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Abstract 

Nitrogen (N), as the most important element of crop growth and development, plays a 

decisive role in ensuring yield. However, the problems of over-application of N fertilizers 

have been repeatedly reported in China, which resulted in low N use efficiency and high risk 

of environmental pollution. The requirements of developing technologies for real-time and 

site-specific diagnosis of crop N status are the foundation to realize the precision N 

management, and also benefit to the improvement of the N use efficiency. Remote sensing 

technology provides a promising non-intrusive solution to monitor rice N status and to 

realize the precision N management over large areas. This research focuses on proposing N 

nutrition diagnosis methods and developing N fertilizer management strategies for paddy 

rice of cold regions in Northeast China. The main contents and results are presented as 

follows: 

This study developed a new critical N (Nc) dilution curve for paddy rice of cold regions 

in Northeast China. The curve could be described by the equation Nc = 27.7W -0.34 if W ≥ 

1 Mg dry matter (DM) ha-1 or Nc = 27.7 g kg-1 DM if W < 1 Mg DM ha-1, where W is the 

aboveground biomass. Results indicated that the new Nc dilution curve was suitable for 

diagnosing short-season Japonica rice N status in Northeast China. The validation result 

indicated that it worked well to diagnose plant N status of the 11-leaf variety rice. 

This study investigated the potential of the satellite remote sensing data for diagnosing 

rice N status and guiding the topdressing N application at the stem elongation stage in 

Northeast China. 50 vegetation indices (VIs) were computed based on the FORMOSAT-2 

satellite data, and they were correlated with the field-based agronomic variables, i.e., 

aboveground biomass (AGB), leaf area index (LAI), plant N concentration (PNC), plant N 

uptake (PNU), chlorophyll meter readings, and N nutrition index (NNI, defined as the ratio 

of actual PNC and critical PNC according to the new Nc dilution curves). The results 

presented that 45% of variation in the NNI was obtained by using a direct estimation method 

based on the best VI according to the FORMOSAT-2 satellite data, while 52% of the 

variation in the NNI was yielded by an indirect estimation method, which firstly used the 

VIs to estimate AGB and PNU, respectively, then estimated NNI according to these two 

variables. Moreover, based on the critical N uptake curve, a N recommendation algorithm 

was proposed. The algorithm was based on the difference between the estimated PNU and 

the critical PNU to adjust the topdressing N application rate. The results demonstrated that 

FORMOSAT-2 images have the potential to estimate rice N status and guide panicle N 

fertilizer applications in Northeast China.  

This study also evaluated the potential improvements of the newest satellite sensors with 
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the red edge band for diagnosing rice N status in Northeast China. The canopy-scale 

hyperspectral data were upscaled to simulate the wavebands of RapidEye, WorldView-2, and 

FORMOSAT-2, respectively. The VI analysis, stepwise multiple linear regression (SMLR), 

and partial least squares regression (PLSR) were performed to evaluate the N status 

indicators. The results indicated that the VIs based on the RE band from RapidEye and 

WorldView-2 data could explain more variability for N indicators than the VIs from 

FORMOSAT-2 data having no RE band. Moreover, the SMLR and PLSR results revealed 

that both the near-infrared and red edge band were important for N status estimation. 

The proximal fluorescence sensor Multiplex®3 was used to evaluate the potential of 

fluorescence spectrum for estimating the N status of the cold regional paddy rice at different 

growth stages. The Multiplex indices and their normalized N sufficient indices (NSI) were 

used to estimate the five N status indicators, i.e., AGB, leaf N concentration (LNC), PNC, 

PNU, and NNI. The results indicated that there were strong relationships between the 

fluorescence indices (i.e., BRR_FRF, FLAV, NBI_G, and NBI_R) and (i.e., LNC, PNC, 

NNI), with the coefficient of determination (R2) between 0.40 and 0.78. In particular, NNI 

was well estimated by these fluorescence indices. Moreover, the NSI data improved the 

accuracy of the N diagnosis. 

These results of this study were useful for N nutrition diagnosis and variable fertilization 

of the cold regional paddy rice, which were significant for the ecological environment 

protection and the national food security. 
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Zusammenfassung 

Stickstoff (N), als wichtigstes Element des Pflanzenwachstums und der -entwicklung, 

spielt eine entscheidende Rolle für die Ertragssicherung. In China wurden jedoch wiederholt 

Probleme mit der übermäßigen Anwendung von N-Düngemitteln gemeldet, was zu einer 

geringen N-Nutzungseffizienz und einer hohen Umweltgefährdung führte. Um die 

Nutzungseffizienz des zugeführten Stickstoffs zu verbessern, werden Strategien entwickelt, 

welche die Düngung dem Bedarf der Pflanzen sowohl in zeitlicher und räumlicher 

Dimension anpassen (Precision Farming). Dies erfordert die Entwicklung von Technologien 

zur ortsspezifischen Bestimmung der N-Versorgung in Echtzeit. Die Fernerkundung bietet 

eine vielversprechende nicht-invasive Methode zur Überwachung des N-Status im Feld, um 

dann für große Flächen ortsspezifische Düngestrategien abzuleiten. Die in dieser Arbeit 

vorgestellte Forschung fokussiert darauf, Methoden für die Bestimmung des N-

Versorgungszustands von Reispflanzen vorzuschlagen und N-Düngestrategien für 

Nassreisanbau in kühlen Regionen zu entwickeln. Das Untersuchungsgebiet liegt in 

Nordostchina. Die wichtigsten Inhalte und Ergebnisse sind wie folgt: 

Eine neue kritische N (Nc)-Verdünnungskurve für Nassreisanbau in kühlen Regionen in 

Nordostchina wurde entwickelt. Mit dieser Gleichung wird die Verdünnungskurve 

beschrieben: Nc = 27,7W -0,34 für W (oberirdische Biomasse) ≥ 1 Mg Trockensubstanz 

(DM) ha-1 oder Nc = 27,7 g kg-1 DM für W < 1 Mg DM ha-1. Ergebnisse zeigten die Eignung 

dieser neuen Nc-Verdünnungskurve für die Bestimmung des N-Status von Japonica-Reis in 

Nordostchina. Die Validierungsanalyse erzielte gute Ergebnisse für die Bestimmung des N-

Status einer 11-blättrigen Reissorte. 

Das Potential von FORMOSAT-2 Satellitenbildern für die Bestimmung der N-

Versorgung wurde analysiert, um Düngeempfehlungen für das phänologische Stadium des 

Schossens abzuleiten. Hierzu wurden 50 Vegetationsindizes (VIs) basierend auf 

FORMOSAT-2-Daten berechnet und die Korrelationen mit im Feld gemessenen 

agronomischen Parametern (oberirdische Biomasse AGB, Blattflächenindex LAI, N-

Konzentration in der Pflanze PNC, N-Aufnahme der Pflanze PNU, Chlorophyllmeter-Daten 

CM und Nitrogen Nutrition Index NNI) analysiert. Der NNI ist definiert als das Verhältnis 

zwischen der tatsächlichen und der kritischen PNC, gemäß der neu entwickelten Nc-

Verdünnungskurve. Die Ergebnisse zeigten, dass 45% der NNI-Variation mit dem 

geeignetsten FORMOSAT-2-VI erklärt werden konnten (direkte Methode). Die indirekte 

Methode, zuerst AGB und PNU mit Hilfe der VIs aus den Fernerkundungsdaten abzuleiten 

und dann den NNI zu berechnen, erzielte ein besseres Ergebnis (R² = 0,52). Auf der 

kritischen N-Aufnahme-Kurve basierend, wurde ein Verfahren zur N-Düngeempfehlung 
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vorgeschlagen. Dieses nutzt die berechnete Differenz zwischen dem geschätzten und dem 

kritischen PNU-Wert, um die N-Düngeempfehlungen während der Vegetationsperiode 

abzuleiten. Die Eignung der FORMOSAT-2-Daten für die Bestimmung des N-Status von 

Reispflanzen konnte bewiesen werden. Somit lassen sich während der Anbauphase 

Düngeempfehlungen für Reis in Nordostchina ableiten. 

Weiterhin wurde die Eignung von neueren Satellitensensoren mit Spektraldaten im Red 

Edge-Bereich (RE) bewertet, den N-Versorgungszustand von Reis in Nordostchina zu 

detektieren. Im Feld gemessene hyperspektrale Daten dienten der Simulation der 

Spektralkanäle von FORMOSAT-2, RapidEye und Worldview-2. Um die Ableitung von N-

Status-Parametern zu bewerten, wurden diese Methoden eingesetzt: Analyse von 

Vegetationsindizes (VI), die stufenweise multiple lineare Regressionsanalyse (SMLR) und 

die Regressionsanalyse nach der Methode der kleinsten Quadrate (PLSR). Die Ergebnisse 

zeigten, dass die auf dem RE basierenden VIs aus RapidEye und WorldView-2-Daten mehr 

Variabilität der N-Indikatoren erklären konnten als die VIs aus den FORMOSAT-2-Daten 

(ohne Spektralinformation im RE). Außerdem zeigten die Ergebnisse der SMLR und PLSR, 

dass die Spektralkanäle sowohl im nahen Infrarot als auch im RE wichtig für die Ableitung 

des N-Status sind. 

Der im Feld einsetzbare Fluoreszenz-Sensor Multiplex®3 wurde evaluiert, um die 

Eignung des Fluoreszenz-Spektrums für die Ableitung des N-Status während verschiedener 

phänologischer Phasen im Nassreisanbau (in kühlen Regionen) zu bewerten. Die Multiplex-

Indizes und ihre normalisierten N sufficient-Indizes (NSI) wurden verwendet, um fünf N-

Status-Indikatoren (AGB, Blatt-N-Konzentration LNC, PNC, PNU und NNI) abzuleiten. 

Die Ergebnisse weisen darauf hin, dass es starke Beziehungen zwischen den Fluoreszenz-

Indizes (z.B. BRR_FRF FLAV, NBI_G und NBI_R) und z.B. LNC, PNC und NNI gibt (R²-

Werte zwischen 0,48 und 0,78). Insbesondere die NNI-Werte konnten gut aus diesen 

Fluoreszenz-Indizes abgeleitet werden. Die NSI-Daten verbesserten die Genauigkeit der N-

Bestimmung. 

Die Ergebnisse dieser Arbeit sind für die Bestimmung der N-Versorgung und damit für 

die Anpassung der Düngegaben für den Nassreisanbau in kühlen Regionen einsetzbar. So 

kann ein Beitrag zum Umweltschutz und gleichzeitig zur nationalen 

Nahrungsmittelsicherheit geleistet werden. 
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Chapter 1: General introduction 

1.1 Preface and introduction 

 Global agriculture is facing huge challenges in the next decades (Chen et al., 2014). On 

the one hand, the world population continues to grow in the future, but on the other hand, 

with the increased living standard, more consumption of animal protein will be demanded 

(Godfray et al., 2010; Tilman et al., 2011). Therefore, it was forecasted that global demand 

for the crop would increase by more than 100% by 2050 (Tilman et al., 2011). Rice (Oryza 

sativa L.) is one of the most important crops in the world, and more than two-thirds of 

China’s population relies on rice as the staple food. According to the annual consumption of 

rice in China, it was estimated that the demand would increase by 30% or more by 2030 

(Shen et al., 2013). China is one of the major rice-production countries with an average 

annual output accounting for 29% of the world (Zhang et al., 2012). One of the major 

japonica rice producing areas is located in Northeast China. It is called cold regional paddy 

rice. Due to its sparse population in this area as well as the good taste and good quality, the 

food commercialization rate of the cold region rice is as high as 75% (Shen et al., 2013). 

Therefore, it plays an important role in ensuring food security in China. Owing to the 

expansion of non-arable land, the increase in crop yields has become the only option to 

ensure global food security.  

Nitrogen (N), as the most important element of crop growth and development, is a major 

component of chlorophyll and plays a decisive role in ensuring yield. Since the Green 

Revolution (1960s), N fertilizer has made a significant contribution to food security in the 

past few decades. Owing to the application of N fertilizer, more population are being fed, 

especially in China. China fed 22% of the population with only 9% of the world's arable land 

(Zhang et al., 2011). However, this is partly attributed to a 37-fold increase in N fertilizer 

application, equivalent to 30% of the world's total consumption (Zhang et al., 2012). N 

fertilizer is also the most important factor for high yield in rice production, next to water 

(Peng et al., 2002). At the same time, a large amount of N fertilizer was consumed, 

accounting for 36% of the global rice N fertilizer consumption (Peng et al., 2002; Heffer, 

2009). Farmers always tend to apply high rates of N fertilizer in order to obtain a high yield. 

In addition, the problem of excessive application has become increasingly prominent. The 

excessive N fertilizer couldn’t be absorbed by crops, resulting in the seasonal utilization of 

N in China being as low as 20%-35%, much lower than that of the world (up to 50%) (Zhu, 

1998; Cui et al., 2008; Dobermann, 2007). For example, the agronomic efficiency of N 

fertilizer for rice is only 11.7 kg kg-1 in China, much lower than those of developed countries 
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(20-25 kg kg-1) (Zhang et al., 2008; Jin, 2012). The N partial factor productivity (PFPN) of 

rice in China is also as low as 41 kg kg-1 (Chen et al., 2014). That is lower than other major 

rice-producing countries in Asia, such as Philippines, Indonesia, and Japan (Cassman et al., 

1996, 2002; Peng et al., 2002; Zhang et al., 2012). Excessive N fertilizer can incur many 

crop growth issues, such as lodging, pests, and diseases, late maturity and mildew problems, 

etc. It not only results in crop production loss but also affects the product quality. The 

excessive investment in N fertilizer drives severe ecological and environmental problems, 

such as eutrophication of surface waters (Le et al., 2010), soil acidification (Guo et al., 2010), 

greenhouse gas emissions (Zhang et al., 2004), and other forms of air pollution (Liu et al., 

2013). Therefore, how to increase yield under limited arable land, while improving N use 

efficiency and reducing environmental impact is the most critical issue for rice in China. 

The low use efficiency of N fertilizer is due to various reasons. The most important one 

is caused by unreasonable N fertilizer management strategies, which do not match the N 

supplies well with crop requirements (Fageria & Baligar, 2005). First, a large proportion or 

excess of N fertilizer is applied at the early stage of crop growth. In Northeast China, farmers 

usually apply almost all N fertilizers as the base and the first topdressing fertilizer at tillering 

stage for rice, and rarely topdress them as panicle fertilizers. However, due to the low 

temperature in early growth stage, rice growth is often inhibited, resulting in the excessive 

application of N fertilizer that could not be absorbed and increase the risk of environmental 

pollution (Peng et al., 2015). Peng et al. (2015) also demonstrated that by reducing the 

amount of the base and first topdressing N fertilizer and increasing the panicle or grain 

fertilizer, the N use efficiency could be greatly improved. Another reason for the low N use 

efficiency is the overlook of spatial variability in the field and the use of uniform N fertilizer 

rates. In fact, soil nutrients in the field vary widely (Scharf et al., 2002; Cao et al., 2012), 

and the variation in optimal N application rates in different fields are large (Cao et al., 2012). 

Inamura et al. (2004) reported that the spatial structural variation and the N absorption 

accounted for 75.4% and 41.8% of the rice yield variation, respectively. Therefore, matching 

N fertilizer and crop needs in both space and time, also called precise management, is 

crucially important. This is the core of precision agriculture. Studies have shown that 

precision N management strategies can simultaneously achieve dynamic management of N 

and grantee high yield (Gianquinto et al., 2011), and can improve N use efficiency 

(Doberman et al., 2002; Miao et al. 2009).  

In-seasonal N demand can be assessed by its N concentration status at any stage of crop 

development. This requires the development of real-time and site-specific diagnostic 

techniques for on-site crop N status to guide the application of N (Cao et al., 2016). The 

traditional methods for monitoring crop N nutritional status include field investigation, 

sampling, and biochemical analysis. However, these methods have the disadvantages of time 

lag, destructiveness, and high cost. Some non-destructive N diagnostic methods, including 
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the Green Window, leaf color chart, and the chlorophyll meter, have been widely used to 

assess crop N status and determine N application rate (Thind & Gupta, 2010; Peng et al., 

1996). Remote sensing methods have also been developed and implemented to estimate crop 

N status. Remote sensing refers to a non-contact measurement of electromagnetic radiation 

that is reflected by the observed object. Remote sensing technology combines mathematical 

theory with spectral information processing methods and models to obtain real-time 

monitoring information of soil fertility, crop nutrition, growth status, and other crop 

parameters, which can provide scientific and precise management foundations for farmland. 

Satellite remote sensing imagery has great application potential in precision agriculture, due 

to its ability to obtain the visualization information quickly and accurately over a larger 

region. Significant progress has been made for satellite remote sensing and a number of 

satellites can collect imagery with sub-meter resolution, more number of bands, and daily 

return frequency (Mulla, 2013; Mulla & Miao, 2016). The confusion and uncertainties of the 

information acquired by the optical remote sensing sensors reduce the sensitivity to the target 

parameters. Therefore, remote sensing approaches only relevant to target parameters were 

developed. For example, the Light Detection and Ranging remote sensing can map the shape 

of an object, and fluorescence remote sensing monitors the chlorophyll conditions. At the 

same time, the development of combined analysis of different remote sensing technologies 

is also popular. 

 To this end, according to the demands of crops, the precision N management strategy 

by matching N supply in time and space is an important way to reduce the risk of 

environmental contamination and improve crop productivity and N fertilizer use efficiency. 

In order to achieve precision N management, N nutrition diagnostic indicators and rapid real-

time, high-precision diagnostic methods are necessary.  

1.2 Research problems and aims 

Through the above introduction, we know that in order to improve the use efficiency of 

N fertilizer and achieve precision management of N fertilizer, it is necessary to develop a 

real-time management system. The theoretical basis of the system is based on understanding 

of the demand for crop N nutrition and the realization of in-season crop N nutritional status 

diagnosis. Plant N concentration (PNC) has long been a commonly used indicator of plant 

N status (Fageria, 2009). It has been reported that PNC decreased with aboveground biomass 

during the growing season in dense canopies (Greenwood et al., 1986; Lemaire et al., 2008; 

Ziadi et al., 2010b), whatever the climatic conditions or the varieties (Lemaire et al., 2005). 

Generally, the formula 1-1 is used to describe the dilution process of N concentration with 

increasing shoot biomass during crop growth (Greenwood et al., 1990; Lemaire et al., 2008): 

 N = a W -b  (1-1) 
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where, W stands for aboveground biomass (dry matter, DM) in Mg ha-1, N stands for plant 

N concentration in shoots in g kg-1 DM, a is the N concentration when W is 1 Mg DM ha-1, 

and b is the dilution factor. The minimum PNC that maintains the maximum growth rate of 

aboveground biomass is called the critical PNC (Nc) (Greenwood et al., 1986). During a 

period of growth, the power function relationship between Nc and biomass reflects the 

critical N concentration dilution curve. It has been suggested that species-specific Nc dilution 

curves should be developed for more precise diagnosis of plant N status according to each 

species’ histological, morphological and eco-physiological characteristics (Lemaire & 

Gastal, 1997). The optimal demand for N is the crop N status corresponding to the maximum 

growth at different growth stages (Ata-Ul-Karim et al., 2017). Therefore, Nc dilution curves 

can provide diagnostic criteria. The N nutrition index (NNI) can be derived from the Nc 

dilution curve. It is defined as the ratio of the actual measured PNC (Na) over Nc according 

to the Nc dilution curves (Lemaire et al., 2008). NNI can more quantitatively measure the N 

status of crops, and has become an important indicator of crop N nutrition diagnosis in many 

studies (Lemaire et al., 2008; Ziadi et al., 2008b; Yue et al., 2012). However, so far, no study 

has evaluated the existing Nc dilution curves for rice in Northeast China. Considering the 

differences in climate and cultivars in Northeast China and other major rice producing areas 

in China, a new Nc dilution curve may need to be developed to diagnose rice N status in this 

region. 

NNI has been proved to be a reliable index for diagnosing crop N status than PNC or 

Plant N uptake (PNU) (Lemaire et al., 2008; Cao et al., 2013; Chen, et al., 2013; Yao et al., 

2014; Ly et al., 2017; Ravier et al., 2017; Zhao et al., 2018). However, the calculation of 

NNI requires destructive sampling and chemical analysis to determine aboveground biomass 

and PNC, which is costly and time-consuming and, thus, impractical for site-specific N 

management across large areas. Recently, there is an increasing interest in using proximal 

and remote sensing technologies to estimate the crop NNI non-destructively (Lemaire et al., 

2008; Cao et al., 2013; Yao et al., 2014). Several researchers have successfully used the 

chlorophyll meter data to estimate the NNI of wheat (Prost & Jeuffroy, 2007; Ravier et al., 

2017), and maize (Ziadi et al., 2008b; Zhao et al., 2018), and rice (Yuan et al., 2016; Ata-

Ul-Karim, et al., 2016a). Crop canopy sensors, divided into two classes: passive canopy 

sensors (e.g., Field Spec) and active crop sensors (e.g., GreenSeeker, Crop Circle ACS 470), 

are more efficient and promising than leaf sensors for estimating crop NNI across large fields 

(Mistele & Schmidhalter, 2008; Chen et al., 2013; Cao et al., 2016; Xia et al., 2016). 

However, the data obtained by chlorophyll meter or canopy sensors are point measurements 

at the leaf or canopy level, which are unsuitable for precision N management across large 

areas (Miao et al., 2009). Alternatively, aerial and satellite remote sensing offers a promising 

non-intrusive solution to monitor crop N status and to guide site-specific N 

recommendations over large areas (Zarco-Tejada et a., 2013; Mulla, 2013; Mulla & Miao, 
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2016; Maresma et al., 2018). For in-season site-specific N management, a satellite sensor 

with relatively high spatial resolution is required. In addition, high temporal resolution is 

also crucially important, as cloudy weather conditions are quite common in most crop 

planting regions. There is only a narrow time window to collect and process remote sensing 

images, produce topdressing fertilization prescription, and implement fertilizer applications. 

The satellite platforms such as FORMOSAT-2, RapidEye, WorldView-2/3/4 offer 

unprecedented capabilities with more bands and higher spatial and temporal resolutions. So 

far, little has been reported on rice NNI estimation using satellite remote sensing in Northeast 

China. Therefore, it is urgent to research and evaluate the potential of using high 

spatiotemporal resolution satellite data to estimate rice NNI at a key growth stage for guiding 

panicle N fertilizer application in Northeast China. 

Moreover, the optical sensors are influenced by soil and/or water background noises 

prior to canopy closure. Conversely, saturation in the measured index often occurs under 

high biomass conditions. The reflectance signals are more related to biomass and leaf area 

index (LAI) rather than chlorophyll concentration or indirectly PNC, especially before 

canopy closure, resulting in low diagnosis accuracies (Yu et al., 2013). Fluorescence sensing 

signals are mainly affected by leaf chlorophyll concentration instead of soil and/or water 

backgrounds or biomass conditions; hence, they are more related to crop N status (Tremblay 

et al., 2011; Longchamps & Khosla, 2014). It was therefore hypothesized that fluorescence 

sensing could be used to estimate N status reliably before canopy closure. In a recent study, 

Longchamps and Khosla (2014) found that fluorescence sensing could detect N variability 

as early as the V5 stage of maize, and was not influenced by soil background. In another 

study, Li et al. (2013) found fluorescence sensor parameters were highly related to 

chlorophyll meter readings in rice. Padilla et al. (2016) indicated that the fluorescence 

indices of chlorophyll and flavonols contents, such as the simple fluorescence (SFR) and the 

flavonol index (FLAV), and the ratio of the chlorophyll to flavonols contents, defined as the 

balance index (NBI), could be used as reliable indicators of crop N status in autumn and 

spring cucumber crops. Therefore, proximal fluorescence-based sensors are also promising 

tools for monitoring rice N status in Northeast China. 

For modern precision agricultural production, it is essential to carry out remote sensing-

based early crop N diagnosis and N management strategies. In this dissertation, I focused on 

the research of N nutrition diagnosis and N management strategy for cold region paddy rice 

in Northeast China. Through conducting the experiments based on multi-source remote 

sensing technologies, this study aims to further clarify diagnostic criteria of N nutrition in 

cold paddy rice, establish N nutrition diagnosis methods based on proximal and satellite 

remote sensing technologies, and promote precision N management strategies. This is of 

great significance for achieving the protection of the ecological environment while ensuring 

national food security. 
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1.3 Thesis outline 

This thesis focuses on the topic of N nutrition status diagnosis and precision N 

management for rice in Northeast China. It consists of eight chapters. The first chapter 

introduces the research background and scientific issues and summarizes the outline of the 

thesis. The second chapter mainly presents the theoretical basis of the research content 

covered in Chapters 3 through 6, which are the main chapters of the thesis and are published 

as peer-reviewed journals or conference articles. Finally, Chapter 7 provides a general 

discussion of the results. Chapter 8 summarizes the main conclusions of this study and the 

outlook for future research. The contents of Chapters 3-8 are briefly summarized as follows:  

Chapter 3 evaluates the previously developed Nc dilution curves for rice in Northeast 

China and presents a more suitable Nc dilution curve in this region. As the results indicated 

that none of the two previously developed Nc dilution curves was suitable to diagnose N 

status of the short-season Japonica rice in Northeast China. A new Nc dilution curve was 

developed, and it worked well for N status diagnosis according to the validation result. 

Chapter 4 investigates the potential of using FORMOSAT-2 satellite images to diagnose 

rice N status and guide topdressing N application at the stem elongation stage in Northeast 

China. Based on the FORMOSAT-2 imagery, a total of 50 vegetation indices (VIs) were 

computed and correlated with field-based agronomic variables. In addition, the study 

compares the direct and indirect NNI estimation approaches. Finally, based on the critical N 

uptake curve which was derived from the Nc dilution curve which established in Chapter 3, 

a topdressing N recommendation method for rice of Northeast China was developed. 

Chapter 5 evaluates the potential improvements of the newest satellite sensors, 

RapidEye and WorldView-2, for rice N status monitoring. The canopy-scale hyperspectral 

data were upscaled to simulate the wavebands of RapidEye and WorldView-2. The simulated 

FORMOSAT-2 wavebands were used as the reference for comparison. VI analysis, stepwise 

multiple linear regression (SMLR), and partial least squares regression (PLSR) were 

performed to derive plant N status indicators. The results indicated that the VIs based on the 

red edge band of RapidEye and WorldView-2 data explained more variability for N 

indicators than their FORMOSAT-2-based counterparts did. Moreover, the SMLR results 

revealed that both the near-infrared and red edge band were important for N status estimation. 

The PLSR analysis confirmed the significance of the NIR band. Overall, both the RapidEye 

and WorldView-2 data with red edge band improved the results relative to FORMOSAT-2 

data. 

Chapter 6 explores the potential of using proximal fluorescence sensor (Multiplex®3) to 

estimate N status at different growth stages for rice in the cold region. The most suitable 

Multiplex measurement mode was identified. The results indicated that different N 

application rates significantly affected most of the fluorescence indices, especially the 
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simple fluorescence ratios (SFR_G, SFR_R), blue-green to red fluorescence ratio 

(BRR_FRF), flavonols (FLAV), and N balance indices (NBI_G, NBI_R). There were strong 

relationships between the fluorescence indices (BRR_FRF, FLAV, NBI_G, and NBI_R) and 

N indicators, with coefficients of determination (R2) values between 0.40 and 0.78. In 

particular, NNI was well estimated by these fluorescence indices. 

Chapter 7 generally discusses the objectives and results of this thesis, and focuses 

primarily on (1) N concentration and NNI estimation using remote sensing, (2) satellite and 

fluorescence remote sensing application potential, (3) fluorescence remote sensing data 

fusion for crop N monitoring, (4) remote sensing-based in-season N management strategies, 

and (5) the limitation of the thesis. 

Chapter 8 summarizes the dissertation and provides an outlook for future research. 
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Chapter 2: Basics 

2.1 The cold region rice and the study area 

2.1.1 Cold region rice 

The cold region rice is planted in the area north of latitude 43°N of the permafrost region, 

which is also one of the most northern paddy areas in the world. In China, it mainly refers 

to Heilongjiang Province (43°26'-53°33'N) located in the Northeast. The Japonica rice, 

which is adapted to the cooler climate, is also grown in the same high latitude in other 

countries, such as Japan and Russia (Leff et al., 2004). Heilongjiang Province is located in 

the temperate zone and the cold temperate zone. The average annual temperature is less than 

1 °C. Temperature is one of the primary considerations in arranging the agricultural planting 

systems. Heilongjiang Province is divided into six zones based on the accumulated active 

temperature, i.e., the duration of the daily average temperature higher than 10 °C. Their 

corresponding accumulated temperature ranges refer to above 2700 °C, 2500-2700 °C, 2300-

2500 °C, 2100-2300 °C, 1900-2100 °C, and less than 1900 °C, respectively. Adapted to the 

local temperature conditions, most of the varieties bred for the cold region rice are 9-

14 leaves on the main culm with a 2150-2700 °C accumulated temperature requirement. The 

growth duration for cold region rice is approximately 120-145 days from emergence to 

maturity when cultivated in the appropriate area (Data source: China Rice Data Center). In 

order to increase more accumulated temperature, a two-stages cultivation technique, 

including greenhouse seedling cultivation and field cultivation, was adopted for the cold 

region rice. Li et al. (2005) showed that the two-stages cultivation technique broke the 

limitation of the short frost-free period in northern cold areas, which can increase the 

accumulated temperature by more than 150-200 °C. When three-four leaves emerge on 

seedlings, good quality seedlings will be transplanted in the field. 

From the germination to maturity, the cold region rice has three main growth stages: 

vegetative, reproductive, and ripening. The vegetative stage covers a period from 

germination to panicle initiation; the reproductive stage is from panicle initiation to heading; 

and the ripening period refers to heading to maturity. After transplanting, rice begins to grow 

tillers. With the increase in the number of primary tillers, more tillers develop explosively, 

and then reach the maximum number at the stem elongation stage. The effective tillers 

develop before the panicle initiation stage. That is because the tillers formed after the panicle 

initiation will gradually die instead of mature eventually, and they are defined as invalid 

tillers. Therefore, from the stem elongation to the heading growth stage, the number of tillers 
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gradually declines, and finally reaches a stable level until maturity. The start of the panicle 

initiation stage marks the beginning of the reproductive growth period. However, at this 

point, the tillering has not yet completed. Therefore, there is an overlapping period of the 

vegetative and the reproductive growth stages, which begins from the panicle initiation and 

ends at the stem elongation growth stage. This is an important period for topdressing N 

application. Fig. 2-1 summarizes the tillering dynamics and the corresponding growth stages 

of a typical 130-day for cold region rice (Fig. 2-1). Although there is a large difference 

among different rice varieties, the days of growth range from 120 to 145 days. It generally 

takes 30 days from the beginning of panicle initiation to heading and approximately 30-

40 days from heading to maturity. The time required for the different cultivars in these two 

periods is not much different, and the main difference in the growth period is the length of 

the vegetative stage (Yoshida, 1981). 

 

Fig. 2-1 The tillering dynamics and corresponding growth stages of a typical 130-day for cold region rice 

2.1.2 Study area 

Over the past three decades, China's rice cultivation structure has undergone major 

adjustments due to the factors of economic efficiency and consumer demand. The production 

area of paddy rice showed a clear shift from South China to North China: the sown area in 

various southern provinces has continued to decrease, while the planting area in northern 

provinces has increased nearly 1.5 times (Wang, 2011). In particular, the cultivation area of 

rice in Northeast China has increased the fastest, from 0.85 million hectares in 1980 to 

4.55 million hectares in 2016. It dominates roughly 15.1% rice planting area of China 

(National Bureau of Statistics 2017), equating to approximately 1.96% rice cultivation area 

of the world. Among them, Heilongjiang Province has now become the largest province of 
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rice cultivation in North China. In 2016, the rice area of Heilongjiang Province reached 

3.20 million hectares (National Bureau of Statistics 2017). Due to the sparse population of 

Heilongjiang Province, its per capita acreage is three times more than the national average, 

reaching 0.66 hectares. Therefore, it is an important commodity grain base, which provides 

more than 70% grain commodities (Jiang et al., 2014). Now, Heilongjiang strongly supports 

China's food security (Yu, 2014). 

Heilongjiang Province, as a major area for the production of cold paddy rice, has 

important advantages in climatic and geographical conditions. The province's sunshine hours 

are between 2300 and 2800 hours, of which the growing season (from May to September) 

sunshine hours accounts for 44%-48%. In the growing season, the sunshine duration is 

generally above 14 hours and the sunshine percentage is above 50%, which is significantly 

higher than that in the southern rice cropping area. The annual total solar radiation is between 

40×108 and 50×108 joules per square meter, of which the total solar radiation from May to 

September accounts for 54%-60%. The diurnal temperature variation of the growing season 

ranges from 6 to 8 °C, while the annual diurnal temperature difference is above 10-12 °C. 

The larger temperature difference is beneficial for accumulating photosynthetic products, 

which is a good foundation for obtaining high yield. The rainy season in Heilongjiang 

Province dominates the crop growing season. The average annual precipitation in the 

province is mostly between 400-650 mm, and the growing season accounts for 80%-90% of 

the total. The frost-free period in the province lasts 100-160 days. The initial frost in most 

areas of Heilongjiang Province appears in late September, and the final frost ends in late 

April or early May. Heilongjiang Province has fertile soil, which belongs to one of the three 

black soil belts in the world. Composed of alluvial soil, the main soil types in the vast plain 

include black soil, chernozem, meadow soil, and other fertile soils. These soils are rich in 

humus with organic matter content of 1.24%-3.42%. Heilongjiang Province has rich water 

resources. There are four major river systems—Heilong River, Songhua River, Ussuri River, 

and Suifen River, and three major lakes—Xingkai Lake, Jingpo Lake, and Wudalianchi Lake, 

and other 1918 rivers and streams, as well as 640 lakes. The run-off of the whole province 

is 65.58 billion cubic meters. The total groundwater volume is 26.23 billion cubic meters. It 

has the most abundant water resources in the fourteen north provinces. Due to its location of 

high latitude tundra, the frequency of pests and diseases is low. Therefore, in the production 

areas of Heilongjiang Province, rice yield maintains at a relatively high level. In addition, it 

is the high-quality production area for japonica rice with an optimum quality rate higher than 

70%. Nowadays, the cold region rice has become a favorite main food for high-level 

consumers due to its good quality, and it is the major source of high-grade rice for export 

abroad. 

Our study site is located in Qixing Farm, Jiansanjiang Branch Bureau (132°31'26′′-

134°22'26′′E, 46°49'47′′-48°12'58′′N), which belongs to the fourth accumulated temperature 
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zone in Sanjiang Plain, Heilongjiang Province (Fig. 2-2). The Sanjiang Plain is formed by 

the Heilongjiang, Songhua and Ussuri River basins. A hundred years ago, the Sanjiang Plain 

was mainly composed of native grassland, wetlands, and other ecosystems (Gao et al., 2018). 

Nearly 80% of the wetlands have been reclaimed as farmland in recent decades at the plain 

(Gao et al., 2018). Today, there are 15 large and medium-sized state-owned farms in the 

Jiansanjiang Branch Bureau with a total area of 1.22×104 km2, of which 85% is for 

agricultural land. It mainly grows rice, corn, soybeans, wheat, and other economic crops, of 

which rice accounts for about two-thirds of the planting area. The annual average 

temperature of Jiansanjiang is 1-2 °C, and the annual rainfall is 500-600 mm, of which the 

rainfall in the crop growing season accounts for 60%-70%. The frost-free period is 

approximately 110-135 days. The total sunshine hours for a year are 2300-2600 h. 

 

Fig. 2-2 The study site is located in Qixing Farm of Sanjiang Plain. 

2.2 Crop critical N dilution curve and application 

In dense canopy, the N concentration in plants gradually decreases due to crop growth 

and light competition. Even when ample N is supplied, it does not change the declining trend 

of the N concentration. This is due to the non-uniform leaf N concentration in the canopy 

and the increasing proportion of structures and storage tissues containing lower N 

concentration (Hirose & Werger, 1987; Pons & Pearcy, 1994; Plénet & Lemaire, 1999). The 
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ubiquitous dilution can be expressed as a negative power function, known as a "dilution 

curve" (Greenwood et al., 1986; Greenwood et al., 1990). The researchers found that, 

although climate variability can lead to large variation in yield potential, crop uptake of N 

and mineralization of N in soils at different years, the decreasing rate of N concentrations 

with increasing biomass for the grasses and Lucerne are very close between years (Lemaire 

& Salette, 1984a, b; Lemaire et al., 1985). The inter year-stable for N dilution curve indicates 

that it may be more suitable for precision N management.  

The critical N dilution curve is defined in the following function: 

 𝑁𝑐  =  𝑎′𝑊−𝑏′
 (2-1) 

where, Nc is the minimum N concentration in plants needed for maximum growth rate of the 

crop (Ulrich, 1952). a’ and b’ are estimated parameters for the critical N dilution curve. Due 

to differences in the cumulative rate of crop biomass at different growth stages, the crop's 

demand for N changes. Therefore, the optimal amount of N required for maintaining the 

maximize growth rate at each stage of growth is different. The critical N dilution curve 

consists of a series of critical N concentrations and their corresponding shoot biomass of the 

entire growth period. According to the concept of the N critical dilution curve, the N status 

can be identified as sub-optimal or supra-optimal by comparing the N concentration below 

or above the curve under a given biomass. Therefore, the critical N concentration is the basis 

of the diagnosis of crop N status.  

Nitrogen Nutrition index (NNI)，proposed by Lemaire et al. (1989), which can be 

expressed as: 

 𝑁𝑁𝐼 =  
𝑁𝑎

𝑁𝑐
  (2-2) 

NNI is an ideal indicator for crop N nutrition diagnosis because it can quantify the 

intensity of crop N deficiency or excess (Lemaire & Gastal, 1997). When NNI > 1, it 

indicates that the N fertilizer is excessive; when NNI = 1, it indicates that the N fertilizer is 

optimal; when NNI < 1, it indicates insufficient N nutrition.  

In addition, similar to the critical N concentration curve, the minimum N content 

necessary to achieve the maximum crop growth rate can also be calculated as: 

 𝐶𝑁𝑢𝑝  =  𝑎′𝑊1−𝑏′
 (2-3) 

where the CNup stands for critical N uptake expressed in kg ha-1. Formula 2-3 can be named 

as the critical N uptake curve. Through the critical N uptake curve, the N requirement of 

crops can be accurately estimated and dynamically analyzed. 

Greenwood et al. (1990) proposed a procedure for identifying critical data points of N 

that has been widely used for establishing N critical dilution curve (Yue et al., 2014; Sheehy 

et al., 1998; Ziadi et al., 2010a). Justes et al. (1994) proposed a more accurate procedure for 
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establishing N critical dilution curve based on multi-year-site N fertilizer experiment, but 

the method required a larger dataset. Herrmann and Taube (2004) improved the procedure 

of Justes et al. (1994) by determining the critical N concentration point based on the 

quadratic plus platform regression method. The Herrmann and Taube (2004)’s procedure 

could avoid the situation that the curve cannot be established when the gradient of N 

application rate is too small to be discriminated, and when the data set is too small to 

calculate the regression line. After more than two decades of development, a series of critical 

N dilution curves for food and cash crops have been established, such as maize (Zea mays 

L.) (Plénet & Lemaire, 1999; Herrmann & Taube, 2004; Yue et al., 2014), rice (Oryza sativa 

L.) (Sheehy et al., 1998; Ata-U-Karim et al., 2013), winter wheat (Triticum aestivum L.) 

(Justes et al., 1994; Yue et al., 2012), spring wheat (T.aestivum L.) (Ziadi et al., 2010a), 

winter barley (Hordeum vulgare L.) (Zhao, 2014), potato (Solanum tuberosum L.) (Bélanger 

et al., 2001; Abdallah et al., 2016), oilseed rape (Brassica napus L.) (Colnenne et al., 1998), 

beet (Beta vulgaris L. ssp. Vulgaris) (Chakwizira et al., 2016) and so on (Xue et al., 2007). 

Table 2-1 summarizes the critical N concentration curves for major food crops and some 

cash crops. 

From Table 2-1, C4 plants (maize) have lower parameter a values than C3 plants (wheat, 

rice, barley, potatoes, etc.). This confirms the observation of Greenwood et al. (1990), who 

determined the critical N dilution curves for the C4 and C3 crops using the equations 

Nc = 41.0W -0.50 and Nc = 57.0W -0.50, respectively. In general, C4 crops have lower parameter 

a values than C3 crops, because of the lower metabolic protein requirements for C4 crops 

than C3 (Greenwood et al., 1990). The b values of the critical N concentration curves of 

potato and beet are relatively high, because the plant N concentration will decrease faster 

due to the accumulation of stored material such as tuber or root (Bélanger et al., 2001; 

Abdallah et al., 2016; Chakwizira et al., 2016; Lemaire & Gastal, 1997). For C3 crops, the 

coefficients of the critical N concentration curves of various species are all different, 

indicating interspecies differences (Table 2-1). Although there are differences in climatic 

conditions, the critical N concentration curves for spring maize established in France and 

Germany are very close (Plénet & Lemaire, 1999; Herrmann & Taube, 2004). Moreover, 

Ziadi et al. (2008a) also confirmed that the critical curve was able to distinguish N-limiting 

from non-N-limiting group in Canada. However, under different climatic zones, crops may 

undergo some morphological changes in order to adapt to the climate. Therefore, in some 

cases, the critical N concentration curve of the same species in a region does not apply to 

another region (Yue et al., 2012, 2014). In order to diagnose N status more accurately, each 

species should develop critical N dilution curves based on morphological and 

ecophysiological characteristics (Lemaire & Gastal, 1997). 

NNI is one of the most widely used tools for in-season N nutrition diagnosis and 

precision N management (Lemaire et al., 2008; Yuan et al., 2016). It is a precise and specific 
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indicator, which can effectively distinguish deficiency, optimal or luxury of N status during 

the entire growth period, and can quantitatively describe the degree of excess or deficiency. 

The NNI can be used for various crops. In addition, this variable is very robust and does not 

depend on variety or soil and weather conditions (Justes et al., 1994; Lemaire & Gastal, 

1997). Significant relationships between NNI and relative yield of wheat, maize, and rice 

were observed in previous research (Ziadi et al., 2010a; Ziadi et al., 2008b; Ata-Ul-Karim 

et al., 2016b). NNI can also be used to interpret the response of crops to N nutrition, and 

continuous observations can trace back the N supply condition during crop growth (Lemaire 

et al., 2008). Lemaire and Meynard (1997) used NNI as a diagnostic tool for analyzing 

agronomic data of the trials in order to account for yield differences. Although NNI is the 

reflection of the instantaneous N status, the calculation of its persistent deficit over a period 

of time can be used to interpret the N supply status of the crop during the entire growth 

period, thus explaining the difference in yield. The supply of N to the critical organ formation 

period can also explain the yield components. Jeuffroy and Bouchard (1999) used the extent 

and duration of NNI deficiency during anthesis to explain the relative grain number 

differences in wheat. Justes et al. (1997) explained the differences in grain protein content.  
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Table 2-1 The critical N dilution curves found in previous literature based on the regression Nc = a’W -b’, where Nc is the critical shoot N (g kg-1) and W is the shoot 

biomass dry weight (t ha-1), a’ and b’ are coefficients of the regression. 

Species Location 
Critical N  

Dilution Curve 
Plant sampling period References 

Spring maize Southwest of France Nc = 34.0W -0.37 Emergence to silking stage Plénet & Lemaire (1999)  

Spring maize Northern Germany Nc = 34.1W -0.39 Early vegetative to silage Herrmann & Taube (2004)  

Summer maize North China Plain, China Nc = 27.2W -0.27 V6 to milk stage (R3) Yue et al. (2014)  

Rice Philippines, China, and Australia Nc = 52.0W -0.52 - Sheehy et al. (1998)  

Rice (Japonica) Jiangsu Province, China Nc = 35.3W -0.28 Tillering to anthesis stage Ata-Ul-Karim et al. (2013)  

Winter wheat Northern France Nc = 53.5W -0.44 Tillering to anthesis stage Justes et al. (1994)  

Winter wheat North China Plain, China Nc = 41.5W -0.38 Tillering to anthesis stage Yue et al. (2012)  

Spring wheat Québec, Canada Nc = 38.5W -0.57 27 to 96 days after seeding Ziadi et al. (2010a)  

Winter barley Jiangsu and Henan Province, China Nc = 47.6W -0.39 Feekes 3 to Feekes 10.51 Zhao, 2014 

Potato Belgian Nc = 53.7W -0.45 From June to August Abdallah et al. (2016)  

Potato (Cultivar1) New Brunswick, Canada Nc = 45.7W -0.42 From July to August Bélanger et al. (2001)  

Potato (Cultivar2) New Brunswick, Canada Nc = 50.4W -0.42 From July to August Bélanger et al. (2001)  

Oilseed rape France Nc = 44.8W -0.25 Three-leaf to anthesis stage Colnenne et al. (1998)  

Beet New Zealand Nc = 49.0W -0.52 Emergence to harvest Chakwizira et al. (2016)  

Cotton Henan Province, China Nc = 49.7W -0.13 Initial flowering to boll-opening stage Xue et al. 2007 

Cotton Jiangsu Province, China Nc = 43.0W -0.13 Initial flowering to boll-opening stage Xue et al. 2007 
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2.3 Remote and proximal sensing of crop N status 

Remote sensing refers to the technique of non-contact measurement of electromagnetic 

wave signals (e.g. visible light, infrared, microwave, etc.) of target objects by various sensors. 

According to the mechanism of electromagnetic waves and surface objects, the 

characteristics of the objects and their change information can be analyzed. Remote sensing 

integrates a number of disciplines such as spectroscopy, physics, informatics, geography, 

earth science, ecology, and so on. Nowadays, remote sensing has a wide range of applications 

and far-reaching significance in agriculture. Currently, remote sensing measurement 

platforms include satellites, aircrafts, unmanned aerial vehicles (UAV), and proximal 

equipment (tractors or hand-held devices). Multi-spectral and hyperspectral remote sensing 

are commonly used techniques. In addition to reflection, transmission, and absorption, plant 

leaves can also emit energy through fluorescence or thermal emission (Mulla, 2013). This 

section will introduce the principle and research basis of remote sensing in crop N 

information extraction, as well as the progress in remote sensing research at different levels 

and different research methods. 

2.3.1 Remote Sensing based on reflected electromagnetic radiation 

2.3.1.1 Spectral characteristic of green plants 

The differences in the degree of absorption and emission changes of various targets, lead 

to different spectral reflectivity. The reflectance spectral curve of vegetation has apparent 

fluctuation, with multiple peaks and valleys in the wavelength range of 350-2500 nm (Fig. 

2-3). The influence of leaf structure, pigments, and water within the leaves determine 

reflected the energy of plants. As shown in Fig. 2-3, in the visible spectrum (400-700 nm), 

the reflectance and transmittance rates are very low, while the absorptance is high. Due to 

the strong absorption of plant pigments, especially the chlorophylls, two absorption valleys 

are formed in the bluish (400-500 nm) and reddish (600-700 nm) wavelength regions. Thus, 

the vegetation with chlorophyll appears green as a result of its minor reflectance peak at the 

green spectrum of 500-600 nm. Reflectance increases dramatically near the red edge, around 

700 nm wavelength, which is a typical feature of green plants and, unlike other objects, can 

be used to monitor the status of crop growth. In the near-infrared (NIR) spectrum (700-

1100 nm), the reflected energy from healthy plants can be as high as 50% due to the effects 

of cell structure. The shortwave and mid-infrared spectrum (1100-2500 nm) can also be used 

to study selected features of plant structure: carotenoids, protein, starch, and cellulose, which 

absorbs energy at 2104 nm wavelength. Additionally, leaf water content leads to strong 

absorption characteristics around 1450, 1840 and 2700 nm (Orych et al., 2014). The 

magnitudes of spectral reflectance of different plants are different. The changes and 
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differences of spectral reflectance are the basis of monitoring plant growth and other 

parameters, as well as the basis of vegetation remote sensing (Li, 2008). 

 

 

Fig. 2-3 Spectral characteristic of green plants (modified from Li, 2008) 

2.3.1.2 Remote sensing diagnosis of crop N nutrition: mechanism and approaches 

 N nutrition not only directly affects the constitution and content of chlorophyll in crops 

but also has a significant effect on the leaf area index (LAI) of crops. Due to the absorption 

and reflection characteristics of chlorophyll in the visible region, and the high reflectivity of 

vegetation leaves in the NIR region, different chlorophyll content and LAI will affect the 

amount of radiation. Therefore, the N nutrition status of the crop as indicated by chlorophyll 

content and LAI can be estimated by detecting the spectral response of the crop canopy. 

Noura et al. (2009) found that the spectral characteristics of leaves in rice under N deficiency 

were significantly different from those in normal nutrition conditions, and the difference of 

chlorophyll content was the main intrinsic factor leading to differences in spectral 

characteristics. Numerous studies have also shown that there is a good correlation between 

N and chlorophyll (Baret et al., 2006; Schlemmer et al., 2013; Peng et al., 2017). Remote 

sensing applied to crop N nutrition diagnosis is based on the quantitative estimation of 

agronomic parameters, such as the relationship of remote sensing information and the green 

LAI, the chlorophyll content, biomass, and N uptake, etc. The improvement of instruments 

and the development of relationships between reflectance and plant properties have 

enhanced quantification of agronomic parameters. Remote sensing technology has been 

widely used in crop N nutrition diagnosis and monitoring in recent years and has made great 

progress. The quantitative remote sensing methods applied to N nutrition estimation are 

mainly realized by screening sensitive bands, and using the selected bands in vegetation 



Chapter 2: Basics 

18 

indices, statistical methods, and physical models. 

1） Crop N Nutrition Diagnosis Based on Sensitive Spectrum, Vegetation Index, and 

Statistics Analysis 

Plant remote sensing depends on the measured spectral properties of leaves and canopies. 

Remote sensing quantification of leaf N nutrition status is generally achieved indirectly 

through estimation of plant chlorophyll concentration or content. By observing the spectral 

responses under a range of chlorophyll concentrations, it was found that the leaf reflectance 

increased with the decrease of leaf greenness or chlorophyll content in the visible spectral 

region (Hatfield et al., 2008). However, the blue light band (400-500 nm) has no advantage 

in distinguishing different chlorophyll concentrations due to its strong absorption of 

chlorophyll (Gitelson & Merzlyak, 1994, 1996). The strong absorption characteristics of the 

red light band (around 670 nm) makes the reflectance highly correlated with the chlorophyll 

concentration below 100 mg/m2, while when the chlorophyll concentration is higher than 

100 mg/m2, the red wavelength does not change with the increase of chlorophyll 

concentration (Gitelson & Merzlyak, 1996; Hatfield et al., 2008). Green (530-590 nm) and 

red edge (around 690-730 nm) do not saturate under very high chlorophyll concentration and 

show high sensitivity to chlorophyll changes (Chappelle et al., 1992; Gitelson & Merzlyak, 

1994). Many studies have shown that the most important spectral bands for predicting N 

value are located in visible, NIR and red edge regions (Clevers & Kooistra, 2012; Li et al., 

2014b). However, the role of the green and red edge band in estimating N is gradually being 

appreciated. Horler et al. (1983) were among the first to show the importance of the red edge 

inflection point for detecting plant stress. Since then, the red edge band has often been used 

to estimate chlorophyll or N content (Clevers et al., 2002; Dash & Curran, 2004; Cho & 

Skidmore, 2006; Clevers & Kooistra, 2012; Clevers & Gitelson, 2013; Clevers et al., 2017). 

Based on the study of sensitive wavelengths, vegetation indices are also widely used for 

monitoring vegetation conditions. A vegetation index (VI) refers to the mathematical 

combination of specific bands. The purpose of using VIs is to reduce the impact of 

environmental backgrounds (such as soil, atmosphere, sun-target-sensor geometry), and to 

improve the sensitivity of remote sensing data to target parameters (Moulin, 1999; Gitelson, 

2013). The earliest constructed VIs, such as the Simple Ratio Index (RVI, Jordan, 1969), is 

the ratio of NIR and red reflectance, whereas the Normalized Difference Vegetation Index 

(NDVI, Rouse et al., 1973) is the difference between the NIR and red reflectance values 

divided by their sum (NDVI = Rnir - Rred/ Rnir + Rred). They are the most commonly used VIs 

for satellites remote sensing. Over the past four decades, Landsat Thematic Mapper (TM) 

imagery-derived NDVI and other broadband VIs have been widely used to quantify crop 

variables such as biomass, LAI, plant height, and grain yield (Tucker, 1979; Wiegand et al., 

1992; Thenkabail et al., 1994). The progress in the diagnosis of N nutrition by satellite and 
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aerial remote sensing technologies will be described in more detail in the next section. By 

developing new VIs and narrow-band VIs, more theoretical and field work has further 

improved the relationships between VIs and physiological parameters such as vegetation 

coverage, biomass, and LAI. At the same time, they can also reflect the N and chlorophyll 

content (Hansen & Schjoerring 2003; Eitel et al., 2008; Yu et al. 2013).  

In recent years, the red edge band has gradually received increasing attention in the 

estimation of N, so has the VIs based on the red edge band. The VIs using red edge band 

instead of red band can explain more variations in N nutrition indicators (Dong et al., 2015). 

The red edge region has proven to be highly important in estimating chlorophyll or N content 

(Clevers et al., 2002; Dash & Curran, 2004). Barnes et al. (2000) derived the Canopy 

Chlorophyll Content Index (CCCI), which combines NDVI and Normalized Difference Red 

Edge index (NDRE). Rodriguez et al. (2006) found CCCI explained up to 69% variation in 

N content in dryland wheat, regardless of crop moisture status and crop cover. Fitzgerald et 

al. (2010) used the three bands near the red edge to construct a canopy CCCI to predict the 

N nutrition status of the wheat canopy. 

Linear stepwise regression is the most commonly used statistical model for spectral-

based vegetation research. It uses spectral data or their transformed forms as independent 

variables to estimate plant physical and biochemical parameters and thus establish regression 

empirical models. According to the number of independent variables, they can be divided 

into a one-dimensional linear regression model and a multiple linear regression model. In 

reality, a biochemical parameter is usually not only sensitive to one band, but to multiple 

bands. Therefore, Stepwise Multiple Linear Regression (SMLR) can estimate vegetation 

parameters more accurately. In addition to being used for modeling, it can also be used to 

select the most sensitive spectral bands for predicting the dependent variable. Many studies 

have used this method for spectral data analysis and have proven to be very useful for 

spectral information extraction (Osborne et al., 2002; Jacquemoud et al., 1995; Gnyp et al., 

2014). Thenkabail et al. (2000) used SMLR to identify sensitive band combinations to 

estimate crop biomass and LAI, and found a 4-band model could account for up to 92% of 

parameter variability. Yu et al. (2013) constructed a 6-band model by using SMLR which 

significantly improve the accuracy of estimating N concentration in rice compared to the 

optimized narrow-band based NDVI or RVI.  

Although the VI approach is widely used in the diagnosis of crop N nutrition status, it 

only uses a number of relevant bands in a large number of spectral data, resulting in a large 

amount of information redundancy. Statistical procedures such as Principal Component 

Analysis, Partial Least Squares Regression (PLSR), and Wavelet Transform reduce the 

multicollinearity and dimensions by decomposing spectral data into subsets of independent 

factors. Rather than using key wavebands to calculate spectral indices, these methods 

incorporate full-spectrum reflectance data into statistical models for crop trait estimation and 
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developed the algorithms to reduce dimensionality and mine the data for spectral features 

associated with crop traits (Thorp et al., 2017). PLSR is common when analyzing 

multivariate data. For example, Ecarnot et al. (2013) developed a PLSR model to estimate 

durum wheat leaf N content and leaf mass per unit area from spectral reflectance data 

measured between 400 and 2500 nm. Hansen and Schjoerring (2003) used hyperspectral 

reflectance data (438-884 nm) as independent variables to establish a regression model of 

winter wheat N content using PLSR. Martin et al. (2008) established a PLSR N content 

model with reflectances ranging from 750 to 1250 nm in the NIR region. In addition, there 

are improved PLS algorithms, such as Powered PLS (PPLS) (Indahl, 2005), which enhance 

the pre-selection based on the importance of variables (Kusnierek & Korsaeth, 2015). 

2） Application of Satellite Remote Sensing in Crop N Nutrition Diagnosis 

The spatial heterogeneity of soil properties is ubiquitous. Precision N management 

requires a deeper understanding of the temporal and spatial variability. Aerial and satellite 

remote sensing is a promising technology in crop growth monitoring and real-time 

management for large production fields (Mulla, 2013; Zarco-Tejada et al., 2013; Maresma 

et al., 2018). As early as the 1970s, satellite remote sensing images were used in agricultural 

applications. Landsat TM and the Moderate Resolution Imaging Spectrometer (MODIS) are 

the most commonly used remote sensing data for monitoring and assessing the spatial 

variability of crop growth conditions and yield (Liu et al., 2012; Gitelson et al., 2012). 

However, limited by their coarse spatial resolution (30 m for Landsat TM, 0.25-1 km for 

MODIS) and temporal resolution (16 days for Landsat TM), their utility for capturing crop 

growth parameters at critical growth stages or environmental information were hampered 

(Magney et al., 2017). In recent years, satellite platforms have provided unprecedented 

capabilities: spatial resolution has increased from tens of meters to sub-meters, revisit time 

have increased from tens of days to one day, and some new satellites have been able to record 

more wavebands. For example, QuickBird, Spot6/7, FORMOSAT-2, RapidEye, 

WorldView-2/3/4, Sentinal-2, etc. can be used as tools for scientists and farmers to better 

monitor crop N status, green LAI, and yield (Table 2-2). Among them, the RapidEye satellite 

is a breakthrough as the first satellite system to provide red edge band with high spatial 

resolution. WorldView-2 is also a milestone in satellite development. It not only includes 

bands similar to the RapidEye, but also provides additional coastal (400-450 nm), yellow 

(585-625 nm), and second NIR (860-1040 nm) wavebands. According to Chan et al. (2004), 

the optimal spatial resolution for biomass or yield estimation is 1-3 m, for variable rate 

fertilization is 5-10 m with a narrow topdressing time window. Although many commercial 

satellites with high spatial resolutions can meet the requirements of N diagnostics and 

precision N management. Due to the time limit for topdressing and the effect of weather 

conditions, their applications are constrained by their temporal resolution. Among them, 
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FORMOSAT-2, RapidEye, and WorldView-2 with high revisit capability are the satellites 

with the best potential for N nutrition diagnosis and precision management. Worldview-4 

were not included in the discussion due to its late launch time. And the PlantScope 

constitutes hundreds of satellites which possible to capture imagery every day. Due to the 

high cost of satellite images, many studies have used the proximal hyperspectral data to 

simulate the satellite waveband (Yang et al., 2008; Bsaibes et al., 2009; Bausch & Khosla, 

2010). Good progress has also been made through these studies. Chapter 4 of this dissertation 

has examined the application potential of FORMOSAT-2 satellite images for N nutrition 

diagnosis and precision N management in cold region rice in Northeast China. Chapter 5 has 

evaluated the application potential of the FORMOSAT-2, RapidEye, and WorldView-2 

through hyperspectral data simulations.  
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Table 2-2 Specifications of different satellites 

Satellites Launch 

time 

Revisit time 

(day) 

Resolution of 

Panchromatic (m) 

Resolution of 

Multispectral (m) 

Panchromatic 

(nm) 

Multispectral 

(nm) 

IKONOS 1999 1-3 1 4 450-900 450-520, 510-600, 630-700, 760-850  

QuickBird 2001 1-6 0.61-0.72 2.44-2.88 450-900 450-520, 520-600, 630-690, 760-900 

Spot6/7 2012/2014 1 1.5 6 450-750 450-520, 530-590, 625-695, 760-890 

FORMOSAT-2 2004 1-6 2 8 520-820 450-520, 520-600, 630-690, 760-900 

RapidEye 2008 1-6.5 

 

5 - 440-510, 520-590, 630-685, 690-730, 760-850 

Worldview-2 2009 1.1 0.5 1.8 450-800 450-510, 510-580, 630-690, 770-895, 585-625, 400-450, 

705-745, 860-1040 

Worldview-3 2014  0.31 1.24  400-450, 450-510, 510-580, 585-625, 630-690, 705-745, 

770-895, 860-1040, 1195-1225, 1550-1590, 1640-1680, 

1710-1750, 2145-2185, 2185-2225, 2235-2285, 2295-2365 

Worldview-4 2016 1 0.31 1.24 450-800 665-690, 510-580, 450-510, 780-920 

Sentinel-2 2015 5 - 10, 20, 60 - 423-463, 425-555, 525-595, 635-695, 690-720, 725-755, 

763-803, 727-957, 845-885, 925-965, 1355-1395, 1520-

1700, 2010-2370 

GF-2 2014 5 1 4 450-900 450-520, 520-590, 630-690, 770-890 

PlanetScope 2014 1 - 3 - 455-515, 500-590, 590-670, 780-860 
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3） Advances in Remote Sensing Monitoring of N Nutrition Index 

The NNI can be calculated at any time in the crop’s life cycle. However, the calculation 

of NNI requires destructive sampling and chemical analysis to determine biomass and plant 

N concentration, therefore impractical for in-season site-specific N management across large 

areas. The accurate estimation of NNI using remote sensing technology also means rapid 

and real-time N nutrition diagnosis. The future direction of sensors development in N 

nutrition management is to directly estimate nutrient deficiencies without the use of 

reference strips (Mulla, 2013). Therefore, there is an increasing interest in using proximal 

and remote sensing technologies to estimate the crop NNI non-destructively (Lemaire et al., 

2008; Houlès et al., 2007; Cao et al., 2013; Yao et al., 2014). Lemaire et al. (1997) suggested 

that the N concentration of the upper leaves of the canopy was more stable and well 

correlated with the NNI. Several studies also showed that N concentration of the upper leaves 

of the canopy was a good proxy of crop NNI (Farruggia et al., 2004; Gastal & Lemaire, 2002; 

Ziadi et al., 2009). These also provide a theoretical basis for the application of remote 

sensing technology in the rapid estimation of NNI. 

Several researchers have successfully used chlorophyll meter data to estimate the NNI 

of wheat (Prost & Jeuffroy, 2007; Ziadi et al, 2010b), maize (Ziadi et al, 2008b), and rice 

(Yuan et al., 2016). Crop canopy sensors are more efficient and promising than leaf sensors 

for monitoring crop N status across large fields (Cao et al., 2016; Yao et al., 2014). Xia et al. 

(2016) used GreenSeeker active optical sensor to estimate NNI. A passive hyperspectral 

canopy sensor was also applied to estimate maize NNI by Chen et al. (2013). However, these 

data are point measurements at the leaf or canopy level and they are unsuitable for precision 

N management across large areas (Miao et al., 2009). Aerial and satellite remote sensing is 

a promising technology to monitor crop N status for large production fields (Mulla, 2013). 

The FARMSTAR project, introduced by the EADS (European Aeronautic Defense and 

Space) company, has provided recommendation maps for N or chemicals for farmers since 

2002 based on an effective combination of satellite remote sensing images and agronomy 

expertise (Coquil & Bordes, 2005). They have been used to predict the NNI maps. However, 

it is difficult to estimate N concentration based on the broadband VIs derived from satellite 

imagery, which also makes a direct estimation of NNI challenging. González-Piqueras et al. 

(2017) found the red edge VIs-Red Edge Position, MERIS Terrestrial Chlorophyll Index 

(MTCI), Angular Insensitivity Vegetation Index (AIVI), and CCCI based on narrow 

wavebands were highly correlated with N content (R2 > 0.93). These VIs also performed 

well when derived from the broad wavebands of Sentinel-2 (R2 > 0.90). Cilia et al. (2014) 

applied aerial hyperspectral sensing to estimate maize NNI indirectly. They used the ratio of 

Modified Chlorophyll Absorption Rate Index and Modified Triangular Vegetation Index 2 

(MCARI / MTVI2) and MTVI2 to estimate corn PNC (R2 = 0.59) and biomass (R2 = 0.80). 
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Next, they combined the predicted PNC and biomass maps to generate an NNI map, which 

agreed well with the NNI obtained by destructive sampling and analysis (R2 = 0.70). Vuolo 

et al. (2017) combined satellite imagery and models to estimate the LAI and biomass, and 

estimated the N concentration using the VIs recommended by Cilia et al. (2014) in order to 

calculate NNI indirectly. Villodre et al. (2017) recommended N fertilizers during crop 

growth period by estimating the difference of actual N uptake and critical N uptake. However, 

how to estimate NNI and differential N uptake more accurately needs to be further studied. 

2.3.2 Fluorescence and their proximal remote sensing 

 The polyphenolic compound (Phen) is a carbon-rich secondary product of plant 

metabolism (Meyer et al., 2006). Its main function is to prevent harmful ultraviolet radiation 

(Caldwell et al., 1983) and defend against pests and pathogens (Hahlbrock & Scheel, 1989; 

Kiraly, 1964). The synthesis of polyphenols is induced by biotic or abiotic stress (Ksouri et 

al., 2007). For example, the availability of N affects both protein synthesis and polyphenol 

synthesis. This is because the common precursor of both proteins and polyphenolic 

compounds is phenylalanine, which can be used in an alternative approach to synthesize 

proteins or polyphenols. When N supply is sufficient, phenylalanine is assigned to synthesize 

protein in a larger amount. Correspondingly, the amount for polyphenol synthetic is less. On 

the contrary, in the case of insufficient N, phenylalanine produces less synthetic protein than 

polyphenols (Jones & Hartley, 1999). Phen mainly includes flavonoids, anthocyanins, 

hydroxycinnamic acids, condensed tannins, and lignin (Meyer et al., 2006). Among them, 

flavonoids and hydroxycinnamic acid derivatives have the highest amount. Flavonoids are 

mainly stored in the vacuoles of epidermal cells and also present in the mesophyll cells. 

Hydroxycinnamic acid normally bind to the cell walls (Knogge & Weissenböck, 1986; Liu 

et al., 1995; Burchard et al., 2000).  

 Under excitation light, the leaves emit fluorescence at peaks of 440 nm (blue), 520 nm 

(green), 690 nm (red), 740 nm (NIR) (Langsdorf et al., 2000). Among them, chlorophyll 

mainly excites red and NIR fluorescence, while Phen compounds emit blue and green 

fluorescence. Researchers found that under high and low N treatments, the ratios of blue and 

red or NIR, red and NIR fluorescence of plant leaves were greatly different (Buschmann & 

Lichtenthaler, 1998; Langsdorf et al., 2000). The fluorescence spectral ratio F690/F740 was 

significantly correlated with chlorophyll content (Gitelson et al. 1999; Cerovic et al. 2009). 

On the other hand, Phen compounds (mainly flavonoids) have typical ultraviolet (UV) 

absorption peak bands in UV-A and UV-B (Cerovic et al., 2002). Under UV light source, the 

absorption peak by a large number of compounds causes the amount of UV light transmitted 

through the epidermis to be almost zero (Day et al., 1994). At the same time, the red light or 

NIR light sources have been used as the reference to detect the chlorophyll content under the 
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epidermis. Using the ratio of these two, the N nutrition status of the plant can be more 

accurately reflected. Based on this principle, two portable fluorescent sensors named Dualex 

and Multiplex were produced. It has been reported that there is a good correlation between 

the Dualex reading and the Phen content extracted from the leaves (R2 = 0.94) (Goulas et al., 

2004; Cerovic et al., 2008). Previous studies have shown that the readings of Dualex are 

inversely correlated with leaf N content, and gradually decrease with the increase of N 

application rate (Cartelat et al., 2005; Tremblay et al., 2007). Multiplex is an active sensor 

that contains four emission light sources (UV-A, green, red or blue) to excite fluorescence 

in plant tissue. This sensor has three filter detectors for fluorescence recording, including 

blue-green fluorescence, red fluorescence, and NIR fluorescence. Different excitation lights 

have different ability to penetrate the leaves, with the UV radiation blocked by the epidermis, 

the green radiation penetrating the maximum and the red penetrating the minimum. 

Compared to Dualex, Multipex can further detect the internal structures of leaves. 

 N nutrition estimation techniques based on chlorophyll fluorescence may have 

advantages than reflectance spectroscopy. Firstly, studies have shown that when stress occurs, 

changes in chlorophyll fluorescence can be detected earlier than damage to photosynthetic 

organs (Lichtenthaler 1996; Lenk et al. 2007). Demotes-Mainard et al. (2008) found that 

changes in plant N concentration took place about two weeks earlier than changes in biomass. 

Furthermore, Phen is a more specialized indicator that is directly related to the nutritional 

status of N and avoids misjudgments caused by a decrease of chlorophyll content due to 

sulfur deficiency (Samson et al., 2000). Moreover, the ratio of chlorophyll content to Phen 

(Chl/Phen) increases the sensitivity to N status. The study showed that the value of Chl/Phen 

is 86% higher than that of N-deficient plants, while chlorophyll content is only 43% higher 

(Cartelat et al., 2005). Portable proximal fluorescence instruments such as Dualex and 

Multiplex have achieved good results in estimating NNI (Padilla et al., 2014; Padilla et al., 

2016). It is necessary to study the potential of N status estimation based on fluorescence 

sensors, which may be used as a supplementary means to the reflectance-based method for 

N status estimation and precision N management. 
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Abstract 

 In-season diagnosis of crop nitrogen (N) status is crucial for precision N management. 

Critical N (Nc) dilution curve and N nutrition index (NNI) have been proposed as effective 

methods to diagnose N status of different crops. The Nc dilution curves have been developed 

for Indica rice in the tropical and temperate zones and Japonica rice in the subtropical-

temperate zone, but they have not been evaluated for short-season Japonica rice in Northeast 

China. The objectives of this study were to evaluate the previously developed Nc dilution 

curves for rice in Northeast China and to develop a more suitable Nc dilution curve in this 

region. A total of 17 N rate experiments were conducted in Sanjiang Plain, Heilongjiang 

Province in Northeast China from 2008 to 2013. The results indicated that none of the two 

previously developed Nc dilution curves was suitable to diagnose N status of the short-season 

Japonica rice in Northeast China. A new Nc dilution curve was developed and can be 

described by the equation of Nc = 27.7W -0.34 if W ≥ 1 Mg dry matter (DM) ha-1 or 

Nc = 27.7 g kg-1 DM if W < 1 Mg DM ha-1, where W is the aboveground biomass. This new 

curve was lower than the previous curves. It was validated using a separate dataset, and it 

could discriminate non-N-limiting and N-limiting nutritional conditions. Additional studies 

are needed to further evaluate it for diagnosing N status of different rice cultivars in 
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Northeast China and develop efficient non-destructive methods to estimate NNI for practical 

applications. 

3.1 Introduction 

China is the world’s largest producer of rice (Oryza sativa L.) and consumer of nitrogen 

(N) fertilizer. Over-application of N and improper timing of fertilization have resulted in 

very low N recovery efficiency (20%-30%) and agronomic N efficiency (5-10 kg kg-1) (Peng 

et al., 2009). Precision N management aims to match N supply and demand in both space 

and time, making it a promising strategy to improve N use efficiency in crop production 

(Miao et al., 2009; Yao et al., 2012). This strategy requires the development of efficient 

plant-based diagnostic tools for evaluating crop N status. 

Plant N concentration (PNC) is a commonly used indicator of plant N status, and various 

threshold values have been established for different crops (Fageria, 2009). It has been 

reported that PNC decreases with aboveground biomass (AGB) during the growing season 

in dense canopies (Greenwood et al., 1986; Lemaire et al., 2008; Ziadi et al., 2010a), 

regardless of the climatic conditions of the year or the species and genotype (Lemaire et al., 

2005). This decline of PNC with AGB can be described by a negative power function called 

N dilution curve: N = aW -b, where N is the PNC expressed as g kg-1 dry matter (DM), W is 

the AGB expressed in Mg DM ha-1, a is the PNC (g kg-1 DM) when crop biomass is 

1 Mg DM ha-1, and b is the dilution coefficient (Lemaire et al., 2008). The minimum PNC 

necessary to achieve maximum AGB production is defined as the concentration of critical N 

(Nc) (Ulrich, 1952). The Nc dilution curve describes the relationship between the Nc and the 

aboveground biomass and can be used to determine the Nc at a specific plant biomass. The 

N nutrition index (NNI) can be calculated as the ratio of the actual measured PNC over Nc 

to diagnose plant N status (Lemaire et al., 2008). If the NNI value equals to 1, it indicates 

optimum N status, while a value greater or smaller than 1 indicates excessive or deficient N 

status, respectively. 

Even though general Nc dilution curves have been established for C3 and C4 crops 

(Greenwood et al., 1990; Lemaire & Gastal, 1997), it has been suggested that species-

specific Nc dilution curves should be developed for more precise diagnosis of plant N status 

according to each species’ histological, morphological, and ecophysiological characteristics 

(Lemaire & Gastal, 1997). Justes et al. (1994) developed an Nc dilution curve for winter 

wheat (Triticum aestivum L.) in France, which has been used for winter wheat N status 

diagnosis worldwide (Stockle & Debaeke, 1997; Jeuffroy & Recous, 1999). However, Yue 

et al. (2012) found that the NNI values calculated with this Nc dilution curve were less than 

1 for all the N treatments conducted in North China Plain (NCP), even for the treatments 

with excessive N applications. As a result, they developed a new Nc dilution curve for winter 
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wheat in NCP, and it was lower than that of Justes et al. (1994). This could be due to 

differences in climatic conditions and wheat cultivars (Yue et al., 2012). For spring maize 

(Zea mays L.), Plénet and Lemaire (1999) developed an Nc dilution curve in France, which 

was found to be valid in eastern Canada (Ziadi et al., 2008a). However, when it was tested 

for spring maize in Northeast China by Li et al. (2012), all the data points for AGB greater 

than 1 Mg DM ha-1 were under the Nc dilution curve of Plénet and Lemaire (1999), as 

observed for winter wheat in NCP. As a result, a new Nc dilution curve was developed for 

spring maize in Northeast China. Chen et al. (2013) also evaluated the Nc dilution curve of 

Plénet and Lemaire (1999) as well as a similar curve developed by Herrmann and Taube 

(2004) in Germany for summer maize in Shandong Province of China and found that both 

these curves were suitable for this region. It should be noted that their evaluation was based 

on one year’s N rate experiment using one summer maize cultivar (Zhengdan 958). However, 

Yue et al. (2014) also evaluated the Nc dilution curve of Plénet and Lemaire (1999) with 16 

experiments involving 9 cultivars in NCP and found this curve was inappropriate for summer 

maize N status diagnosis in NCP. Therefore, a specific Nc dilution curve was developed (Yue 

et al., 2014). These results indicated the importance of evaluating the Nc dilution curves 

developed in other countries or regions using multi-site-year and cultivar data. 

For rice, Sheehy et al. (1998) established an Nc dilution curve (Nc = 51.8W -0.52) for high-

yielding Indica rice in the tropics (Philippines) and temperate environments (China and 

Australia). They supported the concept of an Nc dilution curve independent of the climatic 

zone. However, this Nc dilution curve was found to be inappropriate for Japonica rice in the 

Yangtze River reaches of China, and a new Nc dilution curve was developed for Japonica 

rice (Nc = 35.3W -0.28) (Ata-Ul-Karim et al., 2013). Will this Nc dilution curve has developed 

in the Yangtze River reaches work for Japonica rice in other parts of China, especially in 

Northeast China? 

Northeast China is the coolest region in China with a long and cold winter and short and 

warm summer (Chen et al., 2012; Yang et al., 2007). During the past three decades, 

Northeast China has experienced the most obvious warming, with temperature increase 

mainly in the winter. Due to climate warming, abundant water resources, and higher profits, 

rice farming in Northeast China has been increasing very fast during the past decades and 

now it is the major Japonica rice production region in China (Zhao et al., 2013). 

Development of precision N management strategies that can improve both rice yield and N 

use efficiency in Northeast China is crucially important for China’s food security and 

sustainable development (Yao et al., 2012; Zhao et al., 2013). There have been some efforts 

to use NNI to calibrate measurements from remote sensing technologies for non-destructive 

diagnosis of rice N status in Northeast China (Cao et al., 2013; Yao et al., 2014). However, 

no study has been reported to evaluate the existing Nc dilution curves for rice in Northeast 

China. Considering the differences in climate and cultivars in Northeast China as compared 
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with the tropics and Yangtze River reaches, a new Nc dilution curve may need to be 

developed for diagnosing rice N status in this region. The objectives of this study were to 

prove the hypothesis that the existing Nc dilution curves were not suitable for diagnosing 

Japonica rice N status in Northeast China and to develop a more appropriate Nc dilution 

curve for this region. 

3.2 Materials and methods 

3.2.1 Study area  

 The study area (47.2°N, 132.8°E) is located in the Sanjiang Plain of Heilongjiang 

Province, Northeast China. The Sanjiang Plain was formed by the alluviation from the 

tributaries of Heilong River, Songhua River, and Wusuli River. It is characterized by a cool-

temperate sub-humid continental monsoon climate with very cold winter and warm summer. 

The mean annual temperature and precipitation are about 2 °C and 550-600 mm, respectively, 

with about 70% rainfall occurring from July to September (Wang & Yang, 2001). The annual 

sunshine duration is 2300-2600 h, and the whole year frost-free period is about 120-140 d 

(Yan et al., 2002). The main soil type in the region is Albic soil, classified as Mollic Planosols 

in the FAO-UNESCO system and Typical Argialbolls in Soil Taxonomy (Xing et al., 1994). 

 Two sites were selected for this study. Site 1 (47°15′52″N, 132°39′05″E) has been 

planted in rice since 1992 and Site 2 (47°13′59″N, 132°38′50″E) started rice planting in 2002. 

3.2.2 Field experiments design 

 A total of 17 N rate experiments were conducted from 2008 to 2013 at the study sites 

involving two Japonica rice cultivars: Kongyu 131 and Longjing 21 (Table 3-1). Kongyu 131 

is a commonly planted cultivar in this region, with 11 leaves, four elongation nodes, and 

time to maturity of about 127 d. Longjing 21 is a 12-leaf cultivar with time to maturity of 

133 d. All of the experiments adopted a randomized complete block design with three or four 

replications. The N fertilizer was applied in three splits for Experiments 1, 2, 5, 6, 11, 12, 

and 15-17: 40%-45% as the basal application before transplanting, 20%-30% at tillering 

stage, and 30%-35% at stem elongation stage. For Experiments 3, 4, 7, 8, 13, and 14, N 

fertilizers were applied in two splits: 60% as basal application and 40% at tillering stage. For 

Experiments 9 and 10, N fertilizers were applied in four splits: 40% as a basal application, 

25% at tillering stage, 20% at stem elongation stage, and 10% at heading stage. 

All experiments used urea (N:P:K = 46:0:0) as the N fertilizer, superphosphate (N:P:K 

= 0:46:0) as the P fertilizer, and KCl (N:P:K = 0:0:60) or K2SO4 (N:P:K = 0:0:33) as the K 

fertilizer. In each experiment, sufficient P (45-60 kg P2O5 ha-1) and K (60-105 kg K2O ha-1) 

fertilizers were applied to make sure P and K nutrients would not be limiting. All the P 
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fertilizers were applied as basal fertilizers before transplanting and the K fertilizers were 

applied in two splits, with 50% as basal fertilizer and 50% as panicle fertilizer at the stem 

elongation stage. 

3.2.3 Plant sampling and analysis 

 Plant samples were collected at several critical growth stages, including panicle 

initiation (PI), stem elongation (SE), booting (B), heading (H), flowering (F), and grain 

filling (GF) stages. The sampling stages and dates differed with experiments and the detailed 

information is listed in Table 3-1. Three to six hills rice plants were randomly selected and 

cut at ground surface according to the average number of tillers per hill in each pot. The 

plant samples were rinsed with water and the roots were removed. Then the samples were 

separated into leaves, stems, and panicles (for samples collected at and after heading stage). 

The separated samples were put into the oven at 105 °C for 0.5 h for deactivation of enzymes 

and then dried for 3-4 d at 70-80 °C until constant weight was attained. The biomass weight 

of three to six hills of rice plants was converted to the unit of Mg ha-1 based on the planting 

density of each plot. After being weighed, the samples were ground to pass through 1-mm 

sieve. A sub-sample of 0.3-0.4 g from each sample was digested using H2SO4 and H2O2, and 

the N concentration was determined using the standard Kjeldahl-N titration method. The 

whole plant N concentration (PNC) was calculated according to the following formula: 

 𝑃𝑁𝐶 =  
𝑊𝑙∗𝑁𝑐𝑙+𝑊𝑠∗𝑁𝑐𝑠+𝑊𝑝∗𝑁𝑐𝑝

𝑊𝑙+𝑊𝑠+𝑊𝑝
 (3-1) 

where Wl, Ws, Wp stand for the weight of the leaves, stems and panicles, respectively, and 

Ncl, Ncs, Ncp stand for the N concentration of the leaves, stems and panicles, respectively. 

 At maturity, three 1 m2 areas were randomly identified in each plot and cut for grain 

yield determination. At the same time, the grain water content was tested. The final yield 

was adjusted to 140 g kg-1 water content. 
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Table 3-1 Details of the N rate experiments conducted from 2008 to 2013 in the Sanjiang Plain of Heilongjiang Province, Northeast China 

Experiment Site Year Cultivar 
N Rates 

kg ha-1 

Transplanting/ Harvesting 

Date 
Sampling Stagea) Sampling Date 

1 1 2008 Kongyu 131 0,35,70,105,140 29-May / 21-September PI, SE, H, F, GF 30-June, 8-July, 24-July, 4-August, 16-August 

2 2 2008 Kongyu 131 0,35,70,105, 140 13-May / 22-September PI, SE, H, GF 27-June, 7-July, 23-July, 17-August 

3 1 2008 Kongyu 131 0, 23, 45, 68, 91 29-May / 21-September H, F, GF 24-July, 4-August, 16-August 

4 2 2008 Kongyu 131 0, 23, 45, 68, 91 13-May / 22-September H, F, GF 23-July, 3-August, 17-August 

5 1 2009 Kongyu 131 0, 35, 70, 105, 140 24-May / 27-September PI, SE, B, H, GF 26-June, 5-July, 18-July, 1-August, 19-August 

6 2 2009 Kongyu 131 0, 35, 70, 105, 140 20-May / 27-September PI, SE, B, H, GF 27-June, 5-July, 18-July, 1-August, 19-August 

7 1 2009 Kongyu 131 0, 23, 45, 68, 91 24-May / 27-September PI, SE, B, H, GF 26-June, 5-July, 18-July, 1-August, 19-August 

8 2 2009 Kongyu 131 0, 23, 45, 68, 91 20-May / 27-September PI, SE B, H, GF 27-June, 5-July, 18-July, 1-August, 19-August 

9 2 2010 Kongyu 131 0, 100, 110, 140 17-May / 26-September PI, H 26-June, 20-July, 

10 2 2011 Kongyu 131 0, 100, 110, 140 10-May / 23-September PI, H 27-June, 25-July, 

11 1 2011 Kongyu 131 0, 70, 100, 130,160 17-May / 21-September PI, SE, H 30-June, 9-July, 27-July 

12 1 2011 Longjing 21 0, 70, 100, 130, 160 19-May / 21-September PI, SE, H 6-July, 12-July, 31-July 

13 1 2011 Kongyu 131 0, 49, 70, 91, 112 17-May / 21-September H 26-July 

14 1 2011 Longjing 21 0, 49, 70, 91, 112 19-May / 21-September H 1-August 

15 1 2012 Kongyu 131 0, 70, 100, 130, 160 18-May / 22-September PI, SE, H 21-June, 29-June, 23-July 

16 1 2012 Longjing 21 0, 70, 100, 130, 160 18-May / 22-September PI, SE, H 25-June, 2-July, 23-July 

17 1 2013 Kongyu 131 0, 70, 100, 130, 160 18-May / 20-September PI, SE, H 23-June, 2-July, 22-July 

a)PI: Panicle Initiation; SE: Stem Elongation; B: Booting; H: Heading; F: Flowering; GF: Grain Filling.  
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3.2.4 Data analysis 

 The data were analyzed to establish the Nc dilution curve according to Justes et al. (1994). 

In this study, the data from Experiments 1-16 were used to establish the new Nc dilution 

curve for Japonica rice in the cold region. The Nc concentration was determined by 

identifying the data points for which N does not limit AGB growth or is not in excess. For 

each site year experiment at each sampling date, all the AGB data were subject to analysis 

of variance (ANOVA) using the PROC ANOVA of SAS (SAS Institute, USA) and compared 

using the least significant difference test at P ≤ 0.01. The N-limiting growth treatment is 

defined as a treatment for which an increase of N application leads to a significant increase 

in AGB. The non-N-limiting growth treatment is defined as a treatment for which additional 

N application leads to a significant increase in PNC, but not in AGB (Ata-Ul-Karim et al., 

2013). The AGB and their corresponding PNC data of N-limiting treatments were fitted with 

simple linear regression and the AGB data of non-N-limiting treatments were averaged to 

calculate maximum AGB. The theoretical critical point was determined by the intersection 

point of the maximum AGB and PNC as the ordinate in the simple linear regression; and 

then, all of the maximum AGB values and their corresponding Nc values were put together 

in a scatter plot. Regression analysis was performed by fitting a negative power function to 

the data to generate the Nc dilution curve. 

 The data from Experiments 1-16 were used to evaluate the existing Nc dilution curves 

of Sheehy et al. (1998) and Ata-Ul-Karim et al. (2013). The data from Experiment 17 were 

used to evaluate the new Nc dilution curve established in this study and to determine its 

suitability for rice N status diagnosis in Northeast China by calculating NNI and relating it 

to different N rates. The NNI data from Experiments 9-12 and 15-16 were also related to 

relative yield (RY). The RY was calculated as the ratio of the grain yield for a given N rate 

treatment and the highest grain yield in that specific site-year N rate experiment. The linear 

plus plateau model was used to describe the relationship between RY and NNI using the SAS 

software. 

3.3 Results 

3.3.1 Evaluation of the existing Nc dilution curves 

 To evaluate the existing Nc dilution curves developed by Sheehy et al. (1998) and Ata-

Ul-Karim et al. (2013), the data from Experiments 1-16 were grouped into 30 datasets with 

significant N effect on AGB. Each dataset consisted of AGB and PNC data for all the N rate 

treatments at a specific site-year and sampling date. For the 30 datasets, 29 datasets were 

retained because the data of AGB in one dataset were smaller than 1 Mg ha-1. The Nc dilution 

curve developed by Sheehy et al. (1998) was not applicable to such data. The retained data 
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were divided into two groups: a non-N-limiting group and an N-limiting group. The data 

were not included if the AGB was classified in more than one group. This analysis resulted 

in 63 and 64 data points in the non-N-limiting group and the N-limiting group, respectively. 

These data points were plotted together with the existing Nc dilution curves (Fig. 3-1). The 

Nc curve of Ata-Ul-Karim et al. (2013) was lower than that of Sheehy et al. (1998) when 

AGB was less than 5 Mg ha-1, but higher after this value (Fig. 3-1). All the N-limiting data 

points were below these curves; however, about 80% of the non-N-limiting data points were 

also below the curves, indicating that none of these two curves was suitable for Japonica rice 

in Northeast China. 

 

Fig. 3-1 Evaluation of the previously established critical N (Nc) dilution curves using data from short-

season Japonica rice grown under N-limiting and non-N-limiting conditions (Experiments 1-16) in 

Northeast China. The solid line represents the Nc dilution curve developed for Indica rice by Sheehy et al. 

(1998) (Nc = 51.8W -0.52, where W is the aboveground biomass), and the dash line represents the Nc dilution 

curve developed for Japonica rice by Ata-Ul-Karim et al. (2013) (Nc = 35.3W -0.28 if 

W ≥ 1.55 Mg DM ha -1, and Nc = 30.5 g kg-1 DM if W < 1.55 Mg DM ha-1). 

3.3.2 Development of new Nc dilution curve 

 From all the data points derived from Experiments 1-16, 22 fulfilled the statistical 

criteria previously defined to determine Nc (Table 3-2). The AGB ranged from 0.77 to 

18.01 Mg DM ha-1, with only two data points being lower than 1 Mg DM ha-1. The PNC 

values ranged from 9.3 to 29.3 g kg-1 DM. The PNC was not significantly related to AGB 

and remained more or less constant when AGB was less than 1 Mg ha-1 (Ata-Ul-Karim et 

al., 2013). And the Nc equals to the average of all PNC when aboveground biomass was less 

1 Mg DM ha-1, which was close to 27.7 g kg-1 DM. Therefore, only the data with AGB above 

1 Mg DM ha-1 were retained to develop the new Nc dilution curve. It was described as 

Nc = 27.7W -0.34, with R2 of 0.91 (Fig. 3-2). And for the AGB less than 1 Mg DM ha-1, the Nc 

was set to 27.7 g kg-1 DM. 
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The new Nc dilution curve established in this study was used to determine Nc for each 

treatment of Experiments 17 at each sampling date and then to calculate NNI. The treatments 

receiving 0 and 70 kg N ha-1 had NNI less than or close to 1, while the treatments receiving 

100 kg N ha-1 and higher rates of N applications had NNI greater than or close to 1 (Fig. 3-

3). An examination of the final grain yield of each treatment revealed that grain yield was 

significantly increased by N applications until 100 kg N ha-1 and reached a plateau (Fig. 3-

4). This indicated that the NNI values could be used to diagnose plant N status of short-

season rice in Northeast China. 

 

Fig. 3-2 Critical points used to define the critical N (Nc) dilution curve for short-season Japonica rice in 

Northeast China. The detailed information of these points can be found in Table 3-2. The solid line 

represents the Nc dilution curve (Nc = 27.7W -0.34, where W is the aboveground biomass), and the dash line 

represents the 95% confidence bands. 

 

Fig. 3-3 N nutrition index (NNI) of short-season Japonica rice in Northeast China with different N 

application rates during the growing season in 2013. The rice cultivar was Kongyu 131 with 11 leaves. 

The dotted horizontal line represents an NNI of 1.0. The vertical bars represent the pooled standard error 

of the means for each sampling date. 
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Table 3-2 Critical points selected for establishing the critical N dilution curve for short-season Japonica 

rice in Northeast China 

Experiment Year Cultivar Growth Stage 
Aboveground biomass 

(Mg DM ha-1) 

N concentration, 

(g kg-1 DM) 

1 2008 Kongyu 131 Panicle initiation 0.77 24.6 

10 2011 Kongyu 131 Panicle initiation 0.82 29.3 

9 2010 Kongyu 131 Panicle initiation 1.01 27.3 

16 2012 Longjing 21 Panicle initiation 1.42 25.9 

15 2012 Kongyu 131 Panicle initiation 1.53 23.6 

1 2008 Kongyu 131 Stem Elongation 1.55 19.7 

12 2011 Longjing 21 Stem Elongation 1.65 23.9 

6 2009 Kongyu 131 Stem Elongation 1.91 22.7 

11 2011 Kongyu 131 Stem Elongation 2.21 24.0 

12 2011 Longjing 21 Stem Elongation 3.18 18.0 

16 2012 Longjing 21 Stem Elongation 3.75 21.3 

1 2008 Kongyu 131 Heading 5.79 15.0 

3 2008 Kongyu 131 Heading 5.83 13.8 

10 2011 Kongyu 131 Heading 9.44 13.9 

9 2010 Kongyu 131 Heading 9.62 13.3 

1 2008 Kongyu 131 Flowering 9.99 12.4 

3 2008 Kongyu 131 Flowering 10.24 9.3 

4 2008 Kongyu 131 Flowering 12.44 12.6 

3 2008 Kongyu 131 Grain Filling 13.22 10.8 

1 2008 Kongyu 131 Grain Filling 14.94 9.8 

2 2008 Kongyu 131 Grain Filling 15.51 11.5 

4 2008 Kongyu 131 Grain Filling 18.01 11.2 

  

The relationship between RY and NNI, expressed by a linear plus plateau model, 

accounted for 80% of the variation (Fig. 3-5). For NNI ≥ 1.03, RY was close to 1, while for 

NNI < 1.03, RY was generally less than 1. This result also indicated that the Nc dilution curve 

and the resulting NNI could identify deficient and nondeficient N nutritional status of 

Japonica rice in Northeast China. 
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Fig. 3-4 Grain yield of short-season Japonica rice under different N treatments in Experiment 17 

conducted in 2013 in Northeast China. The vertical bars represent standard errors of the means (n = 3). 

Bars with the same letter are not significant differences at P ≤ 0.05. 

 

Fig. 3-5 Relationships between relative grain yield (RY) and N nutrition index (NNI) of short-season 

Japonica rice in the experiments conducted in 2010-2012 in Northeast China at two sites with two 

cultivars (n = 92). The NNI data were averaged over all sampling dates. 

3.4 Discussion 

 Plant-based diagnostic methods for characterizing crop N status are key components of 

in-season site-specific N management strategies. They can also be used for posteriori 

diagnosis either in research studies or in farmer’s fields to determine the possible reasons for 

low yields. The concept of NNI is more promising and reliable than PNC itself (Lemaire et 

al., 2008). The calculation of NNI requires the establishment of Nc dilution curve. 

 Previous research has indicated that species-specific Nc dilution curves were 

independent of climatic zones for spring maize (Plénet & Lemaire, 1999; Herrmann & Taube, 

2004; Ziadi et al., 2008a) and rice (Sheehy et al., 1998). The Nc dilution curve developed in 
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this study for Japonica rice in Northeast China was consistently lower than the curves for 

both Indica rice in the tropical and temperate zones (Sheehy et al., 1998) and Japonica rice 

in the subtropical-temperate climate zone (Ata-Ul-Karim et al., 2013) (Fig. 3-6). This result 

agreed with previous findings that Indica rice needed higher N uptake than Japonica rice 

(Shan et al., 2001), and PNC of Indica rice was significantly higher than Japonica rice during 

vegetative growth stages (Shan et al., 2001; Yoshida et al., 2006), although climatic zone 

differences may also be a factor. For the difference between the new Nc dilution curve and 

that of Ata-Ul-Karim et al. (2013), climatic zone difference may be a major factor. The Ata-

Ul-Karim et al. (2013) study was conducted in Yangtze River reaches, which are located in 

a subtropical-temperate climate zone with longer growing seasons. The rice cultivars with 

16-17 leaves used in developing their Nc dilution curve have time to maturity of about 150 

d, while the 11- to 12-leaf cultivars in our study have time to maturity of about 130 d or less. 

The accumulated temperature (> 10 °C) in the Northeast China region is more than 2000 °C 

lower than the Yangtze River reaches during the growing season, which can influence the 

development rate of rice plant. All these factors may cause the Nc values to be lower in 

Northeast China. Ziadi et al. (2010a) also found that the Nc dilution curve for winter wheat 

in northern France developed by Justes et al. (1994) was significantly different from the one 

for spring wheat in eastern Canada developed by Ziadi et al. (2010a). The possible factors 

causing such difference included climatic conditions, type of wheat, and cultivar (Ziadi et 

al., 2010a). 

 

Fig. 3-6 Comparison of different critical N dilution (Nc) curves for rice. The solid line, dash line, and 

point line represent the new Nc dilution curve (Nc = 27.7W -0.34, where W is the aboveground biomass) for 

short-season Japonica rice in Northeast China, the Nc dilution curve for Indica rice developed by Sheehy 

et al. (1998) (Nc = 51.8W -0.52), and the Nc dilution curve of Ata-Ul-Karim et al. (2013) (Nc = 35.3W -0.28), 

respectively. 

 Another possible factor causing differences in Nc dilution curves is the determination 

method of PNC. The Kjeldahl method and the Dumas method (or combustion method) are 
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two commonly used methods for determining PNC. It has been found that the Kjeldahl 

method produced significantly lower values of soybean protein content than did the Dumas 

method (Jung et al., 2003). The study of Ata-Ul-Karim et al. (2013) also used the Kjeldahl 

method, while the study of Sheehy et al. (1998) used data from published papers and 

personal communications without reporting the N determination method. We can rule out 

the possibility that N determination method was a factor causing the differences between the 

Nc dilution curves for Yangtze River reaches and for Northeast China. 

 The NNI is an integrative indicator of plant N status, and it increased with N application 

rates in this study (Fig. 3-3). The NNI of the 160 kg N ha-1 treatment was consistently above 

1 and reached about 1.2-1.4 at stem elongation and heading stages, indicating luxury N 

consumption. The grain yield of the 70 kg N ha-1 treatment was significantly lower than 

those of the 100 and 160 kg N ha-1 treatments for cultivar Kongyu 131 (Fig. 3-4), indicating 

that the 70 kg N ha-1 treatment was deficient in N supply. The 70 kg N ha-1 treatment had 

NNI values lower than 1 at panicle initiation and stem elongation stages (37 and 46 d after 

transplanting, respectively), but equaled to 1 at heading stage (66 d after transplanting). This 

could be due to the topdressing N application at the stem elongation stage, and heading stage 

was about 20 d after the N application, when the applied N was still effective. N could 

become deficient after heading stage and resulted in reduced grain yield. 

 The Nc dilution curve was mainly developed based on the experimental data of the 11-

leaf cultivar Kongyu 131, with only 2 years’ data of the 12-leaf cultivar Longjing 21. As a 

result, the NNI may work better for Kongyu 131 than for Longjing 21. Cultivar differences 

should be taken into consideration when developing Nc dilution curves. In the study of Ata-

Ul-Karim et al. (2013), two Nc dilution curves were developed for two different cultivars, 

but there were no statistical differences between these two curves; as a result, the two cultivar 

groups were pooled together, and a general Nc dilution curve was developed. In our study 

site, 11- and 12-leaf cultivars were very different, with the latter cultivar being unable to 

mature properly in certain years. Two different Nc dilution curves may need to be developed 

for 11- and 12-leaf cultivars in Northeast China. For potato, Bélanger et al. (2001) developed 

different Nc dilution curves for different varieties. The new Nc dilution curve and NNI need 

to be further evaluated using data from more cultivars and diverse N status. 

 To reconcile the differences in Nc dilution curves between regions and cultivars, Zhao 

et al. (2014) proposed a developmental stage-based approach to derive the Nc concentrations 

for wheat. The rationale is that the decrease of PNC is due to increased proportion of low N 

concentration structural tissues (i.e. stems, glumes), the dilution by carbohydrate reserves, 

and the mutual shading of leaves (Angus & Moncur, 1985), which are more dependent on 

developmental stage compared with AGB (Zhao et al., 2014). They found that the Nc dilution 

curves from different studies tended to converge after stem elongation stage. However, a big 

difference was observed at early stages (Feekes stages 4-6), which was thought to be due to 
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difficulties and inconsistencies in recording growth stages and biomass determination when 

plants were small. Further studies are needed to compare these two approaches to 

determining Nc for rice. It will be important to also determine the proportion of leaves and 

stems in such studies, in addition to their N concentration. 

 For practical applications across large areas, nondestructive methods are needed to 

estimate crop NNI. Promising results have been achieved using chlorophyll meters to 

estimate NNI in wheat (Ziadi et al., 2010b; Cao et al., 2012) and maize (Ziadi et al., 2008b). 

However, chlorophyll meter is a leaf sensor and is still very time-consuming for large area 

applications (Miao et al., 2009). Yao et al. (2014) used a two-band active crop canopy sensor 

(GreenSeeker) to estimate rice NNI based on the Nc dilution curve developed by Ata-Ul-

Karim et al. (2013) and found that only 25%-34% of the NNI variability could be explained. 

Cao et al. (2013) used a three-band active crop canopy sensor (Crop Circle ACS 470) to 

estimate NNI based on the Nc dilution curve developed by Sheehy et al. (1998) and found 

that four red edge-based vegetation indices could explain about 76% of NNI variability. 

Additional studies are needed to use remote sensing technologies to estimate NNI based on 

the new Nc dilution curve developed in this study for in-season site-specific N status 

diagnosis and management. 

3.5 Conclusions 

 The Nc dilution curves developed for Indica rice in the tropical and temperate zones and 

for Japonica rice in the subtropical-temperate zone were not suitable for diagnosing short-

season Japonica rice N status in Northeast China. A new Nc dilution curve was developed in 

this study, which could be described by the equation Nc = 27.7W -0.34 when AGB was 

1 Mg DM ha-1 or above. When AGB was less than 1 Mg DM ha-1, Nc was set to a constant 

value of 27.7 g kg-1 DM. This new curve was lower than the previous curves developed in 

other regions. The validation result indicated that it worked well to diagnose plant N status 

of the 11-leaf variety rice. Additional studies are needed to further evaluate this new Nc 

dilution curve for the diagnosis of N status of different rice cultivars in Northeast China and 

develop efficient non-destructive methods to estimate NNI for practical applications. 
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Abstract 

 Rice farming in Northeast China is crucially important for China’s food security and 

sustainable development. A key challenge is how to optimize nitrogen (N) management to 

ensure high yield production while improving N use efficiency and protecting the 

environment. Handheld chlorophyll meter (CM) and active crop canopy sensors have been 

used to improve rice N management in this region. However, these technologies are still 

time-consuming for large-scale applications. Satellite remote sensing provides a promising 

technology for large-scale crop growth monitoring and precision management. The objective 

of this study was to evaluate the potential of using FORMOSAT-2 satellite images to 

diagnose rice N status for guiding topdressing N application at the stem elongation stage in 

Northeast China. Five farmers’ fields (three in 2011 and two in 2012) were selected from the 

Qixing Farm in Heilongjiang Province of Northeast China. FORMOSAT-2 satellite images 

were collected in late June. Simultaneously, 92 field samples were collected and six 

agronomic variables, including aboveground biomass (AGB), leaf area index (LAI), plant N 

concentration (PNC), plant N uptake (PNU), CM readings and N nutrition index (NNI) 

defined as the ratio of actual PNC and critical PNC, were determined. Based on the 

FORMOSAT-2 imagery, a total of 50 vegetation indices were computed and correlated with 
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the field-based agronomic variables. Results indicated that 45% of NNI variability could be 

explained using Ratio Vegetation Index 3 (RVI3) directly across years. A more practical and 

promising approach was proposed by using satellite remote sensing to estimate AGB and 

PNU at the panicle initiation stage and then using these two variables to estimate NNI 

indirectly (R2 = 0.52 across years). Further, the difference between the estimated PNU and 

the critical PNU can be used to guide the topdressing N application rate adjustments. 

4.1 Introduction 

 Rice (Oryza sativa L.) is one of the most important crops in the world, and more than 

two-thirds of China’s population relies on rice as the staple food (Dawe, 2000). Nitrogen (N) 

is an important element in chlorophyll constitution. Its supply rate affects biomass 

production and yield to a large extent. Farmers tend to apply high rates of N fertilizer in 

order to get a high yield. In the past 50 years, Chinese cereal production increased by 3.2 

times, mainly due to an increased input of synthetic fertilizers, especially N fertilizer (Zhang 

et al., 2011). The agronomic efficiency of N fertilizer for rice is only 11.7 kg kg-1 in China, 

much lower than those in developed countries (20-25 kg kg-1) (Zhang et al., 2008; Jin, 2012). 

The over-application of N fertilizer increases the risks of environmental pollution due to N 

loss into the surface water bodies, groundwater or atmosphere, resulting in water 

eutrophication, increased nitrate content in the groundwater and greenhouse gas emissions 

(Ju et al., 2009). Precision N management strategies are developed to improve fertilizer N 

use efficiency by matching the fertilizer N input to crop N demand in proper time and space 

(Doberman et al., 2002). This requires the development of technologies for real-time and 

site-specific diagnosis of crop N status in the field for guiding the topdressing N applications 

(Cao et al., 2015). 

 Plant N concentration (PNC) and uptake (PNU) have been commonly used as crop N 

status indicators. To improve crop N status diagnosis, the concept of critical N concentration 

(Nc) has been proposed as the minimum PNC necessary to achieve maximum AGB 

production (Greenwood et al., 1986; Greenwood et al., 1991). Nc decreases with increasing 

biomass. Their relationship can be described using a negative power function, called the 

critical N dilution curve (Lemaire et al., 2008). Thus, the Nc at any given biomass value can 

be calculated by this dilution curve. The actual PNC (Na) can then be compared to Nc, and 

their ratio is termed the N nutrition index (NNI). NNI is a better indicator for diagnosing 

crop N status than PNC or PNU (Lemaire et al., 2008). If Na is greater than Nc (NNI > 1), 

this indicates an over-supply of N, while the opposite is true if Na is smaller than Nc (NNI < 1) 

(Lemaire et al., 2008). An NNI value of one indicates an optimal N supply. The calculation 

of NNI requires destructive sampling and chemical analysis to determine biomass and plant 

N concentration, which is time and cost consuming and, thus, impractical for in-season site-
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specific N management across large areas. Therefore, there is an increasing interest in using 

proximal and remote sensing technologies to non-destructively estimate the crop NNI 

(Lemaire et al., 2008; Houlès et al., 2007; Cao et al., 2013; Yao et al., 2014). Several 

researchers have successfully used chlorophyll meter (CM) data to estimate the NNI of 

wheat (Triticum aestivum L.) (Debaeke et al., 2006; Prost & Jeuffroy, 2007; Ziadi et al., 

2010; Cao et al., 2012) and maize (Zea mays L.) (Ziadi et al., 2008). However, CM data are 

point measurements at the leaf level and unsuitable for precision N management across large 

areas (Miao et al., 2009). 

 Crop canopy sensors are more efficient and promising than leaf sensors for monitoring 

crop N status across large fields (Cao et al., 2015; Yao et al., 2014). Mistele and Schmidhalter 

(2008) used a passive hyperspectral canopy sensor to estimate NNI. They found that the red 

edge inflection point could explain 95% of winter wheat NNI variability. A passive 

hyperspectral canopy sensor was also applied to estimate maize NNI by Chen et al. (2013). 

They reported that a model based on principal component analysis and a back propagation 

artificial neural network approach performed the best by explaining 81% of NNI variability. 

However, passive canopy sensors are constrained by the time and cloud cover of the 

acquisition day. Such hyperspectral sensors are also very expensive; therefore, they may be 

more suitable for research than for on-farm applications. 

 Active optical crop canopy sensors, unlike passive sensors, have modulated light 

emitting diodes that irradiate a plant canopy and measure a portion of the reflected radiation, 

without relying on ambient sunlight (Holland et al., 2012). They are not influenced by 

environmental light conditions and do not need frequent calibrations. The GreenSeeker 

active canopy sensor (Trimble Navigation Limited, Sunnyvale, CA, USA) has a red and 

near-infrared (NIR) band and provides two vegetation indices (VIs), the Normalized 

Difference Vegetation Index (NDVI) and the Ratio Vegetation Index (RVI). It was found that 

GreenSeeker NDVI and RVI explained 47% and 44% of winter wheat NNI variability, 

respectively, across site years and growth stages (Cao et al., 2015). The Crop Circle ACS 

470 sensor (Holland Scientific, Inc., Lincoln, NE, USA) is a configurable active crop canopy 

sensor with three wavebands. It was found that two VIs calculated with the Crop Circle 

wavebands, the Green Re-normalized Difference Vegetation Index (GRDVI) and the 

Modified Green Soil Adjusted Vegetation Index (MGSAVI), were effective for estimating 

winter wheat NNI across site years and growth stages (R2 = 0.77-0.78) (Cao et al., 2015). 

For rice, the GreenSeeker sensor explained 25%-34% and 30%-31% of NNI variability at 

the stem elongation and heading stages, respectively (Yao et al., 2014). Using the Crop 

Circle ACS 470 sensor, four red edge-based indices, including the Red Edge Soil Adjusted 

Vegetation Index (RESAVI), the Modified RESAVI (MRESAVI), the Red Edge Difference 

Vegetation Index (REDVI) and the Red Edge Re-normalized Difference Vegetation Index 

(RERDVI), performed equally well for estimating rice NNI across growth stages (R2 = 0.76) 
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(Cao et al., 2013). Active crop sensors have been mounted on fertilizer applicators, and on-

the-go sensing and variable rate N applications have been realized for maize and wheat, but 

not for rice, considering the challenges for fertilizer application machines to enter paddy 

fields flooded with water. 

 Aerial and satellite remote sensing is a promising technology to monitor crop N status 

for large production fields (Mulla, 2013). Aerial hyperspectral remote sensing and CM data 

were combined to diagnose maize N status using the N sufficiency index approach (Miao et 

al., 2009). Cilia et al. (2014) applied aerial hyperspectral sensing to estimate maize NNI 

indirectly. They calculated the Modified Chlorophyll Absorption Ratio Index/Modified 

Triangular Vegetation Index 2 (MCARI/MTVI2) and MTVI2 to estimate maize PNC (R2 = 

0.59) and biomass (R2 = 0.80), respectively. Then, they combined the predicted PNC and 

biomass maps to generate an NNI map, which agreed well with the NNI obtained by 

destructive sampling and analysis (R2 = 0.70). The improvements in spatial and temporal 

resolutions of satellite remote sensing make it possible to monitor crop N status at key crop 

growth stages. Wu et al. (2007) compared QuickBird data with CM readings and petiole 

nitrate concentration. They found that the QuickBird-VIs differed significantly for different 

N input treatments at the late growing season. Yang et al. (2008) found that the NDVI derived 

from FORMOSAT-2 satellite imagery was highly correlated to the NDVI calculated from a 

ground canopy reflectance sensor (R2 = 0.79). Darvishzadeh et al. (2012) used the inversion 

of the PROSAIL model with a lookup table approach and multispectral satellite image data 

of ALOS AVNIR-2. The method explained 65% of rice plant chlorophyll content variability 

with a low root mean square error (RMSE) of 0.45 g m-2. 

 So far, little has been reported on rice NNI estimation using satellite remote sensing. 

Therefore, the objective of this study was to evaluate the potential of using FORMOSAT-2 

satellite remote sensing to estimate rice NNI at a key growth stage for guiding panicle N 

fertilizer application in Northeast China. 

4.2 Materials and methods 

4.2.1 Study site 

 The study site is located at the Qixing Farm in the Sanjiang Plain, Heilongjiang Province, 

Northeast China. The Sanjiang Plain used to be a wild natural wetland formed by the alluvia 

of three river systems—Heilong River, Songhua River, and Wusuli River. During the past 

50 years, the natural wetland was reclaimed for arable land, especially paddy rice fields. Due 

to the small population density in this region, each farmer’s household has about a 20-30 ha 

cultivation area, making it the leading large-scale farming region in China. The main soil 

type is Albic soil, classified as Mollic Planosols in the FAO-UNESCO system, and typical 

Argialbolls in the Soil Taxonomy (Xing et al., 1994). This area has a typical cool-temperate 
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sub-humid continental monsoon climate. During the growing season (April-October), the 

average rainfall is about 400 mm, which accounts for approximately 70% of yearly 

precipitation. The mean annual temperature is about 2 °C (Wang & Yang, 2001). The annual 

sunshine duration is 2300-2600 h and the whole year frost-free period ranges from 120-

140 days (Yan et al., 2002). 

4.2.2 Field information 

 This study was conducted to diagnose rice N status at a key growth stage to guide panicle 

fertilizer application based on satellite images. For cold region rice, the crucial period for 

panicle fertilizer topdressing is during the stem elongation stage. Considering the time, it 

takes for satellite image acquisition and processing, the best diagnosis stage is at panicle 

initiation, which is about 7-10 days before the stem elongation stage (Cao et al., 2013; Yao 

et al., 2012; Zhao et al., 2013). Three farmers’ fields in 2011 and two in 2012 were selected 

for this study. The cultivars and transplanting densities varied (Table 4-1). The seedlings 

were prepared in greenhouses and then transplanted at the 3.1-3.5 leaf stage into the fields. 

 The regional optimal N rate recommended by the local extension service was around 

100 kg ha-1. Field 1 (F1) was managed by an experienced farmer. The best rice management 

practice of the region, supported by the Jiansanjiang Experiment Station of the China 

Agricultural University, was applied for this field. Other fields were managed by individual 

farmers following their own practices. 

Table 4-1 Detailed information about the farmers’ fields selected for this study, Heilongjiang Province, 

China, 2011-2012. 

Field Year 
Number of 

Samples 

Area 

(ha) 

N Rate  

(kg ha-1) 
Variety 

Number 

of Leaves 

Transplan

-ting Date 

Plant Density 

(hills m-2） 

F 1 2011 33 29.6 97.9 Kendao 6 12 2011/5/17 27 

F 2 2011 4 13.1 105.9 Longjing 26 11 2011/5/20 30 

F 3 2011 4 31.0 101.0 Kendao 6 12 2011/5/12 27 

F 4 2012 14 10.7 120.2 Longjing 31 11 2012/5/16 28 

F 5 2012 37 21.6 98.3 Longjing 31 11 2012/5/20 30 

 

4.2.3 Remote sensing images and preprocessing 

 For this study, we selected the FORMOSAT-2 satellite, which belongs to the National 

Space Organization of Taiwan (NSPO). It runs on a Sun-synchronous orbit with an orbit 

altitude of 891 km and collects images at the same local hour with a constant observation 

angle for the same site (Chern et al., 2006). The multispectral image of FORMOSAT-2 

covers four spectral band regions with a ground resolution of 8 m: blue (B) (450-520 nm), 
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green (G) (520-600 nm), red (R) (630-690 nm) and NIR (760-900 nm) (Liu, 2006). One 

image scene covers an area of 24 km × 24 km. The panchromatic image with 2-m ground 

resolution is collected simultaneously. The daily revisit interval makes FORMOSAT-2 one 

of the most suitable satellites for precision agriculture applications. Images were obtained 

on 25 June 2011 and 26 June 2012. These two images were almost cloud-free, especially in 

the study area. 

 The images were geometrically corrected and radiometrically calibrated using ENVI 4.8 

(ENVI, Boulder, CO, USA). The radiometric calibration was performed using the satellite 

calibration parameters in the following formula for each band: 

 0L DN a L= +  (4-1) 

where L stands for radiance; DN is the abbreviation of digital number; a is the absolute 

calibration coefficients, which is also called gain; and L0 stands for the offset. After the linear 

transformation, the DN values were converted to radiance values in units of W m-2 sr-1 μm-1. 

For geometric correction, high precision ground control points were used. The rectification 

accuracy was less than 0.5 pixels (< 4 m), which was acceptable for this research. 

4.2.4 Field data collection and analysis 

 A total of 41 and 51 ground samples were collected in 2011 and 2012, respectively. The 

samples were collected from sites representing different crop growth conditions (N deficient, 

optimum and surplus conditions), based on visual observations. The sampling dates were 25 

June 2011, the same acquisition date as the satellite image, and 28 June 2012, two days after 

the FORMOSAT-2 image collection. At each sampling site, a hand-held differential Trimble 

Ag332 GPS was used for geo-referencing. Ground truth data included rice cultivar, plant 

density, tiller numbers and relative chlorophyll concentration measured with the SPAD-502 

instrument (Soil-Plant Analysis Development Section, Minolta, Osaka, Japan). Twenty rice 

plants were selected at each sampling site for CM measurements in the middle part of the 

top second leaf for each individual plant. At each sampling site, the AGB was collected 

destructively by clipping three hills (each hill consisting of 4-6 rice plants). These samples 

were taken to the laboratory and rinsed with water. The roots were removed, and the samples 

were separated into leaves and stems. The Leaf Area Index (LAI) was determined by the dry 

weight method as described by Bei et al. (2005). All parts of the samples were put into the 

oven for deactivation of enzymes at 105 °C for half an hour and then dried at 80 °C until 

constant weight. After being weighted, the sub-samples were ground to particles smaller than 

1 mm and analyzed for N concentration using the Kjeldahl method (Lv et al., 2004; Li, 2006). 

 For the NNI, the Nc was calculated by the following equations developed for rice in this 

region according to Justes et al. (1994), based on data from N rate experiments conducted in 

this region from 2008-2013: 
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 Nc = 27.7 W -0.34 (4-2)
 

where Nc is the critical N concentration (g kg-1) in the AGB and W is the shoot dry weight 

expressed in t ha-1. For AGB larger than 1 t ha-1, the Nc was calculated by the above equation, 

otherwise, the Nc was set to 27.7%. 

4.2.5 Data analysis 

 Many spectral VIs have been developed to estimate plant biophysical variables, such as 

chlorophyll concentration or content, LAI and biomass. However, many of them use narrow 

bands based on the research results of proximal hyperspectral sensing. In this study, the 

potential of using broadband satellite remote sensing images for estimating rice N status 

indicators was evaluated using the broad bands of FORMOSAT-2 satellite images. A total of 

50 VIs were evaluated (Table 4-2). The software ENVI and ArcGIS 9 (ESRI, Redlands, CA, 

USA) were used to extract the pixel values from the FORMOSAT-2 satellite images and to 

calculate the VIs for corresponding sampling sites. 

 The regression analysis considered the 50 VIs and each of the 6 field-measured 

agronomic variables separately. The correlation and regression analyses were performed 

using SPSS V.20.0 (SPSS, Chicago, IL, USA). The RMSE and relative error (REr) were also 

calculated to evaluate model performances. 

 



Chapter 4: Satellite Remote Sensing-Based In-Season Diagnosis of Rice Nitrogen Status in Northeast China 

50 

Table 4-2 Vegetation indices evaluated in this study for estimating rice N status indicators, Heilongjiang 

Province, China, 2011-2012. 

Vegetation Index Formula Ref. 

Two-band vegetation indices 

  

Ratio Vegetation Index 1 (RVI1) NIR/B Tucker (1979) 

Ratio Vegetation Index 2 (RVI2) 
NIR/G Buschmann & Nagel 

(1993) 

Ratio Vegetation Index 3 (RVI3) NIR/R Tucker (1979) 

Difference Index1 (DVI1) NIR-B Tucker (1979) 

Difference Index2 (DVI2) NIR-G Tucker (1979) 

Difference Index3 (DVI3) NIR-R Tucker (1979) 

Normalized Difference Vegetation Index1 (NDVI1) 
(NIR-R)/(NIR+R) Buschmann & Nagel 

(1993) 

Normalized Difference Vegetation Index2 (NDVI2) (NIR-G)/(NIR+G) Gitelson et al. (1996) 

Normalized Difference Vegetation Index3 (NDVI3) 
(NIR-B)/(NIR+B) Buschmann & Nagel 

(1993) 

Renormalized Difference Vegetation Index1 

(RDVI1) 

(NIR-B)/SQRT(NIR+B) Roujean & Breon 

(1995) 

Renormalized Difference Vegetation Index2 

(RDVI2) 

(NIR-G)/SQRT(NIR+G) Roujean & Breon 

(1995) 

Renormalized Difference Vegetation Index3 

(RDVI3) 

(NIR-R)/SQRT(NIR+R) Roujean & Breon 

(1995) 

Chlorophyll index (CI) NIR/G-1 Gitelson et al. (2003) 

Wide Dynamic Range Vegetation Index 1(WDRVI1) (0.12NIR-R)/(0.12NIR+R) Gitelson (2004) 

Wide Dynamic Range Vegetation Index 2(WDRVI2) (0.12NIR-G)/(0.12NIR+G) Gitelson (2004) 

Wide Dynamic Range Vegetation Index 3(WDRVI3) (0.12NIR-B)/(0.12NIR+B) Gitelson (2004) 

Soil Adjusted Vegetation Index (SAVI) 1.5(NIR-R)/(NIR+R+0.5) Huete (1988) 

Green Soil Adjusted Vegetation Index (GSAVI) 1.5(NIR-G)/(NIR+G+0.5) Huete (1988) 

Blue Soil Adjusted Vegetation Index (BSAVI) 1.5(NIR-B)/(NIR+B+0.5) Huete (1988) 

Modified Simple Ratio (MSR) (NIR/R-1)/SQRT(NIR/R+1) Chen (1996) 

Optimal Soil Adjusted Vegetation Index (OSAVI) (1+0.16)[(NIR–R)/(NIR+R+0.16)] Rondeaux et al. (1996) 

Green Optimal Soil Adjusted Vegetation Index 

(GOSAVI) 

(1+0.16)[(NIR–G)/(NIR+G+0.16)] Rondeaux et al. (1996) 

Blue Optimal Soil Adjusted Vegetation Index 

(BOSAVI) 

(1+0.16)[(NIR–B)/(NIR+B+0.16)] Rondeaux et al. (1996) 

Modified Soil Adjusted Vegetation Index (MSAVI) 
0.5{2NIR+1–SQRT[(2NIR+1)2–

8(NIR–R)]} 

Qi et al. (1994) 

Modified Green Soil Adjusted Vegetation Index  

(MGSAVI1) 

0.5{2NIR+1–SQRT[(2NIR+1)2–

8(NIR–G)]} 

Qi et al. (1994) 

Modified Blue Soil Adjusted Vegetation Index  

(MBSAVI) 

0.5{2NIR+1–SQRT[(2NIR+1)2–

8(NIR–B)]} 

Qi et al. (1994) 

Three-band vegetation indices 

  

Simple Ratio Vegetation Index (SR) R/G*NIR Datt (1999) 

Modified Normalized Difference Vegetation Index 1 

(mNDVI1) 

(NIR-R+2G)/(NIR+R-2G) Wang et al. (2012) 

Modified Normalized Difference Vegetation Index 2 

(mNDVI2) 

(NIR-R+2B)/(NIR+R-2B) Wang et al. (2012) 

New Modified Simple Ratio (mSR) (NIR-B)/(R-B) Sims & Gamon (2002) 

Visible Atmospherically Resistant Index (VARI) (G-R)/(G+R-B) Gitelson et al. (2002) 
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Table 4-2 continued 

Vegetation Index Formula Ref. 

Structure Insensitive Pigment Index 

(SIPI) 

(NIR-B)/(NIR-R) Peñuelas et al. (1995) 

Structure Insensitive Pigment Index 

1(SIPI1) 

(NIR-B)/(NIR-G) Peñuelas et al. (1995) 

Normalized Different Index (NDI) (NIR-R)/(NIR-G) Datt (1999) 

Plant Senescence Reflectance Index 

(PSRI) 

(R-B)/NIR Sims & Gamon (2002) 

Plant Senescence Reflectance Index 

(PSRI1) 

(R-G)/NIR Sims & Gamon (2002) 

Modified Chlorophyll Absorption in 

Reflectance Index (MCARI) 

[(NIR–R)–0.2(R–G)]×(NIR/R) Daughtry et al. (2000) 

Modified Chlorophyll Absorption in 

Reflectance Index 1 (MCARI1) 

1.2[2.5(NIR-R)-1.3(NIR-G)] Haboudane et al. (2004) 

Modified Chlorophyll Absorption in 

Reflectance Index 2 (MCARI2) 

1.2[2.5(NIR-R)-1.3(R-

G)]/SQRT[(2NIR+1)2-(6NIR-

5SQRT(R)-0.5)] 

Haboudane et al. (2004) 

Modified Transformed CARI 

(MTCARI) 

3[(NIR-R)–0.2(NIR-G)×(NIR/R)] Haboudane et al. (2002) 

Triangular Vegetation Index (TVI) 0.5[120(NIR–G)–200(R–G)] Broge & Leblanc (2000) 

Modified Triangular Vegetation 

Index 1 (MTVI1) 

1.2[1.2(NIR–G)–2.5(R–G)] Haboudane et al. (2004) 

Modified Triangular Vegetation 

Index 2 (MTVI2) 

1.5[1.2(NIR–G)–2.5(R–G)]/ 

SQRT[(2NIR+1)2-(6NIR-

5SQRT(R)-0.5)] 

Haboudane et al. (2004) 

Modified Triangular Vegetation 

Index 3 (MTVI3) 

1.5[1.2(NIR–B)–2.5(R–B)]/ 

SQRT[(2NIR+1)2-(6NIR-

5SQRT(R)-0.5)] 

Haboudane et al. (2004) 

Enhanced Vegetation Index (EVI) 2.5(NIR-R)/(1+NIR+6R-7.5B) Huete et al. (2002) 

Triangular Chlorophyll Index (TCI) 1.2(NIR-G)-5(R-G)(NIR/R)0.5 Haboudane et al. (2008) 

MTCARI/OSAVI MTCARI/OSAVI Haboudane et al. (2002) 

MCARI/MTVI2 MCARI/MTVI2 Eitel et al. (2007) 

MTCARI/MSAVI MTCARI/MSAVI Haboudane et al. (2002) 

TCI/OSAVI TCI/OSAVI Haboudane et al. (2008) 

4.2.6 The estimation of NNI 

 The rice NNI can be estimated directly and indirectly. The direct method is to use the 

selected VI to estimate NNI directly based on the established relationships. The indirect 

method is to first use the selected VIs to estimate rice biomass and PNU. With the critical N 

dilution curve developed for rice in this region, the Nc can be derived for each biomass value. 

The estimated biomass and Nc can then be used together to calculate critical PNU (AGB×Nc). 

The NNI can then be estimated using PNU and critical PNU, because PNU/critical PNU 

equals to (AGB×Na)/(AGB×Nc), which can be further simplified to Na/Nc. Considering 

practical applications, we classified the rice N status into three categories based on NNI 

values: deficient N status (NNI < 0.95), optimal N status (NNI = 0.95-1.05) and surplus N 

status (NNI > 1.05). 

 The indirect method was used in this study to create NNI maps of selected fields at the 
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pixel-level. For irrigation purpose, each rice field was divided into many smaller plots, which 

were also used as management units for fertilizer application. Therefore, the pixel-level NNI 

values were averaged for each small plot to create plot-level NNI maps using ArcGIS 9. 

4.3 Results 

4.3.1 Variability of rice N status indicators 

 The variability of rice biomass, LAI and PNU (CV = 23%-28%) was consistently larger 

than that of PNC, SPAD values and NNI (CV = 4%-14%) (Table 4-3). In addition, larger 

variability of PNC and NNI was found in 2012 (CV = 11% and 14%, respectively) than in 

2011 (CV = 5%). Likewise, the values of biomass, LAI and PNU were significantly higher 

in 2012 than in 2011. The NNI ranged from 0.89-1.17 in 2011, with an average of 1.01. This 

indicated that in general, the N status of these fields was optimal. In 2012, the NNI ranged 

from 0.83-1.50, with an average of 1.15, revealing a surplus N status (Table 4-3). 

Table 4-3 Descriptive statistics of rice N status indicators for 2011 (41 field samples) and 2012 (51 field 

samples), Heilongjiang Province, China. 

N status indicator Mean Minimum Maximum SD CV (%) 

2011      

Biomass (t ha-1) 0.87  0.50  1.55  0.22  25  

Leaf area index 0.84  0.52  1.51  0.20  23  

Plant N concentration (g kg-1) 27.6  24.5  30.6  0.14  5  

SPAD Value 42.30  37.03  44.08  1.80  4  

Plant N uptake (kg ha-1) 23.86  12.97  43.25  5.80  24  

N Nutrition Index 1.01  0.89  1.17  0.05  5  

2012      

Biomass (t ha-1) 2.91 1.45  4.68  0.79  27 

Leaf area index 3.34 1.77  5.66  0.86  26 

Plant N concentration (g kg-1) 22.4 17.5  27.7  0.25  11 

SPAD Value  40.60 37.07  43.40  1.68 4 

Plant N uptake (kg ha-1) 65.00 30.11  114.9 17.93 28 

N Nutrition Index 1.15 0.83 1.50 0.16 14 

SD: standard deviation; CV: coefficient of variation (%). 

An examination of each individual field indicated that the average PNC and SPAD 

values were the highest in Filed 1 (F1), the biomass value was the lowest, while the average 

NNI was optimal. In contrast, F4 had the lowest PNC, but the highest average NNI and 

biomass, indicating a surplus N status (Table 4-4). These results indicated the importance of 

using NNI for N status diagnosis, rather than PNC. 
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Table 4-4 Descriptive statistics of rice N status indicators for different fields, Heilongjiang Province, 

China, 2011-2012. 

Field Biomass (t ha-1) Plant N Concentration (g kg-1) SPAD Value  NNI 

F1  0.81±0.16 27.7±1.40 43.07±0.62 1.00±0.05 

F2  1.27±0.25 26.3±1.44 37.89±0.89 1.03±0.10 

F3  0.97±0.17 27.4±1.13 39.83±0.65 1.00±0.04 

F4  3.89±0.41 21.2±2.82 40.90±1.08 1.21±0.16 

F5  2.53±0.53 22.9±2.26 40.49±1.85 1.13±0.16 

4.3.2 Vegetation index analysis 

 The performance of the VIs differed with N status indicators. The top 10 VIs for 

estimating different N status indicators in each year are listed in Table 4-5. 

 For aboveground biomass, the top 10 VIs performed similarly in 2011 (R2 = 0.63-0.67) 

and 2012 (R2 = 0.63-0.64). This was also true for PNU for both years. For LAI, the top 10 

VIs performed slightly better in 2011 (R2 = 0.63-0.67) than in 2012 (R2 = 0.58-0.60). Four 

VIs that are based on the combinations of NIR and red bands, including Ratio Vegetation 

Index 3 (RVI3), Wide Dynamic Range Vegetation Index 1 (WDRVI1), Soil Adjusted 

Vegetation Index (SAVI) and Modified Simple Ratio (MSR), were consistently among the 

top 10 indices for biomass, PNU and LAI. The MCARI index, based on the combination of 

NIR, red and green bands, had the highest correlation with aboveground biomass (R2 = 0.67) 

and LAI (R2 = 0.67) in 2011. Four VIs, which included MCARI1, Triangular Vegetation 

Index (TVI), Modified TVI1 (MTVI1) and Transformed Chlorophyll Absorption in 

Reflectance Index (TCARI), were also among the top 10 indices for both aboveground 

biomass and PNU. 

 Lower correlations were found between the VIs and NNIs, with R2 of 0.15-0.18 in 2011 

and 0.33-0.35 in 2012 for the 10 best models. None of the VIs was significantly correlated 

with PNC in a specific year, although 30%-55% of the PNC variability was explained across 

the two years (Table 4-5). The relationships between VIs and SPAD values were also weak, 

with R2 being 0.10-0.27 and 0.14-0.23 in 2011 and 2012, respectively. 

Fig. 4-1 shows selected VI models with the best performance in estimating rice 

aboveground biomass, LAI, PNU and NNI across years. The values for 2011 samples were 

all smaller than those of 2012. Most samples in 2011 had NNI values close to optimum, and 

the variability was very small, with CV being only 5%. As a result, a cluster was formed at 

the lower end of Fig. 4-1d. This may explain why the relationships between VIs and NNI 

were quite weak in 2011 (Table 4-5).
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4.3.3 Nitrogen status diagnosis 

 According to the above results, an indirect NNI estimation method was used in this study. 

The NNI values estimated this way were moderately correlated with measured NNI across 

2011 and 2012 (R2 = 0.52, RMSE = 0.10 and REr = 9.14%) (Fig. 4-2). By comparing the 

regression line to the 1:1 line in Fig. 4-2, a systematic bias can be identified in the regression 

model. In particular, when the observed NNI was less than 1.08, the model overestimated 

the NNI, while the opposite was true when the NNI was greater than 1.08. 

 The NNI maps created using the indirect method for two farmers’ fields are shown in 

Fig. 4-3 as an example. Fig. 4-3a,b shows the NNI maps at the pixel level and the plot level, 

respectively. The first (Fig. 4-3, left) is a well-managed field, with 92% of the field being in 

the optimal N status category. In contrast, the second field (Fig. 4-3, right) had only 35% in 

the optimal N category and about 51% in the deficient N category. 

A more quantitative and preferable approach is to produce a PNU difference map (∆PNU) 

by subtracting the critical PNU map from the predicted PNU map. This ∆PNU map can not 

only tell us if the N status is deficient, optimal or surplus, but also the amount of deficiency 

or surplus. This further can be used to produce a prescription map for topdressing N 

application rates (NR) at the stem elongation stage. Specifically, the prescription map will 

be the planned topdressing panicle NR map based on regional best management practice 

minus the ∆PNU map. Fig. 4-4 displays a ∆PNU map of the second field shown in Fig. 4-

3. About 12% of the field had an N surplus of over 5 kg ha-1, while 20% of the field had an 

N deficiency of over 5 kg ha-1.
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Table 4-5 The top 10 coefficients of determination (R2) for the relationships between vegetation indices 

based on the FORMOSAT-2 satellite images and rice N status indicators in Heilongjiang Province, China, 

2011-2012. Only significant R2 values were listed. 

Indices 2011 2012 2011+2012 Indices 2011 2012 2011+2012 

Aboveground biomass (t ha-1) LAI 

MCARI 0.67** 0.62** 0.90** MCARI 0.67** 0.58** 0.90** 

DVI3 0.65** 0.63** 0.90** DVI2 0.67** 0.58** 0.91** 

TVI 0.64** 0.64** 0.90** RVI3 0.65** 0.60** 0.90** 

RVI3 0.64** 0.63** 0.90** DVI3 0.65** 0.60** 0.91** 

MTVI1 0.63** 0.64** 0.90** RDVI2 0.65** 0.58** 0.90** 

MCARI1 0.63** 0.64** 0.90** WDRVI1 0.65** 0.60** 0.90** 

MTCARI 0.63** 0.64** 0.89** MSR 0.65** 0.60** 0.90** 

WDRVI1 0.63** 0.64** 0.89** RDVI3 0.64** 0.60** 0.90** 

MSR 0.63** 0.64** 0.90** SAVI 0.63** 0.61** 0.88** 

SAVI 0.61** 0.64** 0.87** NDVI1 0.63** 0.61** 0.88** 

Plant N concentration (g kg-1) SPAD Values 

DVI4   0.55** TCI 0.27** 0.17** 0.13** 

RDVI4   0.53** PSRI 0.19**  0.10** 

NDVI4   0.49** MTVI2 0.18** 0.22** 0.16** 

RDVI2   0.49** MTCARI 0.16** 0.22** 0.14** 

RVI4   0.49** MCARI2 0.15* 0.23** 0.15** 

MGSAVI   0.48** WDRVI1 0.14* 0.20** 0.12** 

NDVI2   0.48** MTVI3 0.10* 0.25** 0.13** 

GOSAVI   0.48** MTCARI/OSAVI  0.14** 
 

WDRVI2   0.47** EVI  0.14** 
 

mNDVI1   0.30** DVI 0.13*  0.19** 

Plant N uptake (kg ha-1) NNI 

RVI3 0.66** 0.61** 0.87** RDVI1 0.18** 0.32** 0.41** 

TVI 0.66** 0.61** 0.87** DVI2 0.17** 0.33** 0.43** 

WDRVI1 0.66** 0.62** 0.87** RVI2 0.17** 0.33** 0.44** 

RDVI3 0.66** 0.62** 0.87** WDRVI2 0.16** 0.34** 0.43** 

MTCARI 0.65** 0.63** 0.86** DVI3 0.16** 0.34** 0.43** 

MSR 0.65** 0.62** 0.87** RDVI2 0.16** 0.34** 0.42** 

MCARI1 0.65** 0.62** 0.87** RVI3 0.16** 0.34** 0.45** 

MTVI1 0.65** 0.62** 0.87** WDRVI1 0.15* 0.35** 0.44** 

SAVI 0.64** 0.62** 0.85** RDVI3 0.15* 0.35** 0.43** 

OSAVI 0.64** 0.62** 0.85** TVI 0.15* 0.34** 0.44** 

**. Correlation is significant at the 0.01 level; *. Correlation is significant at the 0.05 level. 
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Fig. 4-1 Selected VI regression vs. rice aboveground biomass (a), LAI (b), PNU (c), and NNI (d), 

Heilongjiang Province, China, 2011-2012. 

 

Fig. 4-2 Relationship between observed and predicted NNI using MCARI-estimated biomass and RVI3-

estimated plant N uptake in 2011 and 2012, Heilongjiang Province, China. The red line is the 1:1 line. 
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Fig. 4-3 Examples of predicted rice N nutrition index (NNI) maps of two fields at pixel-level (a) and plot-

level (b), Heilongjiang Province, China. 
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Fig. 4-4 Example of a plant N uptake difference map of a farmer’s field, Heilongjiang Province, China. 

4.4 Discussion 

4.4.1 Direct estimation of NNI 

 Using satellite remote sensing to estimate rice plant NNI for diagnosing rice N status 

and guiding in-season site-specific N management across large areas is an attractive idea. 

How well can we estimate NNI directly using FORMOSAT-2 satellite data? The results of 

this study indicated that all of the top 10 VIs were significantly correlated with NNI, 

explaining 18% and 35% of the NNI variability in 2011 and 2012, respectively. Across years, 

45% of NNI variability was explained with RVI3. This result is slightly better than what Yao 

et al. (2014) found using the handheld GreenSeeker NDVI and RVI, which explained 25% 

and 34% of rice NNI variability at the stem elongation stage, respectively. It was found that 

the top 10 VIs obtained with the three-band Crop Circle ACS 470 sensor explained 61%-69% 

of rice NNI variability across the panicle initiation and stem elongation stages (Cao et al., 

2013). However, our study only used data from the panicle initiation stage in 2011, which 

was expected to be more influenced by the water background than the stem elongation stage. 

In general, it is not satisfactory to use satellite images to directly estimate rice plant NNI at 

this stage. At later stages when the rice plants reach canopy closure, this approach may work 

better. However, it may then be too late for guiding in-season N application. 

4.4.2 Indirect estimation of NNI 

 An alternative approach is to use remote sensing to estimate key parameters and 

indirectly estimate NNI. Cilia et al. (2014) used aerial hyperspectral remote sensing to 
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estimate maize N concentration and biomass and then estimated NNI indirectly. Our study 

indicated that biomass could be reliably estimated using satellite remote sensing at the 

panicle initiation and stem elongation stages, with over 60% of its variability being explained 

by the top 10 VIs in both 2011 and 2012. We selected MCARI for further analysis. This 

index was initially developed for estimating leaf chlorophyll variation, but it was also 

significantly related to LAI (Daughtry et al., 2000; Haboudane et al., 2004). In this study, 

the MCARI index was highly correlated with rice aboveground biomass and LAI (R2 = 0.58-

0.67). The results agree with those of Cao et al. (2013), who also identified a modified 

MCARI as the best index for estimating rice biomass (R2 = 0.79) and plant N uptake (R2 = 

0.83) across growth stages. The top 10 Crop Circle VIs in their study explained 50%-54% 

of rice biomass variability across the panicle initiation and stem elongation stages. Our 

results were comparable to the results (R2 = 0.68-0.69) of Gnyp et al. (2014) that were 

obtained with optimized narrow band RVI and NDVI for estimating rice biomass at the stem 

elongation stage. However, estimating rice PNC before canopy closure is a great challenge. 

We did not find any significant correlation between VIs and rice PNC in this study. This was 

also stated by Yao et al. (2014). They found that the GreenSeeker NDVI and RVI were not 

significantly correlated with rice PNC at the stem elongation stage. Cao et al. (2013) found 

that the three-band Crop Circle ACS 470 sensor at best explained 33% of rice PNC across 

the panicle initiation and stem elongation stages using the Red Edge Green Difference 

Vegetation Index (REGDVI). Even with hyperspectral remote sensing, Yu et al. (2013) only 

explained 39% of rice PNC variability across the tillering and heading stages using the 

Optimized Simple Ratio or Normalized Difference Index. Before canopy closure, soil and 

water backgrounds in paddy rice fields can influence plant reflectance (Van Niel & McVicar, 

2004). In addition, plant biomass dominates canopy reflectance before the heading stage, 

making the estimation of chlorophyll and N concentration at early growth stages difficult 

(Mistele & Schmidhalter, 2008). Therefore, the approach adopted by Cilia et al. (2014) did 

not work for rice monitoring at the panicle initiation and stem elongation stages in our study. 

 A practical approach is to use satellite remote sensing to estimate rice biomass and PNU. 

From the estimated biomass and the critical N dilution curve, the critical PNU can be 

determined, and NNI will be calculated using the estimated PNU and the critical PNU. The 

results of this study supported this idea. Over 60% of rice PNU variability was explained by 

RVI3 in both years. This was even better than the result obtained with the GreenSeeker 

sensor for estimating rice PNU at the stem elongation stage (R2 = 0.40-0.41) by Yao et al. 

(2014) and similar to the results (R2 = 0.63-0.65) obtained with the Crop Circle ACS 470 

sensor for estimating rice PNU across the panicle initiation and stem elongation stages by 

Cao et al. (2013). The estimated NNI obtained this way explained 52% of the measured NNI 

variability across 2011 and 2012, which was slightly better than the direct estimation of NNI 

using VIs obtained from satellite images (R2 = 0.45). 
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4.4.3 Applications for rice N status diagnosis and topdressing N recommendation 

 After the NNI map is generated, it is necessary to define the NNI thresholds for N status 

diagnosis. The current thresholds (NNI < 1: deficient; NNI = 1: optimal; NNI > 1: surplus) 

may need to be further refined for practical applications. For example, the NNI values of 

0.99 and 1.01 are very close to each other and are all quite optimal, but they will be classified 

as deficient and surplus N status, respectively, based on current thresholds. Cilia et al. (2014) 

proposed to classify NNI into five classes (NNI ≤ 0.7, 0.7 < NNI ≤ 0.9, 0.9 < NNI ≤ 1.1, 

1.1 < NNI ≤ 1.3, NNI > 1.3) and regarded NNI ≤ 0.9 as N deficient, 0.9 < NNI ≤ 1.1 as N 

optimal and NNI > 1.1 as N surplus. Based on the rice N management situations in the study 

region, we proposed the following thresholds for rice: NNI ≤ 0.95 as N deficient, 

0.95 < NNI ≤ 1.05 as N optimal and NNI > 1.05 as N surplus. These threshold values can be 

used to delineate a field into three regions with different N nutritional status. The diagnosis 

results are shown in Fig. 4-3 indicated that the first field (Fig. 4-3 left) was well managed, 

with the majority of the field having an optimal N status, while about 51% of the second 

field (Fig. 4-3, right) was deficient in N. These agreed quite well with the two farmers’ 

management practices. However, these threshold values are empirical, and more studies are 

needed to further test and refine these thresholds by relating NNI to relative grain yield. 

 The NNI-based rice N status map can be used to guide in-season topdressing N 

application. For the optimal N zone, 30 kg N ha-1 was recommended based on the regional 

best N management practice. For the deficient N zone, 35 or 40 kg ha-1 can be recommended, 

and for the surplus N zone 25 or 20 kg ha-1. This approach is commonly used in site-specific 

N management of rice based on CM diagnosis developed by the International Rice Research 

Institute (Peng et al., 2010). It is empirical, but very practical for on-farm applications in 

small-scale farming areas of Asia. A more quantitative approach is to produce a PNU 

difference map using the estimated PNU map minus the critical PNU map. The 

recommended N topdressing application rate can be determined using the regional optimum 

topdressing N application rate minus the PNU difference. This approach is different from 

the variable rate N application strategy proposed by Cilia et al. (2014). They first computed 

the average PNU from the optimal NNI pixels and then used this average value together with 

the estimated PNU to calculate the difference, and for N deficient pixels, the deficient 

amounts were used as variable N application rates. For pixels with optimal and surplus N, 

no N fertilizers were recommended. In our approach, we did not analyze the pixel scale, 

because, in rice farming, the field is divided into many small plots for irrigation purpose. 

These plots also serve as management units. We applied plot-average NNI values to diagnose 

the rice N status of each plot. Our precision N management strategy takes the regional 

optimal N rate as the initial total N rate, with 40% and 30% being applied as basal and 

tillering N fertilizers, respectively. For topdressing N application at the stem elongation stage, 
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30% of the initial total N rate should be applied if the N status is optimal. Otherwise, the 

topdressing N rates can be adjusted based on deficient or surplus N amounts. Even if the N 

status is optimal at the stem elongation stage, it only indicates the N status at that stage, 

which is more than two months prior to harvest, and a certain amount of N fertilizers should 

still be recommended to meet the N requirements from stem elongation to harvest. 

4.4.4 Challenges and future research needs 

 The proposed approach discussed above requires the satellite imagery to be collected in 

a narrow time window, preferably one week before topdressing N application at the stem 

elongation stage for rice in the study region. If the image is collected too early, the diagnosis 

result may not match the true rice N status at the stem elongation stage. In addition, rice 

plants will be too small, and the water background will strongly influence the plant 

reflectance. If the image is collected too close to the stem elongation stage, it may be too late 

to use the diagnosis result for guiding the topdressing N application. Therefore, a satellite 

with a high temporal resolution is required. The daily revisit time of the FORMOSAT-2 

satellite makes it ideal for this purpose. Its 8-m spatial resolution may be too coarse for 

small-scale farming in other parts of China, such as in the North China Plain (Shen et al., 

2013), but is good enough for large-scale farming in the Sanjiang Plain of Northeast China. 

 It should be noted that there are 7-10 days between the panicle initiation and stem 

elongation stages and the rice plants are fast developing, so the rice biomass and plant N 

uptake determined at the panicle initiation stage are smaller than the values at the stem 

elongation stage. Studies are needed to determine the influence of this difference on the 

recommended topdressing N application rates. 

 Year to year weather variability poses a challenge to use satellite remote sensing for in-

season rice N status diagnosis and guiding topdressing application. The satellite imageries 

were collected at similar times in both years. However, the temperature in 2012 was higher 

than 2011. The accumulated temperature from transplanting date to the sampling date of 

2012 was about 100 °C higher than that in 2011. As a result, rice plants grew faster in 2012 

and already reached the stem elongation stage when the image was collected on 26 June 

2012. This was reflected by the larger biomass, LAI, and plant N uptake values in 2012 than 

2011 (Table 4-3). Another factor to consider is that there are many cloudy and rainy days 

during the growing season in many parts of the major rice planting regions, which can 

prevent us from getting the needed satellite images within the narrow time window in some 

years. Such uncertainty in year to year weather variability makes it very difficult to collect 

the satellite images at the right time for guiding in-season N management. 

 To overcome this limitation, multi-temporal and dual-polarimetric TerraSAR-X satellite 

data were evaluated for monitoring rice crop growth, and very promising results were 
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obtained for rice biomass estimation (Koppe et al., 2013). Low-altitude remote sensing based 

on unmanned aerial vehicles (UAVs) may also be an alternative way for diagnosing in-

season rice N status and guiding variable rate N management (Zhang & Kovacs, 2012; 

Huang et al., 2013; Uto et al., 2013). Due to the quick turn-around time, UAV-based remote 

sensing images can be collected 1-2 days before the topdressing N application, and the 

diagnosis result will be more representative. Nevertheless, due to the much smaller coverage 

and bigger data volume of UAV images, they are still not very practical for regional studies 

over large areas. 

 The FORMOSAT-2 satellite images only have four commonly-used wavebands (B, G, 

R, and NIR). Previous research indicated that red edge-based VIs performed better for 

estimating crop N status NNI than traditional red light-based indices (Cao et al., 2015; 

Mistele & Schmidhalter, 2008; Li et al., 2014). According to Li et al. (2014), the red edge-

based Canopy Chlorophyll Content Index (CCCI) was reported to have the best performance 

among all of the indices evaluated for estimating summer maize N concentration and uptake 

at V6, V7 and V10-V12 stages, based on the simulation of Crop Circle ACS 470 active sensor, 

RapidEye and WorldView 2 satellite images. It is necessary to evaluate the potential 

improvements in estimating rice NNI using RapidEye and WorldView 2 satellite images. 

Hyperspectral sensing has the potential to further improve the estimation of crop NNI, as 

demonstrated in winter wheat (Mistele & Schmidhalter, 2008) and summer maize (Chen et 

al., 2013), and more studies are needed to explore the potential of hyperspectral sensing for 

monitoring crop NNI. 

 In summary, the proposed satellite remote sensing approach can achieve comparable 

performance as ground-based active canopy sensors for estimating rice N status and is 

applicable to other rice planting regions. It is more efficient for large area applications, but 

is more influenced by weather conditions, while active canopy sensors are independent of 

environmental light conditions. It requires special training to process satellite remote sensing 

data, while active canopy sensors are easy to use, but are not suitable for large area 

applications. The UAV-based approach, coupled with red edge-based indices and 

hyperspectral remote sensing, has the potential to overcome the disadvantages of the ground 

active sensing and satellite remote sensing approaches. Therefore, it deserves further studies. 

4.5 Conclusions 

 This study evaluated the potential of using FORMOSAT-2 satellite images to estimate 

rice NNI at the panicle initiation stage for guiding topdressing N application at the stem 

elongation stage in Northeast China. Across years, 45% of NNI variability could be 

explained using the RVI3 index directly. On the other hand, the indirect approach using 

FORMOSAT-2 images to estimate the aboveground biomass, PNU and, consequently, NNI 
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achieved slightly better results (R2 = 0.52 across years). Moreover, the calculated difference 

between the estimated PNU and the critical PNU based on the indirect method can be used 

to guide the topdressing N application rate adjustments, which demonstrated that 

FORMOSAT-2 images have the potential to estimate rice N status for guiding panicle N 

fertilizer applications in Northeast China. However, more studies are needed to further 

evaluate and improve the proposed method of in-season rice N status diagnosis and precision 

N management strategy under different on-farm conditions using different types of satellite 

data. The potential of UAV-based remote sensing, coupled with red edge-based indices and 

hyperspectral sensors, for improving rice NNI monitoring also needs to be studied in future 

research. 
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Abstract 

 For in-season site-specific nitrogen (N) management of rice to be successful, it is 

crucially important to diagnose rice N status efficiently across large areas within a short time 

frame. In recent studies, the FORMOSAT-2 satellite images with traditional blue (B), green 

(G), red (R), and near-infrared (NIR) wavebands have been used to estimate rice N status 

due to its high spatial resolution, daily revisit capability, and relatively lower cost. This study 

aimed to evaluate the potential improvements of RapidEye and WorldView-2 data over 

FORMOSAT-2 for rice N status monitoring, as the former two sensors provide additional 

wavelengths besides the traditional four wavebands. Ten site-year N rate experiments were 

conducted in Jiansanjiang, Heilongjiang Province of Northeast China from 2008 to 2011. 

Plant samples and field hyperspectral data were collected at three growth stages: panicle 

initiation (PI), stem elongation (SE), and heading (HE). The canopy-scale hyperspectral data 

were upscaled to simulate the satellite bands. Vegetation index (VI) analysis, stepwise 

multiple linear regression (SMLR), and partial least squares regression (PLSR) were 

performed to derive plant N status indicators. The results indicated that the best-performed 

VIs calculated from the simulated RapidEye and WorldView-2 bands, especially those based 

on the red edge (RE) band, explained significantly more variability for aboveground biomass 
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(AGB), plant N uptake (PNU), and nitrogen nutrition index (NNI) estimations than their 

FORMOSAT-2-based counterparts did, especially at the PI and SE stages. The SMLR and 

PLSR models based on the WorldView-2 bands generally had the best performance, 

followed by the ones based on the RapidEye bands. The SMLR results revealed that both 

the NIR and RE bands were important for N status estimation. In particular, the NIR1 band 

(760-900 nm from RapidEye or 770-895 nm from WorldView-2) was most important for 

estimating all the N status indicators. The RE band (690-730 nm or 705-745 nm) improved 

AGB, PNU, and NNI estimations at all three stages, especially at the PI and SE stages. AGB 

and PNU were best estimated using data across the stages while plant N concentration (PNC) 

and NNI were best estimated at the HE stage. The PLSR analysis confirmed the significance 

of the NIR1 band for AGB, PNU, and NNI estimations at all stages except for the HE stage. 

It also showed the importance of including extra bands (coastal, yellow, and NIR2) from the 

WorldView-2 sensor for N status estimation. Overall, both the RapidEye and WorldView-2 

data with RE bands improved the results relative to FORMOSAT-2 data. However, the 

WorldView-2 data with three extra bands in the visible and NIR regions showed the highest 

potential in estimating rice N status. 

5.1 Introduction 

 Precision nitrogen (N) management of rice (Oryza sativa L.) is crucially important for 

food security and sustainable development, especially for Asian countries like China (Yao et 

al., 2012; Zhao et al., 2013; Huang et al., 2015). Non-destructive technologies are needed 

for in-season site-specific diagnosis of rice plant N status and making topdressing N 

recommendations. During the past decade, active canopy sensors (ACS), such as 

GreenSeeker (Trimble Navigation Limited, Sunnyvale, CA, USA) and Crop Circle (Holland 

Scientific, Lincoln, NE, USA) sensors, have been developed and have gained popularity for 

diagnosing crop N status and guiding in-season N management of wheat (Triticum aestivum 

L.), maize (Zea mays L.), and rice (Yao et al., 2012; Yao et al., 2014; Li et al., 2009; Cao et 

al., 2015; Cao et al., 2016; Xia et al., 2016). For large production field applications, such 

sensors have been installed on variable rate fertilizer application machines for real-time 

sensing, diagnosis of crop N status, topdressing or side-dressing N recommendation, and 

variable rate application (Schmidt et al., 2009; Diacono et al., 2013; Holland & Schepers, 

2013). However, such systems are not common for rice, as it is difficult for variable rate 

application machines to enter flooded paddy fields. It is also very challenging and time-

consuming to carry active canopy sensors and walk across large paddy fields. 

 Alternatively, satellite remote sensing offers a promising non-intrusive solution to 

monitor rice N status and to guide site-specific N recommendations over large areas (Huang 

et al., 2015; Mulla, 2013; Mulla & Miao, 2016). For in-season site-specific N management, 
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a satellite sensor with relatively high spatial resolution is required because rice canopy plots 

are small. In addition, high temporal resolution is also crucially important, as cloudy weather 

conditions are quite common in rice planting regions. There is only a narrow time window 

to collect and process remote sensing images, produce topdressing fertilization prescription, 

and implement fertilizer applications. Therefore, to date, studies of using satellite 

instruments for crop N monitoring are still limited due to the restricted sensor resolutions of 

most satellites. 

 The FORMOSAT-2 is the first earth observation satellite developed by the National 

Space Organization (NSPO) of Taiwan in 2004. The FORMOSAT-2 data have a spatial 

resolution of 8 m for the four multispectral bands (Blue (B), Green (G), Red (R), and Near-

Infrared (NIR)) and 2 m for the panchromatic band. The daily revisit capability with a 

constant view angle and the medium-high spatial resolution make FORMOSAT-2 one of the 

most suitable satellites for regional precision agriculture applications (Huang et al., 2015; 

Zhao et al., 2015). Particularly, Huang et al. (2015) found that FORMOSAT-2 images could 

be used to estimate rice aboveground biomass (AGB), leaf area index (LAI), plant N uptake 

(PNU) and N nutrition index (NNI) at the early growth stage. In addition, the IKONOS and 

QuickBird satellite sensors have higher spatial resolutions but lower temporal resolutions 

than FORMOSAT-2 with the same band settings. They also have been used in previous 

studies for monitoring crop N status, green LAI (GLAI), and yield (Beeri et al., 2005; 

Claverie et al., 2012; Tang et al., 2004). 

 Launched in August of 2008, RapidEye was the first commercial satellite with red edge 

(RE) band in addition to traditional B, G, R, and NIR bands, with an improved 5 m spatial 

resolution (Magney et al., 2016). Many studies evaluated the applicability of the RE 

wavebands. Eitel et al. (2007) used hyperspectral data to simulate RapidEye wavebands and 

found that the RE-based vegetation index (VI), Modified Chlorophyll Absorption Ratio 

Index/Modified Triangular Vegetation Index 2 (MCARI/MTVI2), performed the best for 

chlorophyll content and leaf N concentration estimations. Eitel et al. (2011) stated that the 

RE-based VI, Normalized Difference Red Edge (NDRE), could identify plant N stress earlier 

than Normalized Difference Vegetation Index (NDVI) and Green NDVI (GNDVI). The RE-

based indices from the RapidEye images improved the LAI and plant N status estimations 

compared with the R radiation-based VIs (Asam et al., 2013; Kim & Yeom, 2012; Ramoelo 

et al., 2012). 

 In addition to RapidEye, the WorldView-2 satellite was launched in October of 2009 

with a further increased spatial resolution of 2 m. Besides the traditional four and the RE 

wavebands, three additional ones are included: coastal (C), yellow (Y), and an extra NIR 

band (NIR2). Mutanga et al. (2012) found that the NDRE using WorldView-2 imagery could 

solve the saturation problem encountered with high-density biomass estimation for wetland 
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vegetation. 

 The FORMOSAT-2, RapidEye, and WorldView-2 satellites are ideal choices for crop N 

status estimation since they all have short revisit time with 2-8 m spatial resolutions. Notably, 

both the RapidEye and WorldView-2 satellite sensors with additional wavelengths have the 

potential to further improve crop N monitoring. The first crucial question addresses how to 

define the expected improvements of RapidEye data for rice N status monitoring compared 

with FORMOSAT-2 data. Second, can WorldView-2 data further improve the estimation of 

rice N status with three extra spectral bands compared with RapidEye? Comparing these 

three satellite datasets directly proves difficult because of the lacking of archived images 

from these satellite sensors at multiple growth stages for this study site on our sampling dates. 

To evaluate and quantify the potential benefits of the RE band or the additional three bands, 

a practical approach is to use hyperspectral canopy reflectance data to simulate the spectral 

bands of the three satellite sensors. This approach has been widely used in remote sensing 

studies in recent years. Yang et al. (2008) found that the NDVI values calculated with a 

hyperspectral canopy sensor were highly correlated (R2 = 0.79) with NDVIs derived from 

broadband FORMOSAT-2 images. Bsaibes et al. (2009) compared the ground measured 

albedo and FORMOSAT-2 retrievals for five crops and found their albedo values were 

closely related. Bausch and Khosla (2010) compared several normalized VIs based on 

QuickBird imagery with the ones calculated from simulated QuickBird bands using 

hyperspectral data, and confirmed their high levels of similarity. 

 In previous studies, VIs have been widely used to estimate crop N status. While 

numerous VIs have been developed, the most commonly used VIs are based on R and NIR 

bands, such as the NDVI. However, the NDVI may saturate under moderate-to-high biomass 

conditions at later growth stages (Thenkabail et al., 2000; Mutanga & Skidmore, 2004; Gnyp 

et al., 2014). The RE-based VIs have been proven to be sensitive to crop canopy chlorophyll 

and N variation, even under the high biomass condition (Cao et al., 2016; Van Niel & 

McVicar, 2004; Nguy-Robertson et al., 2012; Cao et al., 2013; Kanke et al., 2016). Since 

both RapidEye and WorldView-2 have the RE band, the question of how RE-based indices 

could improve the estimation of rice N status needed to be answered. In addition to VI 

analysis, the stepwise multiple linear regression (SMLR) and partial least squares regression 

(PLSR) were applied as well since it was noted that multivariate techniques have usually 

allowed slightly better N prediction than the VI method (Stroppiana et al., 2012). The PLSR 

analysis combines the methods of principal component analysis and multiple linear regression 

that cut the predictors to a smaller and uncorrelated subset. Therefore, it can efficiently deal 

with the multi-collinearity issue in predicting variables (Wold et al., 2001). PLSR has been 

used successfully to estimate canopy biomass and N status in wheat crops (Hansen & 

Schjoerring, 2003) and to assess rice leaf growth and N status (Nguyen & Lee, 2006). 
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 Therefore, the objective of this study was to evaluate the potential of using RapidEye 

and WorldView-2 satellite data to improve rice N status monitoring over commonly used 

four-band satellite data such as FORMOSAT-2 at different growth stages based on ground 

hyperspectral canopy data and VI analysis, SMLR as well as PLSR. 

5.2 Materials and methods 

5.2.1 Study area 

 The study area is located at the Qixing Farm in the Sanjiang Plain, Heilongjiang 

Province, Northeast China. The Sanjiang Plain used to be a wild natural wetland formed by 

the alluvium of three river systems—Heilong River, Songhua River, and Wusuli River. This 

area has a typical cool-temperate sub-humid continental monsoon climate. During the 

growing season (April-October), the average rainfall is around 400 mm, which accounts for 

approximately 70% of yearly precipitation. The mean annual temperature is about 2 °C 

(Wang & Yang, 2001), and the average daily temperature is 19.9 °C during the growing 

season (from mid-May to mid-September). The annual sunshine duration is 2300-2600 h and 

the whole year frost-free period is about 120-140 days (Yan et al., 2002). The main soil type 

in the region is Albic soil, classified as Mollic Planosols in the FAO-UNESCO system and 

Typical Argialbolls in Soil Taxonomy (Xing et al., 1994). 

5.2.2 Experiment design 

 Ten N rate experiments were conducted in 2008, 2009, and 2011, involving two Japonica 

rice cultivars: Kongyu 131 (11 leaves) and Longjing 21 (12 leaves) (Table 5-1). All of the 

experiments adopted the randomized complete block design with 3-4 replications. The N 

fertilizer was applied in three splits for Experiments 1-6: 40%-45% as the basal application 

before transplanting, 20%-30% at the tillering stage, and 30%-35% at the stem elongation 

(SE) stage. For Experiments 7-10, the N fertilizer was applied in two splits: 60% as the basal 

application and 40% at the tillering stage. In each experiment, 45-60 kg ha-1phosphate (P2O5) 

and 90-105 kg ha-1 potash (K2O) fertilizers were applied to ensure sufficient phosphorus (P) 

and potassium (K) nutrients. The P fertilizer was applied as a basal application before 

transplanting while the K fertilizer was applied in two splits, with 50% as the basal fertilizer 

and 50% as the panicle fertilizer at the SE stage. 

 

 

 



Chapter 5: Potential of RapidEye and WorldView-2 Satellite Data for Improving Rice Nitrogen Status Monitoring at 

Different Growth Stages 

74 

Table 5-1 Details of the N rate experiments conducted from 2008 to 2011 in Jiansanjiang, Heilongjiang 

Province, Northeast China. 

Experiment Site Year Cultivar N Rates (kg ha-1) Transplanting/Harvesting Date Sampling Stage 

1 1 2008 Kongyu 131 0, 35, 70, 105, 140 29 May/21 September PI, SE, HE 

2 2 2008 Kongyu 131 0, 35, 70, 105, 140 13 May/22 September PI, SE, HE 

3 1 2009 Kongyu 131 0, 35, 70, 105, 140 24 May/27 September SE, HE 

4 2 2009 Kongyu 131 0, 35, 70, 105, 140 20 May/27 September PI, SE, HE 

5 1 2011 Kongyu 131 0, 70, 100, 130,160 17 May/21 September PI 

6 1 2011 Longjing 21 0, 70, 100, 130, 160 19 May/21 September PI 

7 1 2008 Kongyu 131 0, 23, 45, 68, 91 29 May/21 September HE 

8 2 2008 Kongyu 131 0, 23, 45, 68, 91 13 May/22 September HE 

9 1 2009 Kongyu 131 0, 23, 45, 68, 91 24 May/27 September SE, HE 

10 2 2009 Kongyu 131 0, 23, 45, 68, 91 20 May/27 September SE, HE 

PI: panicle initiation stage; SE: stem elongation stage; HE: heading stage. 

5.2.3 Determining N status indicators with plant sampling and analysis 

 Plant samples were collected at several critical growth stages, including the panicle 

initiation (PI), SE and heading (HE) stages, to determine the values of four N status 

indicators—AGB, plant N concentration (PNC), PNU, and NNI. Growth stages have 

significant impacts on estimating N status indicators. The AGB and PNU increase with the 

advancement of growth stages, and they have positive correlations with N nutritional status. 

As explained by the dilution effect (Greenwood et al., 1986; Lemaire et al., 2008), the PNC 

declines during the growth period within dense canopies. It is positively correlated with N 

nutritional status but inversely related to growth stages. 

 The detailed sampling dates and related information were listed in Table 5-1. Before 

plant sampling, the average tiller number per hill for each treatment plot was determined, 

and then 3 to 6 representative hills with average tiller numbers were randomly selected and 

cut at the ground surface. All the plant samples were rinsed with water and the roots were 

removed to determine the AGB. Then the samples were separated into leaves, stems, and 

panicles (for samples collected at the HE stage). The separated samples were put into an 

oven at 105 °C for half an hour for deactivation of enzymes, and then dried at 70-80 °C until 

constant weight. After being weighed, the samples were ground into powders and sub-

samples were put through 1 mm sieve for PNC analysis using the standard Kjeldahl-N 

method. The PNU was determined by multiplying PNC with dry AGB. Both PNC and PNU 

have been widely used as N status indicators in former studies. 

 NNI is defined as the ratio of the actual PNC (Na) and the critical N concentration (Nc), 

which was calculated using the equation developed for rice in Northeast China based on data 
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from N rate experiments conducted in this region from 2008 to 2013 following the method 

of Justes et al. (1994). More details about the method can be found in Huang et al. (2015). 

NNI is a unitless parameter. It increases with increasing N rates. This trend remains constant 

during the growth period (Gastal et al., 2001; Farruggia et al., 2004). If Na is greater than Nc 

(NNI > 1), it indicates a surplus of N while the opposite is true if Na is smaller than Nc 

(NNI < 1). An NNI value of 1 indicates an optimal N supply (Huang et al., 2015; Lemaire 

et al., 2008). NNI has advantages as a specific, sensitive, memorable, and predictive tool for 

crop N diagnosis (Lemaire et al., 2008; Chen et al., 2010). Therefore, NNI is a better 

indicator for diagnosing crop N status than PNC and PNU (Lemaire et al., 2008). The NNI 

map can be used directly to guide in-season topdressing N applications (Huang et al., 2015; 

Cilia et al., 2014). 

5.2.4 Field spectral measurements and re-sampling 

 The rice canopy spectra were collected using portable hyperspectral instruments 

FieldSpec3 (Analytical Spectral Devices Inc., Boulder, CO, USA) for Experiments 1-4 and 

7-10, and QualitySpec Pro (Analytical Spectral Devices Inc., Boulder, CO, USA) for 

Experiments 5 and 6. The QualitySpec Pro collects reflectance from 350 to 1800 nm while 

the FieldSpec 3 provides spectra across 350 to 2500 nm. Both of them have a spectral 

resolution of 1.2 nm from 350 to 1100 nm and a 2 nm spectral resolution beyond 1100 nm. 

 All spectra were obtained under sunny cloudless conditions during local mid-day 

(9:00 a.m.-1:00 p.m.). The measurements were taken 0.3 m above the canopy with a 25° 

field of view, which gave a sample diameter of 0.14 m. The sensors were carried along the 

north side of the rice plant rows to minimize the disturbance of the canopy structure and 

avoid the creation of shadows. The reflectance values were calibrated by a barium sulfate 

(BaSO4) reference panel at least every 10-15 min. Five to six scans were taken randomly for 

each plot. The average value was calculated subsequently and used as the plot reflectance. 

 Next, the FORMOSAT-2 (F2), RapidEye (RY), and WorldView-2 (WV2) bands were 

simulated and evaluated. Detailed sensor characteristics for the three satellite systems were 

shown in Table 5-2. The field hyperspectral data were resampled in order to simulate the 

satellite wavebands based on the theory of band equivalent reflectance explained as Equation 

(5-1): 

𝑟𝒾  =  ∑ 𝑟(𝜆)

𝜆𝑙𝒾

𝜆𝑢𝒾

𝜑𝒾(𝜆) ∑ 𝜑𝒾(𝜆)

𝜆𝑙𝒾

𝜆𝑢𝒾

⁄  (5-1） 

where ri stands for the reflectance of band i; λui is the starting wavelength of band i; λli is the 

termination wavelength of band i; r(λ) is the reflectance value at wavelength λ; φi(λ) is the 

band response function of band i at wavelength 𝜆 . The band response function data of 



Chapter 5: Potential of RapidEye and WorldView-2 Satellite Data for Improving Rice Nitrogen Status Monitoring at 

Different Growth Stages 

76 

FORMOSAT-2 was provided by the NSPO while the corresponding data for RapidEye and 

WorldView-2 were supplied by the ENVI 4.8 software (Harris Geospatial Solutions, 

Broomfield, CO, USA) (Fig. 5-1). 

Table 5-2 The properties of the FORMOSAT-2, RapidEye, and WorldView-2 satellite sensors. 

Properties FORMOSAT-2 (F2) RapidEye (RY) WorldView-2 (WV2) 

Type Sun-synchronous Sun-synchronous Sun-synchronous 

Launch time 4 May 2004 8 August 2008 9 October 2009 

Orbit altitude (km) 891 620 770 

Spatial Resolution for 

Multispectral bands (m) 
8 6.5 2 

Spatial Resolution for 

Panchromatic bands (m) 
2 - 0.5 

Revisit time (Day) 1  < 1 1.1 

Swath width (km) 24 80 16.4 

Band settings 

450–520 nm (Blue: B) 

520–600 nm (Green: G) 

630–690 nm (Red: R) 

760–900 nm (NIR1: 

NIR1) 

440–510 nm (Blue: B) 

520–590 nm (Green: G) 

630–685 nm (Red: R) 

690–730 nm (Red edge: RE) 

760–900 nm (NIR1: NIR1) 

400–450 nm (Coastal: C) 

450–510 nm (Blue: B) 

510–581 nm (Green: G) 

585–625 nm (Yellow: Y) 

630–690 nm (Red: R) 

705–745 nm (Red Edge: RE) 

770–895 nm (NIR1: NIR1) 

860–1040 nm (NIR2: NIR2) 

 

 

Fig. 5-1 Band response functions for: FORMOSAT-2 (a); RapidEye (b); and WorldView-2 (c) satellite 

sensors used in this study. 
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5.2.5 Data analysis 

 All 369 in-situ samples were divided into two groups by a stratified random sampling 

method, with approximately 2/3 of the data used for model calibration and the rest for model 

validation. 

 In total, 21 different VIs were calculated (Table 5-3) and correlated with the four N 

status indicators separately. To evaluate the band effects of simulated satellite data on the 

relationships between VIs and N status indicators over the growing season, the same VIs 

were calculated for all three types of satellite data when possible. Linear regression models 

were then constructed for the three individual growth stages and across the stages. The 

relationships between each of the VIs and each of the indicators were determined. The 

coefficient of determination (R2) was used to assess and compare the performance of the VI 

models. According to the R2 ranking, the top 5 VIs were listed, and the best VIs were shown 

in scatter plots. The Root Mean Square Error (RMSE) and relative error (REr) were also 

calculated to evaluate the model performance. 

In addition, SMLR using SPSS V.20.0 (IBM SPSS Statistics, Armonk, NY, USA) and 

PLSR using Matlab 7.10 (MathWorks, Natick, MA, USA) were implemented to estimate the 

four variables. In order to evaluate the relative importance of each waveband in each of the 

PLSR models, the Variable Importance in Projection (VIP) values were computed. The VIP 

is a variable selection method in PLSR. It calculates the influence of the independent 

variables to the dependent variable, and selects the most influential predictors for a PLSR 

model. The VIP value for a variable is a weighted sum of squares of the PLSR weights that 

take into account the explained variance of each PLSR dimension. A variable with a VIP 

value greater than one is considered important in the PLSR model. The larger the VIP score, 

the greater the contribution of the variable. The VIP values can be used to identify individual 

waveband importance and the most effective spectral regions (Chong & Jun, 2005; Li et al., 

2014b).
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Table 5-3 Vegetation indices evaluated in this study for estimating rice N status indicators. 

Vegetation Indices Formula Satellite Sensors Reference 

Ration Vegetation Index (RVI) NIR/R F2, RY, WV2 Jordan (1969) 

Chlorophyll Index (CI) (NIR/G) − 1 F2, RY, WV2 Gitelson et al. (2005) 

Normalized Difference Vegetation 

Index (NDVI) 

(NIR − R)/(NIR + R) F2, RY, WV2 Rouse et al. (1973) 

Green NDVI (GNDVI) (NIR − G)/(NIR + G) F2, RY, WV2 Gitelson et al. (1996) 

Optimized Soil Adjusted 

Vegetation Index (OSAVI) 

(1 + 0.16)×((NIR − R)/(NIR + R + 

0.16)) 

F2, RY, WV2 Rondeaux et al. (1996) 

Modified Chlorophyll Absorption 

in Reflectance Index (MCARI) 

((NIR − R) − 0.2(R − G))×(NIR/R) F2, RY, WV2 Daughtry et al. (2000) 

Triangular Vegetation Index (TVI) 0.5×(120(NIR − G) − 200(R − G)) F2, RY, WV2 Broge & Leblanc (2000) 

Modified Transformed Chlorophyll 

Absorption in Reflectance Index 

(TCARI) 

3×((NIR − R) − 0.2(NIR − 

G)(NIR/R)) 

F2, RY, WV2 Haboudane et al. (2002) 

MCARI/OSAVI MCARI/OSAVI F2, RY, WV2 Haboudane et al. (2002) 

TCARI/OSAVI TCARI/OSAVI F2, RY, WV2 Haboudane et al. (2002) 

Red Edge Chlorophyll Index 

(RECI) 

(NIR/RE) − 1 RY, WV2 Broge & Leblanc (2000) 

Normalized difference Red Edge 

Index (NDRE) 

(NIR − RE)/(NIR + RE) RY, WV2 Fitzgerald et al. (2010) 

MERIS Terrestrial Chlorophyll 

Index (MTCI) 

(NIR − RE)/(RE − R) RY, WV2 Dash & Curran (2004) 

Canopy Chlorophyll Content Index 

(CCCI) 

(NDRE − NDREmin)/(NDREmax − 

NDREmin) 

RY, WV2 Fitzgerald et al. (2010) 

Nitrogen Planar Domain Index 

(NDPI) 

(RECI − RECImin)/(RECImax − 

RECImin) 

RY, WV2 Clarke et al. (2001) 

Red Edge OSAVI (REOSAVI) (1 + 0.16)×((NIR − RE)/(NIR + 

RE + 0.16)) 

RY, WV2 Wu et al. (2008) 

Red Edge MCARI (REMCARI) ((NIR − RE) − 0.2(RE − G)) × 

(NIR/RE) 

RY, WV2 Wu et al. (2008) 

Red Edge Triangular Vegetation 

Index (RETVI) 

0.5×(120(NIR − G) − 200(RE − 

G)) 

RY, WV2 Broge & Leblanc (2000) 

Red Edge TCARI (RETCARI) 3×((NIR − RE) − 0.2(NIR − 

G)(NIR/RE)) 

RY, WV2 Wu et al. (2008) 

REMCARI/REOSAVI REMCARI/REOSAVI RY, WV2 Wu et al. (2008) 

RETCARI/REOSAVI RETCARI/REOSAVI RY, WV2 Wu et al. (2008) 
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5.3 Results 

5.3.1 Variability of the N status indicators 

 The descriptive statistics of the four N status indicators at different growth stages for 

both of the calibration and validation datasets were listed in Table 5-4. In the calibration 

dataset, both AGB and PNU increased moderately from the PI stage to the SE stage, and 

dramatically to the HE stage. In contrast, PNC decreased slightly from the PI stage to the SE 

stage, and declined sharply to the HE stage, affected by the “dilution effect” described by 

Plénet and Lemaire (1999). The NNI indicated a slightly under-supply of N at the PI stage, 

but a nearly optimal N supply at the SE stage and an over-supply at the HE stage. The AGB 

and PNU had larger coefficients of variation (CVs) than PNC and NNI (Table 5-4). Similar 

trends were observed for the validation dataset. The mean values of the four N indicators 

across stages were similar for both datasets. 

Table 5-4 Descriptive statistics of the measured aboveground biomass (AGB), N concentration (PNC), 

plant N uptake (PNU), and N nutrition index (NNI) for the model estimation and validation at the panicle 

initiation (PI), stem elongation (SE), heading (HE) and across stages (All). 

Stage Statistical indicator 

Calibration Dataset Validation Dataset 

AGB  

(t ha-1) 

PNC 

 (g kg-1) 

PNU  

(kg ha-1) 
NNI  

AGB  

(t ha-1) 

PNC  

(g kg-1) 

PNU  

(kg ha-1) 
NNI  

PI 

n 57 57 57 57 28 28 28 28 

Mean 1.11 24.7 27.53 0.96 1.05 24.6 26.09 0.94 

SD 0.50 1.72 12.71 0.11 0.48 2.08 11.84 0.10 

CV 45.02 6.97 46.17 11.4 45.79 8.45 45.4 10.63 

SE 

n 92 92 92 92 45 45 45 45 

Mean 1.78 23.6 40.13 1.01 1.83 23.9 41.32 1.02 

SD 0.88 3.57 16.96 0.14 0.99 3.50 18.25 0.12 

CV 49.36 15.11 42.26 13.74 54.17 14.64 44.17 12.04 

HE 

n 98 98 98 98 49 49 49 49 

Mean 6.28 16.2 103.34 1.09 5.93 16.0 95.41 1.05 

SD 1.49 2.76 36.20 0.24 1.45 2.90 31.09 0.22 

CV 23.75 17.06 35.03 21.97 24.46 18.11 32.59 21.18 

All 

n 247 247 247 247 122 122 122 122 

Min 0.20 8.3 4.39 0.53 0.14 9.6 3.17 0.65 

Max 9.92 31.5 205.64 1.63 9.21 33.5 195.37 1.63 

Mean 3.41 20.9 62.30 1.03 3.30 20.9 59.55 1.02 

SD 2.59 4.84 42.36 0.19 2.45 4.98 37.94 0.17 

CV 75.95 22.97 67.99 18.45 74.24 23.92 63.71 16.67 

n: number of observations; SD: standard deviation; CV: coefficient of variation (%). 
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5.3.2 Correlation between N indicators and vegetation indices 

 For VI models derived from RapidEye and WorldView-2 bands, all the top five ones for 

AGB (Table 5-5) and PNU (Table 5-6) estimations were based on RE indices—MERIS 

Terrestrial Chlorophyll Index (MTCI), Canopy Chlorophyll Content Index (CCCI), N Planar 

Domain Index (NDPI), Red Edge Chlorophyll Index (RECI), and NDRE. Comparatively, 

the top five FORMOSAT-2-based VI models showed significantly lower performance at the 

PI and SE stages and slightly lower performance at the HE stage and across the stages, 

demonstrating the importance of using RE band in AGB and PNU estimations at early and 

middle growth stages. From the PI through the HE stages, the best performed RE VI models 

showed R2 values ranging from 0.62 to 0.65 for PNU estimation (Table 5-6). Across the 

stages, the RE-based NDPI, RECI, MTCI and the traditional Chlorophyll Index (CI) 

explained the most variability for AGB and PNU estimations with R2 ranging from 0.80 to 

0.83 (Fig. 5-2). 

 In contrast, as shown in Table 5-5, PNC did not have any significant relationships with 

most of the VIs at the PI and SE stages, indicating the difficulty of estimating N 

concentrations at early and middle stages using VIs. However, at the HE stage, the model 

performance was significantly improved with the highest R2 ranging from 0.42 to 0.57. 

Again, the RE-based indices performed better at this stage. Across the stages, similar 

performance was obtained for both groups of indices. In addition, Table 5-6 revealed an 

improved NNI estimation using RE-based VIs relative to the non-RE ones. The performance 

gap between the two groups of indices was the smallest at the SE stage. Likewise, the best 

RE-based VI models (R2 = 0.60-0.62) for NNI estimation were found to be at the HE stage, 

slightly better than the original CI (R2 = 0.58) and GNDVI (R2 = 0.57) models. These results 

demonstrated that the best stage for PNC and NNI estimations based on these satellite sensor 

bands was the HE stage. For FORMOSAT-2-based indices, the CI was the best for estimating 

these N indicators in most cases (Fig. 5-2). 
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Fig. 5-2 Relationships between: FORMOSAT-2-based Chlorophyll Index (CI) (a); RapidEye-based 

MERIS Terrestrial Chlorophyll Index (MTCI) (b); WorldView-2-based Nitrogen Planar Domain Index 

(NDPI) (c), and aboveground biomass (AGB); FORMOSAT-2-based CI (d); RapidEye-based MTCI (e); 

WorldView-2-based NDPI (f), and plant N uptake (PNU); and FORMOSAT-2-based CI (g); RapidEye-

based MTCI (h); WorldView-2-based NDPI (i), and N nutrition index (NNI), at the panicle initiation (PI), 

stem elongation (SE), heading (HE), and across all stages. The relationships between VIs and N status 

indicators across growth stages are indicated by the red lines. 
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Table 5-5 The top five coefficients of determination (R2) for the relationships between vegetation indices based on the wavebands of FORMOSAT-2 (F2), RapidEye 

(RY), WorldView-2 (WV2) and aboveground biomass (AGB), plant N concentration (PNC) at the panicle initiation (PI), stem elongation (SE), heading (HE), and 

across stages (All), respectively. Only significant R2 values were listed. 

PI Stage SE Stage HE Stage All 

Index AGB Index AGB Index AGB Index AGB 

F2-CI 0.39 ** F2-GNDVI 0.41 ** F2-CI 0.28 ** F2-CI 0.82 ** 

F2-GNDVI 0.35 ** F2-OSAVI 0.41 ** F2-GNDVI 0.27 ** F2-RVI 0.80 ** 

F2-MCARI/OSAVI 0.33 ** F2-NDVI 0.41 ** F2-RVI 0.21 ** F2-MCARI/OSAVI 0.77 ** 

F2-TCARI/OSAVI 0.34 ** F2-CI 0.40 ** F2-NDVI 0.20 ** F2-TCARI/OSAVI 0.77 ** 

F2-RVI 0.33 ** F2-TVI 0.39 ** F2-TCARI/OSAVI 0.18 ** F2-MCARI 0.75 ** 

RY-MTCI 0.64 ** RY-MTCI 0.53 ** RY-MTCI 0.28 ** RY-CI 0.82 ** 

RY-CCCI 0.61 ** RY-CCCI 0.51 ** RY-CCCI 0.28 ** RY-RECI 0.81 ** 

RY-NDPI 0.59 ** RY-NDPI 0.50 ** RY-NDPI 0.28 ** RY-NDPI 0.81 ** 

RY-RECI 0.46 ** RY-RECI 0.47 ** RY-RECI 0.28 ** RY-RVI 0.80 ** 

RY-NDRE 0.43 ** RY-NDRE 0.46 ** RY-NDRE 0.28 ** RY-MTCI 0.80 ** 

WV2-NDPI 0.65 ** WV2-MTCI 0.57 ** WV2-NDPI 0.30 ** WV2-CI 0.82 ** 

WV2-MTCI 0.62 ** WV2-NDPI 0.54 ** WV2-MTCI 0.30 ** WV2-RECI 0.82 ** 

WV2-RETVI 0.57 ** WV2-RECI 0.51 ** WV2-RECI 0.30 ** WV2-MTCI 0.81 ** 

WV2-RECI 0.54 ** WV2-NDRE 0.50 ** WV2-NDRE 0.30 ** WV2-RETVI 0.81 ** 

WV2-NDRE 0.53 ** WV2-RETVI 0.47 ** WV2-CCCI 0.30 ** WV2-NDPI 0.80 ** 

Index PNC Index PNC Index PNC Index PNC 

F2-CI  F2-NDVI 0.06 * F2-CI 0.53 ** F2-OSAVI 0.42 ** 

F2-GNDVI  F2-GNDVI  F2-GNDVI 0.52 ** F2-TVI 0.41 ** 

F2-RVI  F2-OSAVI  F2-NDVI 0.46 ** F2-NDVI 0.39 ** 

F2-TCARI/OSAVI  F2-CI  F2-RVI 0.44 ** F2-RVI 0.39 ** 

F2-TCARI  F2-RVI  F2-TCARI/OSAVI 0.42 ** F2-GNDVI 0.39 ** 

RY-RETCARI/REOSAVI  RY-RETCARI 0.09 ** RY-RECI 0.57 ** RY-OSAVI 0.42 ** 

RY-GNDVI  RY-NDVI 0.06 * RY-MTCI 0.56 ** RY-REOSAVI 0.42 ** 

RY-RECI  RY-NDRE 0.05 * RY-NDPI 0.56 ** RY-TVI 0.41 ** 

RY-NDPI  RY-MTCI  RY-NDRE 0.55 ** RY-GNDVI 0.40 ** 

RY-MTCI  RY-GNDVI  RY-RETCARI/REOSAVI 0.55 ** RY-RETVI 0.40 ** 

WV2-GNDVI  WV2-MTCI 0.07 * WV2-REOSAVI 0.57 ** WV2-RETCARI 0.44 ** 

WV2-RECI  WV2-NDVI 0.06 * WV2-RECI 0.56 ** WV2-OSAVI 0.42 ** 

WV2-NDPI  WV2-NDRE 0.05 * WV2-MTCI 0.56 ** WV2-REOSAVI 0.41 ** 

WV2-NDRE  WV2-GNDVI  WV2-NDRE 0.56 ** WV2-TVI 0.41 ** 

WV2-CI  WV2-RECI  WV2-NDPI 0.55 ** WV2-GNDVI 0.39 ** 
** Correlation is significant at the P ≤ 0.01 level; * Correlation is significant at the P ≤ 0.05 level. 
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Table 5-6 The top five coefficients of determination (R2) for the relationships between vegetation indices based on the wavebands of FORMOSAT-2 (F2), RapidEye 

(RY), WorldView-2 (WV2) and plant N uptake (PNU), N nutrition index (NNI) at the panicle initiation (PI), stem elongation (SE), heading (HE), and across stages 

(All), respectively. Only significant R2 values were listed. 

PI Stage SE Stage HE Stage All 

Index PNU Index PNU Index PNU Index PNU 

F2-CI 0.39 ** F2-CI 0.52 ** F2-CI 0.50 ** F2-CI 0.81 ** 

F2-GNDVI 0.35 ** F2-TVI 0.52 ** F2-GNDVI 0.48 ** F2-RVI 0.77 ** 

F2-TCARI/OSAVI 0.34 ** F2-GNDVI 0.50 ** F2-RVI 0.40 ** F2-MCARI/OSAVI 0.76 ** 

F2-RVI 0.33 ** F2-OSAVI 0.50 ** F2-NDVI 0.39 ** F2-TCARI/OSAVI 0.76 ** 

F2-MCARI/OSAVI 0.33 ** F2-MCARI/OSAVI 0.49 ** F2-TCARI/OSAVI 0.36 ** F2-MCARI 0.75 ** 

RY-MTCI 0.62 ** RY-MTCI 0.64 ** RY-NDPI 0.52 ** RY-NDPI 0.83 ** 

RY-CCCI 0.59 ** RY-CCCI 0.62 ** RY-RECI 0.52 ** RY-MTCI 0.82 ** 

RY-NDPI 0.58 ** RY-NDPI 0.61 ** RY-MTCI 0.51 ** RY-CI 0.81 ** 

RY-RECI 0.46 ** RY-RECI 0.57 ** RY-RETCARI 0.51 ** RY-RECI 0.81 ** 

RY-NDRE 0.43 ** RY-RETVI 0.56 ** RY-RETCARI/REOSAVI 0.51 ** RY-REMCARI 0.79 ** 

WV2-NDPI 0.63 ** WV2-NDPI 0.65 ** WV2-RECI 0.62 ** WV2-NDPI 0.82 ** 

WV2-MTCI 0.60 ** WV2-MTCI 0.64 ** WV2-NDPI 0.61 ** WV2-MTCI 0.82 ** 

WV2-RETVI 0.54 ** WV2-RETVI 0.61 ** WV2-MTCI 0.61 ** WV2-RECI 0.82 ** 

WV2-RECI 0.53 ** WV2-RECI 0.60 ** WV2-NDRE 0.61 ** WV2-CI 0.81 ** 

WV2-NDRE 0.52 ** WV2-NDRE 0.59 ** WV2-REOSAVI 0.61 ** WV2-REMCARI 0.81 ** 

Index NNI Index NNI Index NNI Index NNI 

F2-CI 0.35 ** F2-TCARI 0.34 ** F2-CI 0.58 ** F2-CI 0.32 ** 

F2-TCARI/OSAVI 0.32 ** F2-TCARI/OSAVI 0.33 ** F2-GNDVI 0.57 ** F2-TCARI 0.30 ** 

F2-RVI 0.31 ** F2-MCARI 0.33 ** F2-NDVI 0.48 ** F2-MCARI 0.29 ** 

F2-GNDVI 0.31 ** F2-MCARI/OSAVI 0.32 ** F2-RVI 0.47 ** F2-TCARI/OSAVI 0.29 ** 

F2-MCARI/OSAVI 0.29 ** F2-CI 0.30 ** F2-TCARI/OSAVI 0.44 ** F2-RVI 0.28 ** 

RY-MTCI 0.44 ** RY-REMCARI 0.35 ** RY-NDPI 0.61 ** RY-RETCARI/REOSAVI 0.37 ** 

RY-NDPI 0.44 ** RY-CCCI 0.34 ** RY-RECI 0.61 ** RY-MTCI 0.37 ** 

RY-RECI 0.38 ** RY-TCARI 0.34 ** RY-MTCI 0.61 ** RY-NDPI 0.35 ** 

RY-CCCI 0.36 ** RY-MTCI 0.33 ** RY-NDRE 0.60 ** RY-CCCI 0.35 ** 

RY-NDRE 0.36 ** RY-REMCARI/REOSAVI 0.33 ** RY-RETCARI/REOSAVI 0.60 ** RY-RETCARI 0.34 ** 

WV2-MTCI 0.41 ** WV2-NDPI 0.37 ** WV2-RECI 0.62 ** WV2-NDPI 0.37 ** 

WV2-RECI 0.41 ** WV2-REMCARI 0.36 ** WV2-NDPI 0.61 ** WV2-MTCI 0.35 ** 

WV2-NDRE 0.41 ** WV2-RETVI 0.36 ** WV2-MTCI 0.61 ** WV2-CCCI 0.35 ** 

WV2-NDPI 0.40 ** WV2-TCARI 0.34 ** WV2-NDRE 0.61 ** WV2-RECI 0.34 ** 

WV2-RETVI 0.38 ** WV2-TCARI/OSAVI 0.33 ** WV2-REOSAVI 0.61 ** WV2-REMCARI 0.33 ** 
** Correlation is significant at the P ≤ 0.01 level; * Correlation is significant at the P ≤ 0.05 level. 
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 The improvements of RE-based VIs over traditional ones (B, G, R, and NIR bands) were 

also demonstrated in Fig. 5-3. It is evident that most of the RE-based indices derived from 

the WorldView-2 bands had the best performance, followed by the RapidEye RE-based 

indices, and the FORMOSAT-2-based VIs had the worst performance. The slightly better 

performance of WorldView-2 RE-based indices relative to those of RapidEye might be 

attributed to the different RE band settings of the two satellite sensors. Particularly, the RE-

based Transformed Chlorophyll Absorption Reflectance Index (RETCARI) and 

RETCARI/RE-based Optimized Soil Adjusted Vegetation Index (REOSAVI) based on 

RapidEye bands underperformed than the same indices with WorldView-2 bands at the PI 

stage, but the opposite was true at the HE stage (Fig. 5-3). 

 

Fig. 5-3 Comparison of different vegetation indices (VIs) calculated using FORMOSAT-2 (F2), RapidEye 

(RY) and WorldView-2 (WV2) satellite data for the relationships with aboveground biomass (AGB), plant 

N uptake (PNU), and N nutrition index (NNI) at the panicle initiation (PI) and heading (HE) stages, 

respectively. 

5.3.3 Stepwise multiple linear regression analysis 

 The SMLR analysis indicated that models using the simulated RapidEye and 

WorldView-2 bands explained more variability than the ones using FORMOSAT-2 bands at 

the PI and SE stages (Table 5-7). The regression results showed that the NIR1 band was the 
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most important band for estimating these N status indicators as it was selected in all the 

models except the FORMOSAT-2 AGB estimation model at the SE stage. In addition, the 

RE bands of RapidEye and WorldView-2 were important for AGB, PNU, and NNI 

estimations at the PI and SE stages (Table 5-7). 

At the HE stage, the R2 values for all the SMLR AGB models were similar (0.29-0.31) 

based on the three sensor datasets (Table 5-7). Better R2 values were achieved for PNU 

(R2 = 0.50-0.52), PNC (R2 = 0.51-0.57) and NNI (R2 = 0.57-0.61) estimations at this stage 

than previous ones. The SMLR models outperformed the VI-based models for estimating 

PNC; however, none of the models performed satisfactorily at the PI and SE stages (Table 

5-7). Compared to the best-performed VI models for estimating all four N indicators, the 

SMLR models yielded higher R2 at the PI and SE stages, but similar R2 at the HE stage and 

across the stages (Tables 5-5, 5-6, 5-7). 

In general, AGB and PNU were best estimated at the early growth stage (PI) and across 

the stages while NNI and PNC were best estimated at the later stage (HE). In most cases, the 

regression models based on the simulated WorldView-2 bands had the highest performance 

for AGB, PNU, and NNI estimations at a specific growth stage. 

5.3.4 Partial least squares regression modeling 

Table 5-8 presents the R2 and RMSE of Calibration (RMSEC) values of the PLSR 

models for the four N indicators using the entire spectra of the three simulated satellite bands. 

According to the R2 and RMSEC values, the WorldView-2 band-based PLSR models 

significantly outperformed all the FORMOSAT-2-based ones while the RapidEye-based 

PLSR models achieved slightly better results than the FORMOSAT-2 ones. However, the 

performance gaps were much smaller at the HE stage and across the three stages. 
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Table 5-7 Stepwise multiple linear regression (SMLR) models based on simulated multi-spectral FORMOSAT-2 (F2), RapidEye (RY), WorldView-2 (WV2) 

wavebands for estimating aboveground biomass (AGB), plant N uptake (PNU), N nutrition index (NNI), and plant N concentration (PNC) at the panicle initiation 

(PI), stem elongation (SE), heading (HE) and across stages. The wavebands were ranked by the entered order. 

 AGB PNU NNI PNC 

 PI SE HE All PI SE HE All PI SE HE All PI SE HE All 

Based on F2 bands               

R2 0.61** 0.51** 0.29** 0.82** 0.60** 0.66** 0.50** 0.81** 0.45** 0.30** 0.57** 0.36** 0.08* 0.22** 0.51** 0.43** 

Band NIR1 R G NIR1 NIR1 NIR1 R NIR1 NIR1 NIR1 R NIR1 G R R NIR1 

 G B NIR1 G G G NIR1 G G  NIR1 G  B NIR1 R 

 B   B B B G B B  G B  NIR1 G  

 R    R R        G   

Based on RY bands               

R2 0.68** 0.55** 0.29** 0.82** 0.66** 0.68** 0.50** 0.82** 0.46** 0.50** 0.59** 0.38** 0.07* 0.20** 0.57** 0.43** 

Band NIR1 NIR1 G NIR1 NIR1 NIR1 R NIR1 R NIR1 R NIR1 G R NIR1 NIR1 

 RE RE NIR1 RE RE RE NIR1 RE NIR1 RE NIR1 RE  B RE R 

 R G   R B RE R RE R RE R  NIR1 G  

 B    B         G   

Based on WV2 bands               

R2 0.76** 0.63** 0.31** 0.82** 0.71** 0.69** 0.52** 0.82** 0.52** 0.49** 0.61** 0.38** 0.09** 0.10** 0.56** 0.43** 

Band NIR1 NIR1 Y NIR1 NIR1 NIR1 NIR1 NIR1 NIR1 NIR1 NIR1 NIR1 Y R R NIR2 

 RE RE NIR1 RE RE RE RE RE RE RE RE RE  B NIR2 R 

 NIR2 G G R R G   NIR2 R  G   RE  

 C R   NIR2     Y       

 Y Y   C            

** Correlation is significant at the P ≤ 0.01 level; * Correlation is significant at the P ≤ 0.05 level.
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Table 5-8 Aboveground biomass (AGB), plant N uptake (PNU), N nutrition index (NNI), and plant N concentration (PNC) modeling (calibration subset) by partial 

least square regression (PLSR) analysis using the wavelengths based on the FORMOSAT-2 (F2), RapidEye (RY), WorldView-2 (WV2) datasets at the panicle 

initiation (PI), stem elongation (SE), heading (HE) and across stages (All). RMSEC stands for the RMSE of calibration subset. 

  AGB PNU NNI PNC 

  PI SE HE All PI SE HE All PI SE HE All PI SE HE All 

Based on F2 bands               

R2 0.64 0.56 0.31 0.82 0.62 0.68 0.50 0.81 0.46 0.50 0.58 0.36 0.09 0.22 0.54 0.43 

RMSEC 0.3 0.58 1.23 1.11 7.76 9.61 25.5 18.32 0.08 0.1 0.15 0.15 1.62 3.14 1.87 3.64 

Based on RY bands              

R2 0.71 0.57 0.3 0.82 0.69 0.69 0.5 0.82 0.49 0.52 0.59 0.36 0.11 0.23 0.56 0.44 

RMSEC 0.26 0.57 1.24 1.11 7.02 9.44 25.44 18.05 0.08 0.10 0.15 0.15 1.62 3.12 1.81 3.63 

Based on WV2 bands              

R2 0.78 0.67 0.38 0.84 0.75 0.78 0.55 0.83 0.55 0.56 0.62 0.43 0.24 0.31 0.6 0.43 

RMSEC 0.23 0.5 1.17 1.02 6.24 7.87 24.22 17.56 0.07 0.09 0.15 0.14 1.48 2.94 1.73 3.33 
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Similar to the SMLR analysis, AGB and PNU were best estimated at the PI stage and 

across the stages by the PLSR method, whereas NNI and PNC were best estimated at the HE 

stage. The PLSR and SMLR methods had similar performance for the AGB and PNU 

estimations while better R2 and RMSEC values were found in the PLSR models for NNI and 

PNC estimations in most cases. Especially for the PNC estimation, the PLSR models based 

on the WorldView-2 bands explained significantly more variability (R2 = 0.24-0.31) 

compared to the counterparts of SMLR models (R2 = 0.09-0.10) at the PI and SE stages. 

In addition, the calculated VIP values revealed that for AGB and PNU estimation, the 

NIR bands, especially the NIR1 centered at 830 nm was the most important one in the PLSR 

models in most cases (Figs. 5-4, 5-5). In contrast, for PNC estimation, the VIP scores 

indicated that the most important band changed from G band (for FORMOSAT-2 and 

RapidEye) at the PI stage to R band at the SE stage, and finally to NIR1 band at the HE stage 

(Fig. 5-6a-c). For NNI estimation, the NIR1 band was consistently important (Fig. 5-6d-f). 

The R band at the PI stage (Fig. 5-6d), G band at the SE stage (Fig. 5-6e) and both G and R 

bands at the HE stage were important for NNI estimation. The RE band showed relatively 

high VIP values at the SE stage for both AGB and PNU estimations and at the PI stage for 

PNC estimation. The Y band of WorldView-2 demonstrated its importance at the HE stage 

for AGB, PNU, and NNI estimations. Notably, the Y band had high VIP values for PNC 

estimation from PI thru HE stages. The C band of WorldView-2 also had VIP values close 

to or above “1” for AGB and PNU estimations at the SE stage (Figs. 5-4, 5-5, 5-6). 

 

Fig. 5-4 Variable Importance in Projection (VIP) values as function of wavelengths formatted to 

FORMOSAT-2, RapidEye, and WorldView-2 spectra for aboveground biomass (AGB) estimation at: the 

panicle initiation (PI) (a); stem elongation (SE) (b); heading (HE) (c); and across stages (d). 
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5.3.5 Validation of the estimation models 

 The validation results of the three types of models were summarized in Table 5-9. 

The VI-based PNC model validation for the PI stage was excluded since no significant 

relationship was identified. For AGB and PNU estimations, the RapidEye and 

WorldView-2 band-based VI models had significantly higher R2 than those based on 

FORMOSAT-2 bands while the validation results of the former two types of models 

were more comparable at the PI and SE stages (Table 5-9). The SMLR and PLSR 

validation models showed similar results. However, the FORMOSAT-2-based SMLR 

and PLSR models had significantly higher R2 and lower RMSE and REr compared to 

the counterparts of VI models. For PNC estimation, the WorldView-2 band-based PLSR 

models had significantly higher R2 than those of FORMOSAT-2-based models at the PI 

and SE stages (Table 5-9). In most cases, the SMLR and PLSR models showed better 

performance for estimating the four N indicators than the VI models. 

 

Fig. 5-5 Variable Importance in Projection (VIP) values as function of wavelengths formatted to 

FORMOSAT-2, RapidEye, and WorldView-2 spectra for plant N uptake (PNU) estimation at: the panicle 

initiation (PI) (a); stem elongation (SE) (b); heading (HE) (c); and across stages (d). 
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Fig. 5-6 Variable Importance in Projection (VIP) values as function of wavelengths formatted to 

FORMOSAT-2, RapidEye, and WorldView-2 spectra for plant N concentration (PNC) estimation at: the 

panicle initiation (PI) (a); stem elongation (SE) (b); and heading (HE) (c) stages; and for N nutrition index 

(NNI) estimation at: the PI (d); SE (e); and HE (f) stages. 
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Table 5-9 Comparison of the validation results for the best performed vegetation indices (VIs), the stepwise multiple linear regression (SMLR) models, and the 

partial least squares regression (PLSR) models for biomass (AGB), plant N uptake (PNU), N nutrition index (NNI), and plant N concentration (PNC) estimations at 

the panicle initiation (PI), stem elongation (SE), and heading (HE) stages. RMSEP stands for the RMSE of validation subset. 

 AGB PNU 
 PI SE HE PI SE HE 
 F2 RY WV2 F2 RY WV2 F2 RY WV2 F2 RY WV2 F2 RY WV2 F2 RY WV2 

Best performed VI-based models               

R2 0.36 0.76 0.64 0.57 0.73 0.75 0.26 0.28 0.32 0.37 0.73 0.62 0.66 0.78 0.72 0.47 0.46 0.45 

RMSEP 0.39 0.24 0.29 0.67 0.53 0.70 1.27 1.25 1.23 9.33 6.16 7.27 10.92 8.71 9.73 23.77 24.06 24.20 

REr (%) 36.56 22.73 27.40 36.90 29.08 38.35 21.46 21.13 20.66 35.75 23.61 27.88 26.43 21.08 23.54 24.91 25.22 25.36 

SMLR-based models                 

R2 0.69 0.77 0.85 0.65 0.77 0.82 0.39 0.39 0.39 0.73 0.78 0.84 0.76 0.78 0.76 0.49 0.50 0.49 

RMSEP 0.27 0.23 0.19 0.62 0.53 0.45 1.19 1.19 1.18 6.27 5.56 4.74 9.83 9.28 9.36 23.04 22.98 23.14 

REr (%) 25.56 21.95 17.81 33.90 28.87 24.78 19.98 19.99 19.83 24.03 21.30 18.16 23.79 22.45 22.66 24.14 24.08 24.25 

PLSR-based models                 

R2 0.65 0.77 0.84 0.76 0.79 0.78 0.38 0.39 0.33 0.70 0.77 0.81 0.76 0.77 0.72 0.50 0.49 0.47 

RMSEP 0.28 0.23 0.19 0.55 0.52 0.48 1.18 1.18 1.23 6.49 5.59 5.12 9.76 9.34 9.92 23.07 23.14 23.54 

REr (%) 26.79 21.62 18.10 30.27 28.45 26.17 19.91 19.93 20.72 24.88 21.43 19.64 23.63 22.59 24.01 24.18 24.26 24.68 
 NNI PNC 
 PI SE HE PI SE HE 
 F2 RY WV2 F2 RY WV2 F2 RY WV2 F2 RY WV2 F2 RY WV2 F2 RY WV2 

Best performed VI-based models               

R2 0.37 0.45 0.41 0.28 0.32 0.27 0.43 0.41 0.38 - - - 0.13 0.02 0.24 0.26 0.24 0.20 

RMSEP 0.08 0.07 0.08 0.11 0.10 0.11 0.17 0.18 0.18 - - - 0.33 0.34 0.31 0.25 0.26 0.27 

REr (%) 8.41 7.79 8.14 10.31 10.06 10.94 16.28 16.81 17.29 - - - 13.77 14.44 13.1 15.67 16.17 16.67 

SMLR-based models                 

R2 0.55 0.52 0.44 0.28 0.25 0.30 0.46 0.48 0.46 0.12 0.11 0.09 0.25 0.21 0.37 0.30 0.36 0.30 

RMSEP 0.07 0.07 0.07 0.11 0.11 0.11 0.17 0.16 0.17 0.19 0.20 0.20 0.30 0.31 0.29 0.24 0.23 0.24 

REr (%) 7.18 7.28 7.86 10.34 11.05 10.44 15.81 15.48 15.89 7.92 7.94 7.97 12.58 12.98 12.36 15.19 14.48 15.17 

PLS-based models                 

R2 0.62 0.56 0.54 0.28 0.27 0.24 0.48 0.47 0.44 0.14 0.21 0.34 0.25 0.30 0.48 0.36 0.35 0.30 

RMSEP 0.06 0.07 0.07 0.11 0.11 0.11 0.16 0.16 0.17 1.93 1.87 1.71 3.02 2.93 2.52 2.31 2.35 2.47 

REr (%) 6.68 7.00 7.14 10.53 10.70 10.81 15.44 15.64 16.12 7.85 7.62 6.96 12.64 12.27 10.56 14.43 14.65 15.41 
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5.4 Discussion 

5.4.1 Impacts of growth stages on N status monitoring 

 The AGB increased notably while the PNC decreased steadily over the growth stages in 

this study (Table 5-4), which confirmed to many previous studies (Lemaire et al., 2008; 

Justes et al., 1994; Plénet & Lemaire, 1999; Ata-Ul-Karim et al., 2013). Because PNU is a 

product of AGB and PNC, plants with high PNC and low AGB at earlier growth stages may 

have similar PNU as those with low PNC and higher biomass at later growth stages (Chen 

et al., 2010). Thus, the growth stage is an important reference factor, which must be taken 

into account when using PNU as an indicator for crop N diagnosis. 

 Our VI models revealed that rice AGB and PNU were best estimated at the early growth 

stage while the opposite was true for NNI and PNC. Similarly, Yu et al. (2013) found the 

VIs performed better for estimating rice PNC after the HE stage. Li et al. (2014a) also noted 

that PNC was better estimated at later growth stages for maize. This is because that before 

the HE stage, the N accumulation rate is lower than that of biomass; therefore, the later 

dominates canopy reflectance (Yu et al., 2013; Mistele & Schmidhalter, 2008). After the HE 

stage, the increase in AGB gains slower, and plant N starts to dominate canopy reflectance 

(Yu et al., 2013). Huang et al. (2015) proposed an indirect approach to estimate NNI at the 

PI stage based on the AGB and PNU values derived from FORMOSAT-2 satellite images 

for guiding topdressing N application at the SE stage. This indirect method might be tested 

using RE-based VI models derived from RapidEye and WorldView-2 images in the future. 

5.4.2 Importance of the red edge and other bands for N status estimation 

 The use of canopy spectra for N assessment mostly depends on the close relationship 

between N and chlorophylls in the cell metabolism (Shiratsuchi et al., 2011). The R band-

based VIs like NDVI, RVI, and OSAVI are the most common indices in N status estimation. 

However, the R band can be easily influenced by soil background reflectance at early growth 

stage when vegetation coverage is small. The NDRE and RECI indices significantly 

improved the estimation results compared to NDVI and RVI in our research (Tables 5-5, 5-

6). This is because the RE reflectance is highly correlated with chlorophyll content (Cho & 

Skidmore, 2006; Clevers et al., 2002), and is responsive to variation in LAI or biomass 

(Gnyp et al., 2014; Haboudane et al., 2008). In addition, it is insensitive to background 

effects (Zarco-Tejada et al. 2004). Our results also confirmed the findings by Li et al. (2014a), 

who found that the NDRE and RECI improved the PNC and PNU estimations of summer 

maize. They also proved that the broader bandwidth led to decreased performance of NDVI 

and RVI while no significant effect was identified for NDRE and RECI. 
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 The RE-based index, MTCI, had the best performance in this study. According to Li et 

al. (2014a), the broadband MTCI performed slightly better than the narrow ones. In our study, 

the broadband MTCI calculated using the simulated RapidEye and WorldView-2 bands was 

among the top five indices for AGB, PNU, and NNI estimation models. MTCI was also 

proven to be highly correlated with the PNC in maize (Li et al., 2014a) and in rice (Yu et al., 

2013). It would not saturate at high N treatments (Li et al., 2014a; Shiratsuchi et al., 2011). 

Nevertheless, the relationship between MTCI and PNC might be more influenced by soil 

background at early stages relative to CCCI (Li et al., 2014a). 

 The two RE-based indices, CCCI and NDPI, are both two-dimensional indices (Clarke 

et al., 2001). The CCCI is calculated based on NDVI and NDRE, while the NDPI is based 

on NDVI and RECI. Ramoelo et al. (2012) evaluated the CCCI for wheat canopy N content 

estimation using simulated RapidEye bands, and proved the CCCI performed well for 

estimating N status indicators. Li et al. (2014a) simulated the WorldView-2 wavebands and 

reported that the CCCI and NDPI improved the estimation results. In our study, the CCCI 

and NDPI based on RapidEye, and NDPI based on WorldView-2 bands yielded high R2 for 

AGB (Table 5-5), PNU (Table 5-6), and NNI (Table 5-6) estimations, similar to previous 

research. However, the CCCI based on WorldView-2 bands yielded slightly lower R2 than 

that of RapidEye at early stages. Different RE band settings might lead to the discrepancies 

of model results. In particular, the RE band of WorldView-2 ranges from 705 to 745 nm, 

peaking at 725 nm, while the RE band of RapidEye is set to 690-730 nm, peaking at 710 nm. 

As the crop develops, the RE position moves to longer wavelength due to higher crop 

biomass and plant pigment content. Thus, at early growth stages, the RE-based indices using 

both satellite bands yielded similar R2, while the RE indices of WorldView-2 achieved 

slightly higher R2 for AGB and PNU estimations than the ones of RapidEye at the HE stage 

(Tables 5-5, 5-6). 

 The G band-based GNDVI and CI performed slightly better than the R band-based 

NDVI and RVI. These results confirmed previous findings by Carter (1993) and Carter and 

Knapp (2001), who found that G and RE spectra were sensitive to a wider range of 

chlorophyll levels than R reflectance. Bausch and Khosla (2010) also reported that G band-

based VIs improved N status evaluation compared with R band-based indices. Yu et al. (2013) 

found two “hot zones” related to N status: RE bands (700-760 nm) paired with RE to NIR 

spectral region (700-1100 nm) and G bands (500-590 nm) paired with RE to NIR region 

(700-1100nm), which confirmed the importance of RE, NIR, and G bands for N status 

estimation. 

 The NIR1 waveband explained the most variability compared with other wavebands. 

This was also observed in wheat LAI estimation using PLSR analysis by Herrmann et al. 

(2011), who revealed different VIP values of NIR band between wheat and potato. For rice 
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LAI, leaf dry weight, leaf N concentration, and leaf N density estimations, PLSR models 

demonstrated that the bands > 760 nm and at 687 nm were most important (Nguyen & Lee, 

2006). The RE band (707 nm) was only important for leaf N concentration as the third latent 

variable (Nguyen & Lee, 2006). In our study, the VIP scores indicated it was important to 

include the RE band at the PI stage for PNC estimation and at the SE stage for AGB and 

PNU estimations. The Y band of WorldView-2 demonstrated high importance for PNC 

estimation from PI thru HE stages. In addition, the Y band was significant for estimating all 

four N status variables at the HE stage whereas the C band was valuable for AGB and PNU 

estimations at the SE stage. Such results demonstrated the value of having the additional C 

and Y bands in WorldView-2 sensor for crop N status monitoring. While WorldView-2 data 

with extra spectral bands have higher potential for improving N status monitoring, 

considering the cost factor, RapidEye data might be more practical than WorldView-2 data 

for large-scale studies. 

5.4.3 Limitations of this study 

 Physically based canopy reflectance models were not applied in this study because they 

are complex to design, parameterize, and implement, especially in wet rice paddies. 

Furthermore, those models can only be inverted to retrieve canopy parameters that are 

directly involved in physical processes of radiative transfer, such as photosynthetic pigments, 

instead of N (Stroppiana et al., 2012). The VI, SMLR, and PLSR models generated from this 

study were not validated using actual satellite images. We were able to obtain several 

FORMOSAT-2 images during our sampling period, but they cannot be used for validation 

purpose due to their relatively coarse resolution (8 m) and the relatively small size of our 

experimental fields in this research. However, in our previous research, we have 

demonstrated the application of using FORMOSAT-2 satellite imagery for monitoring rice 

N status in this region (Huang et al., 2015). Given the frequent cloudy and rainy days during 

the growing season in major rice planting regions, it is difficult to obtain satellite images 

within a narrow time window. We could not find any archived RapidEye and WorldView-2 

images that matched our field sampling dates for this remote study site. Some new remote 

sensing technologies, such as all-weather dual-polarimetric TerraSAR-X satellite data 

(Koppe et al., 2013) and low-altitude remote sensing based on unmanned aerial vehicles 

(UAVs) (Mulla & Miao, 2016), may be incorporated to overcome the limitations. 

5.5 Conclusions and future outlooks 

 This study simulated the band settings of FORMOSAT-2, RapidEye, and WorldView-2 

satellite images to evaluate the potentials of using satellite remote sensing with RE and 

additional bands to improve estimation of rice N status. The major findings are summarized 
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as follows: 

 For VI analysis, the best-performed RE-based VIs explained 53%-64% AGB variability 

and 62%-65% PNU variability, compared to 30%-40% AGB and 39%-52% PNU variability 

using the CI at the PI and SE stages. 

 For the NNI estimation, the NPDI based on WorldView-2 bands and MTCI based on 

RapidEye bands explained 14%-26% more variability than FORMOSAT-2-based indices. 

 The SMLR analysis indicated the NIR1 band was most important for estimating all four 

N status indicators. In addition, the RE band improved AGB, PNU, and NNI estimations at 

all the three stages, especially at the early PI and SE stages. 

 The PLSR analysis confirmed the significance of NIR band for PNU estimation at all 

stages. It also revealed that it was important to include RE band for AGB and PNU estimation 

at the SE stage and for PNC estimation at the PI stage. Similar to the RE band, the C band 

of WorldView-2 was also valuable for AGB and PNU estimations at the SE stage. Notably, 

the Y band of Worldview-2 was found to be significant at the later stage (HE) for estimations 

of all four N status variables. Especially for PNC estimation, Y band showed consistent 

importance at all three growth stages. 

 Both the SMLR and PLSR models, especially those based on the WorldView-2 bands, 

improved the estimations of all variables in most cases compared to the VI approach. 

 The PLSR method had slightly better performance than the SMLR approach for NNI 

and PNC estimations in most cases. 

 Biomass and PNU were best estimated at the PI and across the stages while NNI and 

PNC were best assessed at the HE stage. 

 Overall, the analyses based on the simulated WorldView-2 data showed the best results 

for estimating rice N status, followed by the ones based on the RapidEye data. 

 In conclusion, this study demonstrated the values of having the RE as well as the 

additional visible and NIR bands for rice N status monitoring. The VI and linear regression 

methods used have been proven suitable. Satellite remote sensing with high spatial and 

temporal resolution provides a promising technology for large-scale crop N monitoring. In 

the future, the potential of shortwave infrared (SWIR) bands for N status monitoring can be 

further investigated using WorldView-3 data with eight SWIR bands. Other methods such as 

artificial neural networks (ANNs) and support vector machines (SVMs) can be tested in 

order to reveal possible nonlinear relationships in the data. Moreover, airborne or UAV-based 

hyperspectral images should be explored in future studies as some most important 

reflectance features related to N content can only be measured by hyperspectral sensors. 
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Abstract 

 Precision nitrogen (N) management requires accurate and timely in-season site-specific 

assessment of the crop N status. The proximal fluorescence sensor Multiplex®3 is a 

promising tool for monitoring crop N status. It performs non-destructive estimation of N 

sensitive indicators such as chlorophyll and flavonols contents. The objective of this study 

was to evaluate the potential of proximal fluorescence sensing for N status estimation at 

different growth stages for rice in cold regions. In 2012 and 2013, paddy rice field 

experiments with five N supply rates and two varieties were conducted in Northeast China. 

Field samples and fluorescence data in three modes of measurement were collected using 

Multiplex®3 at the panicle initiation (PI), stem elongation (SE), and heading (HE) stages. 

The Multiplex indices and their normalized N sufficient indices (NSI) were then used to 

estimate the five N status indicators: aboveground biomass (AGB), leaf N concentration 

(LNC), plant N concentration (PNC), plant N uptake (PNU), and N nutrition index (NNI), 

were determined. Results indicated that most of the fluorescence indices, especially the 

simple fluorescence ratios (SFR_G, SFR_R), blue-green to red fluorescence ratio 
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(BRR_FRF), flavonols (FLAV), and N balance index (NBI_G, NBI_R), were highly 

sensitive to different N application rates. Strong relationships between some fluorescence 

indices (SFR_G, SFR_R, BRR_FRF, FLAV, NBI_G, and NBI_R) and three N indicators 

(LNC, PNC, NNI) were found, with coefficients of determination (R2) ranging from 0.40 

and 0.78. The N diagnostic results indicated that the NSI based on NBI_R (NBI-RNSI) and 

FLAV achieved the highest diagnosis accuracy rate (90%) at the stem elongation and heading 

stages, respectively, while NBI_RNSI showed the highest diagnostic consistency across 

growth stages. It is concluded that the Multiplex sensor can be used to reliably estimate N 

nutritional status for rice in cold regions, especially for the estimation of LNC, PNC and 

NNI. The normalized sufficiency indices based on Multiplex indices can further improve the 

accuracy of N nutrition diagnosis by reducing the inter-annual variations and changes caused 

by different varieties. 

6.1 Introduction 

 Nitrogen (N) is an essential nutrient for plant growth and development. However, 

excessive N fertilizer applications have led to severe environmental impacts in China (Guo 

et al., 2010; Miao et al., 2011). Therefore, there has been a growing interest in developing 

precision N management strategies in agricultural research for many years. This requires the 

development of efficient and timely crop N status diagnosis strategies and technologies 

(Samborski et al., 2009). 

Plant or leaf N concentration is the direct indicator of N nutrition status. The traditional 

N testing method in the laboratory is time consuming and impractical for characterizing 

spatial and temporal variability in crop N status in precision N management. Alternatively, 

it is known that there is a strong relationship between plant chlorophyll content and N content 

(Evans, 1983; Blackmer & Schepers, 1995). Therefore, various instruments based on 

measuring chlorophyll have been developed to give indirect, nondestructive, and real-time 

estimations of leaf N content (Schlemmer et al., 2005; Samborski et al., 2009). For example, 

the Soil Plant Analysis Development chlorophyll meter (SPAD, Minolta Camera Co., Osaka, 

Japan) is a widely used portable instrument for measuring chlorophyll in leaves. The SPAD 

meter measures the difference in absorption in the red (660 nm) and near-infrared (940 nm) 

wavelengths (Schröder et al., 2000; Schepers et al., 1992a). Leaf chlorophyll absorbs red 

light but not infrared, therefore, the SPAD reading indicate plant chlorophyll concentration 

and N content (Schepers et al., 1992b; Markwell et al., 1995; Lin et al., 2010). However, the 

reliability of SPAD results is affected by factors such as growth stage, irradiance, water status, 

and leaf thickness (Samborski et al., 2009; Schepers et al., 1992b; Blackmer & Schepers, 

1995). 

Optical non-destructive methods based on canopy reflectance measurements have also 
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been widely used (Ali et al., 2017; Mulla & Miao, 2016). The high measuring efficiency of 

reflectance spectroscopy sensors and the strong correlation between their measurements and 

crop physiological and biochemical parameters offer a high potential for N management 

(Gitelson et al., 2003; Heege et al., 2008). Proximal active sensors, such as GreenSeeker 

(NTech Industries, Inc., Ukiah, CA) and Crop Circle (Holland Scientific, NE, USA), have 

been used to diagnose N nutritional status in real-time and to guide in-season precision 

management for rice N fertilization (Yao et al., 2012; Cao et al., 2016). However, the results 

based on the canopy reflectance are affected by various factors, such as soil characteristics, 

crop growth stage, and saturation under high biomass conditions (Olfs et al., 2005; Yao et 

al., 2012). In addition, it is more difficult to estimate chlorophyll or N status using optical 

remote sensing methods as the contribution of leaf area index and biomass to canopy 

reflectance is much greater than that of chlorophyll or N concentration (Yu et al., 2013b; 

Huang et al., 2015). 

Contrary to reflectance indices, the fluorescence spectra are less affected by biomass or 

leaf area index (Bredemeier & Schmidhalter, 2005; Heege et al., 2008). At different N 

nutritional levels, the fluorescence intensities of leaves are significantly different near the 

440 nm (Blue, B), 525 nm (Green, G), 685-690 nm (Red, R), and 735-740 nm (Near infrared, 

NIR) wavelengths (McMurtrey et al., 1994; Langsdorf et al., 2000). Studies have shown that 

the fluorescence ratio F(NIR)/F(R) has a high correlation with chlorophyll concentration 

(Gitelson et al. 1999; Cerovic et al. 2009) and the leaf N concentration (Yang et al., 2016). 

Because the fluorescence ratio is only related to chlorophyll concentration or photosynthetic 

activity, soil background will not affect the spectra under low coverage or at early growth 

stages. Longchamps and Khosla (2014) observed that N supply levels in corn could be 

differentiated as early as the V5 phenological stage using proximal fluorescence sensors. In 

contrast, the test results only became reliable starting from the V8 growth stage based on the 

reflectance sensors (Teal et al., 2006; Martin et al., 2007). Therefore, chlorophyll 

fluorescence sensing is a powerful tool to address the shortcoming of proximal reflectance 

sensors in crop N status monitoring.  

The fluorescence hand-held instruments Multiplex 3 (FORCE-A, Orsay, Paris, France) 

and Dualex (FORCE-A, Orsay, Paris, France) are developed for real-time fluorescence 

measurements in the field. Multiplex 3 and Dualex can detect not only chlorophyll 

fluorescence but also polyphenolics (mainly flavonols). When N is deficient, polyphenolics 

increase significantly due to the carbon and N balance regulation mechanism (Jones & 

Hartley, 1999). These compounds are mainly concentrated in epidermal cells, and have 

typical absorption peaks in the ultraviolet region (Knogge & Weissenboeck, 1986; Burchard 

et al., 2000; Cerovic et al., 2002). Thus, N status diagnosis is improved by combining the 

polyphenolics and chlorophyll fluorescence (Tremblay et al., 2007, 2009). Lejealle et al. 

(2010) demonstrated that the N balance index (NBI), which is the chlorophyll-to-flavonols 
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ratio, had a better and more stable correlation with leaf N concentration. The Multiplex 3 

sensor uses more indices than Dualex (Cerovic et al., 2008) and therefore can detect 

physiological and biochemical plant parameters in addition to N, such as anthocyanins 

(Cerovic et al., 2008), or plant diseases (Yu et al., 2013a). In addition, it is a canopy sensor 

and is more efficient than a leaf sensor, like Dualex. It allows rapid large-area measurements 

with simultaneous GPS data recording for generating field maps (Diago et al., 2016; Song 

et al., 2017). However, studies based on the fluorescence instrument Multiplex 3 are still 

limited, especially for rice N status diagnosis and precision N management. Li et al. (2013) 

reported a preliminary study estimating rice N status using the Multiplex sensor. Therefore, 

it is necessary to further systematically and comprehensively study methods and application 

potential of Multiplex fluorescence canopy sensor for in-season rice N status diagnosis.  

The main objectives of this study were to: 1) determine the optimal measurement mode 

of Multiplex sensor; 2) evaluate the potential of Multiplex sensor for N diagnosis in paddy 

rice; and 3) establish and validate estimation models for N indicators based on Multiplex 

indices. Particularly, to reduce the influences of varieties, years, sites and other factors, the 

normalized N sufficiency index (NSI) was calculated and included in the analysis of the 

fluorescence indices. Well-fertilized reference plots were used to normalize the reflectance 

measurements as more stable rice N diagnostic results might be obtained when calculating 

the NSI (Lu et al., 2017). 

6.2 Materials and methods 

6.2.1 Experiment design 

Two field trials were conducted at the Jiansanjiang Experiment Station of the China 

Agricultural University (47o15'N, 132o39'E), Sanjiang Plain, Heilongjiang Province, 

Northeast China. The field experiments in 2012 and 2013 included five different N rates (0, 

70, 100, 130, 160 kg N ha-1) and two Japonica rice varieties, Kongyu 131 (KY 131) and 

Longjing 21 (LJ 21). These two represent the main varieties in this region: KY 131 has 11 

leaves, four elongation nodes and about 127 maturity days, while LJ 21 has 12 leaves and 

needs 133 maturity days. Planting density was approximately 30 hills m-2 for KY 131 and 

28 hills m-2 for LJ 21, with an identical row spacing of 0.3 m. The plot size was 4.5 m×9 m. 

The N fertilizer applications were split into 40%, 30%, 30%, and applied before 

transplanting, at the active tillering stage, and at the stem elongation (SE) stage, respectively. 

Phosphate (50 kg P2O5 ha-1) fertilizers were applied before transplanting, and potash 

(100 kg K2O ha-1) fertilizers were applied as two splits, 50% as basal fertilizer and 50% as 

panicle fertilizer at the SE stage. The two experiments were carried out in a randomized 

complete block design with three replicates. More details of the two experiments are listed in 

Table 6-1. 
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Table 6-1 Details of N rates experiments with two rice cultivars conducted during 2012-2013. 

Experiment Year Cultivar Transplanting Date Sampling Date/ Sampling Stage 

1 2012 KY 131 18-May 21-Jun (PI), 29-Jun (SE), 23-Jul (HE) 

1 2012 LJ 21 18-May 25-Jun (PI), 2-Jul (SE), 23-Jul (HE) 

2 2013 KY 131 17-May 23-Jun (PI), 2-Jul (SE), 22-Jul (HE) 

2 2013 LJ 21 17-May 28-Jun (PI), 6-Jul (SE), 27-Jul (HE) 

PI: Panicle Initiation; SE: Stem Elongation; HE: Heading 

6.2.2 Fluorescence measurements 

The portable fluorescence sensor Multiplex 3 was used in this study. It is an active sensor 

involving four emission light sources (UV_A, green, red or blue) to excite the fluorescence 

in plant tissues. Generally, the UV_A (375 nm), green (530 nm), and red (630 nm) emission 

light sources are used for plant monitoring, and the blue emission light source is used for 

calibration. The sensor has three filtered detectors for fluorescence recording including blue-

green fluorescence (447 nm) (BGF), red fluorescence (665 nm) (RF) and far-red 

fluorescence (735 nm) (FRF). All the variables provided by the Multiplex sensor and their 

explanations are listed in Table 6-2. There are nine measured single fluorescence variables 

under three excitations, and ten calculated indices. 

The Simple Fluorescence Ratio (SFR) index is the ratio of the FRF and RF emission 

under red (SFR_R) or green (SFR_G) illumination. SFR is related to the leaf chlorophyll 

content. Due to the chlorophyll absorption waveband overlapping with its fluorescence 

emission red band, the chlorophyll re-absorption occurs at shorter wavelengths (RF) rather 

than at FRF wavelengths. Therefore, using the FRF wavelengths as a reference, the 

absorption of the RF wavelengths reflects the content of chlorophyll. (Gitelson et al., 1999; 

Pedrós et al., 2010). SFR increases with chlorophyll content. The Flavonols (FLAV) index 

compares the fluorescence emission density of the far-red fluorescence under ultraviolet 

(FRF_UV) and red excitation (FRF_R). It is related to the flavonoid concentration of the 

epidermal layer (Ounis et al., 2001; Agati et al., 2011). The N Balance Index (NBI) is defined 

as the ratio of SFR and FLAV (Cartelat et al., 2005). Therefore, NBI is proportional to both 

chlorophyll and flavonoid concentration. Blue-green to Far-red Fluorescence Ratio 

(BRR_FRF) index is the ratio of BGF and FRF under UV excitation. The ratio of 

fluorescence emission at 440 nm and 740 nm (F440/F740) wavelength was proven to be 

sensitive to environmental changes and growth conditions, and can detect plant stress before 

visible symptoms occur (Lichtenthaler, 1996; Yu et al., 2013a). The Anthocyanins (ANTH) 

index and Fluorescence Excitation Ratio Anthocyanin Relative Index (FERARI) are both 

proven to correlated with skin anthocyanin content (Ghozlen et al., 2010). 

The Multiplex sensor readings were obtained right before the field samples were 
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collected at three growth stages. The Multiplex was put deeply into the canopy in two 

representative rows in the center of each plot. This mode was named “measuring in 

movement” or “on-the-go” (OG) mode, as shown in Huang et al. (2017). Finally, the 

collected data were averaged for the two rows to represent the plot. The following analysis 

was mainly based on results obtained with this measurement mode. For comparison, another 

two common measurement modes were applied, one measuring “above the canopy” (AC) 

and the other “at the leave scale” (LS). The measurements above the canopy were conducted 

in the field by randomly selecting ten representative hills and the average was used to 

represent the plot. The measurements based on the leaves were conducted in the laboratory 

taking ten leaves at the second position from the top. 

6.2.3 Plant sampling and measurements 

At the PI, SE and HE stages, for each plot three to six plant samples were collected from 

the same rows where fluorescence sensor measurements were acquired. Various N status 

indicators, including above ground biomass (AGB), plant N concentration (PNC), leaf N 

concentration (LNC), plant N uptake (PNU), and N nutrition index (NNI), were determined. 

The detailed sampling dates and related information are listed in Table 6-1. Roots from all 

the plant samples were removed and the samples were cleansed with water and then 

separated into leaves, stems, and panicles (e.g. HE stage). All samples were dried at 105 °C 

for half an hour to reduce plant metabolic activities. After being dried in an oven at 70-80 °C 

to constant weight, the samples were weighted. N concentration for leaves, stems, and 

panicles was determined using the standard Kjeldahl method. The PNC is the sum of the 

products of each organ’s N concentration and their proportional weight. The PNU was 

determined by multiplying PNC by AGB. The NNI is defined as the ratio of the actual PNC 

(Na) and the critical N concentration (Nc), with Nc being calculated following the equation 

developed for rice in this region (Huang et al., 2018). 
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Table 6-2 Description of the variables and indices recorded by the Multiplex sensor (modified from Table 

1 by Zhang et al., 2012). 

Variables Formula Explanation 

BGF_UV / Blue-green Fluorescence under UV excitation 

RF_UV / Red Fluorescence under UV excitation 

FRF_UV / Far-Red Fluorescence under UV excitation 

BGF_G / Reflected Blue-Green light under Green excitation 

RF_G / Red Fluorescence under Green excitation 

FRF_G / Far-Red Fluorescence under Green excitation 

BGF_R# / Blue-green Fluorescence under Red excitation 

RF_R / Red Fluorescence under Red excitation 

FRF_R / Far-Red Fluorescence under Red excitation 

SFR_G FRF_G/RF_G Simple Fluorescence Ratio under Green excitation 

SFR_R FRF_R/RF_R Simple Fluorescence Ratio under Red excitation 

BRR_FRF BGF_UV/FRF_UV Blue-green to Far-Red Fluorescence Ratio under UV excitation 

FER_RUV FRF_R/FRF_UV Flavonols under Red and UV excitation 

FLAV Log (FRF_R/FRF_UV) Flavonols under Red and UV excitation 

FER_RG FRF_R/FRF_G Anthocyanins under Red and Green excitation 

ANTH Log (FRF_R/FRF_G) Anthocyanins under Red and Green excitation 

NBI_G FRF_UV/RF_G Nitrogen Balance Index under UV and Green excitation 

NBI_R FRF_UV/RF_R Nitrogen Balance Index under UV and Red excitation 

FERARI# Log (5000/FRF_R) Fluorescence Excitation Ratio Anthocyanin Relative Index 

# The variable is not measured in the “on-the-go” mode 

6.2.4 Statistical analysis 

The Multiplex data of the three measurement modes at each sampling stage, year, and 

cultivar obtained under the varied N supply were subjected to analysis of variance (ANOVA) 

using SAS software (SAS Institute, Cary, NC, USA). Moreover, the means for each 

treatment were compared using the least significant difference (LSD) test at the 95% level 

of significance. Relationships between the Multiplex indices and N status indicators were 

determined. All of the in-situ samples were divided into two groups by a stratified random 

sampling method, with approximately 2/3 of the data used for model calibration and the 

remaining for model validation. Simple linear regression analyses were performed with 

SPSS 20.0 (SPSS Inc., Chicago, Illinois, USA). The coefficient of determination (R2) was 

calculated for comparison. The relationships between Multiplex indices and N status 

indicators established at different growth stages was validated. The root mean square error 

(RMSE) and the relative error (REr), shown in equations (6-1) and (6-2), between the 

predicted and observed values were used for evaluation. 
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 𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)2𝑛

𝑖 = 1  (6-1) 

 𝑅𝐸𝑟(%)  =  
𝑅𝑀𝑆𝐸

�̅�
× 100 (6-2) 

where 𝑦𝑖, �̂�𝑖, and �̅� were the observed, predicted and mean value, respectively.  

In order to evaluate normalized vegetation indices for improving the estimation of N 

nutrition indicators, the well-fertilized plots were used as N sufficient reference to calculate 

the NSI index. The NSI index equals to the ratio of Multiplex indices of the plots receiving 

normal N rates and the well-fertilized plots. In this study, the treatment with the largest shoot 

dry matter was defined as the well-fertilized plot, corresponding to the treatment of 130 or 

160 kg N ha-1. 

Finally, the NNI diagnosis results of validation data using Multiplex indices were 

compared to the observed NNI by areal agreement and kappa statistics (Xia et al., 2016). 

Both used the same diagnostic criteria: N deficient when NNI < 0.95, N optimal when NNI 

is between 0.95-1.05, and N surplus when NNI > 1.05. The areal agreement (%) and Kappa 

statistics were used to determine the accuracy of the diagnosis results. The areal agreement 

indicates the percentage of two groups sharing a common category or diagnosis class, for 

example N deficient, N optima or N surplus. The Kappa statistic is a more robust measure 

of the agreement of two classifications by correcting the agreement that occurs by chance. 

When Kappa equals 1, it indicates that the two categorization systems are identical. A Kappa 

value ≥ 0.60 indicates a satisfactory agreement, while < 0.4 indicates weak agreement 

(Landis & Koch, 1977). 

6.3 Results 

6.3.1 Comparison of the different measurement modes of the Multiplex sensor 

Most researchers applied Multiplex sensor using the AC mode, while some chose the 

LS or OG modes (Zhang et al., 2012; Diago et al., 2016). These three measurement modes 

were adopted for each treatment plot. The results were compared to determine the best 

measurement mode. The abbreviation of the measurement mode is added to the variable as 

a prefix. For example, AC_SFR_G represents the Multiplex index SFR_G obtained from 

above the canopy. 

Fig. 6-1 shows box plots of Multiplex indices obtained from the three measuring modes 

at two phenological stages. Since FLAV and ANTH are the log transformation values of 

FER_RUV and FER_RG, only FLAV and ANTH were selected for analysis. At the PI growth 

stage, the mean value of the Multiplex indices (except for the BBR_FRF) obtained with the 

OG mode were significantly higher (P ≤ 0.05) than the corresponding indices obtained under 
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LS mode, which were significantly higher than those obtained under the AC mode. Similar 

results were found at the SE stage. In addition, larger data ranges were found in the measured 

NBI_G and NBI_R indices under the OG mode.  

The distribution interval (or range) of most measurements was greater in the OG mode 

than in the AC and LS mode, especially for NBI_G and NBI_G (Fig. 6-1). The ANOVA 

results for the five N rates (0, 70, 100, 130, and 160 kg N ha-1) are listed in Table 6-3, which 

indicated the sensitivity of each Multiplex variable. N fertilization treatment effects were 

significant for most Multiplex variables measured in the OG and the AC modes, but not for 

most variables obtained in the LS mode. The N treatment effects were more significant for 

the OG mode than for the AC mode at the PI and SE growth stages or for the LS mode at the 

HE stage. 

 

Fig. 6-1 Box plots of selected Multiplex indices values for the above canopy, on-the-go, and leaf scale 

measuring modes at the panicle initiation and stem elongation stages in 2013: SFR_G (a), SFR_R (b), 

FLAV (c), BRR_FRF (d), ANTH (e), NBI_R (f) and NBI_G (g). Within the same growth stage, different 

lowercase (panicle initiation stage) or uppercase letters (stem elongation stage) above or below the boxes 

indicate that the Multiplex index values differed significantly according to least significant difference test 

at P ≤ 0.05. 
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Table 6-3 Significance test (ANOVA) of Multiplex variables measured in three modes: above canopy (AC), on-the-go (OG), and leaf scale (LS) at the panicle 

initiation (PI), stem elongation (SE), and heading (HE) growth stages for the rice varieties Kongyu 131 (KY 131) and Longjing 21 (LJ 21) in 2013. 

Variety Stage BGF_UV RF_UV FRF_UV BGF_G RF_G FRF_G BGF_R RF_R FRF_R SFR_G SFR_R BRR_FRF FLAV ANTH NBI_G NBI_R FERARI 

KY 131 

AC measurement mode 

PI NS * * NS * * NS * * ** ** NS NS NS NS NS ** 

SE NS NS NS NS NS NS NS NS NS NS * NS NS NS * NS NS 

OG measurement mode 

PI *** ** ** ** *** ***  *** *** *** *** ** * * ** **  

SE ** *** *** NS ** ***  ** ** ** ** ** ** ** ** **  

HE NS *** *** NS ** **  * ** ** ** ** ** ** *** ***  

LS measurement mode 

PI NS NS NS NS NS NS NS NS * * * NS NS NS NS NS NS 

SE NS NS NS NS NS * NS NS * *** ** NS NS NS ** * * 

HE NS NS NS ** NS * NS NS * ** * * NS NS * * * 

LJ 21 

AC measurement mode 

PI NS * * NS * * * * * ** ** ** * * ** * ** 

SE NS * * NS * * NS * * * * ** NS NS NS NS * 

OG measurement mode 

PI NS * * NS NS *  NS * ** ** * * * ** **  

SE NS ** ** NS NS **  NS ** *** *** * * * ** **  

HE NS *** *** NS ** ***  NS *** *** *** *** *** NS *** ***  

LS measurement mode 

PI NS NS NS NS NS NS NS NS NS * ** NS NS NS * NS NS 

SE NS ** ** NS NS * NS NS NS * NS ** NS NS * * * 

HE NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 

***. Correlation is significant at the 0.001 level; **. Correlation is significant at the 0.01 level; *. Correlation is significant at the 0.05 level; NS. Correlation is not significant. 
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Fig. 6-2 demonstrates the comparison results for selected Multiplex indices at each N 

application rate for cultivar KY 131 in 2013 (as an example). According to the P level results 

in Table 6-3, the indices measured in the OG mode could better distinguish effects of N 

supply compared to the other two modes. For the differentiation of the high N-application 

treatment (100 and 130 kg ha-1) effects, the Multiplex indices under the OG mode performed 

consistently better than others did. Their values showed an increase from the N rate treatment 

of 130 kg ha-1 to 160 kg N ha-1, although their difference was not significant. For the variety 

LJ 21, or for the experiments conducted in 2012, the indices under OG mode are most 

sensitive for N rate treatment compared to the other two modes (data no shown). 

In conclusion, the ANOVA analysis results showed that most of the Multiplex variables 

obtained under the OG mode were more sensitive to N supply than the ones obtained under 

the other two modes. Measurements taken under the AC mode were more strongly 

influenced by N supply than the ones taken under the LS mode (Table 6-3, Fig. 6-2). Thus, 

only results of the “on-the-go” mode were used for further analysis and discussion. 

6.3.2 Changes in Multiplex indices (“on-the-go” mode) over growth stages under varied N 

supply 

For the variety KY 131 in 2013, SFR_G, SFR_R, NBI_G, and NBI_R values were 

significantly higher at high N rate plots (100-160 kg N ha-1) than 0 kg N ha-1 plots across 

growth stages (Fig. 6-2). These indices could differentiate more N rates at the medium to 

late stages, which may be due to the larger variation of the LNC, PNC, and NNI at these 

stages than at the early stage (data not shown). The values of these indices increased from 

the PI to SE stage but decreased from the SE to HE stage, because the panicle formation 

decreased the chlorophyll/N concentration in the upper layer at the HE stage. The opposite 

was true for the BRR_FRF, FLAV and ANTH. NBI_G and NBI_R could differentiate 

different N application rates the best, followed by SFR_G, SFR_R, BRR_FRF, and FLAV. 

The performance of ANTH was the worst (Fig. 6-2).
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Fig. 6-2 Mean value comparisons for each Multiplex index at the three growth stages and each N 

application rate (kg N ha-1) for variety KY 131in 2013. Differentiation patterns for N rate treatment at 

each sampling stage are depicted for the three measurement modes (above canopy, AC; on-the-go, OG; 

leaf scale, LS). Different lowercase letters at the bottom of the plot at each stage indicate significant 

differences according to the least significant difference test at P ≤ 0.05. The two numbers in the cells are 

the mean value and standard deviation (italic). 

N Rate AC_SFR_G AC_SFR_R AC_BRR_FRF AC_FLAV AC_ANTH AC_NBI_G AC_NBI_R AC_FERARI

0 1.48 
0.22

1.75 
0.30

0.61 
0.07

0.66 
0.07

0.30 
0.03

0.67 
0.03

0.40 
0.00

2.10 
0.10

70 177 
0.14

2.21 
0.17

0.51
0.07

0.76 
0.02

0.34 
0.01

0.70 
0.05

0.39 
0.02

1.92 
0.06

100 1.93 
0.20

2.38 
0.25

0.48 
0.06

0.77 
0.04

0.34 
0.02

0.73 
0.04

0.41 
0.02

1.87 
0.08

130 1.90 
0.10

2.37 
0.15

0.47 
0.03

0.75 
0.01

0.34 
0.01

0.74
0.03

0.43 
0.01

1.89 
0.04

160 2.28 
0.08

2.83 
0.08

0.41 
0.03

0.84 
0.05

0.36 
0.01

0.77 
0.07

0.42 
0.04

1.74 
0.04

N Rate OG_SFR_G OG_SFR_R OG_BRR_FRF OG_FLAV OG_ANTH OG_NBI_G OG_NBI_R

0 4.72 
0.25

5.05 
0.26

0.10 
0.01

0.97 
0.00

0.40 
0.01

1.27 
0.07

0.55 
0.03

70 5.46 
0.10

5.77 
0.08

0.07 
0.01

0.94
0.02

0.39 
0.00

1.54 
0.07

0.67 
0.03

100 5.57 
0.20

5.89 
0.19

0.07 
0.01

0.96 
0.01

0.39 
0.00

1.49 
0.10

0.65 
0.04

130 5.91 
0.24

6.20 
0.23

0.06 
0.01

0.93 
0.02

0.39 
0.01

1.69 
0.11

0.73 
0.06

160 5.99 
0.21

6.30 
0.21

0.06 
0.00

0.91 
0.01

0.38 
0.00

1.78 
0.11

0.78 
0.05

N Rate LS_SFR_G LS_SFR_R LS_BRR_FRF LS_FLAV LS_ANTH LS_NBI_G LS_NBI_R LS_FERARI

0 2.63 
0.08

3.15 
0.01

0.28 
0.02

0.83 
0.01

0.37 
0.01

0.91 
0.02

0.47 
0.01

1.58 
0.05

70 2.82 
0.17

3.27 
0.17

0.24 
0.02

0.85 
0.03

0.37 
0.01

0.94 
0.04

0.47 
0.02

1.49 
0.05

100 2.93 
0.13

3.43 
0.15

0.26 
0.01

0.92 
0.03

0.38 
0.01

0.85 
0.02

0.42 
0.02

1.47 
0.02

130 2.91 
0.10

3.45 
0.14

0.26 
0.02

0.88 
0.05

0.38 
0.01

0.92 
0.11

0.46 
0.07

1.48 
0.02

160 3.13 
0.05

3.63 
0.05

0.22 
0.01

0.87 
0.04

0.37 
0.01

1.00 
0.08

0.50 
0.05

1.44 
0.02

d c b a d c b a d c b a d c b a d c b a d c b a d c b a d c b a

1）Panicle initiation

2）Stem elongation

N Rate AC_SFR_G AC_SFR_R AC_BRR_FRF AC_FLAV AC_ANTH AC_NBI_G AC_NBI_R AC_FERARI

0 2.03 
0.16

2.48 
0.25

0.57 
0.14

0.81 
0.02

0.34 
0.01

0.80 
0.05

0.45 
0.03

1.85 
0.07

70 2.21 
0.07

2.75 
0.08

0.47 
0.01

0.85 
0.02

0.36 
0.01

0.79 
0.06

0.44 
0.03

1.77 
0.03

100 2.64 
0.33

3.21 
0.31

0.43 
0.10

0.83 
0.06

0.35 
0.01

0.92 
0.08

0.53 
0.08

1.70 
0.08

130 2.66 
0.06

3.27 
0.12

0.38 
0.03

0.87 
0.03

0.36 
0.01

0.90 
0.06

0.48 
0.03

1.65 
0.06

160 2.78 
0.34

3.45 
0.37

0.39 
0.12

0.87 
0.01

0.37 
0.01

0.94 
0.07

0.50 
0.02

1.61 
0.12

N Rate OG_SFR_G OG_SFR_R OG_BRR_FRF OG_FLAV OG_ANTH OG_NBI_G OG_NBI_R

0 6.07 
0.16

6.44 
0.16

0.06 
0.00

0.94 
0.00

0.37 
0.00

1.64 
0.06

0.75 
0.02

70 6.42 
0.10

6.76 
0.10

0.05 
0.00

0.91 
0.03

0.36 
0.00

1.83 
0.14

0.83 
0.07

100 6.70 
0.09

7.05 
0.09

0.04
0.00

0.88 
0.04

0.36 
0.00

2.05 
0.19

0.94 
0.09

130 6.86 
0.14

7.19 
0.14

0.04 
0.00

0.86
0.02

0.36 
0.00

2.16 
0.08

1.00 
0.04

160 6.89 
0.08

7.23 
0.08

0.04 
0.00

0.81 
0.02

0.36 
0.00

2.42 
0.12

1.12 
0.06

N Rate LS_SFR_G LS_SFR_R LS_BRR_FRF LS_FLAV LS_ANTH LS_NBI_G LS_NBI_R LS_FERARI

0 3.04 
0.08

3.42 
0.10

0.19 
0.01

0.88 
0.01

0.37 
0.00

0.94 
0.05

0.45 
0.02

1.35 
0.02

70 2.98 
0.02

3.32 
0.06

0.16 
0.03

0.82 
0.04

0.36 
0.01

1.04 
0.09

0.51 
0.04

1.33 
0.05

100 3.24 
0.10

3.66 
0.14

0.17 
0.00

0.85 
0.02

0.36 
0.00

1.08 
0.08

0.53 
0.05

1.35 
0.02

130 3.25 
0.12

3.64 
0.15

0.16 
0.01

0.83 
0.04

0.36 
0.00

1.10 
0.07

0.54 
0.04

1.31 
0.01

160 3.38 
0.06

3.75 
0.04

0.14 
0.02

0.84 
0.01

0.36 
0.00

1.13 
0.06

0.54 
0.02

1.26 
0.04

d c b a d c b a d c b a d c b a d c b a d c b a d c b a d c b a

3）Heading

N Rate OG_SFR_G OG_SFR_R OG_BRR_FRF OG_FLAV OG_ANTH OG_NBI_G OG_NBI_R

0 6.01 
0.01

6.37 
0.04

0.08 
0.00

0.97 
0.00

0.39 
0.00

1.58 
0.01

0.68 
0.00

70 6.25 
0.14

6.60 
0.12

0.07 
0.01

0.91 
0.02

0.39 
0.00

1.89 
0.14

0.81 
0.06

100 6.44 
0.08

6.76
0.10

0.06 
0.01

0.89 
0.03

0.38 
0.00

2.03
0.14

0.89 
0.07

130 6.51 
0.12

6.83 
0.14

0.06 
0.00

0.87 
0.01

0.38 
0.00

2.12 
0.05

0.93 
0.03

160 6.64 
0.05

6.95 
0.07

0.05 
0.00

0.84 
0.01

0.38 
0.00

2.31 
0.07

1.01 
0.02

N Rate LS_SFR_G LS_SFR_R LS_BRR_FRF LS_FLAV LS_ANTH LS_NBI_G LS_NBI_R LS_FERARI

0 3.38 
0.12

3.85 
0.18

0.20 
0.01

0.90 
0.02

0.37 
0.01

1.01 
0.03

0.49 
0.02

1.35 
0.02

70 3.70 
0.05

4.24 
0.09

0.19 
0.00

0.86 
0.01

0.36 
0.00

1.18 
0.04

0.59 
0.03

1.36 
0.02

100 3.76 
0.11

4.21 
0.13

0.16 
0.02

0.86 
0.03

0.37 
0.00

1.24 
0.12

0.60 
0.06

1.29 
0.02

130 3.90 
0.05

4.38 
0.08

0.15
0.03

0.85 
0.04

0.36 
0.01

1.31 
0.15

0.63 
0.05

1.26 
0.06

160 3.76
0.07

4.20 
0.05

0.15 
0.01

0.84 
0.02

0.37 
0.00

1.27 
0.08

0.61 
0.03

1.26 
0.02

d c b a d c b a d c b a d c b a d c b a d c b a d c b a d c b a

N Rate AC_SFR_G AC_SFR_R AC_BRR_FRF AC_FLAV AC_ANTH AC_NBI_G AC_NBI_R AC_FERARI

0
70
100
130
160

no data no data no data no data no data no data no data no data
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6.3.3 Correlations between Multiplex indices (“on-the-go” mode) and N status indicators 

The linear regression results of the seven Multiplex indices and the five N status 

indicators at three growth stages across the two rice varieties are shown in Table 6-4. The 

SFR_G, SFR_R, NBI_G, and NBI_R indices were positively correlated with the N indicators 

whereas the opposite was true for BRR_FRF, ANTH, and FLAV. The ANTH parameter 

showed no significant correlation with AGB and PNU at the SE stage. The R2 varied widely 

for these indices (R2 = 0.03-0.78). For each N indicator, the SFR_G, SFR_R, and ANTH 

showed a high variability in the regression models at different growth stages. Lower 

coefficients of determination were found at the SE stage. The BRR_FRF, FLAV, NBI_G and 

NBI_R indices showed stable relationships at the three growth stages. The best performing 

index across varieties at the PI, SE, and HE stages differed, but NBI_G and NBI_R showed 

high correlations with LNC (R² = 0.52-0.68), PNC (R² = 0.52-0.71) and NNI (R² = 0.69-

0.78). The second-best performing indices were BRR_FRF and FLAV. The SFR_G and 

SFR_R indices only showed high correlations at the PI stage. The normalized sufficiency 

indices SFR_GNSI, SFR_RNSI, and ANTHNSI showed more stable relationships with LNC, 

PNC, and NNI than SFR_G, SFR_R and ANTH indices, especially at the SE and HE stages. 

The other four normalized sufficiency indices BRR_FRFNSI, FLAVNSI, NBI_GNSI, NBI_RNSI 

showed similar R2 values regarding the LNC, PNC, and NNI estimation. 

For the AGB estimation, all standard and normalized indices showed lower R2 values 

than those for PNC at the SE and HE stages. For the PNU estimation, most of the indices 

and NSIs showed high R2 values (0.39-0.72). Compared to other N status indicators, the best 

performing indices for NNI estimation explained the most variations (R2 = 0.72 for PI, R2   

= 0.78 for SE, R2 = 0.76 for HE), and the best performing NSIs also showed the highest 

relationships with NNI at SE (R2 = 0.77) and HE (R2 = 0.82) stages. 

6.3.4 Validation of the estimation models for N status indicators 

In order to diagnose rice N status, linear regression models between Multiplex indices 

and N indicators were established. The regression models varied across growth stages. 

Table 6-5 lists the best performing models at the PI, SE, and HE stages. The best performing 

indices differed across the stages. However, the relationships of NBI_G and NBI_R with N 

indicators were relatively more stable. After normalization, the NBI_RNSI showed an 

absolute advantage for N indicator estimation at the PI and SE growth stages. 

Fig. 6-3 shows the REr values of the validation models for six Multiplex indices (SFR_G, 

SFR_R, BRR_FRF, FLAV, NBI_G, and NBI_R) and the N status indicators. The REr values 

for AGB and PNU estimations based on these indices decreased steadily with advancing 

growth stages, while a slightly increasing trend was observed for LNC and PNC estimation 

models from the SE to HE stages. The REr values for LNC (4.50%-10.24%), PNC (5.87%-
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10.87%) models were much smaller than those for AGB (15.49%-30.18%) and PNU 

(19.31%-31.25%). The REr of NNI remained similar during the three growth stages. At the 

earlier to middle growth stages, NBI_R and NBI_G presented a lower REr than the other 

four indices for all the six N indicators. At the HE stage, however, the prediction accuracies 

of the six indices were similar. 
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Table 6-4 The coefficients of determination (R2) for the linear relationships between standard and normalized Multiplex indices and N status indicators (leaf N 

concentration (LNC), plant N concentration (PNC), N nutrition index (NNI), aboveground biomass (AGB) and plant N uptake (PNU)) for two varieties at the panicle 

initiation (PI), stem elongation (SE), and heading (HE) growth stages. 

Multiplex 

indices 

LNC (g kg-1) PNC (g kg-1) NNI AGB (t ha-1) PNU (kg ha-1) 

PI SE HE   PI SE HE   PI SE HE   PI SE HE   PI SE HE 

Standard indices 

SFR_G 0.63** 0.30** 0.49**  0.64** 0.34** 0.46**  0.72** 0.31** 0.59**  0.60** 0.14* 0.41**  0.66** 0.21** 0.58** 

SFR_R 0.59** 0.28** 0.42**  0.58** 0.34** 0.38**  0.66** 0.29** 0.54**  0.56** 0.13* 0.45**  0.61** 0.19** 0.57** 

BRR_FRF 0.53** 0.52** 0.67**  0.47** 0.48** 0.66**  0.57** 0.48** 0.72**  0.50** 0.26** 0.33**  0.54** 0.39** 0.59** 

FLAV 0.40** 0.64** 0.55**  0.39** 0.64** 0.55**  0.58** 0.73** 0.67**  0.55** 0.50** 0.38**  0.59** 0.68** 0.59** 

ANTH 0.38** 0.12* 0.27**  0.41** 0.14* 0.33**  0.60** 0.10* 0.47**  0.60** 0.03NS 0.36**  0.61** 0.06NS 0.48** 

NBI_G 0.54** 0.68** 0.62**  0.52** 0.71** 0.61**  0.69** 0.78** 0.76**  0.63** 0.50** 0.47**  0.68** 0.71** 0.71** 

NBI_R 0.52** 0.67** 0.58**  0.52** 0.71** 0.56**  0.70** 0.77** 0.74**  0.64** 0.47** 0.51**  0.69** 0.68** 0.72** 

Normalized indices 

SFR_GNSI 0.58** 0.39** 0.67**  0.65** 0.42** 0.70**  0.55** 0.54** 0.69**  0.35** 0.45** 0.24**  0.43** 0.50** 0.52** 

SFR_RNSI 0.57** 0.42** 0.62**  0.61** 0.46** 0.67**  0.52** 0.57** 0.68**  0.33** 0.45** 0.25**  0.40** 0.52** 0.52** 

BRR_FRFNSI 0.49** 0.34** 0.63**  0.48** 0.41** 0.74**  0.41** 0.56** 0.76**  0.26** 0.50** 0.28**  0.33** 0.56** 0.58** 

FLAVNSI 0.42** 0.51** 0.70**  0.44** 0.60** 0.76**  0.41** 0.74** 0.82**  0.26** 0.55** 0.34**  0.33** 0.70** 0.64** 

ANTHNSI 0.51** 0.40** 0.57**  0.64** 0.40** 0.65**  0.54** 0.57** 0.56**  0.34** 0.52** 0.11*  0.42** 0.58** 0.35** 

NBI_GNSI 0.59** 0.53** 0.69**  0.61** 0.63** 0.75**  0.55** 0.76** 0.78**  0.35** 0.55** 0.31**  0.43** 0.71** 0.61** 

NBI_RNSI 0.60** 0.55** 0.69**   0.65** 0.64** 0.75**   0.58** 0.77** 0.79**   0.36** 0.56** 0.31**   0.46** 0.72** 0.61** 

**. Correlation is significant at the 0.01 level; *. Correlation is significant at the 0.05 level; NS. Correlation is not significant. 
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Table 6-5 Equations and coefficients of determination of linear regression models (n = 40) at different 

growth stages based on the best performing Multiplex index and crop N indicators (LNC, PNC, NNI, 

PNU, AGB). 

Growth 

stage 

Standard 

Indices 
Model R2 

Normalized 

Indices 
Model R2 

PI SFR_G LNC = 4.468x+5.932 0.63 NBI_RNSI LNC = 23.918x+10.413 0.60 

PI SFR_G PNC = 2.912x+4.961 0.64 NBI_RNSI PNC = 15.323x+8.247 0.65 

PI SFR_G NNI = 0.2442x-0.5188 0.72 NBI_RNSI NNI = 1.1412x - 0.1116 0.58 

PI NBI_R PNU = 88.184x-33.56 0.69 NBI_RNSI PNU = 85.908x-43.67 0.46 

PI NBI_G AGB = 1.5268x - 1.1565 0.64 NBI_RNSI AGB = 2.905x - 1.1184 0.36 

SE NBI_G LNC = 8.707x + 14.352 0.68 NBI_RNSI LNC = 17.96x + 16.279 0.55 

SE NBI_G PNC = 5.544x + 9.082 0.71 NBI_RNSI PNC = 12.317x + 9.542 0.64 

SE NBI_G NNI = 0.5003x + 0.0582 0.78 NBI_RNSI NNI = 1.1571x + 0.0601 0.77 

SE NBI_G PNU = 51.494x - 40.873 0.71 NBI_RNSI PNU = 120.8x - 42.157 0.72 

SE NBI_G AGB = 1.7391x - 0.4502 0.50 NBI_RNSI AGB = 4.1975x - 0.5961 0.56 

HE BRR_FRF LNC = -210.31x + 47.452 0.67 NBI_GNSI LNC = 21.646x + 15.473 0.69 

HE BRR_FRF PNC = -131.79x + 24.313 0.66 FLAVNSI PNC = -31.59x + 49.591 0.76 

HE NBI_G NNI = 0.5942x - 0.054 0.76 FLAVNSI NNI = -3.0631x + 4.3956 0.82 

HE NBI_R PNU = 213.07x - 67.623 0.72 FLAVNSI PNU = -462.81x + 612.19 0.64 

HE NBI_R AGB = 8.3363x + 0.0609 0.51 FLAVNSI AGB = -15.729x + 24.131 0.34 
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Fig. 6-3 The relative error (REr) values of the validation analysis based on the regression models of the 

six Multiplex indices and the N status indicators for (a)above ground biomass (AGB), (b) plant N uptake 

(PNU), (c) leaf N concentration (LNC), (d) plant N concentration (PNC), and (e) N nutrition index (NNI) 

at the panicle initiation (PI), stem elongation (SE), and heading (HE) stages. 

6.3.5 Comparing the Multiplex index-based and the normalized sufficiency index-based N 

nutrition status diagnosis results 

The best performing indices SFR_G, BRR_FRF, NBI_G, NBI_R, NBI_GNSI, NBI_RNSI 

and FLAVNSI shown in Table 6-5 were validated using independent data sets. Moderate 

model performance with R2 ranging from 0.34 to 0.82 were obtained. Higher estimation 

potential was observed for LNC, PNC, and NNI than AGB based on most Multiplex indices 

and the normalized sufficiency indices. Considering the NNI as an ideal indicator for N 

status diagnosis, the NNI models were further verified. The diagnostic results of the indices 

SFR_G, SFR_R, BRR_FRF, FLAV, ANTH, NBI_G, and NBI_R were compared at the 
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critical N fertilizer application stages (SE and HE). According to the previous research 

(Huang et al., 2015), the experimental plots were divided into N deficient, N optimal and N 

surplus groups based on the NNI threshold values of 0.95, 0.95-1.05, and 1.05. Their Kappa 

statistics were analyzed to evaluate the diagnostic accuracies of the different indices. The 

results confirmed that the NNI models based on BRR_FRF, NBI_R, NBI_G performed 

highly consistent at the SE and HE growth stages, and their corresponding NSI indices 

further improved the results (Table 6-6). At the SE stage, the NBI_RNSI achieved the highest 

diagnostic accuracy rate (90%), while the FLAV achieved the same accuracy rate at the HE 

stage. Across the two growth stages, the NBI_RNSI showed the highest diagnostic consistency. 

Table 6-6 Agreement and Kappa statistics for different indices (SFR_G, SFR_R, BRR_FRF, FLAV, 

ANTH, NBI_G, and NBI_R) and corresponding normalized indices (SFR_GNSI, SFR_RNSI, BRR_FRFNSI, 

FLAVNSI, ANTHNSI, NBI_GNSI and NBI_RNSI) regarding diagnostic results (N Nutrition Index) at 

different growth stages. 

Comparison 

Agreement 

(%) 

Kappa 

statistics Comparison 

Agreement 

(%) 

Kappa 

statistics 

SE HE SE HE SE HE SE HE 

SFR_G  

and NNI 
75 65 0.554*** 0.310* 

SFR_GNSI  

and NNI 
70 85 0.494** 0.661*** 

SFR_R  

and NNI 
70 70 0.510*** 0.322* 

SFR_RNSI  

and NNI 
75 85 0.583*** 0.661*** 

BRR_FRF 

and NNI 
60 70 0.363* 0.409** 

BRR_FRFNSI 

and NNI 
80 80 0.655*** 0.538*** 

FLAV  

and NNI 
75 90 0.605*** 0.763*** 

FLAVNSI  

and NNI 
75 80 0.558*** 0.570*** 

ANTH  

and NNI 
55 75 0.283NS 0.355* 

ANTHNSI  

and NNI 
80 65 0.669*** 0.227NS 

NBI_G  

and NNI 
75 80 0.595*** 0.590*** 

NBI_GNSI  

and NNI 
75 85 0.673*** 0.698*** 

NBI_R  

and NNI 
75 80 0.595*** 0.590*** 

NBI_RNSI  

and NNI 
90 85 0.840*** 0.698*** 

***. Correlation is significant at the 0.001 level; **. Correlation is significant at the 0.01 level; *. Correlation is significant at the 0.05 level; NS. 

Correlation is not significant. 

6.4 Discussion 

6.4.1 Estimation of crop N indicators by fluorescence indices 

 Strong relationships between the Multiplex indices SFR_G, SFR_R, BRR_FRF, FLAV, 

NBI_G, NBI_R and the five N indicators were achieved with low REr and high R2 values 

(Table 6-4, Fig. 6-3). These results conform to previous research results in this field (Li et 
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al., 2013; Padilla et al., 2016; Agati et al., 2015; Yang et al., 2016). Many studies confirmed 

SFR was a good fluorescence index for chlorophyll content monitoring (Buschmann, 2007; 

Gitelson et al., 1999; Yu et al., 2013). However, it was found in this study that the R2 of the 

SFR_G, SFR_R for LNC, PNC, and NNI estimation decreased steadily from early stage to 

mid to late stages, while an opposite trend was observed for FLAV. Padilla et al. (2016) 

found that the NNI estimation relationships changed for SFR_G with the phenological stage 

of cucumber (Cucumis sativus L.). Firstly, the consistency of the relationship between 

chlorophyll content and N concentration varied with crop development, leading to different 

performances of SFR for N concentration estimation. For example, at the SE stage, the linear 

correlation between LNC and chlorophyll meter readings of rice was weaker than at other 

growth stages (Yuan et al., 2016). Secondly, the lower distinguishing ability for SFR under 

the N non-limiting conditions may also be a reason (Padilla et al., 2016). The performance 

of FLAV increased from the PI to HE stages, which was also confirmed by Padilla et al. 

(2016), who found the relationship of FLAV and NNI increased at the middle to late growth 

stages. The better performance of FLAV at the later stage can be interpreted as a consequence 

of the accumulation of the flavonols content in leaves under light radiation (Ounis et al., 

2001; Barthod et al., 2007). The NBI_G and NBI_R indices were the best indices according 

to the strength and consistency of the relationships with N indicators (Table 6-5). Confirmed 

by many studies, the NBI indices appeared to be the most efficient in estimating the N status 

(Cartelat et al., 2005; Goulas et al., 2004; Agati et al., 2015; Padilla et al., 2016). This is 

because the NBI is a ratio of SFR and FLAV, which makes it more robust than using FLAV 

or SFR alone to reduce the effects of leaf age or other factors (Cartelat et al., 2005; Tremblay 

et al., 2007; Lejealle et al., 2010). The NBI_G performed very similarly as NBI_R in this 

study, as demonstrated by Longchamps and Khosla (2010). Moreover, they found that SFR 

was less sensitive to N application than NBI. This is consistent with our results, as shown in 

Fig. 6-2. In most cases, the SFR_G and SFR_R indices could not distinguish between the 

100 and 130 kg N ha-1 treatments, but NBI could. The BRR_FRF index was significantly 

correlated with the N nutritional status, and was especially sensitive to N deficiency in this 

research. When there is N stress, the fluorescence ratio of blue-green/far-red will increase 

after exposure to UV radiation to avoid or alleviate the damage of the photosynthetic 

apparatus (Lichtenthaler & Schweiger, 1998). Generally, the UV-protection response takes 

place before the chlorophyll damage can be seen, so the BRR_FRF can also be considered 

as a potential index that can realize early N deficiency detection (Buschmann et al., 1998). 

The BRR_FRF was also proved to be very sensitive to environmental stresses, such as 

disease and drought (Buschmann et al., 1998; Yu et al., 2013a; Burling et al., 2013). The 

ANTH index provided by Multiplex is commonly used to reflect anthocyanin content, which 

corresponds to the maturation degree of fruit (Ghozlen et al., 2010; Agati et al., 2005). In 

this research, the low values of ANTH were due to the low anthocyanin content in the rapid 
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vegetative growth phase for rice (Chen et al., 2015). Nevertheless, ANTH was also found to 

be closely related to the leaf chlorophyll concentration in some studies (Yu et al., 2013a; 

Zhang et al., 2012). This study revealed that ANTH was significantly related to N status 

indicators in some growth stages, although the R2 value was not very high. 

6.4.2 Normalized nitrogen sufficiency fluorescence indices 

Our research involved two years and two varieties of experiments. The normalized N 

sufficiency index approach has been suggested to reduce the influence of the varieties, 

developmental stages on SPAD values or spectral data (Lin et al., 2010; Zubillaga & 

Urricariet, 2005; Samborski et al., 2009). From the results of this study, in most cases, the 

normalized NSIs were more closely associated with the LNC, PNC, and NNI (Table 6-4). 

The R2 of the index ANTHNSI was the most improved, followed by NBI_GNSI and NBI_RNSI. 

However, the improvement in R2 for BRR_FRFNSI was minimal. The variance analysis of 

this study showed consistent results, which demonstrated that NSI indices could reduce the 

influence of inter-annual and growth stage differences (data not shown). Since NNI itself is 

a diagnostic criterion, it represents an optimal N status when NNI equals to one (Lemaire et 

al., 2008). From Table 6-6, according to the predicted NNI values, the NSI indices improved 

the accuracy of diagnosis at the critical topdressing (SE and HE) stages. Similarly, Lu et al. 

(2017) observed NNI inversion through the normalized sufficiency vegetation indices 

further improved the N nutrition diagnosis results of rice. Hussain et al. (2000) proposed a 

critical NSI value of 0.90 for rice. However, in this study, when the NSI indices were 0.90, 

different optimal NNI values were derived by different indices at different development 

stages (ranging from 0.85 to 2.14). Only the corresponding optimal NNI values for the 

NBI_GNSI and NBI_RNSI indices were closest to one (ranging from 0.91 to 1.19) (data not 

shown). Therefore, it is not suitable to use the NSI threshold as a diagnostic criterion directly, 

which has a relatively large risk to result in misdiagnosis. Another possible reason is that the 

N fertilizer application rate in this study was only 1.3-1.6 times higher than the optimal 

amount instead of 1.8-2.0 times higher than recommended for the well-fertilized N plot as 

Hussain et al. (2000) suggested. 

Furthermore, all of the Multiplex indices were divided by the readings of the N rate with 

the largest shoot dry matter at each sampling date to obtain a sufficiency index. However, 

Varvel et al. (2007) suggested that the maximum readings within each cropping system, 

variety, year, should be considered as the normalized criterion. Obviously, with different 

normalization criteria, different sufficient indices will be obtained, which will affect the 

corresponding analysis results. More in-depth and systematic research is expected in the 

future. 
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6.4.3 The application potential and limitations of Multiplex sensor 

 The Multiplex indices presented high R2 values for LNC and PNC estimation at the 

earlier growth stages (Table 6-4). In particular, the validation data showed that the REr values 

for LNC and PNC estimations were as low as 6%-7% (Fig. 6-3c, d). This is consistent with 

the results of Cerovic et al. (2015) and Agati et al. (2015), who have shown a high correlation 

between the fluorescence index and LNC. NBI and LNC had a fairly linear relationship. 

Therefore, the NBI indices can be used to more accurately estimate a wider range of LNC. 

Agati et al. (2015) also found the results based on reflectance imaging (camera picture) are 

less sensitive to N application than fluorescence-based indices. Research by Stroppiana et 

al. (2009) and Yu et al. (2013b) on rice showed unsatisfactory results for the estimation of 

LNC and PNC based on reflectance spectroscopy. This is due to the fact that the effect of N 

on the leaf area index and biomass is much greater than its effect on chlorophyll content. 

Second, near-infrared radiation is hardly absorbed in the canopy and is highly transmissive, 

so its correlation with leaf area index or biomass is extremely high; while visible light, 

especially the blue and red radiation, is easily absorbed by chlorophyll and its transmittance 

is low, so it is highly correlated with chlorophyll content (Heege et al., 2008; Stroppiana et 

al., 2009). On the other hand, changes in plant metabolism indicators are fast or slow due to 

changes in response to the environment. However, the sensitivity of reflectance-based 

parameters does not always provide satisfactory monitoring results (Tremblay et al., 2012). 

Demotes-Mainard et al. (2008) observed that changes in N concentration took precedence 

over changes in biomass. Thus, fluorescence-based techniques that are highly sensitive to 

plant N status information may address the limitation of reflectance-based methods 

(Tremblay et al., 2012; Longchamps & Khosla, 2014). Similarly, the Multiplex indices 

showed a very good estimation for NNI, with R2 reaching a maximum of 0.72-0.78, and the 

validation results also showed a low inversion error for NNI (RMSE ≤ 0.16, REr ≤ 15%), 

especially with the NBI_G and NBI_R indices (Table 6-4). Many studies have confirmed 

that NBI has a strong estimation potential for NNI (Cartelat et al., 2005; Padilla et al., 2014, 

2016). This is because NBI is the ratio of SFR to FLAV. The SFR index was considered to 

be an important parameter for estimating chlorophyll concentration, which was often used 

as an index of surface-based N (Agati et al., 2013), while the FLAV parameter directly 

reflects flavonols content, which is controlled by light as well as leaf mass per area (LMA), 

and has a very good correlation with leaf mass (Meyer et al., 2006). Therefore, NBI as the 

SFR/ FLAV ratio is the best N nutrition diagnostic index. 

The fluorescence-based indices are more sensitive to chlorophyll or N content than the 

reflectance-based indices, and can detect the difference in N nutrition status earlier. However, 

the difference of the stage based-models between the vegetation indices and the N nutrition 

indicators based on the canopy reflectance instrument is smaller than that based on 
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fluorescence (Padilla et al., 2014). The surface area of the crop involved in each test, i.e. the 

viewing angle of the reflectance spectroscopy sensors (e.g. the Crop Circle ACS 470 is 

55,000 cm2) compared to the fluorescence sensors (e.g. the Multiplex is 50 cm2 and the 

Dualex is 3.2 cm2) is larger (Padilla et al., 2014). Therefore, canopy reflectance 

measurements are more representative, while fluorescence instruments require increasing 

the number of tests to obtain sufficiently representative data. The small size of the test 

window for Multiplex may be the main reason for its poor ability to estimate plant biomass 

in the middle to late stages (Table 6-4). It has been suggested to combine the fluorescence 

and reflectance data to improve the estimation of plant N status (Samborski et al, 2009; 

Tremblay et al., 2012). This may be one of the important research directions in the future. 

6.5 Conclusions 

This study compared three measurement modes for the fluorescence instrument 

Multiplex®3 and determined that the “on-the-go” mode was most suitable for application in 

rice fields. Using this measurement mode, stable test results were obtained and crop growth 

information was best derived. The results of this study proved that the fluorescence indices 

of chlorophyll content (SFR), the ratio of blue-green to far-red fluorescence (BRR_FRF), 

flavonols content (FLAV) and the ratio of the chlorophyll-to-flavonols contents (NBI) were 

significantly correlated to all five N status indicators at the PI through HE growth stages. 

Among them, NBI_G and NBI_R were the best performing indices and highly correlated to 

LNC (R2 = 0.52-0.68), PNC (R2 = 0.52-0.71), NNI (R2 = 0.69-0.78), AGB (R2 = 0.47-0.64), 

PNU (R2 = 0.68-0.72) at the three growth stages. The normalized sufficiency indices (NSI) 

of the Multiplex parameters could improve the LNC, PNC and NNI estimation ability for 

most indices, especially at the HE stage. Among them, the ANTHNSI was improved the most. 

The validation results show that the relative error values for the estimation of LNC, PNC, 

NNI, AGB, and PNU were 4.50%-10.24%, 5.87%-10.87%, 9.64%-14.08%, 15.49%-30.18%, 

and 19.30%-31.25%, respectively. The N diagnostic results indicated that the NBI_RNSI and 

FLAV achieved the highest diagnosis accuracy rate (90%) at the stem elongation and heading 

stages, respectively, while NBI_RNSI showed the highest diagnostic consistency across 

growth stages. It is concluded that the Multiplex sensor can be used to reliably estimate N 

nutritional status for rice in cold regions, especially for the estimation of LNC, PNC, and 

NNI. The normalized sufficiency indices based on Multiplex indices can further improve the 

accuracy of N nutrition diagnosis by reducing the differences between years and varieties. 
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Chapter 7: General Discussion 

In order to achieve modern agricultural production that guarantees food production and 

environmental friendliness simultaneously, remote sensing-based crop N nutrition diagnosis 

and precision N management are important. In this dissertation, a new N nutrition diagnostic 

indicator was constructed (Nc dilution curve) from the relationship between biomass and N 

concentration in cold region rice. Based on this new diagnostic indicator, this research 

studied how to use satellite remote sensing images to diagnose N nutrition for rice in large 

scale farmland. Comparing sensitive bands and vegetation indices (VIs) for the estimation 

of N nutrition indicators confirmed the importance of red edge band for estimating N 

nutrition indicators. Further, a stepwise multiple linear regression (SMLR), and a partial least 

square regression (PLSR) were used to evaluate the potential of new-satellite remote sending 

system for monitoring N nutrition. Accordingly, the regression models for N nutrition 

indicators were established. To further improve the accuracy of N nutrition status diagnosis, 

a fluorescence sensor was evaluated. This chapter focuses on discussing the advantages of 

N nutrition diagnosis based on the Nc dilution curve as well as the application potential and 

limitations of satellite and fluorescence remote sensing technologies. In addition, some 

discussions will focus on how to resolve the limitations and how to apply the diagnostic 

results for precision N management. 

7.1 N concentration and NNI remote sensing estimation 

 The Nc dilution curve was established in Chapter 3 (Nc = 27.7W -0.34 when AGB was 

1 Mg DM ha-1 or above, and Nc was set to a constant value of 27.7 g kg-1 When AGB was 

less than 1 Mg DM ha-1). According to the “-3/2 self thinning rule” in plant ecology, due to 

the light competition among individual plants, plants develop the height (the third dimension) 

in order to position their leaves within the top layers for well illumination (Hamilton et al., 

1995; Lemaire et al., 2007). Therefore, the coefficient b (b = 0.34 for the new curve in this 

study) equals to the theoretical value of 1/3, which indicates isometric plant growth (similar 

relative rate in all three dimensions) (Hamilton et al., 1995; Lemaire et al., 2007). And the 

Nc dilution curve established for rice in Northeast China was close to that established for 

flooded rice in Japan (Nc = 29.8W-0.34 in Tokyo, Nc = 26.9W-0.36 in Osaka) (Katsura et al., 

2010). This is because the climatic conditions in Northeast China are very close to Japan. 

Previous research has indicated that species-specific Nc dilution curves were widely suitable 

for spring maize (Plénet & Lemaire, 1999; Herrmann & Taube, 2004; Ziadi et al., 2008a). 

On the other hand, the Nc dilution curve is more stable than the PNU inter years (Lemaire & 

Gastal, 1997). The dilution curve between N concentration and biomass is relatively stable 
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between years, while crop PNU is variable over years due to the variations in light and 

temperature production potential. NNI is an integrative indicator of plant N status. It 

increases with N application rates. The dilution curve and NNI can also be used in research 

or posterior diagnosis in farm fields to determine possible causes of low yield. Therefore, 

NNI is a more promising and reliable diagnostic tool than PNC (Lemaire et al., 2008). 

 From the perspective of remote sensing estimation, N concentration is estimated based 

on empirical relationships with chlorophyll concentration, while NNI has more estimation 

methods (Houlès et al., 2007). During vegetative growth stages, the contribution of LAI to 

canopy reflectance spectra is much greater than that of chlorophyll concentration (Yu et al., 

2013b). Therefore, the N concentration and NNI are difficult to estimate by empirical 

relationships with chlorophyll concentration. The analysis results of Chapters 4 and 5 also 

confirmed that direct estimation of PNC and NNI performed worse than the estimation of 

PNU before the heading stage using the broadband satellite remote sensing data. Research 

showed that the red edge-based VIs and optimized narrow band RVI and NDVI explained 

more NNI variability (Cao et al., 2013; Mistele & Schmidhalter, 2008). The indirect 

estimation methods, which first use remote sensing to estimate key parameters such as 

biomass, PNC, and PNU, and then indirectly estimate NNI have demonstrated to be effective 

(Cilia et al., 2014). The indirect estimation method that uses PNU and critical PNU are 

covered in Chapter 4 of this thesis. The fact that PNU is linearly related and strictly 

proportional to LAI during the vegetation growth stage, and it is strictly proportional to LAI 

explains its better performance for the NNI estimation (Lemaire et al., 2007).  

7.2 Satellite remote sensing application potential 

In Chapter 5, 9 of the 10 VIs calculated based on the simulated wavebands of 

FORMOSAT-2 satellite were the same as those derived from actual satellite remote sensing 

images included in Chapter 4. For both cases, the CI, RVI (RVI3 in Chapter 4, RVI in Chapter 

5), MCARI, TCARI, TVI, GNDVI (NDVI2 in Chapter 4, GNDVI in Chapter 5), OSAVI, 

and NDVI (NDVI3 in Chapter 4, NDVI in Chapter 5) were very stable in estimating the 

AGB (R2 = 0.87-0.90 for actual FORMOSAT-2 data, R2 = 0.60-0.82 for simulated 

wavebands) (Tables 4-5, 5-5, 5-6). Among them, the CI and RVI (RVI3 in Chapter 4) were 

the VIs that explained the most variation in both cases. And they were also the best and most 

stable VIs for estimating PNU (Tables 4-5, 5-5, 5-6). The performance of MCARI and 

TCARI closely followed the CI and RVI. The MCARI and TCARI are highly related to leaf 

chlorophyll variation and LAI (Daughtry et al., 2000; Haboudane et al., 2004). The OSAVI 

and RVI can weaken the effects of background reflectance, while the MCARI and CI can 

enhance the response to chlorophyll concentrations in addition to weakening the background 

noise and avoiding the saturation effect because of their linearity with chlorophyll content 
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(Daughtry et al., 2000; Gitelson et al., 2003, 2005). Previous studies have also observed high 

linear correlations between the MCARI and N indicators such as AGB (R2 = 0.68-0.79) and 

PNU (R2 = 0.83) (Cao et al., 2013; Gnyp et al., 2014). The wavebands of FORMOSAT-2 

include the traditional blue (450-520 nm), green (520-600 nm), red (630-690 nm), and near-

infrared (760-900 nm), which are the commonly used wavebands in many operational 

satellites (Table 2-2). Therefore, VIs based on the traditional bands have high potential in 

applications over large-area. 

 Crop growth stages not only affect the relationships between VIs and N nutrition 

indicators but also affect the selection of sensitive bands (Li et al., 2010). For the estimation 

of AGB in Chapter 5, the R2 of the estimation models across the growth stages were very 

high (> 0.80). However, the root mean square error (RMSE) and the relative error (REr) 

obtained in the validation data using the models of across stages were greater than those 

based on each growth stage (PI and SE). Similar results were observed for the PNU 

estimation. This is because the clusters of different growth stages in the scatter plot were not 

evenly distributed on both sides of the regression curve, which led to a high coefficient of 

determination of the fitted regression model, but higher RMSE and REr were obtained for 

validation (Gnyp, 2014). Considering precision N management is often only for critical key 

growth stages, estimating agronomic parameters at different growth stages are important.  

However, at the early crop growth stage, the performance of VIs based on the visible 

wavebands was poorer than that based on the red edge waveband for the estimation of N 

nutrition indicators (Tables 5-5, 5-6). The small vegetation coverage at this growth stage is 

the dominant factor. The red edge waveband has been shown to be insensitive to background 

effects (Zarco-Tejada et al. 2004). The results of Chapter 5 show that the VIs based on the 

red edge waveband can increase the coefficient of determination by more than 20% when 

estimating AGB and PNU at the early stages (Tables 5-5, 5-6). Previous studies showed that 

red edge reflectance was highly correlated with chlorophyll content (Cho & Skidmore, 2006; 

Clevers et al., 2002). This is because red edge position changes with the chlorophyll content 

(Buschmann & Nagel, 1993; Dawson & Curran, 1998) and the spectral characteristic of red 

edge band mainly account for N and chlorophyll content, while the visible reflectance is 

affected by the spectral features of multiple pigments (Haboudane et al., 2004; Hansen & 

Schjoerring, 2003). Chlorophyll absorbs more in the red band than in the red edge band, 

which is an important reason for the red edge band-VIs to be unsaturated under high 

chlorophyll concentrations (Gitelson & Merzlyak, 1996). It has been reported that the red 

edge-VIs improved the estimations of N nutrition indicators in many studies (Wu et al., 2008; 

Li et al., 2014a; Cao et al., 2013; Dong et al., 2015). In this study, the estimation of NNI was 

also improved by introducing the red edge-VIs, and the SMLR analysis proved that the red 

edge band was the most important one for NNI estimation except for the near-infrared band 

(760-900 nm) (Table 5-7). However, it was difficult to estimate PNC in the early stage of 
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crop growth based on satellite remote sensing according to our results. Eitel et al. (2007) 

also showed the difficulty of estimating leaf N concentration by using simulated RapiedEye 

bands.  

 Numerous studies have shown that high spatial and temporal satellite and aerial imagery 

data are useful for precision N management (Bausch & Khosla, 2010; Nigon et al., 2014; 

Magney et al., 2017). The advantage of satellite imagery to quickly acquire large-area data 

is still unmatched by drone platforms or ground-based systems. The low-cost and 

maintenance-free means based on satellite and aerial imagery are very helpful for accurate 

agricultural decision-making. Providing spatial distribution maps of in-season N uptake can 

help develop precision fertilization and maximize the efficiency of N use (Diacono et al. 

2013; Long et al. 2015). The N recommendation approach developed in this thesis requires 

the satellite imagery to be collected in a narrow time window, preferably one week before 

topdressing N application at the stem elongation stage for rice in the study region. The 

satellites evaluated in this thesis all have short revisit capability and high spatial resolutions. 

The 8-m spatial resolution of FORMOSAT-2, 5-m for RapidEye, and 2-m for WorldView-2 

can meet the requirements of agricultural production models at different scales, for instance, 

the large-scale farming in the Sanjiang Plain of Northeast China, and the small-scale farming 

in other parts of China (Shen et al., 2013). The reason for using the satellites with high 

temporal resolution is to minimize the impact of cloudy and rainy weather. Alternatively, 

Radar images and unmanned aerial vehicles (UAVs) may also be used.  

7.3 Fluorescence remote sensing application potential 

 From the analysis results of Chapter 6, it can be seen that the best performing 

fluorescence index explains more variation of PNC and NNI, compared to those indices 

based on the satellite-based wavebands, in the early stage of crop growth (Tables 4-5, 5-5, 

5-6, 6-4). The difficulty of estimating the PNC based on reflectance spectroscopy at the early 

growth stages for rice has been reported by Stroppiana et al. (2009) and Yu et al. (2013). 

This is because the reflectance spectrum is mainly determined by LAI and biomass, and the 

effect of chlorophyll is a secondary cause. In addition, most existing VIs based on reflectance 

spectrum contain the near-infrared band, which is highly reflected by the canopy, so its 

correlation with LAI or biomass is extremely high, whereas visible light irradiation is easily 

absorbed by chlorophyll and its transmittance is low (Heege et al., 2008; Stroppiana et al., 

2009). When N supplement status changes, the N concentration changes before appearance 

parameters (e.g. biomass or LAI) for crops (Demotes-Mainard et al., 2008). Therefore, the 

reflectance-based remote sensing may not provide satisfactory monitoring results in some 

cases, while the fluorescence-based remote sensing is more sensitive (Tremblay et al., 2011; 

Agati et al., 2015; Longchamps & Khosla, 2014). The best performing Multiplex index-the 
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NBI was highly correlated with NNI (R2 = 0.72-0.78), and the validation results also showed 

that the index had a low inversion error for NNI (RMSE ≤ 0.16, REr ≤ 15%) (Table 6-4). 

This result is in conformity with previous studies by Agati et al. (2015) and Padilla et al. 

(2016). The NBI is defined as the ratio of SFR to FLAV, which is a surface-based indicator 

with unit as Chl/g DM (Agati et al., 2013). The NNI, defined as the ratio of Na to Nc, therefore 

equals Na / (aW -b) = a-1NaW
 -b, which is also related to N concentration and dry matters like 

the NBI. 

 The good fit of the regression curve between the NBI and NNI resulted in highly 

accurate diagnostic results based on NNI (Table 6-6). Many studies agreed that it was the 

best to estimate NNI for different crop growth stages (Mistele & Schmidhalter, 2008; Ravier 

et al., 2017). However, the interception and slope coefficients of the NBI-NNI regression 

curves established in this research are similar and consistent at different stages (Table 6-5). 

Ravier et al. (2017) suggested that establishing a model for NNI estimation that is 

independent of biomass or cultivar effects is very useful for farmers. However, N status 

diagnosis and precision N fertilizer management based on fluorescence remote sensing are 

still at the initial stage, and there are many problems to be solved. For example, how to 

collect fluorescence remote sensing data effectively over large areas? 

7.4 Remote sensing-based in-season N management strategies 

 Based on the critical N uptake curve (Eq. 2-3), Chapter 4 proposes an N topdressing 

recommendation algorithm based on remote sensing. Our methodology combined the 

information of the AGB and PNU retrieved from their best performing VIs. Conforming to 

many studies on N management strategies based on remote sensing technique, the indicator 

PNU was chosen (Magney et al., 2017; Cilia et al., 2014; Villodre et al., 2017). The PNU is 

an alternative indicator of the N or chlorophyll content. Because the N or chlorophyll content 

is largely a factor of LAI, and strongly affects the near-infrared reflectance (Eitel et al. 2008), 

VIs-based PNU estimations can often achieve very high R2. However, PNU maps cannot 

provide the recommendations for N fertilizer topdressing. One approach is to diagnose the 

N status based on NNI. According to the diagnostic results, the best N recommendation rate 

of the region can be increased or decreased N. Another approach is to produce a PNU 

difference map using the estimated PNU map minus the critical PNU map. Then the 

recommended N topdressing application rate can be determined by using the regional 

optimum topdressing N application rate to minus the PNU difference. Those are all very 

simple and feasible approaches. However, some problems need to be noted. When the crop 

population is too small to reach the maximal yield potential, the algorithm fails to adjust the 

recommendation rate accordingly, excessive supply of N fertilizer will eventually 

accumulate in the soil and increase the risk of discharge to the environment. The range of 
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the recommended fertilization rates set in the algorithm was not very big, resulting in only 

small adjustments based on the optimal rate. Therefore, it may lose its sensitivity to yield 

changes. In addition, whether it is possible to provide recommendations successfully in an 

extreme climate year remains questionable. However, due to other stress factors (such as 

water, pests, and diseases), the effects of recommended N fertilizer will be affected (Cilia et 

al., 2014). This issue occurs frequently in N experiments. Therefore, the N recommendation 

approaches need further verification and improvement in the future. 

7.5 Limitations of the thesis 

The results of this study show that remote sensing technique can be used to monitor crop 

N status. As a result, remote sensing diagnostic models for rice N nutrition in cold regions 

were established, which could be used to guide precision fertilization in the farms. However, 

these models are empirical and lack a certain mechanism. The geographical transferability 

of the models is also an important issue to be considered (Foody et al., 2003; Eitel et al., 

2007). Wu et al. (2008) suggested that relationships between physiological parameters and 

VIs for all conditions were not a single correlation curve, but a series of correlation curves. 

Many studies have shown that VIs constructed from simulated satellite band data can be 

used to estimate crop N status well. However, due to the differences in observation 

conditions caused by sensor resolution and target azimuth angle, there are some differences 

between the actual and simulated band reflectance of the same target. For instance, Bausch 

and Khosla (2010) pointed out that different view angles of satellites may affect the VI values. 

Jackson et al. (1990) stated that the use of oblique imagery in temporal studies to calculate 

the NIR/R ratio from wheat canopy reflectance could lead to serious misinterpretations of 

the data, and NDVI also varied with view angles but not as drastically as the NIR/R ratio. 

Pinter et al. (1990) showed that if a radiometer was pointed toward a canopy in the direction 

of the sun, it would perceive a greater reduction in visible light than in the NIR when 

compared with data collected from a nadir view. 

Different remote sensing methods have different abilities to monitor crop agronomic 

parameters, even the same remote sensing methods have different monitoring capabilities at 

different growth stages. For example, most of the multispectral satellites data have some 

limitations in estimating PNC at the early crop growth stage due to their limited bands, broad 

bandwidth, and rough spectral information expression. The proximal fluorescence sensor 

Multiplex®3 can effectively solve this problem and further improve the accuracy of NNI 

estimation. However, due to its small view angle, the ability of fluorescence to estimate 

biomass is weak. How to monitor N status in the entire process of crop growth by combining 

various remote sensing methods is the key issue to be solved urgently in future research.
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Chapter 8: Conclusions and future outlook 

8.1 Conclusions 

This thesis focused on the research of N nutrition diagnosis and N fertilizer management 

strategy for cold region paddy rice in Northeast China. Experiments were conducted based 

on multi-source remote sensing technologies. Diagnostic criteria of N nutrition in cold paddy 

rice was clarified. N nutrition diagnosis methods based on proximal and satellite remote 

sensing technologies were established to promote the precision N management strategies. 

The major findings are summarized as follows: 

Regarding the Nc dilution curve analysis, the Nc dilution curves developed for Indica 

rice in the tropical and temperate zones and for Japonica rice in the subtropical-temperate 

zone were not suitable for diagnosing short-season Japonica rice N status in Northeast China. 

A new Nc dilution curve was developed and could be described by the equation: Nc = 27.7W -0.34 

if W ≥ 1 Mg dry matter (DM) ha-1 or Nc = 27.7 g kg-1 DM if W < 1 Mg DM ha-1, where W is 

the aboveground biomass. The gradient of this new curve was lower than the previous curves 

developed in other regions. The validation results indicated that it worked well for 

diagnosing plant N status of the 11-leaf variety rice. 

For the evaluation of the potentials of using FORMOSAT-2 satellite remote sensing to 

estimate rice NNI, while it was found that 45% of NNI variability could be explained using 

the Ratio Vegetation Index 3 (RVI3) directly across years, a more practical and promising 

approach was proposed. That is, using satellite remote sensing to estimate aboveground 

biomass (AGB) and plant N uptake (PNU) at the panicle initiation stage and then using these 

two variables to estimate NNI indirectly (R2 = 0.52 across years). Moreover, the calculated 

difference between the estimated PNU and the critical PNU based on the indirect method 

were used to guide the topdressing N application rate adjustments, which demonstrated that 

FORMOSAT-2 images have the potential to estimate rice N status for guiding panicle N 

fertilizer applications in Northeast China.  

Pertaining to the potentials of red edge and additional bands for rice N status estimation, 

the results indicated that, the best-performed red edge-based VIs explained 53%–64% AGB 

variability and 62%–65% PNU variability, compared to 30%–40% AGB and 39%–52% 

PNU variability using the chlorophyll index (CI) at the panicle initiation and stem elongation 

stages. In addition, for the NNI estimation, the N planar domain index (NDPI) based on the 

WorldView-2 bands and MERIS terrestrial chlorophyll index (MTCI) based on the RapidEye 

bands explained 14%–26% more variability than the FORMOSAT-2-based indices. Overall, 

compared to the FORMOSAT-2 satellite data, both the RapidEye and WorldView-2 data with 
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red edge band improved the results. However, the WorldView-2 data with three extra bands 

in the visible and NIR regions showed the highest potential in estimating rice N status. 

About the potentials of the proximal fluorescence sensor Multiplex®3 for N status 

estimation at different growth stages for rice in cold regions, it was found that different N 

application rates significantly affected most of the fluorescence indices, especially the 

simple fluorescence ratios (SFR_G, SFR_R), blue-green to red fluorescence ratio 

(BRR_FRF), flavonols (FLAV), and N balance index (NBI_G, NBI_R). There were strong 

relationships between some fluorescence indices (BRR_FRF, FLAV, NBI_G, and NBI_R) 

and N indicators (LNC, PNC, and NNI) with R2 between 0.40 and 0.78. In particular, NNI 

was well estimated using these fluorescence indices. These results indicated that most of the 

Multiplex indices were reliable indicators of N nutritional status for rice in cold regions. 

8.2 Future outlook 

In this study, the N critical curve established was mainly based on 11-leaf cold rice 

variety, which still should be further validated using other varieties (e.g., 12-leaf and 13-leaf 

varieties) to improve its regional universality. Meanwhile, the N fertilizer recommendation 

model established based on the critical N uptake curve is a simple and operable N fertilizer 

recommendation algorithm, which is suitable for fertilization recommendation for different 

farmers in large areas. However, this N fertilizer recommendation approach did not consider 

the impact of climate conditions (e.g., light-temperature potential productivity). Its 

sensitivity to climate still needs further research and improvement. 

For the application of remote sensing technology in precision agriculture, at present, a 

new earth observation system with high frequency, high spatial resolution, multiple bands, 

and full coverage is being constructed by newly launched satellites globally. Vegetation 

chlorophyll fluorescence remote sensing theory and technology have also been developed 

rapidly. Agricultural UAV and internet technology have made new breakthroughs. These 

bring new opportunities for regional crop N nutrition monitoring and the development of 

precision agriculture. In the future, modern agricultural remote sensing technology 

integrated with multi-platform and multi-scale "satellite-airborne-ground" remote sensing 

data is an important development direction of modern precision agriculture under the 

condition of large-scale planting. 

The remote sensing diagnostic model for N nutrition in cold rice is still based on 

empirical statistical method, and the remote sensing information reflects the instantaneous 

state of surface parameters. This makes the crop growth monitoring process by remote 

sensing method only lack a certain mechanism and time continuity. In contrast, crop growth 

model can continuously simulate the daily growth and development of crops by considering 

the meteorological, soil, crop varieties and crop planting factors. Therefore, future research 



Chapter 8: Conclusions and future outlook 

139 

will focus on the integration of remote sensing information and crop growth models, and 

thus forming a nutrient monitoring and decision-making system for the entire process of crop 

growth.
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