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Abstract

In this article, we address a major outstanding question of probabilistic Bayesian epistemology: ‘How

should a rational Bayesian agent update their beliefs upon learning an indicative conditional?’. A number

of authors have recently contended that this question is fundamentally underdetermined by Bayesian

norms, and hence that there is no single update procedure that rational agents are obliged to follow upon

learning an indicative conditional. Here, we resist this trend and argue that a core set of widely accepted

Bayesian norms is sufficient to uniquely identify a single rational updating procedure for this kind of

learning. Along the way, we justify a privileged formalisation of the notion of ‘epistemic conservativity’,

offer a new analysis of the Judy Benjamin problem and emphasise the distinction between interpreting the

content of new evidence and updating one’s beliefs on the basis of that content.

1 Introduction

Indicative conditionals have been the source of much trouble for logicians, epistemologists, cognitive scientists

and philosophers of language. Although they appear to play a central role in logical and uncertain reasoning,

there is still no general consensus regarding their semantics or even whether they should be thought of as

propositions with determinate semantics at all (see e.g. Adams (1975), Edgington (1995), Bennett (2003)). It is

unsurprising then that the problem of assigning probabilities to indicative conditionals is equally controversial

(see e.g. Lewis (1976), Hajek (2012), Skovgaard Olsen et al. (2016)), and thus that the relationship between

indicative conditionals and the norms of Bayesian epistemology remains largely opaque (see e.g. Douven

(2015)). In this paper, we aim to clarify this relationship by addressing a specific question: How should

an agent change their beliefs when they learn an indicative conditional from a perfectly reliable information

source? This question is already the focus of a large literature (see e.g. Nayak et al. (1996), Uffink (1995),

Grove & Halpern (1997), van Fraassen (1981), van Fraassen et al. (1986)). However, in a recent survey,
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Douven (2012) concludes that all extant accounts are problematic (for a much more detailed discussion, see

Douven & Romeijn (2012)), and hence that a proper general account of updating probabilistic belief states

by indicative conditionals is yet to be formulated.

The most important existing approach to modeling the learning of indicative conditionals utilizes the

formal machinery of probabilistic distance-minimization. The idea is this: An agent has beliefs about a

set of propositions. These beliefs are represented by a prior probability distribution P . She then learns

new information which imposes a constraint on the posterior distribution Q. If the learned information is

the conditional A→ B, then (it is commonly assumed) the new distribution has to satisfy a conditional

probability constraint of the form Q(B|A) = p′ ≤ 1. The posterior probability distribution is then found by

minimizing some distance measure between Q and P . Intuitively, the idea is that the agent should stay as

close as possible to their prior belief state whilst ensuring that the constraint implied by the new information is

satisfied. This can be made formally precise by utilizing probabilistic distance measures such as the Kullback-

Leibler divergence (see e.g. van Fraassen (1981); Diaconis & Zabell (1982)). It turns out that minimizing the

Kullback-Leibler divergence between the prior and posterior distributions is equivalent to conditionalizing on

the material conditional A ⊃ B when the learned conditional probability constraint is extreme (Q(B|A) = 1).

Thus, the distance-minimization approach reduces to simply conditionalizing on the material conditional in

the simplest case where the learned indicative conditional is interpreted as imposing an extreme conditional

probability constraint.

However, this approach has been strongly criticized by Douven (2012), Douven & Romeijn (2012) and

Douven & Dietz (2011), who forward a range of examples where conditionalizing on the material conditional

appears to yield strange and intuitively irrational updates. Furthermore, van Fraassen (1981) considers cases

where the learned indicative conditional is naturally interpreted as imposing a non-extreme conditional prob-

ability constraint of the form Q(B|A) = p′ ∈ (0, 1). In these cases, minimizing the distance between the

prior and posterior distributions will generally diverge from simply Jeffrey conditionalizng on the material

conditional, and it is unclear which probabilistic distance measure (if any) yields the intuitively rational up-

date. Since these more general cases appear to involve learning experiences which are not easily describable in

terms of conditionalization or Jeffrey conditionalization, they take us beyond the confines of standard Bayesian

epistemology and seem to fall outside the purview of traditional Bayesian norms.

In this article, we defend (a particular variant of) the distance-minimization approach against Douven

et al.’s purported counter examples and argue that conditionalizing on the material conditional produces

reasonable and well motivated results in cases where the learned conditional is assumed to impose an extreme

conditional probability constraint (Section 2). We then move on to consider the more general situation where
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the learned conditional is allowed to impose a non-extreme constraint. We argue that in this case agents

should be guided by a norm of epistemic conservativity, and compare ways in which this norm can be made

precise. Specifically, we contend that epistemically conservative agents should update on new evidence by

minimizing a particular kind of probabilistic distance measure (an ‘f -divergence’) between their prior and

posterior credences (Section 3). In Section 4 we present an analysis of van Fraassen’s Judy Benjamin example

in terms of f -divergence minimization and note that different f -divergences give rise to different updates, none

of which is obviously superior to its competitors. In order to resolve this impasse, we then appeal to resources

from epistemic utility theory to identify a particular f -divergence (the Kullback-Leibler divergence) as the

unique probabilistic distance measure that agents should utilize if they hope to achieve maximally accurate

beliefs (Section 5). In Section 6 we utilize these considerations to develop a novel solution to the Judy

Benjamin problem (and to learning conditionals in general), compare that solution to competing approaches

from the recent literature, and draw an important and hitherto neglected distinction between the question of

how rational agents should update their beliefs after learning indicative conditionals and the question of how

rational agents should interpret the content of newly learned conditionals. We conclude by describing how

contemporary work in the psychology of reasoning can be usefully brought to bear on the latter question, and

raise some outstanding issues to be addressed in future work (Section 7).

2 The Material Conditional: A Defence

We are interested here in the question of how an epistemic agent should update their degrees of belief after

learning an indicative conditional of the form ‘If A, then B’. The existing literature on this question typically

operates on the basis of a couple of idealizing assumptions. Firstly, it is standardly assumed that the informa-

tion source from which the agent learns the conditional is completely trustworthy and reliable, so the agent

doesn’t have to worry about the possibility of being misled.1

Secondly, the agent has to translate the content of the learned conditional into a constraint on their

posterior credences. In the kind of learning experience to which (Jeffrey) conditionalization is standardly

applied, the agent learns that a given truth-functional2 proposition H is either more or less likely than they

had previously thought, and this effectively imposes a constraint on the posterior probability of H (e.g.

P ∗(H) = 1).3 In contrast, the dominant approach to modeling the learning of conditionals assumes that

1See Bovens & Hartmann (2003) for models of learning from partially reliable information sources. Note, however, that these
models only consider the learning of truth functional propositions and cannot be straightforwardly applied to the learning of
conditionals.

2A terminological clarification: by ‘truth functional proposition’, we mean either an atomic proposition or a proposition that
can be generated from atomic propositions by the application of the standard truth-functional operations of classical logic (i.e.
negation, disjunction and conjunction).

3We denote the posterior probability distribution which results from (Jeffrey) conditionalization by P ∗.
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learning the conditional ‘If A, then B’ imposes a constraint, not on the probability of any single truth-functional

proposition, but rather on the conditional probability of the consequent given the antecedent, P ∗(B|A). This

assumption is intuitively justified by the influential idea, commonly referred to as ‘Adams’ thesis’, that the

probability of the indicative conditional ‘If A, then B’ is given by the corresponding conditional probability

P (B|A). Although Lewis’ (1976) famous triviality results cast significant doubt on the general viability of

this position, it still seems plausible to contend that learning the indicative conditional ‘If A, then B’ from

a trustworthy source imposes a constraint on P ∗(B|A). For the majority of the paper, we will accept this

standard assumption as a given, and assume that epistemic agents can legitimately interpret the content of

newly learned indicative conditionals as constraints on the posterior conditional probability of the consequent

given the antecedent.4

Given these idealizations, the question of how one should update their credences after learning the con-

ditional ‘If A, then B’ reduces to the problem of how one should update their credences upon learning a

new value for the conditional probability P ∗(B|A). For example, one might learn that the probability of it

raining, given that there is a thunderstorm, is much lower than previously imagined, or that one’s chances

of developing heart disease given that one eats a lot of red meat is higher than expected. In the simplest

case, one would learn that P ∗(B|A) = 1, i.e. that A’s truth provides an absolute guarantee of B’s truth. But

this is equivalent to the constraint that P ∗(A ∧ ¬B) = 0, since both constraints simply state that there’s no

possibility of A being true and B being false. And of course, this means that the agent has really just learned

the truth functional proposition ¬A ∨ B =df A ⊃ B and hence that Bayesian norms demand that she should

update her credences by conditionalizing on A ⊃ B. So from a Bayesian perspective, there is no puzzle in

the extreme case in which the learned conditional is interpreted as imposing the constraint P ∗(B|A) = 1.

The agent is duty bound to conditionalize on A ⊃ B, on pain of being susceptible to diachronic Dutch books

(Lewis (1999)) and failing to minimize expected inaccuracy (Greaves & Wallace (2006)).

Although the situation looks clear cut from a Bayesian perspective, a number of authors have criticized

the view that conditionalizing on the material conditional provides a generally acceptable update procedure

for agents who learn indicative conditionals. In the rest of this section, we provide a response to these

criticisms and show that conditionalizing on the material conditional performs remarkably well in a number

of purportedly problematic cases.5

4As well as being standard in the philosophical literature (see e.g. van Fraassen (1981), van Fraassen et al. (1986), Douven &
Dietz (2011), Douven & Romeijn (2012)), this assumption is also widely (although not universally) accepted in the psychology
of reasoning, where it has played an important role in the empirical study of dynamic conditional inferences (see e.g. Oaksford
and Chater (2007), Fernbach and Erb (2013)). But we stress again that we are concerned here only with how learning indicative
conditionals causes a rational agent to alter their credences over time, and take no definite position regarding the controversial
issue of how agents should attach probabilities to indicative conditionals at a given moment in time. We remain completely
agnostic about Adams’ thesis for the purposes of this paper.

5A similar conclusion is independently supported by Trpin (2018).
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2.1 The Case of Two Propositions

We begin with some formal preliminaries. An agent has beliefs about the propositions A and B. We introduce

binary propositional variables A and B (in italic script) which have the values A and ¬A, and B and ¬B

(in roman script), respectively. These beliefs are represented by a prior probability distribution P over the

possible values of A and B. In order to specify P , it is sufficient to fix the prior probability

P (A) = a, (1)

and the conditional probabilities

P (B|A) = p , P (B|¬A) = q. (2)

With this, the prior probability distribution over the variables A and B is given by

P (A,B) = a p , P (A,¬B) = a p

P (¬A,B) = a q , P (¬A,¬B) = a q , (3)

where we have used the shorthand notations P (A,B) for P (A ∧ B) and x for 1− x.

Next, the agent learns the natural language indicative conditional A→ B. For now, we assume that the

agent (legitimately) interprets the content of this conditional as imposing the extreme conditional probability

constraint P ∗(B|A) = p′ = 1, which, as we noted above, is equivalent to learning

MC (Material Conditional): A ⊃ B, which is equivalent to ¬A ∨ B.

She then updates her probability distribution using Bayesian conditionalization and arrives at the new prob-

ability distribution P ∗(·) = P (·|¬A ∨ B). This distribution is given by (all proofs are in Appendix A):

P ∗(A,B) =
a p

a p+ a
, P ∗(A,¬B) = 0

P ∗(¬A,B) =
a q

a p+ a
, P ∗(¬A,¬B) =

a q

a p+ a
(4)

From this, we can show that the following proposition holds.

Proposition 1 (Simple Conditional – MC) An agent considers the propositions A and B and has a prior

probability distribution P according to eqs. (3) (with 0 < a, p, q < 1) defined over the corresponding proposi-

tional variables. Learning MC and updating by Bayesian conditionalization then implies that the probability
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of A decreases and that the probability of B increases, i.e. P ∗(A) < P (A) and P ∗(B) > P (B).

Proposition 1 was first noticed by Popper & Miller (1983), and several authors have since cited the result

as symptomatic of the representational deficiency of the material conditional. Specifically, it has been widely

contended that it is implausible that the probability of the antecedent should decrease whenever we learn

an indicative conditional, and hence that conditionalizing on the material conditional cannot be the rational

update procedure for this kind of learning. There are a couple of pertinent observations to be made here.

Recall that, following orthodoxy, we are working under the assumption that learning the indicative condi-

tional ‘If A, then B’ imposes a constraint on the conditional probability P ∗(B|A). We have noted that, in the

special case where this constraint is extreme, i.e. of the form P ∗(B|A) = 1, standard Bayesian epistemology

requires us to conditionalize on the proposition A ⊃ B. Now, there are at least two lessons that one could

plausibly draw from Proposition 1 (which have not yet been distinguished in the literature).

Firstly, one could draw the conclusion that conditionalizing on A ⊃ B is not generally the rational response

to learning the constraint P ∗(B|A) = 1. Alternatively, one could draw the conclusion that it is not generally

legitimate to interpret the content of the learned conditional as an extreme conditional probability constraint.

The former conclusion concerns the norms of Bayesian epistemology, and the latter concerns the meaning of

conditionals. In recent work, these two conclusions have been unduly conflated, which has unsurprisingly led

to significant confusion.

We take the latter conclusion to be entirely uncontroversial and obvious from reflection on the actual use

of conditionals in everyday discourse and reasoning. When somebody warns you that ‘if you smoke, you’ll

get lung cancer’, you typically interpret the content of that statement not as ‘if you smoke, you will certainly

get lung cancer’, but rather as ‘if you smoke, you will have a significantly increased risk of lung cancer’, i.e.

you interpret the conditional as imposing a non-extreme conditional probability constraint. In light of this

observation, it is clear that conditionalizing on the material conditional is not, in full generality, the rational

update procedure for agents who learn indicative conditionals (since it will not generally respect the learned

constraint). But, to the best of our knowledge, nobody is actually defending the position that conditionalizing

on the material conditional is always the rational response to learning an indicative conditional. Clearly,

this update procedure is meant only for the special case in which the learned conditional can be legitimately

interpreted as imposing an extreme conditional probability constraint. So Proposition 1 is only problematic

if, in those special cases, it is sometimes intuitively irrational to become less confident in A after learning

‘If A, then B’. If that were the case, then the import of Proposition 1 would be far greater than previously

recognised, since it would seem to constitute an argument against Bayesian conditionalization in general.

Fortunately, it is, in full generality, intuitively rational to become less confident in A when we learn that A’s
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truth counts as a guarantee of B’s truth.

To see this, consider the four maximal conjunctions or ‘possible worlds’ over which P is defined (A ∧ B,

A ∧ ¬B, ¬A ∧ B and ¬A ∧ ¬B). When we learn the indicative conditional ‘If A, then B’, interpreted as the

constraint P ∗(B|A) = 1, what we learn is that the actual world is not a world at which A is true and B is

false. Thus, we rule out half of the logically possible worlds at which the antecedent is true. Any probability

mass that was stored in those worlds will then have to be transferred to other worlds, some of which will be

worlds at which the antecedent is false. So it is unsurprising that the antecedent becomes less probable when

we learn the indicative conditional. For, the learned conditional explicitly rules out some of the ways in which

the antecedent can be true. This is just an instance of the general phenomenon that the more informative

a proposition is, the less likely it is to be true. When we learn the indicative conditional, the antecedent

becomes more informative (and hence more easily falsifiable) and less probable. This is an intuitive and

unproblematic observation. More generally, it is clear that when the agent interprets the learned evidence as

imposing the constraint that P ∗(B|A) = 1, they have really just learned the proposition A ⊃ B, and all the

usual rationality arguments for conditionalization apply. There is nothing special about this case that renders

conditionalization inapplicable.

However, Douven & Dietz (2011), Douven (2012) and Douven & Romeijn (2012) have presented a range of

cases which purport to show that, even in the special case where the learned conditional can be legitimately

interpreted by an extreme conditional probability constraint, conditionalizing on the material conditional

leads to problematic results. We turn now to providing a detailed analysis of these examples. In what

follows, we call conditionals which can be interpreted as imposing extreme conditional probability constraints

‘strict conditionals’, and accept Douven et al.’s presumption that the conditionals learned in the prospective

counterexamples can reasonably be construed as strict (even if this might reasonably be deemed an unrealistic

idealization).

2.2 The Case of More than Two Propositions

Douven and collaborators have presented several examples that are meant to show that conditionalizing on

the material conditional leads to counter-intuitive consequences, even when the learned conditional is strict.

Specifically, the following example is supposed to show that learning a strict conditional can sometimes

cause the probability of the antecedent to increase, which, in light of Proposition 1, is incompatible with

conditionalizing on the material conditional.

The Ski Trip Example. Harry sees his friend Sue buying a ski outfit. This surprises him a bit, because he

did not know that she had any plans to go on a ski trip. He knows that she recently had an important
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exam and thinks it unlikely that she passed it. Then he meets Tom, his best friend and also a friend

of Sue’s, who is just on his way to Sue to hear whether she passed the exam, and who tells him: “If

Sue passed the exam, her father will take her on a ski vacation.” Recalling his earlier observation,

Harry now comes to find it more likely that Sue passed the exam. So in this example upon learning

the conditional information Harry should intuitively increase the probability of the antecedent of the

conditional.6 (Douven & Dietz, 2011)

We begin by noting that in the ski trip example, the agent entertains three propositions, and not only two

as in Proposition 1. What’s more, the agent does not only learn an indicative conditional, but also another

proposition, i.e. that Sue bought a new ski outfit. Clearly, a Bayesian agent also has to conditionalize on this

information (a fact that was not taken into account by Douven & Dietz (2011), Douven (2012) and Douven &

Romeijn (2012)). If one does so, then (modulo one further plausible assumption about Harry’s prior beliefs)

one obtains the intuitively correct result, as we will show now.

We introduce three binary propositional variables: The variable E has the values E: “Sue passed the

exam”, and ¬E: “Sue did not pass the exam”. The variable S has the values S: “Sue’s father invites her for

a ski trip”, and ¬S: “Sue’s father does not invite her for a ski trip”. The variable B has the values B: “Sue

buys a new ski outfit”, and ¬B: “Sue does not buy a new ski outfit”. We represent Harry’s prior and posterior

credences by the probability distribution P and P ∗, respectively. From the story, it is clear that Harry has

low initial credence in B, E and S. Thus, we can safely assume that both P (¬E,S,B) and P (¬E,¬S,B) are

quite close to zero.7 During the course of the example, Harry learns two new pieces of evidence:

Ski1: B

Ski2: E ⊃ S.

Armed with the assumption that both P (¬E,S,B) and P (¬E,¬S,B) are small, it is possible to show (see

Appendix B.1) that under a wide class of plausible formal reconstructions of the example, conditionalizing on

Ski1 and Ski2 will lead Harry to increase his credence in E, which is exactly the desired result. The probability

of the antecedent will increase when we conditionalize on both the material conditional and the auxiliary

proposition B. Thus, the ski trip example does not undermine the view that upon learning a (strict) indicative

conditional, a Bayesian agent should simply conditionalize on the corresponding material conditional. Previous

analyses of this example simply failed to take into account the fact that, in the example, the agent learns

more than just the conditional.8 It is unsurprising that when this extra information is neglected, the resulting

6Note that the interpretation of the conditional as strict in this example can easily be made more plausible if we imagine that
the learned conditional is rather “If Sue passed the exam, her father will definitely take her on a ski vacation.”

7Since it is specified that P (S) and P (B) are both low and the variables S and B are obviously (strongly) positively correlated.
8One might plausibly contend that B should be treated as part of Harry’s background knowledge, rather than something he

8



update seems irrational. More generally, the ski trip example does nothing to cast doubt on the view that

upon learning a strict indicative conditional, the antecedent will never increase in probability. Certainly, the

net effect of a compound update in which a strict conditional is learned together with some other propositions

might be to increase the probability of the antecedent (as shown above), but that increase is not due to the

learning of the conditional itself. Rather, it occurs in spite of the learning of the conditional, and is due

entirely to the acquisition of additional evidence (in this case, the auxiliary proposition B).

Let us now turn to the second prospective counterexample:9

The Sundowners Example. Sarah and her sister Marian have arranged to go for sundowners at the West-

cliff hotel tomorrow. Sarah feels that there is some chance that it will rain, but thinks they can always

enjoy the view from inside. To make sure, Marian consults the staff at the Westcliff hotel and finds out

that in the event of rain, the inside area will be occupied by a wedding party. So she tells Sarah: “If

it rains tomorrow, then we cannot have sundowners at the Westcliff.” Upon learning this conditional,

Sarah sets her probability for sundowners and rain to 0, but does not change her probability for rain.

Thus, in this example, learning the conditional information has the effect of leaving the probability of

the antecedent unchanged.10 (Douven & Romeijn, 2012)

To begin, we introduce two binary propositional variables. The variable R has values R: “It will rain

tomorrow”, and ¬R: “It will not rain tomorrow”. The variable S has the values S: “Sarah and Marian have

sundowners”, and ¬S: “Sarah and Marian do not have sundowners”. According to the story, Sarah learns

Sun1: R→ ¬S. We assume that Sarah represents this indicative conditional by the material conditional

R ⊃ ¬S, which is logically equivalent to ¬R ∨ ¬S.

Assuming that 0 < P (R), P (S|R), P (S|¬R) < 1, we can then use Proposition 1 and conclude that P ∗(R) <

P (R), which conflicts with our intuitive judgment that the probability of rain should remain unchanged. At

first glance, this example is more difficult to analyse than the ski trip example because it seems that Sarah

only learns the conditional, and there is no additional evidence to explain why her update should conflict with

Proposition 1.

explicitly updates on when he learns the conditional. But this poses no problems for our analysis. We can also assume that
Harry starts with a credence function P , which he later updates after learning B (which will then form part of his background
knowledge), and only subsequently comes to learn the conditional. Because conditionalization is a commutative operation (the
order in which propositions are learned makes no difference to the posterior function we end up with), this is formally equivalent
to treating B as part of the learning experience in the example. Our argument still works in exactly the same way.

9Note that Douven & Romeijn (2012) also consider a third salient example (the ‘driving test example’) that is structurally
analogous to the ski trip example, but in which it is intuitively rational for the agent to decrease their credence in the antecedent
of the learned conditional. Since this does not yield any direct conflict with Proposition 1, we do not address it here.

10Again, we can make the analysis of the example in terms of strict conditionals more plausible by changing the learned
conditional to “If it rains tomorrow, then we definitely cannot have sundowners at the Westcliff.”
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In order to see what’s gone wrong here, it is helpful to consider what motivates the intuition that Sarah’s

credence in R should remain fixed across the learning experience. Importantly, we have stipulated that Sarah

trusts Marian completely and so will assume that Marian has a good reason for asserting the conditional, for

example that there is going to be a wedding party at the hotel. What’s more, Sarah will certainly consider this

reason (whatever it may be) to be probabilistically independent of R. Clearly, whether or not the sisters can

have sundowners inside in the event of rain has nothing to do with whether it will in fact rain, and this is why

we think Sarah’s credence in R should remain unchanged. Whatever caused Marian to assert the conditional

has nothing to do with the possibility of rain. But the example, as presented by Douven & Romeijn (2012) and

formalized above, implicitly assumes this background structure in order to motivate the desired verdict (that

Sarah’s credence in R shouldn’t change), whilst neglecting it entirely when it comes to formally modeling

Sarah’s update in terms of conditionalizing on the material conditional. When this background structure

is properly taken into account, conditionalizing on the material conditional will straightforwardly yield the

intuitive verdict, as we will shortly show.

Another way to illustrate the reasoning above is to employ the distinction between the semantic and

pragmatic content of an utterance (see e.g. Szabo (2005)). Roughly, the semantic content is the content

that is explicitly conveyed by the speaker’s words whereas the pragmatic content encompasses all the extra

content that would need to be conveyed in order for the utterance to be felicitous in the given context, or

that would automatically be inferred by any competent listener upon hearing the utterance in that context.

Thus, when Sarah says ‘If it rains tomorrow, then we cannot have sundowners at the westcliff’, the semantic

content of her utterance can be interpreted by the material conditional R ⊃ ¬S. However, it is clear that upon

hearing this utterance any competent listener would automatically infer that in the event of rain, something

will prevent them from having Sundowner’s, and this therefore forms part of the pragmatic content of the

utterance. Alternatively, if we assume that what makes an utterance felicitous is its accordance with Grice’s

maxims (1975), then we can invoke the maxim of quantity – ‘make your contribution as informative as is

required’ – to make the same point. Part of what Marian needs to convey in order for the conversation to be

successful is that in the event of rain, something will stop them from having sundowners inside. So in order for

her utterance to be felicitous, this must be part of its content. Specifically, it must be part of the utterance’s

pragmatic content. The plausibility of this contention is further reinforced when we notice that in ordinary

discourse, it would seem strange to distinguish between the content of the utterances ‘If it rains tomorrow,

we cannot have sundowners’ and ‘It it rains tomorrow, something will prevent us from having sundowners’.

In order to model all the relevant aspects of Sarah’s epistemic state, we introduce a third propositional

variable D (for ‘disabler’) with the values D: “In the event of rain, something (e.g. a wedding party) will
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prevent us from having sundowners inside”, and ¬D: “In the event of rain, nothing will prevent us from

having sundowners inside”. Just like R, D is a disabler for S: R will prevent Sarah and Marian from having

the sundowners outside, and D will prevent them having sundowners inside. If we make the simplifying

assumption that Sarah is certain that the only thing that could prevent them from having sundowner inside is

a wedding party, then D can be identified with the proposition ‘there will be a wedding party at the hotel’.11

It is part of Sarah’s background knowledge that there will be no sundowners if R and D are instantiated, i.e.

R ∧D→ ¬S. (5)

In probabilistic terms, this means that the prior probability distribution satisfies the constraint P (¬S|R,D) = 1

and hence

P (R,S,D) = 0. (6)

Furthermore, it is clear (as we argued above) that Sarah regards R and D as being probabilistically indepen-

dent. Whether or not it will be possible to have sundowners inside in the event of rain is entirely independent

of the question whether or not it will rain in the first place. When Marian learns that a wedding party

has reserved the inside area in the event of rain, she doesn’t take this information to render the prospect of

rain any more or less likely then before. Indeed, this is exactly the intuition that motivates the claim that

Sarah should not change her credence in R when she learns the conditional. We can also employ the causal

structure of the example to make the same point. Intuitively, both R and D causally influence S, but they do

not causally influence one another (and there is no obvious non-trivial common cause). Applying the causal

Markov condition to this intuitive picture of the causal structure licenses the conclusion that R and D are

probabilistically independent (see e.g. Sprites et al. (2000)).

Finally, the example assumes that Sarah considers Marian to be a perfectly reliable information source and

interprets the conditional R→ ¬S as a strict conditional. Hence, she ensures that the posterior conditional

probability of S given R is zero (which is ensured by conditionalizing on R ⊃ ¬S). But, as we noted above, if

Sarah truly regards Marian as perfectly reliable, then of course she should additionally conditionalize on D, i.e

she should conditionalize on there being some reason that they won’t be able to have sundowners inside in the

event of rain. If she leaves the probability of D below 1, then in her posterior beliefs, she will simultaneously

be certain that sundowners is impossible in the event of rain and be uncertain about whether there is any

reason that they can’t have sundowners inside in the event of rain. Clearly, when Marian tells Sarah that they

can’t have sundowners in the event of rain, part of the content of her assertion is that there is some reason

11Maybe Sarah does not think about a wedding party when she makes up her prior beliefs. But she will certainly take into
account that there is some disabler that will have the result that they cannot have sundowners inside. Indeed, the story specifies
that Sarah ‘thinks they can always enjoy the view from inside’, i.e. her prior for D is low.
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that they can’t have sundowners inside (what else could have caused her to assert the conditional?), and Sarah

needs to take this into account when she changes her beliefs. Specifically, as well as conditionalizing on Sun

1, Sarah should additionally conditionalize on

Sun2: D

Together, these observations are sufficient to obtain the following result.

Proposition 2 (Sundowners Example – MC) An agent considers the propositions R,S and D and has

a prior probability distribution P defined over the corresponding propositional variables. R and D are proba-

bilistically independent and P satisfies eq. (6). Learning Sun1 and Sun2 and updating by Bayesian condi-

tionalization then implies that P ∗(R) = P (R).

The crucial point here is that when Marian asserts the conditional ‘If R then not-S’, part of the conversa-

tional implicature of her assertion is that there is some reason that they won’t be able to have sundowners in

the event of rain, and it is part of the sisters’ epistemic common ground that any such reason will be entirely

independent of whether it will in fact rain. This is what motivates the intuition that Sarah should not change

her credence in rain after learning the conditional. It is not surprising that when we omit these important

structural features from our probabilistic representation of Sarah’s epistemic state (and her subsequent up-

date), we obtain peculiar results. Proposition 2 shows that when all of this extra structure is properly taken

into account, Sarah’s learning experience can be adequately modeled in a Bayesian framework. Overall, we

have reached the following conclusions:12

1. Updating by conditionalizing on the material conditional leads to perfectly plausible results if there are

only two propositions involved.

2. If more than two relevant propositions are involved, then these have to be accounted for and modeled in

a proper way. More specifically, the ski trip example turns out to be unproblematic if one conditionalizes

not only on the material conditional but also on the relevant additional evidence. To properly account

for our intuitions, it is also important to take account of the probabilistic independencies that are implied

by the intuitive causal structure of the examples.

3. Conditionalizing on the material conditional also produces the desired result in the sundowners example.

In this case the extra proposition D is not explicitly stated, but its presence is implicitly assumed in

12We should stress here that these conclusions do not commit us to the view that natural language indicative conditionals
can in general be adequately modelled by the material conditional. Indeed, these conclusions are all perfectly compatible with
Adams’ thesis (according to which the probability of an indicative conditional is given by the relevant conditional probability,
and not the probability of the material conditional), since conditionalising on the material conditional is equivalent to imposing
an extreme conditional probability constraint on the posterior distribution. Furthermore, the next section makes clear that the
material conditional is fundamentally incapable of adequately modeling the learning of non-strict conditionals.
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motivating the ‘intuitively correct’ response to the learning experience.

3 Non-Strict Conditionals and Distance-Minimization

In the previous section, we defended the position that conditionalizing on the material conditional is generally

the rational update procedure for learning strict indicative conditionals (although there may be situations

in which the material conditional does not exhaust the conversational implicature of the strict conditional,

in which case the implicit (pragmatic) content of the assertion should also be taken into account). For the

remainder of the paper, we will focus on the more general case in which the learned conditional is non-strict,

i.e. it cannot be legitimately interpreted by an extreme constraint of the form Q(B|A) = 1, but only by a

non-extreme constraint of the form Q(B|A) = p′ ∈ (0, 1). By way of illustration, consider van Fraassen’s

famous Judy Benjamin example:

The Judy Benjamin Example. A soldier, Judy Benjamin, is dropped with her platoon in a territory that

is divided in two halves, Red Territory and Blue Territory, respectively, with each territory in turn

being divided in equal parts, Second Company area and Headquarters Company area, thus forming four

quadrants of roughly equal size. Because the platoon was dropped more or less at the center of the

whole territory, Judy Benjamin deems it equally likely that they are in one quadrant as that they are

in any of the others. They then receive the following radio message: “I can’t be sure where you are. If

you are in Red Territory, then the odds are 3 : 1 that you are in Second Company area.” After this,

the radio contact breaks down. Supposing that Judy accepts this message, how should she adjust her

degrees of belief? (van Fraassen, 1981)

Here, Judy learns a conditional that should be interpreted as telling her to increase her estimate of the

conditional probability of being in the Second Company area given that she is in Red Territory, but not all

the way to one. Clearly, it would be a mistake to conditionalize on the material conditional ‘Red Territory

⊃ Second Company area’, since that would result in mistakenly ruling out the possibility of being in Red

Territory and the Headquarter area. So we need a more general approach to learning conditionals that is

able to guide agents through this kind of learning experience. In particular, we need to identify the rational

updating procedure for agents that learn a constraint of the form Q(B|A) = p′ ∈ (0, 1).13

The dominant approach to this problem in the literature is to argue that agents who learn non-extreme

conditional probability constraints should be guided by a norm of conservativity. In particular, they should

13Huisman (2017) actually argues that the rational response to the Judy Benjamin example is to adopt indeterminate posterior
credences. Here, we aim to stay within the standard Bayesian paradigm and identify a rational update procedure that yields
precise and probabilistic posterior credences.
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update their credences in a way which ensures that their new credences (i) satisfy the learned constraint,

and (ii) are as close as possible to their original credences, i.e. they should not change their beliefs in ways

which are not necessitated by the new evidence. Of course, this is just an instance of the general normative

principle that agents should change their beliefs conservatively in the face of new evidence. This principle

has played a fundamental role in both Bayesian epistemology and the theory of qualitative belief revision (see

e.g. Gärdenfors & Rott (1995)). In what follows, we will take it for granted that rational agents should be

guided by a norm of epistemic conservativity, and ignore recent controversies regarding whether that norm

should ever be sacrificed in the interests of alternative epistemic goods (see e.g. Myrvold (2018)). Rather, we

will focus on the question of how this norm should be made precise in a probabilistic setting and how it can

be applied to guide Bayesian agents who learn non-strict conditionals, as in van Fraassen’s Judy Benjamin

example.

More specifically, we are interested in the task of identifying exactly which notion of ‘closeness’ is appro-

priate when we demand that epistemic agents should try to remain ‘as close as possible’ to their original

credences when updating on new evidence. What’s the right way to measure the distance between two dif-

ferent probabilistic belief states here? Without an answer to this question, the conservativity norm is not

sufficiently precise to provide any concrete advice regarding how agents should update their beliefs in the face

of new evidence.

3.1 Formalizing Conservativity

It turns out that there are many ways to measure the distance between different probability distributions.

For example, imagine that we want to measure the distance between the distributions P and Q, defined over

some common set W of possible worlds. One natural (and widely employed) option is to use the Euclidean

squared distance between P and Q, d(P,Q) =
∑
w∈W

(P (w)−Q(w))
2
. The problem with this approach is

that if we apply the conservativity norm with this notion of closeness, we will end up advocating update

procedures that conflict with existing Bayesian update rules in strange and problematic ways. In particular,

suppose that an agent learns the constraint that the posterior probability of some truth functional proposition

A should increase to a particular value Q(A) = a′ < 1. Leitgeb & Pettigrew (2010) showed that minimizing

the Euclidean squared distance to this constraint yields a new update rule (now known as ‘Leitgeb-Pettigrew

updating’ or ‘LP-updating’) according to which the agent should add some constant value to the probability

of all possible worlds in which A is true. Levinstein (2012) showed that this update rule yields absurd and

patently irrational updates in many cases. For example, if an agent initially believes two propositions A and

B to be independent and then encounters some evidence that makes them far more confident in the truth of
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A, LP-updating can lead them to radically revise their credence in B, even though they previously considered

A and B to be independent and the learned evidence doesn’t appear to bear on that consideration in any

way.14 The fundamental problem here is that LP-updating does not preserve the conditional probability ratios

between the considered propositions, i.e. it is not a ‘rigid’ updating procedure.

It is well known that the only updating procedure that is guaranteed to preserve all relevant conditional

probabilities in this kind of learning scenario is Jeffrey conditionalization, which is widely accepted as the

rational update procedure for Bayesian agents in cases of ‘ineffable learning’, i.e. cases where the agent gains

evidence that makes them more confident of some proposition without becoming certain of any proposition.

As well as having the important property of preserving conditional probabilities, Jeffrey conditionalization

has also been justified by diachronic dutch book arguments (Skyrms (1984)). In what follows, we take it

for granted that Jeffrey conditionalization is the rational update procedure for agents who undergo ineffable

learning. Of course, we acknowledge that this might be a controversial step since some authors contend that

Jeffrey conditionalization is only a rational updating procedure in some circumstance (see e.g. Schwan &

Stern (2017)), but given the widespread acceptance of Jeffrey conditionalization in the Bayesian canon and

the lack of any plausible alternative probabilistic updating rules, we take it that this assumption does not

lessen the philosophical import of our conclusions.

Once we assume that rational agents should update by Jeffrey conditionalization, we are able to rule out

the Euclidean squared distance as a formalization of epistemic conservativity. For, agents who try to be

epistemically conservative in the sense captured by the Euclidean squared distance will employ LP-updating

instead of Jeffrey conditionalization in cases of ineffable learning, and will therefore end up committing the

kinds of reasoning errors described by Levinstein (2012). The question now is whether there are alterna-

tive ways of formalizing epistemic conservativity that do not conflict with Jeffrey conditionalization and are

therefore compatible with existing Bayesian update rules. Happily, there exists a whole class of probabilistic

distance measures that satisfy exactly this property.

Definition 1 (f-divergence) Let S1, . . . , Sn be the possible values of a random variable S over which prob-

ability distributions P (= the prior distribution) and Q (= the posterior distribution) are defined. The f -

divergence between Q and P is then given by

Df (Q||P ) :=

n∑
i=1

P (Si) f

(
Q(Si)

P (Si)

)
,

14Specifically, Levinstein presents a case in which the agent has very high prior high credences in the propositions R: “The
colour of the car behind the door is red” and ¬G : “Ghosts don’t exist”. Of course, she considers R and ¬G to be probabilistically
independent. She then catches a glimpse of the car and becomes confident that the car actually isn’t red. According to LP-
updating, this should cause her to become agnostic about the existence of ghosts (her credence in G will go from being close to
zero to being close to 1/2).
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where f is a convex function such that f(1) = 0.

f -divergences have a number of interesting properties (see Csiszár (1967, 1975, 1991, 2008) for a more

detailed discussion): They are always non-negative and they vanish iff Q = P . However, unlike proper

distance functions, they are not necessarily symmetric and they may violate the triangle inequality. Examples

of f -divergences are the Kullback-Leibler divergence (f(x) = x log x), the inverse Kullback-Leibler divergence

(f(x) = − log x), the Hellinger distance (f(x) = (1−
√
x)2), and the χ2-divergence (f(x) = (x− 1)2). For us,

the most important property of f -divergencies is that they imply Jeffrey conditionalization. (See also Diaconis

& Zabell (1982).)

Proposition 3 (Jeffrey Conditionalization) Let P be the prior probability distribution over the binary

propositional variables H and E. The agent then learns that the probability of E shifts from P (E) to

Q(E). Minimizing the f -divergence between Q and P , the posterior probability of H is then given by

Q(H) = P (H|E)Q(E) + P (H|¬E)Q(¬E).

Thus, in situations where the learned constraint on the posterior distribution is just the probability of

a proposition (i.e. in the cases described by standard Bayesian updating), minimizing the f -divergence

between the prior and posterior distributions is equivalent to updating by (Jeffrey) conditionalization. More

pertinently, an epistemically conservative agent who formalizes conservativity by means of an f -divergence

will always reason in accordance with Jeffrey conditionalization, and f -divergences can be seen as providing

the formal resources needed to apply the norm of epistemic conservativity in a way that is continuous with

the norms of standard Bayesian epistemology.

3.2 Learning Conditionals by Minimizing f-Divergences

Returning to the central question of this paper, we now consider the implications of the preceding discussion

for the problem of learning indicative conditionals. The first important observation is given by the following

corollary of Proposition 3.

Corollary 1 (Simple Conditional – f-Divergence) An agent considers the propositions A and B and has

a prior probability distribution P according to eqs. (3) (with 0 < a, p, q < 1) defined over the corresponding

propositional variables. The agent then learns A→ B which imposes the constraint Q(B|A) = 1 on the poste-

rior distribution Q. Minimizing the f -divergence between Q and P then implies that the posterior probability

distribution Q is exactly the same as in eqs. (4).

Conditionalizing on the material conditional yields exactly the same result as minimizing any f -divergence
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(including the inverse KL-divergence) with the relevant extreme conditional probability constraint. So the

norm of epistemic conservativity (formalised in terms of f -divergence minimization) yields the standard update

procedure for learning strict conditionals.15

For non-strict conditionals, the situation is of course significantly more complicated. To illustrate, we

consider the simple situation where an agent entertains the propositions A and B. She then learns the indicative

conditional A→ B. This, however, does not prompt her to increase the conditional probability of B given A

to 1 (since the conditional is non-strict), but only to some value p′ > P (B|A). She increases the conditional

probability, but not to its maximal value. We assume that her prior beliefs P are represented by the probability

distribution given in eqs. (3) and that the posterior probability distribution Q can be parameterized in the

same way, i.e.

Q(A,B) = a′ p′ , Q(A,¬B) = a′ p′

Q(¬A,B) = a′ q′ , Q(¬A,¬B) = a′ q′ . (7)

The posterior probability distribution is then given by the following proposition:

Proposition 4 (Simple Conditional – Non-Extreme f-Divergence) An agent considers the proposi-

tions A and B and has a prior probability distribution P according to eqs. (3) (with 0 < a, p, q < 1) defined

over the corresponding propositional variables. The agent then learns A→ B which imposes the constraint

Q(B|A) = p′ < 1 on the posterior distribution Q (see eq. (7))). Minimizing the f -divergence between Q and P

then implies that q′ = q and a′ = a/(a+a · l) where the value of the likelihood ratio l depends on the particular

f -divergence. More specifically, we obtain

lIKL = 1 , lKL =

(
p′

p

)p′ (
p′

p

)p′
lH =

1(√
p p′ +

√
p p′
)2 , lχ2 =

p′2

p
+
p′

2

p
.

Furthermore, P ′(B) = P (B) + [(p′ − p)− a (l − 1) (p− q)] ·P ′(A) can be smaller than, equal to, or larger than

P (B), depending on the prior distribution.

Proposition 4 gives a powerful general characterisation of the update obtained by minimizing an f -

divergence to a non-extreme conditional probability constraint. It also has important ramifications for the

15Note that this observation implies that in the sundowners and ski trip examples, minimising an f -divergence to the constraints
Ski1/Ski2 and Sun1/Sun2 respectively will yield the same updates as those we obtained in the previous section using standard
Bayesian conditionalization. See also Appendix B.
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analysis of van Fraassen’s Judy Benjamin example, as we will now show.

4 Judy Benjamin Reloaded

Recall the Judy Benjamin example from the beginning of the previous section. In the literature, three main

criteria have been forwarded as general constraints on Judy’s response to the learned conditional. In order

to state these criteria, we introduce two binary propositional variables. The variable R has the values R:

“Judy lands in Red Territory”, and ¬R: “Judy lands in Blue Territory”. The variable S has the values S:

“Judy lands in the Second Company Area”, and ¬S: “Judy lands in Headquarters Area”. P and Q represent

Judy’s prior and posterior beliefs, respectively (where it is assumed that P is a uniform distribution over the

partition {R ∧ S,R ∧ ¬S,¬R ∧ S,¬R ∧ ¬S}).

JB1: Q(S|R) = 3/4 (and hence Q(¬S|R) = 1/4).

JB2: Q(A|X) = P (A|X) for any A and for any X ∈ {R ∧ S,R ∧ ¬S,¬R}.

JB3: Q(R) = P (R) = 1/2.

JB1 simply requires that Judy updates her beliefs to take into account the content of the learned condi-

tional. JB2 stipulates that Judy shouldn’t change any conditional degrees of belief other than P (S|R) and

P (¬S|R) (since the learned information doesn’t seem to tell her anything about the corresponding conditional

probabilities). JB3 requires that Judy shouldn’t change her degree of belief in R, i.e. she shouldn’t become

more or less confident that she is in Red Territory than she was before she learned the conditional (again, since

the learned information doesn’t seem to tell her anything about whether or not she is in Red Territory).16

Now, van Fraassen (1981) initially presented the Judy Benjamin example as a test case for the proposal

that rational agents should always update their credences by minimizing the Kullback-Leibler (KL) divergence

between their prior and posterior degrees of belief (this is sometimes referred to as the ‘infomin principle’).

He noted that this proposal has two powerful motivations, namely:

(1) Minimizing the KL-divergence implies conditionalization and Jeffrey conditionalization when the learn-

ing experience concerns the probability of a truth-functional proposition.

(2) Minimizing the KL-divergence yields an intuitively conservative update.

16Note that the kind of learning described by the Judy Benjamin example clearly cannot be properly modeled by Jeffrey
conditionalizing to set the probability of the material conditional R ⊃ S to a new value. To see why, imagine that Judy rather
learns the conditional “If you are in Red Territory, then the odds that you are in the Second Company Area are 50 : 50.” Since
her prior beliefs already satisfied the equality P (S|R) = 1/2, it seems that she has not really learned anything new and so has
no reason to change her beliefs. However, if she Jeffrey conditionalizes to set Q(R ⊃ S) = 1/2, her degrees of belief will change
significantly (since P (R ⊃ S) 6= 1/2). This intuitively irrational response can be avoided if she rather minimizes a distance
measure to the learned conditional probability constraint.
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However, he also noted that, despite these appealing properties, the proposal yields an unintuitive update

in the Judy Benjamin case.17 Specifically, if Judy updates by minimizing the KL-divergence to the constraint

Q(S|R) = 3/4, her posterior credences will violate the JB3 criterion, i.e. her confidence that she is in Red

Territory will decrease across the update. And this seems problematic since the learned conditional didn’t

seem to tell her anything about whether or not she was in Red Territory. Rather, the learned conditional

only told her what she should expect under the supposition that she in Red Territory. Thus, it has been

widely claimed that the Judy Benjamin example is a major problem for those that advocate minimizing the

KL-divergence as a fully general updating procedure.

van Fraassen et al. (1986) provide an alternative analysis of the example. Specifically, they consider an

amended version of the example in which Judy learns that the conditional probability of S given R is 1 (rather

than 3/4), i.e. the learned conditional is strict.18 They note that in this extreme version of the example, it

seems natural for Judy to reduce her belief in R. For, the learned information is equivalent to the proposition

¬(R ∧ ¬S) = R ⊃ S, and conditionalizing on that proposition will lead to a decrease in the probability of R

(by Proposition 1). Now, there is nothing ostensibly ‘special’ about the learned odds in this case (1 : 0) as

compared to those learned in the standard version of the example (3 : 1). So, the story goes, there is no reason

to think that Judy can rationally decrease her belief in R in one case but not the other. Thus, we should drop

the requirement that Judy’s confidence in R stays fixed across the update.

But even if this response is correct and JB3 is not a genuine rationality constraint (we discuss this response

in more detail in Section 6), van Fraassen et al. (1986) note that there is another more fundamental problem

for advocates of KL-minimization. In particular, they present two alternative probabilistic distance measures

such that (i) updating by minimizing those measures yields Jeffrey conditionalization, (ii) all three measures

look like equally good formalisations of epistemic conservativity, and (iii) all three measures yield different

updates in the Judy Benjamin example. The problem is that there doesn’t seem to be any principled ground for

choosing between the alternative distance measures, and hence that it’s unclear why Judy should minimize the

KL-divergence instead of some other probability distance measure. Again, the norm of epistemic conservativity

is not sufficiently precise to provide concrete guidance to epistemic agents.

It is immediately clear that the analysis provided by van Fraassen (1981) and van Fraassen et al. (1986) can

be greatly generalised and refined in light of the results described in the previous section. Firstly, we know that

all f -divergences (of which there are infinitely many) yield update procedures which are equivalent to Jeffrey

17Vasudevan (2018) presents an alternative rationale for updating by the KL-divergence in the Judy Benjamin example.
Specifically, he does not invoke any kind of conservativity norm, but rather argues that minimising the KL-divergence is justified
by the assumption that the informant’s report omits no relevant information. For the purposes of this paper, we intend to focus
on clarifying the relationship between the Judy Benjamin problem and norms of epistemic conservativity, although we think that
additional epistemic principles such as that invoked by Vasudevan (2018) may also have an important role to play.

18This extreme version of the example is also considered by Bovens (2013), who similarly reaches the conclusion that Judy’s
credence in R should change across the update. However, this analysis is subsequently retracted in Bovens & Ferreira (2013).
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conditionalization when the learned information concerns the probability of a truth functional proposition,

and we also know from Proposition 4 that the the resultant updates will generally all be different. Thus, the

degree to which the rational update in the Judy Benjamin example is underdetermined is far greater than has

previously been acknowledged. There are infinitely many update procedures that are both compatible with

Jeffrey conditionalization and intuitively conservative, and there’s no obvious reason why Judy should prefer

any one of them to any other. Or is there?

Recall Proposition 4, which shows that minimizing the f -divergence to the constraint Q(S|R) = 3/4 will

typically (excluding limit cases) lead to an update that violates JB3, with one prominent exception, namely

the inverse KL-divergence (IKL). Minimizing the IKL-divergence to a non-extreme conditional probability

constraint will always leave the prior probability of the antecedent unchanged. This means that minimizing

the IKL-divergence is the only way for Judy to satisfy all three criteria JB1–JB3 whilst being epistemically

conservative and updating in a way that is consistent with Jeffrey conditionalization. So if, contra van

Fraassen et al. (1986), we accept the normative force of JB3, we are forced to conclude that minimizing the

IKL-divergence is the rational solution to the Judy Benjamin problem. At first blush, this looks like an

appealing solution to the problem. The IKL-divergence appears to provide an update procedure that satisfies

both of the main motivations that van Fraassen cites in favour of the KL-divergence, and is also the only

such update procedure that recommends what many consider to be the rational update in the Judy Benjamin

example. The solution proposed by Douven & Romeijn (2012) is actually equivalent to minimizing the IKL-

divergence (although they don’t identify the important fact that the IKL-divergence is an f -divergence that

produces an update that is continuous with Jeffrey conditionalization). However, Douven and Romeijn stop

short of endorsing the minimization of the IKL-divergence as a generally applicable update strategy.19 They

eventually suggest that no single distance measure/update procedure is suitable for all learning scenarios, and

tentatively advocate a kind of contextualism about update rules.

Here, we attempt to identify a single update procedure that provides a uniquely rational response to any

given learning scenario. However, we think that the normative justification for such a procedure must be more

general and philosophically principled than the simple observation that it yields what some take to be the

rational update in the Judy Benjamin problem. The simple fact that the IKL-divergence defines an update

that satisfies JB3 does not constitute a serious argument in favour of using that distance measure in all cases

of non-propositional learning.20 For, we have already seen that some authors (e.g. van Fraassen et al. (1986))

question whether JB3 should even be accepted as a rationality constraint in the first place. Furthermore, as

19This is already clear from the fact that they don’t think that rational agents should conditionalize on the material conditional
in the extreme version of the example where the learned constraint is strict, i.e. Q(S|R) = 1.

20By non-propositional learning, we mean learning experiences such as Judy Benjamin’s, in which the newly acquired evidence
can’t be adequately represented by a constraint on the probability of any one truth functional proposition.
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we will see in the Section 6, it is possible to construct analogous examples in which it seems intuitive that

the agent’s credence in the antecedent of the learned non-strict conditional should change, and in these cases

the IKL-divergence is guaranteed to give what looks like the wrong answer. We need a principled and context

independent way of deciding between alternative f -divergences that can subsequently be used to cast light on

problematic learning scenarios such as that described in the Judy Benjamin example.

We turn now to giving a general normative argument for a single, universally applicable update procedure

based on the minimization of an f -divergence. In Section 6, we consider the implications of this argument for

the analysis of the Judy Benjamin example.

5 Accuracy and Conservativity

One natural approach to trying to decide between alternative f -divergences is to employ considerations from

epistemic utility theory. In recent years, a number of authors have attempted to utilize the notion of ‘epistemic

utility’ or ‘accuracy’ to provide purely epistemic justifications for the basic norms of Bayesian epistemology,

including probabilism (Leitgeb & Pettigrew (2010)) and conditionalization (Greaves & Wallace (2006)). One

might hope that a similar justification can be given for a particular f -divergence, in which case we would be

furnished with a unique rational update procedure in Judy Benjamin style cases. And it turns out that such

a justification is indeed available.21

Recall that the central idea behind epistemic utility theory is that epistemic agents should aim to ap-

proximate the truth with their degrees of belief or, in other words, that they should aim to minimize their

inaccuracy. It is standardly assumed that the right way to quantify the inaccuracy of an agent’s partial beliefs

is to employ a strictly proper scoring rule, i.e. a measure of inaccuracy which ensures that agents always

expect their own partial beliefs to uniquely minimize inaccuracy. Two of the most important and widely

defended proper scoring rules are the Brier and logarithmic scoring rules, defined below (where W is the set

of possible worlds).

• The logarithmic scoring rule is the rule which defines the inaccuracy of the credence function P at a

world w ∈W by IL(P,w) = − ln(P (w)).

• The Brier score is the rule which defines the inaccuracy of the credence function P at a world w ∈ W

by IB(P,w) = (1− P (w))2 +
∑
w′ 6=w

P (w′)2.

Now, it is well known that all strictly proper scoring rules, including IL and IB , can be used to define

a corresponding divergence measure, as we will soon show. Specifically, given a strictly proper scoring rule

21In what follows we assume a basic familiarity with epistemic utility theory. For a book-length introduction to the subject,
see Pettigrew (2016).
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IS and any two credence functions P and Q, we can define expS(Q|P ) :=
∑
w∈W P (W ) · IS(Q,w), which

encodes the extent to which an agent whose credences are given by P will expect the credences given by Q

to be inaccurate. By strict propriety, expS(Q|P ) is uniquely minimized when Q = P . Leitgeb & Pettigrew

(2010) utilize the notion of ‘expected inaccuracy’ to articulate the following epistemic norm.

Diachronic Accuracy Norm: Suppose that at time t1 an agent’s prior credences are embodied by the

probability distribution P , and that between times t1 and t2, she learns new information which imposes

a constraint C on her posterior credences at time t2. Then at time t2 the agent should adopt credences

encoded by a probability distribution Q such that (i) Q satisfies C, and (ii) for any Q′ that satisfies C,

expS(Q|P ) ≤ expS(Q′|P ), where IS is one’s chosen proper scoring rule, i.e. Q should minimize expected

inaccuracy (from the perspective of the agent’s prior beliefs) amongst the class of possible probability functions

that satisfy the learned constraint C.

The basic idea here is that when you update to take into account the new evidence, you should do so

in the way that you expect to result in the most accurate posterior beliefs. In particular, the diachronic

accuracy norm requires agents to adopt the posterior probability distribution Q that minimizes the quantity

expS(Q|P )− expS(P |P ). When IS = IB , this quantity is just the square Euclidean distance between P and

Q, as discussed in Section 3. When IS = IL, expS(Q|P )− expS(P |P ) is equal to the KL-divergence between

Q and P . Now, we already know that the KL-divergence is an example of an f -divergence, so by trying

to minimize expected inaccuracy as measured by the logarithmic scoring rule, we will end up minimizing

an f -divergence to the learned constraint, which is exactly the learning procedure advocated in this paper.

And this is where things get interesting. For, the following two facts have been established in the statistics

literature (assuming that the sample space is finite):

1. For any strictly proper scoring rule IS , the divergence measure defined by d(Q,P ) := expS(Q|P ) −

expS(P |P ) is an example of a ‘Bregmann divergence’ (Gneiting & Raftery (2007)).

2. The KL-divergence is the only element of the intersection of the set of Bregmann divergences and the

set of f -divergences (Amari (2009)).

Thus, the KL-divergence is the unique f -divergence that defines an update that minimizes expected in-

accuracy according to a strictly proper scoring rule (the log rule). We’ve seen that assuming conservativity

and Jeffrey conditionalization as basic epistemic norms motivates adopting an update procedure defined by

the minimization of an f -divergence. However, there are many alternative f -divergences, all of which define

different updating strategies. We need extra normative principles if we hope to overcome this underdetermi-

nation. We’ve now seen that the Diachronic Accuracy Norm is enough to break the deadlock and identify the
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minimization of the KL-divergence as the unique rational updating procedure, since it is the only f -divergence

that minimizes expected inaccuracy according to a strictly proper scoring rule.

Before moving on, it is worth pausing briefly to note that the preceding argument might be considered

problematic by those that advocate quantifying epistemic utility by means of a scoring rule other than the

log rule. For, the KL-divergence only minimizes expected inaccuracy when the agent in question identifies

inaccuracy with epistemic disutility as measured by IL. And if one does not consider this conception of

epistemic disutility to be plausible, then perhaps the argument will be less than entirely convincing. We have

a couple of responses to these concerns. Firstly, we reiterate that the following two norms are widely accepted

in the literature: (i) agents should employ update rules that are compatible with Jeffrey conditionalisation,

and (ii) agents should always aim to minimize their expected accuracy as measured by a strictly proper scoring

rule. And it is a mathematical theorem that the only way for an agent to satisfy both of these norms in full

generality is to adopt the updating rule that says ‘minimize the Kullback Leibler divergence between your

prior and posterior distributions (relative to the constraints given by the learning experience)’. The argument

itself does not assert the superiority of the logarithmic scoring rule as a premise. Rather, it shows that if

an agent wants to abide by two plausible norms relating to updating and epistemic utility, then they had

better conceive of epistemic utility in terms of the log rule. The argument does not rely on the admittedly

controversial claim that the log rule encodes the most plausible conception of epistemic utility. Rather, it

constitutes a new and compelling piece of evidence in support of that claim. Secondly, it should be noted that

although the log score certainly has its critics, it is by no means universally rejected, and it is still very much

a part of the very much open debate surrounding the proper formalisation of epistemic utility (see e.g. Fallis

and Lewis (2016), Levinstein (2017)). Thus, the fact that the conclusion of the argument seems to count in

support of the log rule certainly shouldn’t be considered a straightforward reductio against the premises.

6 Updating, Interpreting and Learning

Recall that van Fraassen et al. (1986) rejected JB3 as a constraint on prospective solutions to the Judy

Benjamin example and viewed the upshot of that example to be that we need additional grounds for choosing

between rival probabilistic distance measures. We’ve shown that the Diachronic Accuracy Norm allows us to

solve this problem and identify minimizing the KL-divergence as the unique rational update procedure for

epistemically conservative Bayesian agents.

But then what is to be said about the common intuition that it is irrational for Judy to change her

credence in R after learning Q(S|R) = 3/4? We already know from van Fraassen (1981) and Proposition 4

that minimizing the KL-divergence will cause Judy to become less confident in R. Is this a case where we
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should simply surrender our intuitions at the alter of fundamental epistemic norms, or should these very

intuitions be used to discredit those norms?

Here’s one possible middle way that allows us to advocate minimizing the KL-divergence as a general

update strategy without completely rejecting the intuition behind JB3. Recall that the only f -divergence that

allowed for the satisfaction of JB3 was the IKL-divergence. Minimizing any other well known f -divergence to

the constraint Q(S|R) = 3/4 would cause Judy to change her credence in R. But there is an alternative way

to ensure that JB3 is satisfied without employing the IKL-divergence. Specifically, we could impose JB3 as an

additional constraint on the update, so that Judy now interprets the content of the learned evidence not just by

the constraint Q(S|R) = 3/4, but rather by the dual constraints that Q(S|R) = 3/4 and Q(R) = 1/2 = P (R).

The idea then is that the Judy Benjamin example isn’t a puzzle about how to update on new evidence,

but rather about how to translate evidence into a constraint on the posterior probability distribution. The

following proposition helps to shed light on the plausibility of this proposal.

Proposition 5 (Simple Conditional – Non-Extreme f-Divergence+) An agent considers the proposi-

tions A and B and has a prior probability distribution P according to eqs. (3) (with 0 < a, p, q < 1) defined

over the corresponding propositional varables. The agent then learns A→ B which imposes the constraints

Q(B|A) = p′ < 1 and Q(A) = P (A) on the new distribution Q (see eq. (7))). Minimizing any f -divergence

between Q and P will result in the same posterior distribution as that which results from minimizing the

IKL-divergence with the sole constraint that Q(B|A) = p′ < 1.

Proposition 5 tells us that if Judy updates by minimizing an f -divergence to the dual constraints that

Q(S|R) = 3/4 and Q(R) = 1/2 = P (R), she will end up with the same credences that she would have

had if she had rather updated by minimizing the IKL-divergence to the sole constraint that Q(S|R) = 3/4.

Imposing JB3 as an additional constraint on the update completely eliminates the underdetermination of the

rational update procedure. Importantly, this demonstrates that it is possible to obtain the solution to the

Judy Benjamin forwarded by Douven & Romeijn (2012) without surrendering the claim that minimizing the

KL-divergence provides a uniquely rational update procedure for all potential learning experiences, as long

as we are willing to accept JB3 as part of the content of Judy’s evidence. And in the standard version of the

example, it seems that there is a case for claiming that JB3 is indeed part of what Judy learns. For, before

informing Judy that Q(S|R) = 3/4, the radio operator explicitly states that ‘I can’t be sure where you are’,

which may be interpreted as telling Judy that she should remain agnostic about whether or not she’s in Red

Territory. However, one could remove this sentence from the example and it seems likely that many would

still have a strong intuition that Judy’s credence in R should remain fixed, since the constraint Q(S|R) = 3/4

itself doesn’t tell us anything definite about the probability of R being true. So why should Judy accept JB3

24



as part of the content of the learned conditional? To answer this question, it is useful to consider the following

examples, which generalize the Judy Benjamin example in an illuminating way.

Lena the Scientist Example. Lena is considering a set of mutually exclusive (but not logically exhaustive)

scientific hypotheses H1, . . . ,Hn and their relationship to a possible future experimental outcome E.

Conditional on any of the Hi’s, E has a low probability of being observed.

Case 1: Based on previous experience, Lena strongly believes that E will in fact be observed. In light

of the fact that all of the considered theories conflict with this belief (since P (E|Hi) is low for all

i), she thinks that all of the considered theories are probably false, and a new theory is needed.

However, one of her research assistants then informs her that the probability of E conditioned on

H1 was previously miscalculated, and is actually very high, i.e. Lena learns the conditional ‘If

H1 then probably E’. Delighted to learn that one of her theories gives reasonable predictions of

future experiments, Lena increases both the conditional probability of E given H1 and the overall

probability of H1.

Case 2: Based on previous experience, Lena strongly believes that E will not be observed. She is

satisfied that all of the candidate theories cohere with this belief. However, one of her research

assistants then informs her that the probability of E conditioned on H1 was previously miscalculated,

and is actually very high, i.e. Lena learns the conditional ‘If H1 then probably E’. As well as

increasing the conditional probability of E given H1, Lena also dramatically reduces her belief in

H1, since it now conflicts with her belief that E won’t be observed.

Case 3: Due to a lack of relevant evidence, Lena is agnostic about whether E will be observed. One of

her research assistants then informs her that the probability of E conditioned on H1 was previously

miscalculated, and is actually very high, i.e. Lena learns the conditional ‘If H1 then probably E’.

Lena increases the conditional probability of E given H1, but keeps the probability of H1 fixed,

since she is indifferent about whether E will be observed, and so doesn’t consider H1’s evidential

relationship to E to bear on its plausibility.22

We take it that Lena’s responses to the learned conditional are intuitively rational in all three of these cases.

When she learns that H1 coheres better with her other beliefs than she’d previously thought, she becomes

more confident in its truth (Case 1). Conversely, when she learns that H1 conflicts with her existing beliefs,

22One might wonder whether Lena’s response in Cases 1 and 3 conflict with our defence of Proposition 1 in Section 2. There,
we argued that it is natural that upon learning a strict conditional, an agent should typically become less confident in the
antecedent, since the learned conditional renders the antecedent more informative. However, the situation is different when the
learned conditional is non-strict, i.e. when the learned conditional probability constraint is non-extreme. For, in the strict case,
the extreme constraint actually rules out some of the worlds at which the antecedent is true. In the non-strict case, the constraint
does not rule out any worlds but merely shifts the distribution of the probability mass across the worlds where the antecedent is
true. There is no meaningful sense in which the antecedent becomes more informative in this case.
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she becomes more skeptical of its truth (Case 2). Finally, when the learned conditional has no implications for

H1’s relation to her other beliefs (as in the Judy Benjamin example), she does not have any reason to change

her belief in H1. We’ve already seen that Lena’s response in Case 3 can only be captured by minimizing

the IKL-divergence or, equivalently, minimizing an arbitrary f -divergence with the additional constraint that

her credence in H1 remains fixed. Case 2 is unproblematic, since minimizing an f -divergence to ensure

Q(E|H1) > P (E|H1) will typically (but not always) result in the probability of H1 decreasing (Proposition

4). But for the same reason, Case 1 is deeply problematic, especially when we consider its relationship to the

Judy Benjamin example. For in this case, it is intuitively rational for Lena to increase her credence in H1.

And as we learned from Proposition 4, this result is not obtainable by minimizing any of the f -divergences

that have been considered in the literature, including the IKL-divergence. There are some f -divergences that

lead to an increase in the probability of the antecedent, but they will fail to provide the intuitively correct

updates in cases where the consequent has probability ≤ 1/2 (such as the Judy Benjamin example).23 Thus

it seems that epistemically conservative Bayesian agents are bound to deviate from the intuitively rational

update in at least one of the three cases. This all suggests the following general updating strategy for learning

non-strict conditionals.

Non-Strict Conditionals Updating Strategy: An agent considers the propositions A and B and has

a prior probability distribution P according to eqs. (3) (with 0 < a, p, q < 1) defined over the corresponding

propositional variables. The agent then learns A→ B which imposes the constraint Q(B|A) = p′ > P (B|A)

(p′ < 1) on the posterior distribution Q (see eq. (7))). She will then update in one of three ways:

(1) If P (B) > 1/2, she will update by minimizing the KL-divergence to the constraints (i) Q(B|A) = p′ and

(ii) Q(B) > P (B).

(2) If P (B) = 1/2, she will update by minimizing the KL-divergence to the constraints (i) Q(B|A) = p′ and

(ii) Q(B) = P (B).

(3) If P (B) < 1/2, she will update by minimizing the KL-divergence to the constraint (i) Q(B|A) = p′ and

(ii) Q(B) < P (B).

According to this strategy, the probabilistic constraints that are used to interpret the learned conditional

depend crucially on the prior beliefs of the agent. Whether the agent considers the learned conditional to

be evidence for, against or irrelevant to the antecedent will be determined by their prior credence in the

23The fact that some f -divergences will allow for an increase in the probability of the antecedent was previously unknown, and
was pointed out to the authors on the mathoverflow thread at https : //mathoverflow.net/questions/293099/minimising −
the− f − divergence− to− a− conditional − probability − constraint. The f -divergences that satisfy this property are math-
ematically quite complex and have not been considered in the philosophical or psychological literature. Normatively, we view
these divergences as being on a par with all other f -divergences except for the KL-divergence.
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consequent. This updating strategy has a couple of key advantages. Firstly, it yields the intuitively rational

update in all of the Lena the scientist cases, and hence also in the Judy Benjamin example. Secondly, it

allows us to maintain the position that minimizing the KL-divergence provides the rational update in all

learning scenarios. It is only the interpretation of the evidence that varies according to epistemic context.

Once the evidence has been interpreted in terms of concrete constraints on the posterior distribution, the

principles of Jeffrey conditionalization, epistemic conservativity and the Diachronic Accuracy Norm jointly

identify minimizing the KL-divergence as the uniquely rational update procedure. The main philosophical

upshot is that the evidential import of a learned conditional is partially determined by epistemic context. In

some sense, the agent has to make a choice about how to interpret the evidence.

A similar conclusion was ultimately reached by Douven & Romeijn (2012), who also thought that the

rational response to learning conditionals was partially determined by the agent’s prior belief state, and the

relative degrees to which their individual beliefs are ‘entrenched’. However, the nature of their contextualism

was of a fundamentally different sort to that advocated here. Specifically, they argued that the choice of

distance measure to be minimized should be determined by context, and advocated both the IKL-divergence

and Hellinger distance as providing the rational responses to some learning scenarios. We contend that this

approach is unprincipled and overly vague because, as Douven and Romeijn acknowledge, it is completely

unclear exactly how one should go about choosing a particular distance measure for a given learning scenario

and epistemic context. Here, we’ve argued that epistemically conservative Bayesian agents should always

update by minimizing the KL-divergence. There is no contextual relativity in terms of the rational probabilistic

update rule to apply relative to a set of definite constraints on the posterior. Rather, the contextual relativity

occurs only at the stage at which the agent interprets the learned conditional as a set of such constraints.

One possible objection to the proposed update strategy is that 1/2 is an arbitrary and artificial threshold

for determining the response to the learned conditional. An alternative approach would be to adopt a Lockean

theory of belief (see e.g. chapter 4 of Foley (2000), Leitgeb (2017)), according to which an agent believes a

proposition A if and only if P (A) is above some pre-determined threshold value t ∈ [1/2, 1], i.e. if and only

if the agent has a sufficiently high confidence in A. This would suggest the following variation of the update

strategy:

Lockean Non-Strict Conditionals Updating Strategy: An agent considers the propositions A and

B and has a prior probability distribution P according to eqs. (3) (with 0 < a, p, q < 1) defined over the

corresponding propositional variables. The agent then learns A→ B which imposes the constraint Q(B|A) =

p′ > P (B|A) (p′ < 1) on the posterior distribution Q (see eq. (7))). She will then update in one of three ways:

(1) If P (B) > t, she will update by minimizing the KL-divergence to the constraints (i) Q(B|A) = p′ and
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(ii) Q(B) > P (B).

(2) If P (B) ∈ [1− t, t], she will update by minimizing the KL-divergence to the constraints (i) Q(B|A) = p′

and (ii) Q(B) = P (B).

(3) If P (B) < 1− t, she will update by minimizing the KL-divergence to the constraint (i) Q(B|A) = p′ and

(ii) Q(B) < P (B).

The Lockean update strategy is equivalent to the original strategy in the special case where t = 1/2. But

it is widely acknowledged that a threshold of 1/2 provides an overly permissive characterisation of the notion

of belief (it seems unnatural to say that you believe that a coin with bias of 0.501 will land heads). When

t > 1/2, the Lockean strategy instructs agents to increase (decrease) the probability of the antecedent if they

have a prior belief in the consequent (the negation of the consequent). Again, the motivation is that when an

agents learns a non-strict conditional A→ B, they should change their belief in A depending on whether the

relevant conditional probability constraint makes A cohere better or worse with their prior beliefs. It is easy

to see the Lockean strategy has all the same virtues as the standard strategy (of which it is a generalisation).

The problem of choosing an appropriate threshold value t is of course a deep one that goes significantly beyond

the scope of this paper (see e.g. Fitelson & Shear (forthcoming)).

7 Conclusion

According to the position defended here, an agent can never simply update on a non-extreme conditional

probability constraint such as Q(S|R) = 3/4. Before updating on such a constraint, they need to consider

how the new information relates to their prior beliefs, and use that consideration to determine whether

what they’ve learned bears meaningfully on the plausibility of the conditioning event (and if so, in what

way). Once they’ve gone through this pre-processing step, the epistemic norms described above will compel

them to update by minimizing the KL-divergence to the set of posterior distributions satisfying the resulting

set of constraints (which will consist of the original conditional probability constraint and an additional

constraint on the probability of the antecedent). The idea that agents need to go through this complex

process of interpretation and updating is motivated primarily by the fact that no simple updating rule or

distance-minimization procedure is capable of giving the intuitively correct verdict in all of the relevant

thought experiments. But of course, intuitions may differ from person to person, and one could always

follow van Fraassen et al. (1986) in simply rejecting what many take to be the intuitive solution to the Judy

Benjamin problem. Whether this is an acceptable approach would seem to depend largely on the strength and

uniformity of the intuitions it violates. One could turn to the psychology of reasoning in order to gain more
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definite insights here. In recent years, there has been much empirical work analyzing the outcomes of dynamic

conditional reasoning experiments in terms of the minimization of the KL-divergence (see e.g. Singmann et

al. (2016), Ali et al. (2011)). If it were the case that the Lockean updating strategy described above provided

a significantly better account of people’s reasoning habits than simple KL-divergence minimization (which

already performs quite well), that would suggest that the intuitions behind these thought experiments are

quite deeply rooted, and hence that violating them would incur a high theoretical cost. Conversely, if it turned

out that these intuitions weren’t found to play a key role in people’s reasoning habits, that would suggest that

nothing substantial is lost if we rather advocate simply minimizing the KL-divergence to the given conditional

probability constraint in every case. Whether or not one takes the Lockean updating strategy to be necessary

will, we suspect, depend crucially on one’s position on fundamental issues of philosophical methodology

regarding i.e. how seriously to take common philosophical intuitions and the normative significance of people’s

actual reasoning habits. For now, we remain agnostic about these wider issues and are content to have

presented an updating strategy that is consistent with foundational Bayesian norms and chimes well with

pre-theoretic intuitions. If one considers these intuitions to be unimportant, then of course it is possible

to disregard this more complex procedure in favour of simply minimizing the KL-divergence to the relevant

conditional probability constraint.

We have also highlighted the previously unrecognized fact that minimizing the KL-divergence is the only

way to generalize Bayesian updating methods to non-propositional learning scenarios in a way that (1) is

intuitively conservative, and (2) minimizes expected inaccuracy as measured by a strictly proper scoring rule.

This shows that, contra van Fraassen et al. (1986), there is a good reason to view the KL-divergence as

normatively privileged in comparison to alternative probabilistic distance measures. Again, one might also

take it to be significant that minimizing the KL-divergence has been shown to provide a good account of

people’s actual reasoning patterns in dynamic conditional inference tasks. However, the possibility of using

alternative f -divergences to describe people’s reasoning patterns is a new one that has not yet been seriously

explored. If it turns out that alternative f -divergences provide a better fit to people’s actual reasoning habits,

that would show that humans don’t generally reason in a way that minimizes expected inaccuracy. Again,

whether or not one would interpret such a result as being normatively significant is likely to depend on one’s

stance regarding the prospects of naturalistic epistemology and the extent to which one views normative

epistemology as having a duty to vindicate everyday reasoning practices (see e.g. Bishop and Trout (2005)).

More generally, it is clear that the arguments presented here open a new frontier at the interface of the

psychology of reasoning and normative Bayesian epistemology.
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A Proofs

A.1 Proposition 1

We first compute the posterior distribution from eqs. (4). We begin with

P (¬A ∨ B) = P (¬A) + P (B)− P (¬A,B)

= a+ a p+ a q − a q

= a p+ a. (8)

Next, we compute

P ∗(A,B) = P (A,B|¬A ∨ B) =
P (A,B)

P (¬A ∨ B)
=

a p

a p+ a

P ∗(A,¬B) = P (A,¬B|¬A ∨ B) = 0

P ∗(¬A,B) = P (¬A,B|¬A ∨ B) =
P (¬A,B)

P (¬A ∨ B)
=

a q

a p+ a
(9)

P ∗(¬A,¬B) = P (¬A,¬B|¬A ∨ B) =
P (¬A,¬B)

P (¬A ∨ B)
=

a q

a p+ a
.
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We can now calculate

P ∗(A) = P ∗(A,B) + P ∗(A,¬B) =
a p

a p+ a
= a− a a p

a p+ a
< a

P ∗(B) = P ∗(A,B) + P ∗(¬A,B) =
a p+ a q

a p+ a
=

P (B)

a p+ a
> P (B).

A.2 Proposition 2

P ∗(R) = P (R|¬R ∨ ¬S,D)

=
P (R,¬R ∨ ¬S,D)

P (¬R ∨ ¬S,D)

=
P (R,¬S,D)

P (R¬S,D) + P (¬R,S,D) + P (¬R¬S,D)

=
P (R,¬S,D)

P (R¬S,D) + P (¬R,D)
(10)

Using eq. (6), we note that P (R,¬S,D) = P (¬S|R,D)P (R,D) = P (R,D). Hence,

P ∗(R) =
P (R,D)

P (R,D) + P (¬R,D)
. (11)

Finally, we use the fact that R and D are probabilistically independent and obtain

P ∗(R) =
P (R)P (D)

P (R)P (D) + P (¬R)P (D)

= P (R).

A.3 Proposition 3

P and Q are given by Table 1 and we set Q(E) = e′. Q satisfies the following two constraints:

H E P Q

1 1 p1 q1

1 0 p2 q2

0 1 p3 q3

0 0 p4 q4

Table 1: The probability distributions P and Q
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q1 + q3 = e′ (12)

q1 + q2 + q3 + q4 = 1 (13)

Hence, we have to minimize

L =

4∑
i=1

pi f(qi/pi) + λ(q1 + q3 − e′) + µ(q1 + q2 + q3 + q4 − 1). (14)

To do so, we differentiate by qk and obtain

∂L

∂q1
= f ′(q1/p1) + λ+ µ = 0 ,

∂L

∂q3
= f ′(q3/p3) + λ+ µ = 0 (15)

∂L

∂q2
= f ′(q2/p2) + µ = 0 ,

∂L

∂q2
= f ′(q4/p4) + µ = 0. (16)

Eqs. (15) imply that

q1 = αp1 , q3 = αp3. (17)

Similarly, eqs. (16) imply that

q2 = β p2 , q4 = β p4. (18)

We insert eqs. (17) into eq. (12) and obtain

α =
e′

p1 + p3
. (19)

Next, we insert eqs. (17), (18) and (19) into eq. (13) and obtain

β =
e′

p2 + p4
. (20)

Hence,

Q(H) = q1 + q2

=
p1

p1 + p3
e′ +

p2
p2 + p4

e′

= P (H|E)Q(E) + P (H|¬E)Q(¬E).
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A.4 Corollary 1

Following our discussion in Section 2, the agent learns the material conditional A ⊃ B with certainty. We

can then use conditonalization (which is a special case of Jeffrey conditionalization from Proposition 3) and

obtain the same result as in Proposition 1.

A.5 Proposition 4

To find a′ and q′, we compute the f -divergence between Q and P ,

F = a p f

(
a′ p′

a p

)
+ a p f

(
a′ p′

a p

)
+ a q f

(
a′ q′

a q

)
+ a q f

(
a′ q′

a q

)
. (21)

To find the minimum of F , we first differentiate F by q′ and set the resulting expression equal to zero. Hence,

a′
[
f ′
(
a′ q′

a q

)
− f ′

(
a′ q′

a q

)]
= 0. (22)

The convexity of f then implies that q′ = q. Inserting this into eq. (26) yields

F = a p f

(
a′ p′

a p

)
+ a p f

(
a′ p′

a p

)
+ a f

(
a′

a

)
. (23)

To find a′, we differentiate this expression by a′ and set the resulting expression equal to zero and obtain

p′ f ′
(
a′ p′

a p

)
+ p′ f ′

(
a′ p′

a p

)
= f ′

(
a′

a

)
. (24)

This equation cannot be solved in full generality. The result will depend on the specific form of convex function

f . In all cases considered here, eq. (24) simplifies to an expression of the form

a′ a

a′ a
=

1

l
, (25)

with the likelihood ratio l. Hence, a′ = a/(a+a l). For the IKL-divergence, we have f(x) = − log x and hence

f ′(x) = −1/x. Inserting this into eq. (24) then yields l = 1 and therefore a′ = a. (Note that this result only

holds for p′ < 1. See Proposition 1.) The results for the other f -divergencies obtain accordingly.
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Finally, we calculate

P ′(B)− P (B) = a′ p′ + a′ q − a p− a q

=
1

a+ a l
· [a p+ a (p′ − p) + a l q − (a+ a l)(a p+ a q)]

=
1

a+ a l
· [a a p+ a (p′ − p) + a a l q − a a q − a a l p]

=
a

a+ a l
· [(p′ − p)− a (l − 1) (p− q)]

= [(p′ − p)− a (l − 1) (p− q)] · P ′(A),

from which the statement in the proposition follows.

A.6 Proposition 5

We follow the same procedure as in the proof of Proposition 4. Noting the additional constraint Q(A) = P (A)

(i.e. a′ = a), the f -divergence between Q and P is given by

F = a p f

(
p′

p

)
+ a p f

(
p′

p

)
+ a q f

(
q′

q

)
+ a q f

(
q′

q

)
. (26)

To find the minimum of F and to determine the value of the only free parameter (i.e. q′), we differentiate F

by q′ and set the resulting expression equal to zero. Hence,

a

[
f ′
(
q′

q

)
− f ′

(
q′

q

)]
= 0. (27)

The convexity of f then implies that q′ = q.

Comparing this result with the results for the IKL reported in Proposition 4, we find that the corresponding

posterior probability distributions are the same.

B The Ski Trip Example

We consider the three propositional variables E,S and B mentioned above. P denotes the prior probability

distribution, P ∗ denotes the posterior probability distribution after learning Ski1 and Ski2 via conditional-

ization, and Q denotes the posterior probability distribution that one obtains after minimizing a f -divergence

between Q and P taking the constraints implied by Ski1 and Ski2 into account. See Table 2.
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E S B P P ∗ Q

1 1 1 p1 p∗1 q1

1 1 0 p2 p∗2 q2

1 0 1 p3 p∗3 q3

1 0 0 p4 p∗4 q4

0 1 1 p5 p∗5 q5

0 1 0 p6 p∗6 q6

0 0 1 p7 p∗7 q7

0 0 0 p8 p∗8 q8

Table 2: The probability distributions P, P ∗ and Q for the ski trip example

B.1 Conditionalization

To determine the posterior distribution P ∗, we apply Bayesian conditionalization on the two new pieces of

information. As P (·, ·,¬B|·,B) = 0, one sees immediately that p∗2 = p∗4 = p∗6 = p∗8 = 0. Furthermore,

P (E,¬S, ·|¬E ∨ S, ·) = 0. Hence, also p∗3 = 0. This leaves us with the computation of

p∗1 := P (E,S,B|¬E ∨ S,B) =
P (E,S,B)

P (¬E ∨ S,B)
=

p1
p1 + p5 + p7

p∗5 := P (¬E,S,B|¬E ∨ S,B) =
P (¬E,S,B)

P (¬E ∨ S,B)
=

p5
p1 + p5 + p7

(28)

p∗7 := P (¬E,¬S,B|¬E ∨ S,B) =
P (¬E,¬S,B)

P (¬E ∨ S,B)
=

p7
p1 + p5 + p7

.

Hence, P ∗(E) = p∗1. Note further that P (E) = p1 + p2 + p3 + p4. Hence, P ∗(E) > P (E) iff p1 > (p1 + p2 +

p3 + p4)(p1 + p5 + p7). As P (E) is small, this condition holds if p5 and p7 are small (as mentioned above).

To get a more intuitive understanding of the example, we make a plausible additional assumption about

Harry’s prior beliefs, namely that he considers the variables B and E to be probabilistically independent given

S, i.e. P (B|E,S) = P (B|S). Intuitively, this means that Harry only considers E to be evidentially relevant to

B to the extent that it counts as evidence for S. Whether or not Sue passes the exam is only probabilistically

relevant to whether or not she buys a new ski outfit when we do not know whether or not she is going on

a ski trip. Sue’s passing the exam is only relevant to the extent that it counts as evidence for her going on

a ski trip. Another way to see this is to consider the intuitive causal relationships that hold between the

variables. Whether Sue passes the exam causally influences whether her father takes her on a ski trip, which

causally influences whether she buys a new ski outfit, and there are no other causal relationships between the
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E S B

Figure 1: The Bayesian Network for the ski trip example

variables. But then the causal Markov condition, which tells us that ‘causes screen of their effects’ (see e.g.

Sprites et al. (2000)), implies that B is probabilistically independent of E once we condition on any value of

S. Thus, we can safely assume that B is probabilistically independent of E conditional on any value of S.

This assumption is encoded in the Bayesian Network depicted in Figure 1.

To complete the Bayesian Network, we have to fix the prior probability of E, i.e.

P (E) = e, (29)

and the conditional probabilities

P (S|E) = x1 , P (S|¬E) = y1 (30)

P (B|S) = x2 , P (B|¬S) = y2.

With this, we obtain:

P ∗(E) =
e x1 x2

e x1 x2 + e (y1 x2 + y1 y2)
(31)

Hence, P ∗(E) > P (E) iff

k0 :=
x1 x2

y1 x2 + y1 y2
> 1. (32)

To proceed, we have to determine whether the condition k0 > 1 holds. From the story it is clear that there is

no reason for Harry to expect Sue to buy a skiing outfit if she is not invited on a skiing trip. Hence, y2 ≈ 0

and therefore

k0 ≈
x1
y1
. (33)

It is also clear from the story that it is more likely that Sue’s father invites her for a ski trip if she passes the

exam than if she does not pass the exam. Hence, x1 > y1 and thus k0 > 1.

We have therefore shown that conditionalizing on the material conditional E ⊃ S and on the proposition

B gives the intuitively correct result for the ski trip example.
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B.2 Minimizing the f-Divergence

Ski1 implies that Q(B) = q1 + q3 + q5 + q7 = 0. Hence, q1 = q3 = q5 = q7 = 0. Ski1 implies that Q(S|E) = 1.

Hence, Q(E,¬S) = q3 + q4 = 0 and therefore q4 = 0. With this, we can compute the f -divergence:

F = p1 f(q1/p1) + p5 f(q5/p5) + p7 f(q7/p7) (34)

Differentiating F by q1, q5 and q7, respectively, and setting the resulting expressions equal to zero yields (using

the convexity of f) q1/p1 = q5/p5 = q7/p7. Hence, for i = 1, 5, 7,

qi =
pi

p1 + p5 + p7
.

Comparing this result with eqs. (28), we confirm that P ∗ = Q for the ski trip example.
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