before evaluating the components, an overview of the network communication is given.

The network layout is shown in Figure 6.1.

Figure 6.1: Network Overview

By creating logically separated subnets, each component can be isolated from each other

and trust boundaries can be protected (Defense in Depth). Due to sensitive data, the
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production environment should additionally be physically separated. The subnets should

be able to communicate with each other through firewalls (labeled as FW in Figure 6.1).

Those firewalls contain access control lists (ACLs), which allow minimal traffic which is

defined in the dataflows in Chapter List of Dataflows (Principle of Least Privilege). The

default rule is to deny all other traffic (deny-all). By using this concept, it is harder for

an attacker to move from one component to the other (lateral movement [121]), even if

he managed to infiltrate one of the components. Each cloud in Figure 6.1 represents a

subnet. The trust boundaries from Chapter List of Trust Boundaries are marked with

double lines. Each crossing from one trust boundary into another is secured by a fire-

wall. The communication from the local environment to the development environment

can be unidirectional, since the developers only need to exchange source code with the

VCS. The VCS does not need to initiate a connection back. The communication between

development and build environment has to be bidirectional, since the VCS needs to con-

nect to the build server and vice versa. The communication from the build server to the

testing environment is unidirectional, since the build server has to push the final Docker

image. No connection back should be allowed, in case the testing environment has been

compromised.

Additionally, a management network is required to allow operators to maintain the

infrastructure (Defense in Depth). It needs unidirectional access to all environments. All

management interfaces, as for instance SSH ports, should be able to communicate with

the management network only. The management network contains jump servers, which

are accessible by operators and contain keys to access the different environments. These

keys are for example SSH private keys.

6.2 Components

6.2.1 Docker Images (C1)

Docker images form the base layer for many components of the SSC (for example the VCS,

the build server or the testing and production application). To provide an overview, each

found threat mapped to its likelihood, impact, risk and mitigation strategy is shown in

Table 6.1.

Explanations

T1.1: The likelihood of backdoors is low if developers are constrained to use public image

from official repositories only. The impact is high since if a backdoor stays undetected,

an attacker would be able to gain access to production data.

T1.2: Image forgery is limited to attackers which have access to the internal network.
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Threat Likelihood Impact Risk Mitigation
T1.1 (back-
door)

low high medium eliminate

T1.2 (image
forgery)

low high medium eliminate

T1.3 (vulnera-
bilities)

high high high mitigate

T1.4 (hard-
coded informa-
tion)

medium medium medium mitigate

T1.5 (untested
latest tag)

low low low eliminate

Table 6.1: Risk Calculation and Mitigation (C1)

The impact is high since manipulating an image and for example adding a backdoor would

give an attacker access to production data.

T1.3: Vulnerabilities are very likely to occur since every dependency can be affected.

If an attacker is able to exploit the vulnerability, he could gain access to production data.

T1.4: Hardcoded credentials are likely to occur, especially in new teams or if a new

developer joins a team. The impact is medium since an attacker needs access to a registry

to read out the credentials of an image.

T1.5: An untested latest tag is unlikely to occur, since container clusters can be config-

ured to not use them. If it still happens, an untested feature could be deployed to testing

or production, which exposes a medium risk.

Mitigation Strategies

To eliminate threat T1.1 (backdoor) and mitigate T1.3 (vulnerabilities), a separate in-

ternal CI pipeline is required, which builds the Docker base image. The resulting image

is then used as base image for further Docker images, as for example the VCS. Devel-

opers should be constrained to use this image as basis to build their custom images. If

possible, the base Docker image should be built using SCRATCH ([69]) and only bun-

dle the necessary dependencies, to reduce the overall attack surface (Minimize Attack

Surface Area). Tools such as SSH are not required in the image, due to the immutable

infrastructure paradigm. The initial effort to build a custom base Docker image is high,

since all required dependencies have to be identified, installed and tested. Nevertheless it

addresses two basic threats (T1.1 and T1.3) and gives control over the installed software

(Don’t Trust Service, in this case Docker Hub images). To further reduce vulnerabilities

in the Docker base image, additional security scanners, like for example Clair [17], can

be integrated into the CI pipeline. The results of the static analysis have to be analyzed

and depending on the risk, patches have to be applied or dependencies removed.
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Threat T1.3 can also be addressed by hardening the base OS image after all required

dependencies have been installed. Possible strategies to harden images and containers are

described in detail in the paper Understanding and Hardening Linux Containers [33].

T1.4 (hardcoded credentials) is mainly a mistake by developers. To mitigate hard-

coded credentials, a proper secret management strategy needs to be introduced. This

involves using Docker Secrets as secret management platform, which allows to secretly

store information in the encrypted raft log. Since developers are not able to manage the

Docker Swarms in testing and production environment, an operator has to configure the

swarms and make sure the required credentials are mounted to the correct path in the

running containers. Secrets which are required for a service are configured by develop-

ers in the final docker-compose.prod.yml, but this configuration does not contain the

values of the secrets itself. The process looks as follows: developers configure the secrets

in the docker-compose.prod.yml file and ask operators to create or update the corre-

sponding secrets in the testing or production swarm. After the secrets have been created,

the application can be deployed and automatically receives the required credentials when

started.

Threat T1.5 (untested latest tag) should be taken care of in the complete development

and deployment process (it is also seen as an anti-pattern [35]). The latest tag is used

as default tag, if no other tag has been specified. If a developer or the build server

accidentally tags an untested or unstable image as latest, it is possible that this image is

executed in production environment. This threat can be eliminated by configuring the

target environment to always use a specific version tag.

Additionally, to mitigate threat T1.4 and T1.5, compliance rules can be introduced

which developers have to follow. Those rules could for example be to avoid any confidential

data in Docker images or to use a secure coding process.

The elimination of T1.2 (image forgery) by using DCT will be explained in chapter

Registry (C5).

Residual Risk

Three out of five threats could be eliminated by the described mechanisms. The remaining

threats (T1.3 with risk high and T1.4 with risk medium) can be mitigated but leave a

residual risk for Docker images.

6.2.2 Local Environment (C2)

To create a secure baseline for local environments, basic OS hardening should be applied,

like for instance account passwords, encrypted hard drive or firewalls (Establish Secure

Defaults). The details to basic hardening is out of the scope of this work, since hardening

64



6.2 Components

guides for different operating systems already exist, such as the CIS Ubuntu Linux 16.04

LTS Benchmark ([23]). An overview of identified threats mapped to likelihood, impact,

risk and a mitigation strategy can be found in Table 6.2.

Threat Likelihood Impact Risk Mitigation
T2.1 (source
code manipula-
tion)

low high medium mitigate

T2.2 (creden-
tial leaks)

medium high high mitigate

T2.3 (source
code leak)

low medium low mitigate

T2.4 (loss of
credentials)

low low low accept

T2.5 (vulnera-
bilities)

high high high mitigate

T2.6 (miscon-
figuration)

low high medium eliminate

Table 6.2: Risk Calculation and Mitigation (C2)

Explanations

T2.1: The likelihood of source code manipulation is low, since the attacker needs to gain

access to the local environment and the developers should review their changes before

pushing into the VCS. The impact is high, since the attacker could place backdoors which

have access to production data.

T2.2: Credential leaks are likely as humans are the weakest point of a system. Creden-

tials could be stolen for example by a phishing attack or exploiting a vulnerability in the

local environment. The impact is high, since an attacker could gain access to the VCS

and push manipulated source code.

T2.3: A source code leak happens if an attacker gains access to the local environment,

therefore they are unlikely. The impact is medium, since an attacker could easier find

bugs which he could exploit in production.

T2.4: The loss of credentials is unlikely, since a developer should create backups of his

local machine. The impact is also low, since new credentials and keys can be generated

by an operator.

T2.5: Vulnerabilities on the local system are to be expected. The impact is high, since

an attacker could gain root access on the local machine.

T2.6: A misconfigured Docker Engine is unlikely, since Docker does not expose the

socket by default. The impact of an exposed socket is high, since the attacker would gain

root on the local machine.
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Mitigation Strategies

If an attacker gained access to a local environment, he is able to manipulate the source

code which then could be pushed into the VCS (T2.1). This threat can be mitigated by

manually reviewing each source code change before pushing into the VCS. This could be

achieved by using a code review process, such as pair programming ([118]) or working

with pull requests, which have to be reviewed by other developers.

To protect local credentials and mitigate T2.2 (credential leak), a password manager,

like for example 1Password ([39]) or KeePassX ([112]) should to be used. Additionally,

the private SSH keys should be protected with a password, which must be entered on each

key access (Defense in Depth). To avoid phishing attacks, a developer should be careful

when opening emails or clicking on links. Additionally, security awareness seminars can

be realized for developers.

T2.3 (source code leak) can be mitigated by hardening the base system and carefully

handling the source code. This means that the source code should never leave the local

environment anywhere else than to the VCS.

To mitigate T2.4 (credential loss), regular backups should be created and a restore

process has to be defined.

To reduce the threat of a privilege escalation caused by vulnerabilities in the develop-

ment tools (T2.5) or misconfiguration of the local environment (T2.6), regular security

patches need to be applied. Also the configuration of the local development tools need to

be reviewed and hardenings should be applied. This could for instance be the configura-

tion of the Docker Engine to not expose the socket to the network (Establishing Secure

Defaults). To eliminate threat (T2.6), default configuration can be provided by the IT

security department.

Residual Risk

Threat T2.6 could be eliminated by providing secure configurations to the developers.

T2.4 can be accepted since likelihood, impact and risk are low. Threat T2.2 and T2.5

with risk high, T2.1 with risk medium and T2.3 with risk low present a residual risk which

should be mitigated using the solutions describe above.

6.2.3 VCS (C3)

The VCS contains the source code of the application. An overview of identified threats

mapped to likelihood, impact, risk and a mitigation strategy can be found in Table 6.3.
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Threat Likelihood Impact Risk Mitigation
T3.1 (authenti-
cation bypass)

low high medium mitigate

T3.2 (unautho-
rized push)

low high medium eliminate

T3.3 (MITM) medium medium medium eliminate
T3.4 (vulnera-
bilities)

high high high mitigate

T3.5 (interac-
tions)

low medium low mitigate

T3.6 (destroy-
ing source
code)

low high medium mitigate

Table 6.3: Risk Calculation and Mitigation (C3)

Explanations

T3.1: The likelihood of authentication bypasses is medium, since they could be achieved

using vulnerabilities in the software. The impact of an authentication bypass is high,

since an attacker could push manipulated source code.

T3.2: Unauthorized pushes are unlikely to happen, since authentication and autho-

rization should be enabled. The impact is high, since an attacker could push manipulated

source code.

T3.3: MITM attacks are likely to happen since if an attacker has access to the network

traffic, he can easily sniff it. The impact is medium since sensitive information could be

leaked.

T3.4: Vulnerabilities are very likely to occur and have a high impact since they could

be abused to gain unauthorized access to the VCS or the host system.

T3.5: The likelihood of too many interactions happening in parallel is low, since devel-

opers push their changes irregularly. The impact is medium, since the build server would

not be triggered and deployments could not be made.

T3.6: The likelihood of source code being destroyed is low, since regular backups should

be created. The impact is high, since the main asset would be lost.

Mitigation Strategies

To prevent unauthorized attackers from pushing manipulated source code (T3.2) into

the VCS, authentication and authorization has to be enabled. This can be achieved by

using public key authentication. Each developer generates a pair of a private and a public
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key and hands over the public key to the operator. The operator configures the VCS

to allow authentication with the private key corresponding to the public key. Now the

developer is able to push and pull source code using his private key. Each private key

should be held in a safe place and protected by a password, to prevent a credential leak

(T2.2) (Principle of Defense in Depth). Alternatively a username password combination

can be used, which has to be entered on each authentication. The password should be

secure ([32]) and kept in a safe place, by using for example a password manager. To

control access to each repository, authorization should be enabled in the VCS. The access

of each developer should limited to the repositories on which he is currently working

(Principle of Least Privilege).

To mitigate vulnerabilities (T3.4), which could also allow an authentication bypass

(T3.1), regular security patches to the VCS have to be applied.

Another threat is a MITM attack when transferring source code (T3.3). To eliminate

this attack, an encrypted channel has to be used to push and pull source code. This could

be for example SSH, which also comes with public key authentication. If a connection

is initially established, the fingerprint of the server’s public key has to be validated to

ensure the communication is done with the correct server. To further reduce the threat

of source code forgery, transmission over insecure protocols, as for instance HTTP should

be disabled (Minimize Attack Surface Area).

To reduce the denial of service threat by having too many interactions at the same

time (T3.5), a resource limit for the server and an access limit for the developer should

be configured.

To mitigate the threat of destroyed source code (T3.6), regular backups of the source

code and the VCS have to be created.

Residual Risk

Threats T3.2 and T3.3 could be eliminated. T3.4 with risk high leaves a high residual

risk which should be addressed by using additional processes or compliance rules for patch

management. T3.1 and T3.6 with risk medium also leave a residual risk and should be

watched. Threat T3.5 leaves a small residual risk, due to the low risk rating.

6.2.4 Build Server (C4)

The build server is a central component, crosses two trust boundaries (TB1 / TB2 and

TB2 / TB3), and operates on sensitive source code. An overview of identified threats

mapped to likelihood, impact, risk and a mitigation strategy can be found in Table 6.4.
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Threat Likelihood Impact Risk Mitigation
T4.1 (broken
auth)

medium high medium mitigate

T4.2 (leaked
credentials)

low high medium mitigate

T4.3 (XSS) high medium high mitigate
T4.4 (unau-
thenticated
access)

low high medium eliminate

T4.5 (MITM) medium medium medium eliminate
T4.6 (injection
attack)

high high high mitigate

T4.7 (parallel
builds)

low medium low mitigate

T4.8 (vulnera-
bilities)

high high high mitigate

T4.9 (CSRF) medium high high mitigate
T4.10 (host
compromise)

low high medium accept

Table 6.4: Risk Calculation and Mitigation (C4)

Explanations

T4.1: The likelihood of a broken authentication mechanism is medium, since vulnerabil-

ities could lead to such a failure. The impact is high, since an attacker could get access

to source code and the testing environment.

T4.2: Leaked credentials are unlikely, since the build server should be separated from

other environments. The impact is high, since an attacker could gain access to the testing

environment and manipulate source code.

T4.3: XSS attacks in the webinterface are very likely, since OWASP Top 10 security

risks for web applications defines them as very widespread [99]. Attackers could for

example steal cookies and hijack a user session, which makes this a medium impact.

T4.4: Unauthenticated access is unlikely to happen, since authentication and autho-

rization should be enabled. The impact is high, since an attacker could gain access to

sensitive data.

T4.5: A MITM attack is likely to happen if the attacker has access to the network

traffic. The impact is medium, since an attacker could sniff sensitive data which is sent

unencrypted over the network.

T4.6: Injection attacks are very likely to happen since they are easy to exploit and a

common threat [99]. The impact is high, since an attacker could gain access to sensitive

information or even get access to the complete host.

T4.7: Too many parallel builds are unlikely to happen, since developers commit and
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push infrequently, which spreads the workload. The impact is medium, since it could

postpone deployments.

T4.8: Vulnerabilities are very likely to occur and have a high impact, since an attacker

could gain root access on the host machine.

T4.9: CSRF attacks are common and they are easy to detect [99], which makes them

likely. The impact is medium, since an attacker can do what the current logged in person

is privileged to do.

T4.10: A host compromise is unlikely, since per default the Docker socket is not exposed

to the network. The impact is high, since it leads to an instant compromise of the host.

Mitigation Strategies

To enable authentication and authorization and eliminate T4.4, global security in Jenk-

ins should be activated and anonymous access disabled (Establish Secure Defaults). As

user realm multiple options exist, such as Jenkin’s own database, LDAP or Unix users

and groups [82]. Access to Jenkins configuration should be limited to operators, to avoid

misconfiguration of the build processes (Principle of Least Privilege). This also prevents

developers from bypassing integrated security mechanisms in the pipeline, like for example

security or compliance checks could lead to the build failing in case a security requirement

has not been met.

The threat of a broken authentication or session management (T4.1) can be reduced by

regularly installing the latest security patches to the automation software and disabling

unneeded features, as for instance the integrated CLI which exposes vulnerabilities like

java deserialization bugs [82] (Minimize Attack Surface Area). This also mitigates the

threat of vulnerabilities in the software (T4.8), XSS (T4.3), injection attacks (T4.6) and

CSRF (T4.9).

The build server requires credentials for the following actions:

• VCS: Pull source code

• Testing Registry: Push Docker image

• Testing Docker Swarm: Access to deploy the application using SSH

• Email / Slack: Send notifications to developers

To reduce the threat of leaked credentials (T4.2), they should be managed using Jenkin’s

Credentials plugin which encrypts the keys using the combination of a master and inter-

mediate keys [115]. To further reduce the threat, access to managing credentials should

be limited to operators (Principle of Least Privilege and Separation of Duties ).
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To eliminate T4.5 (MITM) and mitigate T4.2 (leaked credentials), TLS encryption

should be enabled. This can be achieved by using either self-signed certificates or a

valid domain certificate. Both methods ensure the encryption of data between client and

server. Domain certificates additionally are able to eliminate MITM (T4.5) attacks, since

certificates can be validated on connection setup.

A detailed guide on how to lock down Jenkins can be found in Securing Jenkins CI

Systems ([82]).

Another topic is the Docker socket which has been mounted into the Jenkins container.

This is required to enable Docker builds in a Docker container, as described in jpetaz-

zo/Using Docker-in-Docker for your CI or testing environment? Think twice. ([101]). If

the Jenkins container has been compromised, this leads to an instant host compromise

(T4.10), since the Docker Engine is able to spawn privileged containers which can mount

the root filesystem writable. To reduce the impact of this compromise, the build server

should be isolated in the network and no other application should be run in the same

Docker swarm or on the host machine (Principle of Least Privilege).

The remaining threat T4.7 (too many parallel builds) can be mitigated by limiting the

number of concurrent builds in the pipeline. Also resource limits for each Jenkins slave

container can be set to avoid memory exhaustion.

Residual Risk

Threats T4.4 and T4.5 could be eliminated. The residual risk for the build server remains

high, since the threats T4.1, T4.2, T4.3, T4.6, T4.8 and T4.9 have a high or medium

risk value and could not be eliminated completely. Those risks make the build server a

highly valuable target for an attacker. The overall risk should be reduced by completely

locking away the build server into a separated network with nothing else running and

strict access controls. Additional security reviews for the build server software should be

created to reduce the number of vulnerabilities. This reduces the likelihood of an incident

happening. If a SSC based on Docker is used, which requires the Docker socket to be

mounted into the Jenkins container, T4.10 rated as high exposes a high residual risk due

to the fact, that it has to be accepted.

6.2.5 Registry (C5)

The testing and production registries hold Docker images which are needed by the Docker

Swarms. Table 6.5 provides overview of identified threats mapped to likelihood, impact,

risk and a mitigation strategy.
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Threat Likelihood Impact Risk Mitigation
T5.1 (broken
auth)

medium high medium mitigate

T5.2 (unau-
thenticated
push)

low high medium eliminate

T5.3 (image
forgery)

low high medium eliminate

T5.4 (vulnera-
bility)

high high high mitigate

T5.5 (MITM) medium medium medium eliminate
T5.6 (too many
interactions)

low medium low mitigate

T5.7 (missing
disk space)

medium medium medium mitigate

Table 6.5: Risk Calculation and Mitigation (C5)

Explanations

T5.1: The likelihood of a broken authentication mechanism is medium, since vulnerabil-

ities could be responsible for this to happen. The impact is high, since an attacker could

get access to all images.

T5.2: An unauthenticated push is unlikely to happen, since authentication and autho-

rization should be enabled. The impact is high, since an attacker could push a tampered

image including a backdoor to gain access to production data.

T5.3: Image forgery while pushing an image into the registry is unlikely to occur, since

an attacker would need access to the internal network. The impact is high, because the

attacker would be able to push backdoored images.

T5.4: Vulnerabilities should be expected to occur and have a high impact, since they

could be used to gain access to all Docker images in the registry.

T5.5: MITM attacks are likely to happen if an attacker has access to the internal

network. They have medium impact since an attacker could gain access to unencrypted

sensitive information.

T5.6: Too many interactions are unlikely since access is limited to the build server and

operators. Deployments could be postponed, which makes this a medium impact.

T5.7: Exhausted disk space is likely to occur, especially if the infrastructure is new and

no experiences have been gained yet. The impact is medium, since deployments could be

postponed.
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Mitigation Strategies

To make sure images cannot be pushed by untrusted entities (T5.2), authentication

and authorization have to be used. Docker Registry supports native basic authentication

([47]) (which requires TLS to be configured) and delegating authentication to a trusted

token server ([72]). To enable more advanced authentication and authorization, a proxy

is recommended in front of the registry ([47]) (Principle of Defense in Depth). Access

should be limited to the responsible entities like the build server and operators (Principle

of Least Privilege).

To mitigate the threat of vulnerabilities (T5.4) and a broken authentication mechanism

(T5.1), regular security patches to the registry should be applied.

The threat of a MITM attack (T5.5) can be eliminated by encrypting traffic using TLS

in combination with certificate pinning. Additionally the insecure-registries key in

the daemon.json which allows unencrypted traffic should be avoided (Establish Secure

Defaults). To further reduce the threat of image forgery (T5.3), DCT should be used and

enabled by default (Establish Secure Defaults). To use DCT, an additional Notary server

is required. It is responsible for handling image tag signatures. Before pushing an image

into the testing registry, the build server has to sign the image tag. The testing swarm is

then able to check the signature of the build server (by setting DOCKER CONTENT TRUST=1)

before running the application. On deployment to production, the operator has to sign the

image from the testing registry and push it into the production registry. The production

swarm is then able to make sure the image has been signed by the build server and

additionally by an operator.

The threat of a DoS attack by too many interactions at the same time (T5.6) or disk

space exhaustion (T5.7) can be mitigated by defining resource limits or by replicating the

registry across multiple nodes which have enough resources available. To further increase

the overall security, regular backups need to be created.

To reduce the overall risk of a vulnerability in a Docker image, additional image security

scannings can be integrated into the registry. Docker Registry by default does not offer

an integrated security scanner, but commercial products are available, like for example

Xray from JFrog ([89]) which integrates into Artifactory ([88]).

Residual Risk

Threats T5.2, T5.3 and T5.5 could be eliminated by using mechanisms discussed in this

section. T5.4, T5.1 and T5.7 could be mitigated but expose a residual risk which has to

be addressed by using a patch management process and defining resource quotas. T5.6
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has a low residual risk and can be accepted.

6.2.6 Docker Swarm (C6)

Docker Swarms are used to run and scale the application across multiple nodes. To create

a secure baseline, the underlying OS should be hardened. The detailed hardening process

is out of scope of this work, since hardening guides for different operating systems already

exist, like for instance the CIS Ubuntu Linux 16.04 LTS Benchmark ([23]). Table 6.6 pro-

vides an overview of identified threats mapped to likelihood, impact, risk and a mitigation

strategy.

Threat Likelihood Impact Risk Mitigation
T6.1 (exposed
docker socket)

low high medium eliminate

T6.2 (MITM) high high high eliminate
T6.3 (leaked
credentials)

medium high high mitigate

T6.4 (resource
exhaustion)

medium high high mitigate

T6.5 (container
to host break-
out)

medium high high mitigate

Table 6.6: Risk Calculation and Mitigation (C6)

Explanations

T6.1: The likelihood of an exposed Docker socket is low, since the socket is not exposed by

default. The impact is high, because the attacker could gain an instant host compromise.

T6.2: A MITM attack is expected to occur, if the Docker swarm is extended over

multiple datacenters. The impact is also high, since sensitive information could be leaked

if an attacker sniffs the network.

T6.3: Leaked credentials are likely to occur, especially if error messages or stack traces

are misconfigured. The impact is high, since sensitive data could be accessed by using

the leaked credentials.

T6.4: Resource exhaustion is likely to occur, especially if an attacker uses a DDoS

attack. The impact is high, as the application could become unavailable to other users.

T6.5: A container to host breakout is likely to occur, since an attacker could use a

vulnerability in the application in combination with a kernel exploit to gain access to the

host system. The impact is high, since the attacker would gain access to production data.
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Mitigation Strategies

Access to Docker Swarm management should be given using an encrypted authenti-

cation method, like for example SSH. This eliminates the threat of an exposed Docker

socket (T6.1), since using SSH makes exposing the socket to the network obsolete and

it can be bound to localhost (Establish Secure Defaults). Access to managing the swarm

should be reduced to either the build server (to deploy on testing swarm), or an operator

(to manage the testing and production swarms) (Principle of Least Privilege).

To eliminate MITM attacks (T6.2) between master and worker nodes, Docker Swarm

automatically creates a public key infrastructure (PKI). This encrypts control traffic be-

tween managers and workers by default (Establish Secure Defaults) ([52]). To encrypt

data which is sent from container to container (data plane), overlay encryption should be

enabled by adding the --opt encrypted flag when creating an overlay network. This is

especially relevant, if container clusters are extended over multiple datacenters (which is

not recommended due to the increasing network delay).

To mitigate T6.3 (leaked credentials), credentials need to be stored safely. Docker

Secrets can be used to store and encrypt credentials in the raft log and mount them

into containers on demand. To make sure no unauthorized entity can read them, access

should be limited to operators (Principle of Least Privilege). Also error messages of the

application have to be adjusted to not leak information (Fail Securely).

Resource exhaustion is a problem in container clusters. Per default, no resource limits

for containers are set. This means that a single container is able to block the whole swarm

by using all memory or CPU resources (T6.4). This threat can be mitigated by setting

resource constraints when starting a container. This is not possible on Docker swarm level,

so every application has to define their own runtime limits [64]. This should be enforced

and validated in the CI pipeline by running checks on the docker-compose.prod.yml

file. This could also be enforced by setting parameters for the dockerd process while

configuring the infrastructure [54]. One solution would be to create a cgroup with a

defined memory limit. This cgroup is assigned as parent to all containers on the host by

using the parameter --cgroup-parent.

One concern of using Docker compared to traditional virtualization is the isolation

capability of Docker containers. Container management solutions use a set of kernel

features to isolate process groups from each other. Containers share the same kernel, which

means that using a kernel exploit (T6.5, container to host breakout) in a compromised

container could lead to a compromise of all other containers on the same host. This threat

can be mitigated by using patches from Grsecurity [98] to harden the Linux kernel against

exploits. Using grsecurity patches on the other side is hard to maintain, since the kernel
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has to be compiled by hand.

Additionally, seccomp-bpf filtering can be used to limit the amount of system calls

which can be issued by a process (Minimize Attack Surface Area). The default Docker

seccomp profile disables around 44 system calls [70]. The attack surface can be reduced

further by removing allowed system calls one by one and testing, if the application still

works.

To further reduce the permissions of a Linux container, all Linux capabilities should

be removed (Principle of Least Privilege). Typical web applications do not require Linux

capabilities to run, since they are dynamically parsed and executed. To find out which

capabilities an application requires, utility scripts as described in Find what capabilities

an application requires to successful run in a container [15] are available.

To add an additional layer of security, kernel extensions such as SELinux or AppArmor

can be used.

Containers which run using the --privileged flag should be avoided at any time, since

if such a container is compromised, the host is instantly compromised as well (Principle

of Least Privilege).

Residual Risk

Threat T6.1 and T6.2 could be eliminated by using correct Docker Engine configurations

and encryption. T6.3-T6.5 expose a high risk which can be mitigated using mechanisms

described above. The overall residual risk is still high, especially in production environ-

ments, due to the sensitiveness of data used. This is the reason why especially production

environments should add additional security layers, as for instance a physical separation

to other environments.

6.3 Deployment Process

The deployment should be divided into two separate processes: deployment to testing

and deployment to production environment (Separation of Duties).

Deployment to a testing environment is less critical than to production. The reason is

that the data used in the testing environment database is no real data. Also the end users

are not affected if a testing environment has been compromised. This is why this step

can be done in an automated process, like for example by using a build server. To access

the testing environment, the build server has to store SSH credentials, which means that

if the build server is compromised, the attacker also has access to testing.

Deployments to production environment should be a separate process. If the build

server would be responsible for deploying to production and save the access credentials,

a compromise of the build server would also mean getting access to real client data.
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Additionally, it would create a single point of failure. This is the reason why an operator

should be responsible for deploying the application to production. The operator can

use the management network to log into the testing environment, pull the latest tested

Docker image, sign it using DCT and push it into the production registry. By using this

workflow, the operator can also make sure that each image is tested before pushing it

into the production registry. After pushing the image, he can log into the production

environment using SSH and is then able to update the production swarm.

6.4 Security Scanning

Automated CI pipelines in combination with Docker allow the integration of additional

security scanning in the process. This helps to reduce the overall risk of manipulated or

insecure source code being deployed into production environment. Two main integration

points were found in this work: the image registries and the automated test and build

steps.

Image registries can be extended by plugins which automatically scan the pushed im-

ages, as for example Docker Security Scanning [111]. They are able to scan images for

installed packages and compare the results with security feeds from vendors. This is one

use case in the so called Deep Container Inspection (DCI) ([91]). It is possible to develop

a workflow in which the registries automatically deny the push if a certain threshold of

vulnerabilities or compliance fails have been found in the image.

Additionally, security checks can be integrated into the automated test and build pro-

cess. These checks can lead from simple source code analysis to individual Docker security

checks. Simple source code analysis could for example include checks for typical program-

ming mistakes or the usage of insecure libraries or functions. Docker specific checks could

be analyzing the docker-compose.yml for insecure parameters, such as a network port

which should not be open. This step could also be used to enforce compliance rules before

deploying an application to testing or production. If a compliance check fails, the build

will fail and inform the developers.

6.5 Patch Management

Patch management in automated container environments which follow the Immutable

Infrastructure paradigm requires only little manual interaction.

To patch a running application container, a rebuild and redeployment can be triggered.

A new build is triggered on the separate build server for the base OS image and on the

build server for the application (in the SSC). This creates a new application image based

on a new base OS image, including the latest security patches. After building is done,
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the resulting image can be tested on the testing environment and afterwards deployed

onto production. After running the deploy command, all old containers are replaced with

newly patched containers.

Docker Swarm allows to add and remove new nodes while keeping the cluster alive. If

the infrastructure orchestration has been automated, a newly patched base OS image can

be created and rolled out into the infrastructure. The infrastructure tools shut down the

nodes one by one, while replacing them with new ones. The swarm manager is responsible

for delivering workload onto the newly added instances while keeping the swarm alive.
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In the first chapters, background knowledge to agile software development, CI pipelines,

container virtualization and the Docker ecosystem was explained. A SSC was defined and

it was explained how it integrates with the other topics. In the next chapter the threat

modeling methodology including basic knowledge about information security was defined.

Afterwards a SSC was built and modeled using this methodology. The main components,

processes and users and how they interact with each other were identified and described

afterwards. Based on this information trust boundaries were defined and a threat model

was created using STRIDE. In the last chapter Securing the Software Supply Chain the

identified threats were used to calculate the risk and mitigation strategies were defined.

Also possible solutions to secure the SSC were discussed for each component and the

residual risk was explained. This chapter also answered the first three research questions

from the beginning of this work. The last research question Can a Software Supply Chain

be completely secure? can be answered as follows: It cannot. The results from Chapter

Securing the Software Supply Chain show, that there is always a residual risk which can

be mitigated, but not completeley be elmiminated.

The requirements from Chapter Requirements could be fulfilled. Requirement #1 (Un-

derstand the Background and the Docker Ecosystem) was achieved by explaining back-

ground knowledge in Chapter Agile Software Development and Docker. Requirement #2

(Build a Software Supply Chain) was carried out by defining what a SSC is and explaining

the most relevant components in Chapter Modeling a Software Supply Chain. Require-

ment #3 (Secure the Software Supply Chain) could be partially fulfilled by creating a

threat model, calculating risks and discussing security mechanisms in Chapter Securing

the Software Supply Chain. STRIDE helped to elaborate threats, but it is not able to find

all threats for a component. It always remains a residual risk which cannot be completely

addressed, since there is no total security. Requirements #4 (Use Docker as base Tech-

nology) and #5 (Use Open Source / Free software) were implicitly fulfilled by building

the SSC based on those requirements.

As summary it can be said that a SSC is a collection of processes and components in an

organization which handles sensitive data and needs to be protected regarding the CIA

objectives. The Docker ecosystem provides a good basis since most components, as for

example the VCS or build server can be containerized and run using the same technology.
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7 Conclusion

Especially when it comes to running an application in a testing or production container

cluster, Docker Swarm takes over a lot of work by orchestrating containers over multiple

nodes. In terms of security Docker provides a good baseline by adding an additional

level of isolation between applications running on the same host. Nevertheless, additional

hardening in form of resource limits (cgroups), seccomp profiles, MAC policies or overlay

network encryption should be applied.

By using a structurized threat modeling process in combination with STRIDE, this work

could identify the main threats for the most relevant components of a SSC and calculate

risks based on the likelihood and impact. Based on these risks security mechanisms

could be discussed and critical components identified. After threat modeling the SSC

this work found out, that each component has the residual risk of vulnerabilities in the

software. This makes a patch management process essential. Due to the immutable

infrastructure paradigm, the containerized components using Docker can be updated by

rebuilding and redeploying the images. This work also found out, that the build server

and the production environments are critical components due to a high residual risk.

The build server handles sensitive source code and should be isolated using networks

with firewalls. The production swarm contains real user data and should be physically

separated from the other components to avoid lateral movement.

This work can be used as basis to build and secure a SSC. However, remaining compo-

nents and processes, such as license and dependency management, logging and monitoring

processes or business integration (for example threat intelligence [6]) have to be reviewed,

evaluated and integrated.
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ACL Access Control List. 62

API Application Programming Interface. 17, 18, 21–23, 33, 54

ARP Adress Resolution Protocol. 38

ASF Application Security Frame. 37

ASLR Address Space Layout Randomization. 39

BPF Berkeley Packet Filter. 16

CD Continuous Deployment. 10

CI Continuous Integration. 3, 7, 10, 11, 17, 43, 45, 63, 75, 77, 79

CIA Confidentiality, Integrity, Availability. 31, 44, 61, 79

CLI Command Line Interface. 5, 17, 19, 21, 24, 70

CPU Central Processing Unit. 15, 75

CSRF Cross-Site Request Forgery. 58, 69, 70

DCT Docker Content Trust. 24, 25, 64, 73, 77

DDoS Distributed Denial of Service. 39, 74

DFD Data Flow Diagram. 37

DNS Domain Name System. 38

DoS Denial of Service. 36, 39, 73

GID Group ID. 16

HTML Hypertext Markup Language. 44

HTTP Hypertext Transfer Protocol. 35, 54, 68
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HTTPS Hypertext Transfer Protocol Secure. 54

IaaS Infrastructure as a Service. 12

IP Internet Protocol. 38

IPC Inter-Process Communication. 14

iSCSI internet Small Computer System Interface. 20

LDAP Lightweight Directory Access Protocol. 70

MAC Mandatory Access Control. 15, 16, 80

MITM Man in the Middle. 34, 38, 58, 59, 67–69, 71–75

NFS Network File System. 20

OS Operating System. 13, 15, 45, 46, 64, 74, 77, 78

PASTA Process for Attack Simulation and Threat Analysis. 37

PID Process ID. 14, 15

PKI Public Key Infrastructure. 75

REST Representational State Transfer. 9, 17

SCM Supply Chain Management. 10, 11

SDLC Software Development Lifecycle. 36

SMB Server Message Block. 20

SSC Software Supply Chain. 11, 12, 17, 21, 22, 29, 31, 37, 41, 43–45, 49–51, 53–57, 61,

62, 71, 77, 79, 80

SSH Secure Shell. 48, 54, 57, 62, 63, 66, 68, 70, 75–77

SSL Secure Socket Layer. 5

TLS Transport Layer Security. 35, 71, 73

TOCTTOU Time-of-Check-to-Time-of-Use. 35

TUF The Update Framework. 24
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UID User ID. 16

UTS UNIX Timesharing Service. 14

VCS Version Control System. 43, 45–47, 49–51, 54, 58, 62, 63, 65–68, 79

VM Virtual Machine. 12

XP Extreme Programming. 8
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.1 Application

.1 Application

Listing 1: application/code/index.html

<!DOCTYPE html >

<html >

<body >

<h1>Hello World </h1 >

</body >

</html >

Listing 2: application/docker/development/application/Dockerfile

FROM nginx :1.13

RUN rm /etc/nginx/conf.d/default.conf

COPY docker/development/application/html.conf /etc/nginx/conf.d/html.

conf

WORKDIR /var/www/app/

Listing 3: application/docker/development/application/html.conf

server {

listen 80 default_server;

server_name _;

index index.html;

root /var/www/app;

}

Listing 4: application/docker/production/application/Dockerfile

FROM nginx :1.13

RUN rm /etc/nginx/conf.d/default.conf

COPY docker/production/application/html.conf /etc/nginx/conf.d/html.conf

COPY code/ /var/www/app

RUN chown -R nginx:nginx /var/www/app

WORKDIR /var/www/app

Listing 5: application/docker/production/application/html.conf

server {
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listen 80 default_server;

server_name _;

index index.html;

root /var/www/app;

}

Listing 6: application/build.sh

#!/ usr/bin/env bash

# Include exports

. ./ exports

docker -compose -f docker -compose.yml -f docker -compose.prod.yml build

Listing 7: application/deploy.sh

#!/ usr/bin/env bash

# Include exports

. ./ exports

scp docker -compose.prod.yml ubuntu@swarmhost :/home/ubuntu/

ssh ubuntu@swarmhost ’docker stack deploy --compose -file /home/ubuntu/

docker -compose.prod.yml application ’

Listing 8: application/docker-compose.prod.yml

version: ’3’

services:

application:

build:

dockerfile: docker/production/application/Dockerfile

context: .

image: ${REPOSITORY}agilesec${VERSION}

ports:

- 80:80

Listing 9: application/docker-compose.yml

version: ’3’

services:

application:

build:

dockerfile: docker/development/application/Dockerfile

context: .
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.2 Build Server

image: agilesec

ports:

- 80:80

volumes:

- ./code:/var/www/app

Listing 10: application/exports

export REPOSITORY ="127.0.0.1:5000/"

#export REPOSITORY =""

export VERSION =":0.2"

export STACKNAME =" application"

Listing 11: application/push.sh

#!/ usr/bin/env bash

# Include exports

. ./ exports

docker -compose -f docker -compose.yml -f docker -compose.prod.yml push

.2 Build Server

Listing 12: buildserver/docker-compose.yml

version: ’3’

services:

jenkins:

image: slipke/jenkins:latest

ports:

- "8081:8080"

- "50000:50000"

volumes:

- jenkins_home :/var/jenkins_home

- /var/run/docker.sock:/var/run/docker.sock

volumes:

jenkins_home:

.3 VCS Server
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Listing 13: vcs/docker-compose.yml

version: ’3’

services:

gitolite:

image: jgiannuzzi/gitolite:latest

ports:

- "2222:22"

volumes:

- gitolite -sshkeys :/etc/ssh/keys

- gitolite -git:/var/lib/git

environment:

SSH_KEY: "<ssh_key >"

volumes:

gitolite -sshkeys:

gitolite -git:

.4 Registry

Listing 14: registry/docker-compose.yml

version: ’3’

services:

registry:

image: registry :2

ports:

- "5000:5000"
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