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Abstract

We present a novel arbitrary high-order accurate nodal discontinuous Galerkin spectral
element approximation for the non-linear two dimensional shallow water equations on
unstructured, possibly curved, quadrilateral meshes. The scheme is designed such that it
is entropy stable and well-balanced for non-constant, possibly discontinuous, bathymetry.
We call the resulting method the entropy stable discontinuous Galerkin spectral element
method (ESDGSEM).

The scheme is derived from an equivalent flux differencing formulation of a specific
split form of the equations. We prove that this discretization yields a conservative
approximation. Combined with a special numerical interface flux function, the method
exactly preserves the total energy as well, which is a mathematical entropy function
for the shallow water equations. By adding interface dissipation in a controlled way
to the baseline entropy conservative scheme we guarantee the entropy stability of the
scheme. Finally, we prove that the particular choice of source term discretization leads
to a well-balanced approximation for the presented split form discretization.
We extend the entropy stable scheme with a shock capturing technique and a positiv-

ity preservation capability to handle dry areas. For the shock capturing, we introduce an
artificial viscosity to the equations and prove that the numerical scheme remains entropy
stable. We add a positivity preserving limiter to guarantee non-negative water heights as
long as the mean water height is non-negative. We prove that non-negative mean water
heights are guaranteed under a certain additional time step restriction for the entropy
stable numerical interface flux. All of these modifications preserve the entropy inequal-
ity, maintain the well-balanced property and work on unstructured, possibly curved,
quadrilateral meshes.
Furthermore, we implement the method on GPU architectures using the abstract lan-

guage OCCA, a unified approach to multi-threading languages. We thoroughly analyze
the scheme and compare it to a standard DG implementation. Our findings show that
the entropy stable scheme is well suited to GPUs as the necessary extra calculations do
not negatively impact the runtime up to reasonably high polynomial degrees (around
N = 7).

We provide numerical examples that verify the theoretical properties of the entropy
stable method. Also, we demonstrate the increased robustness of the method with a
series of challenging test cases that require both, the shock capturing and positivity
limiter.
Finally, we validate the entropy stable method by simulation the real world example of

the 2004 Indian Ocean tsunami. We obtain good approximations of the tsunami arrival
times when comparing to tide measurement data on the Indian coast.
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Kurzzusammenfassung
In dieser Arbeit präsentieren wir ein neues Discontinuous Galerkin Spektrale Elemente
Verfahren hoher Ordnung zur Approximation der nicht-linearen Flachwassergleichungen
auf unstrukturierten, möglicherweise gekrümmten Gittern. Das Verfahren ist so konstru-
iert, dass es Entropie-stabil ist und die well-balanced Eigenschaft hat. Wir bezeichnen
dieses Verfahren mit ESDGSEM.

Das Verfahren wird anhand einer spezifischen alternativen Formulierung der Flach-
wassergleichungen konstruiert. Durch Umformulierung der Diskretisierung der alterna-
tiven Formulierung in ein Flux-Differencing Verfahren ist es uns möglich zu zeigen, dass
das Verfahren konservativ ist, obwohl es nicht auf den Gleichungen in konservativer Form
beruht. Durch Verwendung eines speziellen numerischen Flusses an den Elementkanten
können wir außerdem zeigen, dass die Approximation die totale Energie als zusätzliche
konservative Variable behandelt. Da die totale Energie eine Entropie-Funktion für die
Flachwassergleichungen ist, ist das Verfahren somit Entropie-konservativ. Durch kon-
trolliertes Hinzufügen von numerischer Dissipation an den Elementkanten können wir
garantieren, dass das Verfahren Entropie-stabil ist. Weiterhin zeigen wir, dass das Ver-
fahren für eine spezielle Diskretisierung des Quellterms auch well-balanced ist.
Wir führen künstliche Viskosität in das System der Flachwassergleichungen ein, um die

Oszillationen im Falle von Schocks zu dämpfen. Außerdem erweitern wir das Entropie-
stabile Verfahren um einen Positivitätslimiter, der nicht-negative Wasserhöhen garantiert.
Wir zeigen, dass beide Erweiterungen die Entropie-Stabilität des Verfahrens beibehalten.
Ebenfalls beweisen wir die Funktionalität des Positivitäts-limiters. Für die in dieser Ar-
beiten verwendeten Entropie-stabilen numerischen Flussfunktionen war dies zuvor nicht
bekannt.
Des Weiteren implementieren wir das ESDGSEM unter Verwendung von OCCA auf

modernen Grafikkarten. Unsere Untersuchungen ergeben, dass das ESDGSEM hervor-
ragend auf die Architektur moderner Grafikkarten passt. Trotz eines höheren erforder-
lichen Rechenaufwands im Vergleich zu herkömlichen DG-Verfahren ist für Polynom-
grade von N ≤ 7 kein Laufzeitunterschied festzustellen.
Mit einer Reihe von numerischen Beispielen verifizieren wir die theoretischen Ergeb-

nisse bezüglich Konvergenz und Konservatität. Außerdem zeigen wir die well-balanced
Eigenschaft numerisch und testen die Robustheit des Verfahrens anhand einiger nu-
merisch herausfordernder Tests. Diese beinhalten sowohl starke Schocks als auch Trock-
enflächen und benötigen somit zwingend die Erweiterungen des Verfahrens.
Abschließend verwenden wir das entwickelte Verfahren, um den Tsunami im Indischen

Ozean aus dem Jahr 2004 zu simulieren. Unsere Ergebnisse vergleichen wir dabei mit
an der Küste Indiens aufgezeichneten Daten und beobachten gute Approximationen für
die Ankunftszeiten des Tsunamis.
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1. Introduction
In the world of numerical simulation there exist a vast variety of methods to approx-
imate fluid behavior each exhibiting unique properties that make them more or less
suitable toward individual application. In this work, we consider the approximation of
hyperbolic balance laws. There are three key characteristics that define the applicability
of a numerical method. First, there is the solution quality. Highly resolved solutions
are necessary to accurately reflect finer physical phenomena, for example in the field
of turbulence modeling. Second, there is the robustness of a scheme. It describes the
capability of reliably producing a meaningful solution, even for challenging problems.
Lastly, there is the computational efficiency. The resources available for a numerical
simulation are generally limited and must be spent reasonably. Balancing these criteria
is very important when designing a numerical method. Many available schemes shine
in one or two of these categories, at the cost of the other. Traditional low-order finite
volume methods, for example, are among the most reliable schemes available. However,
the solution quality is lacking as they struggle to resolve finer features. This behaviour
can be observed at shocks, which are treated robustly, but smeared out. In long time
simulations these inaccuracies may deteriorate and lead to unacceptable solutions [217].

In this thesis, we are interested in spectrally accurate schemes. Discontinuous Galerkin
(DG) spectral element methods separate the domain into elements and approximate the
local solutions by polynomials. To resolve the discontinuities at interfaces elements are
coupled by a numerical flux, a concept borrowed from the finite volume community.
Within the DG framework, high-order accuracy is achieved by simply increasing the
order of the polynomial approximations. Generally, high-order methods are not only
capable of accurately resolving finer physical features, they are also known to be very
effective in terms computational cost, requiring less work at a given accuracy than low-
order schemes [107, 54]. Due to the local ansatz of the approximation, DG methods are
well-suited for parallelization. Neighbouring elements are weakly coupled and only need
to exchange interface data and a bulk of the computational work is performed locally.
Furthermore, these type of schemes are very flexible in handling complex geometries as
the elements can have a variety of shapes with possibly curved sides.
Solutions of non-linear systems of hyperbolic conservation laws can develop shocks in

finite time, even if the initial data is smooth [178, 174]. To allow non-smooth solutions,
weak formulations of the conservation laws are typically considered. Then, the Lax-
Wendroff theorem guarantees that if a conservative scheme converges, it converges to
a weak solution [147]. Unfortunately, weak solutions are not unique, posing the non-
trivial task of finding the physically relevant solution out of the infinite family of weak
solutions [234]. Entropy stable methods address part of this difficulty by requiring the
solution to satisfy an additional entropy inequality [149, 223, 107]. In the context of gas
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CHAPTER 1. INTRODUCTION

dynamics, this can be interpreted as consistency to the second law of thermodynamics.
Also, since the entropy is bounded in L2, they demonstrate increased robustness when
compared to their non entropy stable counterparts [64, 253]. This increased robustness is
important, especially in the context of high-order methods. High-order approximations
tend to introduce oscillations at shock fronts, a phenomenon first observed by Gibbs
[92]. If these spurious oscillations are too severe, they may lead to unphysical values and
cause the simulation to crash. Other strategies to address this problem include slope
limiters or added artificial viscosity, but this may come with a loss of accuracy when
applied to high-order methods [32]. However, until recently there have not been many
high-order entropy stable methods available. The E-schemes proposed by Osher [192] are
entropy stable for all entropy pairs but limited to first order accuracy. Tadmor presented
a family of second order entropy stable finite volume schemes, where the evaluation of
the entropy conservative flux is based on a path integral in phase space [235, 234].
LeFloch and Rohde built on Tadmor’s foundation to find fully discrete entropy stable
finite volume schemes of third order accuracy [152]. Finally, a framework for entropy
stable finite volume schemes of arbitrary order was proposed by Fjordholm, Mishra and
Tadmor in 2012 [69].
In the context of high-order finite difference and DG methods, Carpenter and Fisher

have established a framework for the construction of entropy stable schemes in a remark-
able series of papers [32, 64, 66]. Their proposed systematic approach towards deriving
entropy stable schemes is based on summation-by-parts (SBP) operators. By using
flux difference formulations on a complimentary grid, the authors are able to construct
entropy conservative high-order finite difference and DG approximations from entropy
conservative numerical fluxes frequently used in the low-order finite volume framework.
These entropy conservative flux differencing schemes are extended by adding dissipation
to the numerical interface fluxes in a specific way, such that the entropy inequality holds
globally. Gassner et al. [82, 62] have found an equivalency between schemes in the
framework of Carpenter and Fisher and certain DG discretizations of split formulations
of systems of conservation laws. The DG method must use derivative operators with
the SBP property. This remarkable result from Fisher paves the way to combine the
beneficial robustness of split formulations with the flux differencing framework and its
systematic approach towards entropy stability.
The aim of this thesis is to build on the framework by Carpenter and Fisher to

derive a novel entropy stable discontinuous Galerkin method for the shallow water (SW)
equations. The SW equations are a set of non-linear hyperbolic balance laws widely
used in oceanic and atmospheric modeling as well as hydraulic engineering [15, 7, 250,
167, 50, 85, 242]. Specific applications include the simulation of tsunamis [20, 75] and
storm surges [113, 12, 11]. For the SW equations it is critical that the numerical method
maintains a balance between the source term which includes the gradient of the bottom
topography and the hydrostatic pressure. Only for such well-balanced methods, will the
important steady state solution called “lake-at-rest” be preserved for all time. Many real
world applications, such as tsunamis, are modeled as only slight perturbations of this
steady state. A numerical method that is not well-balanced may introduce unphysical

2



CHAPTER 1. INTRODUCTION

numerical waves, polluting the solution.
Thus, we require the new method to not only be entropy stable but well-balanced as

well. To this end, we present a specific split formulation of the shallow water equations
as well as a special variant of DG methods called the discontinuous Galerkin spectral
element method (DGSEM). The DGSEM uses Legendre-Gauss-Lobatto nodes such that
its derivative operators have the SBP property. We show that if the split form of the
shallow water equations is discretized by the DGSEM and specific entropy conservative
interface fluxes are used, the resulting method is globally entropy conservative. Also, we
provide an equivalent reformulation into Carpenter and Fisher’s flux differencing frame-
work, immediately proving that the scheme is conservative - a property easily lost when
discretizing systems in split form. This reformulation also offers an efficient implemen-
tation as it replaces the computation of many volume integrals for the individual split
form terms by a single volume integral with a special, albeit more expensive, numerical
flux. We call the resulting method the entropy stable DGSEM (ESDGSEM).
In the modern high performance computing (HPC) environment, the trend has shifted

from developing faster central processing units (CPUs) towards increasing the number
of CPUs used in the computation. Numerical methods, such as DG, where the work
can be easily divided into separate pieces that can be treated individually, are a perfect
fit for the parallel environment of modern supercomputers. Recently, this has led to
the use of graphics processing units (GPUs) for scientific computing purposes. Modern
GPUs are many-core architectures that deliver extremely fast single thread performance
executed on thousands of cores in parallel. Consequently, the world’s most powerful
supercomputers now usually feature combinations of many CPU cores and GPUs on
each node. The calculation of floating point operations on modern GPUs is oftentimes
so fast, that the actual computations are no longer the limiting factor, but the time
spent on data transfer. This makes methods such as the high-order DGSEM, that put a
high computational load on each node but require little data exchange, very well suited
for GPU implementations.
We will show that the reformulation of the split form DGSEM in the flux differencing

framework by Carpenter and Fisher is particularly well suited to implementation on
GPU architectures. The additional cost of evaluating the new numerical volume fluxes
is handled so well, that it does not negatively affect the runtime of the simulation for
frequently used polynomial orders N ≤ 7. Additionally, computations for these widely
used polynomial degrees remain memory bound and the ESDGSEM is as fast as a
standard DG implementation.

The outline of this thesis is as follows. In Chapter 2, we start with an introduction
into the theory of conservation laws and the shallow water equations in particular. Here,
we will formally explain the concept of entropy stability and develop suitable entropy
functions for the shallow water equations. We follow this physical discussion by an
overview of numerical methods in Chapter 3. We also derive the DGSEM in one and
two dimensions and outline the development of entropy stable methods. We discuss
the SBP framework by Carpenter and Fisher and the relationship to split formulations
in Chapter 4. Finally, we derive the entropy stable DG scheme in Chapter 5. First,

3



CHAPTER 1. INTRODUCTION

we derive purely entropy conservative methods for the one and two dimensional shal-
low water equations. We start with the simpler one dimensional case to highlight the
important ideas before we move to two dimensions and possibly curved geometries. Fur-
thermore, we explain how to add dissipation to the entropy conservative interface fluxes
to guarantee entropy stability. This allows us to formally present the full ESDGSEM.
We proceed by presenting two extensions to the method. First, we discuss shock cap-
turing by artificial viscosity. This modification helps to reduce any oscillations near
shocks and greatly stabilizes the scheme. The second modification is a positivity limiter.
Practical examples of the shallow water equations may include the dynamic wetting and
drying of the domain, for example if a dry area is flooded by a breaking dam. Such
a limiter is necessary to prevent unphysical negative water heights that may crash the
simulation. Next, we present an efficient implementation of the ESDGSEM on modern
GPU architectures in Chapter 6. We discuss several optimization techniques specific to
the architecture that significantly enhance the performance. We thoroughly analyze the
performance and compare it to a standard DG implementation. A numerical valida-
tion of the theoretical properties of the scheme and its implementation can be found in
chapter 7. We also use several challenging examples from the literature to fully stress
test the shock capturing capabilities and the positivity limiter. In chapter 8, we finally
use the ESDGSEM in a real world application. We simulate the 2004 Indian Ocean
tsunami, one of the biggest natural catastrophes of the modern age. We approximate
the initial state by the Okada model and compare our simulation results with actual
measurements from several stations on the Indian coast. The comparison shows that
the ESDGSEM gives good approximations of the tsunami arrival times and reinforce
that numerical simulations could help in studying such natural phenomenons. Lastly, a
summary of this work along with an outlook on possible further research is provided in
chapter 9.
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2. Conservation Laws

2.1. Concepts for conservation laws
In this work, we are interested in the numerical approximation of solutions to the shallow
water (SW) equations. The SW equations are a non-linear hyperbolic system of PDEs
available in one and two spatial dimensions. They consist of a conservation law for the
water height and a balance law in each spatial direction for the momentum equations.
The balance laws feature a source term proportional to the gradient of the bottom
topology. While the focus of this work lies on the approximation of the two dimensional
system, we will introduce many concepts for the simpler one dimensional case first. Thus,
we will establish the basics for both sets of equations.

The mandatory first step in the development of any discrete method is the investigation
of the equations itself. From this continuous analysis we can develop important concepts
for the numerical solutions of the system. These concepts include upwinding [46] and
conservation [149] but also a principle called entropy stability [233]. Entropy stability
plays a pivotal role in this work and will be thoroughly introduced in the following
sections. We note that this overview on the solutions of hyperbolic conservation laws
should only serve as a motivation towards the development of the numerical scheme
and is far from complete. For a more thorough overview we refer to the works of Lax
[148, 147] or teaching literature such as [107, 106, 240] and others.

2.1.1. Systems of conservation laws in one dimension
We now explore solution concepts regarding systems of conservation laws in one spatial
dimension on the domain Ω ⊂ R of the form

~wt + ~f(~w)x = 0. (2.1)

The system is completed with suitable initial conditions ~w0(x) = ~w(x, 0) and appropri-
ate boundary conditions. Using the flux Jacobian A(~w) = ~f~w(~w), the system can be
rewritten in quasi-linear form

~wt + A(~w)(~w)x = 0, (2.2)

and is (strictly) hyperbolic, if A has a full set of (distinct) real eigenvalues.
A fundamental difficulty is the fact that discontinuities in the solution can develop

in finite time, even for smooth initial conditions [178, 174]. Once discontinuities, or
shocks, are present in the solution, the classical derivatives in system (2.1) are not valid
anymore. To allow for non-smooth solutions, we consider a weak formulation of the
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CHAPTER 2. CONSERVATION LAWS

conservation law. The weak form is obtained by first multiplying each equation in (2.1)
by a smooth test function φ ∈ C∞ with compact support Ω× [0, T ). Then, the equations
are integrated in space and time. Finally, the temporal and spatial derivatives are moved
onto the test function by integration by parts. This leads to the conservation law in weak
form

T∫
t0

∫
Ω

(
~w(x, t)φt + ~f(~w)φx

)
dx dt =

∫
Ω

(~w0(x)φ(x, 0)) dx. (2.3)

A function ~w(x, t) is a weak solution of the original system (2.1) if it satisfies the con-
servation law in weak form (2.3) for all feasible test functions φ. A smooth solution to
the conservation law in differential form (2.1) is respectively called a strong solution.
The development of shocks and its behaviour can be further understood by analyzing

the characteristics of the solution. The characteristics, or characteristic curves, are
curves x(t) in the x − t plane along which the PDE becomes an ordinary differential
equation (ODE). The solution has a constant speed along its characteristics, which is
also called the characteristic speed. An intersection of two characteristics is equivalent
to the formation of a shock in the solution [240]. It is possible to derive the velocity of
the propagation of the discontinuity, or shock speed, s [148, 240] as

sJ ~w K = J ~f K, (2.4)

where we have introduced the jump operator J·K defined by

JaK := aR − aL, (2.5)

which denotes the difference between the states to the left, ~wL and ~fL, and the right, ~wR
and ~fR, of the shock. The equations (2.4) are called the Rankine-Hugoniot conditions
and set the shock speed in relation to the jumps in fluxes and conservative variables
across the shock. A piecewise differentiable solution ~w that contains discontinuities is a
weak solution exactly if it fulfills the conservation law in differential form in the smooth
region and the Rankine-Hugoniot condition (2.4) holds across the discontinuities [70].
The downside of considering weak solutions is that uniqueness is generally lost [149,

174]. This raises the question of how to select a correct, or physically relevant, solution
out of the family of weak solutions. For scalar conservation laws with convex physical
flux f , an entropy condition can be imposed onto the solution,

fx(wL) ≥ s ≥ fx(wR). (2.6)

The condition (2.6) follows from the Rankine-Hugoniot condition and is called the Lax
entropy condition. It is derived by adhering to the idea that characteristics must travel
into shocks and not originate from them [240]. Any solution that does not satisfy the
entropy condition (2.6) contains an entropy-violating shock and can be deemed physically
incorrect [240].
To extend this idea to systems of conservation laws and to establish a formal frame-

work,we introduce the notion of an entropy function e(~w) and the corresponding entropy
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flux F(~w), often denoted as an entropy-entropy flux pair (e,F). The entropy function
must be convex and the entropy-entropy flux pair must satisfy the following contractabil-
ity condition

〈~q, ~f~w〉 = F~w, (2.7)
where we have introduced the new set of variables ~q = e~w, called the entropy variables.
The entropy variables have the interesting property that they symmetrize the system of
conservation laws. This can be seen by treating the entropy variables as independent
variables and writing

~wt + ~fx = ~w~q ~qt + ~f~q ~qx = 0, (2.8)

with symmetric matrices ~w~q = [~w~q]T and ~f~q = [~f~q]T .
Since the entropy function is convex, the Hessian e~w~w = ~q~w is symmetric positive

definite (SPD),
〈 ζ , e~w~w ~ζ 〉 > 0, ∀~ζ 6= 0, (2.9)

and provides a one-to-one mapping from conservative to entropy variables, ~w → ~q. SPD
matrices are invertible and the inverse (~q~w)−1 is SPD as well [103].

To further develop the entropy framework, the concept of the entropy solution is intro-
duced. We derive a regularization of the original conservation law (2.1) by introducing
a viscous term on the right hand side

~wεt + ~f(~wε)x = ε ~wεxx. (2.10)

The viscous term makes all discontinuities theoretically resolvable, thus guaranteeing
the existence of a strong solution for all time [150, 107, 63]. The entropy solution is then
defined as the limit of the viscous solution, ~wε, for ε→ 0 ,

~w = lim
ε→0

~wε in L1
loc, (2.11)

the space of locally integrable functions. The regularized conservation law (2.10) can
be used to derive an entropy inequality condition. Contracting (2.10) with the entropy
variables ~q leads to a regularized entropy equation

eεt + F εx = ε〈 ~q ε, ~wεxx 〉. (2.12)

The product rule can be used to rewrite the viscous terms as

ε〈 ~q ε, ~wxx 〉 = ε〈 ~q ε, ~wx 〉x − ε〈 ~q εx, ~wx 〉. (2.13)

For the last term in (2.13), we see that

〈 ~q εx, ~wx 〉 = 〈 e~w~w ~wx, ~wx 〉 ≥ 0, (2.14)

since the Hessian of the entropy function is SPD. Thus, from inserting equations (2.13)
and (2.14) into (2.12), we find the following entropy inequality for the regularized con-
servation law (2.10)

eεt + F εx ≤ ε〈 ~q ε, ~wx 〉x. (2.15)

7
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Integrating over the domain and taking the limit ε → 0 leads to an entropy inequality
for the original conservation law (2.1) [150]∫

Ω
et + Fx dx ≤ 0. (2.16)

In the context of gas dynamics, the (mathematical) entropy inequality is closely related
to the second law of thermodynamics, which dictates that the entropy in a closed system
can only increase. As can be seen from the entropy inequality (2.16), this concept is
applied in mathematics with a reversed sign convention, requiring that the entropy
must decrease monotonically over time. Thus, a weak solution that satisfies an entropy
inequality is in this case consistent to the second law of thermodynamics and more
physically relevant than solutions that do not. This is especially true for systems such
as the Euler equations where the mathematical entropy density is a physical entropy as
well [173].
In addition to the entropy-entropy flux pair, there is also the entropy potential-entropy

flux potential pair denoted by (Φ,Ψ) and defined by

Φ(~w) = 〈 ~w, ~q 〉 − e(~w)
Ψ(~w) = 〈 ~f, ~q 〉 − F(~w),

(2.17)

that fulfill the following relation,

Φ~q = ~w, Ψ~q = ~f. (2.18)

The entropy potential and entropy flux potential can be used to reformulate the sym-
metrization (2.8) in terms of the Hessians of the entropy potential Φ and the entropy
flux potential Ψ [89, 174],

~wt + ~fx = Φ~q ~q ~qt + (Ψf )~q ~q ~qx = 0. (2.19)

Also, if ~w is a solution of the conservation law (2.1), then ~q(~w) is a solution of(
Φ~q (~w)

)
t
+
(
Ψ~q (~w)

)
x

= 0. (2.20)

2.1.2. Systems of conservation laws in two dimensions with possible source
terms

We follow similar steps as in the one dimensional case to establish the entropy framework
for systems of conservation laws in two dimensions. Specifically, we need to extend the
definition of the entropy-flux pair (e,F) to an entropy-entropy flux triplet, (e,F ,G) in
order to apply the concepts to systems of conservation laws

~wt + ~f(~w)x + ~g(~w)y = 0, (2.21)

and balance laws
~wt + ~f(~w)x + ~g(~w)y = ~s, (2.22)

8
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in two dimensions. For systems of balance laws, we split the source term into parts that
contain spatial derivatives in x and y directions, ~sx and ~s y, and in terms that do not,
~s 0, such that

~s = ~sx + ~s y + ~s 0. (2.23)

This is important, because the parts that contain spatial derivatives must be taken
into the account for the contractability condition imposed on the entropy variables and
entropy fluxes. We define the mathematical entropy functions for inviscid PDEs similar
to [65] with added source term compatibility as in [68]. The first requirement is that
the convex entropy function e = e(~w) contracts the fluxes and source term components
in the following way

〈 ~q, ~fx − ~sx 〉 = Fx,
〈 ~q, ~gy − ~s y 〉 = Gy,

(2.24)

where the components of the contracting vector, ~q = e~w, are the entropy variables and
F and G are the entropy fluxes. Furthermore, the entropy variables must symmetrize
the source term free system of PDEs if they assume the role of independent variables
(i.e., ~w = ~w(~q)). Then, the system of PDEs in terms of ~q can be written as

~wt + ~fx + ~gy = ~w~q ~qt + ~f~q ~qx + ~g~q ~qy = 0, (2.25)

with symmetry conditions: ~w~q = [~w~q]T , ~f~q = (~f~q)T and ~g~q = (~g~q)T .
The entropy potential and the corresponding entropy flux potentials in two dimensions

are defined by

Φ := 〈 ~q, ~w 〉 − e, Ψf := 〈 ~q, ~f 〉 − F , Ψg := 〈 ~q,~g 〉 − G. (2.26)

From the contraction condition (2.24) it follows that

Φ~q = ~w, (Ψf )~q = ~f, (Ψg)~q = ~g. (2.27)

The symmetrization (2.25) can then be formulated in terms of the symmetric Hessians
of the entropy potential and the entropy flux potentials [234],

~wt + ~fx + ~gy = Φ~q ~q ~qt + (Φf )~q ~q ~qx + (Φg)~q ~q ~qy = 0. (2.28)

2.2. The shallow water equations
The shallow water equations are a set of partial differential equations used to model a
flow under a pressure surface that were developed by Saint-Venant in 1871 [51]. The
equations are derived by depth-averaging the three dimensional Navier-Stokes equations
under the following assumptions. First, horizontal length scales are assumed to be much
larger than vertical ones. Then, vertical velocities are seen as negligible and treated as
constant. In this case, the hydrostatic pressure (pressure exerted by a fluid at equilibrium
due to gravity) depends linearly on depth. The density of the fluid is considered constant.

9
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H(x)
h(x)

b(x)

x

Figure 2.1.: Water height h, total water height H and bottom topography b for the one
dimensional shallow water equations at a fixed time t.

We calculate the depth-integrated density which is also the fluid height and denote it by
h. The horizontal velocities u and v are also understood as depth-averaged.
These assumptions are highly idealized but reasonably applicable, e.g., for flows such

as oceans and coastal regions or rivers and channels [10]. Since a two dimensional system
is far more cost effective to solve numerically, the shallow water equations are widely
used in oceanic and atmospheric modeling. Applications include predicting tides as well
as storm surge levels and coastline changes due to unusual events such as hurricanes or
tsunamis, e.g. [20, 250, 167].
There are shallow water equations for one and two spatial dimensions. The one di-

mensional shallow water equations are also called the Saint-Venant equations and given
by

ht + (hu)x = 0,

(hu)t +
(
hu2 + 1

2g h
2
)
x

= −ghbx,
(2.29)

where h denotes the water height measured from the bottom topography b. Furthmore,
u is the fluid velocity and g is the gravitational constant. The total water height is
denoted by H = h+ b, as illustrated in Figure 2.1.

The system (2.29) can be written in compact balance law form as

~wt + ~fx = ~s, (2.30)

with
~w =

(
h

hu

)
, ~f =

(
hu

hu2 + 1
2gh

2

)
, ~s =

(
0

−ghbx

)
. (2.31)
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The shallow water equations are a (strictly) hyperbolic system, as can be seen from the
eigenvalues of the flux Jacobian A = ~f~u, which are found to be

λ1 = u+ c, λ2 = u− c, (2.32)

with wave celerity c =
√
gh. These eigenvalues are all real and also distinct for h > 0.

The shallow water equations in two dimensions are also a system of hyperbolic balance
laws given by

ht + (hu)x + (hv)y = 0,

(hu)t +
(
hu2 + 1

2g h
2
)
x

+ (huv)y = −ghbx,

(hv)t + (huv)x +
(
hv2 + 1

2g h
2
)
y

= −ghby,

(2.33)

and share the nomenclature of its one dimensional version described above, e.g. the
water height h = h(x, y, t) measured from the bottom topography b = b(x, y). We
compactly write the system (2.33) as

~wt +∇ · (~f,~g)T = ~s, (2.34)

with

~w =

 h

hu

hv

 , ~f =

 hu

hu2 + 1
2gh

2

huv

 , ~g =

 hv

huv

hv2 + 1
2gh

2

 , ~s =

 0
−ghbx
−ghby

 . (2.35)

The hyperbolic nature of the system can, again, be observed in the eigenvalues of the
flux Jacobians, which are

λf1 = u+ c, λf2 = u, λf3 = u− c, for Af = ~f~u,

λg1 = v + c, λg2 = v, λg3 = v − c, for Ag = ~g~u,
(2.36)

which are all real for h ≥ 0 and also distinct for each flux Jacobian, if h > 0.
The shallow water equations come with several unique challenges. One of these is the

correct handling of certain steady state solutions. The most prominent example is the
“lake-at-rest” state given by

h+ b = const,
u = v = 0.

(2.37)

In these steady state cases, there is a balance between the derivative of the flux pressure
term 1

2gh
2 and the slope of the bottom topography. The preservation of the states (2.37)

is a highly desirable property for any numerical solver. If the balance between flux
divergence and source term is not maintained discretely, numerical waves are introduced
to the solution and can lead to numerical storms [180]. This is problematic, especially
for test cases that are modeled as just small perturbations of such steady states [156]. A
numerical solver that exactly (to machine precision) preserves the “lake-at-rest” state is
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called well-balanced [83, 26, 180]. There exist more general moving steady state solutions
given by

hu = constant,
1
2u

2 + gH = constant.
(2.38)

While these generalized steady states are not considered for the development of the
numerical method in this work, we point out that such numerical schemes exist, e.g. for
high-order finite volume methods [181] or flux-vector splitting methods [91].
Another natural phenomenon is the flooding of dry areas such as islands or beaches,

especially in the prediction of tidal waves. These dry areas provide a difficult numerical
challenge. Even small oscillations in the solution may render a numerical scheme unsta-
ble. Strategies to address this issue include positivity limiters that remove problematic
oscillations, as we will discuss in Section 5.5.

2.3. Entropy analysis for the shallow water equations
In the shallow water framework, we distinguish between kinetic energy

Ekin := 1
2h ‖~u‖

2 , (2.39)

and potential energy,
Epot := 1

2gh
2 + ghb. (2.40)

The total energy is the sum of kinetic and potential energy

Etotal := Ekin + Epot = 1
2h ‖~u‖

2 + 1
2gh

2 + ghb. (2.41)

We will show that the total energy serves as an entropy function for the shallow water
equations. We prove this for the one dimensional and two dimensional shallow water
equations separately in the following Lemmas, starting with the one dimensional case.

Lemma 1 (Entropy function for one dimensional shallow water equations). The total
energy serves as a mathematical entropy function for the one dimensional shallow water
equations (2.29)

e := Etotal = 1
2hu

2 + 1
2gh

2 + ghb. (2.42)

The entropy variables are given by

q1 = g(h+ b)− 1
2u

2, q2 = u, (2.43)

and the entropy flux is
F = 1

2hu
3 + ghu(h+ b). (2.44)
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The entropy potential - entropy flux potential pair (Φ,Ψ) are given by

Φ = 1
2gh

2, Ψ = 1
2gh

2u, (2.45)

and fulfill the symmetry property

Φ~q = ~w, Ψ~q = ~f. (2.46)

Proof. See Appendix A.1. �

Similarly we show that the total energy (2.41) is a mathematical entropy function for
the two dimensional equations (2.33) as well.

Lemma 2 (Entropy function for 2D shallow water equations). The total energy is an
entropy function for the two dimensional shallow water equations (2.33)

e := Etotal = 1
2h
(
u2 + v2

)
+ 1

2gh
2 + ghb. (2.47)

The entropy variables are given by

q1 = g (h+ b)− 1
2u

2 − 1
2v

2, q2 = u, q3 = v, (2.48)

and the entropy fluxes are

F = 1
2hu(u2 + v2) + ghu(h+ b),

G = 1
2hv(u2 + v2) + ghv(h+ b).

(2.49)

The entropy potential and entropy flux potentials are

Φ = g

2h
2, Ψf = g

2h
2u, Ψg = g

2h
2v. (2.50)

The derivatives of the entropy potential and entropy potential flux fulfill the symmetry
condition (2.27),

Φ~q = ~w, (Ψf )~q = ~f, (Ψg)~q = ~g. (2.51)

Proof. See Appendix A.2. �

In Lemma 1 and Lemma 2 we have shown that the total energy is a mathematical
entropy function for the shallow water equations in one and two dimensions. Assuming
smooth solutions, we contract the shallow water equations (2.29), respectively (2.33),
with the entropy variables (2.43), respectively (2.48), to find the entropy equality

et +∇ · ~F = 0, (2.52)
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with ~F = F in one dimension and ~F = (F ,G)T in two dimensions. In the presence of
shocks, the entropy equality is generalized to an entropy inequality,

et +∇ · ~F ≤ 0, (2.53)

which is to be understood in the sense of distributions. In the development of numerical
schemes for the shallow water equations we will enforce the entropy inequality as a
criterion to filter out physically irrelevant solutions. In the field of gas dynamics this is
equivalent to obtaining a solution that obeys the second law of thermodynamics.
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3. Numerical Methods
This chapter will serve as an introduction into numerical methods for hyperbolic conser-
vation laws. We will provide a brief overview of basic numerical schemes that frequently
serve as a basis for more sophisticated methods. The first methods that come to mind
are finite difference (FD) and finite volume (FV) methods. They differ on a fundamental
level in the sense in which the equations are solved and how the solution is approximated.
While finite difference methods provide point-wise approximations to the solution of the
conservation law in differential form, finite volume methods are based on the integral
form of the equations and approximate mean values over certain control volumes. Other
types of approximations include polynomials, splines and similar shape functions. These
choices obviously affect the properties of the discretization and the resulting numerical
methods are more or less suitable for a problem dependent on, among others, the type
of physics studied and the computational processing power available to the user.

We continue by briefly discussing the basics of each type of scheme and their advan-
tages and disadvantages before we argue why the nodal discontinuous Galerkin method
will serve as the basis for the numerical method developed in this work.

3.1. An overview
3.1.1. Finite Difference Methods
Finite difference (FD) methods are among the first methods to have been developed for
solving PDEs. They have been extensively researched and are widely applied to this
date [99]. The basic idea relies on approximating derivatives in space and time with
finite difference quotients. The solution is then obtained at the individual grid points.
The simplest cases are the first order approximations in space and time

∂w

∂x
= w(x+ ∆x, t)− w(x, t)

∆x +O(∆x),

∂w

∂t
= w(x, t+ ∆x)− w(x, t)

∆t +O(∆t),
(3.1)

and the second order central difference in space
∂w

∂x
= w(x+ h, t)− w(x−∆x, t)

2∆x +O(∆x2), (3.2)

with spatial step size ∆x between two grid points and temporal step size ∆t.
Considering a conservation law

wt + f(w)x = 0, (3.3)
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on the domain Ω = [a, b]× [0, T ], the first step towards a simple explicit finite difference
scheme is to divide the spatial and temporal domain into grid points

a = x0 < x1 < . . . < xN < xN+1 = b,

0 = t0 < t1 < . . . < tN+1 = T,
(3.4)

and denoting the approximation of w at node xi and time level tn by wni . Then, the
derivatives are approximated at each spatial node i = 1, . . . N and time step n by one of
the formulas given in (3.1) and (3.2). For example, a simple forward-time central-space
scheme is given by

wn+1
i − wni

∆t +
fn+1
i+1 − fni−1

2h , i = 1, . . . , N, (3.5)

with suitable boundary and initial conditions. The scheme (3.5) is, however, unstable,
even for linear PDEs [151, 155, 224]. An unconditionally stable scheme can be obtained
by considering an implicit approximation

wn+1
i − wni

∆t +
fn+1
i+1 − f

n+1
i−1

2h . (3.6)

The trade-off here is stability for computational complexity, since a (possibly large) sys-
tem of linear equations must be solved in each time step. High-order finite difference
approximations can be manufactured relatively simple from the Taylor series expan-
sion. Another advantage is the relatively low computational intensity which can lead to
cost-effective schemes. A downside of finite difference approximations is the geometric
flexibility. It is generally difficult to develop good finite difference approximations on
complex geometries.
Additionally, approximating the derivatives based on the Taylor expansion is prob-

lematic at shocks, where the classical derivatives are no longer valid. To overcome this
issue, researchers have found ways to reduce the effect of discontinuities by selecting the
stencil for the approximation based on smoothness measures. Selecting the smoothest
stencil leads to finite difference essentially non-oscillatory (ENO) schemes. Considering
a convex combination of several stencils weighed by their smoothness measures leads to
weighted essentially non-oscillatory (WENO) schemes [119, 217].

3.1.2. Finite Volume Methods
Contrary to the finite difference schemes, finite volume methods are based on the integral
form of the equations. The domain is divided into cells [xj− 1

2
, xj+ 1

2
]× [tn, tn+1] with cell

interfaces located at xj± 1
2

= xj± 1
2∆x, where ∆x denotes the size of the control volumes.

Considering the conservation law (3.3) again, the integral form defined on the cell with
center xj is given by∫ x

j+ 1
2

x
j− 1

2

[
w(x, tn+1)− w(x, tn)

]
dx =

∫ tn+1

tn

[
f(w(xj+ 1

2
, tn))− f(w(xj− 1

2
, tn))

]
dt. (3.7)
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The idea is then to not approximate point values as in the FD methods but mean values
for certain control volumes. The mean value for cell j at time level tn is defined by

wnj = 1
∆x

∫ x
j+ 1

2

x
j− 1

2

w(x, tn)dx. (3.8)

We define the interface fluxes by

Fn
j+ 1

2
:= 1

∆t

∫ tn+1

tn
f(w(xj+ 1

2
, t))dt, (3.9)

and use Euler forward in time, to find the FV cell update scheme

wn+1
j = wnj −

∆t
∆x

[
Fn
j+ 1

2
− Fn

j− 1
2

]
. (3.10)

The approximation of cell averages leads to discontinuities at the cell interfaces. Thus,
the interface fluxes given in (3.9) are not uniquely defined. This difficulty is overcome
by interpreting the evaluation of the interface fluxes as a Riemann problem, as depicted
in Figure 3.1. A vast variety of approximate or exact Riemann solvers exist and we refer

x

Wj+1
Wj

xj Fj+ 1
2

xj+1

Figure 3.1.: Discontinuous solution at the interface between Left and right states viewed
at the cell interface between the two control volumes centered at xj and
xj+1.

to Toro [240] for an extensive discussion. In practice, the Riemann solver is typically
chosen based on the physical problem. For instance, there are more dissipative Riemann
solvers that increase robustness but possibly smear out important details if they are
applied carelessly. A very popular choice for the Riemann solver is the Lax-Friedrichs
numerical flux [213]

F ∗
(
w+, w−

)
= 1

2
(
f(w+) + f(w−)

)
− α

2
(
w+ − w−

)
, (3.11)

where α = |f ′(w)| is the maximum wave speed.
The scheme (3.10) is by construction conservative, ensuring correct shock speeds.

However, it is only first order accurate. High-order FV methods are obtained by re-
constructing a polynomial across a stencil of multiple cells. This polynomial is then
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evaluated to obtain high-order approximations of the interface values wj± 1
2
. Further

improvements have been made to construct more robust high-order schemes by exam-
ining multiple candidate stencils and selecting (ENO) or weighing (WENO) the stencil
contributions based on smoothness indicators [102, 160, 219, 220]. So, while it is possible
to develop high-order finite volume schemes (and widely used in practice), the necessary
steps are quite involved. Especially WENO schemes of third and fifth order are com-
monly used, since explicit formulas for the calculation of the smoothness indicators are
available in the literature, e.g. [218]. High-order FV methods that require large stencils
quickly become computationally expensive. Complex geometries further intensify this
problem. Large stencils lead to poor parallelizability as cell coupling and the amount of
information exchanges increases.

3.1.3. Finite Element Methods
Another broad class of numerical methods are Finite Element Methods (FEM). In the
FEM framework, the domain is subdivided into many smaller elements of varying shapes.
The most frequently used are triangles and quadrilaterals with possibly curved sides. The
element-local approximation is usually based on a variational formulation of the physi-
cal equations. In a variational formulation the requirements on the solution are lowered
and weak solutions with respect to specific test functions are considered. A common
choice for the local approximations are polynomials. This has the advantage that high-
order approximations are achievable by simply increasing the polynomial degree. The
element-local approximations are then coupled across interfaces either continuously or
discontinuously [137]. A continuous approximation across interfaces leads to a global
coupling and a large set of algebraic equations, while the choice of discontinuous inter-
faces leads to the issue of non-unique interface states at the element boundaries, similar
to finite volume methods.
This general framework allows for a wide variety of methods each with its own ad-

vantages and disadvantages. However, two common advantages for most finite element
methods are the simplicity of obtaining high-order approximations as well as the capa-
bility of handling curved geometries by constructing the mesh accordingly.
Discontinuous interfaces lead to a minimal coupling between the elements and, thus,

allow for high parallelizability. Keeping the computational efficiency in mind, it might
be advantageous to follow the collocation principle and pick the test functions and basis
functions identically. Along with a nodal polynomial approximation we arrive at the
Discontinuous Galerkin Spectral Element Method (DGSEM). The DGSEM serves as
a building block in the development of the numerical method presented in this work.
It combines the mesh-flexibility and high-order capabilities of Finite Element methods
with the high parallelizability of low order Finite Volume methods as elements are only
coupled through their interface communications with direct neighbours. It is compu-
tationally very efficient as many terms cancel due to the collocation principle and the
simplifications they bring to the numerical quadratures. We explain the DGSEM in one
and two dimensions in the following section.
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3.2. Discontinuous Galerkin Spectral Element Method
In this section we introduce the specific type of discontinuous Galerkin method that we
use as the basis for the entropy stable numerical scheme for the shallow water equations.
DG schemes have been originally introduced by Reed and Hill, [209], and have been
continuously researched and improved upon. In the literature, vast discussions of these
type of methods can be found [137, 106, 123, 45, 107]. For our purposes we focus on a
nodal DG method with spectral elements, the DGSEM. We will introduce the scheme
for one dimensional scalar conservation laws first and subsequently extend it to systems
of balance laws on curved quadrilateral grids.

3.2.1. DGSEM in one dimension
We consider a scalar one dimensional conservation law on the physical domain Ω ⊂ R

wt + f(w)x = 0, (3.12)

equipped with suitable boundary and initial conditions. In line with the finite element
approach, we divide the domain Ω into non-overlapping elements Ei, i = 1, . . . ,K, such
that ∪Ki=1Ei = Ω. The global approximation wh(x, t) can then be expressed as the union
of all the local approximations,

w(x, t) ≈ wh(x, t) =
K⊕
k=1

wk(x, t), (3.13)

and we can focus our efforts on the element local approximation wk. Omitting the
element index k, we map each element E with center x0 and element width ∆x to
reference space E0 = [−1, 1] by the linear coordinate mapping

x(ξ) = x0 + ∆x
2 ξ, ξ ∈ [−1, 1]. (3.14)

The Jacobian of this transformation is given by J = xξ = ∆x
2 . We use the chain rule on

the flux function
f(w)x = f(w)ξξx = J −1f(w)ξ, (3.15)

to find the conservation law for element E in reference space,

Jwt + fξ = 0. (3.16)

We want to solve the conservation law in reference space (3.16) in a weak sense. Thus, in
a first step we multiply (3.16) by a smooth test function φ(ξ) and integrate the equation
over the reference element to find∫

E0
Jwtφdξ +

∫
E0
fξφdξ = 0. (3.17)
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We use integration by parts on the flux integral to move the derivative from the flux
onto the test function ∫

E0
fξφdξ = [fφ]+1

−1 −
∫
E0
fφξ dξ. (3.18)

Inserting (3.18) into (3.17), we find the weak formulation of (3.16)∫
E0
Jwtφdξ + [fφ]+1

−1 −
∫
E0
fφξ dξ = 0. (3.19)

Since we approximate the solution locally on each element, the interface state is not
uniquely defined. However, if the flux on the interface in (3.18) is not the same for
both adjacent elements, the scheme is not globally conservative. This issue is addressed
by interpreting the interface situation as a (generalized) Riemann problem as shown
in Figure 3.2. We note, that we have seen this approach before in the context of finite
volume methods in Section 3.1.2. The Riemann problem can be solved either analytically

x

WR

WL

EL ER

Figure 3.2.: Discontinuous solution at the interface between Left and right states viewed
at the shared interface of elements EL and ER.

or approximately. For a thorough discussion on Riemann problems as well as exact and
approximate Riemann solvers we refer to the literature, specifically the book by Toro
[240]. For the DGSEM we choose to solve the Riemann problem approximately due to
the cost efficiency of this approach. Thus, we approximate the interface flux in (3.18)
for both adjacent elements by the same numerical Riemann solver. Typical choices
of Riemann solvers include the Lax-Friedrichs or Rusanov numerical flux (3.11) [213],
the Roe flux [210] or the Harten-Lax-Leer (HLL) flux [105]. This treatment of the
discontinuity between elements leads to a locally and globally conservative scheme [107].
Replacing the surface flux in (3.19) by a numerical Riemann solver F ∗, we obtain the

basis for the weak form discontinuous Galerkin approximation∫
E0

J wt φdξ + [F ∗φ]+1
−1 −

∫
E

fφξdξ = 0. (3.20)
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Assuming that the volume integral in (3.20) is only defined by interior information, we
use integration by parts on the flux integral once more to find∫

E

fφξdξ = [fφ]+1
−1 −

∫
E

fξφdξ. (3.21)

Inserting into (3.20) yields the basis for strong form DG approximations∫
E0

J wt φdξ + [(F ∗ − f)φ]+1
−1 +

∫
E0

fξφdξ = 0. (3.22)

Thus far, we have not addressed the approximation of the element local quantities.
For the DGSEM, we approximate quantities of interest such as the conservative variable
w and the flux f by polynomials of degree N . Generally, we denote the polynomial
approximation by capital letters such as W for the approximation of w. Alternatively,
we also indicate a nodal approximation of a quantity by the indexing. For example,
in the context of the shallow water equations hi refers to the approximated value of
quantity h at node i, where i ∈ [0, . . . , N ].
Since interpolating polynomials are unique, we can generally choose either a nodal

or a modal representation. While both representations are mathematically equivalent,
numerically there are advantages and disadvantages for either one. The nodal represen-
tation allows the use of collocated quadrature nodes. This reduces the computational
complexity of the approximation of the integrals in the variational form. Therefore,
we choose a nodal polynomial representation based on Legendre-Gauss-Lobatto (LGL)
points {ξi}Ni=0 in the reference element. The associated quadrature rule is exact for poly-
nomials of degree 2N − 1. Also, the LGL nodes include the end points in the approxi-
mation and the associated derivative operators have the summation-by-parts property,
which we will discuss in more detail in Chapter 4. We choose Lagrange basis functions
for the interpolant, which are defined by

`j(ξ) =
N∏

i=0,i 6=j

ξ − ξi
ξj − ξi

, j = 0, . . . , N. (3.23)

and satisfy the cardinal property

`j(ξi) = δij , i, j = 0, . . . , N, (3.24)

where δij denotes Kronecker’s symbol with δij = 1 for i = j and δij = 0 for i 6= j. The
element-wise polynomial approximation (e.g for W in element E) is then written as

w(x, t)
∣∣
E

= w(x(ξ), t) ≈W (ξ, t) :=
N∑
i=0

Wi(t) `i(ξ), (3.25)

where {Wi(t)}Ni=0 are the time dependent nodal degrees of freedom. For ease of notation,
we neglect the time dependency of approximations and variables from now on, unless
necessary.
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Following the collocation principle, derived quantities are approximated in the same
way. For instance, for the shallow water equations, the velocity u is approximated by
a polynomial of degree N as well and its nodal values are directly computed from the
coefficients of the approximations of momentum and water height:

ui := (hu)i
hi

, i = 0, . . . , N. (3.26)

Spatial derivatives are approximated element-wise directly from the derivative of the
polynomial approximation, e.g.,

∂

∂ξ
W (ξ) =

N∑
i=0

Wi
∂

∂ξ
`i(ξ) . (3.27)

We introduce the polynomial derivative matrix D with entries

Dij := ∂

∂ξ
`j(ξi), i, j = 0, . . . , N, (3.28)

which is used to calculate the discrete derivative with respect to ξ. Thus, we can directly
use the derivative operator (3.28) to find the derivatives at the interpolation nodes by

(Wξ)i := ∂

∂ξ
W (ξi) =

N∑
l=0

DilWl (3.29)

where i = 0, . . . , N .
Integrals are approximated numerically by the LGL quadrature with (lumped) mass

matrix M = diag(ω0, ω1, . . . , ωN ) with LGL quadrature weights, {ωj}Nj=0, on the diago-
nal. The corresponding one dimensional quadrature of degree N is given by

1∫
−1

w(ξ) dξ ≈
N∑
i=0

w(ξi)ωi =:
∫
E,N

w(ξ)dE. (3.30)

We choose the test functions φ in (3.20)-(3.22) to be polynomials in the reference element
E as well, represented by

φE(ξ) =
N∑
i=0

φEi `i(ξ), (3.31)

with arbitrary coefficients φEi and Lagrange basis functions as in (3.23). As the Jacobian
of the transformation, J = ∆x

2 , is constant, its polynomial approximation denoted by J
is exact. We insert the polynomial approximation (3.25) of variables and fluxes into the
weak (3.20) and strong formulation (3.22) and approximate integrals with the quadrature
rule (3.30) to find the discontinuous Galerkin weak formulation∫

E,N

J Wt φ dE + [F ∗φ]+1
−1 −

∫
E,N

F
∂

∂ξ
φ dE = 0, (3.32)
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and the discontinuous Galerkin strong formulation∫
E,N

J Wt φ dE + [F ∗ − Fφ]+1
−1 +

∫
E,N

Fξφ dE = 0. (3.33)

The representation φE of the arbitrary test functions φ with the same basis functions as
the approximating polynomials (3.31) allows us to simplify the integrals in (3.32) and
(3.33). We are able to derive a set of pointwise equations for the DGSEM formulation.
For the weak form we see∫

E,N

J Wtφ
E dξ −

∫
E,N

F φEξ dξ +
[
F ∗φE

]+1

−1

=
∫
E,N

J Wt

N∑
i=0

φEi `i(ξ) dξ −
∫
E,N

F

(
N∑
i=0

φEi
∂

∂ξ
`i(ξ)

)
dξ +

[
N∑
i=0

φEi `i(ξ)F ∗
]+1

−1

=
N∑
i=0

φEi

 ∫
E,N

J Wt`i(ξ) dξ −
∫
E,N

F
∂

∂ξ
`i(ξ) dξ + [`i(ξ)F ∗ ]+1

−1

 .
(3.34)

The same steps are applied to the strong form formulation (3.33). This yields a set of
pointwise equations for each node i that need to be satisfied for the weak form∫

E,N

J Wt `i dξ + [`i(ξ)F ∗ ]+1
−1 −

∫
E,N

F
∂

∂ξ
`i dξ = 0, i = 0, . . . , N, (3.35)

and the strong form∫
E,N

J Wt `i dξ + [`i(ξ) (F ∗ − F ) ]+1
−1 +

∫
E,N

Fξ `i dξ = 0, i = 0, . . . , N. (3.36)

Inserting the definitions of the polynomial approximations and the LGL quadrature rule
allows us to simplify further. We start with the time derivative and see∫

E,N

JWt`i(ξ)dξ =
N∑
n=0

`i(ξn)
(

N∑
k=0

(Wk)t`k (ξn)
)
ωnJ

= ωiJ(Wt)i.

(3.37)

Similarly, for the weak form volume integral we find

−
∫
E,N

F
∂

∂ξ
`idξ = −

N∑
n=0

(
N∑
k=0

Fk`k (ξn)
)
∂

∂ξ
`i (ξn)ωn

= −
N∑
n=0

Fn
∂

∂ξ
`i (ξn)ωn = −

N∑
n=0

FnDniωn

=
N∑
n=0

FnD̂inωi,

(3.38)
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with D̂ij := −Dji
ωj
ωi
. The corresponding strong form volume integral is

∫
E,N

Fξ`idξ =
N∑
n=0

(
N∑
k=0

Fk
∂

∂ξ
`k (ξn)

)
`i (ξn)ωn

=
N∑
n=0

(
N∑
k=0

FkDnk

)
`i (ξn)ωn

=
N∑
k=0

FkDikωi.

(3.39)

The surface integral in one dimension simply reduces to∮
∂E,N

`i F
∗ dS = [`i(ξ)F ∗ ]+1

−1 = δiNF
∗
N − δi0F ∗0 , (3.40)

for the weak form and to∮
∂E,N

`i F
∗ dS = [`i(ξ) (F ∗ − F ) ]+1

−1 = δiN (F ∗N − FN )− δi0 (F ∗0 − F0) , (3.41)

for the strong form. Gathering terms from (3.37), (3.38) and (3.40) and dividing by ωi,
we find

J(Wi)t = −
N∑
m=0

D̂imFm −
1
ωi

(δiN F ∗N − δi0 F ∗0 ) . (3.42)

Similarly, we find the strong form DGSEM from (3.37), (3.39) and (3.41)

J(Wi)t = −
N∑
m=0

DimFm −
(
δiN
ωi

(F ∗N − FN )− δi0
ωi

(F ∗0 − F0)
)
. (3.43)

All the steps, demonstrated above for a scalar conservation law, also hold for a system
of balance laws. We write the DGSEM for a system of one dimensional balance laws

J ~Wt + ~Lξ = ~S, (3.44)

with weak form spatial operator

(
~Lξ
)
i

= 1
ωi

(
δiN

[
~F ∗
]
N
− δi0

[
~F ∗
]

0

)
+

N∑
m=0

D̂im
~Fm, (3.45)

or the respective strong form spatial operator

(
~Lξ
)
i

= 1
ωi

(
δiN

[
~F ∗ − ~F

]
N
− δi0

[
~F ∗ − ~F

]
0

)
+

N∑
m=0

Dim
~Fm. (3.46)
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As mentioned earlier, the numerical interface flux can be chosen in various ways. How-
ever, when we refer to the standard DGSEM in this work, we mean the variant where the
Lax-Friedrichs flux (3.11) is used on the interfaces. A possible source term is dependent
on the equations and must be discretized appropriately. Typically, the same polynomial
approximation is used for the source term as well. For instance, in the shallow water
equations the bottom topography b(x) is also approximated by a polynomial of degree
N with the same LGL interpolation nodes.

3.2.2. DGSEM in two dimensions
In this section we extend the ideas of the one dimensional DGSEM to two spatial di-
mensions. To capture more general physical domains, we allow the mesh to be unstruc-
tured and feature curvilinear sides for its elements. We require the mesh elements to
be quadrilaterals to allow for a simple tensor product extension of the discontinuous
Galerkin method. We highlight the details of this approach by first discussing a scalar
two dimensional conservation law, written as

wt +∇ · (f, g) = 0. (3.47)

Adopting the same notation as in the one dimensional case, we divide the physical domain
Ω into non-overlapping quadrilateral elements Ei, i = 1, . . . ,K, such that ∪Ki=1Ei = Ω.
Dropping the index, each element E is then mapped to the two dimensional reference
element E0 = [−1, 1]2. A commonly used transformation between the reference square
and an arbitrary curve-sided quadrilateral element is the transfinite interpolation with
linear blending [137]. The mapping between the coordinates of the reference square (ξ, η)
and the physical coordinates ~x(ξ, η) = (x(ξ, η), y(ξ, η)) is given by

~x(ξ, η) = 1
2
[
(1− ξ)~Γ4(η) + (1 + ξ)~Γ2(η) + (1− η)~Γ1(ξ) + (1 + η)~Γ3(ξ)

]
− 1

4
[
(1− ξ){(1− η)~Γ1(−1) + (1 + η)~Γ3(−1)}

+ (1 + ξ){(1− η)~Γ1(1) + (1 + η)~Γ3(1)}
]
,

(3.48)

where we assume that each convex element is bounded by four curves ~Γj , j = 1, 2, 3, 4.
We show the mapping in Figure 3.3.
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x

y

~x1

~x2

~x3

~x4

Γ1(ξ)

Γ2(η)
Γ3(ξ)

Γ4(η)
~x = ~X(ξ, η)

ξ

η

Figure 3.3.: Transformation of the reference square E0 to a curved quadrilateral E.

The Jacobian of the transformation is computed by

J = xξ yη − xη yξ. (3.49)

The gradients in physical space ∇ =
(
∂
∂x ,

∂
∂y

)T
and reference space ∇̂ =

(
∂
∂ξ ,

∂
∂η

)T
are

related by the chain rule

∇ = 1
J

(
yη −yξ
−xη xξ

)
∇̂. (3.50)

If the mapping is sufficiently smooth, we can use (3.50) to replace the physical x and y
derivatives in (3.47). We then multiply by the Jacobian J to obtain the conservation
law in reference space

Jwt + ∇̂ · (f̃, g̃) = 0, (3.51)
where we introduce the contravariant fluxes defined by

f̃(w) = yη f(w)− xη g(w),
g̃(w) = −yξ f(w) + xξ g(w).

(3.52)

To find the weak form of the two dimensional conservation law in reference space, (3.51),
we repeat the steps from Section 3.2.1. First, we multiply by an arbitrary smooth test
function φ and integrate over the reference element. Then, we use integration by parts
to move the differentiation of the fluxes, ∇̂ · (f̃, g̃), onto the test function. Finally, we
replace the fluxes across element interfaces by numerical interface fluxes F̃ ∗ and G̃∗ and
obtain the weak form∫

E

J wt φ dE +
∮
∂E

φ
(
F̃ ∗, G̃∗

)
· n̂ dS−

∫
E

(
f̃, g̃

)
· ∇̂φ dE = 0. (3.53)

Integrating by parts once more yields the strong form∫
E

J wt φ dE +
∮
∂E

φ
(
F̃ ∗ − f̃, G̃∗ − g̃

)
· n̂ dS +

∫
E

∇̂ ·
(
f̃, g̃

)
φ dE = 0. (3.54)
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We note that the normals n̂ in the surface integrals in (3.53) and (3.54) are the normal
vectors in reference space. They are either n̂ = (±1, 0)T at the ξ = const interfaces or
n̂ = (0,±1)T in case η = const.

We keep the notation similar to the one dimensional case, denoting polynomial ap-
proximations by capital letters. Also, indexed quantities such as hij in the context of the
shallow water equations refer to the approximated value of quantity h at node i, j, where
i, j ∈ [0, . . . , N ]. We stick to the nodal form of the interpolation with nodes defined at
the Legendre-Gauss-Lobatto (LGL) points {ξi}Ni=0 and {ηj}Nj=0 in the reference square.
The two dimensional element-wise polynomial approximation (e.g for W in element E)
is defined by

w(x, y, t)
∣∣
E

= w(x(ξ, η), y(ξ, η), t) ≈W (ξ, η, t) :=
N∑
i=0

N∑
j=0

Wij(t) `i(ξ) `j(η), (3.55)

where {Wij(t)}N,Ni,j=0 are the time dependent nodal degrees of freedom and `i, `j are
the one-dimensional Lagrange basis functions defined in (3.23). We neglect the time
dependency for now in favor of a simpler notation.
We apply the typical collocation strategy also to the contravariant fluxes, where we

interpolate the metric terms at the same nodes, e.g.

F̃ij = yη(ξi, ηj) g(Wij)− xη(ξi, ηj) g(Wij), i, j = 0, . . . , N. (3.56)

Similarly, all the metric terms are approximated by this strategy. For instance, the
Jacobian is approximated by the polynomial of degree N with nodal values

Jij := J (ξi, ηj). (3.57)

Due to the tensor product ansatz in ξ and η direction, we can simply use the one dimen-
sional derivative operator (3.28) in each spatial direction to approximate the derivatives.
Thus, the partial derivatives in ξ and η direction are computed by

(Wξ)ij =
N∑
l=0

DilWlj and (Wη)ij =
N∑
l=0

DjlWil, (3.58)

where i, j = 0, . . . , N . The respective two-dimensional quadrature is
1∫
−1

1∫
−1

w(ξ, η) dξdη ≈
N∑
i=0

N∑
j=0

w(ξi, ηj)ωiωj =:
∫
E,N

w(ξ, η)dE, (3.59)

with the LGL quadrature weights {ωj}Nj=0.
We represent the test functions φ in (3.53)-(3.54) as polynomials in the reference

element E with the same basis functions

φ := φE =
N∑
i=0

N∑
j=0

φEij`i(ξ)`j(η), (3.60)
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and arbitrary coefficients φEij for i, j = 0, . . . , N . This choice of test functions and the
collocation of the interpolation and quadrature nodes enable us to once again simplify
the integrals analogously to the one dimensional case (3.34).
We demand that the discretisation preserves free-stream solutions, i.e., constant solu-

tions of the balance law (3.51) should remain constant for all times. A sufficient condition
for constant state preservation is that the metric identities

∂

∂ξ
J~a 1 + ∂

∂η
J~a 2 = ~0, (3.61)

are satisfied discretely [137]. The volume weighted contravariant basis vectors, J~a 1 and
J~a 2, are given by

J~a 1 = (yη,−xη)T , J~a 2 = (−yξ, xξ)T . (3.62)

The metric identities can be expressed with the discrete derivative operators (3.58) by

N∑
l=0

Dil (yη)lj −
N∑
l=0

Djl(yξ)il = 0,

−
N∑
l=0

Dil (xη)lj +
N∑
l=0

Djl(xξ)il = 0,
(3.63)

and are not trivially satisfied for any mesh. A sufficient condition to ensure that the
metric identities hold is if differentiation and interpolation commute [137]. Kopriva
showed, that free-stream preservation is guaranteed for the DGSEM, if the linear blend-
ing formula (3.48) is used and the boundary curves of the quadrilateral elements are
approximated by polynomials with an order less than or equal to the polynomial order
of the approximate solution N [135].
To fulfill these requirements, we ensure that each boundary curve is approximated by

a polynomial of at most order N . We use the Lagrange basis functions given in (3.23)
to approximate the boundary curves

~Γk =
N∑
j=0

~Γk(ζj)`j(ζ), ζ ∈ [−1, 1], k = 1, . . . , 4, (3.64)

where the interpolation nodes {ζj}Nj=0 are typically chosen to be the Chebyshev-Gauss-
Lobatto or Legendre-Gauss-Lobatto nodes as these show robust interpolation properties
[137]. The polynomial boundary curve approximations (3.64) are used to construct the
mapping (3.48) for each element. As the mapping is a polynomial in ξ and η, the
derivatives necessary to obtain the metric terms and the normal vectors are computed
directly in the discrete derivative sense (3.58). An explicit formula for the free-stream
preserving computation of the metric terms is given in [135] for three dimensional meshes:

J~a in = −x̂i · ∇̂ ×
(
xl∇̂xm

)
, i = 1, 2, 3, n = 1, 2, 3, (n,m, l) cyclic, (3.65)
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where x̂i, for i = 1, 2, 3, are the unit vectors in three dimensional reference space. For
meshes in two dimensions this formula simplifies to a direct discretization of the metric
terms from (3.62). Further details of the isoparametric polynomial approximation of
boundary curves can be found in [137].
Replacing the integrals in (3.53) and (3.54) with the quadrature rule (3.59) and in-

serting the polynomial approximations (3.55) for variables, fluxes and test function leads
to the pointwise DGSEM in integral form∫

E,N

J Wt `i(ξ)`j(η) dE−
∫
E,N

(
F̃, G̃

)
· ∇̂`i(ξ)`j(η) dE

+
∮

∂E,N

`i(ξ)`j(η)
(
F̃ ∗, G̃∗

)
· n̂ dS = 0,

(3.66)

and the strong form∫
E,N

J Wt φ̃ij dE +
∫
E,N

∇̂ ·
(
F̃, G̃

)
`i(ξ)`j(η) dE

+
∮

∂E,N

`i(ξ)`j(η)
(
F̃ ∗ − F̃, G̃∗ − F̃

)
· n̂ dS = 0.

(3.67)

The numerical interface fluxes F̃ ∗ and G̃∗ are defined in the outward pointing normal
direction and couple neighbouring elements. They implicitly depend on the “outer” and
“inner” values ~W+, ~W− along the normal vector in reference space n̂. The (discrete)
boundary integrals in (3.66) and (3.67) describe the quadrature along the four edges of
the element E.

As witnessed in the one dimensional case, we can simplify the integrals due to the
collocation of interpolation and quadrature nodes. We will illustrate this for the integral
over the time derivative as well as for each volume integral and the surface integral. For
the former, the integral can be reduced to a single term,∫

E,N

JWt`i(ξ)`j(η) dE

=
N∑

n,m=0
`i(ξn)`j(ηm)

 N∑
k,l=0

(Wt)kl `k (ξn) `l (ηm)

ωnωmJnm
= ωiωjJij(Wt)ij ,

(3.68)

for i, j = 0, 1, 2, . . . , N . For the volume integrals of the weak and the strong form, we are
able to reduce the integrals to one-sum expressions, which remain necessary to evaluate
the derivatives. To standardize the expressions we introduce the weak form derivative
operator D̂, which is found from the standard derivative operator D by setting

D̂ij := −Dji
ωj
ωi
. (3.69)
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With this substitution we make sure that each term is scaled by the weights ωiωj , which
are then divided off. The simplified expression of the weak form volume integral is then∫

E,N

(
F̃, G̃

)
· ∇̂(`i(ξ)`j(η)) dE

=
∫
E,N

F̃

(
∂

∂ξ
`i(ξ)`j(η)

)
+ G̃

(
`i(ξ)

∂

∂η
`j(η)

)
dE

= −
N∑
m=0

DmiF̃mjωmωj −
N∑
n=0

DnjG̃inωiωn

=
N∑
m=0

D̂imF̃mjωiωj +
N∑
n=0

D̂jnG̃inωiωj .

(3.70)

Similar steps lead to the simplified expression for the strong form DGSEM volume inte-
gral: ∫

E,N

∇̂ ·
(
F̃, G̃

)
`i(ξ)`j(η) dE =

N∑
m=0

DimF̃mjωmωj +
N∑
n=0

DjnG̃inωiωn. (3.71)

We note that this representation of the volume integrals shows that to switch between
weak and strong form volume integrals, one simply has to exchange the derivative oper-
ator and use an identical algorithm otherwise.
The other difference between weak and strong form DGSEM lies in the surface terms.

For the strong form, the surface terms involve fluxes based on interior values. Thus,
the surface integrals for weak and strong form are slightly different. For the weak form
surface integral we find∮

∂E,N

`i(ξ)`j(η)
(
F̃ ∗, G̃∗

)
· ~n dS

=−
∫ 1

−1
`i(−1)`j(η) F̃ ∗(−1, η) dη +

∫ 1

−1
`i(1)`j(η) F̃ ∗(1, η) dη

−
∫ 1

−1
`i(ξ)`j(−1) G̃∗(ξ,−1) dξ +

∫ 1

−1
`i(ξ)`j(1) G̃∗(ξ, 1) dξ

=δiN F̃ ∗iNωj − δi0 F̃ ∗i0ωj + δjN G̃
∗
Njωi − δj0 G̃∗0jωi.

(3.72)

In the strong form surface integral a flux term based on interior data is subtracted from
the numerical interface flux at each surface node:∮

∂E,N

`i(ξ)`j(η)
(
F̃ ∗, G̃∗

)
· ~n dS

=δiN
(
F̃ ∗iN − F̃iN

)
ωj − δi0

(
F̃ ∗i0 − F̃i0

)
ωj

+ δjN
(
G̃∗Nj − G̃NJ

)
ωi − δj0

(
G̃∗0j − G̃0j

)
ωi.

(3.73)

30



CHAPTER 3. NUMERICAL METHODS

We collect the simplified expressions and divide by the quadrature weights ωiωj to for-
mulate the pointwise nodal DGSEM approximation. For the weak form DGSEM we
gather terms from (3.68), (3.70) and (3.72) to find

Jij(Wij)t +
N∑
m=0

D̂imF̃mj +
N∑
n=0

D̂jnG̃in

= 1
ωi

(
δi0 F̃

∗
i0 − δiN F̃ ∗iN

)
+ 1
ωj

(
δj0 G̃

∗
0j − δjN G̃∗Nj

)
.

(3.74)

For the strong form DGSEM, terms from the respective simplified expressions (3.68),
(3.71) and (3.73) are combined to obtain

Jij(Wij)t +
N∑
m=0

DimF̃mj +
N∑
n=0

DjnG̃in

= 1
ωi

(
δi0 (F̃ ∗i0 − F̃i0)− δiN (F̃ ∗iN − F̃iN )

)
+ 1
ωj

(
δj0 (G̃∗0j − G̃0j)− δjN (G̃∗Nj − G̃Nj)

)
.

(3.75)

The DGSEM can be extended to systems of balance laws. In this case, we introduce
dimension-split spatial operators to compactly write the weak and strong form DGSEM
as

J ~Wt + ~Lξ + ~Lη = ~̃S (3.76)

with spatial operators

(
~Lξ
)
ij

= 1
ωi

(
δiN

~̃F ∗Nj − δi0
~̃F ∗0j

)
+

N∑
m=0

D̃im
~̃Fmj ,

(
~Lη
)
ij

= 1
ωj

(
δNj

~̃G∗iN − δ0j
~̃G∗i0

)
+

N∑
m=0

D̃mj
~̃Gim.

(3.77)

In this formulation, the choice of derivative operator determines whether it is in strong
or weak form:

D̃ =
{

D + S if strong form
D̂ if weak form

, (3.78)

where S = diag
(

1
w0
, 0, . . . , 0,− 1

wN

)
is the surface matrix.

Here, ~̃S refers to the discretization of the source term vector in curvilinear coordinates.
The exact discretization depends on the underlying physics. For the shallow water
equations, the source terms are given by ~s = −gh(0, bx, by)T . If we approximate the
bottom topography b by a polynomial at the LGL nodes as well, a direct discretization
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of the source term is found by

(s̃2)ij = −ghij
(

(yη)ij
N∑
m=0

Dimbmj − (yξ)ij
N∑
m=0

Djmbim

)
,

(s̃3)ij = −ghij
(
−(xη)ij

N∑
m=0

Dimbmj + (xξ)ij
N∑
m=0

Djmbim

)
.

(3.79)

For the standard DGSEM described here, we use the curvilinear version of the numer-
ical Lax-Friedrichs flux given by

~̃F ∗
(
~W+, ~W−

)
= 1

2

(
~̃F+ + ~̃F−

)
− αf

2
(
~W+ − ~W−

)
,

~̃G∗
(
~W+, ~W−

)
= 1

2

(
~̃G+ + ~̃G−

)
− αg

2
(
~W+ − ~W−

)
.

(3.80)

where αf and αg are the maximum absolute eigenvalue of the associated flux Jacobians.
The described discontinuous Galerkin method is high-order accurate (rate of convergence
is N + 1) and geometrically flexible. Although we restrict ourselves to quadrilaterals
here, these can have various shapes due to the curved boundaries. The method is highly
parallelizable as elements are coupled only through the numerical interrface flux. Also,
due to the collocation principle, the computational effort has been drastically reduced.
While this standard DGSEM has many desirable properties for us, it is not a stable
scheme for systems of non-linear PDEs in the sense that it is not entropy stable. We
demonstrate this by a numerical example in Section 7.2.

3.3. Numerical principles and entropy stability
While there are many numerical methods, each with its own advantages and disadvan-
tages, there are some fundamental properties that are important regardless of numerical
context. First and foremost, the concept of discrete conservation is a staple in the devel-
opment of numerical methods. Discrete conservation mimics the physical conservative
properties of conservation laws in a discrete sense, such that continuously conserved
quantities are guaranteed to be conserved by the numerical scheme, as well. While it
is often desirable to carry over physical characteristics to the numerical scheme, dis-
crete conservation is necessary to guarantee that a numerical scheme yields an actual
weak solution to the conservation law. If a numerical method is not conservative, it
can generate incorrect shock speeds, which in turn can lead to unphysical solutions.
This remarkable result was found by Lax and Wendroff and is famously known as the
Lax-Wendroff Theorem [147]. It states, that if a conservative numerical scheme for a
hyperbolic conservation law converges, the solution is a weak solution to the conserva-
tion law. However, it is still unclear, whether the obtained weak solution is physically
relevant. As we have seen in the continuous analysis in Chapter 2, weak solutions are
not unique and it is a challenging task to choose one specific, physically relevant solution
out of the infinite family of weak solutions. An interesting technique to filter out such
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a solution is to design the numerical method to mimic continuous entropy behaviour.
Physically, the entropy is a conserved quantity in all parts of the domain except for
shock regions, where entropy is built up (or dissipated mathematically). A numerical
scheme that implicitly satisfies a conservation law for the entropy is called entropy
conservative. If the entropy dissipation at shocks is considered and thus a discrete
entropy inequality holds, the scheme is called entropy stable.

This approach was first introduced by Lax for scalar conservation laws [146], who
proved entropy stability for the Lax-Friedrichs method. Harten, Hyman and Lax gener-
alized this result for a whole sub-class of schemes, the so-called monotone schemes [104].
This result was further extended to E-schemes by Osher [192], which are entropy stable
for all entropy pairs and total variation diminishing (TVD). Monotone schemes are de-
fined by their update function. The update function R is an operator which calculates
the solution in the next time level n+ 1 based on a stencil of solution values at time n.
Considering p solution values to the left and q solution values to the right the update
function at node j can be expressed in one dimension as

Wn+1
j = R

(
Wn
j−p−1, . . . ,W

n
j , . . . ,W

n
j+q

)
. (3.81)

The exact representation of the solution (nodes, cells, elements) and the number of values
used for the update is dependent on the numerical method. A numerical scheme is called
monotone if the update operator R (·, ·, . . . , ·) is increasing in all arguments. It is known
that all monotone schemes satisfy a local maximum principle and are TVD [107]. Due to
this property a solution obtained by a monotone scheme satisfies all entropy conditions
for scalar conservation laws [104]. This property also holds for Harten’s E-schemes,
which are defined by having no-less viscosity than Godunov’s method [233]. However,
any monotone scheme and any E-scheme is at most first order accurate [105]. This is a
severe constriction on the accuracy and efficiency of any monotone method.
High-order methods are advantageous as they offer not only improvements in terms

of solution quality but also in terms of computational efficiency [54]. Due to their
low dispersion and dissipation errors, such methods are able to resolve even the finer
features of a solution such as contact waves [1]. It has also been shown that fewer degrees
of freedom are needed to obtain an approximation at a given accuracy [107, 54]. Also,
errors in long time simulations may deteriorate, leading to unacceptable solutions by low
order schemes [217]. In exchange, the computational work required for each degree of
freedom is generally increased and the exact efficiency gains of high-order approximations
depend on the numerical method and implementation [107]. A more pressing downside
of high-order approximations is encountered in the presence of shocks. While low-order
schemes are very robust in their handling, high-order methods suffer under possibly
severe oscillations when approximating the solution across a shock. In extreme cases,
overshoots in the solution may cause a numerical scheme to simply crash. This is a
consequence of producing unphysical values, such as negative densities or pressures in
the Euler equations or negative water heights in the shallow water equations. Methods
and treatments that deal with these oscillations are referred to as shock capturing
methods. We present one suitable treatment in Section 5.4 but note that this is a
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subject of ongoing research and there are many different ways to approach this problem
[202, 159].

One approach to not abandon the concept of entropy stability in the context of high-
order methods for non-linear systems of conservation laws is to develop entropy stable
methods with respect to specific entropy pairs. This idea was first introduced in 1987 by
Tadmor for a second order FV type scheme which can also be interpreted as a piecewise
linear finite element method [234]. Similar entropy stable second order methods for
scalar conservation laws were proposed by Osher [193]. Tadmor’s work shows that the
development of entropy stable methods is strongly dependent on the construction of
entropy stable interface fluxes. As found by Tadmor [234], a numerical flux is entropy
conservative if the numerical flux, contracted by the jump in entropy variables, is equal
to the jump in the entropy flux potential,

〈 J~q K, ~F ∗ 〉 = JΨK. (3.82)

Based on condition (3.82), Tadmor presents a family of entropy stable schemes, where
the evaluation of the entropy conservative flux is based on a path integral in phase space
[235]. Entropy stability is obtained by a comparison principle, constructing schemes
that are more dissipative than entropy conservative schemes. Additionally, the entropy
stability is extended to the time discretization as well, providing fully discrete entropy
stable methods, albeit at no more than second order accuracy (at a three point stencil).
LeFloch and Rohde build on Tadmor’s foundation to find fully discrete entropy sta-

ble schemes of third order accuracy [152]. They also include the possibly non-convex
entropy functions of hyperbolic-elliptic systems in their derivations. Furthermore, they
prove that fully discrete entropy conservative methods do not exist, thus only entropy
stable methods should be considered in that case [152, 153]. An entropy stable method
for the Navier Stokes equations, where the entropy dissipation is solely based on the
viscous and heat flux terms, was proposed by Tadmor and Zhong [236]. They derive an
explicit formula for the precise entropy decay rate and construct the numerical fluxes in
such a way that this entropy decay rate is obeyed. In case of the Euler equations, the
scheme reduces to a purely entropy conserving one, which is problematic for non-smooth
solutions. Also, the computation of their entropy stable numerical flux still involves
an integration along a path in phase space, which may be expensive to evaluate and
detrimental to the computational efficiency [69].
A framework for entropy stable schemes of arbitrary order was introduced by Fjord-

holm, Mishra and Tadmor in 2012 [69]. The so-called TeCNO schemes are based on finite
volume methods equipped with entropy conservative numerical fluxes. Then, numerical
diffusion operators are added in terms of the entropy variables to obtain entropy stability
on a semi-discrete level. The high-order accuracy is achieved by a specific ENO type
reconstruction for the cell edge values [69]. Instead of evaluating the numerical fluxes in
phase space, they use explicit algebraic solutions of (3.82) for specific physical systems.
They also provide an entropy conservative numerical flux for the shallow water equa-
tions and the Euler equations, the latter previously proposed by Ismael and Roe [117].
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These second order two-point entropy conserving fluxes can be used as building blocks
for high-order accurate entropy conservative fluxes following the procedure by LeFloch,
Mercier and Rohde [154]. As often seen in the literature, Fjordholm et al. also propose
to add numerical diffusion proportional to the jump in entropy variables and provide
instructions on how to obtain such diffusion terms of high-order accuracy [69]. Similar
to the TeCNO schemes, Ismail and Roe also construct an entropy conservative scheme
first, and then add entropy dissipation at the shocks. They take special precautions
to ensure that the entropy dissipation is at an appropriate level in an effort to achieve
entropy consistency [117]. A fully discrete extension to the TeCNO schemes for scalar
conservation laws was found by Zakerzadeh and Fjordholm in 2015 by deriving a suitable
CFL condition [267]. An application of the TeCNO methodology on unstructured grids
is presented in [208], but is restricted to second order accuracy.

Since then, compact closed form expressions for entropy conservative and entropy
stable numerical fluxes have been found for many other systems as well. Chandrashekar
[42] proposes a kinetic energy preserving and entropy stable finite volume method with
a numerical flux in compact form for the Euler and Navier-Stokes equations. Entropy
conservative and entropy stable numerical fluxes for the ideal MHD equations as well as
a discussion of the entropy stable dissipation operator can be found in [257, 255, 53, 52].
Kumar and Mishra propose an entropy conservative flux to develop a second order finite
difference scheme for the two-fluid ideal plasma equations [142].
Another important concern is the correct (entropy stable) treatment of domain bound-

aries. Entropy stable boundary conditions have been developed, such as far-field and
wall boundary conditions for the Euler equations [230] as well as solid wall boundary
conditions for the compressible and incompressible Navier Stokes equations [199, 185].
A breakthrough for high-order entropy stable methods on unstructured, possibly

curved, quadrilateral meshes was finally achieved by Carpenter and Fisher in 2013.
By constructing WENO finite difference schemes (or equivalent DG methods) based on
diagonal norm summation-by-parts (SBP) operators, they are able to achieve entropy
stable schemes of arbitrary order for systems of non-linear conservation laws such as the
Navier-Stokes equations [67, 63, 65, 66, 64, 30]. Their work plays a pivotal role in the
development of the entropy stable method for the shallow water equations presented in
this thesis and we will describe their method as well as summation-by-parts in more
detail in Chapter 4.
Many researchers have since built upon the works of Carpenter and Fisher. Gassner

established a skew-symmetric DG discretization and highlights the connection to the
SBP-SAT framework in [78]. Here, SAT stands for simultaneous approximation terms.
Following this principle, entropy stable DGmethods were developed for the shallow water
equations [83, 256], the Euler equations [82] and the ideal MHD as well as resistive MHD
equations on two dimensional Cartesian meshes [161] and general curvilinear meshes [18].
An extension to unstructured triangular meshes was found by Chen et al. in [43], using
suitable quadrature rules and multi-dimensional SBP operators as introduced by Hicken
and Crean [108, 47]. Furthermore, variants for non-diagonal norm SBP operators were
introduced by Chan [38], proposing that diagonal norm SBP operators are not the most
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efficient for triangular meshes. Finally, extensions to space-time entropy stable DG
methods were recently published by Friedrich et al. [71].

The contribution of the numerical method presented in this thesis is to extend the
works on entropy stable DG schemes for the shallow water equations in [83, 256] to
unstructured two dimensional meshes with curved geometries. Furthermore, artificial
viscosity is introduced as a shock capturing mechanism and a positivity preservation
technique is added. Both of these expansions are designed to uphold the entropy sta-
ble nature of the scheme. The details of this method are presented in Chapter 5. A
computationally efficient implementation on modern GPU architectures is presented in
Chapter 6. Furthermore this method is applied to the real world example of the 2004
Indian Ocean tsunami. The details and results are presented in Chapter 8.

3.4. Well-balanced & positivity preserving schemes
In the specific context of the shallow water equations another numerical property be-
comes important: The capability of a numerical scheme to preserve the steady state
solution of the “lake-at-rest” (2.37) for all time.
Such a numerical scheme is said to be well-balanced, or to have the “exact conserva-

tion property” (exact C-property), a concept first proposed by Bermudez and Vazquez
[14]. It is of critical importance for shallow water approximations since many real world
applications are modeled as only slight variations from an equilibrium state. The ini-
tial conditions of the Indian Ocean tsunami in Chapter 8 include only a small devia-
tion from a flat sea level at the location of the earthquake. If a scheme is not well-
balanced, numerical waves can build up in unperturbed regions and pollute the solution,
or in the worst case, even crash the simulation. Consequently this is an immensely
active field of research and well-balanced numerical methods for the shallow water equa-
tions have been proposed by many researchers for a variety of numerical methods, e.g.
[143, 120, 243, 94, 95, 247, 28, 196, 195, 164, 29, 74].
One fundamental strategy to achieve the exact C-property is to base the numerical

method on a pre-balanced version of the shallow water equations [211]. Well-balanced
schemes following this approach can, for example, be found in [125, 272, 157].
Another approach to design well-balanced methods is due to Audasse et al., who in-

troduced the idea of using a hydrostatic reconstruction on the interface fluxes in their
second order finite volume schemes [6]. The hydrostatic reconstruction involves a mod-
ification of the left and right states at each interface based on the solution as well as a
specific source term discretization [6]. The high-order well-balanced FV-WENO schemes
by Noelle et al. are based on the same hydrostatic reconstruction approach [180, 181].
Following these ideas, Xing and Shu proposed a novel way of constructing well-balanced
high-order FV-WENO and DG methods for hyperbolic conservation laws, specifically
the shallow water equations [262]. Their high-order FV-WENO scheme can be consid-
ered a generalization of the scheme by Noelle, allowing more freedom in defining the
polynomials approximating the water height and bottom topography [262].
These schemes have been extended with the capability of handling dry by Xing [265,
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263]. The positivity is secured by introducing an extra limiting step in each time step (or
Runge-Kutta stage). The limiter is based on a linear scaling of the solution values around
cell averages. To guarantee positive values, this method requires the numerical fluxes to
fulfill the so-called positivity property. Simply put, the numerical fluxes must guarantee
that cell updates for first order finite volume schemes preserve non-negative values.
This strategy was originally introduced by Perthame and Shu for finite volume methods
applied to the Euler equations [204] and was further developed in [270, 271]. It has
been adapted to many different numerical methods and applied to several conservation
laws, such as the Euler equations [269] or the MHD equations [44]. These schemes exist
for quadrilateral [265] and triangular meshes [264]. The positivity preserving technique
presented in this work for the entropy stable DGSEM in Chapter 5 is also based on the
positivity preserving approach of Xing [265].

In [112], Hiltebrand and Mishra design a fully discrete space-time DG scheme that
is entropy stable and well-balanced and works on unstructured grids. The key idea
behind this scheme is the use of entropy variables as degrees of freedom. Also, entropy
conservative numerical fluxes are used and diffusion is added in terms of the entropy
variables. This is very similar to the way dissipation is added to the entropy stable
DG scheme as described in Section 5.3. The space-time scheme is completed with a
suitable discretization of the bottom topography as well as streamline diffusion and
shock-capturing operators. The scheme works on unstructured triangular grids. The
downside of this scheme is that the proofs assume exact integration of the integrals.
In practice, this is difficult to guarantee. Also, the computational cost of space-time
schemes is typically high and computations with high polynomial degrees require special
care.
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Numerical discretizations based on the split form of a system of conservation or balance
laws often show remarkable properties such as increased robustness or energy/entropy
stability [16, 114, 59, 134, 82, 258]. The downside of this approach is, however, that such
discretizations are typically not conservative. This is due to the fact that the continuous
product rule

abx + axb = (ab)x, (4.1)
generally does not hold discretely. Similarly, the continuous integration by parts reduces
the volume integral of product rule terms over a domain Ω to a surface integral on the
boundary S, ∫

Ω

abx dΩ +
∫
Ω

axbdΩ =
∮
∂Ω

abdS, (4.2)

and the same is not guaranteed to hold in a discrete sense.
Thus, split form discretizations are, by design, not in conservative form and it is not

guaranteed that the approximation remains globally conservative. This is a critical issue,
since solutions obtained by a non-conservative numerical approximation of a hyperbolic
conservation law do not satisfy the Lax-Wendroff theorem. Solutions of non-conservative
schemes tend to produce wrong shock speeds and may not approximate an actual weak
solution to the conservation law. Thus, it is very important to construct conservative
numerical schemes.
In an effort to overcome this difficulty, so called summation-by-parts operators have

been introduced by Kreiss et al. for the finite difference community [141]. Coupled
with a simultaneous approximation term on the interfaces [34, 73], this methodology has
been successfully applied to a wide variety of problems, including the Euler equations
[168, 109] and Navier-Stokes equations [169, 184, 194]. SBP methods have been picked
up and applied to many other numerical methods, e.g., by Nordström [182, 183] and
Svärd and Nordström [227] for finite volume methods. The technique has also been
applied to flux reconstruction schemes [207] and spectral methods [33]. Recently the
SBP framework was applied to achieve stable time discretizations, as well [186, 165, 187].
Del Rey Fernández et al. introduce a systematic approach for constructing nodal first
derivative SBP operators from quadrature rules in [60].
In the context of discontinuous Galerkin methods, SBP operators have been success-

fully applied to find entropy stable schemes for the Burgers’ equation [78], the Euler &
Navier-Stokes equations [30], shallow water equations [82, 256, 253] and resistive MHD
equations [18].
The first section of this chapter is dedicated to a formal introduction of SBP opera-

tors and their useful properties. In the following section we describe the flux-differencing
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method, which is based on a sub-class of these SBP operators with diagonal norm. Fur-
ther, we describe the advantages of the flux-differencing formulation and the relationship
to discontinuous Galerkin methods. In the final section of this chapter we demonstrate
how the flux-differencing formulation can be applied in the approximation of conserva-
tion laws in split form.

4.1. Summation-by-parts
SBP operators are first derivative operators coupled with a quadrature rule that mimic
the continuous property of integration by parts on a discrete level. Specifically, SBP
operators require the discrete integration by parts to hold:∫

Ω,N

abx dΩ +
∫

Ω,N

axbdΩ !=
∮

∂Ω,N

ab dS. (4.3)

This can be achieved by imposing the following requirements on the derivative operator.
Definition 1 (SBP operator). A matrix D ∈ R(n+1)×(n+1) is a SBP operator if it has the
form D = M−1Q with

• weight matrix M ∈ R(n+1)×(n+1) that is symmetric positive definite,

• Q ∈ R(n+1)×(n+1) satisfies the SBP property

Q + QT = B := diag(−1, 0, . . . , 0, 1). (4.4)

SBP operators with diagonal weight matrix M are of particular interest as they lead
to stable approximations on curvilinear grids [225]. A downside of diagonal norm SBP
operators for finite difference schemes is that the order of accuracy is limited to s + 1
for stencil size s [98]. In contrast, for dense mass matrices M, an interior order of 2s
is achievable [111]. In the context of finite difference methods, higher order accuracy is
also achievable for functionals based on the solution of dual consistent diagonal-norm
SBP discretizations [110].
Although the finite difference and spectral element approximations differ (e.g., the

spectral element approximate solution is known everywhere, including in between the
nodes), we aim to use the established properties and advantages of SBP with regard
to discontinuous Galerkin methods. As a first step, we note that the LGL derivative
operator is a diagonal norm SBP operator [78].

Lemma 3 (SBP-Properties). Let D := M−1Q be the LGL derivative operator. The
matrix Q has the SBP-property (4.4).

Proof. See, for example, [140, 141, 78, 30, 80]. �
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Remark 1. The SBP-property can be used to obtain alternative expressions for the
derivative matrix. The surface operator S is defined by

S := −M−1B = diag
( 1
ω0
, 0, . . . , 0,− 1

ωN

)
. (4.5)

We find
D = M−1Q = M−1(B−QT ) = −S−M−1QT . (4.6)

So, the derivative matrix D̂ of the weak LGL-DG formulation [137] given by

D̂ = −M−1QT = −M−1DTM, (4.7)

satisfies the relation
D = D̂− S. (4.8)

It follows that for diagonal norm SBP operators, weak and strong form DG discretiza-
tions are equivalent on a discrete level. This was previously noted by Kopriva and
Gassner [138].
Corollary 1 (Properties of SBP operators). For derivative operators D := M−1Q with
SBP property, the SBP-operator Q has several useful properties, that follow directly
from the definition:

•
N∑
j=0

Qij = 0 for i = 0, . . . , N (rows sum to zero),

•
N∑
i=0

Qij =


− 1 if j = 0
0 if j = 1, . . . , N − 1
1 if j = N

(column sums),

• Qii =


− 1

2 if i = 0

0 if i = 1, . . . , N − 1
1
2 if i = N

(diagonal entries),

• Qij = −Qji for i, j = 0, . . . , N and i 6= j (nearly skew symmetric).

A key property of SBP operators is, that it allows us to discretize split forms of
conservation laws in a conservative way. Split forms are usually derived by a weighted
sum of conservative and non-conservative terms. For example, split forms of the simple
term (ab)x are found by applying the product rule and using a combination of both
formulations,

(ab)x = λ(ab)x + (1− λ) (axb+ abx) , λ ∈ [0, 1]. (4.9)
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The limiting cases of λ = 0 and λ = 1 yield the purely advective formulation and the
conservative formulation respectively. Any split form (4.9) can be reformulated as

(ab)x = (ab)x + (1− λ) (−(ab)x + axb+ abx) , λ ∈ [0, 1], (4.10)

which is the the sum of the original derivative and a product rule error term. This
product rule error term is zero on the continuous level but generally not zero in the
discrete case. Thus, discretely, the different formulations obtained from (4.9) are not
identical. While we know that a discontinuous Galerkin discretization of the integral of
the original derivative (ab)x is conservative, the same is not guaranteed when discretizing
the split form equation. This is where the SBP property of the LGL derivative operator
in the DG approximation becomes important. With this property it is possible to show
that the introduced discrete product rule error terms vanish when integrated over an
element. Thus, a discretization of the split formulation is still a locally conservative
approximation. We show this for the two dimensional case in the following Lemma.

Lemma 4 (Non-Linear Correction Terms). For a derivative operator D with SBP prop-
erty, the error in the discrete product rule in two dimensions

(Eαβ)ij := −
N∑
m=0

Dimαmjβmj + αij

N∑
m=0

Dimβmj + βij

N∑
m=0

Dimαmj , (4.11)

is zero when discretely integrated over an element,

N∑
i,j=0

(Eαβ)ij ωiωj = 0, (4.12)

for all αij , βij ∈ R for i, j = 0 . . . , N . Furthermore the discretization of the split form
(4.9)

λ
N∑
m=0

Dimαmjβmj + (1− λ)
(
αij

N∑
m=0

Dimβmj + βij

N∑
m=0

Dimαmj

)
, (4.13)

where α and β are the point-wise nodal representations of functions α and β, is a
consistent and conservative approximation of the derivative of the corresponding flux
(αβ)x for all λ ∈ [0, 1].

Proof. See Appendix A.3 �

Corollary 2 (Special case: One dimension). The result from Lemma 4 holds for one
dimension, as well. Non-linear correction terms such as

(Eαβ)i := −
N∑
m=0

Dimαmβm + αi

N∑
m=0

Dimβm + βi

N∑
m=0

Dimαm, (4.14)
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also do not destroy global conservation
N∑
i=0

(Eαβ)i ωi = 0. (4.15)

This was shown in [80]. The proof is analogous to that of Lemma 4 by simply dropping
the outer sum over index j in the two dimensional proof, specifically in (A.39).

This Lemma is a very important tool when considering split form discontinuous
Galerkin approximations. It immediately follows that DG schemes based on the split
form are still (at least locally) conservative, if the derivative operator has the SBP prop-
erty. It it is also helpful to show that certain derived quantities, that are not directly
approximated, are conserved quantities as well. To this end, a discrete expression for the
time derivative of such a quantity has to be found. Then, if the spatial derivatives can be
recast into a split form, such that there is a consistent and conservative approximation
to a spatial flux and all the remaining terms can be recast in the shape of (4.13), the
derived quantity is locally conserved. If the interface fluxes are consistent as well, the
derived quantity is globally conserved [106, 107]. For the purposes of this work, we are
mainly interested in the entropy evolution, but other quantities such as the potential
vorticity could be considered as well [237, 200, 3].
While the use of SBP operators for discretizations of split formulations are a powerful

tool to construct entropy conservative schemes, the resulting formulations appear to
be impractical. Robust and entropy conserving split form schemes may require the
evaluation of distinct terms. Especially on curved meshes that require contravariant
fluxes as in (3.52), a suitable split form quickly leads to an unmanageable and inefficient
amount of volume integrals in the computation. Luckily, there is a more efficient way
formulate and implement the split form discretization. As we will see, the discretized
split forms are equivalent to certain flux differencing schemes as introduced by Fisher
and Carpenter [65]. We will introduce this class of schemes in in Section 4.2 and establish
their equivalency to split forms in Section 4.3.

4.2. The Flux Differencing Framework by Carpenter & Fisher
Fisher and Carpenter found that SBP derivative operators with diagonal mass matrix
M are algebraically equivalent to a finite volume differencing formulation on a sub-cell
grid [65]. In this section, we describe these flux differencing schemes and start with the
one dimensional version. As these formulations require frequent evaluations of averages
between nodal values, we introduce an abbreviated notation for the average values in
one dimension

{{a}}(i,j) = ai + aj
2 , (4.16)

and two dimensions
{{a}}(i,m),j) = aij + amj

2 ,

{{a}}i,(j,m)) = aij + aim
2 .

(4.17)
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4.2.1. Flux differencing in one dimension
The flux differencing schemes use a complimentary, staggered sub-cell grid, where the
spacing is defined by the quadrature weights ωi. While the new nodes ξ̄j coincide with
the solution nodes on the interfaces, they are always located between two solution nodes
on the interior:

ξ̄0 = ξ0,

ξ̄j = ξ̄j−1 + ωj−1 , j = 1, . . . , N,
ξ̄N+1 = ξN .

(4.18)

The flux differencing method uses special fluxes, F , which are evaluated on the compli-
mentary grid at the new flux nodes. The spatial derivative of a flux f at a solution node
ξi is then approximated by

(fξ)i ≈
1
ωi

(
F i+1 − F i

)
, i = 0, . . . , N. (4.19)

We show such a grid for the LGL nodes and weights at N = 3 in Figure 4.1. The flux

ξ0 ξ1 ξ2 ξ3

f0 f1 f2 f3

ξ̄0 ξ̄1 ξ̄2 ξ̄3 ξ̄4

F 0 F 1 F 2 F 3 F 4

Figure 4.1.: One dimensional complimentary grid for LGL nodes with N = 3. The
solution nodes (circles) and fluxes are labeled below the graph and the new
flux points (squares) and differencing fluxes are labeled above.

differencing approximation to the flux derivative in (4.19) can also be stated in matrix
vector form by

(fξ)i ≈
N∑
m=0

M−1
ii ∆imFm, (4.20)

where ∆ is the N ×N + 1 differencing matrix

∆ =


−1 1 0 0 0 0
0 −1 1 0 0 0
0 0 . . . . . . 0 0
0 0 0 −1 1 0
0 0 0 0 −1 1

 . (4.21)

In [66] it is shown that such an equivalent flux differencing formulation exists for all
diagonal norm SBP operators D. The spatial approximation (4.19) is very similar in
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structure to finite volume methods, provided the fluxes F are interpreted as numerical
fluxes on the interfaces of a cell with size ωi. Also, similar to finite volume methods,
which achieve high-order approximations by considering larger stencils in their recon-
struction step, we can also obtain high-order approximations by considering more values
in the calculation of F . If all the interpolation nodes are available as input, Fisher and
Carpenter show that for a specific choice of F the order of accuracy N + 1 is obtained.
We summarize this result from [65] in the following Lemma.

Lemma 5 (High-order flux). If the flux in (4.19) is determined by

F 0 := f0,

F i :=
N∑
m=i

i−1∑
l=0

2QlmF#
(l,m),

FN+1 := fN ,

(4.22)

with a consistent and symmetric numerical two-point flux

F#
(i,m) := F# (Wi,Wm, ) , (4.23)

Then the approximation to the spatial flux derivative is of order N + 1. Further, if
the two-point flux F# is entropy conservative, then the high-order flux remains entropy
conservative as well.

Proof. See [64]. �

Considering the approximation to the derivative (4.20) and the construction of higher
order fluxes according to Lemma 5, we find that the expressions in the former can be
greatly simplified.

Lemma 6 (Simplified Flux Differencing). The structure of the SBP matrix Q and the
construction of the high-order fluxes on the complimentary grid given in Lemma 5 allow
the approximation of the spatial derivative to be re-written in the following way:

N∑
m=0

M−1
ii ∆imFm = F i+1 − F i

ωi
=

N∑
m=0

2Dim F
#(Wi,Wm), (4.24)

for i = 0, . . . , N .

Proof. We recall the high-order flux extension (4.22) and consider the special cases i = 0
and i = N first. From the property Q00 = −1

2 we find for i = 0

F 1 − F 0 =
N∑
m=1

2Q0m F
#
(0,m) − f0 =

N∑
m=0

2Q0m F
#
(0,m). (4.25)

Similarly, from QNN = 1
2 and the skew-symmetry it follows for i = N

FN+1 − FN = fN −
N−1∑
m=0

2QmN F#
(m,N) =

N∑
m=0

2QNm F#
(m,N). (4.26)
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For the interior points i = 1, . . . , N − 1, we look at the construction of the high-order
fluxes (4.22) to find

F i+1 =
N∑

m=i+1

i∑
l=0

2Qlm F#
(l,m)

=
N∑
m=i

i∑
l=0

2Qlm F#
(l,m) −

i∑
l=0

2Qli F#
(l,i)

=
N∑
m=i

i−1∑
l=0

2Qlm F#
(l,m) +

N∑
m=i

2Qim F#
(i,m) −

i∑
l=0

2Qli F#
(l,i)

= F i +
N∑
m=0

2Qim F#
(i,m),

(4.27)

where we used that Qij = −Qij for i 6= j and Qii = 0 for i = 1, . . . , N−1 in the last step.
Dividing by the integration weights, we find the simplified expression for the calculation
of the flux difference for i = 0, . . . N

F i+1 − F i
ωi

=
N∑
m=0

2Dim F
#
(i,m). (4.28)

�

Lemma 5 and Lemma 6 are useful as they establish a new efficient and implementa-
tion friendly way to approximate interior split form volume integrals. They provide a
relatively simple way to construct entropy conservative discretizations, as the entropy
conservation of low-order FV fluxes carries over to the high-order fluxes from Lemma
5. The simplified expression from Lemma 6 greatly reduces the computational cost, as
practically one sum is eliminated when compared to an a priori evaluation of all the
high-order fluxes F and subtracting them afterwards. A numerical method however is
only complete with a suitable interface coupling between neighbouring elements as well
as an appropriate way of incorporating physical boundary conditions. A widely used
technique from the finite difference community is the introduction of simultaneous ap-
proximation terms [34, 228, 226, 229, 184, 13]. These terms preserve the accuracy of
the scheme and also provide a convenient way of adding dissipation while remaining
consistent with the Lax-Wendroff Theorem [65, 66, 64].
We choose a slightly different approach. To obtain a complete numerical scheme, we

start with the strong form of the conservation law∫
E0

J wt φdξ + [(F ∗ − f)φ]+1
−1 +

∫
E0

fξφdξ = 0. (4.29)

We insert the polynomial ansatz and the LGL quadrature as in the derivation of the
discontinuous Galerkin method, but approximate the volume integral with the telescopic
flux differencing (4.20) in simplified form (4.24). The resulting numerical method is
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written completely in a form similar to the standard strong form DGSEM derived in
(3.44) and (3.46):

JWt + Lξ = 0. (4.30)

While the surface terms in the spatial operator are identical to the DGSEM, the volume
integral is computed slightly differently

(Lξ)i = 1
ωi

(δiN [F ∗ − F ]N − δi0 [F ∗ − F ]0) + 1
ωi

N∑
m=0

2Qim F#(Wi,Wm). (4.31)

For ease of notation, we have only considered scalar conservation laws thus far. How-
ever, the same steps hold for systems of balance laws as well. We proceed to outline the
flux differencing scheme in two dimensions and on curved meshes.

4.2.2. Flux differencing in two dimensions
The staggered grid in two dimensions is obtained by a simple tensor product ansatz.
Thus, we have a set of (N + 2)2 flux nodes (ξ̄i, η̄j) for i, j = 0, . . . , N + 1, where both
coordinates are constructed according to (4.18). The major difference between one and
two dimensions is the possibility of curved geometries. As a consequence, we must
consider the contravariant fluxes (3.52) for the flux differencing

(f̃ξ)ij ≈
1
ωi

(
F̃ i+1,j − F̃ i,j

)
, (f̃η)ij ≈

1
ωj

(
F̃ i,j+1 − F̃ i,j

)
,

(g̃ξ)ij ≈
1
ωi

(
G̃i+1,j − G̃i,j

)
, (g̃η)ij ≈

1
ωj

(
G̃i,j+1 − G̃i,j

)
,

(4.32)

for i, j = 0, . . . , N . Once again, the crucial task is to find sub-cell fluxes on the staggered
grid F̃ and G̃ that are consistent, high-order accurate and entropy conservative. To allow
general curved meshes, the metric terms need to be incorporated into the definition
of these complimentary fluxes. As in the one dimensional case, a way to construct
consistent high-order fluxes at the flux nodes is given by Fisher & Carpenter in [30, 63].
We summarize their results in the following Lemma. This Lemma holds for systems of
conservation or balance laws, but we state it in scalar form to make the notation more
digestible.

Lemma 7 (High-Order Flux). A two-point high-order flux in x-direction can be con-
structed by

F̃ 0,j := F̃0,j ,

F̃ i,j :=
N∑
m=i

i−1∑
l=0

2Qlm
(
F̃#

(l,m),j + G̃#
(l,m),j

)
,

F̃N+1,j := F̃N,j ,

(4.33)
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for i = 1, . . . , N and a fixed y−direction. Analogously, the high-order flux in y-direction
is constructed by

G̃i,0 := G̃i,0,

G̃i,j :=
N∑
m=i

j−1∑
l=0

2Qlm
(
F̃#
i,(l,m) + G̃#

i,(l,m)

)
,

G̃i,N+1 := G̃i,N ,

(4.34)

where F̃0,j, F̃N,j, G̃i,0 and G̃i,N are the typical contravariant fluxes. The numerical two-
point fluxes are simplified for brevity by the following notation, that incorporates the
metric terms

F̃#
(i,m),j := F̃#

(
Wi,j ,Wi,m, (yη)i,j , (yη)i,m

)
G̃#

(i,m),j := G̃#
(
Wi,j ,Wi,m, (−xη)i,j , (−xη)i,m

)
F̃#
i,(j,m) := F̃#

(
Wi,j ,Wi,m, (−yξ)i,j , (−yξ)i,m

)
G̃#
i,(j,m) := G̃#

(
Wi,j ,Wi,m, (xξ)i,j , (xξ)i,m

)
.

(4.35)

Again, these fluxes must be symmetric and consistent to the physical fluxes of the con-
sidered equation. Furthermore, if the two-point fluxes are entropy conservative then the
high-order fluxes (4.33) and (4.34) are entropy conservative as well.

Proof. This Lemma from [30] is proven for the Cartesian case in [65], and extended to
curvilinear meshes in [63, Section 4.5 and Appendix A.3]. �

Remark 2. An entropy conservation condition on the numerical two-point fluxes for a
system of balance laws is given by

J~q KT (~F# + ~G#) = Jφf + φgK + {{~q}}T ~s, (4.36)

with discretized source term vector ~S. This source term extension to the entropy con-
servation condition (4.36) can, for instance, be found in [68].
Again, we are interested in simplifying the calculation of the flux difference. Anal-

ogously to the one dimensional case, we are able to cancel one of the sums in the
telescoping sum

N∑
m=0

M−1
ii ∆imF̃mj if the high-order flux F̃ is constructed as in (4.33).

Lemma 8 (Simplified Flux Differencing - 2D). One can use the structure of the SBP
matrix Q and the fluxes on the complimentary grid to eliminate one of the sums in the
telescoping flux sum, to write the flux difference in the x−direction in the indicial form

N∑
m=0

M−1
ii ∆imF̃mj = F̃ i+1,j − F̃ i,j

ωi
=

N∑
m=0

2Dim

(
F̃#

(i,m),j + G̃#
(i,m),j

)
, (4.37)
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for i = 0, . . . , N . The flux difference in the y-direction can also be expressed in a similar
indicial form

N∑
m=0

M−1
jj ∆jmG̃im = G̃i,j+1 − G̃i,j

ωj
=

N∑
m=0

2Dmj

(
F̃#
i,(j,m) + G̃#

i,(j,m)

)
, (4.38)

for j = 0, . . . , N .

Proof. The proof is nearly identical to the one dimensional proof from Lemma 6 in each
spatial direction with the additional consideration of the metric terms and can be found
in Appendix A.4. �

Following the same approach as in the previous section, we derive the flux differencing
scheme from the variational formulation of the scalar conservation law in strong form
(3.54). The only difference to the standard DGSEM is the different approximation of the
volume integral, which is now performed by flux differencing. This leads to the following
semi-discrete scheme,

JWt + Lξ + Lη = 0 (4.39)

where the spatial operators are defined by

(Lξ)ij = 1
ωi

(
δiN

[
F̃ ∗ − F̃

]
Nj
− δi0

[
F̃ ∗ − F̃

]
0j

)

+
N∑
m=0

2Dim

(
F̃#

(i,m),j + G̃#
(i,m),j

)
,

(Lη)ij = 1
ωj

(
δNj

[
G̃∗ − G̃

]
iN
− δ0j

[
G̃∗ − G̃

]
i0

)
+

N∑
m=0

2Dmj

(
F̃#
i,(j,m) + G̃#

i,(j,m)

)
,

(4.40)

with the curvilinear two-point fluxes F̃# and G̃# according to (4.35) and a suitable
numerical interface flux, e.g., the Lax-Friedrichs numerical flux (3.80). All these steps
work analogously for systems of balance laws and, again, we have only considered a
scalar conservation law to simplify notation. An entropy conservative or entropy stable
flux differencing scheme can be constructed with the selection of appropriate entropy
conservative high-order numerical two-point fluxes according to Lemma 7 and entropy
conservative or stable interface fluxes.
The similarity between DGSEM and flux differencing scheme is, of course, no coin-

cidence. In fact, the DGSEM is a special case of the flux differencing method for one
specific choice of two-point fluxes F# and G# [78]. For this specific choice, one finds
that the derivatives of the contravariant fluxes in the DGSEM can be written into a
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telescoping flux form
N∑
m=0

DimF̃mj =
N∑
m=0

M−1
ii QimF̃mj =

N∑
m=0

M−1
ii ∆imF̃mj ,

N∑
m=0

DjmG̃im =
N∑
m=0

M−1
jj QjmG̃im =

N∑
m=0

M−1
jj ∆jmG̃im.

(4.41)

Other choices of the numerical two-point flux lead to DG discretization of split forms of
the physical equations. We explore this venue further in the next Section.
The standard curvilinear DGSEM from Section 3.2.2 is equivalent to the flux differ-

encing method (4.39) and (4.40) if the following numerical two-point fluxes are chosen:

F̃#
(i,m),j := {{(yη)F}}(i,m),j ,

G̃#
(i,m),j := {{(−xη)G}}(i,m),j ,

F̃#
i,(j,m) := {{(−yξ)F}}i,(j,m) ,

G̃#
i,(j,m) := {{(xξ)G}}i,(j,m) ,

(4.42)

with the notation for averages given in (4.17). We see the equivalence between the two
formulations by inserting (4.42) into (4.37) and simplifying terms by using the SBP
properties,

N∑
m=0

2Dim

(
F̃#

(i,m),j + G̃#
(i,m),j

)

=
N∑
m=0

2Dim

(
{{(yη)F}}(i,m),j + {{(yη)G}}(i,m),j

)

=
N∑
m=0

Dim

((
(yη)i,j Fi,j + (yη)m,j Fm,j

)
+
(
(−xη)i,j Gi,j + (−xη)m,j Gm,j

))
=

N∑
m=0

Dim

(
(yη)m,j Fm,j + (−xη)m,j Gm,j

)

=
N∑
m=0

DimF̃m,j .

(4.43)

Before we explicitly state the DGSEM in flux differencing form, we note that due to the
SBP property (4.8), the strong and weak form DG schemes are equivalent here. Thus,
we are able to directly include the interior surface terms from the strong form into the
volume sum. We modify the discrete derivative operator further to also incorporate the
factor 2 of the flux differencing formulation. This leads to a modified derivative operator
that simplifies the implementation and saves computational cost,

D̃ = 2D + S. (4.44)
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We are now ready to reformulate the DGSEM for the shallow water equations in flux
differencing form and do so in the following Theorem.

Theorem 1 (Flux Differencing DGSEM). The DGSEM approximation to the shallow
water equations on curvilinear meshes (3.76) can be written in flux differencing form by

J ~Wt + ~Lξ + ~Lη = ~S (4.45)

with (
~Lξ
)
ij

= 1
ωi

(
δiN

[
~̃F ∗
]
Nj
− δi0

[
~̃F ∗
]

0j

)
+

N∑
m=0

D̃im
~̃F(i,m),j ,

(
~Lη
)
ij

= 1
ωj

(
δNj

[
~̃G∗
]
iN
− δ0j

[
~̃G∗
]
i0

)
+

N∑
m=0

D̃mj
~̃Gi,(m,j),

(4.46)

with curvilinear high-order numerical volume fluxes

~̃F(i,m),j := ~̃F#
(i,m),j + ~̃G#

(i,m),j ,

~̃Gi,(m,j) := ~̃F#
i,(j,m) + ~̃G#

i,(j,m),
(4.47)

where the numerical two-point fluxes are defined by

~̃F#
(i,m),j =

{{
(yη) ~̃F

}}
(i,m),j

,

~̃G#
(i,m),j =

{{
(−xη) ~̃G

}}
(i,m),j

,

~̃F#
i,(j,m) =

{{
(−yξ) ~̃F

}}
i,(j,m)

,

~̃G#
i,(j,m) =

{{
(xξ) ~̃G

}}
i,(j,m)

.

(4.48)

The numerical interface flux is the Lax-Friedrichs numerical flux (3.80). The discretiza-
tion of the source term, ~S, is left unchanged and is given by (3.79).

4.3. Equivalent split forms
With the compact form for the flux differencing formulation derived in the previous
section, we now address other choices of the two-point fluxes ~F# and ~G#. We have seen
one choice in (4.48) that leads to the standard DGSEM in flux differencing form. In
general, we are allowed to choose other two-point fluxes as long as they are symmetric
and consistent to the physical (contravariant) fluxes. We will see that other choices can
lead to discretizations of various split forms of the PDE. Numerical methods based on
a split form of the PDE often show desirable properties such as increased robustness
through de-aliasing or conservation of certain derived quantities such as kinetic energy
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or entropy [16, 56, 124, 256, 258]. The obtained properties depend on the specific type of
split form that is used. If we are able to write a split form discretization in the telescoping
flux difference forms (4.37) and (4.38), then global conservation of the approximation
is guaranteed and the Lax-Wendroff Theorem holds. Thus, we are interested in split
form schemes that can be expressed in flux differencing form such that we have the
stabilization and robustness properties as well as global conservation in a Lax-Wendroff
sense. These are remarkable and fundamental properties that allow us to construct
the entropy stable numerical schemes in Chapter 5. Another advantage of the flux
differencing formulation is that it greatly reduces the computational cost compared to
a direct discretization of all the split form terms. Furthermore, we will see that split
form discretizations are particularly useful for constructing well-balanced schemes for
the shallow water equations.

We aim to make the connection between the choice of the two-point fluxes F# and
G# and the resulting split form more clear. A split form for the derivative of a product
of two quantities is

(a b)x = λ (a b)x + (1− λ) (ax b+ a bx) , λ ∈ [0, 1]. (4.49)

We are interested in finding two-point fluxes, such that the telescoping flux difference
sum, (4.24) in one dimension or (4.37) and (4.38) in two dimensions, are equivalent
to a DG discretization of the split form. It is not trivial to find such two-point fluxes
in general. For the special cases λ ∈ {0, 1

2 , 1}, the corresponding two-point fluxes are
relatively simple. For λ = 1, we find that selecting the two-point flux

F# (a, b) = {{ab}} , (4.50)

recovers the standard DG discretization. We show this by substituting (4.50) into the
1D compact flux differencing form (4.24) and observing

1
ωi

N∑
m=0

2Qim {{ab}}(i,m) = 1
ωi

N∑
m=0

Qim ((ab)i + (ab)m)

= 1
ωi

N∑
m=0

Qim(ab)m + 1
ωi

(ab)i
N∑
m=0

Qim

= 1
ωi

N∑
m=0

Qim(ab)m

=
N∑
m=0

Dim(ab)m.

(4.51)

This shows that the flux differencing scheme can be equivalent to a straight forward non-
split form discretization when the two-point flux is simply the average of the product
of two quantities. In the λ = 1

2 split form case, once again a simple two-point flux
is sufficient to obtain the DG split form discretization [82]. Instead of averaging the
product of a and b, we take the product of the two individual averages,

F#(a, b) = {{a}} {{b}} , (4.52)
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to find the DG discretization of the split form (4.49) with λ = 1
2 ,

1
ωi

N∑
m=0

2Qim {{a}}(i,m) {{b}}(i,m) = 1
2ωi

N∑
m=0

Qim (ai + am) (bi + bm)

= 1
2ωi

N∑
m=0

Qim (aibi + aibm + ambi + ambm)

= 1
2ωi

N∑
m=0

Qimambm + 1
2ωi

ai

N∑
m=0

Qimbm + 1
2ωi

bi

N∑
m=0

Qimam

= 1
2

N∑
m=0

Dimambm + 1
2ai

N∑
m=0

Dimbm + 1
2bi

N∑
m=0

Dimam.

(4.53)

The third case we consider here, λ = 0 is slightly more involved. For the rather unintu-
itive choice

F#(a, b) = 2 {{a}} {{b}} − {{ab}} , (4.54)
we see that a discretization of the purely non-conservative terms is recovered,

1
ωi

N∑
m=0

2Qim
(
2 {{a}}(i,m) {{b}}(i,m) − {{ab}}(i,m)

)

= 1
ωi

N∑
m=0

Qim ((ai + am) (bi + bm)− (aibi + ambm))

= 1
ωi

N∑
m=0

Qim (aibm + ambi)

= ai

N∑
m=0

Dimbm + bi

N∑
m=0

Dimam.

(4.55)

It is worth mentioning that even though this discretization is clearly in non-conservative
form, the numerical scheme is still conservative. This can be seen by reformulating the
discretization from (4.55) as

ai

N∑
m=0

Dimbm + bi

N∑
m=0

Dimam

=
N∑
m=0

Dimambm −
N∑
m=0

Dimambm + ai

N∑
m=0

Dimbm + bi

N∑
m=0

Dimam

=
N∑
m=0

Dimambm + Eab,

(4.56)

with non-linear discrete product rule error term

Eab := −
N∑
m=0

Dimambm + ai

N∑
m=0

Dimbm + bi

N∑
m=0

Dimam. (4.57)
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Lemma 4 states that terms with this structure do not destroy the discrete conservation
and the first term is a conservative approximation.

Practically relevant systems of conservation laws such as the shallow water equations,
the Euler equations or the Navier-Stokes equations feature physical fluxes that are more
than the simple product of two quantities. The more complicated (or non-linear) these
fluxes are, the greater is the variety of possible split forms. In the case of the Euler equa-
tions, Kennedy and Gruber propose a split form for products of three quantities [124].
A discontinuous Galerkin discretization of these split forms can be recovered by using
two-point fluxes that contain combinations of averaged products of quantities within the
flux differencing framework. The Kennedy and Gruber flux is, for instance, recovered
by the product of three individual averages [82]. In similar ways many popular split
form discretizations can be obtained with flux differencing schemes by using appropriate
two-point fluxes. However, it is important to point out, that not for all choices of two-
point fluxes the equivalent split form is known. So, in some sense, the flux differencing
framework covers all the direct split forms but even more. This highlights the flexibility
of the flux differencing formulation (4.37). We refer to [82] for a more extensive study
for split forms of the Euler equations.
We summarize the connections between the three important two-point fluxes consist-

ing of one, two and three averages and the equivalent split form DG discretizations in
a Lemma. We also introduce an abbreviation for the extended split form discretization
to make the schemes discussed in the following Chapters more readable. The Lemma
is formulated in one dimension, but we also give abbreviations for the two dimensional
case afterwards.

Lemma 9 (Split form connections). A single average inserted into the flux differencing
form is equivalent to a straight forward discretization of the derivative of the quantitity:

N∑
m=0

2Dim {{a}}(i,m) =
N∑
m=0

Dimam =: (D ◦ a)i . (4.58)

Products of two or three averages are equivalent to discretizations of the original deriva-
tive in split form. The product of two averages recovers the quadratic split form dis-
cretization

N∑
m=0

2Dim {{a}}(i,m) {{b}}(i,m)

=1
2

(
N∑
m=0

Dimambm + ai

N∑
m=0

Dimbm + bi

N∑
m=0

Dimam

)
=: (D ◦ a ◦ b)i

(4.59)

And, lastly, the flux differencing formulation using the product of three averages is equiv-
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alent to the discretization of the cubic splitting,

N∑
m=0

2Dim {{a}}(i,m) {{b}}(i,m) {{c}}(i,m)

=1
4

(
N∑
m=0

Dimambmcm

+ai
N∑
m=0

Dimbmcm + bi

N∑
m=0

Dimamcm + ci

N∑
m=0

Dimambm

+bici
N∑
m=0

Dimam + aici

N∑
m=0

Dimbm + aibi

N∑
m=0

Dimcm

)
=: (D ◦ a ◦ b ◦ c)i .

(4.60)

These extensions hold for higher dimensions as well, since the averaging is always per-
formed in only one of the spatial dimensions in a tensor product way.

Proof. All the extensions can be found by straight multiplication of the averages and
the consistency of the derivative operator D. �

We now introduce similar abbreviated expressions for the two dimensional case. We
perform derivatives in reference space and need to distinguish between derivatives in ξ
and η direction.
Definition 2 (Notation for 2D product extensions). In the new notation, we abbreviate
the conventional derivatives by

(D ◦ a)ξij :=
(

N∑
m=0

Dimamj

)
, (D ◦ a)ηij :=

(
N∑
m=0

Djmaim

)
. (4.61)

The quadratic split form discretizations are equivalent to the flux differencing formula-
tion of the product of two averages and abbreviated for each spatial direction by

(D ◦ a ◦ b)ξij :=1
2

(
N∑
m=0

Dimamjbmj + aij

N∑
m=0

Dimbmj + bij

N∑
m=0

Dimamj

)
,

(D ◦ a ◦ b)ηij :=1
2

(
N∑
m=0

Djmaimbim + aij

N∑
m=0

Djmbim + bij

N∑
m=0

Djmaim

)
.

(4.62)
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Similarly, we write the extension of a derivative of a triple product as

(D ◦ a ◦ b ◦ c)ξij := 1
4

(
N∑
m=0

Dimamjbmjcmj

+aij
N∑
m=0

Dimbmjcmj + bij

N∑
m=0

Dimamjcmj + cij

N∑
m=0

Dimamjbmj

+bijcij
N∑
m=0

Dimamj + aijcij

N∑
m=0

Dimbmj + aijbij

N∑
m=0

Dimcmj

)
,

(D ◦ a ◦ b ◦ c)ηij := 1
4

(
N∑
m=0

Djmaimbimcim

+aij
N∑
m=0

Djmbimcim + bij

N∑
m=0

Djmaimcim + cij

N∑
m=0

Djmaimbim

+bijcij
N∑
m=0

Djmaim + aijcij

N∑
m=0

Djmbim + aijbij

N∑
m=0

Djmcim

)
.

(4.63)

When we introduced the two dimensional flux differencing method in Section 4.2.2,
we only discussed the specific two-point fluxes that result in a numerical flux differenc-
ing scheme equivalent to the standard DGSEM. Now that we better understand the
relationship between split forms and flux differencing schemes, we are able to address
specific choices for the two-point fluxes and their equivalent split form discretizations.
Apart from the various split forms that can be derived based on the physical quantities

present in the fluxes, there are also metric terms to consider on curvilinear meshes.
In the DG methods considered in this work, these metric terms are approximated by
polynomials from the same space as physical quantities and fluxes. The non-linearity
that stems from the product of metric terms and physical quantities is subject to aliasing
errors due to inexact integration as well. Thus, it is sensible to use a split form for this
product as well. We call a split form for the metric terms a geometric splitting and refer
to the increased robustness as geometric de-aliasing.

In (4.35) we stated that the metric terms should be treated as an additional input
quantity for the two-point fluxes. Consequently, the entire discretization of the volume
terms is determined by only the choice of numerical two-point fluxes. This allows the
formal flexibility to use split forms for physical quantities and/or metric terms as to
suit the desired purposes. The simplest choice to incorporate geometric de-aliasing is to
average metric terms and the rest of the flux individually, e.g.,

F̃#
(
Wi,j ,Wm,j , (yη)i,j , (yη)m,j

)
:= F# (Wi,j ,Wm,j) {{yη}}(i,m),j ,

G̃#
(
Wi,j ,Wm,j , (−xη)i,j , (−xη)m,j

)
:= G# (Wi,j ,Wm,j) {{−xη}}(i,m),j ,

F̃#
(
Wi,j ,Wi,m, (−yξ)i,j , (−yξ)i,m

)
:= F# (Wi,j ,Wi,m) {{−yξ}}i,(j,m) ,

G̃#
(
Wi,j ,Wi,m, (xξ)i,j , (xξ)i,m

)
:= G# (Wi,j ,Wi,m) {{xξ}}i,(j,m) .

(4.64)
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We show the equivalent split form of the metric term by choosing the formulation of the
remaining flux part, to be

F# (Wi,j ,Wm,j) := {{F}}(i,m),j ,

G# (Wi,j ,Wm,j) := {{G}}(i,m),j ,

F# (Wi,j ,Wi,m) := {{F}}i,(j,m) ,

G# (Wi,j ,Wi,m) := {{G}}i,(j,m) .

(4.65)

Inserting (4.64) and (4.65) into the flux differencing forms (4.37) and (4.38) we determine
the geometrically de-aliased scheme. Starting with the spatial operator in the ξ direction
we find

N∑
m=0

2Dim

(
F̃#

(i,m),j + G̃#
(i,m),j

)

=
N∑
m=0

2Dim

(
{{(yη)}}(i,m),j {{F}}(i,m),j + {{(−xη)}}(i,m),j {{G}}(i,m),j

)

=1
2 (yη)i,j

N∑
m=0

DimFm,j + 1
2

N∑
m=0

Dim (yη)m,j Fm,j

+ 1
2 (−xη)i,j

N∑
m=0

DimGm,j + 1
2

N∑
m=0

Dim (−xη)m,j Gm,j

+ 1
2Fi,j

N∑
m=0

Dim (yη)m,j + 1
2Gi,j

N∑
m=0

Dim (−xη)m,j .

(4.66)

Similar steps in the η direction yield
N∑
m=0

2Djm

(
F̃#
i,(j,m) + G̃#

i,(j,m)

)

=
N∑
m=0

2Djm

(
{{(−yξ)}}i,(j,m) {{F}}i,(j,m) + {{(xξ)}}i,(j,m) {{G}}i,(j,m)

)

=1
2 (−yξ)i,j

N∑
m=0

DjmFi,m + 1
2

N∑
m=0

Djm (−yξ)i,m Fi,m

+ 1
2 (xξ)i,j

N∑
m=0

DjmGi,m + 1
2

N∑
m=0

Djm (xξ)i,mGi,m

+ 1
2Fi,j

N∑
m=0

Djm (−yξ)i,m + 1
2Gi,j

N∑
m=0

Djm (xξ)i,m .

(4.67)

This shows, that by averaging the metric terms and the fluxes individually, we obtain a
quadratic split form of the metric term. We can simplify expressions further by combin-
ing terms from the last two lines of each equation, (4.66) and (4.67), and applying the
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metric identities (3.63)

1
2Fi,j

(
N∑
m=0

Dim (yη)m,j +
N∑
m=0

Djm (−yξ)i,m

)
= 0,

1
2Gi,j

(
N∑
m=0

Dim (−xη)m,j +
N∑
m=0

Djm (xξ)i,m

)
= 0.

(4.68)

We now have established that the flux differencing formulation grants us additional
flexibility to construct approximation to various split forms of the PDE. From such al-
ternative split forms of the shallow water equations it is possible to create an entropy
conservative numerical approximation [83]. This gives us the motivation to select the
volume and surface fluxes in a specific way, such that the total energy of the numerical
scheme will be conserved discretely. We note that the only alteration needed to change a
standard DGSEM scheme to an entropy stable one is to use the flux differencing form for
the volume integral and select appropriate two-point fluxes and entropy stable numerical
interface fluxes for the surface contributions. The flux differencing representation guar-
antees that with a chosen pair of symmetric two-point fluxes the approximation (4.46)
remains high-order accurate and globally conservative. Additionally, if the two-point
fluxes in (4.48) and the surface fluxes in (4.46) are carefully constructed then the ap-
proximation is also provably entropy conservative [65]. Note that one can independently
select an entropy conservative two-point flux that has a different form than an entropy
conservative surface flux. We will show in the next chapter that this additional flexibility
allows the construction of an entropy conservative approximation for the shallow water
equations that is also well-balanced.
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5. Entropy Stable DGSEM
In this chapter we present a novel entropy stable discontinuous Galerkin spectral element
method (ESDGSEM) for the shallow water equations that is well-balanced and works
on unstructured, possibly curved, quadrilateral meshes. We will present versions of the
ESDGSEM for the one and two dimensional shallow water equations, both of which
are based on a split form of the respective set of equations. The general strategy is
to develop entropy conservative schemes first and then carefully add dissipation to the
scheme if shocks are present to guarantee entropy stability. This is a popular approach
in the construction of entropy stable methods, previously used by many researchers, e.g.
[236, 117, 69].

The split form is chosen in a specific way to ensure element-local entropy conservation
as well as a balance between the pressure and source terms. Through combination with
entropy conserving numerical interface fluxes, the local entropy conservation is extended
globally. To mimic the physical behaviour at shocks, we must introduce a mechanism of
dissipating entropy. This is handled by adding numerical dissipation proportional to the
jump in entropy variables to the numerical interface fluxes. For smooth solutions, this
jump is small and the scheme is not very dissipative. In case of shocks, the dissipation
is larger and helps to stabilize the simulation.
To ensure that the DG methods based on split forms are conservative schemes, we rely

on the SBP property of the LGL operators as discussed in Chapter 4. In fact, to make
the schemes computationally viable, we rewrite the split form discretizations in their
equivalent flux differencing form from Section 4.2. A straightforward implementation
of the split form discretization would lead to many distinct volume integrals for each
momentum equation in the full two dimensional curvilinear case. However, with the flux
differencing form, we can derive a compact expression for the ESDGSEM that needs just
as many volume integrals as the standard DGSEM, at the cost of more expensive fluxes.
A detailed discussion of the computational side of the ESDGSEM and suggestions for
efficient implementations can be found in Chapter 6.
We start this chapter by deriving the entropy conservative DG method for the one

dimensional shallow water equations in Section 5.1. The thorough discussion of this
simpler case serves to highlight the key ideas in the development of the method without
over-complicating the equations. The following Section 5.2 is dedicated to the derivation
of the entropy conservative method in two spatial dimensions on curvilinear meshes. The
two dimensional ECDGSEM is mostly built from the same ideas as the one dimensional
method, but has some additional complexity due to the possibly curved geometry. After
the entropy conservative methods are derived, we describe how numerical dissipation
can be added to the numerical fluxes to find the entropy stable methods in Section 5.3.
We will show in the numerical results section, that entropy stable schemes immediately
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demonstrate increased robustness in challenging test cases. Entropy stability alone,
however, does not render schemes oscillation-free. The entropy stable schemes are, by
design, not highly dissipative. Thus, shocks occurring in high-order simulations can
lead to quite severe oscillations and can possibly cause a scheme to crash. For the
shallow water equations, particularly negative water heights are dangerous in a numerical
code. They are not only unphysical, but can cause NaN -errors when computing the
eigenvalues such as λ = u+

√
gh. We mitigate this issue and stabilize the scheme even

further by introducing artificial viscosity to the equations. However, the variables used
in the viscous gradient as well as their discretization must be chosen very carefully to
maintain the entropy stability of the scheme. In [81], the authors provide a condition on
the relation between gradient variables and entropy variables such that a discretization
according to Bassi and Rebay (BR1, [9]) renders the artificial viscosity term entropy
stable. We propose a suitable choice of gradient variables and a dynamic shock detection
mechanism according to Persson and Peraire [202] in Section 5.4.
In the presence of (nearly) dry areas, even the smallest oscillations can render the

numerical scheme unstable. Special mechanisms or limiters are required in such cases,
to guarantee non-negative water heights. A widely used positivity preserving limiter was
proposed by Zhang et al. [271]. This limiter is constructed from a linear scaling around
element averages and is provably entropy stable. However, the theoretical proof for the
positivity limiters relies on special assumptions on the numerical flux. In this context,
the contribution of this work is the proof that the positivity limiter in combination with
the entropy stable numerical flux of the ESDGSEM guarantees positive mean water
heights under certain additional time step restrictions. The details of this are presented
in Section 5.5.

5.1. ECDGSEM in one dimension
In this section we derive the one dimensional entropy conservative discontinuous Galerkin
method originally proposed by Gassner et al. [83]. The method is based on a split form of
the shallow water equations. First, we recall the one dimensional shallow water equations

ht + (hu)x = 0

(hu)t + (hu2 + 1
2gh

2)x = −ghbx.
(5.1)

We choose the split form such that its LGL-DG discretization satisfies two key require-
ments:

• If contracted with the entropy variables, a discrete entropy equality is obtained,

• The pressure gradient g
2(h2)x must be in balance with the source term ghbx.

A discrete balance between pressure gradient and source term can be achieved by ap-
plying the product rule to the pressure gradient

g

2(h2)x = ghhx. (5.2)
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The alternative form for (hu2)x is less intuitive as it is obtained by averaging conservative
form and terms obtained by applying the product rule with respect to u and hu

(hu2)x = 1
2
(
(hu2)x + huux + u(hu)x

)
. (5.3)

With the two newly derived expressions (5.2) and (5.3) we can formulate the split form
shallow water system:

ht + (hu)x = 0

(hu)t + 1
2
(
(hu2)x + huux + u(hu)x

)
+ gh(h+ b)x = 0.

(5.4)

We note that on the continuous level, both formulations are equivalent. Thus, the
entropy function derived for the one dimensional shallow water equations in Lemma 1
is also an entropy function for the split form shallow water equations (5.4). Since the
product rule does not hold discretely, both formulations are numerically different.
We use the split form shallow water equations (5.4) as a basis for the discontinuous

Galerkin discretization. The bottom topography b is approximated by a polynomial
from the same space as the conservative variables and fluxes. To allow for discontinuous
bottom topographies, we introduce a special interface penalty term to the source term
discretization.

g (h bx)i ≈ g hi
N∑
m=0

Dimbm −
g

2
δi0
ωi

[{{h}} JbK]0 + g

2
δiN
ωi

[{{h}} JbK]N , (5.5)

where the jumps and averages are defined on element interfaces, e.g., for interior value
ai and exterior value ao and outward pointing normal n̂ = ±1:

{{a}} := 1
2 (ai + ao) ,

JaK := (ao − ai) n̂.
(5.6)

This discretization assumes that any discontinuities in the bottom topography align with
element interfaces. Following the steps from Section 3.2.1 for all other terms individually,
we find the strong form DGSEM discretization of the split form shallow water equations

Ji (ht)i =−
N∑
m=0

Dim (hu)m +
(
δi0
ωi

(F ∗1 − hu)
∣∣
0 −

δiN
ωi

(F ∗1 − hu)
∣∣
N

)

Ji ((hu)t)i =− 1
2

(
N∑
m=0

Dim

(
hu2

)
m

+ (hu)i
N∑
m=0

Dimum + ui

N∑
m=0

Dim (hu)m

)

− g

2hi
N∑
m=0

Dim (hm + bm)

+
(
δi0
ωi

(
F ∗2 − (hu2 + g

2h
2)
) ∣∣

0 −
δiN
ωi

(
F ∗2 − (hu2 + g

2h
2)
) ∣∣

N

)
+ g

2
δi0
ωi

[{{h}} JbK]0 −
g

2
δiN
ωi

[{{h}} JbK]N .

(5.7)
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This discretization is only complete with an appropriate choice for the numerical inter-
face flux F ∗. We can construct this flux in a way such that the scheme becomes entropy
conservative. Following the methodology by Tadmor [233], an entropy conservative nu-
merical flux for the shallow water equations was proposed by Fjordholm [68]. In a locally
conservative DG method the time evolution of the mean values can be rewritten as a
finite volume method. Thus, entropy conservative fluxes for the finite volume scheme,
are entropy conservative for DG as well. The entropy conservative flux by Fjordholm
reads

~F ∗,ec( ~W+, ~W−) :=

 {{h}} {{u}}
{{h}} {{u}}2 + g

2
{{
h2}}

 . (5.8)

We will show that replacing the numerical fluxes in the split form shallow water dis-
cretization (5.7) with the entropy conservative fluxes (5.8) leads to an entropy conser-
vative and well-balanced numerical scheme.

Lemma 10 (Entropy conservation of split form DG). The strong form discontinuous
Galerkin approximation of the split form shallow water equations given in (5.7) is entropy
conservative.

Proof. We contract the equations of the strong form DG discretization (5.7) with the
entropy variables ~q = (q1, q2)T =

(
g(h+ b)− 1

2u
2, u

)T
to derive the discrete entropy

equation. We are only considering the semi-discrete scheme and assume continuity in
time. Thus, it is allowed to use the product rule to recover the time derivative of the
entropy, e = 1

2hu
2 + 1

2gh
2 + ghb, from the discrete time derivatives in (5.9). After

canceling terms, we find the semi-discrete entropy equation to be

Ji(et)i + ghi

N∑
m=0

Dimhmum + gbi

N∑
m=0

Dimhmum

+ 1
2ui

N∑
m=0

Dimhmu
2
m + 1

2hiu
2
i

N∑
m=0

Dimum + g

2hiui
N∑
m=0

Dim (hm + bm)

=
(
g(hi + bi)−

1
2u

2
i

)(
δi0
ωi

[
F ∗,ec1 − hu

]
0 −

δiN
ωi

[
F ∗,ec1 − hu

]
N

)
+ ui

(
δi0
ωi

[
F ∗,ec2 −

(
hu2 + g

2h
2
)]

0
− δiN

ωi

[
F ∗,ec2 −

(
hu2 + g

2h
2
)]

N

)
+ ui

(
g

2
δi0
ωi

[{{h}} JbK]0 −
g

2
δiN
ωi

[{{h}} JbK]N
)
.

(5.9)

To show discrete entropy conservation, we need to write spatial terms in (5.9) in conser-
vative form. We show this in two steps: First, we show that the approximation to the
derivative of the entropy flux is conservative. Then, we demonstrate that the interface
contributions cancel.
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We reformulate the volume terms in (5.9) to find a formulation in terms of the discrete
derivative of the entropy flux and discrete non-linear product rule error terms,

N∑
m=0

Dim

(1
2hmu

3
m + ghmum(hm + bm)

)
+ E

(
u, hu2

)
i
+ E (h, hu)i + E (b, hu)i , (5.10)

with error terms given by

E (h, hu)i := 1
2

(
−

N∑
m=0

Dimh
2
mum + hi

N∑
m=0

Dimhmum + hiui

N∑
m=0

Dimhm

)
,

E (b, hu)i := g

(
−

N∑
m=0

Dimhmumbm + bi

N∑
m=0

Dimhmum + hiui

N∑
m=0

Dimbm

)
,

E
(
u, hu2

)
i

:= g

(
−

N∑
m=0

Dimhmu
3
m + ui

N∑
m=0

Dimhmu
2
m + hiu

2
i

N∑
m=0

Dimum

)
.

(5.11)

We know that the error terms in (5.11) are conservative from Lemma 4, since the LGL
derivative operator D has the SBP property.

We recall the SBP property (4.8),

D = D̂− S, S := diag
( 1
ω0
, 0, . . . , 0,− 1

ωN

)
, (5.12)

and apply it to the first term in (5.10) to find a conservative approximation to the
entropy flux derivative plus additional surface terms

N∑
m=0

D̂im

(1
2hmu

3
m + ghmum(hm + bm)

)
+ E

(
u, hu2

)
i
+ E (h, hu)i + E (b, hu)i

+
(
δiN
ωN

[1
2hu

3 + ghu(h+ b)
]
N
− δi0
ω0

[1
2hu

3 + ghu(h+ b)
]

0

)
.

(5.13)

We now consider the original surface terms from (5.9) as well as the additional surface
terms from (5.13) to find

Interface terms for a single element

= δiN
ωi

[
(g(h+ b)− 1

2u
2) {{h}} {{u}}

+u {{h}} {{u}}2 + g

2u
{{
h2
}}
− g

2h
2u− g

2u {{h}} JbK
]
N

−δi0
ωi

[
(g(h+ b)− 1

2u
2) {{h}} {{u}}

]
+u {{h}} {{u}}2 + g

2u
{{
h2
}}
− g

2h
2u− g

2u {{h}} JbK
]

0
.

(5.14)

The scheme is entropy conservative if the interface contribution in one element is exactly
opposite to the interface contribution for its neighbor element. Thus, adding the interface
contributions of two neighboring elements at a fixed arbitrary interface must be zero.
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Interface terms are defined in direction of outward pointing normal vectors, here
n̂ = ±1. Thus, at one fixed interface, the outward pointing normals of each element
have opposing signs. Adding interface contributions of both elements leads to jump
terms denoted by J·K and defined in (5.6). The special source term discretization (5.5)
already contains jumps with outward pointing orientation. Thus, adding these terms,
1
2u {{h}} JbK, from two neighbouring element, leads to an average of the velocity {{u}}
with fixed jump orientation. It follows, that the interface contribution of the source term
discretization cancels with the bottom topography term from the entropy scaling.
Neglecting the scaling by the integration weight in (5.14), we find the following total

interface contribution of one fixed interface

Total contribution at a fixed interface

=g {{h}} {{u}} JhK + g

2
{{
h2
}}

JuK− gJh2uK

− 1
2 {{h}} {{u}} Ju2K + {{h}} {{u}}2 JuK.

(5.15)

Noting 1
2Ja2K = {{a}} JaK, we observe

1
2 {{h}} {{u}} Ju2K = {{h}} {{u}}2 JuK, (5.16)

and
g

2Jh2uK = g {{h}} {{u}} JhK + g

2
{{
h2
}}

JuK, (5.17)

and see that all terms in (5.15) vanish. Thus, we conclude that the DGSEM discretiza-
tion of the split form shallow water equations with the entropy conservative numerical
interface flux is entropy conservative. �

The other requirement for the split form shallow water equations was, that the dis-
cretization is well-balanced. We prove this property in the following Lemma.

Lemma 11 (Well-balanced property). The strong form DG approximation of the split
form shallow water equations given in (5.7) is well-balanced.

Proof. A numerical scheme is well-balanced if the lake at rest initial conditions,

(h+ b, hu) = (const, 0) ,

are preserved for all time. We start with the discrete time derivative of the water height
from (5.7)

Ji (ht)i =−
N∑
m=0

Dim (hu)m +
(
δi0
ωi

(F ∗1 − hu)
∣∣
0 −

δiN
ωi

(F ∗1 − hu)
∣∣
N

)
. (5.18)

Considering F ∗,ec1 = {{h}} {{u}} and the initial condition u = 0, it is clear that the
discrete time derivative in (5.18) is exactly zero. Inserting F ∗,ec2 = {{h}} {{u}}2+ g

2
{{
h2}}
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into the momentum equation in (5.7) and canceling terms as u = 0, the remaining terms
of the momentum equation are

Ji((hu)t)i = −g2hi
N∑
m=0

Dim (hm + bm)

+ δiN
ωi

g

2
[
h2 −

{{
h2
}}
− {{h}} JbK

]
N
− δi0
ωi

g

2
[
h2 −

{{
h2
}}
− {{h}} JbK

]
0
.

(5.19)

The volume term is zero due to the consistency of the derivative operator D and the total
water height is h+ b = const. Since we allow discontinuities in the bottom topography
at element interfaces, it is possible that there is a jump in water height at the element
interface. Thus, we cannot assume {{

h2
}}

= h2.

Instead, with definitions (5.6), we have at each interface{{
h2
}}
− h2 = h2

i + h2
o

2 − h2
i = h2

o − h2
i

2 = 1
2Jh2K = {{h}} JhKn̂, (5.20)

where hi denotes the inner and ho the outer value. For each interface term in (5.19) we
find {{

h2
}}
− h2 + {{h}} JbK = {{h}} Jh+ bK = 0. (5.21)

We have shown that the time derivatives of both, the water height and the momentum
are zero for the lake at rest initial conditions. This holds true for discontinuous bottom
topographies, as long as the jumps align with element interfaces. Thus, we conclude
that the split form DG is well-balanced. �

The strong form DG split form discretization features four volume integrals for the
momentum equation and is not in conservative form. One way to show that the scheme
(5.7) remains a conservative approximation is by remembering that the derivative ma-
trix D has the SBP property and recasting the formulation such that Lemma 4 can
be applied. A simpler alternative is to find an equivalent flux differencing formula-
tion. Schemes written in flux differencing form are immediately conservative as we have
demonstrated in Section 4.2. Another benefit of the flux differencing formulation is the
reduced computational complexity. The flux differencing formulation is described by the
choice of the numerical two-point flux. In this case, we need to find a two-point flux
~F# that, when expanded, reproduces the split form discretizations in (5.7). We present
such a two-point flux in Lemma 12.
Lemma 12 (Equivalent Discrete Split Form). If the following two-point flux is used for
the volume integral of the 1D flux differencing DGSEM from Theorem 1,

~F#( ~Wi, ~Wm) :=
(

{{hu}}(i,m)

{{hu}}(i,m) {{u}}(i,m) + g {{h}}2(i,m) −
1
2g
{{
h2}}

(i,m)

)
(5.22)

then it is equivalent to the strong form DGSEM discretization of the split form equations
as in (5.7).
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Proof. We show the equivalence between the flux differencing formulation using the
numerical two-point flux (5.22) and the direct discontinuous Galerkin discretization of
the split form (5.4) given in (5.7) directly. To extend the flux differencing volume
integral, we use the rules from Lemma 9 and the definition of D̃ from (4.44). The surface
modifications of the flux differencing operator D̃ create the proper interior surface terms
of the strong form DG discretization. This is true because the two-point flux evaluations
on the interfaces, ~F#

(0,0) and ~F#
(N,N), are consistent to the physical fluxes.

We start with the continuity equation and recover the strong form DG terms by
expanding the terms according to the rules from Lemma 9,

N∑
m=0

D̃im

(
F#

1

)
(i,m)

= (D ◦ hu)i −
δiN
ωN

[hu]N + δi0
ω0

[hu]0

=
N∑
m=0

Dim(hu)m −
δiN
ωN

[hu]N + δi0
ω0

[hu]0 .
(5.23)

A direct expansion of the momentum equation terms according to Lemma 9 leads to

N∑
m=0

D̃im

(
F#

2

)
(i,m)

= (D ◦ hu ◦ u)i + g (D ◦ h ◦ h)i −
g

2
(
D ◦ h2

)
i

− δiN
ωN

[(
hu2 + g

2h
2
)]

N
+ δi0
ω0

[(
hu2 + g

2h
2
)]

0
.

(5.24)

A closer investigation of the pressure terms yields

g (D ◦ h ◦ h)i −
g

2
(
D ◦ h2

)
i

= ghi

N∑
m=0

Dimhm, (5.25)

which is exactly the discretization of the split form we constructed for the pressure term
in (5.4). Expanding the double product (D ◦ hu ◦ u)i and inserting (5.25) into (5.24),
we recover the interior parts of the strong form DG discretization (5.7),

N∑
m=0

D̃im

(
F#

2

)
(i,m)

=1
2

(
N∑
m=0

Dim(hu2)m + ui

N∑
m=0

Dim(hu)m + (hu)i
N∑
m=0

Dim(u)m
)

+ ghi

N∑
m=0

Dimhm −
δiN
ωN

[(
hu2 + g

2h
2
)]

N
+ δi0
ω0

[(
hu2 + g

2h
2
)]

0
.

(5.26)

Since the source term and remaining surface terms are identical in the flux differencing
formulation, we have shown that the flux differencing scheme with numerical two-point
flux as in (5.22) is equivalent to a direct strong form DG discretization of the split form
shallow water equations as in (5.7). �
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We have derived a conservative, well-balanced discontinuous Galerkin scheme for the
one dimensional shallow water equations that is entropy conservative in a semi-discrete
sense. We summarize the scheme and its key properties in the following Theorem.

Theorem 2 (ECDGSEM - 1D). The semi-discrete strong form DG approximation to the
one dimensional split form shallow water equations (5.4) in flux differencing formulation
is given by equations

J ~Wt + ~Lξ = ~S (5.27)
with spatial operator

(
~Lξ
)
i

= 1
ωi

(
δiN

[
~F ∗,ec

]
N
− δi0

[
~F ∗,ec

]
0

)
+

N∑
m=0

D̃im
~F#

(i,m), (5.28)

where the entropy conservative two-point flux in the volume integral is defined by (5.22).
The numerical interface flux is given by

~F ∗,ec( ~W+, ~W−) :=

 {{h}} {{u}}
{{h}} {{u}}2 + g

2
{{
h2}}

 . (5.29)

The source term of the momentum equation is discretized by

(s2)i = g hi

N∑
m=0

Dimbm −
g

2
δi0
ωi

[{{h}} JbK]0 + g

2
δiN
ωi

[{{h}} JbK]N . (5.30)

The scheme described above is called the ECDGSEM and has the following properties:

12.1 Discrete conservation of the mass and discrete conservation of the momentum if
the bottom topography is constant.

12.2 Discrete conservation of the total energy, which is an entropy function for the
shallow water equations. Hence it fulfills the discrete entropy equality (2.52).

12.3 Discrete well-balanced property for arbitrary bottom topographies as long as any
discontinuities align with element interfaces.

Proof.

Proof of Part 12.1: The conservation of water height follows immediately from the
conservative flux differencing form of the scheme. As long as the bottom topography is
constant, the source term is exactly zero and the scheme is conservative by the same
argument.

Proof of Part 12.2: The entropy conservation was proven in Lemma 10 for the DG
scheme based on the split form with the entropy conserving numerical flux. The proposed
flux differencing scheme is equivalent to the split form DG discretization as proven in
Lemma 12.
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Proof of Part 12.3: In Lemma 11 we have shown that the equivalent split form DG is
well-balanced.

�

5.2. ECDGSEM in two dimensions
Now that we have demonstrated the development of the entropy conservative discon-
tinuous Galerkin method for the one dimensional shallow water equations, we proceed
to address the general two dimensional case. The major difference and difficulty lies in
the increased geometric complexity on possibly curved meshes. The two dimensional
mapping from physical space to the reference element leads to four distinct metric terms
and the Jacobian at each node. As discussed in Section 3.2.2, the metric terms are
approximated by polynomials from the same space as the conservative variables. In
consequence, the contravariant fluxes (3.52) potentially increase the aliasing error of
the numerical quadrature. To mitigate this effect, we introduce an additional geometric
split form. This comes at the cost of computational complexity, as the split form shallow
water equations with metric term splitting include many distinct terms, each requiring
an individual volume integral computation if discretized directly.
Following the same steps as in one dimension, we first introduce a split form of the

shallow water equations. Then, we show that a direct DGSEM discretization of this
system is entropy conservative and well-balanced if appropriate numerical fluxes are
chosen on the interfaces. The entropy conservative numerical fluxes are found by fol-
lowing the ideas of Tadmor and Fjordholm [233, 235, 69]. We, again, find an equivalent
flux differencing formulation to prove that the method is conservative and to make it
computationally viable.
The first step in the derivation of the entropy conservative method is to find the

specific split form of the 2D shallow water equations (2.34) that we want to use as the
basis of our scheme. Since we are interested in de-aliasing the metric terms as well, we
immediately consider the (continuous) equations in reference space, which are found to
be

J ~wt + ~̃fξ + ~̃gη = ~̃s (5.31)

with contravariant fluxes

~̃f =

 yηhu− xηhv
yηhu

2 + 1
2gyηh

2 − xηhuv
yηhuv − xηhv2 − 1

2gxηh
2

 , ~̃g =

−yξhu
2 − 1

2gyξh
2 + xξhuv

−yξhu2 − 1
2gyξh

2 + xξhuv

−yξhuv + xξhv
2 + 1

2gxξh
2

 , (5.32)

and curvilinear source term

~̃s = −gh


0

(yηb)ξ − (yξb)η
(−xηb)ξ + (xξb)η

 . (5.33)

67



CHAPTER 5. ENTROPY STABLE DGSEM

We are interested in deriving a split form of these equations, such that a DGSEM
discretization of that split form is entropy conservative and well-balanced. Contrary to
the one dimensional case, we now reformulate the continuity equation in split form as
well to introduce a geometric splitting in the metric terms. We derive the split forms of
each equation separately and sort terms according to the metric terms. The split form
continuity equation is only in split form with regards to the metric terms and reads

J ht + 1
2
[
(yηhu)ξ + hu (yη)ξ + yη (hu)ξ

]
− 1

2
[
(xηhv)ξ + xη (hv)ξ + hv (xη)ξ

]
− 1

2
[
(yξhu)η + yξ(hu)η + hu(yξ)η

]
+ 1

2
[
(xξhv)η + xξ(hv)η + hv(xξ)η

]
= 0.

(5.34)

To find the split form of the momentum equations we use a similar strategy as in one
dimension. Again, we choose a different splitting for the pressure term g

2h
2 and the

velocity terms hu2, hv2 and huv. The physical quantities of the pressure term are split
as before, but we introduce an additional metric term splitting, e.g.,

g

2(yηh2)ξ = g

2h ((yηh)ξ + yηhξ) . (5.35)

The split form representations of the velocity terms are also similar to the one dimen-
sional variant. The only difference is that each of the terms receives an additional
geometric splitting, e.g.,

(yηhu2)ξ = 1
4

[(
yηhu

2
)
ξ

+ yη
(
hu2

)
ξ

+ hu2 (yη)ξ + hu (yηu)ξ

+yηu (hu)ξ + u (yηhu)ξ + yηhu (u)ξ
]
.

(5.36)

Applying similar split formulations to the other velocity terms hv2 and huv as well as
for the other metric terms leads to a full split formulation of the hu momentum equation

J (hu)t + 1
4

[(
yηhu

2
)
ξ

+ yη
(
hu2

)
ξ

+ hu2 (yη)ξ + hu (yηu)ξ + yηu (hu)ξ + u (yηhu)ξ + yηhu (u)ξ
]

+ 1
2g
[
h (yηh)ξ + yηh (h)ξ

]
− 1

4
[
(xηhuv)ξ + xη (huv)ξ + huv (xη)ξ + hv (xηu)ξ + xηu (hv)ξ + u (xηhv)ξ + xηhv (u)ξ

]
− 1

4

[(
yξhu

2
)
η

+ yξ
(
hu2

)
η

+ hu2 (yξ)η + hu (yξu)η + yξu (hu)η + u (yξhu)η + yξhu (u)η
]

− 1
2g
[
h (yξh)η + yξh (h)η

]
+ 1

4
[
(xξhuv)η + xξ (huv)η + huv (xξ)η + hv (xξu)η + xξu (hv)η + u (xξhv)η + xξhv (u)η

]
= s̃2.

(5.37)
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The split form of the hv momentum equation is found analogously,

J (hv)t + 1
4
[
(yηhuv)ξ + yη (huv)ξ + huv (yη)ξ + hu (yηv)ξ + yηv (hu)ξ + v (yηhu)ξ + yηhu (v)ξ

]
− 1

4

[(
xηhv

2
)
ξ

+ xη
(
hv2

)
ξ

+ hv2 (xη)ξ + hv (xηv)ξ + xηv (hv)ξ + v (xηhv)ξ + xηhv (v)ξ
]

− 1
2g
[
h (xηh)ξ + xηh (h)ξ

]
− 1

4
[
(yξhuv)η + yξ (huv)η + huv (yξ)η + hu (yξv)η + yξv (hu)η + v (yξhu)η + yξhu

2 (v)η
]

+ 1
4

[(
xξhv

2
)
η

+ xξ
(
hv2

)
η

+ hv2 (xξ)η + hv (xξv)η + xξv (hv)η + v (xξhv)η + xξhv (v)η
]

+ 1
2g
[
h (xξh)η + xξh (h)η

]
= s̃3.

(5.38)

We use a geometric splitting for the source terms in (5.37) and (5.38), as well. This
helps with de-aliasing but is also necessary for the well-balanced property: The pressure
term and the source term must both have the same geometric splitting. The split form
source terms are

s̃2 = −gh
[
(yηb)ξ − (yξb)η

]
= −1

2gh
[
(yηb)ξ + yηbξ + b (yη)ξ − (yξb)η − yξ (b)η − b (yξ)η

]
= −1

2gh
[
(yηb)ξ + yηbξ − (yξb)η − yξ (b)η

]
,

s̃3 = −1
2gh

[
− (xηb)ξ − xηbξ + (xξb)η + xξ (b)η

]
,

(5.39)

where we assume that the metric terms are sufficiently smooth such that

(yη)ξ − (yξ)η = 0,
− (xη)ξ + (xξ)η = 0.

(5.40)

This is only valid discretely if the metric identities (3.61) are fulfilled. The split form
shallow water equations given by (5.42), (5.46) and (5.47) and the split form of the
source term (5.39) are the basis for the discretization. To make the discretized equations
slightly more readable we will use the compact expressions for split form discretizations
introduced in Definition 2.
The source term discretization is extended by interface penalty to allow for discontin-

uous bottom topographies at element interfaces. This specific form matches the rest of
the discretization such that the scheme remains entropy conservative in the case of such
discontinuities. Together with the usual DGSEM discretization with LGL nodes for the
volume terms, the discrete version of the source term in split form (5.39) is then given
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by
(s̃2)ij :=− ghij

(
(D ◦ yη ◦ b)ξij − (D ◦ yξ ◦ b)ηij

)
− δiN

ωi

[
g

2yη {{h}} JbK
]
Nj
− δi0
ωi

[
g

2yη {{h}} JbK
]

0j

+ δNj
ωj

[
g

2yξ {{h}} JbK
]
iN

+ δ0j
ωj

[
g

2yξ {{h}} JbK
]
i0
,

(s̃3)ij :=− ghij
(
− (D ◦ xη ◦ b)ξij + (D ◦ xξ ◦ b)ηij

)
+ δiN

ωi

[
g

2xη {{h}} JbK
]
Nj

+ δi0
ωi

[
g

2xη {{h}} JbK
]

0j

− δNj
ωj

[
g

2xξ {{h}} JbK
]
iN
− δ0j
ωj

[
g

2xξ {{h}} JbK
]
i0
.

(5.41)

We follow the steps described in Section 3.2.2 to find the semi-discrete form of the
continuity equation (5.34)

Jij(ht)ij =− (D ◦ yη ◦ hu)ξij + (D ◦ xη ◦ hv)ξij + (D ◦ yξ ◦ hu)ηij − (D ◦ xξ ◦ hv)ηij

− δiN
ωi

(
[yη (F ∗1 − hu)]Nj − [xη (G∗1 − hv)]Nj

)
+ δi0
ωi

(
[yη (F ∗1 − hu)]0j − [xη (G∗1 − hv)]0j

)
+ δNj

ωj

(
[yξ (F ∗1 − hu)]iN − [xξ (G∗1 − hv)]iN

)
− δ0j
ωj

(
[yξ (F ∗1 − hu)]i0 − [xξ (G∗1 − hv)]i0

)
.

(5.42)

Similarly we find the semi-discrete strong form DG discretizations of the momentum
equations. To write the pressure term in compact form, it is necessary that the metric
identities hold. We see this by considering the discretization of the split form pressure
terms, e.g. 1

2g
[
h (yηh)ξ + yηh (h)ξ

]
, from (5.37) and rewriting as

g

2hij
(

N∑
m=0

Dim (yη)mj hmj + (yη)ij
N∑
m=0

Dimhmj

)

=g

2hij (D ◦ yη ◦ h)ξij −
g

2h
2
ij

(
N∑
m=0

Dim (yη)mj

)
.

(5.43)

Following the same steps for −1
2g
[
h (yξh)η + yξh (h)η

]
, we find

− g

2hij
(

N∑
m=0

Djm (yξ)im him + (yξ)ij
N∑
m=0

Djmhim

)

=− g

2hij (D ◦ yξ ◦ h)ηij + g

2h
2
ij

(
N∑
m=0

Djm (yξ)im

)
.

(5.44)
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We consider the final terms in (5.43) and (5.44) together to find

−g2h
2
ij

(
N∑
m=0

Dim (yη)mj

)
+ g

2h
2
ij

(
N∑
m=0

Djm (yξ)im

)
= 0, (5.45)

due to the metric identities (3.63). Thus, we can use the compact split form notation
(4.62) to write the momentum equations as

Jij ((hu)t)ij =− (D ◦ yη ◦ hu ◦ u)ξij + (D ◦ xη ◦ hv ◦ u)ξij − ghij
(
(D ◦ yη ◦ h)ξij + (D ◦ yη ◦ b)ξij

)
+ (D ◦ yξ ◦ hu ◦ u)ηij − (D ◦ xξ ◦ hv ◦ u)ηij + ghij

(
(D ◦ yξ ◦ h)ηij + (D ◦ yξ ◦ b)ηij

)
− δiN

ωi

([
yη

(
F ∗2 − hu2 − g

2h
2
)]

Nj
− [xη (G∗2 − huv)]Nj + g

2 [yη {{h}} JbK]Nj

)

+ δi0
ωi

([
yη

(
F ∗2 − hu2 − g

2h
2
)]

0j
− [xη (G∗2 − huv)]0j −

g

2 [yη {{h}} JbK]0j

)

+ δNj
ωj

([
yξ

(
F ∗2 − hu2 − g

2h
2
)]

iN
− [xξ (G∗2 − huv)]iN + g

2 [yξ {{h}} JbK]iN
)

− δ0j
ωj

([
yξ

(
F ∗2 − hu2 − g

2h
2
)]

i0
− [xξ (G∗2 − huv)]i0 −

g

2 [yξ {{h}} JbK]i0
)
,

(5.46)

and

Jij ((hv)t)ij =− (D ◦ yη ◦ hu ◦ v)ξij + (D ◦ xη ◦ hv ◦ v)ξij + ghij (D ◦ xη ◦ h)ξij + ghij (D ◦ xη ◦ b)ξij
+ (D ◦ yξ ◦ hu ◦ v)ηij − (D ◦ xξ ◦ hv ◦ v)ηij − ghij (D ◦ xξ ◦ h)ηij − ghij (D ◦ xξ ◦ b)ηij

− δiN
ωi

(
[yη (F ∗3 − huv)]Nj −

[
xη

(
G∗3 − hv2 − g

2h
2
)]

Nj
−
[
g

2xη {{h}} JbK
]
Nj

)

+ δi0
ωi

(
[yη (F ∗3 − huv)]0j −

[
xη

(
G∗3 − hv2 − g

2h
2
)]

0j
+
[
g

2xη {{h}} JbK
]

0j

)

+ δNj
ωj

(
[yξ (F ∗3 − huv)]iN −

[
xξ

(
G∗3 − hv2 − g

2h
2
)]

iN
−
[
g

2xξ {{h}} JbK
]
iN

)
− δ0j
ωj

(
[yξ (F ∗3 − huv)]i0 −

[
xξ

(
G∗3 − hv2 − g

2h
2
)]

i0
+
[
g

2xξ {{h}} JbK
]
i0

)
.

(5.47)

To make the discretizations (5.42), (5.46) and (5.47) complete, we need to define the
numerical interface fluxes ~F ∗ and ~G∗. An entropy conservative numerical flux can be
derived from the two dimensional version of the entropy condition (3.82) by Tadmor
[236], which is given by

〈J~q K, ~̃F ∗ + ~̃G∗〉 = JΨK + 〈{{~q}} , ~̃S 〉. (5.48)

We note that the interface part of the source term discretization and the numerical
flux must be chosen as a matching pair in order for (5.48) to hold. Numerical fluxes
that satisfy condition (5.48) for the source term discretization (5.41) are based on the
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following entropy conservative numerical fluxes,

~F ∗,ec( ~W+, ~W−) :=


{{h}} {{u}}

{{h}} {{u}}2 + g
2
{{
h2}}

{{h}} {{u}} {{v}}

 ,

~G∗,ec( ~W+, ~W−) :=


{{h}} {{v}}

{{h}} {{u}} {{v}}
{{h}} {{v}}2 + g

2
{{
h2}}

 ,
(5.49)

which are combined to find the entropy conservative contravariant numerical fluxes:
~̃F ∗,ec = yη ~F

∗,ec − xη ~G∗,ec

~̃G∗,ec = −yξ ~F ∗,ec + xξ ~G
∗,ec.

(5.50)

We will prove that the DG discretization of the split form shallow water equations given
in (5.42), (5.46) and (5.47) with source term discretization (5.41) and numerical inter-
face fluxes (5.49) is conservative, well-balanced and entropy conservative. The general
conservation property of the scheme follows immediately from the equivalent flux differ-
encing formulation we will derive later. We start by showing that the scheme is entropy
conservative in the following Lemma.
Lemma 13 (Entropy conservation of split form DG). The strong form discontinuous
Galerkin approximation of the two dimensional split form shallow water equations pre-
sented in (5.42), (5.46) and (5.47) with source term discretization (5.41) and numerical
interface fluxes (5.49) is entropy conservative.
Proof. To rigorously show that the scheme is entropy conservative we derive the discrete
entropy equation by contracting the discrete system with the entropy variables ~q =(
g(h+ b)− 1

2(u2 + v2), u, v
)
. Assuming continuity in time, this leads to a semi-discrete

equation for the entropy e = g
2h

2 + ghb + 1
2h(u2 + v2), as proven in Lemma 2. As the

full discrete entropy equation is quite cumbersome to work with, we focus our analysis
on one individual metric term. The steps below work analogously for each of the four
metric terms and the complete proof can be found in [253]. The volume terms factoring
the metric term yη from the discrete equations (5.42), (5.46) and (5.47) contracted by
the entropy variables are(

g(hij + bij)−
1
2u

2
ij −

1
2v

2
ij

)
(D ◦ yη ◦ hu)ξij

+ uij (D ◦ yη ◦ hu ◦ u)ξij + g

2uijhij
(
(D ◦ yη ◦ h)ξij + (D ◦ yη ◦ b)ξij

)
+ vij (D ◦ yη ◦ hu ◦ v)ξij .

(5.51)

We expand the split form discretizations in (5.51) according to Definition 2 and rearrange
terms such that we find the discrete entropy flux derivative Fξ with

F = 1
2h(u3 + uv2) + ghu(h+ b),
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as well as eight discrete product rule error terms and one term that includes the discrete
derivative of the metric term yη:

N∑
m=0

Dim

(
Fmj (yη)mj

)
+ E

(
u, hu2yη

)
+ E

(
hu2, uyη

)
+ E (v, huvyη)

+ E (huv, vyη) + E (h, huyη) + E (hyη, hu) + E (b, huyη) + E (byη, hu)

+ g

2hijuij (bij + hij)
N∑
m=0

Dim (yη)mj .

(5.52)

For completeness, we list the exact form of the abbreviated non-linear discrete product
rule error terms from (5.52)

E
(
u, hu2yη

)
:= 1

4

(
−

N∑
m=0

Dim

(
hmju

3
mj (yη)mj

)
+ uij

N∑
m=0

Dim

(
hmju

2
mj (yη)mj

)
+ hiju

2
ij (yη)ij

N∑
m=0

Dim (umj)
)
,

E
(
hu2, uyη

)
:= 1

4

(
−

N∑
m=0

Dim

(
hmju

3
mj (yη)mj

)
+ (yη)ij uij

N∑
m=0

Dim

(
hmju

2
mj

)
+ hiju

2
ij

N∑
m=0

Dim

(
(yη)mj umj

))
,

E (v, huvyη) := 1
4

(
−

N∑
m=0

Dim

(
hmjumjv

2
mj (yη)mj

)
+ vij

N∑
m=0

Dim

(
hmjumjvmj (yη)mj

)
+ hijuijvij (yη)ij

N∑
m=0

Dim (vmj)
)
,

E (yηv, huv) := 1
4

(
−

N∑
m=0

Dim

(
hmjumjv

2
mj (yη)mj

)
+ (yη)ij vij

N∑
m=0

Dim (hmjumjvmj) + hijuijvij

N∑
m=0

Dim

(
(yη)mj vmj

))
,

E (h, huyη) := g

2

(
−

N∑
m=0

Dim

(
hmjumjv

2
mj (yη)mj

)
+ hij

N∑
m=0

Dim

(
hmjumj (yη)mj

)
+ hijuij (yη)ij

N∑
m=0

Dim (hmj)
)
,

E (hyη, hu) := g

2

(
−

N∑
m=0

Dim

(
h2
mjumj (yη)mj

)
+ (yη)ij hij

N∑
m=0

Dim (hmjumj) + hijuij

N∑
m=0

Dim

(
(yη)mj hmj

))
,

E (b, huyη) := g

2

(
−

N∑
m=0

Dim

(
hmjumjv

2
mj (yη)mj

)
+ bij

N∑
m=0

Dim

(
hmjumj (yη)mj

)
+ hijuij (yη)ij

N∑
m=0

Dim (bmj)
)
,

E (byη, hu) := g

2

(
−

N∑
m=0

Dim

(
h2
mjumj (yη)mj

)
+ (yη)ij bij

N∑
m=0

Dim (hmjumj) + hijuij

N∑
m=0

Dim

(
(yη)mj bmj

))
.

(5.53)

The discrete product rule error terms in (5.52) do not destroy conservation, as we know
from Lemma 4. Thus, we only need to make an argument for the remaining discrete
derivative of the metric term. If we follow analogous steps for the volume terms corre-
sponding to the metric term yξ we find very similar expressions. Combining the terms
with the discrete derivative of the metric terms we see that they cancel as long as the
discrete metric identities (3.63) hold:

g

2hijuij (bij + hij)
(

N∑
m=0

Dim (yη)mj −
N∑
m=0

Djm (yξ)im

)
= 0. (5.54)

The same argument must be made for similar terms that cross-cancel between the xη
and xξ terms. We use the SBP property

Dij = δiN
ωN
− δi0
ω0
− D̂ij (5.55)

to move terms from the entropy flux derivative to the surface. The discrete integral of
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remaining flux derivative term is zero due to the consistency of the D Matrix,

−
N∑

i,j=0
ωiωj

N∑
m=0

D̂im

(
Fmj (yη)mj

)
=

N∑
i,j=0

ωj

N∑
m=0

Dmiωm
(
Fmj (yη)mj

)

=
N∑

m,j=0
ωjωm

(
Fmj (yη)mj

) N∑
i=0

Dmi = 0.
(5.56)

Thus, we conclude that the volume terms of the discrete entropy equation are in fact
conservative. We collect the surface terms factoring yη from (5.52) and the new terms
due to the swap to conservative form to find

yη-interface terms for a single element

=− δiN
ωi

[(
g(h+ b)− 1

2u
2 − 1

2v
2
)

(yη ({{h}} {{u}} − hu))

+ u

(
yη

(
{{h}} {{u}}2 + g

2
{{
h2
}}
− hu2 − g

2h
2 − g

2 {{h}} JbK
))

+ v (yη ({{h}} {{u}} {{v}} − huv))

+1
2h(u3 + uv2) + ghu(h+ b)

]
Nj

+ δi0
ωi

[(
g(h+ b)− 1

2u
2 − 1

2v
2
)

(yη ({{h}} {{u}} − hu))

+ u

(
yη

(
{{h}} {{u}}2 + g

2
{{
h2
}}
− hu2 − g

2h
2 − g

2 {{h}} JbK
))

+ v (yη ({{h}} {{u}} {{v}} − huv))

+1
2h(u3 + uv2) + ghu(h+ b)

]
0j
.

(5.57)

We simplify the terms at an arbitrary one of the two interfaces in (5.57) and factor out
the scaling by metric term and integration weight yη

ωi
. We also drop the outer index that

indicates the interface node, to find

yη-terms at one interface node of a single element

=
(
g(h+ b)− 1

2u
2 − 1

2v
2
)
{{h}} {{u}}+ u {{h}} {{u}}2

+ g

2u
{{
h2
}}

+ v {{h}} {{u}} {{v}} − g

2h
2u− g

2u {{h}} JbK.

(5.58)

The scheme is entropy conservative if the total interface contribution at any fixed inter-
face node is zero. The metric terms on the interface are identical for two neighbouring
elements but with opposite sign, since the normals are defined outward pointing. This
reversed sign leads to jump terms, when both local contributions are added. As explained
in the one dimensional proof, the jump in bottom topography JbK is defined as outward
pointing for each element. Thus the sign of the jump is reversed for each element and we
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obtain an average of the velocity, {{u}}, when summing g
2u {{h}} JbK from both elements.

The total contribution with metric term yη at a fixed interface node is given by

Total interface contribution with metric term yη at a single interface node

=g(JhK + JbK) {{h}} {{u}} − 1
2Ju2K {{h}} {{u}} − 1

2Jv2K {{h}} {{u}}

+ JuK {{h}} {{u}}2 + g

2JuK
{{
h2
}}

+ JvK {{h}} {{u}} {{v}}

− g

2Jh2uK− g {{h}} {{u}} JbK.

(5.59)

From the rules for jumps and averages we know 1
2Ja2K = {{a}} JaK and can simplify (5.59)

further to find

Remaining terms with metric term yη at a single interface node

=g {{h}} {{u}} JhK + g

2
({{

h2
}}

JuK− Jh2uK
)
.

(5.60)

Furthermore, we can apply the rules to the more complex jump terms to see
g

2Jh2uK = g

2 {{u}} Jh2K + g

2
{{
h2
}}

JuK = g {{h}} {{u}} JhK + g

2
{{
h2
}}

JuK. (5.61)

Thus, all the terms in (5.60) cancel. We have shown that all the terms associated with
the metric term yη cancel. Similar steps hold for the other metric terms as well and we
conclude that the discrete entropy equation is fulfilled. �

The next step is to prove that the scheme is well-balanced. We show this in the
following Lemma.

Lemma 14 (Well-balanced property of two dimensional split form DG). The strong
form discontinuous Galerkin approximation of the two dimensional split form shallow
water equations presented in (5.42), (5.46) and (5.47) with source term discretization
(5.41) and numerical interface fluxes (5.49) is well-balanced.

Proof. We need to verify that the lake at rest initial condition is preserved for all time.
To do so, we examine the discretized equations in expanded split form, (5.42), (5.46)
and (5.47). The specific source term discretization given in (5.41) is a key factor for
this proof. Inserting the lake at rest initial condition (2.37) into the continuity equation
(5.42), we see that all the terms vanish immediately as they all factor velocities which
are zero. Without loss of generality, we examine the hu momentum equation. The hv
equation follows analogously. We insert the lake at rest initial conditions into (5.46) to
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find

Jij ((hu)t)ij + g

2hij
N∑
m=0

Dim (yη)mj (hmj + bmj) + g

2 (yη)ij hij
N∑
m=0

Dim(hmj + bmj)

− g

2hij
N∑
m=0

Djm (yξ)im (him + bim)− g

2 (yξ)ij hij
N∑
m=0

Dmj(him + bim)

=− δiN
ωi

g

2

([
yη
({{

h2
}}
− h2 + {{h}} JbK

)]
Nj

)
+ δi0
ωi

g

2

([
yη
({{

h2
}}
− h2 + {{h}} JbK

)]
0j

)
+ δNj

ωj

g

2
([
yξ
({{

h2
}}
− h2 + {{h}} JbK

)]
iN

)
− δ0j
ωj

g

2
([
yξ
({{

h2
}}
− h2 + {{h}} JbK

)]
i0

)
.

(5.62)

The discrete derivatives of the constant total water height, h+b = Hconst, are zero, since
D is a consistent derivative operator. Also, we observe

g

2hij
N∑
m=0

Dim (yη)mj (hmj + bmj)−
g

2hij
N∑
m=0

Djm (yξ)im (him + bim)

=g

2hij(Hconst)
(

N∑
m=0

Dim (yη)mj −
N∑
m=0

Djm (yξ)im

)
=0,

(5.63)

due to the metric identities. Since we allow discontinuities in the bottom topography at
element interfaces we must account for the jump in water height and we cannot guarantee
that

{{
h2}} = h2. Instead, we have at each interface{{

h2
}}
− h2 = h2

i + h2
o

2 − h2
i = h2

o − h2
i

2 = 1
2Jh2K = {{h}} JhK, (5.64)

where hi denotes the inner and ho the outer value. For each interface term in (5.62) we
thus find {{

h2
}}
− h2 + {{h}} JbK = {{h}} Jh+ bK = 0. (5.65)

Analogous steps are valid for the hv equation. Thus, the scheme preserves the lake at
rest for all time and is well-balanced. �

As we have established in the last chapter, split form discretizations can be written
in the flux differencing form with appropriate numerical volume fluxes. Then, the flux
differencing formulations given in (4.45) provide a compact notation of the strong form
DG discretization of the split form equations on curvilinear meshes and previous results
of Fisher and Carpenter for conservation and entropy conservation apply [65]. Also, we
can avoid the calculation of the many individual volume integrals in the direct LGL-
DGSEM discretization given by (5.42), (5.46) and (5.47). We present the equivalent flux
differencing formulation in Lemma 15.
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Lemma 15 (Equivalent Discrete Split Form). If the following curvilinear numerical
volume fluxes are used in the DGSEM in flux differencing formulation from Theorem 1,

~̃F(i,m),j := ~F#( ~Wi,j , ~Wm,j) {{yη}}(i,m),j − ~G#( ~Wi,j , ~Wm,j) {{xη}}(i,m),j ,

~̃Gi,(m,j) := −~F#( ~Wi,j , ~Wi,m) {{yξ}}i,(j,m) + ~G#( ~Wi,j , ~Wi,m) {{xξ}}i,(j,m) ,
(5.66)

with the numerical two-point fluxes defined as

~F#( ~Wi,j , ~Wm,j) :=


{{hu}}(i,m),j

{{hu}}(i,m),j {{u}}(i,m),j + g {{h}}2(i,m),j −
1
2g
{{
h2}}

(i,m),j
{{hu}}(i,m),j {{v}}(i,m),j

 ,

~G#( ~Wi,j , ~Wi,m) :=


{{hv}}i,(m,j)

{{hv}}i,(m,j) {{u}}i,(m,j)
{{hv}}i,(m,j) {{v}}i,(m,j) + g {{h}}2i,(m,j) −

1
2g
{{
h2}}

i,(m,j)

 ,
(5.67)

along with numerical surface fluxes (5.49) and source term discretization (5.41), then it
is equivalent to the direct strong form DGSEM discretization of the split form shallow
water equations (5.34), (5.37) and (5.38) as given in (5.42), (5.46) and (5.47).

Proof. We examine the spatial operators of the flux differencing formulation, e.g. the ξ
operator (

~Lξ
)
ij

= 1
ωi

(
δiN

[
~̃F ∗
]
Nj
− δi0

[
~̃F ∗
]

0j

)
+

N∑
m=0

D̃im
~̃F(i,m),j . (5.68)

With the definition D̃ = 2D + S we split off the strong form surface terms based on
solely interior data. On the surface, i.e. for i = 0 or i = N , the numerical two-point
fluxes are identical to the physical contravariant fluxes. Thus, we find

N∑
m=0

D̃im
~̃F(i,m),j =

N∑
m=0

2Dim
~̃F(i,m),j −

1
ωi

(
δiN

[
~̃F(i,N),j

]
Nj

+ δi0

[
~̃F(i,0),j

]
0j

)

=
N∑
m=0

2Dim
~̃F(i,m),j −

1
ωi

(
δiN

~̃FNj + δi0
~̃F0j

)
.

(5.69)

Thus, we can recover the strong form DGSEM surface terms

(
~Lξ
)
ij

= 1
ωi

(
δiN

[
~̃F ∗ − ~̃F

]
Nj
− δi0

[
~̃F ∗ − ~̃F

]
0j

)
+

N∑
m=0

2Dim
~̃F(i,m),j . (5.70)

The same argument holds for the j = 0 and j = N interfaces. It is is left to show
that the remaining volume terms are equivalent to the split form DG volume terms. We
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extend the flux differencing volume integral into full split forms for all three equations
by using the rules from Lemma 9. Starting with the continuity equation we see

N∑
m=0

2Dim

(
F̃1
)

(i,m),j
+

N∑
m=0

Djm

(
G̃1
)
i,(m,j)

=
N∑
m=0

2Dim

(
{{yη}}(i,m),j {{hu}}(i,m),j − {{xη}}(i,m),j {{hv}}(i,m),j

)

+
N∑
m=0

2Djm

(
−{{yξ}}i,(j,m) {{hu}}i,(j,m) + {{xξ}}i,(j,m) {{hv}}i,(j,m)

)
= (D ◦ yη ◦ hu)ξij − (D ◦ xη ◦ hv)ξij − (D ◦ yξ ◦ hu)ηij + (D ◦ xξ ◦ hv)ηij .

(5.71)

These are exactly the volume terms from the DG discretization of the split form conti-
nuity equation (5.42). We continue with the straightforward expansion of terms for the
momentum equations. In case of the the hu equation, we find

N∑
m=0

2Dim

(
F̃2
)

(i,m),j
+

N∑
m=0

2Djm

(
G̃2
)
i,(m,j)

= (D ◦ yη ◦ hu ◦ u)ξij − (D ◦ xη ◦ hv ◦ u)ξij + g (D ◦ yη ◦ h ◦ h)ξij −
g

2
(
D ◦ yη ◦ h2

)ξ
ij

− (D ◦ yξ ◦ hu ◦ u)ηij + (D ◦ xξ ◦ hv ◦ u)ηij − g (D ◦ yξ ◦ h ◦ h)ηij + g

2
(
D ◦ yξ ◦ h2

)η
ij
,

(5.72)

whereas the extension of the hv equation is given by

N∑
m=0

2Dim

(
F̃3
)

(i,m),j
+

N∑
m=0

2Djm

(
G̃3
)
i,(m,j)

= (D ◦ yη ◦ hu ◦ v)ξij − (D ◦ xη ◦ hv ◦ v)ξij − g (D ◦ xη ◦ h ◦ h)ξij + g

2
(
D ◦ xη ◦ h2

)ξ
ij

− (D ◦ yξ ◦ hu ◦ v)ηij + (D ◦ xξ ◦ hv ◦ v)ηij + g (D ◦ xξ ◦ h ◦ h)ηij −
g

2
(
D ◦ xξ ◦ h2

)η
ij
.

(5.73)

These expansions are not immediately identical to direct DG split form discretizations
(5.46) and (5.47). Similar to the proof in one dimension in Lemma 12, specifically in
(5.25), it is still left to show that the pressure terms are identical.

g (D ◦ yη ◦ h ◦ h)ξij −
g

2
(
D ◦ yη ◦ h2

)ξ
ij
− g (D ◦ yξ ◦ h ◦ h)ηij + g

2
(
D ◦ ξ ◦ h2

)η
ij

!= g

2hij (D ◦ yη ◦ h)ξij −
g

2hij (D ◦ yξ ◦ h)ηij
(5.74)

We start with the yη terms and extend the notations according to (4.62) and (4.63) to
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find

g (D ◦ yη ◦ h ◦ h)ξij −
g

2
(
D ◦ yη ◦ h2

)ξ
ij

=g

4

(
N∑
m=0

Dim (yη)mj h
2
mj + (yη)ij

N∑
m=0

Dimh
2
mj + 2hij

N∑
m=0

Dim (yη)im hmj

+h2
ij

N∑
m=0

Dim (yη)mj + 2 (yη)ij hij
N∑
m=0

Dimhmj

)

− g

4

(
N∑
m=0

Dim (yη)im h
2
mj + h2

ij

N∑
m=0

Dim (yη)mj + (yη)ij
N∑
m=0

Dimh
2
mj

)

=g

2hij
(

N∑
m=0

Dim (yη)mj hmj + (yη)ij
N∑
m=0

Dimhmj

)

=g

2hij (D ◦ yη ◦ h)ξij −
g

2h
2
ij

(
N∑
m=0

Dim (yη)mj

)
.

(5.75)

Analyzing the pressure terms for yξ we find a similar extra term g
2h

2
ij

(∑N
m=0 Djm (yξ)im

)
.

Together, these terms cancel due to the metric identities, as we have seen before in (5.45).
The same argument can be made for the xξ and xη pressure terms. We conclude that the
equations in flux differencing formulation are equivalent to the straightforward strong
form DGSEM discretization of the split form equations. �

We have seen in Lemma 15 that the specific choice of two-point fluxes given by (5.67)
in the flux differencing scheme leads to an equivalency between the scheme in flux differ-
encing form and a direct DG discretization of the split form equations. We summarize
the full ECDGSEM and its properties in Theorem 3.

Theorem 3 (Curvilinear ECDGSEM). The semi-discrete DG approximation to the two
dimensional split form shallow water equations on curvilinear grids is given by

J ~Wt + ~Lξ + ~Lη = ~̃S (5.76)

with spatial operators

(
~Lξ
)
ij

= 1
ωi

(
δiN

[
~̃F ∗,ec

]
Nj
− δi0

[
~̃F ∗,ec

]
0j

)
+

N∑
m=0

D̃im
~̃F(i,m),j ,

(
~Lη
)
ij

= 1
ωj

(
δNj

[
~̃G∗,ec

]
iN
− δ0j

[
~̃G∗,ec

]
i0

)
+

N∑
m=0

D̃jm
~̃Gi,(m,j),

(5.77)

and curvilinear numerical volume fluxes

~̃F(i,m),j := ~F#( ~Wi,j , ~Wm,j) {{yη}}(i,m),j − ~G#( ~Wi,j , ~Wm,j) {{xη}}(i,m),j ,

~̃Gi,(m,j) := −~F#( ~Wi,j , ~Wi,m) {{yξ}}i,(j,m) + ~G#( ~Wi,j , ~Wi,m) {{xξ}}i,(j,m) ,
(5.78)
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where the entropy conserving numerical two-point fluxes are defined by

~F#( ~Wi,j , ~Wm,j) :=


{{hu}}(i,m),j

{{hu}}(i,m),j {{u}}(i,m),j + g {{h}}2(i,m),j −
1
2g
{{
h2}}

(i,m),j
{{hu}}(i,m),j {{v}}(i,m),j

 ,

~G#( ~Wi,j , ~Wi,m) :=


{{hv}}i,(m,j)

{{hv}}i,(m,j) {{u}}i,(m,j)
{{hv}}i,(m,j) {{v}}i,(m,j) + g {{h}}2i,(m,j) −

1
2g
{{
h2}}

i,(m,j)

 .
(5.79)

The numerical interface fluxes are given by

~̃F ∗,ec = yη ~F
∗,ec − xη ~G∗,ec.

~̃G∗,ec = −yξ ~F ∗,ec + xξ ~G
∗,ec,

(5.80)

and depend on the the entropy conserving fluxes in x and y direction given as

~F ∗,ec( ~W+, ~W−) :=


{{h}} {{u}}

{{h}} {{u}}2 + g
2
{{
h2}}

{{h}} {{u}} {{v}}

 ,

~G∗,ec( ~W+, ~W−) :=


{{h}} {{v}}

{{h}} {{u}} {{v}}
{{h}} {{v}}2 + g

2
{{
h2}}

 .
(5.81)

The source term is discretized by

(s̃2)ij :=− ghij
(
(D ◦ yη ◦ b)ξij − (D ◦ yξ ◦ b)ηij

)
− δiN

ωi

[
g

2yη {{h}} JbK
]
Nj
− δi0
ωi

[
g

2yη {{h}} JbK
]

0j

+ δNj
ωj

[
g

2yξ {{h}} JbK
]
iN

+ δ0j
ωj

[
g

2yξ {{h}} JbK
]
i0
,

(s̃3)ij :=− ghij
(
− (D ◦ xη ◦ b)ξij + (D ◦ xξ ◦ b)ηij

)
+ δiN

ωi

[
g

2xη {{h}} JbK
]
Nj

+ δi0
ωi

[
g

2xη {{h}} JbK
]

0j

− δNj
ωj

[
g

2xξ {{h}} JbK
]
iN
− δ0j
ωj

[
g

2xξ {{h}} JbK
]
i0
.

(5.82)

The scheme described above is called the ECDGSEM and has the following properties:

15.1 Discrete conservation of the mass and discrete conservation of the momentum if
the bottom topography is constant.
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15.2 Guaranteed conservation of the total discrete energy, which is an entropy func-
tion for the shallow water equations. Hence it fulfills the discrete entropy equality
(2.52).

15.3 Discrete well-balanced property for arbitrary bottom topographies.

Proof. We have shown in Lemma 15 that the presented flux differencing scheme is equiv-
alent to a discontinuous Galerkin discretization of the split form as given in (5.42), (5.46)
and (5.47). Thus, results from Lemma 13 for the entropy conservation and Lemma 14
for the well-balanced property apply. The discrete conservation of the numerical scheme
follows directly from the telescoping flux differencing form of the approximation [65]. �

Remark 3 (Metric identities). The proof of the entropy conservation property 3.2 requires
that the metric identities (3.61) hold discretely. Specifically, this is used in (5.52) to
cancel terms.
Remark 4 (Numerical Flux). The entropy conserving numerical flux on the interfaces is
not unique. If we used the entropy conserving two-point flux on the interfaces as well
and investigate the well-balanced property we find surface terms of the form

{{h}}2 − h2 + {{h}} JbK. (5.83)

In contrast to (5.64) we then observe

{{h}}2 − h2 = (hi + ho)2

4 − h2
i = h2

o + 2hiho − h2
i

4 − 1
2h

2
i

= 1
4Jh2K + 1

2hiJhK = 1
2 ({{h}}+ hi) JhK.

(5.84)

To cancel all the interface terms the source term discretization must then be chosen
accordingly with terms of the kind 1

2 ({{h}}+ hi) JbK.

5.3. Entropy stability
In the previous sections we have developed entropy conservative schemes for the one
dimensional (Theorem 2) and two dimensional (Theorem 3) shallow water equations.
These methods conserve the entropy in the semi-discrete system up to machine preci-
sion, apart from changes due to any boundary conditions. However, in the presence
of discontinuities (shocks), this is not a desirable behaviour and solutions of non-linear
PDEs may develop such shocks in finite time even for smooth initial data. It is neces-
sary to replace the entropy conservation law (2.52) by an entropy inequality (2.53) in
the presence of shocks [233]. We accomplish this by adding numerical dissipation to the
entropy conservative numerical fluxes (5.80). We do so in a controlled way, proportional
to the jump in entropy variables, such that the entropy is guaranteed to be dissipated.
Then it is guaranteed that the discrete entropy inequality holds.
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We first note, that the physical fluxes in two dimensions

~f =

 hu

hu2 + 1
2gh

2

huv

 , ~g =

 hv

huv

hv2 + 1
2gh

2

 , (5.85)

have the associated flux Jacobians

Af = ~f~w =

 0 1 0
gh− u2 2u 0
−uv v u

 , (5.86)

and

Ag = ~g~w =

 0 0 1
−uv v u

gh− v2 0 2v

 . (5.87)

The eigenvalues of Af are λ1
f = u + c, λ2

f = u, λ3
f = u − c and the eigenvalues of Ag

similarly are λ1
g = v + c, λ2

g = v, λ3
g = v − c. In these expressions, the wave celerity is

denoted by c =
√
gh. The matrices of right eigenvectors of (5.86) and (5.87) are

Rf =

 1 0 1
u+ c 0 u− c
v 1 v

 , (5.88)

and

Rg =

 1 0 1
u 1 u

v + c 0 v − c

 , (5.89)

respectively.
We also need the entropy Jacobian matrix H = ~w~q, which is found to be

H = 1
g

1 u v
u gh+ u2 uv
v uv gh+ v2

 . (5.90)

We can relate the right eigenvectors to the entropy Jacobian with an appropriate scaling
[173]

H = (RT)(RT)T , (5.91)

with diagonal scaling matrix

T = diag(√s1,
√
s2,
√
s3). (5.92)

We define Z = T2 and have the identity in a new form

H = RZRT . (5.93)
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For the eigenvectors of Af , denoted Rf , we find

s1 = 1
2g , s2 = h, s3 = 1

2g . (5.94)

A straightforward calculation shows that the same scaling applies to the eigenvectors of
the flux Jacobian Ag as well.
We can now define the entropy stable numerical surface flux functions. We subtract

the dissipation terms required for dissipation in the x−direction

~F ∗,es = ~F ∗,ec − 1
2Rf

∣∣Λf

∣∣Z RT
f J ~q K, (5.95)

and the y−direction
~G∗,es = ~G∗,ec − 1

2Rg

∣∣Λg

∣∣Z RT
g J ~q K, (5.96)

where Λf and Λg are the diagonal matrices containing the eigenvalues computed above.
All these terms in (5.95) and (5.96) are evaluated as arithmetic averages at an element
interface. It is important that the dissipation terms are proportional to the jumps of the
entropy variables and not to the jump of the conserved quantities as, for example, in the
numerical Lax-Friedrichs flux (3.80). If we compute the discrete entropy equation by
contracting the scheme with the entropy variables, we obtain contributions of the form

−1
2 J ~q KTRf

∣∣Λf

∣∣Z RT
f J ~q K (5.97)

at each interface. These are guaranteed to be negative due to the positivity of the
matrix Rf

∣∣Λf

∣∣Z RT
f . Thus, this choice of dissipation ensures that entropy is decreased

when the jump in entropy variables across interfaces is large (e.g. shocks) and is nearly
preserved when the jumps are small for well resolved smooth solutions.

We present the entropy stable DGSEM and its properties in the following Theorem.

Theorem 4 (Curvilinear ESDGSEM). The semi-discrete split DG approximation to the
two dimensional shallow water equations on curvilinear grids

J ~Wt + ~Lξ + ~Lη = ~̃S, (5.98)

with (
~Lξ
)
ij

= 1
ωi

(
δiN

[
~̃F ∗,es

]
Nj
− δi0

[
~̃F ∗,es

]
0j

)
+

N∑
m=0

D̃im
~̃F(i,m),j ,

(
~Lη
)
ij

= 1
ωj

(
δNj

[
~̃G∗,es

]
iN
− δ0j

[
~̃G∗,es

]
i0

)
+

N∑
m=0

D̃mj
~̃Gi,(m,j),

(5.99)

with curvilinear two-point fluxes defined as in the entropy conservative case (5.78). The
numerical interface fluxes are given by

~̃F ∗,es = yη ~F
∗,es − xη ~G∗,es,

~̃G∗,es = −yξ ~F ∗,es + xξ ~G
∗,es,

(5.100)
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and depend on the fluxes in x and y direction

~F ∗,es = ~F ∗,ec − 1
2Rf

∣∣Λf

∣∣RT
f J ~q K,

~G∗,es = ~G∗,ec − 1
2Rg

∣∣Λg

∣∣RT
g J ~q K,

(5.101)

which include the entropy conserving fluxes ~F ∗,ec and ~G∗,ec given in (5.81), as well as
an entropy stable dissipation term which depends on the scaled flux eigenvalues

∣∣Λf

∣∣ = 1
2g


∣∣ {{u}}+ {{c}}

∣∣ 0 0
0 2g

∣∣ {{h}} {{u}} ∣∣ 0
0 0

∣∣ {{u}} − {{c}} ∣∣
 ,

∣∣Λg

∣∣ = 1
2g


∣∣ {{v}}+ {{c}}

∣∣ 0 0
0 2g

∣∣ {{h}} {{v}} ∣∣ 0
0 0

∣∣ {{v}} − {{c}} ∣∣
 ,

(5.102)

and eigenvectors

Rf =

 1 0 1
{{u}}+ {{c}} 0 {{u}} − {{c}}
{{v}} 1 {{v}}

 ,
Rg =

 1 0 1
{{u}} 1 {{u}}

{{v}}+ {{c}} 0 {{v}} − {{c}}

 ,
(5.103)

and the jump in entropy variables J~q K. The source term discretization ~̃S is the same as in
the entropy conserving case (5.41). The scheme described above is called the ESDGSEM
and has the following properties:

4.1 Discrete conservation of the mass and discrete conservation of the momentum if
the bottom topography is constant.

4.2 Guaranteed dissipation of the total discrete energy, which is an entropy function
for the shallow water equations. Hence it fulfills the discrete entropy inequality
(2.53)

4.3 The well-balanced property for arbitrary bottom topographies, provided any discon-
tinuities coincide with element interfaces.

Proof. The ESDGSEM follows directly from the curvilinear ECDGSEM presented in
Thm. 3. To guarantee entropy stability we replace the entropy conserving numerical
fluxes (5.81) at element interfaces with the entropy stable numerical fluxes (5.95), (5.96).
For the “lake at rest” initial conditions the jump in entropy variables is zero, J~q K = 0, so
the additional dissipation term vanishes and does not affect the well-balanced property
of the scheme. �
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The semi-discrete ESDGSEM is only complete when equipped with a suitable time
integrator. We previously used a low storage Runge-Kutta scheme in [253] but have
now switched to a strong stability preserving Runge-Kutta scheme (SSPRK). We will
see that this choice is necessary for the positivity preserving limiter in Section 5.5. We
use a SSPRK method frequently used in wet/dry shallow water schemes such as by Xing
[265] and shock capturing schemes as by Shu [220]. The three stage scheme is given by

W (1) = Wn + ∆tR (Wn) ,

W (2) = 3
4W

n + 1
4
(
W (1) + ∆tR

(
W 1

))
,

Wn+1 = 1
3W

n + 2
3
(
W (2) + ∆tR

(
W 2

))
,

(5.104)

where R denotes the spatial ESDGSEM operator

R = − 1
J

(
~Lξ + ~Lη − ~̃S

)
. (5.105)

The time step is chosen according to the CFL condition

∆t = min ∆x
λmax

CFL, (5.106)

where λmax denotes the maximum eigenvalue of the system and the constant CFL < 0.5
is chosen before the start of the computation. The minimal element size min ∆x is
approximated a priori via numerical quadrature over each element.

5.4. Artificial viscosity shock capturing
In this chapter we describe how to add artificial viscosity to the ESDGSEM to reduce
the amount of oscillations in the solution. Even without any limiter or artificial viscosity,
the ESDGSEM demonstrates more robustness than a standard DGSEM approximation
[83, 253]. However, it is not oscillation free, especially for (very) high-order simulations
and in the presence of shocks. If the oscillations are too sever, they might lead to
unphysical solutions and cause a simulation to break down. Since we do not want to
abandon the entropy stable approach, we only consider additional smoothing or limiting,
if it preserves the entropy stability of the scheme. In [81] the authors prove that artificial
viscosity can be added in an entropy stable way. The key requirements are a certain
connection between gradient variables and entropy variables and a suitable discretization
according to Bassi and Rebay [8].
We choose to only add artificial viscosity to the momentum equations. The smoothing

is weaker without direct artificial viscosity in the continuity equation. If we choose
remaining gradient variables as the entropy variables, we obtain a straightforward one-
to-one mapping to the entropy variables. Thus, we easily fulfill one of the requirements
for entropy stability through a theorem from [81]. To be flexible with the amount
of viscosity added to the scheme, we scale the gradient by the water height h and a
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viscosity parameter ε in the viscous fluxes. The viscosity parameter is chosen based on
an estimation of the local smoothness of the solution and we will provide details on its
computation later.

By introducing artificial viscosity to the shallow water system (2.33), we obtain a
modified set of equations, which can be written out as

ht + (hu)x + (hv)y = 0,

(hu)t + (hu2 + g h2/2)x + (huv)y = −g h bx +∇ ·
(
h ε ~U

)
,

(hv)t + (huv)x + (h v2 + g h2/2)y = −g h by +∇ ·
(
h ε ~V

)
,

~U = ∇u,
~V = ∇v,

(5.107)

or expressed in compact flux form by

~wt +∇ · (~f,~g)T = ~s+∇ · (~fv, ~gv)T ,
~U = ∇u,
~V = ∇v,

(5.108)

with viscous fluxes ~fv(~w, ~U , ~V) = h ε (0, U1,V1)T and ~gv(~w, ~U , ~V) = h ε (0, U2,V2)T . We
include the new viscous fluxes into the flux divergence to find the system of equations
in reference space as

J ~wt = −∇̂ · ( ~̃f + ~̃fv, ~̃g + ~̃gv)T + ~̃s,

J ~U =
(

yη −yξ
−xη xξ

)
∇̂u,

J ~V =
(

yη −yξ
−xη xξ

)
∇̂v,

(5.109)

where we transform the physical gradient operator with the metrics of the element
mappings.
We proceed to derive weak and strong formulations and their discretizations for the

continuity and momentum equations, analogous to the steps of the standard DGSEM
derivation in Sec. 3.2.2. The transformed gradient equations are multiplied by the same
test function φ and integrated over the domain to find the weak form∫

E

J ~U φ dE−
∮
∂E

φU∗ ~ndS +
∫
E

u

(
yη −yξ
−xη xξ

)
∇̂φ dE = 0,

∫
E

J ~V φ dE−
∮
∂E

φV ∗ ~ndS +
∫
E

v

(
yη −yξ
−xη xξ

)
∇̂φ dE = 0,

(5.110)

where U∗ and V ∗ are the numerical interface states for the gradient equations. We
discretize the weak form gradient equations (5.110) and simplify, using the Lagrange
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property. For example, the volume integral approximations for the ~U equations reduce
to

1∫
−1

1∫
−1

u

(
yη

∂

∂ξ
(`i(ξ)`j(η))− yξ

∂

∂η
(`i(ξ)`j(η))

)
dξdη

≈ −
N∑
m=0

D̂imumjyηmj ωiωj +
N∑
n=0

D̂jnuinyξin ωiωj ,

1∫
−1

1∫
−1

u

(
−xη

∂

∂ξ
(`i(ξ)`j(η)) + xξ

∂

∂η
(`i(ξ)`j(η))

)
dξdη

≈
N∑
m=0

D̂imumjxηmj ωiωj −
N∑
n=0

D̂jnuinxξin ωiωj .

(5.111)

The discrete surface integrals for ~U are∮
∂E

φU∗ ~n1 dS ≈− δi0 U∗i0yηi0ωj + δiN U
∗
iNyηi0ωj − δj0 U

∗
0jyξ0jωi + δjN U

∗
NjyξNjωi,∮

∂E

φU∗ ~n2 dS ≈− δi0 U∗i0xηi0ωj + δiN U
∗
iNxηi0ωj − δj0 U

∗
0jxξ0jωi + δjN U

∗
NjxξNjωi.

(5.112)
We summarize the ESDGSEM with artificial viscosity and define full discretizations of
all the new viscous terms and gradient equations in Theorem 5. Furthermore, we proof
that the resulting method is entropy stable.
Theorem 5 (Entropy stability of ESDGSEM with artificial viscosity). The ESDGSEM
(5.76) for the shallow water equations with additional viscous terms as in (5.107) is given
by

J ~Wt + ~Lξ + ~Lη = ~̃S + ~Lvξ + ~Lvη. (5.113)

The viscous terms ~Lvξ , ~Lvη are discretized in strong form by

( ~Lvξ)ij =
N∑
m=0

Dim( ~̃F v)mj + 1
ωi

(
δiN

~̃F v,∗Nj − δi0
~̃F v,∗0j

)
− 1
ωi

(
δiN

~̃F vNj − δi0
~̃F v0j

)
,

( ~Lvη)ij =
N∑
m=0

Djm( ~̃Gv)im + 1
ωj

(
δNj

~̃Gv,∗iN − δ0j
~̃Gv,∗i0

)
− 1
ωj

(
δNj

~̃GviN − δ0j
~̃Gvi0

)
.

(5.114)

The curvilinear viscous fluxes are defined according to BR1 [8] as
~̃F v = yη ~F

v − xη ~Gv,
~̃Gv = −yξ ~F v + xξ ~G

v,
(5.115)

with viscous fluxes
~F v = h ε (U1, V1)T ,
~Gv = h ε (U2, V2)T .

(5.116)
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The viscous flux interface coupling is computed by the arithmetic mean,

~̃F v,∗ =
{{

~̃F v
}}

,

~̃Gv,∗ =
{{

~̃Gv
}}

.

(5.117)

The explicit formulas for the discretization of the gradients ~U = ∇u and ~V = ∇v are
given by

(U1)ij =(yη)ij
N∑
m=0

D̂imumj − (yξ)ij
N∑
m=0

D̂jmuim

+ (yη)ij
ωi

(
δiNU

∗
Nj − δi0U∗0j

)
+ (yξ)ij

ωj
(δNjU∗iN − δ0jU

∗
i0)

(U2)ij =− (xη)ij
N∑
m=0

D̂imumj + (xξ)ij
N∑
m=0

D̂jmuim

+ (xη)ij
ωi

(
δiNU

∗
Nj − δi0U∗0j

)
+ (xξ)ij

ωj
(δNjU∗iN − δ0jU

∗
i0)

(V1)ij =(yη)ij
N∑
m=0

D̂imvmj − (yξ)ij
N∑
m=0

D̂jmvim

+ (yη)ij
ωi

(
δiNV

∗
Nj − δi0V ∗0j

)
+ (yξ)ij

ωj
(δNjV ∗iN − δ0jV

∗
i0)

(V2)ij =− (xη)ij
N∑
m=0

D̂imvmj + (xξ)ij
N∑
m=0

D̂jmvim

+ (xη)ij
ωi

(
δiNV

∗
Nj − δi0V ∗0j

)
+ (xξ)ij

ωj
(δNjV ∗iN − δ0jV

∗
i0) ,

(5.118)

where the numerical states U∗ and V ∗ are chosen according to BR1 as the average values

U∗ = {{u}} ,
V ∗ = {{v}} .

(5.119)

The ESDGSEM with artificial viscosity (5.113) and viscous terms discretized as in
(5.114) and (5.118) is entropy stable.

Proof. In [81] the authors show that viscous terms according to Bassi and Rebay [8]
are entropy stable if the viscous fluxes can be rewritten as the product of a symmetric,
positive definite block matrix Bε and the gradient of the entropy variables

↔
fv (~w, ∇~w) = Bε∇~q, (5.120)
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with state vectors
↔
fv =

(
~fv

~gv

)
∈ R6 and ∇~q =

(
~qx
~qy

)
∈ R6. In the case of the shallow

water equations, the block matrix Bε can be expressed as

Bε =
(

B11 B12
B21 B22

)
∈ R6×6. (5.121)

The entropy stability requirement for the block matrix Bε is then that each block Bij is
symmetric

Bε
ij =

(
Bε
ji

)T
, (5.122)

and positive (semi-)definite

d∑
i=1

d∑
j=1

∂~q

∂xi

T

Bε
ij

∂~q

∂xj
≥ 0, ∀~q. (5.123)

The choice of gradient variables and fluxes in (5.107) make the block matrix here very
simple

Bε = εh



0 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1


. (5.124)

We verify requirement (5.123) by noting

2∑
i=1

2∑
j=1

∂~q

∂xi

T

Bε
ij

∂~q

∂xj
= (~qx)T Bε

11 ~qx + (~qy)T Bε
22 ~qy

= ε h
(
u2
x + v2

x + u2
y + v2

y

)
≥ 0.

(5.125)

�

Remark 5. Introducing artificial viscosity to the system, as in Theorem 5, requires an
additional time step condition for the diffusive part [79, 162]. We denote the original
advective time step by ∆ta and the new viscous time step by ∆tv. We also introduce
a new parameter, DFL, that works analogous to the CFL parameter for the advective
time step. The two time steps are then computed by

∆tv = DFL
λvmax

(min ∆x
N + 1

)2
,

∆ta = CFL
λmax

min ∆x
N + 1 ,

(5.126)
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where λmax and λvmax denote the maximum eigenvalues of the Jacobians of the advective
and diffusion fluxes, respectively. Then, the time step for the computation is taken as
the minimum of viscous and advective time steps:

∆t := min (∆tv,∆ta) . (5.127)

The viscosity parameter ε in (5.107) is dynamically computed for each element similar
to the works of Persson and Peraire [202]. It is based on a smoothness measure of an
element local indicator quantity. We usually choose the indicator based on our nodal
DG approximation by Qij = hij but other choices such as Qij = h2

ij work as well and
the optimal choice may well be problem dependent. We transform the nodal indicator
Q to modal space Q̂ by

Q̂ij =
N∑
i=0

N∑
j=0

V −1
ij QijV

−1
ji , (5.128)

with Vandermonde matrix V defined by

Vij = Lj(ξGLi )
√
j + 0.5,

V −1
ij =

(
`j , L̃i

)
L2
≈

N∑
l=0

Li(ξGl ) `GLj (xGi )ωGl
√
i+ 0.5,

(5.129)

where Li is the i-the Legendre polynomial, `GLi the i-th Lagrange polynomial based on
Legendre-Gauss-Lobatto nodes and ξGi the Legendre-Gauss nodes. The scaled Legendre
polynomials are L̃i = Li

√
i+ 0.5. The ωG are the Legendre-Gauss quadrature weights.

We compute shock indicators similar to [202] by

σdof = log10

(
max

(
(Q− Q̃,Q− Q̃)L2

(Q,Q)L2
,
(Q̃− ˜̃Q, Q̃− ˜̃Q)L2

(Q̃, Q̃)L2

))
, (5.130)

with

Q̃ :=
N−1∑
i,j=0

Q̂ijL̃iL̃j ,

˜̃Q :=
N−2∑
i,j=0

Q̂ijL̃iL̃j .

(5.131)

With these definitions (5.130) can be simplified to

σdof = log10 (max (I1, I2)) , (5.132)

with simplified smoothness measurements

I1 :=
∑N−1
i=0

(
Q̂2
iN + Q̂2

Ni

)
+ Q̂2

NN∑N
i,j=0 Q̂

2
ij

, (5.133)
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and

I2 :=
∑N−2
i=0

(
Q̂2
i(N−1) + Q̂2

(N−1)i

)
+ Q̂2

(N−1)(N−1)∑N−1
i,j=0 Q̂

2
ij

. (5.134)

The smoothness indicator σdof is used to determine the amount of viscosity applied in
every element individually by setting

ε =


0, if σdof ≤ σmin,
1
2ε0∆ε, if σdof ≤ σmin
ε0, else.

, (5.135)

with
∆ε := 1.0 + sin

(
π(σdof − 1

2(σmax + σmin)
σmax − σmin

)
. (5.136)

We note that good choices for the parameters e0, σmax and σmin are problem dependent
and subject to some experimentation. However, we did find that the setting

e0 = 0.1,
σmax = −3.5,
σmin = −8.0,

(5.137)

often leads to good results. For more information on detecting troubled elements we
refer to [130].

5.5. Wet/dry treatment
The added artificial viscosity from Section 5.4 greatly reduces numerical oscillations.
However, in nearly-dry regions, even the smallest oscillations may render a numerical
scheme unstable. We need an additional safety net, that strictly enforces the positivity
of the water height h without destroying accuracy, conservation, well-balancedness or
entropy-stability of the ESDGSEM.

A mechanism to prevent unphysical values are the positivity preserving limiters pro-
posed in the literature, e.g., [204, 271, 265, 264]. The widely used positivity limiter for the
shallow water equations by Xing [265] is based on a linear scaling around element aver-
ages. As such, it is dependent on non-negative mean water heights in all elements at each
time step. For certain numerical fluxes, it can then be proven that non-negative mean
water heights are preserved for one Euler time step. This proof relies on the numerical
flux to preserve non-negative water heights for finite volume schemes. Numerical fluxes
that have this property are called positivity preserving [271]. For Cartesian meshes, this
property translates immediately to DG methods [265]. In [271] it is proven that the
Lax-Friedrichs numerical flux [204] is positivity preserving and the same is noted for the
Godunov flux [57], Boltzmann type flux [203] and the Harten-Lax-van-Leer flux [105].
The positivity preserving property is shown for Euler time integration but extends to
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SSPRK methods, as given by (5.104), as these are convex combinations of Euler time
steps [219].

The contribution of this work is the proof that the entropy stable numerical flux of the
ESDGSEM given in (5.100) is positivity preserving in the sense that non-negative mean
water heights are preserved for one Euler time step. On Cartesian meshes, it is possible
to prove this similarly to [271], where the update of the mean water height is written
in finite volume form. Due to generally different Jacobians of the curvilinear mappings
and different normals on opposing sides of an element, this is not as straightforward on
curved meshes. We directly prove the positivity preservation for curved quadrilateral
elements in Lemma 16. Also, we verify that the positivity preserving limiter is entropy
stable in Lemma 17. Both results are then summarized in Theorem 6.
We now consider one Euler time step of the ESDGSEM and show that non-negative

water heights are preserved if the time step is sufficiently small. For notational con-
venience, we denote values on the interfaces by Wj,s (as opposed to Wij for internal
nodal values) to denote the value of quantity W at node j ∈ {0, . . . , N} on interface
s ∈ {1, . . . , 4}, where s denotes the element local side number. We also introduce the
surface Jacobian J surf on ξ = ±1 (s = 2, 4) and η = ±1 (s = 1, 3) interfaces by

J surf :=
√
yξyξ + xξxξ, for η = ±1 ,

J surf :=
√
yηyη + xηxη, for ξ = ±1 .

(5.138)

Lemma 16 (Preservation of non-negative mean water heights in ESDGSEM). If the
water height h is non-negative for all LGL nodes in all elements, then the average water
height in the next time step is non-negative for all elements under the additional time
step restrictions

∆t ≤ ω0 aj,s(
Aj,s + 2 {{ũ}}j,s

) ,
∆t ≤

∣∣∣∣∣ ω0 aj,s g hj,s
{{c}}j,sBj,sJũKj,s

∣∣∣∣∣, only if hj,s > 0,
(5.139)

where we introduce the rotated normal velocity

ũ := nxu+ nyv (5.140)

for all edge nodes j = 0, . . . , N on all element sides s = 1, . . . , 4, and

A :=
∣∣ {{ũ}}+ {{c}}

∣∣+ ∣∣ {{ũ}} − {{c}} ∣∣,
B :=

∣∣ {{ũ}}+ {{c}}
∣∣− ∣∣ {{ũ}} − {{c}} ∣∣. (5.141)

For the Legendre Gauss Lobatto nodes, the quadrature weight ω0 is given by

ω0 = 1
2N(N − 1). (5.142)

We also have geometric scaling factors on the interfaces given by

aj,s := Jj,s
J surf
j,s

, (5.143)
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with volume and surface Jacobians defined in (3.49) and (5.138).

Proof. Since the shallow water equations are rotationally invariant, we can rotate the
velocities in normal direction and evaluate the numerical flux in x-direction with rotated
velocities

ũ := nxu+ nyv,

ṽ := txu+ tyv = −nyu+ nxv.
(5.144)

Afterwards, we rotate back to obtain the numerical fluxes in normal direction. Denoting
the rotated conservative variables by ~̃W , the formulas for computing the numerical fluxes
in normal direction are

F̃ ∗,es1 ( ~W+, ~W−, ~n) = F ∗,es1 ( ~̃W+, ~̃W−),

F̃ ∗,es2 ( ~W+, ~W−, ~n) = nxF
∗,es
2 ( ~̃W+, ~̃W−) + txF

∗,es
3 ( ~̃W+, ~̃W−),

F̃ ∗,es3 ( ~W+, ~W−, ~n) = nyF
∗,es
2 ( ~̃W+, ~̃W−) + tyF

∗,es
3 ( ~̃W+, ~̃W−).

(5.145)

We want to guarantee positive water heights and, thus, only consider the numerical flux
contributions for the continuity equation. Thus, we aim to find a compact expression
for the first entry of the numerical flux in normal direction, ~̃F ∗,es, given by

F̃ ∗,es1 =
(
F ∗,es1 , G∗,es1

)
· ~n = F ∗,es1 ( ~̃W+, ~̃W−), (5.146)

where the numerical flux in physical x direction is defined as

~F ∗,es = ~F ∗,ec − 1
2Rf

∣∣Λ∣∣RT
f J ~q K. (5.147)

We evaluate the numerical flux in x-direction with rotated conservative variables, ~̃W ,
which yields

~F ∗,es( ~̃W+, ~̃W−) =


{{h}} {{ũ}}

{{h}} {{ũ}}2 + 1
2 g

{{
h2}}

{{h}} {{ũ}} {{ṽ}}

− 1
2R̃

∣∣Λ̃∣∣ R̃T J ~̃q K, (5.148)

with matrix of right eigenvectors

R̃ =

 1 0 1
{{ũ}}+ {{c}} 0 {{ũ}} − {{c}}
{{ṽ}} 1 {{ṽ}}

 , (5.149)

and scaled diagonal eigenvalue matrix

∣∣Λ̃∣∣ = 1
2g


∣∣ {{ũ}}+ {{c}}

∣∣ 0 0
0 2g

∣∣ {{h}} {{ũ}} ∣∣ 0
0 0

∣∣ {{ũ}} − {{c}} ∣∣
 , (5.150)
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with wave celerity c =
√
gh. We compute the first row of the matrix product of the

dissipation term by multiplying with just the first row R̃1 to find

2gR̃1
∣∣Λ̃∣∣ R̃T

=
(
1, 0, 1

)
∣∣ {{ũ}}+ {{c}}

∣∣ 0 0
0 2g

∣∣ {{h}} {{ũ}} ∣∣ 0
0 0

∣∣ {{ũ}} − {{c}} ∣∣

1 {{ũ}}+ {{c}} {{ṽ}}

0 0 1
1 {{ũ}} − {{c}} {{ṽ}}



=
(∣∣ {{ũ}}+ {{c}}

∣∣, 0,
∣∣ {{ũ}} − {{c}} ∣∣)

1 {{ũ}}+ {{c}} {{ṽ}}
0 0 1
1 {{ũ}} − {{c}} {{ṽ}}


=
(
A, {{ũ}}A+ {{c}}B, {{ṽ}}A

)
,

(5.151)

with
A :=

∣∣ {{ũ}}+ {{c}}
∣∣+ ∣∣ {{ũ}} − {{c}} ∣∣,

B :=
∣∣ {{ũ}}+ {{c}}

∣∣− ∣∣ {{ũ}} − {{c}} ∣∣. (5.152)

Multiplying by the jump in rotated entropy variables, J ~̃q K, we find the first entry of
1
2R̃

∣∣Λ̃∣∣ R̃T J ~̃q K

2g
(
R̃
∣∣Λ̃∣∣ R̃T J ~̃q K

)
1

=
(
A, {{ũ}}A+ {{c}}B, {{ṽ}}A

)gJh+ bK− 1
2Jũ2K− 1

2Jṽ2K
JũK
JṽK


= A (gJh+ bK− {{ũ}} JũK− {{ṽ}} JṽK) + ({{ũ}}A+ {{c}}B) JũK + {{ṽ}}AJṽK
= gAJh+ bK + {{c}}BJũK.

(5.153)
Thus, we can express the first entry of the entropy stable numerical flux in terms of the
rotated velocities

F ∗,es1 ( ~̃W+, ~̃W−) = {{h}} {{ũ}} − 1
4g (AJgh+ gbK + {{c}}BJũK) . (5.154)

where ũ = nxu + nyv. As the water height is a conserved quantity in the ESDGSEM,
we can write the update of the element average water height in one Euler time step as

h
tn+1 = h

tn − ∆t∣∣E∣∣
4∑
s=1

N∑
j=0

ωjJ surf
j,s F̃ ∗,es1

(
W int
j,s ,W

ext
j,s , nj,s

)

= h
tn − ∆t∣∣E∣∣

4∑
s=1

N∑
j=0

ωjJ surf
j,s F ∗,es1

(
W̃ int
j,s , W̃

ext
j,s

)
,

(5.155)

where J surf
j,s is the surface Jacobian at node j on interface s defined in (5.138). We can
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also write the average water height htn as

h
tn = 1∣∣E∣∣

N∑
j=0

N∑
i=0

hijJijωiωj

= 1∣∣E∣∣
N−1∑
i=1

N−1∑
j=1

hijJijωiωj + 1
2

1∣∣E∣∣
4∑
s=1

N−1∑
j=1

hj,sJj,sω0ωj + 1
2

1∣∣E∣∣
4∑
s=1

N∑
j=0

hj,sJj,sω0ωj

= 1∣∣E∣∣
N−1∑
i=1

N−1∑
j=1

hijJijωiωj + 1
2

1∣∣E∣∣
4∑
s=1

N−1∑
j=1

hj,sJj,sω0ωj

+ 1
2
∣∣E∣∣

N∑
j=0

hj,3Jj,3ω0ωj + 1
2
∣∣E∣∣

N∑
j=0

hj,1Jj,1ω0ωj

+ 1
2
∣∣E∣∣

N∑
i=0

hj,4Jj,4ω0ωj + 1
2
∣∣E∣∣

N∑
i=0

hj,2Jj,2ω0ωj .

(5.156)

Inserting the new expression for the average water height (5.156) into the update scheme
(5.155) we find

h
tn+1 = 1∣∣E∣∣

N−1∑
i=1

N−1∑
j=1

hijJijωiωj + 1
2

1∣∣E∣∣
4∑
s=1

N−1∑
j=1

hj,sJj,sω0ωj

+ 1∣∣E∣∣
N∑
j=0
Jj,1ω0ωj

[
1
2hj,1 −

∆t
ω0 aj,1

F ∗,es1

(
W̃ int
j,1 , W̃

ext
j,1

)]

+ 1∣∣E∣∣
N∑
j=0
Jj,3ω0ωj

[
1
2hj,3 −

∆t
ω0 aj,3

F ∗,es1

(
W̃ int
j,3 , W̃

ext
j,3

)]

+ 1∣∣E∣∣
N∑
j=0
Jj,2ω0ωj

[
1
2hj,2 −

∆t
ω0 aj,2

F ∗,es1

(
W̃ int
j,2 , W̃

ext
j,2

)]

+ 1∣∣E∣∣
N∑
j=0
Jj,4ω0ωj

[
1
2hj,4 −

∆t
ω0 aj,4

F ∗,es1

(
W̃ int
j,4 , W̃

ext
j,4

)]
,

(5.157)

with aj,s := Jj,s
J surf
j,s

. We note that for the special case of uniform Cartesian meshes this
factor is simply aj,s = ∆y for s = 1, 3 and aj,s = ∆x for s = 2, 4. The first two sums
are clearly non-negative for meshes with positive Jacobians. We proceed to examine the
interface terms

1
2hj,s −

∆t
ω0 aj,s

F ∗,es1

(
W̃ int
j,s , W̃

ext
j,s

)
, s = 1, . . . , 4 . (5.158)

We can do this for an arbitrary node j, side s, and only need to distinguish between
internal values W− and external values W+ on the interface. We thus omit the indices j
and s in the following steps. By inserting the compact expression for F ∗,es1 from (5.154)
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and assuming continuous bottom topographies across element interfaces we find

1
2h
− − 1

4g
∆t
ω0 a

(4g {{h}} {{ũ}} − gAJhK− {{c}}BJũK)

= 1
2h
− − 1

4g
∆t
ω0 a

(
gh+ (2 {{ũ}} −A) + gh− (2 {{ũ}}+A)− {{c}}BJũK

)
= 1

4
∆t
ω0 a

h+ (A− 2 {{ũ}}) + 1
4h
−
(

1− ∆t
ω0 a

(A+ 2 {{ũ}})
)

+ 1
4

(
h− + ∆t

g ω0 a
{{c}}BJũK

) (5.159)

We examine the three terms in (5.159) individually. The first term is always non-
negative, since

A =
∣∣ {{ũ}}+ {{c}}

∣∣+ ∣∣ {{ũ}} − {{c}} ∣∣ ≥ 2
∣∣ {{ũ}} ∣∣. (5.160)

For the second term we require an additional time step condition. From(
1− ∆t

ω0 a
(A+ 2 {{ũ}})

) !
≥ 0, (5.161)

we find
∆t

!
≤ ω0 a

(A+ 2 {{ũ}}) . (5.162)

For the third term, we cannot generally factor out h−, so we need to treat this carefully.
We need to show that the last term is not negative in the cases h− = 0 and h+ = 0 as
well as in the fully wet case where both water heights are positive. In the case h− = 0,
we also have ũ− = 0 and thus we see JũK = ũ+, and the whole term becomes

∆t
g ω0 a

{{c}}Bũ+. (5.163)

We note that {{c}} is always non-negative, so we must examine the signs of B and ũ+.
The velocity can have an arbitrary sign but from the definition of B

B =
∣∣ {{ũ}}+ {{c}}

∣∣− ∣∣ {{ũ}} − {{c}} ∣∣ =
∣∣∣∣12 ũ+ + {{c}}

∣∣∣∣− ∣∣∣∣12 ũ+ − {{c}}
∣∣∣∣, (5.164)

we see that the sign of B matches the sign of ũ+ and thus the whole term is guaranteed
non-negative for h− = 0 and h+ ≥ 0. If h− > 0 (and thus in general ũ− 6= 0), we are
allowed to factor out h−. Then we require

∆t
g ω0 a

{{c}}BJũK
h−

!
≥ −1. (5.165)

This condition guarantees non negativity for the third term in (5.159) and can only be
violated if BJũK < 0. There are two different states where this is the case. Either we
have ũ− > ũ+ and {{ũ}} > 0, which implies ũ− > 0. Or, alternatively, we have B < 0
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and JũK > 0, which implies 0 > ũ+ > ũ−. In either way, for BJũK < 0, we can guarantee
non negativity by enforcing the additional time step restriction

∆t
!
≤
∣∣∣∣∣ g ω0 a h

−

{{c}}BJũK

∣∣∣∣∣. (5.166)

This proof for one Euler time step extends to SSPRK methods as used in the ESDGSEM
as seen in, e.g., [265]. �

Lemma 16 guarantees a non-negative average water height in the next time step, but
we still need to ensure point-wise non-negativity. This can be achieved with the positivity
limiter applied to the shallow water equations by Xing et al. [265] and developed in
[204, 271, 264] which is a linear scaling around the element average

~̂W ij = θ
(
~Wij − ~WE

)
+ ~WE , (5.167)

where θ is computed by

θ = min
(

1, hE

hE −mE

)
, (5.168)

and mE is the minimum and hE is the average water height in element E. The scaling
is applied to the water height h and the discharges hu and hv with the same parameter
θ based on the water height. Since we have shown that the average water height is
guaranteed positive in Lemma 16, this limiter ensures positive water heights for all
computation nodes. It can be shown that this limiter maintains high-order accuracy
and is conservative [270]. We show that the positivity preserving limiter is also entropy
stable in Lemma 17. As entropy stability is attained on a global level, it is sufficient to
show that the positivity limiter applied to an element E does not increase the entropy
for that element. Global entropy stability then follows immediately.

Lemma 17 (Entropy Stability of Positivity Preservation). An entropy stable method
coupled with the positivity preserving limiter (5.167) is entropy stable.

Proof. We prove this result in a similar fashion to Ranocha [206]. Let E ( ~W ) denote the
discrete entropy within an element with solution polynomial ~W . The limited value of
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the solution polynomial is denoted by ~̂W (5.167). Then

E

(
~̂W

)
= 1∣∣E∣∣

N∑
i=0

N∑
j=0

E

(
~̂W ij

)
Jij ωiωj

E convex
≤ 1∣∣E∣∣θ

N∑
i=0

N∑
j=0

E ( ~Wij)Jij ωiωj + 1∣∣E∣∣(1− θ)
N∑
i=0

N∑
j=0

E
(
~W
)
Jij ωiωj

= 1∣∣E∣∣θ
N∑
i=0

N∑
j=0

E ( ~Wij)Jij ωiωj + (1− θ)E
(
~W
)

Jensen’s inequality
≤ 1∣∣E∣∣θ

N∑
i=0

N∑
j=0

E ( ~Wij)Jij ωiωj + (1− θ)E ( ~W )

=θE ( ~W ) + (1− θ)E ( ~W )

=E ( ~W ).
(5.169)

So, the entropy of the limited solution polynomial Ŵ is less or equal to the entropy of
the original solution. It follows that the positivity limiter does not increase the entropy
of the system and the method remains entropy stable. �

We summarize the results of this section in Theorem 6.

Theorem 6 (ESDGSEM with positivity limiter). The ESDGSEM (5.76) combined with
the positivity preserving limiter (5.167) and the additional time step restrictions (5.139)
fulfills all the properties from Theorem 4 and also guarantees non-negative water heights
for all LGL-nodes.

Proof. We proved in Lemma 16 that preservation of non-negative water mean height
is guaranteed if the water height in the previous time step is non-negative for all LGL
nodes. The positivity limiter (5.167) then guarantees non-negative water height at all
LGL nodes. Finally, in Lemma 17 it is shown that the positivity limiter is entropy
stable. We note that other properties from Theorem 4 such as mass conservation and
the well-balancedness are unaffected by the positivity limiting procedure. �

Remark 6. Theorem 6 also holds when combining the positivity preserving limiter with
the artificial viscosity shock capturing from Sec. 5.4 since no artificial viscosity is added
to the continuity equation.
Remark 7. The positivity limiter does not affect the well-balanced property of the ES-
DGSEM since the scaling will not be applied for the “lake at rest” test case. However, the
capability of handling dry areas leads to a generalization called the “dry lake,” defined
by

h = max {Hconst − b, 0}
u = v = 0,

(5.170)
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where the bottom topography surpasses the constant water level, creating dry areas. If
this leads to partially dry elements, the well-balanced property of the scheme is lost, as
the proof relies strongly on the property H = h + b = const and the consistency of the
derivative operator D. Retaining the well-balanced property for partly dry elements is
a difficult challenge and subject to ongoing research. Strategies include adaptive mesh
refinement or the development of different local derivative operators that account for the
dry nodes within the element, e.g. [20].
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6.1. Introduction to GPU computing
In the field of high performance computing (HPC), there is always a demand for as
much computational processing power as possible in order to run large, well-resolved
simulations in acceptable time frames. When the performance gains from increasing the
CPU clock rates were saturated, intentions turned towards parallel computing on many
cores in modern supercomputers. In recent years, GPUs have emerged as a competing, or
complementing, hardware architecture due to their high performance and their cost and
energy efficiency. Nowadays GPUs are frequently deployed in modern supercomputers as
part of heterogeneous systems, combining CPUs and GPUs in each node. The number
one ranking supercomputer is Summit at the Oak Ridge National Laboratory (ORNL). It
features 4,356 nodes, where each one is equipped with two 22-core Power9 CPUs, and six
NVIDIA Tesla V100 GPUs. Overall, four out of the five best performing supercomputers
feature GPUs, with the exception being the Sunway TaihuLight in Jiangsu [239]. Other
top supercomputers featuring GPUs in addition to their CPU structure are the Titan
at Oak Ridge National Laboratory [144] or the Chinese Tianhe-1A [266] as well as the
Sierra and the AI Bridging Cloud Infrastructure (ABCI). The GPU of choice in these
supercomputers is typically the high-end scientific computing card Tesla V100. GPUs
have evolved into the massively parallel processing platforms they are today due to their
origin as renderers for 3D graphics in video games. In this context it was required to
recalculate a large amount of pixels in real time. Thus, a single-thread program that
refreshes one individual pixel was executed many times in parallel. The demand for
ever faster graphics processors from the video game industry is still a primary driver
behind the development of increasingly parallel GPUs [179]. The first unified graphics
and computing GPU architecture was the GeForce 8800 in 2006 allowing the efficient
execution of 12, 288 parallel threads on 128 processor cores [179]. The increased interest
from the scientific computing community led to the development of dedicated general-
purpose GPUs (GP-GPU), specifically with the launch of the NVIDIA Tesla series in
2007. Since then, NVIDIA has been releasing new GPUs for both demands, video games
and scientific computing, on a regular basis. The line most suited for graphics rendering
is named GTX whereas the scientific computing cards are the Tesla series. However,
even the cards primarily developed for video game graphics are now very suitable for
scientific computing purposes due to the increased video memory (VRAM) and floating
point performance in single and double precision. This makes GPUs widely accessible to
everyone for a relatively cheap entry price compared to buying competitively many CPU
cores. Thus, GP-GPU computing has been widely adopted by researchers from varying
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fields [77]. The first Tesla GPUs were primarily constructed to perform single precision
floating point operations and not even able to perform double precision operations at
all. In 2009, the GT200 was given this capability but lacked competitive performance.
Only about 12.5% of the single precision peak performance was achievable for double
precision operations. The Fermi architecture from 2011 came with increased double
precision performance at 50% of the single precision performance. The following two
generations Kepler in 2012 and Maxwell in 2015 prioritized single precision performance
once more, with double precision performances ranging from just 3% to 30%. The final
breakthrough of double precision computing on GPUs finally arrived with the P100
GPUs of the Pascal generation in 2016 which delivered a steady 50% of single precision
performance for double precision calculations. This level was retained for the V100 GPUs
of 2017’s Volta series. Performance of graphics cards are determined by several factors.
Each GPU engine has a certain amount of CUDA cores with a certain clock frequency.
Another crucial component determining the overall performance is the memory which
again comes with a specific speed and bandwidth. For the Pascal generation’s NVIDIA
GTX 1080 there are 2560 CUDA cores with a base clock of 1607 MHz which can go up
to 1733 MHz in boost mode. It is equipped with 8 GB of memory at bandwidth of 320
GB/s. The other card used in this work is the NVIDIA Tesla V100 and is a far more
powerful GPU for scientific computing purposes. While the base clock is lower at just
1230 MHz (1380 in boost mode), it doubles the amount of single precision CUDA cores to
5120 and also offers 2560 double precision CUDA cores. It has 32 GB of video memory at
a bandwidth of 900.0 GB/s, which is more than double the bandwidth of the GTX 1080’s
memory. Since memory bandwidth is often the bottleneck in computational performance,
this is a huge improvement. The decreased base clock is, while important for gaming
performance, not a huge factor for computational science purposes. The manufacturer
also offers theoretical peak performance numbers for floating point operations. The
gaming GPU GTX 1080 offers 8873 GFLOPS for single precision operators and 277.3
GFLOPS for double precision operations, while the scientific computing card Tesla V100
almost doubles the single precision performance with 14 TFLOPS. The double precision
performance is at a whole other level with exactly half of the single precision performance.
Thus, the Tesla V100’s double precision performance is almost thirty times as high as
the double precision performance of the GTX 1080. The Tesla V100 is arguably the
best GPU for scientific computing to this date and even exceeds the Titan V in terms of
available VRAM and memory bandwidth. This being said, the Tesla V100 costs more
than three times as much, with a release price of $10, 000 compared to the $3000 price of
the Titan V, making the Titan V an attractive option as well. We show the development
of CPU and GPU performance in terms of GFLOP/s at base clock in Figure 6.1 and
the theoretical peak memory bandwidth in Figure 6.2.
GP-GPU programming is typically performed in either OpenCL or CUDA. While

OpenCL is vendor independent and works with AMD cards as well, CUDA is exclusive to
NVIDIA hardware. OpenCL is also a more general framework applicable to either CPU
or GPU architectures. For this work, we will focus on CUDA and use its nomenclature.
We point out that many of the concepts and key words have an OpenCL analogy. For
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Figure 6.1.: Development of NVIDIA GPU flop performance over the different architec-
tures. Graphic taken from the NVIDIA Programming Guide [188].

Figure 6.2.: Development of NVIDIA GPU memory bandwidth over the different archi-
tectures. Graphic taken from the NVIDIA Programming Guide [188].
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instance, individual threads are called work-items and thread blocks are referred to as
workgroups.

The architecture of a modern GPU consists of a scalable array of multithreaded
streaming multiprocessors. To execute hundreds of threads concurrently, a Single-
Instruction, Multiple-Thread (SIMT) architecture is used on each streaming multipro-
cessor. It combines instruction-level parallelism within each thread with thread-level
parallelism through simultaneous hardware multithreading. Each streaming multiproces-
sor partitions its thread blocks into groups of 32 threads which are then scheduled to be
executed in parallel within a warp. Each multiprocessor partitions a set of 32-bit regis-
ters among the warps as well as shared memory among the thread blocks. Apart from
general limits on the number of thread blocks and warps on a streaming multiprocessor,
memory heavy kernels can further reduce the maximum number of warps and/or thread
blocks available for its execution. Within a warp, one common instruction is executed
at a time. Thus, maximum efficiency is achieved if all threads within a warp execute
the same command. If there is a conditional branch, such as an if-statement, threads
that are not on the same path are disabled and executed later. To write efficient code,
this path branching should be avoided if possible. For additional information on GPU
architectures we defer to the official NVIDIA programming guide [188].
Due to the great performance and easy availability of GPUs, GPU computing is a

very active field of research. Many researchers have developed GPU implementations of
their numerical methods in an effort to create faster and more efficient codes. We will
use this opportunity to present a small and incomplete overview of the work in the field
of GPU acceleration of CFD codes.
Early attempts at GPU acceleration in scientific computing date back to before the

adaptation of graphics hardware towards general purpose programming, which really first
started with the CUDA compatible cards GTX 8800 or Tesla C870 in 2006. For particle
based Lattice Boltzmann methods, first GPU accelerations were carried out as early
as 2003, relying on OpenGL to treat graphics hardware as a general single instruction,
multiple data (SIMD) computer [158]. First GPU acceleration for finite difference time
domain methods were introduced in 2004, reporting performance increases by a factor
of 7 when compared to a CPU of the same generation [139]. Finite element solvers were
considered in this context in 2005 by Göddecke et al., although the achieved performance
increases were only in the range of factors of 2-3 [86].
In [58, 49], the authors assess GPU performance for finite difference WENO methods

applied to several hyperbolic systems including the Euler and Navier-Stokes equations
in detail. Reported speed ups compared to single CPU performance range from a factor
of 4 for low-order WENO schemes and coarse grids to up to 100 for high-order schemes
on fine meshes. The speed ups they report depend strongly on the GPU used and
are much larger for the GTX 480 then for the GTX 550. This is due to their varying
performance of 1,345 GFLOPS for the GTX 480 compared to the 691.2 GFLOPS of the
GTX 550. Similar comparisons for finite volume WENO type schemes applied to the
Euler equations report speed up factors of 10-20 when compared to two different AMD
and Intel CPUs [100]. In [5], the authors GPU-accelerate a finite difference WENO
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scheme with domain decomposition applied to the compressible Favre-averaged Navier-
Stokes equations in an effort to enable large-scale DNS and LES computations. Further
effort has been invested towards using GPU acceleration of large-scale simulation of
turbulent flows in [216]. They performed a DNS of a spatially evolving compressible
mixing layer. Comparing the performance on a NVIDIA Tesla S2070 with the AMD
Opteron 2352 (MPI-parallelized for 32 cores), the authors find a performance increase
by a factor of 22. Measuring power consumption, they report savings of 240 W vs
575 W. They do, however, note that the applicability of GPU acceleration is harshly
limited, in their case, by the video memory of the GPU. This issue can be overcome
by using multiple GPUs or increasing the video memory of a single GPU. As we have
described above, the amount of video memory is still increasing with each new hardware
generation, but the memory available today on one GPU is still insufficient for (very)
large problems. We give an overview of problem sizes and their usage of video memory
for the numerical scheme presented in this work in Section 6.3.1.

In this light, the extension of GPU-accelerated codes towards multiple GPUs, clusters
of GPUs and hybrid CPU-GPU clusters is a logical progression. Fortunately, this is rel-
atively straightforward via MPI parallelization, as done in [27, 238, 118, 261]. Another
option is the integration of multiple GPUs into an OpenMP implementation, as the au-
thors in [122] propose. For this work however, we restrict ourselves to MPI parallelization
if multiple GPUs are used.
Thibault and Senocak presented one of the first multi-GPU incompressible Navier-

Stokes solvers using a simple second order finite difference scheme and first order Euler
in time in [238]. They report large speed up factors of 13 and 33 depending on the CPU
for one GPU and up to 100 for multi-GPU performance when compared to a serial CPU
execution, which, of course, is not quite a fair comparison.
In [96, 268], Zaspel and Griebel developed a multi-GPU implementation of a two-

phase incompressible Navier-Stokes solver with Jacobi-preconditioned conjugate gradient
solver for the pressure Poisson equation and a finite difference WENO level set method
for all transport terms and the level-set gradient. They also offer an interesting study
of performance per Dollar-investment and performance per Watt. Their results show
a speed-up of the order of three by comparing equally priced GPUs and CPUs and a
factor of two in energy efficiency in favor of GPUs.
In a series of papers [22, 24, 23, 215, 214], Brodtkorb, Saetra et al. develop a multi-

GPU finite volume solver for the shallow water equations, the Kurganov-Petrova scheme.
They use their scheme to simulate the 1959 Malpasset dam break case and report that
the first 4000 seconds can be accurately approximated in 27 seconds. They also report
that activating their real-time visualization merely increases the runtime by 11%.
GPU accelerated codes have also been proposed for a wide range of methods apart

from the typical FD, FV and DG methods that we consider in this work. For example,
GPU acceleration has also been applied and studied for the Lattice Boltzmann equations
[261, 189], Monte-Carlo methods [17], preconditioned conjugate gradient solvers [4, 37]
or smoothed particle hydrodynamics (SPH) methods [55].
Numerical schemes that lend themselves to a very high level of parallelization are
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particularly well suited for GPU architectures. Discontinuous Galerkin methods with
explicit time integration are a prime example of numerical schemes that benefit im-
mensely from a GPU implementation, as most of the computational work is element
local and elements are only coupled through interface exchanges for the computation
of the surface integrals. Thus, GPU acceleration for various types of DG methods are
widely studied and applied with great success [72, 221, 222, 87, 76, 40, 41, 88, 90, 248].
One of the first works in the GPU acceleration of DG methods is by Klöckner, Warbur-
ton, et al. who implemented a nodal DG scheme on GPUs in 2009 [129]. They report a
performance gain of 50 times the single CPU performance, depending on the polynomial
order, and note, that the computation is memory bound in many cases and utilizes the
full memory bandwidth during the simulation. This work has been continued by these
authors in [131] with the application to the wave equation and focusing on overcoming
software challenges to make the code more efficient. By their own words, the first paper
is more technical, while the second is supposed to serve as a introductory piece towards
a wider, non-technical audience [132]. With the third paper of the series, the authors
focus their attention towards the use of a Python-based metaprogramming infrastruc-
ture, introducing the concept of run-time code generation [132]. The idea is, that coding
is done in an abstract scripting language and then ported towards GPU code by the
machine at run-time. This lead to the development of the abstract scripting languages
PyCUDA and PyOpenCL [127, 126, 133, 128].

While the development of the PyCUDA and PyOpenCL frameworks started out for
discontinuous Galerkin methods, they are easily applicable to other methods as well. In
the open-source, Python based PyFR framework the authors provide a GPU accelerated
implementation for solving advection-diffusion type problems on streaming architectures
such as GPUs and general heterogeneous systems [259, 260]. The scheme is based on
the flux reconstruction scheme by Huynh [115] and extensions by other authors such
as Vincent, Castonguay, Jameson and others [245, 35, 252, 246]. One appeal of this
scheme is, that under certain restrictions, one can recover various collocation based
nodal methods such as DG, spectral volume, or spectral difference by choosing the
appropriate correction function [244]. In a comparison study to industry standard CPU
code STAR-CCM+, a GPU accelerated fluid solver based on PyFR shows advantageous
results in terms of performance and achieved accuracy at a given cost [244].
In this work, we use a similar abstract framework for the GPU acceleration called

OCCA. It is similar to PyCUDA and PyOpenCL but is based on C instead of Python
and works with both, CUDA and OpenCL, in the same framework. We will present
OCCA in more detail in Section 6.2.

6.2. OCCA
One problem in the development and implementation of programs is that they are typi-
cally tailored towards a specific hardware architecture and programming language. Exe-
cuting the same code on a different platform may be challenging if not impossible. Also,
it is not guaranteed that the underlying hardware architecture endures and will not be
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replaced by a different (superior) technology. An example of this is the cell architecture
of IBM which was used for the Sony Playstation 3. While the cell architecture was ahead
of its competition in terms of performance due to its parallel structure, it was deemed too
complex and challenging to program for by the gaming industry. Thus, this technology
was not utilized in the next generation’s Playstation 4 console. This uncertainty raises
the question of code longevity if it is developed for one specific hardware architecture.

In an effort to enable portable programming for a wide range of hardware architec-
tures and programming languages, the unified framework implementation OCCA has
been developed by Medina et al. [172, 170]. The framework introduces an intermediary
programming language called the OCCA kernel language (okl) that is an extension to C.
Kernels written in okl are then translated and compiled at run-time in a specified pro-
gramming language on a specified hardware device. Supported programming languages
include parallel options such as OpenMP, OpenCL and CUDA as well as a straight-
forward serial version. The supported hardware devices similarly range, among others,
from simple one core CPUs in serial mode to multiple cores via OpenMP or OpenCL
and massively parallel GPU architectures via OpenCL and CUDA.
Applications are set up to distinguish between a host, which is typically a single

CPU core, and a device, which can, e.g., be a multi-core CPU or a GPU. The initial
set up of the program and the device is performed on the host. Necessary data is
allocated, initialized and transferred to the device. Then the device performs the desired,
usually computationally expensive, operations and passes the result back to the host for
further processing or output purposes. To increase the parallelism of this approach even
more, MPI can be used to have multiple hosts each handle a device. This makes it
straightforward to combine multiple GPUs for the computation of larger problems. The
simplest way to do this is to have one host per device but it is possible to have one host
handle multiple devices in the OCCA framework.

Many applications and numerical schemes have been implemented on GPUs using
the OCCA framework. A performance comparison of high-order finite difference codes
written in the abstract language OCCA versus the native implementation in OpenCL
or CUDA show that the overhead of OCCA is minimal [170, 171]. Furthermore, OCCA
implementations have been developed for DG methods, among others, for the shallow
water equations [76, 254], the incompressible Navier-Stokes equations [121] and acoustic
and elastic models [177]. Another application using CUDA is atmospheric modelling as
discussed in [251]. Also, different types of DG methods have been investigated as to
their applicability on GPUs via OCCA. For example, different types of meshes [39, 40]
and basis functions [41] have been studied in terms of performance and applicability for
GPU implementations. A discussion of high-order absorbing boundary conditions and
corner/edge compatibility can be found in [175]. While even straightforward implemen-
tations on GPU architectures usually provide decent performance, only optimizing the
kernels can unleash the full power of modern GPU computing capability. Optimization
strategies for kernels using tensor-product operations can be found in [231]. Finally,
the implementations on clusters of GPUs is discussed for the reversed-time migration
problem in [176].
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The easier implementation in combination with the increased portability across plat-
forms and minimal computational overhead make implementing code in OCCA a very
attractive option. For these reasons, we choose the OCCA framework as the basis for
the ESDGSEM GPU implementation.

6.3. The ESDGSEM implementation
As typical for discontinuous Galerkin methods, the entropy stable version presented
in Chapter 5 is highly parallelizable and, thus, a very good candidate for GPU accel-
eration. Most of the computational work of the scheme is performed locally on each
element. Communication between elements happens only through the exchange of ele-
ment interface information, which is used for the computation of the numerical fluxes.
Additionally, global data comparison is needed to determine the stable explicit time step
according to the CFL condition (5.106).
The OCCA implementation of the ESDGSEM distinguishes between a host on a single

CPU core and the OCCA device, in this case a GPU, that is handled by the host. Open
MPI is used to launch several host instances which are then able to each host a GPU
device. The calculation is set up by a single rank zero host and distributed evenly
among the hosts. Each host then initializes its device, allocates the memory necessary
for the calculation and transfers the needed data onto the device. After this initial
setup, data transfers between host and device only occur for MPI communication when
using multiple devices (GPUs). As host to device data transfer is rather slow, this
is an important aspect for the efficiency of the code. When using multiple devices, an
exchange of boundary information on MPI-boundaries is necessary for each Runge-Kutta
step of the calculation. Also, once for each time step, the maximum eigenvalue must
be collected from each rank such that a global maximum eigenvalue can be determined.
In practise, data transfer time can be hidden behind the computations by using non-
blocking MPI-sends.
On each MPI rank, the local computations of the ESDGSEM are divided into multiple

kernels. This matches the different kinds of parallelism that can be utilized between the
different steps. Primarily, there is a distinction between kernels that run in parallel
for each element interface and kernels that parallelize the elements. Kernels computing
interface values in parallel include a kernel for the computation of the numerical interface
fluxes and a kernel that gathers the left and right state data on each interface. Element
based parallelization is used in the kernel for the computation of the volume integrals as
well as in the kernel for the computation of the surface integrals. Also in this category
are the kernels from the Runge-Kutta time integrator and the solution update kernel.
Finally, the kernel computing the maximum eigenvalue and the shock capturing and
positivity preservation kernels handle elements in parallel. The kernels from the artificial
viscosity steps are structured in a very similar way, introducing new surface and volume
kernels to the computation.
While the computation of the four surface integrals of each individual element only

needs the interface data, special care must be taken when updating the time derivative.
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This is due to the fact that the corner nodes are included as part of two interfaces. Thus,
two threads will try to update that specific data point simultaneously, leading to a race
condition and unpredictable behaviour. Even if the parallelization is based on elements,
it must be ensured that this does not happen. In this implementation, only opposing
interfaces are updated at the same time with a barrier separating the two calculations.

We also point out that this structure of kernels may leave some room for optimization.
In particular, some kernels might be merged into one kernel, saving kernel launch times
as well as precious data loads and stores. There is, however, a precious balance between
acceptable occupancy and register pressure and good performance. Putting too much
work into one kernel may result in a decline in performance and it is difficult to predict
a priori how much is optimal.
None of the modifications of the split form based ESDGSEM change the strong par-

allelizability of standard discontinuous Galerkin methods. The ESDGSEM is, however,
more computationally expensive as the split form volume integral requires additional
floating point operations compared to a standard volume integral. To see this, we re-
state the algorithm for the volume integrals at a node i, j:

(Split Form Volume)ij =
N∑
l=0

D̃ilF̃
#
(l,i),j +

N∑
l=0

D̃jlG̃
#
i,(j,l),

(Standard Volume)ij =
N∑
l=0

DilF̃l,j +
N∑
l=0

DjlG̃i,l.

(6.1)

The computation of the fluxes F̃# and G̃# each consists of computing N + 1 flux eval-
uations for each node i, j, totaling 2(N + 1)3 flux evaluations. In the standard DG for-
mulation the fluxes require only one evaluation at each node i, j, resulting in 2(N + 1)2

flux evaluations. Additionally, each individual flux evaluation is more expensive for the
ESDGSEM as it essentially consists of averaging two flux evaluations at i, j and l, j for
F̃# or i, j and i, l for G̃#.

One strategy to increase the performance of the split form volume kernel is to use the
symmetry F̃#

(l,i),j = F̃#
(i,l),j to drastically reduce the number of floating point operations.

This effectively halves the number of operations at the cost of storing more data, yielding
a cost factor of about 2.5 between standard and ESDGSEM. On GPUs, this trick is not
possible due to the limited shared memory space. Precomputing and storing the fluxes
F̃#
l,i,j and G̃#

l,i,j for i, j, l = 0 . . . , N would exceed the shared memory space even for
medium sized problems. These architectural limitations raise the question of how to
optimize GPU kernels and which end performance is actually satisfactory.
Our main test system features a NVIDIA GTX 1080 which is a high end Pascal

generation consumer grade video card at the time this work is written. We compile the
kernels in CUDA and run the code in single precision to investigate the effect of kernel
modifications on the performance. As discussed in Section 6.1, the GTX 1080 lacks
double precision processing power, with only about 1

32 as many double precision CUDA
cores compared to the single precision cores. Thus, we use the NVIDIA Tesla V100, to
verify our findings in double precision. The Tesla V100 is a state of the art scientific
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Elements TotalElements N SolutionDofs VRAMGB
2,000 4 · 106 1 1.2 · 107 7.6
1,500 2.25 · 106 2 2.7 · 107 7.63
1,200 1.44 · 106 3 3.89 · 107 7.63
1,000 1 · 106 4 4.8 · 107 7.62
850 7.23 · 105 5 5.42 · 107 7.49
750 5.63 · 105 6 6.08 · 107 7.61
670 4.49 · 105 7 6.6 · 107 7.68
600 3.6 · 105 8 6.91 · 107 7.6
550 3.03 · 105 9 7.35 · 107 7.72
500 2.5 · 105 10 7.5 · 107 7.59
460 2.12 · 105 11 7.68 · 107 7.53
430 1.85 · 105 12 7.99 · 107 7.63
400 1.6 · 105 13 8.11 · 107 7.57
375 1.41 · 105 14 8.27 · 107 7.57
350 1.23 · 105 15 8.27 · 107 7.44

Figure 6.3.: Various problem sizes for varying polynomial degree while keeping close to
the GPU video memory capacity of 8 GB.

computing card, that features in many modern super computers. We show the double
precision results in Subsection 6.3.3.
Our results show that the immense processing power of modern GPU hardware al-

leviates most of this increased computational complexity. We even observe that for
polynomial degrees N ≤ 7 the increased computational complexity of the split form is
completely mitigated by the GPU processing power.

6.3.1. Memory capacity
A disadvantage of GPU computing is that the problem size is limited by the GPU mem-
ory. Modern consumer grade GPUs typically offer up to 12 GB of Video Random Access
Memory (VRAM). The NVIDIA GTX 1080 used for the single precision computations
in this work offers 8 GB, while the scientific computing card of choice, the NVIDIA Tesla
V100, comes with either 16 GB or 32 GB of video memory. Comparing the new Volta
generation cards to their Pascal predecessors highlights the trend that large memory
capacities are in high demand and further increased memory sizes are to be expected in
the future.
We give an overview on problem sizes and their memory usage on one NVIDIA GTX

1080 in Table 6.3. It becomes apparent that high-order schemes are very efficient in
terms of memory usage, as more degrees of freedom can be used for higher polynomial
degrees while keeping the memory requirements at a similar level.
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6.3.2. Practical performance metrics
Performance of graphics cards are determined by several factors. Each GPU engine
has a certain amount of CUDA cores with a certain clock frequency. Another crucial
component determining the overall performance is the memory which, again, comes with
a specific speed and bandwidth. For the NVIDIA GTX 1080 there are 2560 CUDA cores
with a base clock of of 1607 MHz which, in boost mode, can go up to 1733 MHz. The
8GB of memory have a speed of 10 GBps and feature a 256-bit memory interface with a
bandwidth of 320 GB/s. The theoretical peak performance numbers are given by 8873
GFLOPS for single precision operators and 277.3 for double precision operations.

While these are the performance numbers provided by the manufacturer, in practice
these numbers are not achievable. In an effort to find a more realistic upper limit for
the kernel performance, we estimate an empirical bound by investigating the effective
bandwidth (BW) of a kernel by

effective BW = Bytes Read + Bytes Written
t

. (6.2)

A natural upper limit on the performance of any kernel is the time it takes to copy
the same amount of memory that is read and written by the kernel. As a memory
copy reads and writes each data, we measure the time it takes to copy a buffer of size
Bytes Read + Bytes Written

2 . This memory copy is performed by the cudaMemcpyDevice-
ToDevice function provided by the hardware manufacturer. The resulting bandwidth is
called the MemCopy bandwidth.
We compute an empirical upper limit on the kernel performance, the MemCopy

roofline, by assuming that the achieved GFLOPS/s of the kernel were run at full Mem-
Copy bandwidth. Thus, the MemCopy roofline is computed by scaling the GFLOPS/s
achieved by the kernel with the factor of MemCopy-bandwidth over effective kernel
bandwidth

MemCopy roofline = GFLOPS/s×MemCopy BW
effective Kernel BW . (6.3)

If the effective kernel bandwidth is optimal, the kernel performance graph lies exactly
on the MemCopy roofline. In this case, the kernel is limited by the memory bandwidth
or memory-bound. If a kernel performance is limited by the computations, the kernel
bandwidth will deviate from the MemCopy-bandwidth. The resulting performance graph
will be below the MemCopy roofline and the kernel is called compute-bound.
While the MemCopy roofline is a good upper bound on kernel performance whenever a

kernel is memory-bound, the upper bound is not very strict for compute-bound kernels.
Another approach to find a limiting factor for the achievable performance, is the shared
memory bandwidth (SM BW) estimated by

SM BW = #cores×#SIMD Lanes× ‖word in bytes‖ × clock frequency. (6.4)

For the specifications of the GTX 1080 we find the shared memory bandwidth to be

SM Bandwidth = 20× 32× 4bytes× 1.607GHz = 4113.92GB/s. (6.5)
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We scale the shared memory bandwidth by the performed work per memory access to
find the shared memory roofline

shared memory roofline = SM BW× flops per block
SM bytes loaded+stored per block . (6.6)

Both, the MemCopy roofline and the shared memory roofline yield upper bounds on the
kernel performance. We take the minimum of both rooflines to obtain the stricter bound
everywhere,

combined roofline = min (SM roofline,MemCopy roofline) . (6.7)

These performance bounds provide a sharper hardware limit on the performance than
the manufacturer’s performance numbers. Whenever the actual kernel performance is
close to the roofline we can be satisfied with the kernel efficiency. In compute bound cases
it is usually still impossible to reach the performance bound provided by the roofline
presented here.

6.3.3. Optimization of the split form volume kernel
We aim for an efficient GPU acceleration of the volume kernel computing the split form
volume integral as shown in (6.1). To get a grasp on the impact of different optimization
techniques, we start with a fresh, naive implementation. Sequentially, we introduce
optimization steps and document the impact on the kernel performance. The average
kernel runtime is measured over 1000 kernel executions for a sample test case. The
performance measure GFLOPS/s is obtained as the number of floating point operations
performed during each second of runtime. The optimization steps in each kernel version
are described later in this section. The optimization techniques are similar to previous
works, e.g. in [76] and subject to current research, e.g. [41, 231, 121].
To investigate the kernel efficiency for different configurations, we follow two strategies.

In one strategy, we aim for a similar amount of degrees of freedom. As observed in
Section 6.3.1, this leads to a smaller memory footprint for higher orders. Thus, the
second strategy aims to use a similar amount of GPU memory. In both cases, we
increase the polynomial order N and decrease the number of elements K to increase
the computational complexity of the volume integral. While the first strategy keeps the
algebraic problem size the same and the memory problem size decreases, the second
strategy increases the algebraic problem size to keep the memory problem size roughly
constant, relatively close the GPU memory of 8 GB for the GTX 1080. The exact
combinations of polynomial orders and number of elements can be found in Figure 6.6
for strategy 1 and in Figure 6.7 for strategy 2.

Optimization steps

• Version 1: Minimizing Global Loads / Utilizing Shared Memory
The first step in improving the kernel performance is to reduce the number of
costly loads from global GPU memory. To do this, we load all the necessary data
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only once. If the value is needed by several nodes of the element, we store it in
shared memory, which is fast but limited. If it is only needed by an individual
node, and thus only in one thread, we store it in a thread-local register. Also, data
from shared memory that is used multiple times is loaded to register memory only
once.

• Version 2: Declaring variables constant and pointers restricted
As an additional step to improve data storage and transfer, we declare all variables
that do not change their value during the computation as constant. We also set
all pointers passed to the kernel as restricted. We store constant values such as
1
2g and 1

4g as kernel infos. We also introduce an additional shared memory array
that stores the inverse of the water height 1/h for the flux calculations.

• Version 3: Multiple Elements per Block
One GPU thread block is typically able to handle multiple DG elements in parallel,
depending on the polynomial degree. To reduce the number of idle threads, we
introduce a parameter NE that sets the number of elements handled per thread
block. This number depends on the polynomial order and typically decreases with
N . Changes in this parameter can drastically impact the performance of the kernel,
so this is a parameter open to optimization.

• Version 4: Optimizing the Loops
To align memory access, adjacent threads should access adjacent global device
memory. This is ensured by accessing index i, j as i×(N+1)+j if j is the innermost
loop index. Also shared memory is accessed fastest, if the innermost loop is over
the outermost index. So if the shared variable is accessed as s_Q[ieLoc][i][j] the
inner loops should be over ieLoc, i, j in exactly this order. Also, loop unrolling is
added to the serial inner loops to give the compiler room for further optimization.

• Version 5: Avoid Bank Conflicts, add Padding
To avoid bank conflicts when accessing memory, we increase the size of the shared
memory arrays by one, if N + 1 is a multiple of 4. This is done by a variable
nglPad which is 1 or 0 depending on the polynomial degree and added to the last
entry of the shared memory arrays.

• Version 6: Split inner loop & Hide shared memory loads
We split the inner loop in two and compute the F and G fluxes and their contri-
bution to the volume integral separately. This potentially opens up room for the
compiler to optimize register loads and ease register pressure. We also change the
order of operations such that variables needed for the update of the time integral
such as J , bx or by are loaded before the flux derivatives are computed. This could
potentially hide load times behind the flux computations. We also introduce sep-
arate variables for the flux derivatives for F and G and then add them together in
the end in the update step.
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Finding the right number of elements per block

Kernel optimization step 3 has introduced the capability of assigning multiple DG ele-
ments to one thread block. Each thread block is able to handle 512 concurrent threads,
however it is not always optimal to use all of these. Due to limited register pressure
per work group, computation heavy kernels may be faster if there is room left for the
compiler to optimize the kernel. We introduce a parameter NE to denote the number of
DG elements assigned to each work group and optimize it by timing the volume kernel
for a sample test case. We want to note that in the full code there are several such
parameters. For instance, the surface integral has its own parameter of how many in-
terfaces are handled per work group. We show the runtimes of the volume kernel of
both the ESDGSEM as well as the standard DG volume kernel for varying numbers of
elements per thread block and different polynomial degrees in Tables 6.1, 6.2 and 6.3.
In many cases there are several sweet spots for the NE parameter. In the N = 5 case,
these values are multiples of 4, e.g. NE = 4, NE = 8 and NE = 12. One case where too
many elements in one thread block leads to suboptimal performance can be seen, e.g.,
for N = 7 in Table 6.2, where performance levels drop for NE > 6. In the N = 7 case,
any parameter choice NE < 6 leads to similar run time results. The higher the polyno-
mial degree, the less options for choosing the NE parameter are available. For N = 12,
the best choice is to use three elements per thread block. Choosing more elements is
impossible since four elements per thread block would result in 122 × 4 = 576 threads
which is more than the 512 the GPU can handle. For the best performance results an
optimal parameter NE must be found for each polynomial degree, as we have done for
the results shown in the following sections.

Single precision results

We show the achieved performance of each kernel version against the empirical roofline
(6.7) derived in Section 6.3.2. This highlights the impact of the different optimization
techniques applied to both, the standard DG volume kernel and the split form volume
kernel from (6.1). We, again, distinguish between the constant memory load and the
constant degrees of freedom strategies described above. The results for the different
kernel versions of the standard DGSEM volume kernel can be found in Figure 6.4,
whereas the results for the split form ESDGSEM volume kernel are shown in Figure 6.5.
The performance results show that both strategies lead to similar results. This should
be expected unless the different problem sizes lead the kernels to be compute bound for
one configuration but not the other. The notable exception is the performance of kernel
version V3 for the standard DGSEM, which shows a significant performance drop in case
the degrees of freedom are kept constant.
We also compare the final kernel versions for each volume integral and show operation

counts and runtimes for N = 1, . . . , 15 with similar degrees of freedom in Figure 6.6 and
for similar memory loads in Figure 6.7. For polynomial degrees N ≤ 7 the optimized
ESDGSEM volume kernel is memory bound and shows optimal performance. Increasing
the polynomial order further leads to stagnating performance as the kernel becomes
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NE ESDGSEM DGSEM
1 8.46 8.06
2 7.97 7.99
3 7.84 7.92
4 7.45 7.44
5 7.8 7.84
6 7.83 7.84
7 7.79 7.84
8 7.42 7.44
9 7.88 7.81
10 7.81 7.81
11 8.06 7.81
12 7.49 7.43
13 7.86 7.81
14 7.79 7.8

Table 6.1.: Split form and standard DG volume kernel runtimes for varying number of
elements per thread block NE at polynomial order of N = 5.

NE ESDGSEM DGSEM
1 7.19 7.2
2 7.18 7.19
3 7.19 7.18
4 7.18 7.18
5 7.2 7.17
6 7.2 7.18
7 7.33 7.18
8 7.23 7.18

Table 6.2.: Split form and standard DG volume kernel runtimes for varying number of
elements per thread block NE at polynomial order of N = 7.

NE ESDGSEM DGSEM
1 10.58 8.46
2 9.76 7.79
3 9.63 7.8

Table 6.3.: Split form and standard DG volume kernel runtimes for varying number of
elements per thread block NE at polynomial order of N = 12.
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compute bound. In contrast, the standard DGSEM volume kernel is memory bound even
for N = 15 and the achieved performances are close to the roofline for all polynomial
orders. As split form and standard kernels require the same amount of data reads and
writes, the runtime is basically identical in the memory bound region. For N > 7, the
split form volume kernel is compute bound and the runtimes deviate. The diverging
number of floating point operations becomes clearly visible in the required runtime for
the execution of the kernels. However, even though there is a difference by a factor of 6
in terms of floating point operations for the ESDGSEM compared to standard DG, we
only observe a runtime difference of a factor of 1.5 in the most computationally expensive
N = 15 case. Thus, the additional runtime requirement is not as harsh as it may first
seem.
Looking at the raw numbers of achieved performances in terms of GFLOPS/s, we see

that the split form kernel outperforms the standard volume kernel by factor of 3 to 5.5.
This suggests that the ESDGSEM volume kernel profits immensely from the computa-
tional capabilities of the GPU and is indeed a very good fit to that architecture. For the
very relevant cases of moderate polynomial orders N ≤ 7, the additional computational
complexity is completely mitigated by GPU processing power and there is virtually no
cost attached to all the benefits of the entropy stable DG variant.

Double precision results

We use a different test system with a Tesla V100 to run the ESDGSEM volume kernel in
double precision, using the same kernel versions as in the single precision case described
in Section 6.3.3. The performance of the different kernel versions is shown in Figure
6.8 for the standard volume integral kernel as well as for the entropy stable split form
kernel. Additional comparisons between standard and entropy stable volume kernels are
provided for the most optimized kernels in Figure 6.9. The elements per work block were
found by optimization for the GTX 1080 so there might be some room for improvement
for the Tesla V100. This could explain why the most optimized kernel is already compute
bound for N = 7 and why there is a significant drop in performance for N = 9. For
lower order N ≤ 7, the split form kernel performance is close to optimal.
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(a) Similar memory loads.
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(b) Same number of degrees of freedom.

Figure 6.4.: Comparison of all standard DGSEM volume kernel versions and the memory
roofline on a NVIDIA GTX 1080 in single precision for similar memory loads
and same number of degrees of freedom. A remarkable difference can be
observed for V3, which performs significantly better for the similar memory
loads case. These results were previously published by Wintermeyer et al.
in [254].
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(b) Same number of degrees of freedom.

Figure 6.5.: Comparison of all ESDGSEM volume kernel versions and the memory
roofline on a NVIDIA GTX 1080 in single precision for similar memory
loads and same number of degrees of freedom. The kernels show similar
performance levels regardless of the type of test. These results were previ-
ously published by Wintermeyer et al. in [254].
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N K
1 3,000
2 2,000
3 1,500
4 1,200
5 1,000
6 858
7 750
8 667
9 600
10 546
11 500
12 462
13 429
14 400
15 375
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Figure 6.6.: Number of operations and runtime comparison for one kernel execution be-
tween the split form volume integral computation of the ESDGSEM and the
volume integral of the standard DG method for similar number of degrees
of freedom on a NVIDIA GTX 1080 in single precisions. Polynomial order
N and number of elements K per spatial direction are listed in the top left
table. This result was previously published by Wintermeyer et al. in [254].
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N K
1 4,000
2 2,800
3 2,000
4 1,600
5 1,400
6 1,200
7 1,000
8 900
9 800
10 750
11 700
12 650
13 600
14 550
15 500
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Figure 6.7.: Number of operations and runtime comparison for one kernel execution be-
tween the split form volume integral computation of the ESDGSEM and the
volume integral of the standard DG method for increasing computational
complexity on a NVIDIA GTX 1080 in single precision. Polynomial order
N and number of elements K per spatial direction are listed in the top left
table. This result was previously published by Wintermeyer et al. in [254].
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(a) Standard DGSEM volume kernels.
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Figure 6.8.: Comparison of all standard DG and ESDGSEM volume kernel versions and
the memory roofline on a Tesla V100 in double precision for the similar
memory load case. These results were previously published by Wintermeyer
et al. in [254].
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Figure 6.9.: Number of operations and runtime comparison for one kernel execution be-
tween the split form volume integral computation of the ESDGSEM and the
volume integral of the standard DG method for increasing computational
complexity in double precision on the NVIDIA Tesla V100. Polynomial or-
der N and number of elements K per spatial direction are listed in the top
left table. This result was previously published by Wintermeyer et al. in
[254].
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6.3.4. Kernel overview
To get a better grasp on the runtimes of the various kernels of the ESDGSEM imple-
mentation, we use the NVIDIA profiler nvprof. With nvprof it is possible to measure the
runtimes of all the kernels. We use a dam break problem on a 200× 200 element mesh
for the polynomial degrees N = 5, 10, 15 and list the runtimes in Table 6.4. We note
that while the volume kernel is the most thoroughly optimized, similar steps as listed
in Section 6.3.3 have been performed for all the kernels. Without any optimization at
all, the kernel runtimes are completely dominated by the amount of reads and writes
to and from global GPU memory. Positivity preservation is turned off here as a special
optimization is required for an efficient implementation, especially regarding the evalua-
tion of minima, maxima and averages of element-wise quantities. The artificial viscosity
computed according to BR1 is essentially another DG scheme for the gradient. Thus,
the same concepts and optimization techniques can be applied for the viscous volume
and surface kernels that compute the gradient and the artificial viscosity.

Kernel N=5 N=10 N=15 Average
VolumeKernelSplitForm 8.99% 11.33% 12.92% 11.08%
SurfaceKernelGradient 11.54% 10.37% 10.57% 10.83%
UpdateKernel 8.44% 11.73% 12.02% 10.73%
VolumeKernelViscous 9.56% 11.13% 10.37% 10.35%
calcGradient 8.50% 9.64% 9.00% 9.05%
SurfaceKernel 8.57% 7.98% 8.23% 8.26%
scaleGradient 6.41% 7.25% 6.78% 6.81%
ShockCapturing 3.68% 5.83% 10.22% 6.58%
CollectEdgeDataGradient 8.31% 5.17% 4.63% 6.04%
CollectEdgeData 6.75% 5.57% 3.71% 5.34%
SurfaceKernelViscous 5.59% 5.07% 5.11% 5.26%
calcNumFluxes 3.60% 2.10% 1.34% 2.35%
calcNumFluxesViscous 3.54% 2.16% 1.31% 2.34%
calcNumFluxesGradient 3.44% 1.99% 1.26% 2.23%

Table 6.4.: Runtimes in relation to the total code runtime for a dam break problem on
a 200 × 200 element mesh for polynomial degrees N = 5, 10, 15. This result
was previously published by Wintermeyer et al. in [254].
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7. Numerical Tests

In this chapter we thoroughly validate the proclaimed theoretical properties of the
entropy conservative and entropy stable discontinuous Galerkin methods presented in
chapter 5. The numerical tests cover the high-order convergence, the conservation with
respect to conservative variables and entropy as well as the well-balanced property.
Additionally, we subject the scheme to a series of challenging test cases to study the
robustness and efficiency of the shock capturing capabilities and the positivity limiter.

We start by numerically verifying the theoretical properties in Section 7.1. Specif-
ically, we investigate the high-order convergence as well as the conservation of water
height and momentum (if the source term is zero). Furthermore, we show that the
scheme is well-balanced for a discontinuous bottom topography. Finally, we conclude
the numerical verification by showing that the scheme is entropy conservative or entropy
stable depending on the numerical flux.
In the following section, we present a test case from [163] that demonstrates that non-

entropy stable schemes such as the standard DGSEM can violate the entropy inequality
and produce incorrect solutions for certain configurations. This entropy glitch further
motivates the use of entropy stable discretizations.
To further explore the solution quality and robustness of the ESDGSEM with and

without artificial viscosity, we show results for several well-known test cases. Some of
these are quite challenging and require shock capturing and/or the positivity limiter
to succesfully finish the simulations. The test cases considered in this work are the
oscillating lake [263, 74, 36, 167, 242], the three mound dam break on a closed channel
[74, 36, 167, 25, 264] and the solitary wave run-up [19, 167, 205]. As all these tests are
designed on Cartesian meshes, we propose a parabolic dam break problem to test the
ESDGSEM on a curved mesh as well. We set up the geometry such that the mesh is
aligned with the curved dam. Then, we let the dam break partially in the center at
t = 0. To make the test even more challenging, we also run this test with a dry area on
the downstream side of the dam.
The time step in the computations is based on the CFL condition as in (5.106). If

artificial viscosity is turned on, the time step is computed according to (5.127). The
additional time step restrictions of the positivity limiter (5.139) are sufficient but not
necessary. Thus, we do not enforce them rigorously but rather adjust the time step if
needed. A more detailed discussion on choosing an appropriate time step for positivity
preserving schemes is given by Xing et al. [264].
All the examples have been computed on one or two NVIDIA GTX 1080 GPUs. If

multiple GPUs are used, they are parallelized by MPI such that each MPI rank hosts
one GPU via OCCA [172, 170].
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7.1. Numerical validation
We now validate the properties from Theorem 3 and Theorem 4 of the entropy conser-
vative (5.76) and entropy stable (5.98) schemes numerically. To verify the convergence,
conservation and the well-balanced property of the approximations we use a structured
curvilinear mesh depicted in Figure 7.1. As the theoretical findings are for the semi-
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Figure 7.1.: The curvilinear mesh used for verification of convergence, conservation, and
the well-balanced property.

discrete scheme, we use a fourth order low storage Runge-Kutta time integrator [31] for
these tests, to reduce the impact of the time integration.

7.1.1. Convergence
We first verify the high order convergence of the ECDGSEM and ESDGSEM. We use
the method of manufactured solutions to create an analytic solution

H(x, y, t) = h(x, y, t) + b(x, y) = 8 + cos(x) sin(y) cos(t),
u(x, y, t) = 0.5,
v(x, y, t) = 1.5.

(7.1)
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The additional source terms from the manufactured solution (7.1) are given by

m1 := Ht + u(Hx − bx) + v(Hy − by),
m2 := uHt + u2(Hx − bx) + uv(Hy − by) +Hx(H − b),
m3 := vHt + uv(Hx − bx) + v2(Hy − by) +Hy(H − b).

(7.2)

We solve this problem on the domain [−1, 1]2 with the smooth bottom topography

b(x, y) = 2 + 0.5 sin (2πx) + 0.5 cos (2πy) . (7.3)

The gravitational constant is set to g = 1. The derivatives of h and b are computed
analytically from the given solutions (7.1) and (7.3).
Varying the polynomial degree on the mesh given in Fig. 7.1, we observe exponential

convergence up to N = 16 (N = 15 for ESDGSEM) for ∆t = 1/2000 and N = 17
(N = 16 for ESDGSEM) for ∆t = 1/4000. At this point, the errors introduced by
the time integrator become dominant and the accuracy stagnates. We present semi-log
plots in Fig. 7.2. The order of converge is sub-optimal for odd polynomial degrees
for the entropy conserving scheme, a phenomenon previously observed in the literature,
e.g. [61, 78, 80, 83]. Both schemes demonstrate spectral accuracy for this smooth test
problem, however.
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Figure 7.2.: Semi-log plot shows the spectral convergence in space and fourth order ac-
curacy in time for the ECDGSEM and ESDGSEM schemes applied to a
smooth solution in Sec. 7.1.1. This result was previously published by
Wintermeyer et al. in [253].
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7.1.2. Conservation of mass, momentum and entropy
We now verify that the scheme is conservative for the water height and for the momen-
tum, if the source term is zero. We also show that the entropy is a conserved quantity
as well if the non-dissipative numerical interface fluxes (5.49) are used. Since entropy
conservation is a semi-discrete property here, we expect to observe dissipative effects due
to the time integrator. This dissipative effect is of the order of the time integration and
strongly dependent on the time step size. For general non-constant bottom topographies
the momentum equations become balance laws. In this case, we show that mass and
entropy are still conserved discretely, even for discontinuous bottom topographies that
align with element boundaries.

We demonstrate the described properties on a dam break problem on the domain
Ω = [−1, 1]2. The dam break is initialised along the vertical line x = 0 on the curvilinear
mesh shown in Fig. 7.1 with periodic boundary conditions and a polynomial degree of
N = 5. The gravitational constant is set to g = 1. The dam break problem uses the
initial conditions

h(x, y, 0) =
{

5− b(x, y) if x < 0
4− b(x, y) if x > 0

, u(x, y, 0) = v(x, y, 0) = 0, (7.4)

where b is defined in the following subsections.

Dam break over a flat bottom

We first consider the dam break (7.4) with a flat bottom topography, b ≡ 0, to verify con-
servation for water height, momentum and total energy. The changes in these quantities
after a simulation up to T = 1 are listed in Table 7.1. The error in the discrete energy
is proportional to the chosen time step and reflects the dissipative influence of the time
integrator. The differences in water height and momentum are on the order of machine
precision for all time step values. Shrinking the time step decreases the difference in the
discrete total energy, converging at the fourth order accuracy of the time integrator.
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∆t ∆h ∆hu ∆hv ∆Energy Temporal Order
1/1000 3.55E-14 2.66E-13 4.32E-17 4.79E-08 –
1/2000 2.49E-14 2.66E-13 9.95E-16 3.01E-09 3.99
1/4000 3.20E-14 2.66E-13 1.71E-15 1.89E-10 3.99
1/8000 3.20E-14 2.66E-13 1.46E-15 1.18E-11 4.00

Table 7.1.: Differences in water height, momentum, and total energy accumulated over
the entire domain at T = 1 compared to the initial condition for the
ECDGSEM approximation for a constant bottom topography. In the entropy
conservation results we observe the temporal accuracy of the time integrator.
This result was previously published by Wintermeyer et al. in [253].

Dam break over a discontinuous non-flat bottom

Now, we examine the scheme for a discontinuous non-constant bottom topography de-
fined by

b(x, y) =
{

2 + 0.5 sin (2πx) + 0.5 cos (2πy) , for element 2× 2
0, otherwise

, (7.5)

which is only non-zero in a single element. The momentum is no longer a physically
conserved quantity, but the water height and total energy should still exhibit the same
behaviour as for the flat bottom in the previous example. We show in Table 7.2 that the
error in the total energy shrinks with the fourth order accuracy of the time integrator
as the time step is refined. Also, we see that h is conserved to machine precision for all
time steps.

∆t ∆h ∆Energy Temporal Order
1/1000 5.33E-14 2.16E-08 –
1/2000 1.78E-14 1.35E-09 4.00
1/4000 2.84E-14 8.48E-11 3.99
1/8000 3.55E-15 5.32E-12 3.99

Table 7.2.: Differences in water height and total energy accumulated over the entire
domain at T = 1 compared to the initial condition for the ECDGSEM ap-
proximation for the discontinuous bottom topography (7.5). We observe the
temporal accuracy of the time integrator in the changes in total energy. This
result was previously published by Wintermeyer et al. in [253].
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7.1.3. Well-balanced property over a discontinuous bottom
We use a similar set up to show that both, the ECDGSEM and the ESDGSEM, are
well-balanced on curvilinear meshes and for discontinuous bottom topographies. We
configure a “lake at rest” test problem on the mesh from Figure 7.1 as in (2.37),

h+ b(x, y) = 5,
u = v = 0,

(7.6)

with the discontinuous bottom topography given in (7.5). The boundary conditions are
set to be periodic. The time step is fixed at ∆t = 1/1000. Table 7.3 shows that the L2-
error of the approximate total water height, H = h+ b, is of the magnitude of round-off
errors for both the ECDGSEM and the ESDGSEM for polynomial degrees 3, 4, 5.

N L2-error ECDGSEM L2-error ESDGSEM
3 8.84E-15 5.37E-15
4 8.75E-15 5.02E-15
5 1.85E-14 1.55E-14

Table 7.3.: L2-error of the approximate total water height, H = h + b, to the “lake at
rest” problem on the curvilinear mesh shown in Fig. 7.1 at T = 1. This
result was previously published by Wintermeyer et al. in [253].

7.1.4. Conservation and entropy stability of the positivity limiter
We also verify that the positivity limiter and the artificial viscosity maintain mass conser-
vation and entropy stability of the ESDGSEM. To guarantee that the positivity limiter
is activated, we use a dam break problem with periodic boundaries at y = ±20 and solid
walls at x = ±20 on the domain Ω = [−20, 20]2. The initial conditions are given by

h(x, y, 0) =
{

10.0, if x < 0
0.0, otherwise

,

u = v = 0.
(7.7)

We run the test at a polynomial order of N = 3 on a uniform Cartesian mesh with
50 × 50 elements. The viscosity coefficient is set to be ε0 = 0.1 and we use the usual
gravitational constant of g = 9.81. We observe a monotonically decreasing total entropy
in Figure 7.3. Also, the mass is conserved up to machine precision. This test cannot be
run without the positivity limiter, as it crashes immediately.
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Figure 7.3.: Slice of total water height at final time and entropy evolution over time for
a dam break problem with a dry zone approximated with the ESDGSEM
with artificial viscosity and positivity limiter at polynomial order N = 3.
This result was previously published by Wintermeyer et al. in [254].

7.2. Entropy glitch
We demonstrate the necessity of entropy stability to guarantee correct solutions on a
specific dam break problem. We set up a two-dimensional version of the one-dimensional
test case from [163] on a uniform Cartesian mesh, discretizing the domain Ω = [−1, 1]2
with 100 × 100 elements. The initial conditions contain a shock at x = 0 with water
heights hL = 1 and hR = 0.1 and zero velocities, i.e.,

h(x, y, 0) =
{

1.0, if x < 0
0.1, otherwise

,

u = v = 0.
(7.8)

For simplicity, the gravity constant is set to g = 10. We show results at T = 0.2 for
N = 1 as the entropy glitch even occurs for this most robust case. The standard DGSEM
quickly becomes unstable for higher polynomial orders due to the oscillations caused by
the entropy glitch. The positivity limiter is enabled to catch minor overshoots from the
oscillations. We compare slices of the solution at y = 0 with the solution provided in [163]
for the one dimensional case. The standard DGSEM solutions develop an unphysical
discontinuity, an “entropy glitch,” at x = 0 as shown in Figure 7.4. This glitch does not
appear in the entropy stable solutions of the ESDGSEM. Small oscillations are visible
at the shock front for both schemes. Plotting the evolution of total entropy for the
both schemes, we observe a build up for the standard DGSEM at around t = 0.02.
This unphysical build up does not occur for the ESDGSEM, which exhibits a strictly
decreasing total entropy. We conclude that the entropy build up is the cause of the
entropy glitch and, thus, the reason for the unphysical phenomena in the solution.
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Figure 7.4.: Entropy glitch test case for ESDGSEM and standard DGSEM for N = 1
at T = 0.2 sliced at y = 0 compared to a 1D reference solution from [163].
The standard DGSEM introduces an incorrect shock caused by unphysical
entropy production. This result was previously published by Wintermeyer
et al. in [254].

7.3. Oscillating lake
A very useful test case for verifying the correctness of positivity preserving schemes is
the oscillating lake. It features a parabolic bowl partly covered with moving water.
Despite the presence of large dry areas, it allows for an analytic solution. The solution
is initialized on the domain Ω = [−2, 2]2 by

h(x, y, 0) = max
(

0, σh0
a2 (2x cosωt+ 2y sinωt− σ) + h0 − b)

)
,

u(x, y, 0) = −σω sinωt,
v(x, y, 0) = σω cosωt.

(7.9)

with parabolic bottom topography

b(x, y) = h0
x2 + y2

a2 , (7.10)

with parameters h0 = 0.1, a = 1 σ = 0.5 and ω =
√

2gh0
a . Since the boundaries are

never reached during the simulation, we simply set them to solid walls. Since there are
no shocks, we set the viscosity parameter rather low at ε0 = 0.01. The gravitational
constant is set to g = 9.81. We use a uniform Cartesian mesh with 200 × 200 elements
for the computation.
This test case demonstrates the capabilities of a numerical method to accurately han-

dle wetting and drying as the fluid evolves. In theory, the lake should travel smoothly
around the center of the domain. We show a slice through y = 0 and the dynamically set
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viscosity coefficient at various times in Figure 7.5 and Figure 7.6. The viscosity aligns
well with the edges of the lake and the approximated solution matches the analytic one.
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(c) H-slice at y = 0, t = T/3.0
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Figure 7.5.: ESDGSEM approximation with artificial viscosity and positivity limiter for
the 2D oscillating lake at times t = T/6 and t = T/3 for N = 3. This result
was previously published by Wintermeyer et al. in [254].
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(a) H-slice at y = 0, t = T/2.0
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(b) Viscous coefficient ε, t = T/2.0
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(c) H-slice at y = 0, t = 2T
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(d) Viscous coefficient ε, t = 2T

Figure 7.6.: ESDGSEM approximation with artificial viscosity and positivity limiter for
the 2D oscillating lake at times t = T/2 and t = 2T for N = 3. This result
was previously published by Wintermeyer et al. in [254].

7.4. Solitary wave around a conical island
We test the entropy stable scheme for a propagating wave around a partly dry conical
island in the center of the domain Ω = [0, 25]× [0, 30]. The wave partly floods the island
in the center, flows around it and is reflected at the far end. This process is repeated
on the way back. Previous numerical studies of this test case are published in [167, 232]
and experimental results are shown in [21]. The initial wave η is defined by

η(x, y, 0) = A

h0
sech2(γ(x− xc)), (7.11)
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and set on top of a flat water level of h0 = 0.32. The initial conditions can be summarized
as

h(x, y, 0) = max (0, h0 + η(x, y, 0)− b(x, y)) ,

u(x, y, 0) = η(x, y, 0)
√
g

h0
,

v = 0,

(7.12)

where the parameters are set to A = 0.064m, xc = 2.5m, γ =
√

3A
4h0

. The conical bottom
topography is defined by

b(x, y) = 0.93
(

1− r

rc

)
if r ≤ rc, (7.13)

with r =
√

(x− xc)2 + (y − yc), rc = 3.6m and (xc, yc) = (12.5, 15). The boundaries are
set to solid walls. We use a uniform Cartesian mesh with varying spatial resolutions to
run the test up to a final time of T = 50 and show the results in Figure 7.7. The base
viscosity parameter is set to be ε0 = 0.1.
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Figure 7.7.: ESDGSEM approximation with artificial viscosity and positivity limiter for
the solitary wave runup for different grid resolutions with N = 3 at T = 50.
This result was previously published by Wintermeyer et al. in [254].
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7.5. Three mound dam break
The following test combines the flooding of dry areas with the strong shock of a dam
break. It is a very challenging example that thoroughly tests the shock capturing as
well as the positivity limiter. The dam break is set up at x = 16 on the domain
Ω = [0, 75]× [0, 45] with a water height of h = 1.875 to the left, and no water everywhere
else. There are also three mountains on the downstream side which will be (partially)
flooded during the simulation. Formally, the initial state is given by

h(x, y, 0) =
{

1.875, if x < 16
0, otherwise

,

u = v = 0.
(7.14)

The three mounds on the down hill side are given by

M1(x, y) := 1− 0.1
√

(x− 30)2 + (y − 22.5)2,

M2(x, y) := 1− 0.1
√

(x− 30)2 + (y − 7.5)2,

M3(x, y) := 2.8− 0.28
√

(x− 47.5)2 + (y − 15)2,

(7.15)

and the bottom topography is taken as the maximum elevation level of the three mounds

b(x, y) = max(0,M1(x, y),M2(x, y),M3(x, y)) (7.16)

The domain is closed off by solid wall boundaries on all four sides. The domain is
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(a) H, T = 0.0

Figure 7.8.: Initial condition for the dam break over three mounds N = 3.

discretized by a Cartesian mesh with 150× 100 elements. The combination of a strong
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shock and a dry area with steep bathymetry gradients requires a relatively high base
viscosity parameter at ε0 = 0.2. The usual gravitational constant g = 9.81 is used in this
simulation. The total water height at various times is shown in Figure 7.8 and Figure
7.9. The dynamic viscous coefficient ε is displayed as well. These plots show that the
shock capturing mechanism accurately tracks the shock fronts across the domain and
around the three mounds.
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Figure 7.9.: ESDGSEM approximation with artificial viscosity and positivity limiter for
the dam break over three mounds N = 3. This result was previously pub-
lished by Wintermeyer et al. in [254].
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Figure 7.10.: ESDGSEM approximation with artificial viscosity and positivity limiter
for the dam break over three mounds N = 3. This result was previously
published by Wintermeyer et al. in [254].
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Figure 7.11.: ESDGSEM approximation with artificial viscosity and positivity limiter
for the dam break over three mounds N = 3. This result was previously
published by Wintermeyer et al. in [254].
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7.6. Parabolic partial dam break
To test the ESDGSEM for challenging problems on a curved mesh as well, we set up a
parabolic dam break problem as in [253, 254]. The 40 by 40 element mesh is shaped such
that it aligns with a parabolic dam in the center of the domain. The initial condition
and the mesh are shown in Figure 7.12. The entropy stable scheme without shock

Figure 7.12.: Initial condition and mesh for the parabolic dam break test case.

capturing demonstrated increased robustness compared to a standard DGSEM, however,
it also contained oscillations in the shock region [253]. We demonstrate how the dynamic
artificial viscosity reduces the oscillations on the shock front. The initial setup is given
by

h =

10, if x < 1
25y

2 − 0.25

5, otherwise
,

u = v = 0.

(7.17)

The gravitational constant is set to g = 1.0 here. To remove any other influences, we use a
flat bottom topography for this test case. While the scheme still works for discontinuous
bottoms, the multitude of different effects makes it hard to observe the impact of the
artificial viscosity alone. We compare the results for N = 3 and N = 7 with and without
added stabilization and show the the calculated dynamic viscosity coefficients in Figure
7.13. The base viscosity coefficient is set relatively low at ε0 = 0.025. The stabilizing
impact of the artificial viscosity is clearly visible. Oscillations have dramatically reduced
at the shock front and also at the waves on the top side of the dam. The overshoot
spikes close to the center of the dam break are significantly smaller. From the dynamic
viscosity coefficient plots we can see that the shock front as well as the back waves at
the top are smoothed by viscosity, whereas other smooth regions are not impacted. It
is also visible that the viscosity works more accurately for finer resolutions. For N = 7,
not only less elements are affected, but less viscosity is needed overall.
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(a) Total water height H without AV, N = 3 (b) Total water height H without AV, N = 7

(c) Total water height H with AV, N = 3 (d) Total water height H with AV, N = 7
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Figure 7.13.: ESDGSEM approximation for the curved dam break with and without
artificial viscosity (AV) at N = 3 and N = 7 at T = 1.5. This result was
previously published by Wintermeyer et al. in [254].
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7.7. Wet/dry parabolic partial dam break
We modify the parabolic dam break problem from Section 7.6 to feature a dry area on
the downstream side. This modification makes it very challenging as it is a massive shock
hitting a dry area and requires the artificial viscosity as well as the positivity preserving
limiter. The initial setup is given by

h =

10, if x < 1
25y

2 − 0.25

0, otherwise
,

u = v = 0.

(7.18)

The same mesh shown in Figure 7.12 is used for this test as well. The gravitational
constant is kept at g = 1.0 but a slightly higher viscosity parameter is used with ε0 = 0.05
forN = 3. ForN = 7 the same viscosity parameter as in Section 7.6 is used at ε0 = 0.025.
The solution as well as the dynamic viscosity parameter are depicted for N = 3 in Figure
7.14 and for N = 7 in Figure 7.15. As the reduced water level on the downstream side
leads to a steeper dam break than in the completely wet case from Section 7.6, the final
time is reduced to T = 1.0 such that the water does not hit the back wall. The results
show that the dynamic viscosity is only applied to the critical regions.
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(a) Water height H, T = 0.5 (b) Water height H, T = 1.0
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Figure 7.14.: ESDGSEM approximation with artificial viscosity for the curved dam break
with zero water height on the downstream side at N = 3 on a 40×40 curved
mesh. This result was previously published by Wintermeyer et al. in [254].
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(a) Water height H, T = 0.5 (b) Water height H, T = 1.0
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Figure 7.15.: ESDGSEM approximation with artificial viscosity for the curved dam break
with zero water height on the downstream side at N = 7 on a 40×40 curved
mesh. This result was previously published by Wintermeyer et al. in [254].
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8. Tsunami Simulation

8.1. The 2004 Indian Ocean tsunami
On December, 26th, in 2004 at about 0:58 AM UTC one of the largest earthquakes ever
recorded took place about 80 km to the west of the coast of Sumatra and triggered the
Indian Ocean tsunami, one of the most devastating natural catastrophes of the modern
age. The tsunami hit the coasts of many countries of South and Southeast Asia. Over
the course of ten hours it reached coastal areas as far as East Africa. Wave heights of
30m and more were reported, the largest ones occurring on the shore of Sumatra. The
total casualties exceed 292, 000 people in twelve countries, Indonesia alone reporting over
200, 000 dead. Thailand, Sri Lanka and India were among the most affected countries,
as well [190].

The disaster was particularly devastating as the countries were wholly unprepared for
the magnitude and impact. Researchers have intensified the efforts to investigate the
phenomenon of tsunamis afterwards such that strategies and plans may be developed to
properly handle possible future tsunamis. Early detection as well as accurate predictions
of the tsunami arrival times would be immensely useful in this regard [197, 198, 97, 116].

8.2. The extended SW model
To simulate real world applications accurately, some extensions must be included in the
shallow water equations. Specifically, one must account for the bottom friction force
and the earth Coriolis force. Each is modelled with an additional source term in the
momentum equations. The fully extended shallow water equations for oceanic modelling
are then given by

ht + (hu)x + (hv)y = 0,

(hu)t +
(
hu2 + 1

2g h
2
)
x

+ (huv)y = −ghbx − τbx + fcorhv,

(hv)t + (huv)x +
(
hv2 + 1

2g h
2
)
y

= −ghby − τby − fcorhu.

(8.1)

The Coriolis parameter fcor = 2ω sin(φ) depends on the earth’s angular velocity

ω = 2π/(24× 3600) ≈ 7.27× 10−5 rad
s
,
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and the positional latitude φ. The additional friction term is formulated according to
Chézy-Manning-Strickler [93, 212, 75] and given by

τbx = n2g

h7/3

√
(hu)2 + (hv2)hu,

τby = n2g

h7/3

√
(hu)2 + (hv2)hv.

(8.2)

The Manning coefficient n is in this case chosen to be 0.025s/m1/3, a typical value for
sand. The Manning friction is negligibly small in the deep ocean, but larger close to the
shore. It offers a stabilizing effect on the waves hitting the shallow regions in the coastal
areas. The maximum absolute Manning frictions over ten hour simulations of the Indian
Ocean tsunami are depicted for polynomial degrees N = 3 and N = 7 in Figure 8.11.

8.3. The discrete setup
The mesh is constructed based on real world coastline data to adequately model the
simulation. The coastline data sets are available at the GSHHG data base [249]. We use
a quadrilateral mesh of the Indian Ocean with 4928 elements generated by SpecMesh
from D.A. Kopriva [136] as depicted in Figure 8.1.
Accurate real world bathymetry data is provided by the National Center for Environ-

mental Information (NOAA) in their ETOPO data sets [2]. The bathymetry interpolated
to the LGL nodes on the mesh in Figure 8.1 is shown for polynomial degrees N = 3
and N = 7 in Figure 8.2. The earthquake locations are estimated from tide gauge
measurements of the wave propagation [201]. The initial surface displacement caused
by the earthquake is then estimated according to the Okada model [191]. While the
five different earthquakes are slightly time delayed, they are aggregated for simplicity to
obtain an accurate representation of the surface displacement at t0. The full fault plane
data that is used as input for the Okada model can be found in [241, 116] and is listed
in Figure 8.3. The resulting initial free surface elevation estimated by the Okada model
is shown in Figure 8.4.
There are generally two different kind of boundaries in the Indian Ocean mesh. First,

there are the coastlines of Africa, India, Thailand and Indonesia as well as the islands
Madagascar, Sri Lanka and Sumatra. These boundaries are treated numerically as
solid wall boundaries such that approaching waves are reflected. Then, there are the
open ocean boundaries to the south and south-east. These must be treated as outflow
boundaries such that there are no unphysical reflections back into the domain. If the
outer state is fixed at still sea level, (h0, 0, 0), over the course of the simulations, the
entropy stable numerical flux constructed in (5.101) handles this correctly. There are no
visible reflections over the course of the ten hour simulation.
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Figure 8.1.: Quadrilateral mesh of the Indian Ocean. Coordinates are given in longitude
and latitude. Depicted are also the six gauge measurement stations on the
Indian coast used for the comparison of tsunami arrival times. The mesh
was provided by D.A. Kopriva [136].
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(a) N = 3.

(b) N = 7.

Figure 8.2.: Bottom topography of the Indian Ocean interpolated for N = 3 and N = 7.
The data was obtained by interpolating of the ETOPO data sets [2].

147



CHAPTER 8. TSUNAMI SIMULATION

Figure 8.3.: Specifications of the five earthquakes that caused the Indian Ocean tsunami
[116]. This data is used as the input for the Okada model to approximate
the initial surface displacement [191].
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Figure 8.4.: Free surface elevation with initial surface displacement in meters approxi-
mated according to the Okada model. Also shown are the six tidal gauge
measurement stations used validation.
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8.4. Results
We simulate the first ten hours of the Indian Ocean tsunami but we put a special
emphasis on the early stages of the tsunami. This is when the coast interaction with
Sumatra takes place and also when the waves first reach Sri Lanka and the Indian coast.
Thus, we show free surface elevations for polynomial orders N = 3 and N = 7 at 20,40,80
and 160 minutes after the earthquake in Figure 8.5, Figure 8.6, Figure 8.7 and Figure
8.8. These results compare well to previously reported results [75] and are consistent to
each other. While both approximations track the wave front similarly, the high-order
approximation provides more detail on the flow behaviour, particularly behind the shock
front. This can be observed well at t = 40 in Figure 8.6 and also at t = 80 in Figure 8.7.
We are also interested in evaluating certain characteristics of the tsunami over the

entire ten hour runtime of the simulation to get a general impression on its behaviour.
First, we are interested in approximating the tsunami arrival times after the initial
earthquake everywhere in the Indian Ocean. Here, the tsunami arrival time is defined as
the first time the free surface elevation has been perturbed by 0.05m. We show a map
of arrival times in Figure 8.9. We observe that the propagation of the wave is slowed
down in shallower regions and at the coast.
Also, we are interested in the maximum free surface elevations in every region that

was reached during the full simulation. These values are reported in Figure 8.10. We
see particularly high waves occur not only in coastal areas, but also in regions where the
water is relatively shallow in the center of the domain. The waves propagating through
the deep ocean to the south of the earthquake do not reach similar heights.
Lastly, we record the maximum Manning friction over the course of the simulation.

This source term was introduced to model the dampening effect of coastal areas, so it is
not surprising to see the largest values in specifically these regions. The achieved values
are shown in Figure 8.11
We validate the approximations of the ESDGSEM by comparison to available tidal

gauge measurements from several research stations on the Indian coast provided by the
CSIR, the Indian National Institute of Oceanography [48]. The research stations we use
are shown in Figure 8.1. The approximated free surface elevations over the course of
the ten hour simulation are shown in Figure 8.12. As all the tidal gauge stations are
located near the coast, measurements after the initial wave are relatively inaccurate.
This is because the wave runup onto the shore is not well modeled in the shallow water
equations. To allow for realistic wave breaking other models such as the Boussinesq
equations must be considered [101]. In this ESDGSEM approximations, we simply model
the shore interactions by solid wall boundary conditions. These are reflective and not
absorbing as real coast line beaches may be. This is mitigated by the Manning friction
that dampens the waves close to the shore. As this is a rather crude approximation, we
cannot expect accurate results near the shore after arrival of the initial wave. However,
the results in Figure 8.12 show that tsunami arrival times are approximated reasonably
well, albeit not always with the correct magnitude of the wave. Similar results were
presented by Gandham [75], reaffirming the suspicion that these inaccuracies are due to
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(a) t = 20, N = 3.

(b) t = 20, N = 7.

Figure 8.5.: ESDGSEM approximation of the free surface elevation during the Indian
Ocean tsunami at t = 20min after the initial earthquake for polynomial
orders N = 3 and N = 7. The scale for the free surface height is set to
[−0.4, 0.4]m for comparison to previously published results by Gandham
[75].

the shallow water model applied to coastal regions.
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(a) t = 40, N = 3.

(b) t = 40, N = 7.

Figure 8.6.: ESDGSEM approximation of the free surface elevation during the Indian
Ocean tsunami at t = 40min after the initial earthquake for polynomial
orders N = 3 and N = 7. The scale for the free surface height is set to
[−0.4, 0.4]m for comparison to previously published results by Gandham
[75].
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(a) t = 80, N = 3.

(b) t = 80, N = 7.

Figure 8.7.: ESDGSEM approximation of the free surface elevation during the Indian
Ocean tsunami at t = 80min after the initial earthquake for polynomial
orders N = 3 and N = 7. The scale for the free surface height is set to
[−0.4, 0.4]m for comparison to previously published results by Gandham
[75].
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(a) t = 160, N = 3.

(b) t = 160, N = 7.

Figure 8.8.: ESDGSEM approximation of the free surface elevation during the Indian
Ocean tsunami at t = 160min after the initial earthquake for polynomial
orders N = 3 and N = 7. The scale for the free surface height is set to
[−0.4, 0.4]m for comparison to previously published results by Gandham
[75].
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(a) N = 3.

(b) N = 7.

Figure 8.9.: Arrival times in minutes over a ten hour simulation of the Indian Ocean
tsunami.
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(a) N = 3.

(b) N = 7

Figure 8.10.: Maximum surface elevations over the ten hour simulation approximated
by the ESDGEM and for polynomial orders N = 3 and N = 7. The scale
for the free surface height is set to [0.0, 1.0]m for comparison to previously
published results by Gandham [75].
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(a) Maximum Manning Friction N = 3.

(b) Maximum Manning Friction N = 7.

Figure 8.11.: Maximum Manning friction in m2/s2 over the ten hour simulation of the
Indian Ocean Tsunami depicted on a logarithmic scale.
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(a) Approximated arrival times in Kochi.
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(b) Approximated arrival times in Mormugao.
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(c) Approximated arrival times in Chennai.
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(d) Approximated arrival times in Okha.
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(e) Approximated arrival times in Visakhapatnam.
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(f) Approximated arrival times in Tuticorin.

Figure 8.12.: ESDGSEM approximation of the arrival times at different Gauge stations
on the Indian coast and polynomial degrees N = 3 and N = 7. Measure-
ments are presented for the free surface elevation level in cm.
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9. Conclusion
The aim of this thesis was the development of a novel entropy stable discontinuous
Galerkin method for the two dimensional shallow water equations. A necessary require-
ment for the scheme was also that it is well-balanced and applicable for unstructured
curved quadrilateral meshes.

The general strategy was to use a special DG variant with SBP operators to dis-
cretize a specific split formulation of the shallow water equations. In combination with
special entropy stable numerical interface fluxes and a consistent source term approxi-
mation, this led to an entropy stable method. Also, the method is capable of preserving
the steady state solution of the “lake-at-rest” for all time and is, thus, well-balanced.
These properties hold for arbitrary bottom topographies as well, as long as the mesh is
constructed such that element interfaces align with any discontinuities.
The downside of this approach is, that a direct DG discretization of the split form

shallow water equations on curved geometries leads to distinct volume integrals for all
the split form terms. For each of the momentum equations alone there are forty different
volume integrals. However, a remarkable equivalency found by Gassner et al. [82] allowed
us to reformulate the split form discretization into the flux differencing framework of
Carpenter and Fisher [64, 32]. This reformulation replaces the many distinct volume
integrals by just one volume integral in each direction, albeit at the cost of evaluation a
more expensive curvilinear numerical two-point flux.
This newly found method, the ESDGSEM, was extended with a shock capturing

mechanism. We introduced artificial viscosity to the system and showed that for a
specific choice of gradient variables and interface coupling according to Bassi and Rebay
[8] maintains the entropy stability of the scheme. To limit the influence of the artificial
viscosity to the shock regions we added a detector based on the works of Persson and
Peraire [202], which has proven to accurately detect shock fronts and problematic regions
in the solution. Furthermore, we added a positivity limiter as proposed by Zhang et al.
[271]. In this context, the contribution of this thesis lies in the proof that the positivity
limiter maintains non-negative water heights for the entropy stable numerical flux used
in the ESDGSEM on curved meshes, under certain additional time step restrictions. We
also verified that the positivity limiter adheres to the entropy stability principle.
The ESDGSEM naturally inherits the outstanding parallelizability of discontinuous

Galerkin methods as no additional communication between elements is required. From
an implementation standpoint, the only changes that must be made to an existing
DGSEM implementation to obtain the ESDGSEM is to replace the volume integral
by its flux differencing counterpart and use the entropy stable numerical flux on the
interfaces. In the volume integral, this leads to an increased computational load for each
nodal value due to the more costly evaluation of the curvilinear numerical two-point
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fluxes. The high computational complexity combined with the strong parallelizability
made the ESDGSEM a perfect fit for modern GPU architectures.

Thus, we implemented the ESDGSEM on GPUs via the OCCA framework by Medina
et al. [172]. Support for multiple GPUs is handled by MPI, connecting several CPU
cores such that each acts as host for one GPU. We described implementation techniques
that optimize the volume kernel for GPUs and compared the impact of each step on the
kernel performance for both, the ESDGSEM and the standard DGSEM. Our analysis
showed that both methods are memory bound for polynomial orders N ≤ 7, at least
on the GTX 1080 and the Tesla V100 we used for the computations. Thus, for these
modern GPUs, there is virtually no price to pay for the entropy stable and well-balanced
approximation provided by the ESDGSEM.
Finally, we used the newly developed ESDGSEM on GPUs to simulate the 2004 Indian

Ocean tsunami. Although the mesh used in the computation was significantly smaller
than the one used by Gandham [75], the results are similar. We obtained good approxi-
mations for the tsunami arrival times across six different tidal measurement stations on
the Indian coast. We note that the simulation was quickly unstable (at t < 1 for the
standard DGSEM if the same parameters were used otherwise and even for very low
CFL numbers).

To develop global atmospheric models, the shallow water equations have been extended
to the sphere [200]. While discontinuous Galerkin methods exists for the spherical model,
e.g. [84, 85, 166, 145], it would be interesting to see if an entropy stable method can
be developed following the strategies presented in this work. The first step would, of
course, be to find a suitable entropy function that takes into the account the additional
source terms which stem from the geometry as well as Coriolis forces.
The ESDGSEM itself could also benefit from further optimization. The added artificial

viscosity presented in this work effectively mitigates the oscillations in the presence of
shocks. However, it is not only computationally expensive but also may reduce the
stable time step. It may be worthwhile to pursue other strategies to find an entropy
stable shock capturing technique to increase the robustness of the scheme with less
added computational cost.
Also, it would be useful to enhance the scheme such that it fulfills the extended well-

balanced property. This includes steady state solutions that are combinations of the
“lake-at-rest” and dry areas. The ESDGSEM is only capable of maintaining this steady
state if the transition from wet to dry aligns with element interfaces. One strategy to
approach this is presented by Bonev et al. [20], who replace the derivative operator for
those elements with a special local derivative operator based on the wet/dry state of each
node. While our experimentation with this operator worked well for the steady state
solution, it proved less robust for some of the wet/dry test cases shown in this work.
Also, since the new operator does not have the SBP property, it does not maintain
the entropy stability of the scheme. Thus, further investigation into well-balanced and
entropy stable schemes for partially flooded elements could prove beneficial.
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A. Appendix

A.1. Proof of Lemma 1
Proof. We start by showing that the total energy is an entropy function e = 1

2hu
2 +

1
2gh

2 + ghb for the one dimensional shallow water equations. The entropy variables ~q in
terms of the conservative variables ~w are

~q := ∂e

∂ ~w
=
(
g(h+ b)− 1

2u
2

u

)
=

g(w1 + b)− 1
2

(
w2
w1

)2

w2
w1
.

 (A.1)

To show convexity, we differentiate again to compute the Hessian of the entropy function,

∂e

∂ ~w2 =

g + w2
2

w3
1
−w2
w2

1
−w2
w2

1

1
w1

 . (A.2)

The matrix is clearly symmetric. We check for positive definiteness by computing the
minors. The first minor, g+ w2

2
w3

1
is positive for w1 = h > 0. For the second minor we see

det

g + w2
2

w3
1
−w2
w2

1
−w2
w2

1

1
w1

 = g
1
w1

(A.3)

which is positive for the physical assumpation w1 = h > 0. Contracting the system
(2.29) by the entropy variables (2.43) we find

~qT
(
~fx − ~S

)
=
(
g(h+ b)− 1

2u
2, u

)(( hu

hu2 + 1
2gh

2

)
x

+
(

0
ghbx

))

= g(h+ b)(hu)x −
1
2u

2(hu)x + u(hu2)x + g

2u(h2)x + ghubx

=
(
ghu(h+ b) + 1

2hu
3
)
x

= Fx,

(A.4)

where we applied the product rule to get the last equality. Expressing the conservative
variables in terms of entropy variables we find

w1(~q) = 1
g
q1 + 1

2g q
2
2 − b

w2(~q) = w1q2 = 1
g
q1q2 + 1

2g q
3
2 − bq2.

(A.5)
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The associated entropy Jacobian H = ~w~q is

H := 1
g

(
1 q2
q2 q1 + 3

2q
2
2 − gb

)
= 1
g

(
1 u
u gh+ u2

)
. (A.6)

In the case of b = 0, we note that h = 1
g q1 + 1

2g q
2
2 and the flux expressed in terms of the

entropy variables is
~f(~q) =

(
hq2

hq2
2 + g

2h
2

)
. (A.7)

The derivatives of h and h2 = 1
g2

(
q2

1 + q1q
2
2 + 1

4q
4
2

)
with respect to the entropy variables

are
h~q = 1

g
(1, q2) ,

h2
~q = 1

g2

(
2q1 + q2

2, 2q1q2 + q3
2

)
.

(A.8)

With (A.8), we find that the derivatives of the fluxes with respect to the entropy variables
are

~f~q = 1
g

(
q2 gh+ q2

2
q2

2 + 1
2(2q1 + q2

2) q3
2 + 2ghq2 + q1q2 + 1

2q
3
2

)

= 1
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(
u gh+ u2

u2 + gh u3 + 3ghu

) (A.9)

We use (A.6) and (A.9) in (2.8)

~w~q ~qt + ~f~q ~qx = 1
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x

= ~wt + ~fx.

(A.10)

Thus, we demonstrated that the requirements (2.7) and (2.8) are fulfilled. For the second
part of the Lemma we examine the entropy potential Φ and the entropy flux potential
Ψ. The entropy potential and entropy flux potential are

Φ = 〈q, w〉 − e

= gh(h+ b)− 1
2hu

2 + hu2 − 1
2hu

2 − 1
2gh

2 − ghb

= 1
2gh

2,

(A.11)
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and
Ψ = 〈q, f〉 − F

= ghu(h+ b)− 1
2hu

3 + u(hu2 + 1
2gh

2)− 1
2hu

3 − ghu(h+ b)

= 1
2gh

2u.

(A.12)

We verify that the pair satisfies property (2.27) for the purely conservative equations
(i.e. b = 0) by first expressing the entropy potential and the entropy flux potential in
terms of the entropy variables

1
2g q

2
1 + 1

2g q1q
2
2 + 1

8g q
4
2 = 1

2gh
2 − 1

2hu
2 + 1

8gu
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q2Φ = 1
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3
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5
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= 1
2gh

2u = Ψ.

(A.13)

Taking the derivatives with respect to the entropy variables we see

Φq1 = 1
g
q1 + 1

2g q
2
2 = h− 1

2gu
2 + 1

2gu
2 = h = w1,

Φq2 = 1
g
q1q2 + 1

2g q
3
2 = hu = w2,

(A.14)

which is exactly the symmetrization property of the entropy potential (2.27). Similarly
we see that the derivatives of the entropy potential flux with respect to the entropy
variables are exactly the physical fluxes,

Ψq1 = 1
g
q1q2 + 1

2g q
2
2 = hu = f1,

Ψq2 = 1
2gh

2 + hu = f2.

(A.15)

�

A.2. Proof of Lemma 2
Proof. We prove that the total energy is an entropy function

e = 1
2h
(
u2 + v2

)
+ 1

2gh
2 + ghb, (A.16)

for the two dimensional shallow water equations. We express the entropy variables ~q in
terms of the conservative variables ~w:

~q := ∂e

∂ ~w
=
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 (A.17)
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The Hessian of this entropy function is

∂e
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and is obviously symmetric. Checking the minors once more, we find the first minor to
be positive, g + w2

2
w3

1
+ w2

3
w3

1
> 0. For the second minor we see
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(A.19)

which is positive for w1 = h > 0. Finally, for the determinant of the Hessian itself we
see

det
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Thus the Hessian is SPD by Sylvester’s criterion and e is convex. Contracting the system
(2.33) by the entropy variables (2.48) we recover the divergence of the entropy fluxes
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(A.21)

The conservative variables in terms of entropy variables are

w1(~q) = 1
g
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2
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(A.22)
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The associated entropy Jacobian H = ~w~q is

H := 1
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In the case of b = 0, we note that h = 1
g q1 + 1

2g
(
q2

2 + q2
3
)
and the fluxes expressed in

terms of the entropy variables is
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The derivatives of h and h2 = 1
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(A.25)

With (A.25), we find that the flux derivatives with respect to the entropy variables are
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and also for ~g
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
= 1
g

 v vu v2 + gh
uv u2v + ghv v2u+ ghu

v2 + gh uv2 + ghu v3 + 3ghv

 ,
(A.27)

To show that these terms lead to the symmetric form (2.25), we must show that the terms
contract to the correct terms from the original equation, i.e. ~wt, ~fx and ~gy, individually.
We use the entropy Jacobian (A.23) along with the flux Jacobians (A.26) and (A.27) and
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inspect the terms individually, starting with wqqt. We use the product rule to recover
the time derivative of the conservative variables,

~w~q ~qt = 1
g

1 u v
u gh+ u2 uv
v uv gh+ v2


g(h+ b)− 1

2u
2 − 1

2v
2

u
v


t

=

 h
hu
hv


t

= ~wt. (A.28)

For the fluxes we see

~f~q ~qx = 1
g

 u u2 + gh uv
u2 + gh u3 + 3ghu u2v + ghv
uv u2v + ghv uv2 + ghu


g(h+ b)− 1

2u
2 − 1

2v
2

u
v


x

=

 hu
hu2 + g

2h
2

huv


x

= ~fx,

(A.29)

and

~g~q ~qy = 1
g

 v vu v2 + gh
uv u2v + ghv v2u+ ghu

v2 + gh uv2 + ghu v3 + 3ghv


g(h+ b)− 1

2u
2 − 1

2v
2

u
v


y

=

 hv
huv

hv2 + g
2h

2


y

= ~gy.

(A.30)

Thus, we have shown both requirements (2.24) and (2.25) and conclude that the total
energy is an entropy function for the two dimensional shallow water equations. The
entropy potential and entropy potential fluxes are in this case found to be

Φ = 〈~q, ~w〉 − e

= gh(h+ b)− 1
2hu

2 − 1
2hv

2 + hu2 + hv2 − 1
2hu

2 − 1
2hv

2 − 1
2gh

2 − ghb

= 1
2gh

2

(A.31)

and
Ψf =〈q, f〉 − F

=ghu(h+ b)− 1
2hu

3 − 1
2huv

2 + u(hu2 + 1
2gh

2) + huv2

− ghu(h+ b)− 1
2hu

3 − 1
2huv

2

=1
2gh

2u

(A.32)
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as well as
Ψg =〈q, g〉 − G

=ghv(h+ b)− 1
2hu

2v − 1
2hv

3 + hu2v + hv3 + 1
2gh

2v

− ghv(h+ b)− 1
2hu

2v − 1
2hv

3

=1
2gh

2v.

(A.33)

We verify that the triplet (Φ,Ψf ,Ψg) satisfies property (2.27) for the purely conservative
equations (i.e. b = 0) by first expressing the entropy potential and the entropy potential
flux in terms of the entropy variables. We start with the entropy potential Φ,

Φ = 1
2g q

2
1 + 1

2g q1
(
q2

2 + q2
3

)
+ 1

8g
(
q2

2 + q2
3

)2

=1
2gh

2 − 1
2h(u2 + v2) + 1

8g (u2 + v2)2

+ 1
2h
(
u2 + v2

)
− 1

4g
(
u2 + v2

)2
+ 1

8g
(
u2 + v2

)
=1

2gh
2.

(A.34)

We proceed with the entropy potential fluxes

Ψf = q2Φ = 1
2g q

2
1q2 + 1

2g q1q2
(
q2

2 + q2
3

)
+ 1

8g q2
(
q2

2 + q2
3

)2

= 1
2gh

2u,

(A.35)

and
Ψg = q3Φ = 1

2g q
2
1q3 + 1

2g q1q3
(
q2

2 + q2
3

)
+ 1

8g q3
(
q2

2 + q2
3

)2

= 1
2gh

2v.

(A.36)

Taking the derivatives with respect to the entropy variables we see

Φq1 = 1
g
q1 + 1

2g
(
q2

2 + q2
3

)
= h = w1,

Φq2 = 1
g
q1q2 + 1

2g q
3
2 + 1

2g q2q
2
3 = hu = w2,

Φq3 = hu = w2,

(A.37)

which is exactly the symmetrization property of the entropy potential (2.27). Similarly
we see that the derivatives of the entropy potential fluxes with respect to the entropy
variables are exactly the physical fluxes,

(Ψf )~q = ~f,

(Ψg)~q = ~g.
(A.38)

�
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A.3. Proof of Lemma 4
Proof. Without loss of generality, we examine Eαβ. The discrete mean value of the
correction term is given by

N∑
i=0

N∑
j=0

(Eαβ)ij ωiωj

=
N∑
i=0

N∑
j=0

(
−

N∑
m=0

Dimαmjβmj + αij

N∑
m=0

Dimβmj + βij

N∑
m=0

Dimαmj

)
ωiωj

=−
N∑
j=0

(
N∑
i=0

N∑
m=0

(Bim −Dmiωm)αmjβmj
)
ωj

+
N∑
j=0

(
N∑
i=0

αij

N∑
m=0

(Bim −Dmiωm)βmj
)
ωj

+
N∑
i=0

N∑
j=0

(
βij

N∑
m=0

Dimαmj

)
ωiωj

=
N∑
j=0

N∑
m=0

αmjβmj

(
N∑
i=0

Qmi

)
ωj −

N∑
j=0

(
N∑
i=0

αij

N∑
m=0

Qmiβmj

)
ωj

−
N∑
j=0

(
N∑
i=0

(Bii)αijβij
)
ωj +

N∑
j=0

(
N∑
i=0

αij (Bii)βij
)
ωj

+
N∑
i=0

N∑
j=0

(
βij

N∑
m=0

Dimαmj

)
ωiωj

=−
N∑
j=0

(
N∑
i=0

αij

N∑
m=0

Qmiβmj

)
ωj +

N∑
i=0

N∑
j=0

(
βij

N∑
m=0

Qimαmj

)
ωj

=
N∑
j=0

(
−

N∑
m=0

βmj

N∑
i=0

αijQmi +
N∑
i=0

βij

N∑
m=0

Qimαmj

)
ωj = 0,

(A.39)

where we used ωiDim = Bim − Dmiωm, the SBP properties from Corollary 1 and the
structure of B. In the last line we see that the two inner sums are identical apart from
swapped i,m notation and thus cancel out. �
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A.4. Proof of Lemma 8
Proof. We prove the simplified flux difference formula (4.37) in i-direction and fix j. We
recall the definition of the high-order flux extension on curvilinear grids (4.33),

F̃ 0,j := F̃0,j ,

F̃ i,j :=
N∑
m=i

i−1∑
`=0

2Q`m
(
F#

(`,m),j +G#
(`,m),j

)
,

F̃N+1,j := F̃N,j ,

(A.40)

and consider the special cases i = 0 and i = N first. For i = 0 we have

F̃ 1,j − F̃ 0,j =
N∑
m=1

2Q0m
(
F#

(0,m),j +G#
(0,m),j

)
− F̃0,j ,

=
N∑
m=0

2Q0m
(
F#

(0,m),j +G#
(0,m),j

)
,

(A.41)

where we use the fact that Q00 = −1
2 . For i = N we have

F̃N+1,j − F̃N,j = F̃N,j −
N−1∑
m=0

2QmN
(
F#

(m,N),j +G#
(m,N),j

)
,

= F̃N,j +
N−1∑
m=0

2QNm
(
F#

(m,N),j +G#
(m,N),j

)
,

=
N∑
m=0

2QNm
(
F#

(m,N),j +G#
(m,N),j

)
,

(A.42)

where we use the fact that QNN = 1
2 . For i = 1, . . . , N − 1 we examine ~̃F i+1,j to get

F̃ i+1,j =
N∑

m=i+1

i∑
`=0

2Q`m
(
F#

(`,m),j +G#
(`,m),j

)
,

=
N∑
m=i

i∑
`=0

2Q`m
(
F#

(`,m),j +G#
(`,m),j

)
−

i∑
`=0

2Q`i
(
F#

(`,i),j +G#
(`,i),j

)
,

=
N∑
m=i

i−1∑
`=0

2Q`m
(
F#

(`,m),j +G#
(`,m),j

)

+
N∑
m=i

2Qim
(
F#

(i,m),j +G#
(i,m),j

)
−

i∑
`=0

2Q`i
(
F#

(`,i),j +G#
(`,i),j

)
,

=F̃ i,j +
N∑
m=0

2Qim
(
F#

(i,m),j +G#
(i,m),j

)
,

(A.43)
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where we used that Qij = −Qij for i 6= j and Qii = 0 for i = 1, . . . , N − 1 in the last
step. Thus, we are able to generalise the calculation of the flux difference for i = 0, . . . N

F̃ i+1,j − F̃ i,j =
N∑
m=0

2Qim
(
F#

(i,m),j +G#
(i,m),j

)
. (A.44)

We then premultiply by the inverse of M to obtain the desired flux differencing result
(4.37) for

N∑
m=0

M−1
ii ∆imF̃mj ,

F̃ i+1,j − F̃ i,j
ωi

= 1
ωi

N∑
m=0

2Qim
(
F#

(i,m),j +G#
(i,m),j

)
. (A.45)

An identical strategy can be used in the j index direction to rewrite the flux difference
in the y−direction,

N∑
m=0

M−1
jj ∆jmG̃im, in the similar indicial form (4.38). �
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