
MySQL Cluster – Evaluation and Tests, OCTOBER 2, 2012 1

MySQL Cluster – Evaluation and Tests
Michael Raith (B.Sc.), Master-Student

F

Abstract

Websites or web applications, whether they represent shopping systems, on demand services or a social networks, have
something in common: data must be stored somewhere and somehow. This job can be achieved by various solutions with very
different performance characteristics, e.g. based on simple data files, databases or high performance RAM storage solutions.

For today’s popular web applications it is important to handle database operations in a minimum amount of time, because
they are struggling with a vast increase in visitors and user generated data. Therefore, a major requirement for modern database
application is to handle huge data (also called “big data”) in a short amount of time and to provide high availability for that data.

A very popular database application in the open source community is MySQL, which was originally developed by a
swedisch company called MySQL AB and is now maintenanced by Oracle. MySQL is shipped in a bundle with the Apache web
server and therefore has a large distribution. This database is easily installed, maintained and administrated. By default MySQL
is shipped with the MyISAM storage engine, which has good performance on read requests, but a poor one on massive parallel
write requests. With appropriate tuning of various database settings, special architecture setups (replication, partitioning, etc.)
or other storage engines, MySQL can be turned into a fast database application. For example Wikipedia uses MySQL for their
backend data storage.

In the lecture “Ultra Large Scale Systems” and “System Engineering” teached by Walter Kriha at Media University Stuttgart,
the question “Can a MySQL database application handle more then 3000 database requests per second?” came up some time.
Inspired by this issue, I got myself going to find out, if MySQL is able to handle such a amount of requests per second. At that
time I also read something about the high availability and scalability solution MySQL Cluster and it was the right time to test
the performance of that solution.

In this paper I describe how to set up a MySQL database server with the additional MySQL Cluster storage engine
“ndbcluster” and how to configure a database cluster. In addition I execute some database tests on that cluster to proof that it’s
possible the get a throughput of >= 3000 read requests per second with a MySQL database.

Index Terms

MySQL, MySQL Cluster, JMeter, high availability, high performance, auto sharding, database test

1 INTRODUCING MYSQL CLUSTER

M YSQL-CLUSTER is a distributed database system with data nodes storing data and several application
nodes for query execution, e.g. a MySQL Daemon (mysqld). It is managed by special management

nodes (see Figure 1). Clients are not able to connect directly to the data nodes to fetch data, all commands
must be run and executed over the application nodes.

Compared to the normal MySQL version, MySQL-Cluster is designed for applications dealing big data
and applications requiring high availability (99,999 %, see [2]). MySQL-Cluster offers high performance by
holding the data in the server’s RAM. Tables are automatically partitioned by the database system across
multiple nodes (auto-sharding) to ensure easy scale-out1 on cheap standard hardware. A further increase
of high availability and reliability can be achieved by (geographical) replication over different locations.
MySQL-Cluster allows planned maintenance of nodes, system scale-out and database schema upgrades
while the cluster is still running and executing queries. The database allows concurrent SQL and NoSQL
access to the database over the NDB API.

michael.raith@hdm-stuttgart.de, Computer Science and Media (Master), Faculty Print and Media, Media University (Hochschule der Medien),
Nobelstraße 10, D-70569 Stuttgart

1. scale out: scale a system horizontally

mailto:michael.raith@hdm-stuttgart.de

2 MySQL Cluster – Evaluation and Tests, OCTOBER 2, 2012

Clients

MySQL Cluster Appliaction Nodes

C++ LDAP

MySQL Cluster Management MySQL Cluster Management

MySQL Cluster Data Nodes

Figure 1: architecture of a MySQL-Cluster (cf. [1])

Another precondition when using MySQL-Cluster is that the number of data nodes must be a multiple
of two (2, 4, 6, 8, . . .), as data nodes are grouped into so-called “node groups”, i.e. pairs of nodes. This
is important to use the access patterns of MySQL-Cluster properly: the database engine splits table-rows
automatically into partition fragments and spreads them over the node groups (see Figure 2). Each node
group holds two primary partitions and mirrors of each other in the node group. By default the partitioning
process is achieved by using a hash over the table’s primary key.

P1

P2

P3

P4

dummy table

id firstname lastname email phone

node
group

1

data node 1
F1 F3

data node 2
F3 F1

node
group

2

data node 3
F2 F4

data node 4
F4 F2

Px partition

Fx primary fragment

Fx secondary fragment

Figure 2: partitioning of MySQL-Cluster data (cf. [1])

MySQL Cluster – Evaluation and Tests 3

2 SETUP

2.1 Preparing the test environment

Prior to start any test, I had to built a test environment. Therefore I set up some virtual machines at my
universitie’s datacenter with the configurations listed in Table 1. As operating system I used Debian 6.0. The
systems run on two different virtual machine hosts connected via a 1 GBit/s Ethernet. The Data Nodes run
on one virtual machine host, the MySQL Server, Proxy and Management Node on the other host. Overall the
test environment has 19 cpu cores and 21,5 GByte RAM.

Table 1: MySQL Cluster system hardware setup

Hostname Node-Name Core(s) RAM (MByte)

mysc-daemon-1 MySQL Server 4 2048

mysc-daemon-2 MySQL Server 4 2048

mysc-proxy Proxy 2 1024

mysc-mgmt Management Node 1 512

mysc-node-1 Data Node 2 4096

mysc-node-2 Data Node 2 4096

mysc-node-3 Data Node 2 4096

mysc-node-4 Data Node 2 4096

The virtual machine hosts have the following characteristics:

• dual Opteron server with two AMD Opteron 6136 processors (8 cores each) @ 2.4 GHz
• 64 GB of RAM per server
• boot device: two mirrored 500 GB hard disks
• virtual machine’s data server: 1 TB hard disks with SAN interface running on RAID 6 plus a mirror

backup system running also on RAID 6

The test environment’s architecture for the machines listed in Table 1 is shown in Figure 3. The link
between the two proxy machines (“hot standby*”) was not implemented in this test architecture. The hot
standby solution should be implemented in a real world scenario with critical data to achieve a more reliable
system and to avoid bottlenecks.

2.2 Installing MySQL Cluster

Installing MySQL-Cluster is not toodifficult. The basic steps are:

• download the MySQL-Cluster package
• unpack the package
• create a “mysql” user and group
• add a basic configuration file for the “mysqld” process (MySQL-Server)
→ I installed them on each node to get direct access from each node to the database e.g. for debugging
purposes

• create directories for storing the MySQL data
• copy startup script to “/etc/init.d/mysql”

4 MySQL Cluster – Evaluation and Tests, OCTOBER 2, 2012

Proxy Proxy

Clients

mysqld #1 mysqld #2 Management Node

Date Node #1 Date Node #2

Node Group #1

Date Node #3 Date Node #4

Node Group #2

hot
standby*

Figure 3: MySQL Cluster test setup

On the internet you are able to find different “howtos” to install and setup a MySQL-Cluster. In this
example I needed a basic installation and setup of the MySQL-Cluser on every virtual machine (except the
proxy machine). Due to this requirement I wrote a simple bash-script to automatically execute the above
listed steps. The script is shown in Listing 5.

2.3 Setting up the MySQL-Servers

The first step after the installation process is to start up the MySQL Servers via service mysql start

(here mysc-daemon-1 or mysc-daemon-2) and to check if the MySQL Cluster engine is properly installed.
Therefore you open MySQL on the shell by typing mysql (you may have to add a optional user plus its
credentials). If you are logged in, type “SHOW ENGINES;” to see if the ndbcluster engine is installed.
The field support must have the value DEFAULT or YES.

Now you should check if IP addresses or hostnames are working in your configuration files. In my example
I had to alter the hostnames to their ip-addresses, because I experienced some errors with the hostname
setup. You should also check if the data nodes (mysc-node-1 to mysc-node-4) are accessible by the MySQL
Servers and that the firewalls (if any exists) are configured properly.

As a next step the default database mysql and its tables must be converted to the ndbcluster storage engine,
so that all changes are globally stored (this avoids duplicated or not synchronised data on the MySQL
servers). You can use the sql script in Listing 1 to do that job.

MySQL Cluster – Evaluation and Tests 5

Listing 1: convert the stanard mysql database and its tables to the ndbcluster engine
1 use mysql;
2 ALTER TABLE mysql.user ENGINE=NDBCLUSTER;
3 ALTER TABLE mysql.db ENGINE=NDBCLUSTER;
4 ALTER TABLE mysql.host ENGINE=NDBCLUSTER;
5 ALTER TABLE mysql.tables priv ENGINE=NDBCLUSTER;
6 ALTER TABLE mysql.columns priv ENGINE=NDBCLUSTER;
7 ALTER TABLE mysql.func ENGINE=NDBCLUSTER;
8 ALTER TABLE mysql.proc ENGINE=NDBCLUSTER;
9 ALTER TABLE mysql.procs priv ENGINE=NDBCLUSTER;

10 SET GLOBAL event scheduler = 1;
11 CREATE EVENT ‘mysql‘.‘flush priv tables‘ ON SCHEDULE EVERY 30 second ON COMPLETION

PRESERVE DO FLUSH PRIVILEGES;

After successfully running that script, shut down the MySQL server. In order to save configuration time,
copy /opt/mysql cluster/data/mysql to the other MySQL server machine. Make sure both servers are shut down
during copying.

2.4 Setting up the MySQL-Management-Node

The installation process (described in subsection 2.2) also installs a management console. You can use the
management console on every machine in the cluster, but it is better to separate data nodes, MySQL server
nodes and management nodes on different machines. In case of a system failure on one of the servers or
data nodes the management machine will still be available.

The setup is very easy, you only have to create the configuration file /var/lib/mysql-cluster/config.ini
with content listed in Listing 6. The file contains all necessary configuration data for the whole cluster e.g.
which machine is the management node, which machines are server and data nodes and how much memory
should be reserved for the data nodes (max. database size).

After creating the config file, navigate to the directory /var/lib/mysql-cluster to start the manage-
ment console initially with this command:

ndb_mgmd --initial /

-f /var/lib/mysql-cluster/config.ini /

--config-dir=/var/lib/mysql-cluster/

The meaning of this command and its parameters is:

• ndb_mgmd: this command starts the management console daemon
• --initial: do a initial startup of the management node
• -f <FILE>: load the following config file to the server and to the data nodes
• --config-dir=<DIR>: store all config and logging data to this directory (on management and data

nodes)

For “hard” restart on sever errors or failures, you can use the script in Listing 2.

Listing 2: do a hard reset of the MySQL-Cluser
1 #!/bin/bash
2 MY PWD=pwd;
3 echo ”remove all old files”;
4 cd /var/lib/mysql−cluster;
5 rm −rf ndb ∗;
6 echo ”restart ndbd service”;
7 ndb mgmd −−initial −f /var/lib/mysql−cluster/config.ini −−config−dir=/var/lib/mysql−cluster;
8 cd $MY PWD;

6 MySQL Cluster – Evaluation and Tests, OCTOBER 2, 2012

After successfully setting up and configurating the management node, you can open the management
console via the ndb_mgm command. The show command lists all available nodes in the cluster (see Figure 4)
and the command all report shows some statistics about the data nodes.

Figure 4: management node: list status of all nodes with the show command

Notice

You can set up several management nodes on different
machines to get fault tolerant management consoles

2.5 Setting up the MySQL-Data-Nodes

After setting up the management node(s), the data nodes can be started up to fetch the configuration files
from the management node(s). To achieve this, you have change to the folder /var/lib/mysql-cluser/
and execute the following command:

ndbd --initial /

--connect-string=’host=<HOST OR IP>:<PORT>’

Parts of the command have the following meaning:

• ndbd: this command starts the data node
• --initial: do a initial startup of the data node
• --connect-string=’host=<HOST OR IP>:<PORT>’: this connection string defines the hostname

or IP address plus port number of the management node to connect to

MySQL Cluster – Evaluation and Tests 7

To do a “hard” restart on sever errors or failures, you can use the script in Listing 3.

Listing 3: do a hard reset of the MySQL-Cluser
1 #!/bin/bash
2 MY PWD=pwd;
3 echo ”remove all old files”;
4 cd /var/lib/mysql−cluster;
5 rm −rf ndb ∗;
6 echo ”restart ndbd service”;
7 ndbd −−initial −−connect−string=HOST:PORT;
8 cd $MY PWD;

2.6 Setting up the MySQL-Proxy

Installing the MySQL-Proxy package can be achieved by executing the command apt-get install mysql-

proxy under Debian Linux. Once the installation process has finished, create the folder /etc/mysql-proxy
and switch to that folder. The next step is to create the config file /etc/mysql-proxy/mysql-proxy.conf
with configuration settings depending on your setup. In Listing 8 you can see some example settings for
this MySQL Cluster setup.

MySQL-Proxy also has support for admin and reporter scripts respectively interfaces. You can find some
examples in the MySQL Proxy Guide [3].

Starting up the proxy is easy by firing the following command:

mysql-proxy --defaults-file=/etc/mysql-proxy/mysql-proxy.conf

Argument --defaults-file defines the default configuration file with which the proxy should be started
– in this example our previously created configuration file.

After starting up the proxy, the MySQL server access settings must be adjusted. Accessing a MySQL server
is only allowed from localhost by default. In this example setup we don’t want to allow access from various
clients directly to the MySQL servers, but we want to allow access over the load balancer (MySQL Proxy)
to the servers. Therefore the MySQL user settings have to be adjusted.

This can be achieved by logging into one of the MySQL server via the mysql console. By executing the sql-
command SELECT host,user,password FROM mysql.user; you can see the current users and their
access host. To allow the access over the proxy to the servers, a new user has to be created e.g. “mysql-proxy”.

Listing 4: create a new user and allow only the access over the proxy
1 ”cluster−user”@”ADDRESS−OR−IP−OF−PROXY” IDENTIFIED BY ”PASSWORD”;
2

3 GRANT ALL PRIVILEGES ON ∗.∗
4 TO ”cluster−user”@”ADDRESS−OR−IP−OF−PROXY” IDENTIFIED BY ”PASSWORD”;

In Listing 4 a new user called “mysql-proxy” is created. The statement "ADDRESS-OR-IP-OF-PROXY"
defines the access of the proxy, so “mysql-proxy”-users are only allowed to access the MySQL servers over
this host respectively proxy. Lines 3 and 4 set some rights, here the full access to all databases and their
tables. Notice: Be careful granting all rights to a user, especially if third-party users have access to your
systems! See [4] to get more information about this topic.

You should now be able to access the MySQL Cluster server over the proxy e.g. by this JDBC resource
address jdbc:mysql://PROXY-ADDRESS:PORT/DATABASE and the corresponding credentials.

3 TESTS

The objective of a database (load) test is to get some numbers of maximum throughput. These numbers
are important to calculate how much concurrent users a database system can handle until the maximum

8 MySQL Cluster – Evaluation and Tests, OCTOBER 2, 2012

throughput is reached and the response time of each request increases or breakdown. You are able to calculate
your required system and hardware resources better with the knowledge of this maximum turning point
(see Figure 5).

response time

response time → ∞
throughput

number of concurrent
users

total breakdown

collaps point

maximum throughput
almost reached

Figure 5: decay curve of a load test

In this test I want to determine how much concurrent requests on simple tables and with joins between
maximum two tables a MySQL-Cluster setup can handle. Therefore I set up a system as described in
subsection 2.1. This test contains only a simple database load test without a application server, because
this may tamper the results.

As a dummy test scenario I created a simple state diagram for user and the resulting database interactions
in a social community (see Figure 6). As you can see the user is able to log into the application, add and
display friends, read and write messages or show latest status updates with the corresponding comments.
The sql database layout is shown in Listing 9.

This scenario results in different read requests to the database with different ratios:

• login → get user data (1 %)
• messages → load a messages / conversation between two users (25 %)
• friends → load the user’s friends (4 %)
• status updates → get latest 10 status messages of a user (70 %)

These resulted in four different tests, which were executed with a total number of 1000 test users. To
accomplish this, a JMeter cluster with one JMeter management node and three load generating clients was
also set up. The different request ratios were modelled by using connection pools in JMeter with a different
number of maximum connections.

The test time was set to a fixed value of 20 minutes and the rampup period was set to 2 minutes to
constantly increase the number of users to “warm up” the database.

JMeter was the reason why the test only contains read and no write requests (see section 6).

4 CREATING THE TEST DATABASE DATA

For this test “big data” is needed, because MySQL-Cluster is supposed to handle a lot of data efficiently.
The creation of diverse and realistic test data is challenging!

I set myself a goal to create 100.000 users and every user should also have 100 friends. There should also
be 1 to 50 randomly created status update text messages per user. In addition there should also be 1 to 10

MySQL Cluster – Evaluation and Tests 9

login
user

logged in

logout
write

message
send

message

show
message

list
friends

dummy

add
friend

delete
friend

status
update

dummy

list status
msg

show com-
ment(s)

write
comment

JOIN (in database

or application)

R

R

R

R

R

W

W

W

W

W

R read query
W write query

Figure 6: dummy state diagram for the test cases

randomly created messages between a user and a randomly chosen second user. These preconditions may
result in over 10 million records divided over several tables.

Creating such a huge amount of data in a short time is a challenge. You can insert record after record one by
one into the database, but this will probably result in a very long inserting process. A better solution would
be to insert data into bulks e.g. by using the sql command INSERT INTO [...] VALUES ([...]),

([...]), ([...]), This solution may work if you are creating test data from scratch. In case you
are using old user data and you want to randomly select users to create the friend relation between them,
this solution may be to slow.

The bottleneck creating huge data is the data access layer (short DAL) and the network between the
application and database server. Sending, transporting and receiving data over the network comes with
significant latencies. After that, the data must be analysed by the application and if necessary sent back to
the database. This process slows down the insertion process (see Figure 7).

Therefore I created a stored procedure in the database (see Listing 9 line 50 – 100), which creates 100
friend relations with randomly selected users from a user table. The algorithm to select users randomly
is extremely efficient and it also detects holes2 in the table. The stored procedure is more complex than

2. A hole in database table occurs if data gets inserted and deleted.

10 MySQL Cluster – Evaluation and Tests, OCTOBER 2, 2012

business/execution logic in DAL
application

DAL

DAL

database

business/execution logic in stored procedure
application database

stored-
procedure

Figure 7: business/execution logic in DAL or stored procedures directly in the database

using INSERT INTO ... and not easily maintainable, but it is fast and there is no time lost by a round
trip through the DAL. To speed up the insertion process even more, the stored procedure is not called via
an application on a remote client (this approach was still to slow); instead it was fired directly from the
database server in parallel.

Overall, the data creation process for creating user and friend relation data was done in about 2 to 6
hours, depending on the workload of the underlying virtual machine.

The other data for this test (messages, status updates) have to be created on a remote client, because they
should contain random text data. Therefore I used a simple script, which inserted some lorem ipsum data
via bulk inserts into the database. This process took about 1 to 2 hours, depending on how many messages
should be created and how high the virtual machine was utilized.

5 RESULTS

Overall I ran two different tests: test 1) with default JMeter settings and test 2) with reduced JMeter logging
information to conserve network bandwidth.

In test 1) I ran all four previously defined queries (see section 3) at their specified ratios. The results with
the average execution time, response latency and requests throughput are displayed in Figure 10 to 13 (see
appendix “test results”). In Figure 8 you can see the summed up average throughput of all queries in test
1).

After the ramp up period of 2 minutes plus and some commute time (20 to 30 seconds), the test ran with
an average throughput of about 3000 requests per second. There are also some deviations at about 650,
720, 790, 860, 930 and 1080 seconds, which were caused by some interrupts on the JMeter server or clients
(system or user interactions).

In test 1) I noticed that the MySQL application server ran at a CPU utilization of 125 – 143 percent3 and
the data nodes server at 49 – 54 percent. The application server is running on a quad core machine and each

3. One CPU can be utilized up to a maximum of 100 %. In a multi-core system the CPU utilization often gets summed up, so it is
possible that the utilization is >= 100 %.

MySQL Cluster – Evaluation and Tests 11

0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200

1

10

100

1,000

avg throughput of 3000 per second

rampup time

seconds

av
er

ag
e,

lo
ga

rit
hm

ic
sc

al
e

status updates
login

messages
friends

sum

Figure 8: test 1: overall test results, throughput

data node on a dual core machine, so the servers are not efficiently used and there is still enough room for
performance improvements.

A quick analysis revealed that the network bandwidth was used up to 100 % and therefore was throttling
the requests’ throughput. As a consequence I reduced the JMeter logging information in test 2) to a minimum
and restarted the test. Figure 14 to 17 (see appendix “test results”) shows an overview of the average
throughput of all requests summed up.

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850

1

10

100

1,000

10,000 avg throughput of 5000 per second

rampup time

seconds

av
er

ag
e,

lo
ga

rit
hm

ic
sc

al
e

status updates
login

messages
friends

sum

Figure 9: test 2: overall test results, throughput

Again, after a ramp up period of 2 minutes the test ran with a maximum average throughput of about
5000 requests per second. As you can see, there are less peaks caused by interrupts in test 2). After 720
seconds the requests throughput decreased, which was caused by a stuck MySQL-Proxy (see section 6).

Analysing the data showed that the application server was still not running efficiently at a load of 191 – 213
percent. The data nodes had a load between 69 – 72 percent. This time I had run a network monitor along,
which showed that the network was again the throttling factor. Reducing JMeter’s logging data wouldn’t
gain any further improvement, because the logging data was already reduced to its minimum.

12 MySQL Cluster – Evaluation and Tests, OCTOBER 2, 2012

6 PROBLEMS

The first problem I ran into was JMeter: the test application was not able to execute update and delete
statements with prepared statement data. The result statements of the database server and JMeter were
not helping either to solve that problem. A test with raw update and delete sql-queries showed that these
queries were working fine. Therefore I had to discard all write tests with JMeter.

Another problem occurred randomly in the MySQL proxy after some time. The proxy had a CPU utilization
of 100 percent and got stuck. Curiously, there were no entries in the log files and now error statements. A
search for this strange behaviour was without any result. The only solution that worked was to “kill” the
proxy application, so it was difficult to execute all tests successfully. In a live environment, I would probably
not rely on MySQL Proxy and rather use another proxy application or a hardware load balancer.

During the tests I ran into another problem: the network capacity was at its limit. Reducing the transfered
logging data produced by JMeter lowered that issue only a little bit. In a real world scenario a single 1
GBit/s interface would not be enough to handle all the resulting requests generated by JMeter.

7 CONCLUSION

The test showed that it is possible to read more then 3000 requests concurrently from a specialized MySQL
database. MySQL-Cluster was designed to handle such high number of requests.

The results also showed that the database in this test scenario was not fully utilized during tests and
probably had been able to handle a more requests. I tried to improve the throughput by reducing the
logging and meta data of JMeter, but the network bandwidth was still the limiting factor in this test setup.
In a real world scenario I would probably configure the system to use more than one network interface in
parallel or install a 10 GBit/s network interface. I would also use real physical machines rather then virtual
machines, because the virtual IO mapping in this test scenario is a limiting factor too.

Setting up a MySQL-Cluster is not easy at the beginning, but you get used to the behaviour of the
database and know how to handle it soon. The management console is a really handy tool to manage the
whole cluster and to do planned system updates or maintenance. If you know how to design database
tables for a distrusted application (less table columns and joins), you get a really powerful, high available
and easily scalable in memory database which can be used in addition to existing MySQL database servers.

APPENDIX

REFERENCES

[1] Sun Microsystems Inc., Leistungsoptimierung für das Datenbanksystem MySQL Cluster, 2010.
[2] “MySQL Cluster CGE,” [Online Available 2012-10-01]. [Online]. Available: http://www.mysql.com/products/

cluster/
[3] Oracle, “MySQL Proxy Guide,” December 2011, [Online; accessed 18-August-2012]. [Online]. Available:

http://downloads.mysql.com/docs/mysql-proxy-en.pdf
[4] ——, “MySQL GRANT Syntax,” [Online; accessed 18-August-2012]. [Online]. Available: http://dev.mysql.com/

doc/refman/5.1/en/grant.html

SCRIPTS

Listing 5: install-ndb-cluster-package.sh – script to automatic download, install and pre-set up
mysql cluster

1 #!/bin/bash
2 echo ”>> get the ndb−cluster tar package from mysql.com ...”;
3 cd /usr/local/;
4 wget http://www.mysql.com/get/Downloads/MySQL−Cluster−7.1/mysql−cluster−gpl−7.1.18−linux−x86 64−glibc23.tar.

gz/from/http://sunsite.informatik.rwth−aachen.de/mysql/;

http://www.mysql.com/products/cluster/
http://www.mysql.com/products/cluster/
http://downloads.mysql.com/docs/mysql-proxy-en.pdf
http://dev.mysql.com/doc/refman/5.1/en/grant.html
http://dev.mysql.com/doc/refman/5.1/en/grant.html

MySQL Cluster – Evaluation and Tests 13

5 mv index.html mysql−cluster−gpl−7.1.18−linux−x86 64−glibc23.tar.gz;
6

7 echo ”>> un−tar package ...”;
8 tar −zxvf mysql−cluster−gpl−7.1.18−linux−x86 64−glibc23.tar.gz;
9 rm −f mysql−cluster−gpl−7.1.18−linux−x86 64−glibc23.tar.gz;

10 ln −s mysql−cluster−gpl−7.1.18−linux−x86 64−glibc23 mysql;
11 cd mysql;
12

13 echo ”>> adding mysql group and user ...”;
14 groupadd mysql;
15 useradd −g mysql mysql;
16

17 echo ”>> create the mysql servers config file”;
18 cat > /etc/my.cnf <<DELIM
19 [mysqld]
20 datadir = /opt/mysql cluster/data
21 socket = /opt/mysql cluster/mysql.sock
22 basedir = /usr/local/mysql
23

24 event scheduler = on
25 default−storage−engine = ndbcluster
26 ndbcluster
27 # IP/host of the NDB MGMT−node(s)
28 ndb−connectstring = mysc−mgmt.mi.hdm−stuttgart.de
29

30 [mysqld safe]
31 err−log = /var/log/mysqld.log
32 pid−file= /var/run/mysqld/mysqld.pid
33 DELIM
34 mkdir −p /var/run/mysqld;
35

36 echo ”>> create a symbolic link to the mysql.sock file in ’/tmp’ to avoid startup problems”;
37 ln −s /opt/mysql cluster/mysql.sock /tmp/mysql.sock;
38

39 echo ”>> create mysql dirs and install mysql server”;
40 mkdir −p /var/lib/mysql−cluster/;
41 mkdir −p /opt/mysql cluster/data/;
42 cd /usr/local/mysql/;
43 /usr/local/mysql/scripts/mysql install db;
44 chown −R root:mysql /usr/local/mysql/;
45 chown −R mysql:mysql /opt/mysql cluster/;
46

47 echo ”>> copy mysql startup script to init.d ...”;
48 cp /usr/local/mysql/support−files/mysql.server /etc/init.d/mysql;
49

50 echo ”>> ready to start the MySQL server or the ndb−cluster ...”;

Listing 6: config.ini – the config file for the MySQL Cluster management node
1 [TCP DEFAULT]
2 #PortNumber = 2202
3 SendBufferMemory = 2M
4 ReceiveBufferMemory = 2M
5

6

7 [NDB MGMD DEFAULT]
8 PortNumber = 1186
9

10 [NDB MGMD]
11 HostName = mysc−mgmt.mi.hdm−stuttgart.de
12 NodeId = 1
13 LogDestination = FILE:filename=ndb 1 cluster.log,maxsize=10000000,maxfiles=6

14 MySQL Cluster – Evaluation and Tests, OCTOBER 2, 2012

14 ArbitrationRank = 1
15

16 # 2 Manegment Server (not configurated at the moment)
17 #[NDB MGMD]
18 #HostName =
19 #NodeId = 2
20

21

22 [NDBD DEFAULT]
23 NoOfReplicas = 2
24 DataDir = /var/lib/mysql−cluster
25 DataMemory = 2560M
26 IndexMemory = 768M
27

28 MaxNoOfExecutionThreads = 4
29 MaxNoOfConcurrentTransactions = 8192
30 MaxNoOfConcurrentOperations = 65536
31

32 [NDBD]
33 HostName = mysc−node−1.mi.hdm−stuttgart.de
34 NodeId = 11
35 [NDBD]
36 HostName = mysc−node−2.mi.hdm−stuttgart.de
37 NodeId = 12
38 [NDBD]
39 HostName = mysc−node−3.mi.hdm−stuttgart.de
40 NodeId = 13
41 [NDBD]
42 HostName = mysc−node−4.mi.hdm−stuttgart.de
43 NodeId = 14
44

45

46 [MYSQLD DEFAULT]
47 DefaultOperationRedoProblemAction = QUEUE
48 BatchSize = 512
49 #BatchByteSize = 2048K
50 #MaxScanBatchSize = 2048K
51

52 # 2 MySQL Nodes
53 [MYSQLD]
54 HostName = mysc−daemon−1.mi.hdm−stuttgart.de
55 NodeId = 21
56 [MYSQLD]
57 HostName = mysc−daemon−1.mi.hdm−stuttgart.de
58 NodeId = 23
59 [MYSQLD]
60 HostName = mysc−daemon−1.mi.hdm−stuttgart.de
61 NodeId = 25
62 [MYSQLD]
63 HostName = mysc−daemon−1.mi.hdm−stuttgart.de
64 NodeId = 27
65 [MYSQLD]
66 HostName = mysc−daemon−2.mi.hdm−stuttgart.de
67 NodeId = 22
68 [MYSQLD]
69 HostName = mysc−daemon−2.mi.hdm−stuttgart.de
70 NodeId = 24
71 [MYSQLD]
72 HostName = mysc−daemon−2.mi.hdm−stuttgart.de
73 NodeId = 26
74 [MYSQLD]

MySQL Cluster – Evaluation and Tests 15

75 HostName = mysc−daemon−2.mi.hdm−stuttgart.de
76 NodeId = 28
77

78 # additional slots ...
79 [MYSQLD]
80 [MYSQLD]
81 [MYSQLD]
82 [MYSQLD]
83 [MYSQLD]
84 [MYSQLD]
85 [MYSQLD]
86 [MYSQLD]
87 ### SLOTS (one for each ndb mgmd) FOR HELPER APPLICATIONS SUCH AS ndb show tables etc
88 [MYSQLD]
89 Hostname = mysc−mgmt.mi.hdm−stuttgart.de

Listing 7: my.cnf – the config file for the MySQL Server nodes
1 [MYSQLD]
2 datadir = /opt/mysql cluster/data
3 socket = /opt/mysql cluster/mysql.sock
4 basedir = /usr/local/mysql
5

6 event scheduler = on
7

8 sort buffer size = 512K
9 key buffer size = 16M

10 max allowed packet = 16M
11

12 # query cache −> may be inefficient on ndb!
13 query cache type = 2
14 query cache limit = 2M
15 query cache size = 64M
16 query cache min res unit= 4K
17

18 thread cache size = 200
19 # thread concurrency = 2 ∗ (no. of CPU)
20 thread concurrency = 8
21 # The number of threads that have taken more than slow launch time seconds to create
22 set=low launch threads = 1
23

24 #max connections = 500
25 #max user connections = 150
26

27 table cache = 1024
28

29 # log slow queries
30 #log−slow−queries = slow.log
31 #long query time = 2
32 #log−queries−not−using−indexes
33

34 # cluster settings
35 default−storage−engine = ndbcluster
36 ndbcluster
37 # IP/host of the NDB MGMT−node(s)
38 ndb−connectstring = mysc−mgmt.mi.hdm−stuttgart.de
39 ndb−cluster−connection−pool = 8
40

41 # InnoDB
42 skip−innodb
43

44 [MYSQL]

16 MySQL Cluster – Evaluation and Tests, OCTOBER 2, 2012

45 socket = /opt/mysql cluster/mysql.sock
46

47 [MYSQL CLUSTER]
48 ndb−connectstring = mysc−mgmt.mi.hdm−stuttgart.de
49

50 [MYSQLD SAFE]
51 err−log = /var/log/mysqld.log
52 pid−file= /var/run/mysqld/mysqld.pid

Listing 8: mysql-config.conf – the config file for the MySQL Proxy
1 [mysql−proxy]
2 daemon = true
3 keepalive = true
4 event−threads = 2
5 proxy−skip−profiling = true
6 proxy−address = mysc−proxy.mi.hdm−stuttgart.de:4040
7

8 # do not change allow the ”CHANGE USER” command
9 proxy−pool−no−change−user = true

10

11 ## backend servers ##
12 proxy−backend−addresses = mysc−daemon−1.mi.hdm−stuttgart.de:3306,mysc−daemon−2.mi.hdm−stuttgart.de:3306
13

14 ## log stuff ##
15 log−file = /var/log/mysql−proxy.log
16 log−level = warning
17 #log−backtrace−on−crash

Listing 9: install.sql – installation script for the test database
1 CREATE DATABASE IF NOT EXISTS ‘fakebook‘ CHARACTER SET utf8 COLLATE utf8 general ci;
2 USE ‘fakebook‘;
3

4 CREATE TABLE IF NOT EXISTS ‘fakebook‘.‘users‘ (
5 ‘id‘ bigint(20) unsigned NOT NULL AUTO INCREMENT
6 ,‘name‘ varchar(50) NOT NULL
7 ,‘name first‘ varchar(50) NOT NULL
8 ,‘pass‘ varchar(40) NOT NULL
9 ,‘mail‘ varchar(100) NOT NULL

10 ,UNIQUE KEY ‘id‘ (‘id‘)
11 ,UNIQUE KEY ‘mail‘ (‘mail‘)
12);
13

14 CREATE TABLE IF NOT EXISTS ‘fakebook‘.‘relations‘ (
15 ‘id 1‘ bigint(20) unsigned NOT NULL
16 ,‘id 2‘ bigint(20) unsigned NOT NULL
17 ,CONSTRAINT ‘relations ibfk 1‘ FOREIGN KEY (‘id 1‘) REFERENCES ‘fakebook‘.‘users‘ (‘id‘) ON DELETE CASCADE
18 ,CONSTRAINT ‘relations ibfk 2‘ FOREIGN KEY (‘id 2‘) REFERENCES ‘fakebook‘.‘users‘ (‘id‘) ON DELETE CASCADE
19);
20

21 CREATE TABLE IF NOT EXISTS ‘fakebook‘.‘relations 2‘ (
22 ‘uid‘ bigint(20) unsigned NOT NULL,
23 ‘friends‘ TEXT NOT NULL,
24 CONSTRAINT ‘relations 2 ibfk 1‘ FOREIGN KEY (‘uid‘) REFERENCES ‘fakebook‘.‘users‘ (‘id‘) ON DELETE

CASCADE
25);
26

27

28 −−
29 −− list all user’s friends in a view

MySQL Cluster – Evaluation and Tests 17

30 −−
31 DROP VIEW IF EXISTS ‘fakebook‘.‘users friends‘;
32 CREATE VIEW ‘fakebook‘.‘users friends‘ AS
33 SELECT ‘id‘
34 ,‘name‘
35 ,‘name first‘
36 ,‘mail‘
37 ,COUNT(r.id 1) AS friends
38 ,GROUP CONCAT(r.id 2 ORDER BY r.id 2 ASC SEPARATOR ” ”) AS friend ids
39 FROM ‘users‘ AS u
40 LEFT JOIN relations AS r ON u.id = r.id 1
41 GROUP BY u.id;
42

43 −−
44 −− stored procedure to insert random friend data
45 −− param−1: min. userId to start from
46 −− param−2: max. userId to go to −−> min. to max. is th range
47 −− param−3: insert this number of friends at once
48 −−
49 DROP PROCEDURE IF EXISTS ‘fakebook‘.‘addRandFriends‘;
50 DELIMITER $$
51 CREATE PROCEDURE ‘fakebook‘.‘addRandFriends‘(IN iMin INTEGER unsigned, IN iMax INTEGER unsigned, IN

numFriends INTEGER unsigned)
52 BEGIN
53 DECLARE a,b,v,rand num INT;
54 SET v = iMin;
55 SET @stmt text = ”INSERT IGNORE INTO relations (id 1,id 2) VALUES ”;
56

57 −− iterate over each user in the range
58 WHILE v <= iMax DO
59 SET b = numFriends;
60

61 WHILE b >= 1 DO
62 −− generate some random user−friend−id’s ...
63 −− see: http://jan.kneschke.de/projects/mysql/order−by−rand/
64 SET rand num = (SELECT r1.id FROM users as r1 JOIN (SELECT (RAND()∗(SELECT MAX(id) FROM users)) AS

id) AS r2 WHERE r1.id >= r2.id ORDER BY r1.id ASC LIMIT 1);
65 −− ... and insert values
66 SET @stmt text = CONCAT(@stmt text, ”(”, v, ”,”, rand num ,”)”);
67

68 IF v = iMax AND b = 1 THEN
69 SET @stmt text = CONCAT(@stmt text, ”;”);
70 ELSE
71 SET @stmt text = CONCAT(@stmt text, ”,”);
72 END IF;
73

74 SET b = b − 1;
75 END WHILE;
76

77 −− next user id ...
78 SET v = v + 1;
79 END WHILE;
80

81 −− disable unique constraints checks
82 SET unique checks=0;
83 SET foreign key checks=0;
84

85 −− start a transaction to speed up the insert process
86 START TRANSACTION;
87

88 −− fire prepared insert statement

18 MySQL Cluster – Evaluation and Tests, OCTOBER 2, 2012

89 PREPARE stmt FROM @stmt text;
90 EXECUTE stmt;
91 DEALLOCATE PREPARE stmt;
92

93 −− fire transaction
94 COMMIT;
95

96 −− re−enable checks ...
97 SET foreign key checks=1;
98 SET unique checks=1;
99 END; $$

100 DELIMITER ;
101

102 −−
103 −− stored procedure to insert random friend data, but into another way as before. we do not use foreign key constraints for

the friends, we’ll store them all at once in a big TEXT field
104 −− param−1: min. userId to start from
105 −− param−2: max. userId to go to −−> min. to max. is th range
106 −− param−3: insert this number of friends at once
107 −−
108 DROP PROCEDURE IF EXISTS ‘fakebook‘.‘addRandFriendsV2‘;
109 DELIMITER $$
110 CREATE PROCEDURE ‘fakebook‘.‘addRandFriendsV2‘(IN iMin INTEGER unsigned, IN iMax INTEGER unsigned, IN

numFriends INTEGER unsigned)
111 BEGIN
112 DECLARE a,b,v,rand num INT;
113 SET v = iMin;
114 SET @stmt text = ”INSERT IGNORE INTO relations 2 (uid,friends) VALUES ”;
115

116 −− iterate over each user in the range
117 WHILE v <= iMax DO
118 SET b = numFriends;
119 SET @uids = ””;
120

121 WHILE b >= 1 DO
122 −− generate some random user−friend−id’s ...
123 −− see: http://jan.kneschke.de/projects/mysql/order−by−rand/
124 SET rand num = (SELECT r1.id FROM users as r1 JOIN (SELECT (RAND()∗(SELECT MAX(id) FROM users)) AS

id) AS r2 WHERE r1.id >= r2.id ORDER BY r1.id ASC LIMIT 1);
125 −− ... and add them to a string
126 SET @uids = CONCAT(@uids, rand num, ” ”);
127

128 SET b = b − 1;
129 END WHILE;
130

131 IF v = iMax THEN
132 SET @stmt text = CONCAT(@stmt text, ”(”, v, ”,’”, @uids, ”’);”);
133 ELSE
134 SET @stmt text = CONCAT(@stmt text, ”(”, v, ”,’”, @uids, ”’),”);
135 END IF;
136

137 −− next user id ...
138 SET v = v + 1;
139 END WHILE;
140

141 −− disable unique constraints checks
142 SET unique checks=0;
143 SET foreign key checks=0;
144

145 −− start a transaction to speed up the insert process
146 START TRANSACTION;

MySQL Cluster – Evaluation and Tests 19

147

148 −− fire prepared insert statement
149 PREPARE stmt FROM @stmt text;
150 EXECUTE stmt;
151 DEALLOCATE PREPARE stmt;
152

153 −− fire transaction
154 COMMIT;
155

156 −− re−enable checks ...
157 SET foreign key checks=1;
158 SET unique checks=1;
159 END; $$
160 DELIMITER ;
161

162 −−
163 −− create a table to exchange messages between users
164 −−
165 CREATE TABLE IF NOT EXISTS ‘fakebook‘.‘messages‘ (
166 ‘msg id‘ bigint(20) unsigned NOT NULL AUTO INCREMENT,
167 ‘sender‘ bigint(20) unsigned NOT NULL,
168 ‘receiver‘ bigint(20) unsigned NOT NULL,
169 ‘header‘ varchar(100) NOT NULL,
170 ‘date‘ timestamp NOT NULL,
171 ‘content‘ TEXT NOT NULL,
172 PRIMARY KEY (‘msg id‘),
173 CONSTRAINT ‘messages ibfk 1‘ FOREIGN KEY (‘sender‘) REFERENCES ‘fakebook‘.‘users‘ (‘id‘) ON DELETE

CASCADE,
174 CONSTRAINT ‘messages ibfk 2‘ FOREIGN KEY (‘receiver‘) REFERENCES ‘fakebook‘.‘users‘ (‘id‘) ON DELETE

CASCADE
175);
176

177 −−
178 −− create a table for user notifications
179 −−
180 CREATE TABLE IF NOT EXISTS ‘fakebook‘.‘notification‘ (
181 ‘notification id‘ bigint(20) unsigned NOT NULL AUTO INCREMENT,
182 ‘uid‘ bigint(20) unsigned NOT NULL,
183 ‘date‘ timestamp NOT NULL,
184 ‘content‘ TEXT NOT NULL,
185 PRIMARY KEY ‘notification id‘ (‘notification id‘),
186 CONSTRAINT ‘notification ibfk 1‘ FOREIGN KEY (‘uid‘) REFERENCES ‘fakebook‘.‘users‘ (‘id‘) ON DELETE CASCADE
187);
188

189 −−
190 −− create a table for comments on user notifications
191 −−
192 CREATE TABLE IF NOT EXISTS ‘fakebook‘.‘comments‘ (
193 ‘comment id‘ bigint(20) unsigned NOT NULL AUTO INCREMENT,
194 ‘notification id‘ bigint(20) unsigned NOT NULL,
195 ‘uid‘ bigint(20) unsigned NOT NULL,
196 ‘date‘ timestamp NOT NULL,
197 ‘content‘ TEXT NOT NULL,
198 PRIMARY KEY ‘comment id‘ (‘comment id‘),
199 CONSTRAINT ‘comment ibfk 1‘ FOREIGN KEY (‘uid‘) REFERENCES ‘fakebook‘.‘users‘ (‘id‘) ON DELETE CASCADE,
200 CONSTRAINT ‘comment ibfk 2‘ FOREIGN KEY (‘notification id‘) REFERENCES ‘fakebook‘.‘notification‘ (‘notification id

‘) ON DELETE CASCADE
201);

20 MySQL Cluster – Evaluation and Tests, OCTOBER 2, 2012

TEST RESULTS

0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200
0.01

0.1

1

10

100

1,000

10,000
throughput of 1370 per second

rampup time

seconds

av
er

ag
e,

lo
ga

rit
hm

ic
sc

al
e

time elapsed (ms)
latency (ms)

throughput

Figure 10: test 1: get 10 different status messages

0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200

0.01

0.1

1

10

100
avg throughput of 55 per second

rampup time

seconds

av
er

ag
e,

lo
ga

rit
hm

ic
sc

al
e

time elapsed (ms)
latency (ms)

throughput

Figure 11: test 1: get a random user’s login data

0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200
0.01

0.1

1

10

100

1,000
throughput of 1300 per second

rampup time

seconds

av
er

ag
e,

lo
ga

rit
hm

ic
sc

al
e

time elapsed (ms)
latency (ms)

throughput

Figure 12: test 1: load a message between two users (one is chosen randomly)

0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200

0.01

0.1

1

10

100

1,000
throughput of 150 per second

rampup time

seconds

av
er

ag
e,

lo
ga

rit
hm

ic
sc

al
e

time elapsed (ms)
latency (ms)

throughput

Figure 13: test 1: get all friends (uid) of a randomly chosen user

MySQL Cluster – Evaluation and Tests 21

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850

0.01

0.1

1

10

100

1,000

10,000 throughput of 2980 per second

rampup time

seconds

av
er

ag
e,

lo
ga

rit
hm

ic
sc

al
e

time elapsed (ms)
latency (ms)

throughput

Figure 14: test 2: get 10 different status messages

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850
0

0.01

0.1

1

10

100

1,000

avg throughput of 55 per second

rampup time

seconds

av
er

ag
e,

lo
ga

rit
hm

ic
sc

al
e

time elapsed (ms)
latency (ms)

throughput

Figure 15: test 2: get a random user’s login data

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850
0.01

0.1

1

10

100

1,000

throughput of 1770 per second

rampup time

seconds

av
er

ag
e,

lo
ga

rit
hm

ic
sc

al
e

time elapsed (ms)
latency (ms)

throughput

Figure 16: test 2: load a message between two users (one is chosen randomly)

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850

0.01

0.1

1

10

100

1,000
throughput of 240 per second

rampup time

seconds

av
er

ag
e,

lo
ga

rit
hm

ic
sc

al
e

time elapsed (ms)
latency (ms)

throughput

Figure 17: test 2: get all friends (uid) of a randomly chosen user

	1 Introducing MySQL Cluster
	2 Setup
	2.1 Preparing the test environment
	2.2 Installing MySQL Cluster
	2.3 Setting up the MySQL-Servers
	2.4 Setting up the MySQL-Management-Node
	2.5 Setting up the MySQL-Data-Nodes
	2.6 Setting up the MySQL-Proxy

	3 Tests
	4 Creating the test database data
	5 Results
	6 Problems
	7 Conclusion
	Appendix

