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INTRODUCTION 
 

 

 

 

 

In the new liberalized markets a multitude of operators is allowed to 

interact with transmission and distribution networks, both by 

purchasing or selling energy. In this context, renewable generators 

supply a significant share of the total electricity demand, saving 

thousands of tons of CO2 and polluting agents from being released in 

the atmosphere each day. The old paradigm of static networks is going 

to be surpassed by intelligent structures, with a widespread diffusion of 

distributed generation, information technologies, and control devices 

that foster the optimal exploitation of energy resources.  

These are great achievements in pursuing social wellness and  

technology advance, with care to the environment. However, the path 

to smarter electrical grids is very intricate, and many complications 

that were unimaginable two decades ago are now part of the daily 

routine of transmission and distribution grid managers. 

One of the biggest problem is facing with forecasting.  

Until ‗90s, the main topic of forecasting was, by far, the load 

consumption at aggregate national, regional or sub-station levels. Load 

forecasts were required for short-term and long-term scenarios, in 

order to respectively i) assure power balancing and ii) plan future 

expansions of the networks  in decennial schedules.  

Nowadays, many other variables  (i.e., renewable generation powers, 

extreme values of weather variables, loads at disaggregate levels, and 

energy prices) are the subject of forecasting. 

The spread of renewable generators has, in fact, extended the problem 

of forecasting also to the generation powers and extreme values of 

weather variables, such as wind speeds.  

Renewable generation power forecasting, with particular focus on 

wind and photovoltaic (PV) systems, is yet to be fully explored in 

relevant literature. Indeed, forecasting systems found in literature for 

these variables are deterministic tools in the majority of cases: they 
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only provide a spot-value as forecast. The need of probabilistic tools, 

that are able to catch also information on the uncertainty linked to the 

wind and solar energy sources, has only recently been recognized by 

electrical practitioners, and researches in this framework are well 

encouraged since 2010s.  

Extreme values of wind speed (EWS) play a key role in wind power 

forecasting, in the overhead line rating, and in the assessment of the 

mechanical reliability of system components; in such kinds of 

applications, risk analyses are encouraged and probabilistic tools are 

needed. An accurate statistical characterization of such events is 

mandatory to improve the quality of several EWS probabilistic 

forecasting tools, since they usually require the definition of an 

appropriate Probability Density Function (PDF) to perform with high 

accuracy.    

Another new forecasting issue is the need of forecasts for loads at 

disaggregate levels, and of forecasts of both active and reactive 

powers. It is fostered by the growing ability of new management and 

regulation tools to push the optimal exploitation of energy sources in 

smart power systems. Having active and reactive power profiles 

available in advance is mandatory in order to perform the correct 

scheduling to manage grids at consumers level (e.g., micro-grids). 

Eventually, also energy price forecasts are currently required for the 

convenient participation of operators to electric markets. 

In summary, forecasting in power systems is a wide topic that today 

covers many and many needs, and that requires further research 

efforts.  

In this wide and complex context, after a brief discussion on the 

classification of forecasting systems and on the methods that are 

currently available in literature for forecasting electrical variables, 

stressing pros and cons of each approach, the thesis provides four 

contributions to the state of the art on forecasting in power systems 

where literature is somehow weak.  

The first contribution is a Bayesian-based probabilistic method to 

forecast PV power in short-term scenarios. The method transforms 

probabilistic forecasts of the hourly solar irradiance (or the hourly 

clearness index) into probabilistic forecasts of the PV power by means 

of well-known relationships, in an indirect approach. Solar irradiance 
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(or hourly clearness index) is modeled by means of an analytic PDF, 

whose parameters are estimated by means of the Bayesian inference of 

past available observations. An exogenous linear regression model is 

also defined in order to link one of the PDF parameters to the 

measurements of some influencing weather variables. 

The second contribution is a probabilistic competitive ensemble 

method once again to forecast PV power in short-term scenarios. The 

idea is to improve the quality of forecasts obtained by means of some 

individual probabilistic predictors, by combining them in a 

probabilistic competitive approach. Since the probabilistic predictors 

may vary in terms of predictive outputs (e.g., they can provide 

predictive samples, predictive PDFs, or predictive quantiles), in the 

proposed ensemble method the forecasts obtained through base 

predictors are firstly properly combined through a linear pooling of 

predictive cumulative density functions. Then, in order to guarantee 

elevate sharpness and reliability characteristics, a multi-objective 

(MO) optimization method is proposed and applied during the training 

period in order to estimate coefficients of the linear pooling. The MO 

optimization is specifically devoted to overcome well-known problems 

resulting in the over-dispersion of forecasts coming from the 

probabilistic combination of probabilistic base predictors in the linear 

pool approach. The Bayesian method (i.e., the first proposed 

contribution), a Markov chain method, and a quantile regression 

method are selected as probabilistic base predictors to be merged. 

The third contribution is aimed to the development of a deterministic 

industrial load forecasting method suitable in short-term scenarios, at 

both aggregated and single-load levels, and for both active and reactive 

powers. The deterministic industrial load forecasting method is based 

on Multiple Linear Regression (MLR) or Support Vector Regression 

(SVR) models. The selection of most adequate models is performed 

with two different techniques. The first technique is based on the 10-

fold cross-validation of multiple MLR and SVR models that contain 

combinations of the informative inputs; the best MLR and the best 

SVR models (in terms of average errors) are selected for the test step. 

The second technique is instead based on the lasso analysis, in order to 

directly draw the most useful inputs among the informative ones; a 10-
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fold cross-validation is performed also in this case, in order to provide 

coherent comparison with the first technique. 

The fourth contribution provides advanced PDFs for the statistical 

characterization of EWS.  

In particular, one of the PDFs proposed in this Thesis is an Inverse 

Burr distribution for EWS modeling. The derivation process of the 

Inverse Burr distribution is discussed, and a rigorous parameter 

estimation procedure based on the quantile estimation is provided and 

compared to classical maximum likelihood estimation and moment 

estimation procedures. In some conditions, the quantile estimation 

procedure consists in solving an analytic equation, thus avoiding the 

well-known convergence problems of classical estimation procedures.  

The other PDF proposed in this Thesis is a mixture Inverse Burr – 

Inverse Weibull distribution for EWS modeling. The mixture of an 

Inverse Burr and an Inverse Weibull distribution allows to increase the 

versatility of the tool, although increasing the number of parameters to 

be estimated. This complicates the parameter estimation process, since 

traditional techniques such as the maximum likelihood estimation 

suffer from convergence problems. Therefore, an Expectation-

Maximization (EM) procedure is specifically developed for the 

parameter estimation. The aim of the EM procedure is still to 

maximize the likelihood of an observed EWS dataset, although 

hypothesizing additional, hidden parameters to simplify the 

formulation of the likelihood function. 

This thesis is organized in four Chapters and an Appendix.  

The first Chapter provides an overview of the classification of 

forecasting methods in power systems based on the needs of electrical 

operators, and a brief explanation of the main methods available in 

relevant literature.  

The second Chapter explores in details the state of the art on 

probabilistic PV power forecasting, and shows the two contributions of 

this thesis in that field.  

The state of the art on industrial load forecasting is presented in details 

in the third Chapter; the related contribution (i.e., the deterministic 

industrial load forecasting method) is also presented in this Chapter.  
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The fourth Chapter deals with EWS modelling; after discussions on the 

state of the art, the two proposed models and their corresponding 

parameter estimation procedures are presented.  

Numerical applications related to each of the proposed contributions 

are shown in the ending parts of second, third and fourth Chapters; 

actual data are used in all of the numerical applications, in order to 

effectively test the validity of the proposals in real-world scenarios.  

Eventually, the main error indices and tools for the assessment of 

forecasts in both deterministic and probabilistic frameworks, and for 

the assessment of the Goodness Of Fitting (GOF) distributions, are 

shown in the Appendix. 
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Chapter 1.  

FORECASTING AND POWER SYSTEMS 
 

 

 

 

 

1.1.  INTRODUCTION 

The planning, operation and management of power systems are 

strongly affected by weather conditions, social factors, and economic 

factors [1-5].  

Solar irradiance, wind speed and ambient temperature, in fact, are 

weather conditions that strongly affect the production of PV and wind 

(WGs) generators, and the ampacity of overhead lines [6,7]. EWS may 

seriously damage electrical installations such as wind towers, WG 

blades, overhead lines and trellis [3,8-10]. Ambient temperature also 

influences energy demand due to the spread of cooling and heating 

systems [11,12], and transformer loadability due the variations in 

thermal exchange [13].  

Social and economic factors modify the human attitude toward energy 

consumption, as wealthier societies tend to consume more energy, and 

they also affect the supply from renewable sources, as more generators 

are typically installed in periods of high incentives [5,14]. Price 

variations on energy markets play a key role in the optimal 

management of transmission and distribution systems [15,16]. 

The increasing complexity of electrical networks makes the whole 

power system more vulnerable to the abovementioned factors and, 

then, power system operators would appreciate to perfectly prior know 

the future status of the grids, in order to plan and perform their actions 

with no miscalculations or approximations [17]. However, this is not 

feasible.  

The above problems, in addition, will definitely grow in interest in 

next years due to the continuous development of Smart Grids (SGs) 

and Micro Grids (μGs): adequate criteria of management and planning 

of transmission and distribution networks should be developed in these 
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new frameworks, thus requiring more accurate and reliable forecasting 

methods to be applied in power systems. In particular, forecasting non-

controllable generation, loads and market prices is therefore mandatory 

in order to help the future decision-makers to optimally exploit energy 

sources, assuring the balance and stability on networks, and favoring 

the risk assessment in reliability and maintenance tasks [18-20]. 

The forecasting methods applied in power systems are briefly 

summarized in this Chapter. First, their typical classifications are 

provided in Section 1.2. Then, forecasting approaches that have been 

widely applied in relevant literature to power systems are discussed in 

Section 1.3.  

 

1.2.  CLASSIFICATIONS OF FORECASTING METHODS 

The diversity in forecasting needs has a direct, intuitive consequence: 

no forecasting method is universally able to fit any purpose, but it has 

to be selected case by case on the basis of particular needs [21]. The 

classifications of forecasting methods straightforwardly follows the 

diversity in terms of end user needs.  

The first classification is made in terms of forecast lead time. Indeed, 

actions on power systems are performed on different time lines: e.g., 

improvement, replacement or realization of new infrastructures are 

planned several years before, while optimal management of distributed 

energy resources in SGs and μGs is scheduled some minutes to some 

hours before [1,22].  

Few papers [23] classify forecasting methods in 2 categories (short-

term and long-term); however, the most complete practice is to 

individuate Very Short-Term Forecasting (VSTF), Short-Term 

Forecasting (STF), Medium-Term Forecasting (MTF), and Long-Term 

Forecasting (LTF) methods [24-28]. 

VSTF lead times range up to 24 hours
1
; they are usually involved in 

power balancing and system optimal management and control. The 

influence of external variables (e.g., ambient temperature for load 

                                                 
1
 There is a lack of standardized classification. Therefore, some papers refer to 

VSTF when lead times are up to 30 minutes; in this case, STF lead times range from 

30 minutes to 24-48 hours ahead.  
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forecasting) is limited in this kind of applications, and therefore is 

often overlooked.  

STF lead times range from 24 hours ahead to two weeks ahead; they 

are usually involved in power balancing for acquiring appropriate 

reserve, market participation, and system optimal management.  

MTF lead times range from 2 weeks to 3 year ahead; this wide interval 

of time makes MTF methods useful for market participation, system 

optimal management, and planning. Social and economic factors 

should be carefully investigated in MTF, especially for monthly and 

yearly scenarios. 

LTF lead times start from 3 years and reach 20 (or more) years. These 

forecasts are involved in power system planning, and weather, social 

and economic long-term evaluations are mandatory in order to cope 

with evolutionary trends. 

Table 1.1 associates forecasting methods, classified in terms of lead 

times, to corresponding needs [28]. 

 

Table 1.1 - Utility of forecasting methods in power system operation needs 

Classification 

of forecasting 

methods 

Power system operation need 

Power 

balancing 

Participation 

to electrical 

markets 

Optimal 

management 

and control 

Planning 

VSTF yes no yes no 

STF yes yes yes no 

MTF no yes yes yes 

LTF no no no yes 

 

A second classification involves the output of forecasting methods. 

This comes from the different risks linked to power system tasks that 

require forecasts to be completed.  

Let‘s think of a wind plant owner, who wants to sell energy on 

electrical markets [29]. He has to submit a selling offer, stating the 

(exact) amount of energy he will be able to produce; in several 

Countries, he is penalized if the resulting production is too far from the 

declared one. If he disposes of a forecasting method that provides only 

a single value of wind power as output, the plant owner has no other 

choice than submitting a selling offer of as much energy as the 

forecasted one. Instead, if he disposes of a forecasting tool that 
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provides more values, or the probability distribution of wind powers, 

he can manage the forecasts and make the best choice for his needs. 

In this context, deterministic forecasts provide as output only a single 

value of the variable of interest (point forecast). Probabilistic forecasts 

provide as output analytical distributions such as PDFs, Cumulative 

Density Functions (CDFs), sampled distributions (discrete 

probabilities), quantiles
2
, or moments of the predictive distribution 

(e.g., mean, variance and skewness) [30]. Note that the variable of 

interest is still treated as a random entity in both frameworks: the main 

difference is that a single value is given as forecast of the variable of 

interest in deterministic framework, while more values, or a function, 

are given as forecast of the variable of interest in probabilistic 

framework.  

Probabilistic forecasts are generally preferable, since they provide also 

information about the uncertainty linked to the forecast itself. 

Therefore, they allow the risk assessment and the optimal selection of 

a single value, on the basis of different frameworks [31,32]. Indeed, it 

is always possible to extract a single, spot-value (e.g., the mean value 

of the predictive distribution) from probabilistic forecasts, while the 

reciprocal is obviously not valid. The main drawbacks of probabilistic 

forecasts are the increase of method complexity, and their greater 

computational burden. Then, if the forecast end user gains no benefit in 

having a probabilistic forecast, deterministic methods are still the best 

choice. 

It is worth noting that probabilistic methods sometimes rely on an 

underlying deterministic method [33,34]; e.g., some parameters of the 

predictive probabilistic distribution could be set from the output value 

of a deterministic method. In this case, improving the performance of 

the underlying deterministic method is compulsory in order to increase 

the overall quality of the probabilistic forecasts. Thus, research efforts 

in the deterministic framework are always encouraged. 

A third classification of forecasting methods is based on the 

characteristics of models involved in the forecasting method, and 

                                                 
2
 Let‘s recall that the   -quantile of a probability distribution is the value of the 

variable of interest that is not exceeded with probability   , 0 ≤    ≤ 1.  
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consequently on the solving procedure. The common classification is 

in terms of parametric and non-parametric methods.  

Parametric methods are based on models that are univocally identified 

as several numerical parameters are known; e.g., a predictive analytical 

Gaussian distribution is univocally identified when its mean and 

variance are known. Therefore, solving a parametric forecasting 

method consists in finding estimations of unknown parameters, usually 

by minimizing or maximizing assigned objective functions (i.e., by 

minimizing an error index). In the particular case of parametric 

probabilistic methods, usually the problem of finding a prior 

probabilistic characterization of the variable of interest through a 

specific PDF has to be solved [33].  

Non-parametric methods, instead, rely on the idea that forecasting 

future dynamics can be achieved by analogy with past dynamics. 

Indeed, the variable under study is not assessed through an analytic 

model, instead it is forecasted by means of a procedure that ―learns‖ 

from the past. Note that the ―non-parametric‖ definition could be 

misleading. It does not mean that no parameters are involved in non-

parametric methods; indeed, some involved parameters could identify 

the order of the model, rather than the model itself. 

In non-parametric methods, however, the complexity of the models 

(i.e., the number of parameters) grows with the dimension of the 

problem and, theoretically, is not constrained. The more the inputs 

(i.e., the elements of the training set) fed to the non-parametric method, 

the larger is the number of parameters to be estimated. Therefore, the 

structure of the model itself ―grows‖ as the training set enlarges (Fig. 

1.1). On the other hand, the structure of models in parametric methods 

is fixed with the dimension of the problem; the same number of 

parameters has to be estimated, regardless of the size of the training 

set
3
 (Fig. 1.1). 

 

                                                 
3
 Training set stores all of the available input data used to estimate model 

parameters. Since the actual values of the variable of interest are known, forecasts are 

produced in-sample during the training period. A test period is therefore necessary to 

fairly evaluate the performance of the so-built forecasting model, in an out-of-sample 

context. 
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Figure 1.1 – Features of parametric and non-parametric methods. 

 

The fourth and last classification is based on the approach used to 

build and solve the forecasting problem. Statistical approaches rely on 

measurement data acquired in the past to produce forecasts for the 

future, starting from the assumption that past conditions are 

informative for the future. Physical approaches rely instead on a 

specific formulation of the problem under study in a rigorous fashion, 

by exploiting mathematical formulas based on physical principles. 

Hybrid approaches can be a combination of statistical approaches, 

physical approaches, or statistical and physical approaches together. 

 

1.3. FORECASTING METHODS APPLIED TO POWER SYSTEMS 

A review of common forecasting methods applied to power systems is 

presented in this Section. The latter classification of Section 1.2, i.e., 

statistical approaches, physical approaches, and hybrid approaches, is 

considered in the following. The main features of each approach are 

briefly discussed in the corresponding sub-Sections. 
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1.3.1. Statistical approaches 

Statistical approaches exploit information provided by the observed 

past history to describe and forecast the realization of a physical 

phenomenon. 

In several kinds of applications, a mathematical model is formulated to 

characterize the variable of interest. If the past were able to exactly 

describe its behavior (e.g., if the mathematical model can be 

formulated from well-known physical laws), the model would be 

purely deterministic, and forecasting future values of the variables 

simply consists in solving an equation from assigned input data. 

However, in the majority of cases, there are many random events that 

could affect the realization of the phenomenon, and, therefore, models 

can deviate from classical physical laws, since they could fail to 

exactly predict the future conditions. Thus, models can be built on the 

basis of previous experiences in order to take into account the effect of 

external random events on the objective variable.  

In other applications, no strict mathematical model is needed in order 

to forecast the future values of the variable of interest. This is the case, 

of machine learning approaches, as the artificial intelligence of 

computers ―learns‖ from the past and tries to find the underlying 

relationships between inputs and outputs. Due their versatility, 

machine learning approaches are suitable for both deterministic or 

probabilistic forecasting. 

1.3.1.1. Naïve approaches 

Naïve approaches are techniques that allow to produce forecasts that 

can surprisingly be accurate in VSTF and STF frameworks, despite 

their superior simplicity. For this reason, they are usually adopted as 

benchmarks, to give a comparative reference for assessing the quality 

of forecasts coming from more complex models. 

The first notable naïve approach is based on the persistence of the  

variable of interest. In other words, the variable of interest   is 

expected not to vary during the forecast lead time  , thus assuming the 

forecast  ̂  at the time horizon   the same value experienced at the 

forecast start time    : 

 

 ̂       . (1.1) 
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Note that, to take into account the eventual seasonal behavior of the 

variable of interest, a seasonal naïve (SN) benchmark, direct extension 

of the persistence approach, can be expressed as follows: 

 

 ̂       , (1.2) 

 

where   is the seasonal period (e.g., daily or weekly). 

Both the abovementioned naïve benchmarks use only one past 

measured value of the variable. This could result in an over-sensitive 

approach, since it directly depends on a single value that could lose 

generality. The average naïve benchmark (NB) overcomes this 

problem by providing a forecast as an average of    
    

 past measured 

values  
        

    
   

  
        

    
   

        of the variable of 

interest, as follows: 

 

 ̂  
 

   
    ∑       

   
    

  

   
 . 

(1.3) 

 

Obviously, the average naïve benchmark could suffer from a dual 

problem: it could over-generalize the behavior of the variable of 

interest, losing valuable information linked to recency.   

An interesting compromise between the persistence and the average 

naïve models was proposed by Nielsen et al. in [35]. In the Nielsen 

approach, the forecast  ̂  is obtained as a weighted sum of the last 

   
     

 available observation and of the average of past observations: 

 

 ̂    
     

          
     

 
 

   
     ∑       

   
     

  

   
 , 

(1.4) 

 

where the Nielsen weight coefficient   
     

 is a function of the lead 

time  , and it is analytically computed from the correlation between 

lagged observations as: 

 

  
     

 
∑  ̃         ̃      

   
     

    

   

∑  ̃      
    

     
    

   

 , 

(1.5) 
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where  ̃     
 

   
     ∑       

   
     

  

   
. 

As said before, naïve benchmarks are often used as deterministic 

benchmarks due their intuitiveness and simplicity. Extensions of all of 

these naïve approaches to probabilistic frameworks exist, and have 

been extensively applied in relevant literature to build also 

probabilistic benchmarks.  

In the probabilistic persistence approach, e.g., it is common to 

introduce a probabilistic error term   
     

 from a Gaussian 

distribution with zero mean, and standard deviation   
     

 equal to 

the variance of    
     

 past errors: 

 

  
     

 √
 

   
     

  
∑          ̂          

     
    

   
 . 

(1.6) 

 

Thus, from the probabilistic model: 

 

 ̂         
     

 , (1.7) 

 

it is possible to extract predictive samples or to evaluate predictive 

quantiles of the variable of interest. Note that also the predictive PDF 

could be built in an analogous way, e.g., assuming is a Gaussian 

distribution with mean      and standard deviation   
     

.  

The same approach could be adapted also to other distribution families, 

mirroring the prior assumption on the distribution family in the model 

that is to be compared with the naïve benchmarks. The assumption on 

the distribution family is, therefore, a key point. 

Naïve approaches have been extensively applied in literature relevant 

to power systems, mostly as deterministic and probabilistic reference 

methods; relevant papers are recalled in surveys on load forecasting 

[6,24,28,36-44], PV forecasting [27,36,45-54], WG forecasting 

[30,47,48,55-64], and price forecasting [15,65-67]. 
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1.3.1.2. Regression analysis 

Regression analysis is a technique that allows to find and to model the 

intrinsic relationships between the variable of interest (i.e., the 

dependent variable) and one or more other variables (i.e., the 

independent variables
4
) [68,69].  

The most common approach in regression analysis is to model the 

conditional expectance of probability distribution of the variable of 

interest, assuming that the variance does not changes with varying 

conditions. However, in many application the focus is transferred to 

modeling some quantiles of the probability distribution of the variable 

of interest (Quantile Regression, QR), or some other specific 

parameters of the underlying probability distribution. In all of these 

cases, however, the target is a mathematical function (regression 

function) of the independent variables.  

Regression analysis can be both parametric and non-parametric. In the 

first case, unknown parameters have to be estimated in order to 

univocally determine the regression function. In the second case, 

specific techniques can be used to identify the model in an infinite-

dimensional space of functions. 

The simplest, parametric regression approach is the linear regression. 

The dependence between the dependent variable and independent 

variable(s) is linear in the parameters, meaning that parameters are 

only coefficients to independent variables. If two or more independent 

variables are considered, it is common to refer to MLR approaches. 

The general form of a MLR model is: 

 

 ̂    
     

   
     

         

     
    

    , 
(1.8) 

 

where  ̂  is the forecast at time  ,           
 are the    predictors, 

  
     

   
     

      

     
 are the      unknown parameters of the 

model, and    is a white noise term. 

MLR models are fitted to data available in the training set trough least 

square approach (i.e., by minimizing the sum of squared errors in the 

                                                 
4
 Dependent variables are also denoted in relevant literature as response variables 

or regressand. Independent variables are also denoted in relevant literature as 

explanatory variables, predictors, or regressors.  
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training set), although several approaches (such as lasso estimation 

[70]) provide some accurate results in many kind of situations by 

minimizing the lack of fit through different norms.  

Further regression approaches are nonlinear in the parameters [69]. 

The model development can be performed on the basis of prior 

experience. It is important to note that nonlinear models are not so 

uncommon as one may think; e.g., if the response variable is assumed 

to be always positive, the constraint often leads to a nonlinear model. 

Obviously, estimating the parameters in this function is more 

challenging than estimating parameters in linear models. If nonlinear 

models can be brought to linear models through specific 

transformations, they are usually referred as intrinsically linear models. 

A well-known example is the following regression model: 

 

 ̂    
     

  

  
     

 , 
(1.9) 

 

that can be easily linearized through the logarithmic transformation 

[69], resulting in: 

 

   ̂   ̂ 
      

     
   

     
       

         
     

  
  . (1.10) 

 

Regression approaches have been extensively applied in literature 

relevant to power systems, in both deterministic and probabilistic 

fashion; relevant papers are recalled in surveys on load forecasting 

[6,24,28,36-44], PV forecasting [27,36,45-54], WG forecasting 

[30,47,48,55-64], and price forecasting [15,65-67]. 

1.3.1.3. Univariate stochastic time series 

A time series            is a set of   sequential observations of the 

variable of interest; the dependency on time is here implicit, as 

subscripts         stand for              . When the time 

series is the sample manifestation of a stochastic process, it is denoted 

as univariate stochastic time series [71,72]. 

The main characteristic in time series analysis is the dependency 

between ―adjacent‖ observations; the exploitation (and coherent 

modeling) of such dependency is of practical use in building a model 
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that is representative of the stochastic process, starting from the 

available time series. 

Models used to capture the features of a time series fall into the 

AutoRegressive (AR), Moving Average (MA), and Integrated (I) 

families; combining these models into ARMA, ARI, IMA, and 

ARIMA models can be of help to obtain better performance. For 

example, the integration effect is mandatory in order to capture non-

stationary (e.g., seasonality) effects in the time series that AR models 

alone are not able to catch. 

The analytic modeling of the ARIMA family is [71-73]: 

 

               , (1.11) 

 

where: 

-   is the backward shift operator, defined as          ; 

-               
         is the stationary AR operator 

of order  ; 

-    is the backward difference operator of order  , defined as 

            ; 

-               
       

  is the MA operator of order    

-    the white noise term. 

Note that expanding Eq. (1.11) in the so-called difference form [71], 

AR and ARI families (i.e., ARIMA family with    ) become 

particular cases of MLR, with predictors being lagged observations of 

the variable of interest, differences between observations of the 

variable of interest, and error terms. However, specific solving 

procedure and techniques (e.g., the Yule-Walker algorithm for AR 

models [71]) have been developed for such families due their wide 

utilization in forecasting and modeling problems, and therefore 

univariate stochastic time series are usually treated separately. Note 

also that the incorporation of the MA operator definitely separates time 

series approach from MLR approach, due the different error modeling. 

Time series models with eXogenous variables (mostly falling into the 

ARX, ARMAX and ARIMAX family) can improve the quality of 

forecasts, by considering as input not only the time series of the 
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variable of interest, but also one (or more) time series of informative 

variables [74].  

The analytic modeling of the ARIMAX family with a single 

exogenous variable   is: 

 

                      , (1.12) 

 

where               
         is the input operator of 

order  . 

Both ―pure‖ ARIMA models and ARIMAX models can be treated in 

nonlinear framework (some common models applied to power systems 

are NARIMA and NARX, respectively, where N stands for nonlinear). 

Time series approaches have been extensively applied in literature 

relevant to power systems, in both deterministic and probabilistic 

fashion; relevant papers are recalled in surveys on load forecasting 

[6,24,28,36-44], PV forecasting [27,36,45-54], WG forecasting 

[30,47,48,55-64], and price forecasting [15,65-67]. 

1.3.1.4. Exponential smoothing 

Exponential smoothing approaches consist in providing forecasts 

through the weighted average of observations collected in the past, 

with weights that decrease as the observations get farther from the 

present [75]. In practice, the last observation available (i.e., the one 

collected at the start time of the forecast) is multiplied for the greatest 

weight, and the first observation ever collected is multiplied for the 

smallest weight. This approach is in the middle between the 

persistence and the average naïve benchmark, since the former is an 

―exponential smoothing‖ model with a unitary weight assigned to the 

most recent observation, and the latter is an ―exponential smoothing‖ 

model with equal weight assigned to all of the available observed 

values. 

The simplest exponential smoothing approach is also called single 

exponential smoothing; it is based on the following smoothing 

formula: 

 

 ̂                        ̂    , (1.13) 
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where  ̂ ,  ̂    are the forecast values at time   and    , respectively, 

and            is the smoothing parameter that weights more the 

recent observations if it is closer to 1, and that weights more the far 

observations if it is closer to 0. In the particular case of         , the 

exponential smoothing approach collapses in the persistence approach. 

Expanding Eq. (1.13),  ̂  can be expressed as a function of all of the 

   
     

 previous available measurements 

 
     

       
     

     
  

        of the variable of interest: 

 

 ̂                   (        )       

             (        )
 
        

             (        )
   

     
  

 
     

       

       (        )
   

     

 ̂
     

      , 

(1.14) 

 

thus the term ―exponential‖. Note that the forecast  ̂
     

      must be 

initialized in order to let the things work. In the single exponential 

smoothing approach, the unknown parameter        can be found as a 

solution of a non-linear programming, constrained problem, e.g., by 

minimizing the Root Mean Squared Error (RMSE) in the training 

period. 

Several variants of the exponential smoothing approach exist and have 

been investigated in relevant literature; e.g., the double exponential 

smoothing approach iteratively applies two smoothing formula to take 

into account also an eventual trend of the variable of interest, while the 

triple exponential smoothing approach is able to deal with both trend 

and seasonality behaviors [75]. 

Exponential smoothing approaches have been extensively applied in 

literature relevant to power systems, in both deterministic and 

probabilistic fashion; relevant papers are recalled in surveys on load 

forecasting [6,24,28,36-44], PV forecasting [27,36,45-54], WG 

forecasting [30,47,48,55-64], and price forecasting [15,65-67]. 
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1.3.1.5. Bayesian approaches 

Bayesian approaches cover a wide range of forecasting procedures that 

make use of the Bayes‘ theorem to provide probabilistic predictions.  

The formulation of the Bayes theorem is:  

 

       
          

    
 , (1.15) 

 

where: 

-        is the posterior probability of parameters   given a dataset 

    
        

    
   

  
        

    
   

         of    
    

 past observed 

values of the variable of interest; 

-      is the prior probability of parameters; 

-        is the likelihood of data   given parameters  ; 

-      is the probability of data  . 

In particular, the likelihood is computed as follows: 

 

       ∏           
   

    
  

   
  , 

(1.16) 

 

where         is the PDF of the variable of interest    given 

parameters  , and the probability of data   is given by: 

 

     ∫             . (1.17) 

 

The posterior probability of parameters is afterward used in order to 

compute the predictive posterior distribution         of the variable of 

interest, as follows: 

 

        ∫                 . (1.18) 

 

In practice, when using a Bayesian approach, parameters that appear in 

the forecasting model and that have to be estimated to forecast the 

variable of interest are probabilistically evaluated by modifying the 

forecaster‘s prior knowledge on parameters, according to the inference 

of the available training set [76-78]. 
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The PDF      plays a key role in evaluating the likelihood       , and 

in evaluating the predictive posterior distribution        . A prior 

assumption on the type of the PDF      is usually necessary to 

compute the likelihood in Bayesian approaches. Searching the most 

appropriate PDF family in such kind of approaches is very useful in 

order to improve the overall forecast performance, thus driving 

research interests toward probabilistic modeling and characterization. 

Note that the posterior predictive distribution         of the variable 

of interest does not necessarily belong to the family of the prior 

assumed PDF     . 

The analytical solution of Eq. (1.17) and, therefore, Eq. (1.18) is viable 

only under particular assumptions on the prior distributions of the 

variable of interest and of the parameters. Gaussian processes are some 

examples of prior distributions in such Bayesian approaches; the 

underlying assumption of Gaussian Processes is that the joint 

probability distribution is a Gaussian distribution [79-81]. 

Bayesian approaches have been applied in literature relevant to power 

systems in probabilistic framework; relevant papers are recalled in 

surveys on load forecasting [6,24,28,36-44], PV forecasting [27,36,45-

54], WG forecasting [30,47,48,55-64], and price forecasting [15,65-

67]. 

1.3.1.6. Markov Chains 

Contrarily to Bayesian approaches, Markov Chain (MC) approaches 

are non-parametric and they require no prior assumption on the 

probability distribution of the variable under study.  

A basic formulation is the discrete MC, that relies on the hypothesis 

that the variable of interest    at time   can assume values in a finite 

number    of states,   
   

     
    

 (discrete state space), and that the 

probability of the variable to be in the  th
 state   

   
 does not depend on 

the entire observed history, but only on   previous states. Therefore, 

the main assumption is the stochastic independence after the  th
 time 

step [82,83]:  

 

                                              . (1.19) 
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Forecasts for the variable    to be in state   
   

 are obtained from the 

probability     
   

     
   

     
   

         
   

 , i.e., the probability that the 

variable of interest is in the  th
 state, provided that it assumed values 

respectively in the  th
,  th

,…,  th
 states in the previous   time steps. 

When applied to power system forecasting, MCs have been proposed 

and extended to a continuous, measurable state space. 

MC approaches have extensively been applied in literature relevant to 

power systems, in both deterministic and probabilistic fashion; relevant 

papers are recalled in surveys on load forecasting [6,24,28,36-44], PV 

forecasting [27,36,45-54], WG forecasting [30,47,48,55-64], and price 

forecasting [15,65-67]. 

1.3.1.7. Kalman filter 

If the forecasting problem can be put in a state-space form, Kalman 

filter becomes one of the most powerful tools to produce accurate 

forecasts [84]. Indeed, in such a case, the solution of the forecasting 

problem is analytical.  

Kalman filter relies on two fundamental equations: the measurement 

equation  and the transition equation.  

The measurement equation is a mathematical model that links the 

variable of interest at the desired time horizon to explanatory variables, 

collected until the forecast start time, and to variables that represent the 

unavoidable disturbances in the model (e.g., forecast errors). It is 

worth noting that the measurement equation can be an arbitrary model 

(e.g., a MLR model or an univariate time series model), but also 

applications to machine learning approaches have been proposed in 

relevant literature [85,86]. 

The transition equation, instead, provides the mathematical 

formulation of the variation of the explanatory variables at the desired 

time horizon, with respect to past values of the explanatory variables 

(e.g., in a first-order Markov process).  

Kalman filter, in its basic form, provides estimation of the future state 

variables through two prediction equations and an updating equation, 

for the evaluation of the covariance error matrix. 

Several variants of the Kalman filter have been applied in order to 

appropriately describe forecasting problems also in nonlinear 
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frameworks; some examples are the Extended Kalman Filter (EKF), 

the Ensemble Kalman Filter (EnKF), and the unscented Kalman filter. 

In particular, the EKF linearizes the state-space system evaluating the 

Jacobian matrices of both measurement equation and transition 

equations. This usually results in a burdensome computational effort. 

The EnKF, instead, deals with the non-linearity by exploiting a set 

(ensemble) of state estimates, rather than a single state estimate; in this 

framework, there‘s no need to compute the Jacobian matrices to 

estimate the covariance error matrices, since the latter are evaluated 

from the estimates distribution. This allows to reduce the overall 

computational effort. 

Kalman filter approaches have been applied in literature relevant to 

power systems; relevant papers are recalled in surveys on load 

forecasting [6,24,28,36-44], PV forecasting [27,36,45-54], WG 

forecasting [30,47,48,55-64], and price forecasting [15,65-67]. 

1.3.1.8. Artificial neural networks 

Artificial neural networks (ANNs) are machine learning structures that 

exploit and resemble the functionalities of human brains. The 

elementary components of ANNs are artificial neurons, that act as a 

simplified version of human neurons [87]. External inputs   

            
  are fed to the artificial neuron, multiplied by the 

synaptic weights   
     

   
     

      

     
 and then summed. The 

resulting value is diminished by a threshold value  ̅     , and an 

activation function triggers the output   of the neuron if the value is 

greater than the activation limit. Activation functions may be step 

functions, linear or smoothed functions, or also truncated functions as 

the one portrayed in Figure 1.2. Therefore, in their general form, 

artificial neurons perform nonlinear operations on the inputs. 
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Figure 1.2 – Typical structure of an artificial neuron. 

 

To resemble the activity of the human brain, usually more neurons are 

connected one each other in order to link the inputs of the ANN to the 

output of the ANN; neurons are therefore organized in layers. Input 

layers are the ones containing artificial neurons fed by the inputs of the 

ANN; output layers are the ones containing artificial neurons the 

output of which are the outputs of the ANN. One or more hidden 

layers are set between input and output layers; they are fed by the 

output of previous layers, and their outputs are fed to the following 

layers. This is the classical feed-forward ANN architecture, that is the 

most used structure in typical power system forecasting applications. 

However, recurrent ANN architectures are also used in particular 

situations in order to improve the results. In recurrent ANN 

architectures, some of the output of the ANN are fed to the input layer 

after a feedback. 

ANN approaches have been extensively applied in literature relevant to 

power systems, in both deterministic and probabilistic fashion; relevant 

papers are recalled in surveys on load forecasting [6,24,28,36-44], PV 

forecasting [27,36,45-54], WG forecasting [30,47,48,55-64], and price 

forecasting [15,65-67]. 

1.3.1.9. Support vector regression 

SVR is a machine learning approach that is sometimes used as an 

alternative to ANNs. The high number of weights to be estimated in 

ANNs, indeed, is sometimes a difficult problem to cope with; classical 

techniques (e.g., back-propagation) provide estimations of ANN 

weights by solving a non-convex and unconstrained programming 

problem, with several local minima.  
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SVR structures allow to avoid these unwanted conditions; indeed, the 

algorithm solution is simple to be obtained, as the problem can be 

posed in a convex, constrained form, although being able to model 

non-linear relationships between inputs and outputs [88].  

SVR links the output variable  ̂  to a vector of    explanatory 

variables               
  through a generic function selected 

among specific function classes (e.g., linear, Gaussian kernel, or 

polynomial kernels). The function is searched in order to let all of the 

outputs obtained through the SVR differ at most by an arbitrary 

threshold  ̅      from    
     

 available observations 

 
        

     
   

  
        

     
   

       ; points that lie outside the 

  ̅      band are penalized by a provided coefficient. In the linear 

case, the function is: 

 

 ̂    
     

   
     

         

     
    

 , (1.20) 

where  ̂  is the forecast at time  ,           
 are the    explanatory 

variables, and   
     

   
     

     

     
 are the      unknown 

parameters of the model. Eq. (1.20) is quite similar to classical MLR 

model (1.8), although differences arise in the modeling of the error 

term and, specifically, in the solving procedure. Indeed, estimations of 

the vector           
     

      

     
  and of parameter   

     
 are 

found by solving the following quadratic, constrained programming 

problem: 

 

 ̂ 
     

  ̂       ̂  ̂    

                     
  

     
  

     
           

 

 
       

 
     

  

                                                          ∑               
  

   
     

  

   
 , 

 

s.t.               
          

     
  ̅                   , 

             
          

     
         ̅            

        , 

                    
                                                                      , 

(1.21) 
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where     
        

     
   

         and 

     
        

     
   

        
   are coefficients introduced to deal with 

points outside the   ̅      band, and   is the given penalty coefficient.  

This approach, with adequate modifications, can be extended to other 

function classes (e.g., polynomial and Gaussian kernels). 

SVR approaches have been applied in literature relevant to power 

systems, in both deterministic and probabilistic fashion; relevant 

papers are recalled in surveys on load forecasting [6,24,28,36-44], PV 

forecasting [27,36,45-54], WG forecasting [30,47,48,55-64], and price 

forecasting [15,65-67]. 

1.3.1.10. Fuzzy approaches 

Fuzzy logic has recently been applied also to forecasting methods. The 

idea of fuzzy logic is to assign a grade of membership to an element  , 

in order to individuate whether it belongs or not to a category [89]. For 

example, a person can be considered tall or non-tall; the concept is 

indeed vague (fuzzy). A nonnegative number, not greater than one, 

defined as the grade of membership, can be assigned to each person. 

The value 0 represents the full non-belongingness to the category 

―tall‖, while the value 1 represents the full belongingness; intermediate 

values represent the ―more or less‖ belongingness to the ―tall‖ 

category. The grade of membership is clearly subjective; e.g., one 

could discriminate the belongingness degree on the basis of the height 

of the human being, assigning greater values to taller people and 

smaller values to shorter people. 

To formalize fuzzy logic [89], a fuzzy set    in the finite universe of 

discourse      
     

   
     

      

     
  is the set of pairs 

           
(      ) , with         .    

(      )        is the grade 

of membership of        in   . The fuzzy set is usually indicated as 

follows: 

 

      
(  

     
)   

     
      

(   

     
)    

     
 . (1.22) 

 

Fuzzy logic has been extended also to numbers, in the framework of 

fuzzy arithmetic. In particular, a fuzzy number is a fuzzy set    in  . 
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As stated in [89], ―fuzzy number may be exemplified by “about five”, 

“a little more than 7”, “more or less between 5 and 8”, and so on‖. 

The extension of algebraic operations (sum, subtraction, multiplication 

and division) is possible in the framework of fuzzy operations. This 

allows to extend ―standard‖ statistical approaches (such as time series, 

ANN, or MLR) in order to provide forecasts of a generic variable in 

the framework of fuzzy logic. For example, fuzzy logic applied to 

MLR is shown in the following [90]. 

In MLR, the deviations between observed values and estimated values 

are taken into account through the error term   . In fuzzy logic, 

instead, the deviations are due the ―fuzziness‖ of the model structure, 

i.e., due the fuzziness of model parameters. Therefore, the fuzzy linear 

function: 

 

  
    

         
     

 , (1.23) 

 

is the extension of the MLR in a fuzzy framework; note that the output 

  
  is still a fuzzy set, from which the forecast can be drawn in 

probabilistic or deterministic frameworks. Obviously, the selection of 

the membership function strongly affects the resulting model, and it 

can be chosen by experts on the basis of the particular applications 

(e.g., triangular functions for parameters). 

Fuzzy approaches have been extensively applied in literature relevant 

to power systems, in both deterministic and probabilistic fashion; 

relevant papers are recalled in surveys on load forecasting [6,24,28,36-

44], PV forecasting [27,36,45-54], WG forecasting [30,47,48,55-64], 

and price forecasting [15,65-67]. 

1.3.1.11. K-nearest neighbors 

Approaches based on K-nearest neighbors (KNNs) are among the most 

known techniques in forecasting [91]. Given a set 

    
        

     
   

  
        

     
   

         of    
     

   -

dimensional vectors of explanatory variables and a corresponding 

vector of    
     

 past outputs 

    
        

     
   

  
        

     
   

        , the KNN approach 

provides a forecast  ̂  of the variable of interest   , once the vector of 



28 

 

explanatory variables    is known. The first step is to identify the set 

   of the K vectors of explanatory variables, selected from the set  , 

that are the ―closest‖ to the vector   . Obviously, a metric has to be 

introduced in order to give an interpretation to the ―closeness‖ of 

vectors; e.g., the Euclidean distance in the vector space is one of the 

most common solution. Then, the forecast  ̂  of the variable of interest 

is obtained from the K outputs corresponding to the K vectors in the 

set   , e.g., through the arithmetic mean or through a mean weighted 

by the distances of explanatory variables vectors. 

Obviously, the choice of the parameter K is critical, since low values 

of K tend to particularize the behavior (and therefore, the forecast) of 

the variable of interest, while greater values of K tend to generalize 

and smooth the behavior of the variable of interest. The computational 

burden linked to the selection of the nearest neighbors is obviously in 

favor of the former. 

KNN smoothing approaches have been extensively applied in literature 

relevant to power systems, in both deterministic and probabilistic 

fashion; relevant papers are recalled in surveys on load forecasting 

[6,24,28,36-44], PV forecasting [27,36,45-54], WG forecasting 

[30,47,48,55-64], and price forecasting [15,65-67]. 

1.3.1.12. Kernel density estimation 

Kernel Density Estimation (KDE) is applied to forecasting in order to 

build the predictive probability distribution of the variable of interest 

  , provided a set     
        

     
   

  
        

     
   

         of 

   
     

 past observations [92]. Contrarily to parametric density 

estimation, which consists in estimating the parameters of the 

(assumed) underlying PDF from the observed data (e.g., through the 

maximum likelihood or moment estimation procedures), KDE relies on 

a less rigid assumption on the family of the underlying probability 

distributions. In particular, a greater importance is given to observed 

data, since they are used not only to estimate parameters of a pre-

assigned distribution, but also to build the predictive distribution 

 ̂        in the following way: 
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 ̂        
 

   
     

      
∑  (

     

      )
   

     

   
 , 

(1.20) 

 

where      is the kernel function and        is a smoothing parameter 

(usually referred as bandwidth). The peculiarity of kernel function 

classes is that they must be non-negative, and ∫       
  

  
  . Some 

commonly used kernel functions are the uniform (in a compact 

support), Gaussian, Epanechikov, Silverman, and logistic functions 

[92]. The selection of the bandwidth        is a trade-off between the 

smoothing effect of the KDE and the corresponding estimation error; 

this effect is particularly enhanced in applications devoted to 

forecasting. 

KDE approaches have been extensively applied in literature relevant to 

power systems, in both deterministic and probabilistic fashion; relevant 

papers are recalled in surveys on load forecasting [6,24,28,36-44], PV 

forecasting [27,36,45-54], WG forecasting [30,47,48,55-64], and price 

forecasting [15,65-67]. 

1.3.2. Physical approaches 

Approaches based on physical models combine environmental and 

geographic aspects, such as terrain morphology, height and obstacles, 

to weather information such as air pressure, ambient temperature, and 

wind speed, in order to provide accurate forecasts for related variables 

[55]. These kind of approaches are widely used, e.g., in PV and WG 

power forecasting, since the main resource (irradiance and wind speed, 

respectively) can be accurately predicted from the knowledge of initial 

and boundary conditions, through the physical mathematical model of 

the surrounding area.  

Numeric Weather Predictions (NWPs) obtained through physical 

approaches are usually developed in a large-scale area framework, by 

splitting the globe in smaller areas through appropriate meshes. The 

thickness of the grid has an enormous impact on the computational 

burden of the physical approach. Indeed, the solution of the 

conservation equations at the given site is quite challenging, and 

dedicated computer architectures are mandatory in order to obtain 

forecasts in computational times adequate to forecast lead times [55]. 
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NWP are usually provided at different lead time resolution (e.g., 1 

hour, 3 hours, or 6 hours), for the next 3-20 days, according to the 

different model. The accuracy of NWPs in short-term scenarios usually 

is not competitive with forecasts coming from statistical approaches; 

however, the exploitation of NWPs as auxiliary inputs of statistical 

approaches (i.e., hybrid approaches) is a widely-used trick to 

increment the accuracy of the overall predictions.  

Examples of physical forecasting models are developed by European 

and U.S. research centers, such as Met Office [93], European Centre 

for Medium-Range Weather Forecasts [94], National Oceanic and 

Atmospheric Administration [95], and National Centers for 

Environmental Prediction [96]. 

1.3.3. Hybrid approaches 

Hybrid approaches consist in exploiting heterogeneous approaches in 

order to increase the robustness and quality of the resulting forecasts. 

Two types of hybrid methods find usual applications in power systems: 

cooperative approaches (series) and competitive approaches (parallel) 

(Fig. 1.3) [47]. 

 

 
Figure 1.3 – Features of competitive and cooperative approaches. 

 

Cooperative approaches enhance the performance of the forecasting 

system by sequentially performing transformations or forecasts, and 

using the outputs of previous steps as inputs of next steps. In 
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particular, the forecasting system is divided in several subtasks, and 

each of them is solved individually. 

In particular, two kinds of cooperative approaches can be individuated: 

one based on the pre-processing of the data, and one based on post-

processing of the forecasts. 

Forecasting methods based on the initial filtering of input data (e.g., 

through the Wavelet decomposition or the empirical model 

decomposition [97]) fall in the pre-processing cooperative hybrid 

approach. Model output statistic is instead an example of cooperative 

post-processing hybrid approach; it performs corrections on short-term 

NWPs through the application of a statistical model (e.g., an univariate 

time series model) on NWP forecasts. 

One of the main drawbacks of cooperative approaches is the related 

computational burden. Indeed, the computational effort cannot be split 

in parallel activities, but each step of the approach must be run after 

the previous ones. 

Competitive approaches combine the outputs of several models into a 

prediction that shows better performance than each base input. Usually 

they are also referred to as ―ensemble‖ approaches. The concept of 

―diversity‖ introduced in [47] is vital in order to increase the 

performance of the overall forecasting system. Indeed, if few or no 

information is added by the introduction of a new base prediction, only 

few or no improvement is experienced in the final forecasts. Diversity 

can be introduced by adding forecasts coming from heterogeneous 

base models (e.g., different forecasting approaches) or homogeneous 

base models (e.g., ANNs with different architectures or NWPs with 

different parameters). 

The simplest combination of base predictions in a competitive 

approach is to select the average value, with equal or different weights 

for each base prediction, in a deterministic scenario. Further possible 

combinations are the median value, the minimum value, or the 

maximum value, on the basis of the forecasts‘ end user needs. 

Different combinations (e.g., in a logarithmic scale) can be selected as 

the resulting predictions has to be searched to minimize a penalty or 

error function (e.g., the root mean squared error in the training period).  

Competitive methods, however, can also produce probabilistic 

forecasts by building the predictive PDF, starting from deterministic 
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base predictions provided at different scenarios, or from probabilistic 

base predictions. In the latter case, the combination of base predictive 

PDFs usually comes from a weighted or logarithmic average [98]. 

The main advantages of competitive approaches are related to the 

parallelization of several subtasks, resulting in reduced computational 

time. 

Eventually, note that several approaches can be a combination of both 

competitive and cooperative subtasks (e.g., an initial filtering of the 

available data, followed by the combinations of multiple forecasting 

models); in this case, they will still be referred to as competitive 

approaches. 
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Chapter 2.  

ADVANCED PROBABILISTIC METHODS FOR 

SHORT-TERM PHOTOVOLTAIC POWER 

FORECASTING 
 

 

 

 

 

2.1. INTRODUCTION 

The recent development of Renewable Generators (RGs) distributed 

across the whole electrical network traced the path towards a greener 

energy structure, with priceless benefits for the society. However, this 

strongly complicated the operation of electrical systems: contrarily to 

traditional, fossil-fueled plants, the majority of RGs cannot be finely 

regulated, since the primary energy source that is converted to 

electrical energy is not controllable and significantly linked to weather 

conditions. Among RGs, PV power plants are acknowledged to bring 

particular technical, environmental, and economic benefits to power 

systems, and their diffusion has straightforwardly grown during past 

years. 

The power output of PV generators mainly depends on the solar 

irradiance in the specific site they are installed. Also, several more 

weather variables, such as air temperature and wind speed, have a 

decisive impact on the total energy production. These weather 

conditions that influence PV power cannot be exactly predicted, since 

they vary with random physical phenomena such as cloud motion. 

Therefore, the PV powers are treated as random variables and they are 

subject to forecasting. 

This Chapter contributes to the existing literature on power forecasting 

by providing two new probabilistic PV power forecasting methods. 

The first method is based on a Bayesian approach, coupled with an 

underlying time series deterministic model in a cooperative fashion 

[99].  The second proposal, instead, is a competitive ensemble method 
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that optimally combines the probabilistic outputs of three 

heterogeneous base models that follow a Bayesian approach, a Markov 

chain approach, and a quantile regression approach [100]. 

This Chapter is organized as follows. The state of the art on 

probabilistic PV power forecasting methods is addressed in Section 

2.2. The first provided contribution, i.e., the Bayesian-based 

probabilistic method, is discussed in Section 2.3. The second provided 

contribution, i.e., the competitive ensemble method, is discussed in 

Section 2.4. For both contributions, both the analytic model 

formulations and numerical applications based on real data are 

provided in the corresponding sub-Sections. The Chapter is concluded 

in Section 2.5.  

 

2.2.  PROBABILISTIC METHODS FOR SHORT-TERM 

PHOTOVOLTAIC POWER FORECASTING: STATE OF THE 

ART   

Hundreds of papers have dealt with PV forecasting methods in the last 

fifteen years. The most of the contributions have been developed in a 

deterministic framework, while the interest in probabilistic PV 

forecasting rapidly grew in the last 5 years. Several review papers 

[27,36,45,47-54,101] summarized the state of the art on PV power 

forecasting. Methods addressed to forecast solar radiation are also 

considered in this survey, since they can be used in an indirect 

approach to forecast also PV power through PV radiation-power 

models [102,103]. 

In the following, we will more specifically refer to methods that have 

been proposed for probabilistic STF applications, since the 

contributions of this thesis to the existing literature are in this field. 

Details about methods proposed for deterministic STF are reported in  

[27,36,45,47-54,101]. 

First attempts in PV power probabilistic forecasting are quite recent 

with respect to other power system variables (i.e., wind and load); only 

few papers on probabilistic PV forecasting are indeed dated before 

2013. 

The authors in [104] proposed a deterministic method based on AR 

and ARX time series model, with inputs provided by NWPs, giving 
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also some hints on the probabilistic extension of such approach in a 

QR framework. The application was both for VSTF and STF, since 

lead times ranged from 1 to 36 hours ahead. 

Interest in probabilistic PV forecasting definitely grew around 2013, as 

the number of publications in this field exponentially increased. 

Similarities between past NWPs were exploited in [105] through a 

genetic algorithm. The authors grouped PV powers in different bins, 

ranging from zero to the maximum producible power. Probabilistic 

forecasts consisted of the occurrence probabilities of PV power 

production to be each bin. No rigorous assessment on the quality of 

such probabilistic forecasts was however performed.  

A probabilistic fuzzy approach was developed in [106], based on an 

Interval type-2 Takagi-Sugeno-Kang system. It exploited NWP 

forecasts of irradiance and ambient temperature; results were however 

compared only in terms of deterministic errors. 

A probabilistic Bayesian approach with underlying ARX deterministic 

model was proposed in [33,107] to produce PV power forecasts. 

Measurements of weather variables, such as relative humidity, cloud 

cover and wind speed were used as exogenous inputs of the ARX 

model. ARX coefficients were probabilistically estimated in a 

Bayesian inference approach.  

A benchmark model for probabilistic forecasts of the daily average of 

PV power was proposed in [108]. In particular, several QR and 

Quantile Regression Forest (QRF) models with NWP inputs were used 

and calibrated through a technique based on the rank histogram. Both 

rank histograms and Continuous Ranked Probability Score (CRPS) 

were used to assess the quality of forecasts. It is worth noting that the 

calibration step did not necessarily lead to an improvement in terms of 

reliability
5
.  

NWPs were also used in [109] as inputs of a QRF model, together with 

PV power measurements. The assessment of the goodness of 

probabilistic forecasts up to 24 hours ahead was performed only in 

terms of deterministic errors, selecting the median as point forecast, 

                                                 
5
 Details on such indices and tools to assess the quality of forecasts, and the 

definition of calibration and sharpness, are in the Appendix. 
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and through a performance error that took into account the total 

number of observations that lied outside the 0.1-0.9 quantiles. 

NWPs were used in [110] in a probabilistic framework to build an 

analog ensemble for PV day-ahead forecasts; results were compared to 

a naïve benchmark based on the persistence and to results obtained 

through a QR model, in a rigorous probabilistic framework through a 

proper score (i.e., the CRPS) and rank histograms. 

A vector AR model was developed in [111] to take into account spatial 

correlation among near PV installations in a Portuguese test SG. This 

model was used in a deterministic framework to build point forecasts 

through the recursive least squares solving method, and in a 

probabilistic framework by adopting the gradient boosting approach, 

with the Pinball Loss Function (PLF) as loss function to be minimized. 

Results were assessed through the CRPS.  

An Extreme Learning Machine (ELM) method was proposed to 

forecast predictive intervals at 30-minutes resolution, exploiting only 

past values of PV power and influent meteorological variables such as 

temperature and cloud cover. Prediction Interval Coverage Probability 

(PICP) and Prediction Interval Normalized Averaged Width (PINAW) 

were used as probabilistic metrics. 

A hybrid wavelet-ANN deterministic model was selected in [112] as 

underlying model to build probabilistic forecasts; in particular, 

bootstrap confidence intervals were evaluated from deterministic 

predictions. No rigorous assessment of the quality of probabilistic 

forecasts was however performed, apart from qualitative graphical 

evaluation of confidence intervals with respect to the observed values. 

Prediction intervals of PV power generation were estimated in [113], 

based on the assumption about the distribution of the forecast error. In 

particular, since the true error distribution is not prior known, it is 

assumed to be a Gaussian distribution, the parameters of which are 

estimated through a maximum likelihood approach. The results are 

tested in terms of PICP, but a quantitative measure is missing. 

Lower and upper bounds of predicted PV power were estimated in 

[114] through a SVR approach, considering only past observations of 

PV power and weather variables. The authors performed a 

probabilistic evaluation of the results through the PICP.  
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In [115] prediction intervals of solar irradiance were forecasted up to 6 

hours through the combination of two linear models (ARMA and 

Generalized AutoRegressive Conditional Heteroscedastic (GARCH)). 

The only inputs of the method proposed by the authors were past 

observations of solar irradiance; results were assessed in terms of 

CRPS. 

A method to construct probabilistic ensemble of NWP forecasts up to 3 

days ahead was proposed in [116]; the authors also trained an ANN in 

order to reduce the bias error, and applied two further methods in order 

to improve the quality of forecasts: the variance deficit and the 

ensemble model output statistic. Results were assessed in terms of 

CRPS, reliability diagrams, and rank histograms. 

A multi-model ensemble of several base predictors that used NWPs as 

input was developed in [117]. Base models were selected among a 

seasonal ARIMAX, a SVR and two different MLP ANNs. A rigorous 

assessment on the quality of probabilistic forecasts was not performed 

by the authors. 

The authors of [118] developed an ensemble method based on NWP 

forecasts that was able to produce predictive intervals of solar 

irradiance. The empirical coverage proportions were compared to the 

nominal ones. 

Feed-forward neural networks were exploited in an ELM framework in 

[119] to produce probabilistic forecasts; inputs were both past 

observations of PV power and weather variables. Results were 

assessed in terms of reliability diagrams and PLF. 

The method proposed in [120] consisted in the state-space modeling 

the aggregate hourly PV power, taking into account the parameters of 

the PV system. An ensemble Kalman filter allowed to build a 

probabilistic forecasts of PV power for the considered time horizon. 

Results were assessed in terms of CRPS. 

The raising interest in probabilistic PV power forecasting was driven 

also by the Global Energy Forecasting Competition 2014 

(GEFCom2104) [12], that listed a track on PV power and made 

datasets publically available for reproducibility. Forecasts of several 

weather variables, together with observations of PV power, were given 

as inputs to contestants; results were compared in terms of PLF in 

order to rank the teams. 
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Gradient boosting and KNN were used in [121] to produce 

probabilistic forecasts of PV power in the framework of 

GEFCom2104. Clear sky models were also considered in order to 

improve the quality of forecasts. The authors performed a cross-

validation strategy in order to avoid over-fitting. 

In [122], an ensemble of a QRF model and gradient boosting models 

was developed to predict the predictive probability distribution of PV 

power. Compared with other high-ranked GEFCom2014 methods, no 

spatial information was added (i.e., no variables coming from near PV 

installations) as input of the model.  

A multiple QR method developed during GEFCom2014 was shown in 

[123]; it exploited an innovative solution of the regression problem 

formulation. Moreover, Radial Basis Function was used to select 

features that were able to catch non-linear dependencies on the inputs. 

The method proved its versatility by performing well also in wind, 

load and price tracks of GEFCom2014. 

Available data from GEFCom2014 was used in [124] to build an 

ensemble of forecasts from statistical methods, such as KNN and 

gradient boosting. In particular, results were combined through normal 

distributions with different initial settings. The performance of the 

resulting probabilistic model was compared to base predictors in terms 

of PLF. 

Further probabilistic approaches devoted to PV power VSTF were in 

[125-133]. Their suitability for longer lead times has not yet been 

tested in relevant literature. 

 

2.3. A NEW PROBABILISTIC BAYESIAN-BASED METHOD FOR 

SHORT-TERM PHOTOVOLTAIC POWER FORECASTING 

The probabilistic Bayesian method [99] is applied to predict the PDF 

of the hourly active power generated by PV systems, using two 

relationships of the PV active power that are most frequently used in 

the relevant literature: the first relationship links the PV power to the 

hourly solar irradiance, while the second relationship links the PV 

active power to the hourly clearness index. These relationships are 

used in the frame of a Bayesian-based procedure in which the forecast 
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of the PDF of the PV power at the time horizon   is performed at the 

origin hour    , with   the forecast lead time (Fig. 2.1).  

Details about the proposed Bayesian method are reported in the 

following sub-Section 2.3.1; numerical applications based on real data 

are in sub-Section 2.3.2. 

 

 
Figure 2.1 – Forecast time scales. 

 

2.3.1. Proposed method 

The Bayesian method [99] provides probabilistic forecasts of PV 

power by transforming probabilistic forecasts of the hourly solar 

irradiance (or the hourly clearness index) through well-known 

relationships, in an indirect approach. 

Solar irradiance (or hourly clearness index) is modeled through an 

analytic PDF, whose parameters are estimated by means of the 

Bayesian Inference (BI) of past available observations. An exogenous 

linear regression model is also defined in order to link one of the PDF 

parameters to the measurements of the hourly solar irradiance (or the 

hourly clearness index), and to some influencing weather variables. 

Eventually, the proposed method involves the following steps: 

i. selection of the relationships that link the PV active power to the 

hourly clearness index and the solar irradiance (sub-Section 

2.3.1.1); 

ii. selection of the PDFs to model the hourly solar irradiance and 

the hourly clearness index irradiance (sub-Section 2.3.1.2); 

iii. selection of an exogenous linear regression model that links 

some of the PDFs parameters in (ii) to past observations of 

hourly solar irradiance (or clearness index), and to the 
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measurements of influencing meteorological variables (sub-

Section 2.3.1.3); 

iv. evaluation of the predictive samples of PDFs parameters and 

regression parameters through the BI of past observations of 

hourly solar irradiance (or clearness index) (sub-Section 2.3.1.4);  

v. evaluation of the predictive samples of PV power (sub-Section 

2.3.1.5). 

2.3.1.1. Relationships that link the PV active power to the hourly 

clearness index and the solar irradiance 

When the PV generation system is equipped with a maximum power 

point tracking system [134], the output active power     
 of the PV 

system at the forecast time horizon   can be expressed as a linear 

function of the irradiance    
 at hour   on a surface with an inclination 

of   degrees with respect to the horizontal plane, as in [135]: 

 

    
          

 , (2.1) 

 

where     is the surface area of the PV array, and     is the efficiency 

of the PV system. The main advantage found in the application of Eq. 

(2.1) is connected to the linear relationship between     
 and the 

related meteorological variable    
; the overall efficiency of the PV 

system is approximately considered constant with the solar irradiance, 

although with no loss of generalization. 

Another relationship that is frequently used for the calculation of the 

PV power, and that was derived directly from Eq. (2.1), expresses the 

PV power as a function of the hourly clearness index    at the forecast 

time horizon  ; it is defined as the ratio between the hourly mean 

global solar irradiance on a horizontal plane at the surface of earth and 

the hourly mean extra-atmospheric solar irradiance [136,137]. The 

relationship is given by [137]: 

 

    
               

   
   , (2.2) 

 

where    and   
  are respectively defined as: 
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In Eqs. (2.3) and (2.4),    
 is the ratio of beam radiation on a tilted 

surface to the beam radiation on a horizontal surface,   is the 

reflectance of the ground,    
 is the ratio of diffuse radiation in hours 

to diffuse radiation in a day,    
 is the extra-terrestrial total solar 

radiation, and   ,   are coefficients that link the diffuse fraction of the 

total hourly solar radiation on the horizontal plane    
 to the hourly 

clearness index   : 

 

   
         . (2.5) 

 

Note that sun hourly position plays a key role in the evaluation of 

coefficients    and   
  in Eqs. (2.3) and (2.4), since the ratio    

 is 

strongly affected by this position. More details on this subject can be 

found in [138]. Also, models (2.1) and (2.2) could be improved by 

taking into account the saturation values of PV power introduced by 

DC/AC converter control system. 

2.3.1.2. Selection of the PDFs of the hourly solar irradiance and of 

the hourly clearness index irradiance 

The PDFs of the hourly solar irradiance (a) and the hourly clearness 

index (b) need to be selected in order to apply the Bayesian method.  

 

a) The PDF          of the hourly solar irradiance    
 at the hour   

can be modeled using the well-known Beta distribution as proposed in 

[139]: 

 

     (   
|      

       
)    

                                

(
   

 
  

     )

      
  

(  
   

 
  

     )

      
  

 (      
       

) 
  

     , 

(2.6) 

 



42 

 

where       
 and       

 are the shape parameters of the Beta 

distribution,      is the Beta function, and    

     
 is the upper bound 

of the observed values of    
, which can be calculated from the 

measurements of the irradiance on a horizontal plane [140,141]. The 

mean value       
 of Beta distribution can be calculated as follows: 

 

      
 

      

      
       

   

     
 , (2.7) 

 

and therefore the shape parameter       
 can be univocally 

determined if both the mean value       
 and the shape parameter 

      
 are known, as follows: 

 

      
 

      
    

     
       

 

      

 , (2.8) 

 

As a result of the analysis of Eqs. (2.6), (2.7), and (2.8), the estimation 

 ̂     
 of the mean value       

 and the estimation  ̂     
 of the 

shape parameter       
 are sufficient to estimate the predictive PDF 

 ̂        
  ̂     

  ̂     
  at the desired time horizon  . In particular, 

 ̂     
 is estimated by applying the exogenous linear regression model 

described in sub-Section 2.3.1.3, while the evaluation of the shape 

parameter  ̂     
 is committed to the BI algorithm described in sub-

Section 2.3.1.4. 

b) The PDF           of the hourly clearness index    at the hour   

is modeled using the following modified Gamma distribution [142]: 
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   , 
(2.9) 

 

where   
     

 is an assigned upper bound of the observed values of 

  , and        
        

 are the parameters of the modified Gamma 

distribution; these parameters are univocally determined if the mean 

value        
 of    at hour   is known. The relationships are: 
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As a result from the analysis of Eqs. (2.9), (2.10) and (2.11), the 

estimation  ̂
      

 of the mean value  
      

 is sufficient to 

estimate the predictive PDF  ̂     (  | ̂      
) at the desired time 

horizon  ; this is effected in the next sub-Section 2.3.1.3 by applying 

an exogenous linear regression model with weather inputs. 

2.3.1.3. Exogenous linear regression model 

Two linear regression models with exogenous inputs are considered to 

link the estimated mean value  ̂     
 of solar irradiance (a) and the 

estimated mean value  ̂      
 of clearness index (b), to explanatory 

exogenous variables observed at the forecast start time    . 

a) The first proposed model links the estimated mean value  ̂
     

 of 

solar irradiance, to the measurements  
   

   ,      ,      ,      and 

      of, respectively, the mean value of the    
   

 last observations of 

hourly solar irradiance collected until the forecast start time    , the 

relative humidity at    , the cloud cover at    , the pressure at 

   , and the ambient temperature at hour    . The model is 

expressed as follows: 
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                ̂ 
   

      ̂ 
   

      , 
(2.12) 

 

where  ̂ 
   

    ̂ 
   

 are the estimated values of coefficients 

  
   

     
   

 of the regression model. Since these coefficients are 

modeled in the BI approach (sub-Section 2.3.1.4) as random variables, 
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 ̂ 
   

    ̂ 
   

 are actually samples drawn from the corresponding 

posterior distributions of parameters   
   

     
   

. Note that the 

samples of posterior distributions of these coefficients are updated at 

each time horizon  , but the symbol   is omitted in the equations to 

simplify the analytic formulation of the problem. 

b) The second proposed model links the mean value  ̂      
 of 

clearness index at the time horizon   to the mean value  
   

    of the 

last    
   

 observations of the hourly clearness index and to the same 

weather variables in Eq. (2.12) at the forecast start time    ; it is 

expressed as follows: 
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      , 
(2.13) 

 

where  ̂ 
   

    ̂ 
   

 are the estimated values of coefficients 

  
   

     
   

 of the regression model. Once again these coefficients 

are modeled in the BI approach as random variables (sub-Section 

2.3.1.4), and therefore  ̂ 
   

    ̂ 
   

 are actually samples drawn from 

the corresponding posterior distributions of parameters   
   

     
   

. 

The samples of posterior distributions of these coefficients were 

updated at each time horizon  , being the symbol   omitted. 

2.3.1.4. Evaluation of the PDFs of the coefficients of the exogenous 

linear regression models and of the Beta distribution shape 

parameter 

The BI approach [76,77] allows to estimate the posterior distributions 

 ̂   
   

     
     ̂   

   
     

   ̂       
     

  and 

 ̂   
   

    
     ̂   

   
    

  of each parameter of the linear 

regression models (2.12),(2.13) and of the Beta distribution shape 

parameter       
, given respectively the vector 

    
    

    (   
   

  )
        

  of    
   

 hourly observations of solar 

irradiance, and the vector    
   

    (   
   

  )
         of    
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hourly measurements of clearness index. All of the measurements are 

supposed to be available until the forecast start hour    . Actually, 

the BI allows the estimation of the joint posterior distributions 

 ̂   
   

     
   

       
     

  and  ̂   
   

     
   

    
 . Once they are 

known, it's trivial to evaluate the posterior distributions of each 

parameter by applying the theory of the joint PDFs.  

Unfortunately, only simplified expressions of the posterior 

distributions can be provided in closed form. They are known as the 

un-normalized posterior distributions  ̂    
   

     
   

       
     

  

and  ̂    
   

     
   

    
  of the prior random parameters, and they 

are equal to: 
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where  ̂     
  ̂ 

   
    ̂ 

   
  ̂     

  and  ̂    
  ̂ 

   
    ̂ 

   
  are 

likelihood functions, and     
   

 ,     
   

 ,         
  are the prior 

distributions of the random parameters, chosen with a large variance
6
. 

The likelihood functions are the PDFs in (2.6) and (2.9), evaluated for 

the vectors of measurements     
 and    

: 
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6
 This is the case of uninformative prior distributions, that are usually chosen so 

that the data, rather than the prior distributions, determine the values of the relevant 

parameters in the posterior distribution [143]; uniform distributions and Gaussian 

distributions with large variance are common uninformative prior distributions. If 

instead the forecaster disposes of strong prior knowledge on a parameter, he/she can 

rather select an informative prior distribution (e.g., a Gaussian with small variance) 

[77].   
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(2.17) 

with  ̂
         

 and  ̂
          

 derived from Eqs. (2.12) and (2.13) 

using parameter samples  ̂ 
   

    ̂ 
   

 and  ̂ 
   

    ̂ 
   

, respectively. 

Measurements of the hourly solar irradiance, the hourly clearness 

index, the relative humidity, the cloud cover, the pressure, and the 

ambient temperature are contained in the vectors     
    

     
 

    
    

     
, respectively; measurements collected until the forecast 

start hour    . The dimensions of the historical data can be selected 

with adequate criteria, thus improving the accuracy of the forecasting 

method. 

The estimation of the un-normalized posterior distributions in Eqs. 

(2.14) and (2.15) is sufficient for developing algorithms that provide 

information about the joint posterior distributions. In fact, the Monte 

Carlo Markov Chain (MCMC) simulation method based on the 

Metropolis-Hasting algorithm [76] can be directly applied to the un-

normalized distribution to obtain samples of the posterior distribution 

of each parameter. 

2.3.1.5. Evaluation of the samples of the predictive PDF of PV power  

The samples of parameters drawn from posterior distributions 

 ̂   
   

     
     ̂   

   
     

  can be used, together with the 

measurements  
   

   ,      ,      ,      and      , to obtain samples 

 ̂
     

 from Eq. (2.12) through the MCMC procedure. Once the 

samples  ̂
     

 and the samples drawn from the posterior distribution 

 ̂       
     

  of the shape parameter are known, the predictive 

samples of solar irradiance from the predictive distribution 

 ̂        
  ̂     

  ̂
     

  are provided by applying Eqs. (2.6) and 

(2.8). Finally, the predictive samples of PV power are provided 

through a random rejection sampling of the predictive distribution 

 ̂        
  ̂     

  ̂
     

  and using Eq. (2.1). 

Similarly, the samples of parameters drawn from posterior 

distributions  ̂   
   

     
     ̂   

   
    

  can be used, together with 
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the measurements  
   

   ,            ,              to obtain samples 

 ̂
      

 from Eq. (2.13). Once the samples  ̂
      

 are known, 

indeed, the predictive samples of clearness index are drawn from the 

predictive distribution  ̂          ̂
      

  by applying Eq. (2.9). 

Finally, the predictive samples of PV power are provided through a 

random rejection sampling of the predictive distribution 

 ̂          ̂
      

  and using Eq. (2.2). 

The random rejection sampling method is used in both cases in 

accordance with the Von Neumann method for the generation of 

random samples from a known probability function [144]. 

Eventually, the flow chart of the proposed probabilistic Bayesian 

method is shown in Figure 2.2. 

 
Figure 2.2 - Flow chart of the probabilistic Bayesian method. 
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2.3.2. Numerical applications 

The probabilistic Bayesian method shown in Section 2.3.1 was tested 

with reference to the active power generated by an a-Si:H thin-film PV 

system of rated power     
    kW. The total surface of PV modules 

was         m2
, with an efficiency value of  

  
      for the 

whole PV system. The forecasts were made by using both of the 

Bayesian-based approaches mentioned in Section 2.3.1, i.e.,: 

- method (a): the Bayesian-based approach that uses the hourly solar 

irradiance; 

- method (b): the Bayesian-based approach that uses the hourly 

clearness index. 

The assessment of the quality of the forecasts was performed in both a 

spot-value framework, by selecting the mean value of the predictive 

distribution of PV power as spot-value forecast, and in a probabilistic 

framework. In particular, the indices used were the Mean Absolute 

Error (MAE), the RMSE, their normalized versions (NMAE and 

NRMSE), and the CRPS. Also, reliability diagrams were provided to 

assess the overall concordance between nominal coverages and 

estimated coverages of the probabilistic forecasts
7
. 

The results of the proposed method were compared with benchmark 

values obtained through the well-known persistence method (PM), 

applied both in a spot-value and in a probabilistic frameworks 

[145,146]; in the last framework, the probability function was assumed 

to be a modified Gamma distribution. 

The forecasts were performed for several lead times, from     to 

    . For the sake of conciseness, only the results for      (next 

day forecasts) are shown. 

Information concerning the data that was used to test the Bayesian 

method is presented in the following sub-Section 2.3.2.1. Then, the 

forecasting results are presented and discussed in sub-Section 2.3.2.2.   

2.3.2.1. Data characteristics  

The set of available measurements consists of observations of the 

meteorological variables (i.e., solar irradiance, clearness index, relative 

                                                 
7
 Details on such indices and tools to assess the quality of forecasts are in the 

Appendix. 
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humidity, cloud cover, ambient pressure, and ambient temperature) 

collected in Pignataro Maggiore, Italy (latitude: 41.12° north and 

longitude: 14.10° east). Data was collected with a 15-minutes time 

resolution, from 7:00 to 20:00, from 1 August 2012 to 28 February 

2013. In order to obtain hourly values, the original dataset was then 

averaged to obtain the values required for the models. 

An ―off-line‖ cross-correlation analysis between the solar 

irradiance/clearness index and the other meteorological variables was 

performed to individuate the most suitable underlying exogenous 

linear regression model. Fig. 2.3 shows the correlation coefficients 

between the solar irradiance (Fig. 2.3 a), clearness index (Fig. 2.3 b), 

and the other weather variables. Only the variables that provided the 

highest values of the cross-correlation coefficient were taken into 

account in the linear regression models. Total cloud cover and relative 

humidity are the most-correlated weather variables on both the solar 

irradiance and the clearness index; consequently, the linear regression 

models included only solar irradiance, total cloud cover, and relative 

humidity for method (a) and clearness index, total cloud cover, and 

relative humidity for method (b). 

 
Figure 2.3 - Cross-correlation coefficients between solar irradiance (a), clearness 

index (b) and the available weather variables. 
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The measurements of the hourly solar irradiance, the hourly clearness 

index, the relative humidity and the cloud cover are contained in the 

sets     
    

     
     

, which included    
   

    
   

    

observations collected at homologous hours of the day before the 

forecast start time    , to make inference about the prior random 

parameters, i.e.,   
   

     
   

, of the model in Eq. (2.12) and 

  
   

     
   

 of the model in Eq. (2.13), 

All of the prior distributions used in the BI are Gaussian distributions 

with large variance equal to    ; in particular, for method (a), they 

were assumed to be: 

 (  
   

)          ,  (  
   

)            ,  (  
   

)          , 

 (  
   

)          ,  (      
)          ; 

for method (b), they were assumed to be: 

 (  
   

)          ,  (  
   

)            ,  (  
   

)          , 

 (  
   

)          . 

2.3.2.2. Assessment of the quality of forecasts 

The results of the next day forecast were presented in details with 

reference to four specific days (e.g., 21 August 2012, 23 September 

2012, 29 November 2012, and 22 December 2012), characterized by 

different meteorological conditions. In particular, the first day is a 

―clear-sky day‖ with no appreciable cloud cover, while the second day 

is slightly more unstable in terms of cloud cover; the latter two days 

are instead cloudy days characterized by very unstable weather 

conditions. Then, the results of forecasts performed in all of the test 

months (i.e., from September 2012 to February 2013) are shown in a 

more compact form. 

With reference to the spot-value framework, Figs. 2.4 and 2.5 show the 

results of next day forecast performed through the Bayesian-based 

approaches, through the PM, and the actual hourly PV powers. In 

particular, Figs. 2.4a and 2.4b refer to 21 August and 23 September, 

respectively, and Figs. 2.5a and 2.5b refer to 29 November and 22 

December, respectively.  
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Figure 2.4 - Next day PV power forecasts obtained through the Bayesian 

approaches, the PM method (solid lines), and actual PV power (dash line) on (a) 21 

August 2012; (b) 23 September 2012. 
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Figure 2.5 - Next day PV power forecasts obtained through the Bayesian 

approaches, the PM method (solid lines), and actual PV power (dash line) on (a) 29 

November 2012; (b) 22 December 2012. 
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The analysis Figs. 2.4 and 2.5 indicated that the absolute error is 

always smaller than 5 kW during the clearest day (Fig. 2.4a), while it 

is quite greater (up to 7 kW) during the more variable day (Fig. 2.4b). 

The error strongly increases in the case of unstable weather conditions, 

in which the proposed method shows absolute errors up to about 12 

kW (at 15:00, see Fig. 2.5a). The performance of the PM was 

particularly poor in unstable meteorological conditions (with a peak of 

absolute error greater than 22 kW at 14:00 on 29 November (Fig. 2.5a) 

and at 12:00 on 22 December (Fig. 2.5b). 

For comparative purposes, Table 2.1 reports the mean values of the 

spot-value error indices, for all of the methods and for the four 

considered days; also the corresponding normalized versions of these 

indices are shown, to provide a scale-free reference. All of the indices 

were normalized to the rated power     
 of the PV system (75 kW). 

 

Table 2.1 – Spot-value error indices obtained through Bayesian method (a), Bayesian 

method (b), and the persistence method for the considered days 

Day Method 
RMSE 

[kW] 

MAE 

[kW] 

NRMSE 

[%] 

NMAE 

[%] 

21 August 

Method (a) 1.64 1.32 2.18 1.76 

Method (b) 1.43 1.20 1.91 1.60 

PM 1.76 1.47 2.35 1.96 

23 September 

Method (a) 3.74 2.84 4.99 3.78 

Method (b) 3.90 3.07 5.20 4.09 

PM 7.34 5.34 9.78 7.12 

29 November 

Method (a) 7.26 4.16 9.68 5.55 

Method (b) 6.42 3.61 8.56 4.81 

PM 10.23 5.30 13.64 7.07 

22 December 

Method (a) 3.62 2.16 4.82 2.88 

Method (b) 3.56 1.94 4.74 2.59 

PM 8.47 5.19 11.29 6.91 

 

The analyses of the indices in Table 2.1 shows that: 

- the values of spot-value indices obtained with method (a) were 

greater than the corresponding values obtained with method (b) in 

three upon four days, with the only exception on 23 September (a 

slightly unstable day).  

- All error indices, as foreseeable, were greater during the unstable 

meteorological conditions, since the hourly-varying conditions had 

a negative impact on the forecasts. However, the proposed 
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methods showed their usefulness also in these conditions, since 

they significantly outperformed the PM. In particular, the quality 

gap between the proposed methods and the reference method is 

more enhanced than in the clear day conditions. For example, 

MAE obtained through method (b) was 17% smaller than MAE 

obtained with PM during the clear day (21 August), while MAE 

obtained through method (b) was 32% smaller than MAE obtained 

with PM during the most unstable meteorological conditions (on 

29 November). 

To verify the proposed methods on a larger number of forecasts, the 

values of the spot-value error indices, averaged in the considered test 

months, are shown in Table 2.2 for all of the methods. 

 

Table 2.2 – Spot-value error indices obtained through Bayesian method (a), Bayesian 

method (b), and the persistence method for the considered test set 

Period Method 
RMSE 

[kW] 

MAE 

[kW] 

NRMSE 

[%] 

NMAE 

[%] 

Entire test set 

Method (a) 8.38 5.03 11.18 6.71 

Method (b) 8.14 4.79 10.86 6.39 

PM 11.70 6.49 15.60 8.65 

 

Both Bayesian methods have, on average, better performances than 

PM. In particular, method (b) showed the best performance, since its 

MAE and RMSE decreased by 26% and 30%, respectively, while the 

MAE and RMSE of method (a) decreased by 23% and 29%, 

respectively. 

With reference to the probabilistic framework, Table 2.3 reports the 

mean values of the CRPS, together with the corresponding normalized 

version, for all of the methods and for both forecasted days. 
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Table 2.3 - Probabilistic error indices obtained through Bayesian method (a), 

Bayesian method (b), and the persistence method for the considered days 

Day Method 
CRPS 

[kW] 

NCRPS 

[%] 

21 August 

Method (a) 1.74 2.32 

Method (b) 0.87 1.16 

PM 1.14 1.52 

23 September 

Method (a) 2.26 3.01 

Method (b) 2.31 3.08 

PM 3.96 5.28 

29 November 

Method (a) 2.73 3.64 

Method (b) 2.42 3.23 

PM 4.80 6.40 

22 December 

Method (a) 2.21 2.95 

Method (b) 2.09 2.79 

PM 4.23 5.64 

 

The analyses of the indices in Table 2.3 shows that: 

- the behavior in the probabilistic framework is similar to the 

behavior in the spot-value framework, since the probabilistic index 

CRPS is greater for method (a) in three upon four days; it means 

that the hourly CDFs of PV power in case (b) better fit the CDF of 

the measured power, delimiting smaller areas of error. The 

maximum improvement in terms of CRPS with respect to the 

benchmark occurs in the most unstable day (29 November), and it 

is about 60%. 

- The CRPS values usually were small during the clearest day (less 

than 2.5% of the rated power); this means that the forecasted 

predictive distributions are sharp and concentrated around the 

actual PV power. The CRPS values instead were greater during 

the day with more unstable weather conditions (more than 3.5% of 

the rated power).  

- Although in the spot-value framework method (a) always 

outperformed the benchmark, this does not happen in the 

probabilistic framework, since the CRPS calculated with PM was 

smaller than the CRPS obtained through the method (a) in the 

clearest sky day, while it was significantly greater than it during 

the unstable days. In particular, the reduction in terms of CRPS in 

the unstable days was up than 40%. 
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To verify the proposed methods in the probabilistic framework on a 

larger number of forecasts, the values of the CRPS and NCRPS, 

averaged in the considered test months, are shown in Table 2.4 for all 

of the methods. Results are similar to the spot-value framework, with 

method (b) outperforming method (a) and the benchmark by 7% and 

39%, respectively. 

 

Table 2.4 - Probabilistic error indices obtained through Bayesian method (a), 

Bayesian method (b), and the persistence method for the considered test set. 

Period Method 
CRPS 

[kW] 

NCRPS 

[%] 

Entire test set 

Method (a) 3.51 4.68 

Method (b) 3.27 4.36 

PM 5.34 7.12 

 

For the sake of completeness, the reliability diagrams for the proposed 

methods are shown in Fig. 2.6. Given the observed values of the PV 

power, the empirical coverages of several quantiles were compared to 

the nominal coverages. The figure indicates that method (b) had better 

performance also in terms of reliability than method (a), since 

noticeable deviations from perfect reliability occur only under 50% of 

nominal coverages. Method (a) deviated from the ideal reliability with 

both positive and negative differences. The maximum deviation from 

perfect reliability was 5.12% for method (a), and 3.78% for method 

(b). 
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Figure 2.6 - Reliability diagrams of the proposed Bayesian methods. Estimated 

coverages (solid lines) are compared to the ideal coverages (dash line). 

 

2.4.  A NEW PROBABILISTIC ENSEMBLE METHOD FOR SHORT-

TERM PHOTOVOLTAIC POWER FORECASTING 

A competitive, multi-model ensemble method [100] is proposed 

aiming to improve the quality of forecasts obtained through some 

individual probabilistic predictors. 

Details about the proposed ensemble method are reported in the 

following sub-Section 2.4.1; numerical applications based on real data 

are in sub-Section 2.4.2. 

2.4.1. Proposed method 

As stated in Chapter 1, probabilistic predictors may vary in terms of 

predictive outputs; e.g., they can provide predictive samples, predictive 

PDFs, or predictive quantiles. For this reason, in the proposed 

ensemble method [100] the forecasts obtained through base predictors 

are firstly properly combined through a linear pooling of predictive 

CDFs [98]. Then, in order to guarantee elevate sharpness and 

reliability characteristics, a MO optimization system is applied during 

the training period in order to estimate coefficients of the linear 

pooling. The MO optimization is specifically devoted to overcome 
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well-known problems resulting from the probabilistic combination of 

probabilistic forecasts in the linear pool approach [98]. A Bayesian 

Method (BM), a Markov chain Method (MM), and a Quantile 

regression Method (QM) are selected as probabilistic base predictors. 

Eventually, the proposed ensemble method involves the following 

steps: 

i. selection of the relationships that link the PV active power to the 

solar irradiance (sub-Section 2.4.1.1); 

ii. selection of the probabilistic base predictors (sub-Section 

2.4.1.2); 

iii. proper combination of probabilistic forecasts obtained through 

base predictors in a MO optimization procedure (sub-Section 

2.4.1.3). 

2.4.1.1. Relationship that links the PV active power with the solar 

irradiance 

The relationship that links the output active power     
 of the PV 

system at the time horizon   to the solar irradiance    
 on a surface 

with an inclination of   degrees with respect to the horizontal plane is 

the same in Eq. (2.1). This relationship was selected due its linearity, 

in order to reduce the overall computational effort, although with no 

loss of generality.  

2.4.1.2. Selection of probabilistic base predictors 

A BM, MM and QM were selected as probabilistic base predictors; 

their diversity in both the types of probabilistic output and model 

formulations was of use in testing the functionalities of the ensemble 

method.  

 

a) Bayesian probabilistic base predictor 

A slightly-modified version of the BM [99], deeply described in sub-

Section 2.3.1, is the first probabilistic base predictor selected for the 

multi-model ensemble method. In particular, the approach (a) was 

selected, considering the solar irradiance modeled through a Beta 

distribution (as in Eq. (2.6)); parameters of the linear regression model 

(2.12) are deterministically estimated through the least square method, 
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while the BI is applied to probabilistically estimate the posterior 

distribution of the shape parameter       
.  

It is here reminded that the BM provides as output samples from the 

predictive posterior PDF of PV power, and the discrete predictive CDF 

is straightforwardly obtained. 

 

(b) Markov chain probabilistic base predictor 

The non-parametric, time-discrete MM, originally proposed in [25] for 

wind power forecasting, was used as second base predictor to forecast 

PV power. The main difference between BM and MM is that no prior 

assumption concerning the statistical characterization of the random 

variable is needed in MM. Instead, it is assumed that the PV power 

    
 at the forecast time horizon   can assume a value in    states, 

  
   

     
    

, with each state corresponding to an interval of possible 

values of PV power. In particular, assigned the rated power     
, the 

first and last states are assumed to be   
   

   and   
    

     
, 

whereas the remaining      states are      equally-spaced 

intervals from 0 to the rated power     
. Note that    is a calibration 

parameter for the MM. 

Markov chains are based on the hypothesis that each unknown state   

is statistically dependent only on its   previously-observed states ( th
 

order Markov chain)
8
. For PV power forecasting, accurate results were 

obtained experimentally for    . For the sake of conciseness, the 

case     (second order Markov chain) is discussed here, being trivial 

the extension to higher orders. The formulation of stochastic 

independence after the second time step is: 

 

                                       , (2.18) 

                                                 
8
 The previously-observed states are conveniently selected on the basis of the 

forecast lead time  , e.g., for next hour forecasting and for    , the previous 

observed states refer to one and two hours before, while for next day forecasting and 

for     the previous observed states refer to one and two days before. Please note 

straightforwardly that in the notation used in this thesis the step of MM time 

discretization is the same value as the forecast lead time, but this is not the unique 

solution; indeed, things change if the forecast lead time varies (e.g., for 2-days ahead 

forecasting and for    , the previous observed states refer to two and three days 

before). 
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and the forecast for the state    is obtained by calculating an 

estimation  ̂ of the second order transition matrix   of size 

          . The element      of the matrix   is the probability 

    
   

     
   

      
   

 , i.e., the probability that the PV power is in the  th
 

state at time    , given that the  th
 state was observed at time 

      and the  th
 state was observed at time       .  

Obviously, only estimations  ̂    of      can be provided; given the 

observations of PV power in a training period, the maximum 

likelihood estimates are: 

 

 ̂    
    

∑     
  
   

 , (2.19) 

 

where      is the number of observed occurrences of the transition 

between consecutive states       during the training period of the MM. 

Also, if ∑     
  
      (i.e., no consecutive states     have ever been 

observed in the training period), it is common to set: 

 

 ̂    {
            
            

 , (2.20) 

 

giving credit to the persistence assumption. With these positions, it 

results that ∑  ̂   
  
          , and, therefore,  ̂ is a valid estimate of 

the Markov chain transition matrix. It should be noted that an accurate 

estimation of  ̂ can be obtained only using a significant number of 

previously observed samples. Once  ̂ is known, it is trivial to obtain 

forecasts for the PV power state at the desired time horizon; in 

particular, the output of MM is the vector       
   

     
    

  of 

state probabilities at time    , given the vectors      and       of 

state probabilities at time       and       , respectively. The 

 th
 element   

   
 of the vector    is simply obtained as follows: 

 

  
   

 ∑ ∑  ̂        
   

      
     

   
  
    . (2.21) 
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Obviously, in the first step of MM, both vectors      and       are 

known, and, in each of them, all elements are zero except the unitary 

element that corresponds to the observed state at times       and 

      . Eventually, if necessary, the procedure is repeated by 

updating vectors      and       at each iteration. Samples of PV 

power can be drawn from the predicted state probabilities for the 

desired time horizon [147]. Then, as for BM, the discrete predictive 

CDF is directly obtained from the predictive samples of PV power. 

 

(c) Quantile regression probabilistic base predictor 

Also the QM, selected as third probabilistic base predictor, does not 

rely on prior hypothesis about the distribution of the PV power data 

[148-150]. Indeed, instead of forecasting the parameters of a selected 

PDF for the desired time horizon  , the outputs of QM are   estimated 

quantiles of PV power. The input of the model is the column vector of 

   explanatory variables,        
         

 ; in the most general 

form, the   -quantile     

    
 of PV power can be expressed as: 

 

    

    
             , (2.22) 

 

where       is a row vector of    coefficients to be estimated, and    

is a residual white noise at time    . Obviously, the main problem is 

to find an estimation  ̂     of vector      , since the expected value 

 ̂   

    
 of     

    
 is given by: 

 

 ̂   

    
  ̂           . (2.23) 

 

If the dataset     
        

    
   

         
  of    

    
 past 

measurements of PV power and the    
    

 vectors of explanatory 

variables are available for a given training period,  ̂     is obtained by 

minimizing the sum of values    
 

    
: 
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 ̂            
     

∑    
 

       
    

   
 , (2.24) 

 

where each value    
 

    
 is calculated as

9
: 

 

   
 

    
 {

(    )  (    (  )    )          (  )    

   (    (  )    )                     (  )    

 , (2.25) 

 

An elegant solution to problem (2.25) can be found in [149]. As in 

[150],  -quantile and  -quantile are set to   and     
, respectively. 

Once the selected   quantiles of PV power are estimated, the predictive 

CDF can be obtained through linear interpolation. 

2.4.1.3. Processing the outputs of single probabilistic base predictor 

Base predictors are combined through the combination of predictive 

CDFs, since they are easier to manage when different kinds of 

predictors are to be aggregated. One of the acknowledged methods for 

the combination of predictive CDFs is the Linear Pool Ensemble 

(LPE) method [98,151,152]; the ensemble predictive CDF      
     

  

of the PV power for the horizon time   can be obtained as a weighted 

sum of each CDF    
     

 : 

 

     
     

  ∑       

   

   
     

  , (2.26) 

 

where     is the number of base predictors (in this case,      ), 

      , and the sum of weights is ∑   
   

   
   in order to 

guarantee that the output function is a CDF defined in the interval 

       
 . In [98] it was pointed out that LPE predictions may be over-

dispersed
10

 if single predictors are neutrally dispersed. Since neutral 

dispersion is a necessary condition for calibration and since the aim of 

the forecaster is to produce sharp forecasts, subject to calibration, some 

techniques shown in [98] may be applied to overcome this problem., 

                                                 
9
 Note that Eq. (2.25) is the same of Eq. (A12) in the Appendix. 

10
 Exhaustive definitions of over-dispersion, neutral dispersion, and under-dispersion 

of forecasts are provided in the Appendix of this thesis. 
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Instead, a new approach based on a MO optimization problem is 

proposed in the ensemble method shown in this thesis. 

Obviously, the main problem in applying relationship (2.26) lies in the 

evaluation of weights             
 . An elegant solution to the 

problem was proposed in the relevant literature [153], and it has been 

extensively used in approaches that involve probabilistic forecasting of 

weather variables, such as temperature and precipitation. In these 

applications, the weight coefficients are estimated by solving a single-

objective (SO) optimization problem that consists in minimizing a 

proper score (objective function) during a training period; in particular, 

the CRPS has been considered in many applications as an adequate 

objective function to be minimized
11

.   

The analytic formulation of the hourly CRPS for the forecasted CDF 

  (    
) at time     is recalled here, for sake of clearness: 

 

          ∫ [  (    
)        

     

  ]
 
      

    

 
 , (2.27) 

 

where     

  is the actual value of PV power at time horizon  , and 

      
     

   is the Heaviside function centered in     

 . If 

  (    
) is the ensemble CDF      

     
  in Eq. (2.26), the SO 

minimization problem to be solved is: 

 

    
 

 ∑      (     
          

)
   

   

                           

          ∑   
   

     

 , (2.28) 

 

where     is the total number of forecasts performed during the 

training period. 

However, even if the proposed approach based on the minimization of 

CRPS seems to be appropriate, reliability should be explicitly taken 

                                                 
11

 The choice of CRPS is not univocal. Indeed, other proper scores could be used in 

the optimization procedure, such as the PLF. However, the results of numerical 

applications performed with the PLF are very similar to those obtained with CRPS, 

according to naïve intuition. 
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into account in dealing with an ensemble probabilistic forecast. It is 

known that the CRPS value can be decomposed into three terms, one 

of which is related to the reliability of the forecast [154]. However, the 

sharpness and reliability components of the CRPS cannot be separately 

identified, as one influences each other. Thus, minimizing an entire 

proper score in the SO problem without splitting it into its single 

contributions can lead to unreliable forecasts (as shown in the 

numerical application in sub-Section 2.4.2). Indeed, in [18], it was 

shown that a reduction in sharpness may increase the reliability of the 

forecast and vice versa. The same problem arose also in [119]; in that 

case, the PLF was used in the evaluation procedure, and it was stated 

that ―…the score is to be seen as a proper skill score, hence allowing 

to objectively sort rival forecasting approaches. However, both 

reliability and sharpness should also be examined separately and 

visually via reliability diagrams and quantiles' plots to make sure there 

is a reasonable balance between these two attributes.‖ 

Hence, the proposal of this Thesis is to estimate optimal values  ̂ of 

coefficients   by solving the following MO optimization problem, 

instead of the SO minimization problem (2.28): 

 

   
 

 *  (     
          

)    (     
          

)+

                                      

         ∑   
   

   
                         

 , (2.29) 

 

where    and    are the objective functions to be minimized. In 

particular,    is the average value of the hourly CRPS scores (2.27) in 

the total number of forecasts performed during the training period, and 

   is an index that takes into account the deviations from perfect 

reliability in the same conditions.  

In order to find an index that explicitly takes into account the 

reliability (function    in Eq. (2.29)), it is important to observe that the 

reliability of a probabilistic forecast may be estimated in terms of 

consistency between estimated coverages of prediction and nominal 

coverages [151]; ideal reliability is obtained when all estimated 

coverages are equal to the corresponding nominal coverages. 
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The definition of coverage is the following. The   -quantile  ̂      

    
 

extracted from the ensemble prediction is compared to the 

corresponding actual value of PV power     

 . The binary indicator 

 ̂    

    
 is conveniently introduced as: 

 

 ̂    

    
 ,

          

   ̂      

    

           

   ̂      

    
 , (2.30) 

 

and an estimation  ̂    
 of the nominal coverage    is obtained as: 

 

 ̂    
 

 

   
∑  ̂    

       

    , (2.31) 

 

Then, to take into account the reliability of the forecasts, the maximum 

value   of all absolute deviations between the estimated and actual 

coverages can be introduced in the MO optimization problem as the 

objective function    to be minimized. An alternative objective 

function    could be the sum of all absolute deviations between the 

estimated and actual coverages
12

. Both indices have been used in 

relevant literature to provide estimations of the forecast reliability 

[119]. 

Once the objective functions and constraints are known, an algorithm 

to solve the MO optimization problem (2.29) must be used to 

determine a suitable solution (values  ̂ of coefficients  ). 

Indeed, the MO problem (2.29) does not have a unique solution, but a 

set of points are available, all of which fit a pre-determined definition 

of an optimum. Pareto optimality is the predominant concept in 

defining an optimal point.  

Theoretically, there is an infinite number of Pareto optimal solutions 

(Pareto front), so it is often necessary to incorporate the forecaster‘s 

preferences to obtain a single, suitable solution. The methods used to 

obtain a solution can be classified on the basis of the criteria used to 

                                                 
12

 Numerical applications suggest that the results obtained with maximum deviation 

and sum of deviations are quite similar. 
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articulate preferences and methods with prior articulation, with 

posterior articulation, and with no articulation of preferences. In the 

methods with prior articulation of preferences, the forecaster specifies 

its preferences, typically in terms of the relative importance of 

different objectives whose values reflect forecaster preferences [155]. 

This is the approach followed in the solution of the MO problem 

(2.29).  

The most popular method with prior articulation of preferences is the 

weighted sum method, which allows the MO optimization problem 

(2.29) to be solved as an equivalent SO minimization problem 

formulated as: 

 

   
 

 *  
    

  (     
  )    

    
  (     

  )+

                                  

        ∑   
   

   
                     

  (2.32) 

 

where   
    

 and   
    

 are appropriate positive weights, the values of 

which reflect the relative importance of the objective functions. 

Typically, the sum of weights   
    

   
    

 is equal to 1. Several 

methods can be used to choose the weights   
    

 and   
    

; the 

simplest procedure is the same weight estimation, considering all 

weights equal when no prior articulation of preference is made by the 

forecaster. Other suitable procedures can be applied when the 

forecaster is able to articulate preferences (i.e., the rank order of the 

true weights and the rank sum method). More details on the methods of 

choosing the weights can be found in [155]. 

Note that the objective functions in problem (2.32) usually must be 

normalized to provide a uniformly distributed solution set; in the 

appliance to the considered case, the normalization was achieved by 

assuming as references the mean values of CRPS and the maximum 

values of all absolute deviations from perfect reliability calculated on 

the three basic predictors. 
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2.4.2. Numerical applications 

The multi-model ensemble procedure shown in the previous sub-

Section was applied for the probabilistic forecast of a     
     kW 

PV generator at a U.S. site.  

Different values of lead time   were considered in the numerical 

applications; for the sake of conciseness, only the results for      

hours (next day forecast) are shown in this sub-Section. Moreover, the 

performances of single predictors and of the ensemble predictor were 

compared with a benchmark method, i.e., the probabilistic extension of 

the PM. 

Comparisons among methods were conducted in terms of probabilistic 

indices and diagrams; in particular, CRPS, reliability diagrams, and 

Probability  histograms were used to check the goodness of the 

forecasts. The same-weight estimation was used in the MO procedure; 

also, the SO procedure that minimizes only the CRPS (i.e., the limit 

case of the MO procedure with weights   
    

   and   
    

  ) was 

considered for comparative purposes. 

In the next subsections, firstly the input data characteristics are shown. 

Then, results of forecasts performed for one month for next-day 

forecasting are presented with extensive details, showing also 

reliability diagrams and Probability Integral Transform (PIT) 

histograms. Finally, the results of several further months are shown in 

a more compact form, for sake of conciseness. 

2.4.2.1. Data characteristics 

Input data were collected from January 1, 2013 to December 31, 2014 

at the latitude of 39.74° north and the longitude of  105.18° west by the 

U.S. National Renewable Energy Laboratory [156]. Available 

measurements consisted of 17520 hourly observations of solar 

irradiance, air temperature, cloud cover, relative humidity, and wind 

speed. The latter measurements were used as explanatory variables in 

the underlying regression model of the BM, and in the regression in the 

QM. Only 14 daytime hours (from 6:00 A.M. to 8:00 P.M.) were 

considered in the PV power forecasting application. 
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2.4.2.2. Assessment of the quality of forecasts 

The results of forecasts made for a lead time      hour are shown in 

this sub-Section. For the sake of conciseness, results are exhaustively 

shown only for one month, i.e., for November 2014. Eleven months 

(from 01/11/2013 to 30/09/2014) were used as the training interval for 

each predictor and the following month (from 01/10/2014 to 

31/10/2014) was used to calibrate base predictors and to find the 

weights of the ensemble method. Only air temperature and cloud cover 

were selected as explanatory variables. 

Table 2.5 shows the estimated values  ̂ of coefficients   for the LPE 

method. Table 2.6 shows the CRPS values for single predictors, LPE, 

PM and for the SO procedure. 

As shown in Table 2.5, weights are quite uniformly distributed for 

three base predictors (with a rough proportion of 0.3, 0.3 and 0.4 for 

BM, MM and QM, respectively). With these values of weight 

coefficients, LPE provides forecasts with a reduced CRPS than base 

predictors (from about 4% to 8% with respect to QM and BM, 

respectively). The SO procedure provided a smaller value of CRPS 

than the MO procedure (about 3% smaller), but performance in terms 

of reliability was significantly poorer (maximum deviation increased 

up to 10.95%). Also, the ensemble method outperformed the PM by 

50%. 

 

Table 2.5 - Next-day forecasting. Values of weight coefficients for linear ensemble 

in November 2014 

Ensemble 

method 
BM weight  ̂  [-] MM weight  ̂  [-] QM weight  ̂  [-] 

LPE - MO 0.29 0.29 0.42 

 

Table 2.6 - Next-day forecasting. Continuous ranked probability scores and 

maximum deviation from perfect reliability in November 2014 

Score BM MM QM PM LPE - MO LPE - SO 

CRPS [kW] 8.68 8.54 8.32 10.54 8.04 7.77 

  [%] 4.05 3.81 3.57 7.14 3.57 10.95 

 

Fig. 2.7 shows the reliability diagrams for single predictors compared 

to ideal reliability; Fig. 2.8 shows the reliability diagrams for the LPE 

predictor compared to ideal reliability and to PM.  
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Figure 2.7 - Next-day forecasting. Estimated coverages of single predictors: 

Bayesian method, Markov chain method, and quantile regression method in 

November 2014. 

 
Figure 2.8 - Next-day forecasting. Estimated coverages of the linear ensemble 

predictor and the probabilistic persistence method in November 2014. 
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Single predictors appear to be calibrated, as only negligible deviations 

can be found in Fig. 2.7. Also, the MO reliability appears to be more 

consistent than the SO reliability, as the latter appear to be heavily 

over-dispersed. 

To confirm this behavior, Fig. 2.9 shows the relative frequencies for 

BM, MM, and QM, and Fig. 2.10 shows the relative frequencies for 

PM and LPE with MO and SO procedures. PIT histograms
13

 of single 

predictors suggest an overall normal dispersion, in particular for MM 

and QM. The proposed MO approach proved to reduce the over-

dispersion that was expected for the LPE in presence of normally-

dispersed base predictors with respect to the SO procedure, as shown 

in Fig. 2.10.  

 
Figure 2.9 - Next-day forecasting. PIT histograms of single predictors: Bayesian 

method, Markov chain method, and quantile regression method in November 2014. 

                                                 
13

 Details on PIT histograms are in the Appendix. 
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Figure 2.10 - Next-day forecasting. PIT histograms of the linear ensemble predictor 

with MO and SO procedures, compared to the probabilistic persistence method in 

November 2014. 

 

Eventually, further results from February 2014 to December 2014 are 

shown in this in a compact form. The training procedure was the same 

used for forecasting the single months in the previous Section. Tables 

2.7 and 2.8 show the results for next day forecasting in terms of CRPS 

and maximum deviation from perfect reliability, respectively.  

The analysis of the results shows that, on average, BM and MM appear 

to perform worse than QM in terms of CRPS, but slightly better in 

terms of reliability. As shown in Table 2.7 and 2.8, in 8 months the 

LPE-MO produced forecasts with a smaller CRPS than single 

predictors for next-day forecasting; also, the LPE-MO performed 

better than the SO procedure in 8 months, allowing to reduce the index 
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Table 2.7 - Next-day forecasting. Continuous ranked probability scores from 

February to December 2014. 

Month 
CRPS [kW] 

BM MM QM PM LPE - MO LPE - SO 

Feb 9.71 9.74 9.63 11.99 9.29 8.99 

Mar 10.80 11.67 11.29 15.59 11.02 10.76 

Apr 11.80 11.63 11.70 15.5 11.56 11.28 

May 11.36 11.71 11.13 13.54 11.09 10.99 

Jun 11.02 10.23 10.52 12.88 10.15 9.78 

Jul 9.93 9.83 9.84 12.39 9.48 9.20 

Aug 11.05 10.84 10.65 13.1 10.41 10.02 

Sep 9.88 10.19 9.38 11.2 9.39 9.14 

Oct 8.63 8.69 8.50 10.54 8.33 8.05 

Nov 8.68 8.54 8.32 10.54 8.04 7.77 

Dec 6.85 8.14 7.43 9.12 7.01 6.77 

 

Table 2.8 - Next-day forecasting. Maximum deviation from perfect reliability from 

February to December 2014. 

Month 
  [%] 

BM MM QM PM LPE - MO LPE - SO 

Feb 4.08 5.36 3.57 10.20 3.83 8.42 

Mar 3.92 4.84 4.84 14.52 3.69 2.30 

Apr 4.05 4.05 4.05 14.29 4.76 3.81 

May 3.92 4.38 4.61 8.29 3.00 3.00 

Jun 3.57 4.29 4.05 7.86 5.71 5.48 

Jul 3.23 3.69 4.61 10.83 4.15 5.53 

Aug 3.23 4.15 4.61 10.14 3.92 8.06 

Sep 4.29 3.81 3.81 10.95 4.29 6.67 

Oct 4.38 4.61 3.69 6.45 6.91 7.83 

Nov 4.05 3.81 3.57 7.14 3.57 10.95 

Dec 4.15 4.61 3.46 7.14 3.46 11.98 

 

2.5. CONCLUSIONS 

Two contributions to the state of the art on probabilistic PV power 

forecasting were presented in this Chapter. 

The first contribution was a new Bayesian method based on an 

underlying exogenous linear regression model. Two different 

approaches were compared in the framework of the Bayesian method: 

the first (a) links the probabilistic PV power forecasts to the solar 

irradiance, modeled through a three-parameters Beta distribution, and 

the latter (b) links the probabilistic PV power forecasts to the clearness 

index, modeled through a modified Gamma distribution. Both the 

proposed Bayesian-based approaches showed great flexibility in their 
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use for developing models. They allowed the inclusion of exogenous 

input (e.g., cloud cover, relative humidity, ambient temperature, and 

pressure) that may influence both the hourly solar irradiance and the 

clearness index.  

Numerical applications based on real data on a 75-kW PV power plant 

indicated that both proposed methods, i.e., methods (a) and (b), 

provided good-quality forecasts in both a spot-value and a probabilistic 

framework, with method (b) providing slightly better results. Both 

methods however provided better results than the probabilistic 

benchmark method, thus proving to be useful in short-term 

probabilistic forecasting of the production of power by PV systems. 

Note that the proposed Bayesian method proved its versatility also in 

other forecasting field. Indeed, the conceptual forecasting system was 

also adapted to produce forecasts of wind power [157] and of loads 

[158,159]; results confirmed the suitability of the Bayesian approach in 

forecasting variables for power systems . 

The second contribution was a new probabilistic method based on a 

competitive ensemble of different base predictors, aimed to obtain 

sharp and reliable short-term PV power forecasts. Optimal 

characteristics of reliability and sharpness were obtained by 

aggregating the base predictors on the basis of a new MO optimization 

procedure. Comparisons with a SO procedure, already proposed in 

relevant literature, and with a probabilistic benchmark method, were 

also performed in order to assess the usefulness of the MO 

optimization. 

The MO procedure performed significantly better than the SO 

procedure in terms of the reliability of the output forecasts, with only 

little losses in terms of CRPS. The proposed method had, on average, 

better performance in terms of CRPS also compared to the base 

predictors, but it had on average slightly poorer performance in terms 

of reliability. The over-dispersion of linear pool ensemble forecasts in 

presence of normally-dispersed base predictors was effectively reduced 

through the proposed MO procedure. 
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Chapter 3.  

AN ADVANCED METHOD FOR SHORT-TERM 

INDUSTRIAL LOAD FORECASTING 
 

 

 

 

 

3.1. INTRODUCTION 

Load
14

 forecasts are always needed to perform all of the tasks in which 

the future status of the systems has to be estimated, i.e., grid planning,  

optimal management and control, participation to electrical markets, 

and power balancing [28]. Indeed, the majority of electrical loads 

cannot be exactly predicted, since two main factors mainly influence 

the electrical consumption.  

The first is a human factor. Intuitively, when some devices are turned 

on, the total load increases; when some devices are turned off, the total 

load decreases. Unless monitoring and scheduling the activities of 

people that utilize these devices, it is almost impossible to exactly 

predict the utilization of each electrical device, thus it is impossible to 

exactly predict the total load.  

The second factor is linked to weather conditions. Due the spread of air 

cooling and heating electrical systems, the total load of a building 

strongly varies as the air temperature varies, with peaks in hot and cold 

days. As well known, weather conditions are complex phenomena that 

influence the randomness of loads. 

All the above factors have a different impact when dealing with  

aggregated loads (i.e., at substation level) or industrial loads, and 

things change significantly also when dealing with single/small groups 

                                                 
14

 Load is an ambiguous term, with different meanings on the basis of the context. 

For example, load may indicate the device that absorbs energy, the active power, the 

apparent power, or the energy. In usual load forecasting notation, the term ―load‖ 

usually means demand (in kW) or energy (kWh). In this Chapter, however, the term 

―load‖ is intended as the total consumption of the device, made of both active and 

reactive powers. Active and reactive powers are clearly distinct, to avoid confusion.  
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of loads. Moreover, the impact on active powers can be significantly 

different from the impact on reactive powers, due to the different 

utilizations of electrical motors, devices, and electronic equipment. 

While most papers in the literature have been devoted to forecast 

active powers at aggregated levels, very few are on industrial load 

forecasting, only with applications to their active powers. This should 

not appear strange, since developing a forecasting system for industrial 

loads is a challenging task; these loads, in fact, usually follow different 

daily and weekly patterns and could benefit from analyzing the 

patterns that are uncommon or not as important in classical weather-

sensitive load profiles.  

To avoid verbose presentation, the Bayesian probabilistic forecasting 

system developed in [158,159] for aggregated and single loads is 

overlooked in this Chapter. Note that also further probabilistic methods 

based on the QR were specifically developed and used in [160] as tools 

to forecast the allowable current of distribution transformers.  

This Chapter therefore contributes to the existing literature on load 

forecasting by providing deterministic active and reactive power 

forecasting methods based on MLR and SVR models, that are 

specifically addressed to industrial applications [161]. In order to 

properly select the predictors of the models, an exploratory data 

analysis is first performed to discard uninformative data; then, two 

model selection techniques are applied to build the models, and their 

results are compared on actual data. The first technique is based on 

―classical‖ k-fold cross-validation of several models, each of them 

containing combinations of informative candidate predictors selected 

in the exploratory data analysis. The second technique is instead based 

on lasso regression analysis. 

This Chapter is organized as follows. The state of the art on short-term 

load forecasting methods is addressed in Section 2.2, with particular 

focus on applications to industrial load forecasting. The development 

of the proposed deterministic methods for industrial load forecasting is 

discussed in Section 2.3; the analytic model formulations and 

numerical applications based on real data are provided in the 

corresponding sub-Sections. The Chapter is concluded in Section 2.4. 
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3.2.  SHORT-TERM INDUSTRIAL LOAD FORECASTING 

METHODS: STATE OF THE ART   

Interest in load forecasting grew since the second half of the past 

centuries; since then, hundreds of papers have dealt with active power 

forecasting methods, both in deterministic and probabilistic 

frameworks. Comprehensive surveys on short-term load forecasting 

are in [28,36-44,162,163]. 

The very first contributions found in relevant literature were only 

addressed to aggregated active power forecasting at national, regional 

or substation levels, since power systems still were conceived in their 

traditional, one-directional structure. However, a very large number of 

works [28,36-44,162,163] dealt with this topic also in the last decade, 

since it is still of great value in power system balancing and market 

participation. In several of these papers, hierarchical load forecasting 

was developed in order to take into account spatial and regional 

information; however, the contributions that dealt with reactive powers 

were very limited. 

With the spread of SG and μG concepts, indeed, the interest in 

developing forecasting methods able to catch the variability of 

different types of loads at different levels of aggregation, and for both 

active and reactive powers, definitely grew.  

The modeling of the unpredictable behavior of a single load or only 

few loads usually is a challenging task, complicated by the 

disaggregation in smaller loads. Several papers [40,42-44] presented 

forecasting methods addressed for households, commercial and 

residential loads at appliance or building aggregation levels, or for SG 

and μG loads.  

Fewer papers instead focused their aim on industrial load forecasting. 

The problem is particularly complicated and worthy of attention, since, 

as stated in [164], ―typical forecasting methods tend to be not well 

adapted when applied at an industrial site level. Seasonality, calendar 

events, and weather dependency are parameters usually taken into 

account when modeling a national electricity consumption curve. 

However, due to the radically different nature of industrial sites, these 

parameters are inconsistent from site to site and may not be reflected 

in the consumption curve.‖ Indeed, as previously evidenced, different 
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challenges arise in developing a forecasting system for industrial loads, 

because they usually follow different daily and weekly patterns.  

The relevant literature on industrial load forecasting is quite limited. 

A deterministic ANN-based method for the STLF of three substations 

in Taiwan was developed in [165], taking into account the different 

shares and typologies of served loads (residential, industrial and 

commercial). This helped to increase the overall performance of the 

forecasting system, due to the different needs and patterns of energy 

consumers. 

A tool to analyze and model the load patterns in industrial parks was 

presented in [166], although without any application of the identified 

model to load forecasting. The tool exploited self-organizing maps and 

the clustering k-means algorithm in a cooperative hybrid approach. 

The tool performance was assessed on actual data taken at a Spanish 

industrial park. 

A similar approach to industrial load pattern analysis was proposed in 

[167], exploiting self-organizing maps and fuzzy k-means; also in that 

case, the authors did not apply the results to load forecasting.  

Another approach developed for pattern recognition of industrial 

customers was proposed in [168]; in particular, the first step of the 

approach allows to estimate industrial customers‘ by means of fuzzy k-

means and hierarchical clustering techniques. The authors only stated 

that the results of this step could be used in load forecasting, although 

without any further application.  

The STF method based on periodic AR models in [169] actually 

exploited customer clustering and segmentation, in order to individuate 

the different types of customers (industrial among them) in 245 

aggregate time series taken at a Belgian substation.  

Fuzzy-ANN hybrid deterministic approaches were applied in [170] to 

forecast loads in industrial framework, and they were compared to 

ARIMA models in terms of RMSEs. The approaches took into account 

dummy variables such as day of the week and hour of the day. 

The authors of [171] exploited smart meter data in order to improve 

STF of loads for residential and industrial customers. The proposed 

method exploits a polynomial fitting of the load curve; numerical 

applications were based on a porcelain industry fed by a medium 

voltage grid.   
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In [172] an improved, fast-converging ANN industrial load forecasting 

model was developed by selecting candidate inputs through mutual 

information technique, and then by estimating parameters through the 

enhanced differential evolution algorithm. It is not clear, however, if 

the datasets considered in the numerical applications actually referred 

to industrial sites. 

The forecasting performances of ANN and ARIMA models were 

compared in [173] with appliance to a gas processing plant. Results 

were assessed in terms of MAE and RMSE, and denoted a superiority 

of ANN. 

A day-ahead probabilistic load forecasting model for energy-intensive 

enterprises, such as big factories, based on Gaussian process was 

developed in [174]. The model proposed by the authors was a 

probabilistic tool, and load series were treated as heteroscedastic time 

series, due to the start-up and shutdown of units that absorbed a 

notable share of power. The probabilistic model was compared to 

classical Gaussian process and quantile regression in terms of 

reliability and sharpness of forecasts. 

An industrial load zone was included in the load forecasting track of 

the Global Energy Forecasting Competition 2012 (GEFCom2012) 

[11]. The forecast error for that zone was experienced to be quite large 

when applying classical load forecasting models that work well on 

other weather-sensitive zones. Several papers presented the forecasting 

methods that resulted as top entries in the GEFCom2012 and that, 

therefore, were also applied to industrial load forecasting.  

A gradient boosting method with different additive models for each 

hour was presented in [175]; the authors used univariate regression 

splines as base learners. Past values and forecasts of ambient 

temperatures provided by NWPs, together with past values of load, 

were used as inputs.  

A MLR model was developed in [176] to produce load forecasts in the 

GEFCom2012 framework; the MLR model was furthermore refined by 

combining models from different weather stations, treating outliers and 

holidays. 

The author of [177] developed a tool based on Gaussian processes and 

gradient boosting in order to solve the hierarchical load forecasting 
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problem of GEFCom2012. Only few domain-specific adjustments 

were added to improve the quality of forecasts. 

A multi-scale model that performed a combination of three 

components was proposed in [178]. The three components took into 

account a long term trend, the medium term sensitivity to ambient 

temperature, and short term local behaviors.  

Eventually, the number of papers specifically dedicated to industrial 

load forecasting is much smaller than the ones dedicated to aggregate, 

residential, or building load forecasting. Also, no application to 

industrial reactive power forecasting was found in relevant literature. 

 

3.3. A NEW DETERMINISTIC REGRESSION-BASED METHOD 

FOR SHORT-TERM INDUSTRIAL LOAD FORECASTING 

Different challenges arise in developing a short-term forecasting 

system of the electricity needs of factories. Industrial loads, in fact, 

may depend on many factors, such as scheduled processes and work 

shifts, that are uncommon or not so important as in classical load 

forecasting models. Moreover, the choice of inputs is critical in order 

to avoid over-fitting and bad-modeling, resulting in inaccurate 

forecasts.  

In this Section there are some insights on developing models suited for 

forecasting industrial active and reactive powers, at both aggregated 

and single-load levels. The forecasting is based on MLR or SVR 

models [161]. The selection of most adequate models is performed 

with two different techniques, i.e., a ―classical‖ technique based on the 

k-fold cross-validation of multiple models and a technique based on 

the lasso analysis.  

Numerical applications based on real data collected at an Italian 

industrial site confirmed the improvements in terms of accuracy of the 

proposed models for forecasts  from 1 to 48 hours ahead, 

outperforming two benchmark models. Details about the proposed 

methodology for model development are reported in the following sub-

Section 2.3.1; numerical applications based on real data are in sub-

Section 2.3.2. 
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3.3.1. Proposed method 

The proposed methodology [161] involves the following steps: 

i. analytic formulation of MLR (sub-Section 3.3.1.1) and SVR 

models (sub-Section 3.3.1.2). Analytic expressions are provided 

only for active powers, to avoid redundancy being trivial the 

extension to reactive powers; 

ii. individuation of the available time series of data collected until 

the forecast start time (sub-Section 3.3.1.3); 

iii. exploratory data analysis to discard uninformative inputs and to 

select informative candidate inputs (sub-Section 3.3.1.4); 

iv. selection of the most adequate MLR and SVR models for 

industrial active and reactive power forecasting through two 

techniques (sub-Section 3.3.1.5).  

The first technique (T1) of step iv is based on the 10-fold cross-

validation of multiple MLR and SVR models that contain 

combinations of the informative inputs; the best MLR and the best 

SVR models (in terms of RMSE) are selected for the test step. The 

second technique (T2) of step iv. is instead based on the lasso analysis 

[70,179], in order to directly draw the most useful inputs among the 

informative ones; a 10-fold cross-validation was performed also in this 

case, in order to provide coherent comparison with the first technique. 

3.3.1.1. Multiple Linear Regression model 

The basic form of MLR model is here recalled for sake of 

completeness: 
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where    is the active power at the time horizon  ,    
       

 are the 

   predictor variables of the model,   
     

   
     

      

     
 are the 

     parameters to be estimated in the training step of the 
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 are obtained in this approach via the 

ordinary least square method in the training step: 
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and the maximum-likelihood estimation  ̂  of the active power    is 

then: 
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it is the forecasted active power at the time horizon  . 

3.3.1.2. Support Vector Regression model 

As for MLR models, SVR models link the forecasted active power  ̂  

at hour   to    predictor variables        
    

       
 , although 

being able to represent features also through a non-linear relationship. 

Given a set of    
     

 observations 

 
        

     
   

  
        

     
   

        of active power, the 

estimation procedure aims at finding parameters of the model in order 

to assure that all of the available observations are so-well reconstructed 

through the model that they lie in a    band around the estimated 

values. Linear, Gaussian and polynomial SVR were tested in numerical 

applications; linear SVR appeared to produce the best results in terms 

of forecasting error, and it also appeared to us a more ―fair‖ 

comparative approach with MLR models. Therefore, only results of the 

linear SVR are shown in this Chapter. 

The generic linear SVR model is: 
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where          
     

 are the parameters of the model, and the symbol 

〈   〉 stands for the dot product between inputs. Parameters 

         
     

 are estimated by minimizing the norm 
 

 
‖      ‖

 
 in 

the training period, under the aforesaid constraint on the distance 

between observations and reconstructed values: 
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(3.5) 

 

Since constraints are quite strict in this form, two auxiliary parameters 

     
  are added for each of the    

     
 observations in the training 

period; this allows to permit reconstructed values to lie outside the    

band, although penalizing them through a constant  ; the augmented 

optimization problem is: 
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The Lagrange function    linked to Eq. (3.6) is: 
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where Lagrange variables      
       

  are non-negative values. Setting 

partial derivatives of    to zero and substituting the solutions in Eq. 

(3.7), the dual problem (3.8) is obtained: 
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The  th
 solution coefficient can be rewritten as: 
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and therefore: 
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where the remaining parameter  ̂ 
     

 can be computed from Karush-

Kuhn-Tucker conditions: 

 

 ̂ 
     

            〈 ̂                〉     if    ̂    , 

 ̂ 
     

            〈 ̂                〉     if    ̂ 
    . 

(3.11) 

 

3.3.1.3. Data characteristics 

The factory of interest is located in southern Italy, manufacturing 

MV/LV transformers. It is fed by a 20-kV distribution network through 

a 630-kVA, 20/0.4-kV transformer. Four main feeders supply power to 

four sections of the factory, i.e., metal carpentry, assembly, wiring and 

offices, and the testing laboratory. The factory operates from Monday 
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through Friday with two shifts (from 06:00 A.M. to 02:30 P.M. and 

from 02:30 P.M. to 11:00 P.M.). On Saturday, there is only one work 

shift (from 06:00 A.M. to 02:30 P.M.). 

Measurements were taken for the total load, loads of each feeder, and 

single loads (such as individual machines, the office building, 

electrical pumps, and robots). The measurement system included 19 

measurement points recording the data of the average active and 

reactive powers, currents, voltages, frequency, and power factor in 15-

minute intervals. These values were then averaged in groups of four to 

provide hourly measurements from April 1, 2016 to July 31, 2017. Fig. 

3.1 shows typical profiles of the total active and reactive powers 

during a 7-day period (from May 2, 2016 to May 8, 2016). Statistical 

parameters of the four load time series (i.e., of the aggregate load, an 

electrical pump, the carpentry feeder, and a painting machine) 

considered in the following applications in Section 3.3.2 are shown in 

Table 3.1. 

 
Figure 3.1 – Aggregate active and reactive powers from May 2, 2016 to May 8, 

2016. 
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Table 3.1 – Statistical parameters of the analysed load time series 

Load  
Mean 

value 

Median 

value 

Standard 

deviation 

Minimum 

value 

Maximum 

value 

Aggregate 

load 

P [kW] 214.42 230.15 77.15 56.41 404.73 

Q [kVA] 109.41 104.74 50.48 14.73 335.75 

Electrical 

pump 

P [kW] 13.49 9.17 11.74 0 51.68 

Q [kVA] 8.92 6.75 7.71 0 29.95 

Carpentry 

feeder 

P [kW] 38.87 31.02 36.69 0.37 169.72 

Q [kVA] 28.16 17.54 29.19 0 101.50 

Painting 

machine 

P [kW] 1.78 0 2.84 0 16.02 

Q [kVA] 2.10 0 3.32 0 10.18 

 

3.3.1.4. Exploratory data analysis 

The exploratory data analysis aims at evaluating the information levels 

of available inputs, in order to discard uninformative inputs and to 

select instead only candidate inputs among the informative ones. 

Obviously, the analysis depends on the number of available inputs 

(weather variables, manufactured units, load measurements, work 

schedules, and so on), thus varying case-by-case.  

The exploratory data analysis results based on the active power of the 

aggregate load under study are presented in the following; the same 

analysis was performed for the reactive power of the aggregate load, 

and for active and reactive powers of single loads to build forecasting 

systems for each individual load; those results are excluded to avoid 

verbose presentation.  

Firstly, the past values of active power (or functions of the values) that 

were measured until the forecast origin were considered as candidate 

quantitative variables to be included in the MLR and SVR models. To 

provide a ―prior‖ estimation of the effectiveness of this choice, Fig. 3.2 

shows the autocorrelation function plot of the aggregate industrial 

active power. As expected, the pattern is seasonal with daily and 

weekly periods, and the strongest periodicity is weekly. High values of 

autocorrelation are set for low values of lags and around the weekly 

lag; thus, it is beneficial to consider past measurements of power (as in 
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autoregressive models) and past power differences (as in integrated 

models) as candidate quantitative predictor variables. 

Due to the significant share of energy used to supply the heating and 

cooling systems, the ambient temperature is usually an additional 

candidate quantitative predictor variable for modeling loads. 

Therefore, it is also worthwhile to perform a preliminary investigation 

to determine whether such a dependence exists also for the industrial 

active power under study. Fig. 3.3 is a scatter plot of the aggregate 

industrial active power versus the ambient temperature, which does not 

show a strong relationship between the two. In fact, the portion of 

energy used to supply the heating and cooling systems in this factory is 

quite small compared to the total consumption, as foreseeable due to 

the working process. Therefore, ambient temperature is treated as an 

uninformative variable, and therefore it is not included in the 

forecasting models. 

 
Figure 3.2 – Autocorrelation of the aggregate industrial active power. 
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Figure 3.3 – Scatter plot of the aggregate industrial active power versus ambient 

temperature. 

 

To possibly improve the forecasts in the industrial facility, work shifts 

and variability during the hours of the day and days of the week were 

analyzed. The work shifts in the factory are scheduled as 6:00 A.M.-

11:00 P.M. from Monday through Friday, and 6:00 A.M.-3:00 P.M. on 

Saturday. Outside work hours, the demand of machines that must be 

controlled manually (e.g., welding machines or wood cutters) is 

automatically set to zero, while the power required by some of the 

other loads (e.g., offices and furnaces) is significantly reduced. 

However, there are some exceptions to this rule. For instance, a 

production phase might have to be scheduled out of the usual work 

shift due to urgent orders. The schedule of industrial production might 

not require the use of a particular machine from day x to day y.  

Fig. 3.4 shows the active power profiles for different day types: 1) 

Mondays and days after a holiday; 2) work days; 3) Saturdays and 

days before a holiday; and 4) Sundays and holidays. The plots in Fig. 

3.4 indicate different patterns of the aggregate load versus the hour of 

the day for each type of day.  
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Figure 3.4 – Scatter plot of the aggregate industrial active power for each type of 

day, versus the hour of the day. The red lines indicate the mean values of 

observations. 

In particular, Mondays and days after a holiday are introduced since 

the demand in the early hours may be smaller than the demand in the 

early hours of work days. Saturdays and days before a holiday are 

introduced since the demand in the late hours may be smaller than the 

demand in the late hours of work days. Both considerations also 

suggest an interaction effect
15

 between the hour of the day and the type 

of day. 

Therefore, the qualitative variable ―hour of the day‖      

*    
   

     
   

      
    

+ was considered as a first candidate 

qualitative predictor variable to capture the variability of active power 

during the day. Variable      is a vector of binary values: the  th
 

element     
   

   if   is the  th
 hour of the day;     

   
   

                                                 
15

 One way to add interactions to models is by multiplying the interacting 

predictor variables by each other. Qualitative variables are sometimes added as 

stand-alone input variables, but they are more often selected as inputs of interactions. 

Indeed, if a quantitative variable interacts with a qualitative variable, the quantitative 

variable can be withdrawn from the model; if two qualitative variables interact with 

each other, both can be withdrawn from the model [21].  
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otherwise. Additionally, other candidate qualitative predictor variables 

selected for the models were the ―type of day‖ 

     *    
   

     
   

     
   

     
   

+: 

-                if hour   occurs on a Monday or on a day 

after a holiday; 

-                if hour   occurs on a work day; 

-                if hour   occurs on a Saturday or on a day 

before a holiday; 

-                if hour   occurs on a Sunday or on a holiday. 

The opportunity to introduce a qualitative predictor variable 

representative of the month of the year was also explored. 

Nevertheless, the scatter plots of active powers versus the hour of the 

day for each month (Figs. 3.5, 3.6 and 3.7) do not suggest a monthly 

dependence given that the patterns are very similar to each other. This 

is an additional confirmation of the low dependence of aggregate 

active power on ambient temperature, since the various seasons did not 

seem to have impacts on total demand.  

 
Figure 3.5 – Scatter plots of the aggregate industrial active power in January, 

February, March, and April, versus the hour of the day. 
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Figure 3.6 – Scatter plots of the aggregate industrial active power in May, June, July, 

and August, versus the hour of the day. 

 

 
Figure 3.7 - Scatter plots of the aggregate industrial active power in September, 

October, November, and December, versus the hour of the day. 

0 10 20
0

100

200

300

400
May

Hour of the day [h]

P
o
w

e
r 

[k
W

]

0 10 20
0

100

200

300

400
June

Hour of the day [h]

P
o
w

e
r 

[k
W

]

0 10 20
0

100

200

300

400
July

Hour of the day [h]

P
o
w

e
r 

[k
W

]

0 10 20
0

100

200

300

400
August

Hour of the day [h]

P
o
w

e
r 

[k
W

]

0 10 20
0

100

200

300

400
September

Hour of the day [h]

P
o
w

e
r 

[k
W

]

0 10 20
0

100

200

300

400
October

Hour of the day [h]

P
o
w

e
r 

[k
W

]

0 10 20
0

100

200

300

400
November

Hour of the day [h]

P
o
w

e
r 

[k
W

]

0 10 20
0

100

200

300

400
December

Hour of the day [h]

P
o
w

e
r 

[k
W

]



91 

 

Moreover, it suggests that the industrial factory had a ―standard‖ 

production during the considered months (except for August, which 

had an entire week of holiday). Thus, the month of the year was not 

considered as a candidate qualitative variable. 

Indications of the interaction effects between hour of day, type of day, 

and past values of measured active power were extracted from the 

inspection of Figs. 3.8, 3.9, and 3.10, showing aggregate industrial 

active power versus past measurements of aggregate active power 

(collected one hour, one day, and one week before, respectively) for 

each type of day. As expected, when assigning the lag of past values of 

power, the scatter plots varied significantly with the type of day.  

In particular, the scatters of active powers versus previous-hour active 

powers lie along the diagonal. Moreover, the scatter plots appear to be 

quite different by day type. For instance, the plots of Mondays and 

days after a holiday are more concentrated around greater values, while 

the plots of Sundays and holidays are more concentrated around low 

values. Additionally, the plots of work days are more spread around 

the diagonal, while the plots of Sundays and holidays are more 

concentrated around the diagonal. 
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Figure 3.8 – Scatter plots of the aggregate industrial active power for each type of 

day versus the aggregate industrial active power measured one hour before. 

 
Figure 3.9 – Scatter plots of the aggregate industrial active power for each type of 

day versus the aggregate industrial active power measured one day before. 
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Figure 3.10 – Scatter plots of the aggregate industrial active power for each type of 

day versus the aggregate industrial active power measured one week before. 
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from the exploratory data analysis; a 10-fold cross validation 

procedure allowed to select the best among these MLR models in 

terms of RMSE, avoiding over-fitting issues.  

The 10-fold cross validation consists in dividing the available training 

dataset in 10 equally-dimensioned subsets. At turn, one subset is left 

out and all of the models under evaluation are trained through ordinary 

least squares, using the data contained in the remaining 9 subsets; the 

performance of the model is validated using the data contained in the 

subset that was left out. The procedure is repeated 9 times, obviously 

varying the subset left out, in order to pick all the 10 available subsets. 

Average performances of the models under evaluation are obtained, 

e.g., by averaging error values in the 10 validation steps; the model 

with the highest average performance is selected for the test step, using 

different data since the test dataset is blind to each of the 10 training 

subsets.   

In the model selection technique T2, instead, parameters of a MLR 

model with all of the informative variables drawn from the exploratory 

data analysis are estimated via the lasso analysis [70,179].  

Lasso analysis is based on the lasso regression; given the set of    
     

 

observations  
        

     
   

  
        

     
   

        of active 

power, the aim of lasso analysis is to find estimations 

 ̂ 
     

  ̂ 
     

    ̂  

     
 by solving the following minimization 

problem: 
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(3.12) 

  

where        is an assigned non-negative parameter that is linked to the 

degree of regularization. The peculiarity of lasso analysis is that the 

addition of the term       ∑ |  
     

|
  
    is analogous to adding an 

upper-bound constraint on the sum of absolute values of the estimated 
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parameters; therefore, several parameters are estimated as null, or 

quasi null values. A threshold can be set to discern between zero and 

non-zero values; the number of estimated parameters 

 ̂ 
     

  ̂ 
     

    ̂  

     
 that are non-zero increases as        increases. 

       can be empirically determined, on the basis of the dimension of 

the problem (e.g., it can be varied with the number of parameters  ). 

Inputs associated to parameters whose values are zero were discarded, 

and the resulting inputs were selected to build the MLR model (with 

parameters estimated via the ordinary least squares) for the test step.  

For SVR, the model selection was performed using the two same 

conceptual techniques T1 and T2 described for the MLR model 

selection, although parameters were estimated in the SVR framework. 

3.3.2. Numerical applications 

The techniques for MLR and SVR model selection were applied to the 

eight time series described in sub-Section 3.3.1.1, for both active and 

reactive powers. The cross-validation period was from May 1, 2016 to 

June 30, 2017; the RMSEs of each of the 10 cross-validation folds 

were averaged, and the model with the lowest average RMSE was 

selected for the test period (from July 1, 2017 to July 31, 2017). 

For all of the test cases, the pool of candidate predictors from which 

the variables were selected to build models is shown in Table 3.2. 

 

Table 3.2 – Predictors candidate to build models for industrial load forecasts 

Variables 

         
      

           
      

           
      

   
                                  

          

 

Forecasts were performed for lead times from 1 hour to 48 hours; 

when dealing with multi-step time horizons, the last forecasted values 

were used as inputs of sub-sequential models. A comparison with two 

benchmarks was performed to validate the usefulness of the procedure 

at different lead times in terms of both NRMSE and NMAE; 

normalization is to the maximum observed values in Table 3.1. 

A SN model is selected as first benchmark. The SN model forecasts 

the unknown load taking the last observed value at the same time of 
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the last same season. Industrial loads under study showed two seasonal 

behaviors, with daily and weekly periodicity. However, two 

motivations led to select the load measured one week before. First, 

forecasts were performed with the proposed methods for lead times 

that exceed one day (i.e., up to 48 hours), and therefore the SN model 

could not be applied for comparison for lead times ranging from 25 to 

48 hours. Also, selecting the load from one week before leads to 

results that are better on average than selecting the pervious-day 

measurements. Therefore, given the hourly resolution in the load data, 

the active power forecast  ̂ 
    

 at hour   is: 

 

 ̂ 
    

        , (3.12) 

 

being trivial the extension to SN reactive power forecasts. 

A PM is selected as second benchmark. The PM assumes the unknown 

load to be equal to the last observed value, whatever the forecast lead 

time   is. This is a common benchmark in load forecasting, that works 

particularly well for small lead times (e.g., 1 hour ahead). The active 

power forecast  ̂ 
    

 at hour   is: 

 

 ̂ 
    

      , (3.13) 

 

being trivial the extension to PM reactive power forecasts. 

The forecasting results of the aggregate active power are analyzed in 

details in the following sub-Section, while forecasting results of single 

loads‘ active powers are presented in a more compact form in sub-

Section 3.3.2.2, only for sake of conciseness. Also, several hints on 

results of the reactive power forecasting are shown in sub-Section 

3.3.2.3.  

3.3.2.1. Assessment of the quality of active power forecasts of the 

aggregated industrial load 

Figs 3.11 and 3.12 respectively show the NMAEs and the NRMSEs 

versus lead times of active power forecasts obtained with MLR and 

SVR models, applying model selection techniques T1 and T2. Errors 

coming from PM and SN model are also shown for benchmarking in 
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Figs 3.11a and 3.12a, while the details on the MLR and SVR forecast 

errors are captured in the zoomed Figs. 3.11b and 3.12b. 

As expected, all of the MLR and SVR methods provided better results 

for short lead times, and tended to degrade as the lead time increase, 

although the errors did not rapidly diverge as the lead time increased. 

T2 MLR was the overall best model for all of the lead times. T2 SVR 

errors were, on average, slightly smaller than the T1 SVR. 

Benchmarks were always outperformed by all of the proposed 

methods; PM was a better comparing tool from 1 to 3 hours ahead, 

while for greater lead times the quality of SN forecasts was 

considerably higher than PM‘s forecasts.  

The NMAE maximum and minimum improvements of the active 

power forecasts obtained through the T2 MLR were around 55% and 

16% when compared to SN; the minimum improvement was instead 

18% when compared to PM. These numbers were very similar when 

obtained with reference to the NRMSE: indeed, the maximum and 

minimum improvements of the T2 MLR were around 50% and 20% 

when compared to SN, while the minimum improvement was 18% 

when compared to PM. Obviously, NRMSEs are greater than NMAEs 

since they ―weight‖ more the greatest errors; however, the average 

difference between a NRMSE and its corresponding NMAE is only 

around 2.5%, thus suggesting that, on average, the magnitude of 

absolute errors do not significantly differ from the mean of absolute 

errors. 
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Figure 3.11 - Normalized Mean Absolute Errors for the aggregate active power: (a) 

comparison with benchmarks; (b) zoom on the models‘ errors. 
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Figure 3.12 - Normalized Root Mean Squared Errors for the aggregate active power: 

(a) comparison with benchmarks; (b) zoom on the models‘ errors. 
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3.3.2.2. Assessment of the quality of active power forecasts of single 

industrial loads 

The quality of single loads‘ active power forecasts is assessed in this 

sub-Section only by inspecting the NRMSEs, to avoid verbose 

presentation.  

Figs. 3.13 shows the NRMSEs versus lead times of the active power 

forecasts of the electrical pump. T1 MLR provided the best active 

power forecasts for all of the lead times. Using this method the 

improvements with respect to benchmark models were more intense 

than in the case of aggregate active load; they always exceeded 31% 

when compared to PM, and they exceeded 23% and 21% when 

compared to SN. 

Fig. 3.14 show the NRMSEs versus lead times of the active power 

forecasts of the carpentry feeder. Although models outperformed PM 

benchmark, the convenience of MLR and SVR models was limited to 

lead times up to 27 and 5 hours, respectively; the quality of longer-

term forecasts was indeed inferior to the SN one. 

Fig. 3.15 shows the NRMSEs versus lead times of the active power 

forecasts of the painting machine. In this case, the error trends 

significantly differed from a model to another, while in the previous 

examples the errors were quite similar for the proposed models. The 

worst performance was achieved through the T2 SVR, while the T1 

MLR provided the best active power forecasts for all of the lead times. 

The MLR models performed, on average, better than SVR models, and 

model selection technique T1 led to better improvements with respect 

to T2.  

Although the overall trends of the proposed models were on average 

quite similar, some straightforward general considerations could be 

drawn. SVR appeared to perform slightly worse than MLR for active 

power forecasting both at aggregate and single-load levels; model 

selection technique T1 was preferable for single loads, while technique 

T2 led to better aggregate active power forecasts. 
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Figure 3.13 - Normalized Root Mean Squared Errors for the active power of the 

electrical pump: (a) comparison with benchmarks; (b) zoom on the models‘ errors. 
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Figure 3.14 - Normalized Root Mean Squared Errors for the active power of the 

carpentry feeder: (a) comparison with benchmarks; (b) zoom on the models‘ errors. 
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Figure 3.15 - Normalized Root Mean Squared Errors for the active power of the 

painting machine: (a) comparison with benchmarks; (b) zoom on the models‘ errors. 
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3.3.2.3. Assessment of the quality of reactive power forecasts of 

industrial loads 

The same procedures applied to build models for forecasting active 

powers were applied to reactive powers of the four considered loads.  

The main outcome is that the methods that provided the best 

performances for active powers not necessarily provided the best 

performances also for reactive powers.  

As a significant example, Fig. 3.16 shows the NRMSEs versus lead 

times of the aggregate reactive power forecasts. The comparison of 

these errors to those shown in Fig. 3.12 for the active power is quite 

interesting. T1 MLR was the best method for the aggregate active 

power; however, it outperformed the other methods for reactive power 

forecasting only up to 14-hour lead times, but T2 MLR performed 

slightly better from 15-hour to 48-hour lead times.  

As a general consideration, the performances of both benchmarks and 

of the proposed methods worsened when applied to reactive power 

forecasting with respect to active power forecasting. For example, the 

best model provided a NRMSE of about 4.6% for active power 

forecasts, while the best model provided a NRMSE of about 5% for 

reactive power forecasts at the same lead time (1 hour). This trend was 

confirmed also for different lead times, and for all of the single loads. 

The different scenarios confirm the utility of research efforts in active 

and reactive power forecasting, due the increasing needs of industrial 

systems to be contextualized in smart power systems.  
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Figure 3.16 - Normalized Root Mean Squared Errors for the aggregate reactive 

power: (a) comparison with benchmarks; (b) zoom on the models‘ errors. 
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3.4. CONCLUSIONS 

The contributions presented in this Chapter focused on the 

development of forecasting systems for industrial loads. Forecasting 

systems need to be accurately built case-by-case, even for loads within 

the same factory, due the different nature and schedule of machines 

and devices. Selecting only informative inputs is mandatory in order to 

build high-performance models, with low computational effort. 

Therefore, two model selection techniques were compared in terms of 

produced forecast errors. The first technique was based on the 10-fold 

cross-validation of several MLR and SVR models that contain 

combinations of the informative inputs; the best models in terms of 

RMSEs were selected for the test step. The second technique was 

instead based on the lasso analysis through a 10-fold cross-validation, 

in order to directly draw the most useful inputs among the informative 

ones.  

Both techniques were compared using actual data from an Italian 

factory; results were presented for both the aggregate load and for 

several single loads, in order to assess the performance in different 

frameworks having two benchmark models as references.  

Although the overall trend of all of the proposed models was similar as 

the lead times varies, results differed as the typologies of load varied, 

thus justifying the need for ad-hoc forecasting systems. Results of 

MLR models were more accurate on average than results of SVR 

models; technique T1 was the best pick for aggregate load, while T2 

was the best pick for single loads.  

As a final note, the Bayesian probabilistic forecasting system 

developed in [158,159] was overlooked in this Chapter, only to avoid 

verbose presentation. Further probabilistic methods based on the QR 

were specifically developed and used in [160] as tools to forecast the 

allowable current of distribution transformers. 
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Chapter 4.  

ADVANCED PROBABILITY DISTRIBUTIONS 

FOR MODELING EXTREME VALUES OF WIND 

SPEED 
 

 

 

 

 

4.1.  INTRODUCTION 

EWS are potentially destructive events that affect also power systems 

in three ways. 

The first aspect is the power production. The energy output of WGs 

mainly depends on the magnitude of wind speeds. Wind uncertainty 

must be taken into account by wind producers when preparing selling 

offers to minimize penalties, and also by the authority companies that 

presents the corresponding aggregate selling offers (e.g., this role is 

played by the ―Gestore dei Servizi Energetici‖ in Italy [180]). In this 

context, EWS are usually unfavorable, as wind speeds that exceed the 

cut-off value of generators correspond to no power output. Also, 

values of wind speed fluctuating in proximity of the cut-off values are 

translated into rapid oscillations of power from zero to values close to 

the rated power, negatively influencing the real-time balancing and 

power quality [181,182].   

The second aspect is the overhead line rating. As well known, the total 

electrical demand is constantly increasing, but infrastructures planning 

does not follow this trend. Moreover, the economical and environment 

impact of transmission lines is not negligible; the economical 

investment for a km of line is expected to be hundreds of thousands of 

euros, and it is often opposed by public opinion [7]. Thus, a better 

exploitation of existing transmission lines is mandatory in order to 

satisfy the increasing demand, without severe congestion in normal 

and emergency conditions. Dynamic line rating allows power flows to 

be constrained in a less-conservative way. In this context, wind speed 



108 

 

plays a key role, since it can modify the maximum allowable loading 

thanks to its strong influence on the convective thermal exchange [7]. 

In particular, EWS can significantly increase the maximum allowable 

loading of the overhead lines; moreover, wind farms in proximity of 

overhead lines can be, in turn, subject to an increased amount of power 

production. Therefore, a great attention to the combined effects must 

be paid. 

The third aspect is linked to the mechanical reliability of system 

components. EWS jeopardize sensible structures, such as wind towers 

and generator blades, and also overhead transmission lines [9,10]. The 

effects on towers and blades can be destructive, leading also to large 

intervals of time of inactivity and expensive maintenance or repair; 

obviously, offshore wind plants are particularly sensitive to this 

problem [8]. Transmission lines can rarely suffer mechanical damages, 

but can hazardously oscillate, reducing the minimum distance between 

active parts and inert parts or between two different active parts. The 

failure of a single component can affect the functioning of the whole 

system, and could lead to cascade trips.  

The problems and requirements indicated above have recently 

increased the attention of researchers and system operators towards 

EWS forecasting [183], in order to timely operate to restore acceptable 

levels of reliability and to assure real time balancing.  

As stated in Chapter 1, some parametric probabilistic tools for 

forecasting EWS require prior assumptions on the statistical 

distribution of the random variable; therefore, an accurate 

characterization of EWS datasets is mandatory in these kind of 

applications [184-188]. Statistical distributions for EWS should be 

versatile but also easy to be handled by forecasters; therefore, when 

classical parameter estimation procedures (such as Maximum 

Likelihood Estimation (MLE) and Moment Estimation (ME)) risk to 

produce unreliable results, each new distribution should come with an 

appropriate parameter estimation procedure.  

Bearing this in mind, this Chapter adds two contributions to the 

existing literature on probability distributions for EWS.  

The first contribution is the proposal of an Inverse Burr (IB) 

distribution for the statistical modeling of EWS [189]. Several classical 

procedures for the IB parameters estimation are compared to a new 
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contribution, the Quantile Estimation (QE) that is sometimes easier to 

be implemented, implying in particular cases a simple algebraic 

computation.  

The second contribution is the proposal of a finite mixture of Inverse 

Burr - Inverse Weibull distributions (M-IB-IW) that could suit 

different scenarios [190]. Since mixture distributions usually introduce 

severe difficulties in their parameter estimation, an ad-hoc EM 

procedure is proposed as it appears to be a particularly suitable 

solution for estimating parameters of the M-IB-IW distribution. 

This Chapter is organized as follows. The state of the art on models for 

the statistical characterization of EWS is addressed in Section 4.2. The 

first proposal, i.e., the IB distribution, is presented in Section 4.3, 

while the second proposal, i.e., the M-IB-IW distribution, is presented 

in Section 4.4. EWS models that are already available in literature are 

presented in Section 4.5 as benchmarks. Numerical applications based 

on real data are provided in Section 4.6. The Chapter is then concluded 

in Section 4.7. 

 

4.2. MODELS FOR EXTREME VALUES OF WIND SPEED: STATE 

OF THE ART   

Researches on EWS statistical modeling started when practitioners 

understood that ―traditional‖ wind speed statistical modeling was 

unable to exactly capture the behavior of the phenomenon in its 

extreme manifestations. Many scientific papers have dealt with the 

statistical characterization of wind speed in the last decades; 

comprehensive surveys and comparative studies on the topic are in 

[191-194]. The fundamental outcome of all of these researches is that, 

even if some PDFs such as Weibull distribution, Rayleigh and 

Lognormal distributions are widely used to characterize wind speeds, 

no model is universally recognized as the best fit for all of the wind 

speed datasets, since the GOF varies case-by-case. Moreover, when 

applied to EWS, ―traditional‖ wind speed distributions proved to fail 

GOF checks, as they can severely underestimate or overestimate upper 

quantiles [195-198]. Therefore, the need for models that are 

specifically aimed to EWS characterization increased, in order to avoid 
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such a kind of problems in a world that is more and more conditioned 

by extreme events. 

Reviews and comparison of papers dedicated to EWS analysis and 

modeling are in [192,199-201]. Basically, research papers explored 

two approaches for determining the EWS data under test: Period 

Maxima (PMA) and Peak Over Threshold (POT).  

PMA divides the entire available dataset of wind speed in several 

equally-spaced subsets (e.g., annually, monthly, or weekly spaced); it 

then extracts one maximum value of wind speed for each subset.  

POT instead picks all of the values of wind speed that exceed an 

assigned threshold (e.g., 40 m/s), although avoiding to pick 

observations too close one another in time, to assure the statistical 

independency between observations in the EWS dataset. 

The size of a PMA EWS dataset is usually much smaller than the size 

of a POT EWS dataset, if they are drawn from the same wind speed 

dataset. In particular, Annual Maxima (AMA) are usually made of 

very few samples, since only one wind speed observation per year is 

selected. 

Two well-established distribution families, such as the Generalized 

Extreme Value
16

 (GEV), the Inverse Weibull (IW), and the 

Generalized Pareto (GP), are usually applied for PMA and POT 

applications in relevant literature. In the majority of the papers, 

parameter estimation procedures are discussed and some novelties are 

proposed to overcome typical issues of bad estimation. 

Annual extreme wind gusts measured at 143 weather stations in USA 

were analyzed in [202] and modeled through GU and IW distributions; 

in 139 out of 143 cases, the IW distribution was the most suitable 

model for EWS characterization.  

The authors of [203] tested several procedures for the estimation of 

GU and IW parameters on EWS data; also in this case, IW distribution 

proved to perform better than GU distribution in the majority of cases.  

                                                 
16

 GEV distributions have three different structures. GEV Type-I distribution is 

the so called Gumbel (GU) distribution; GEV Type-II distribution is the so called 

Frechet distribution; GEV Type-III distribution is linked to the Weibull distribution. 

The Type is determined by the sign of the shape parameter, as illustrated in sub-

Section 4.5.1. Since GU distribution is widely used in EWS applications, it will be 

treated as an individual distribution, although belonging to the GEV family. 
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A Bayesian estimation procedure of IW parameters was proposed in 

[204]; the GU distribution was selected as a comparative benchmark in 

Monte Carlo simulations on synthetic datasets. 

IW and GU distributions were also compared in [205] using 100 

maximum yearly speeds datasets; in 88 out of 100 cases, IW 

outperformed GU in terms of GOF. These results were coherent to 

those shown in [206]. 

Measurements collected at 5 Danish weather stations were used in 

[207] to compare GEV and GP distributions. Results showed that GEV 

distribution had a better GOF than GP distribution.   

Several modifications and generalizations of the GU distribution  were 

tested on synthetic and actual monthly peak wind speed data in [208]; 

among them, the ―parent‖ GEV distribution was also analyzed. The 

distribution that appeared to be the most flexible in the presented 

applications was indeed the GEV; a two-component extreme value 

distribution was also a suitable pick for EWS modeling.  

GEV and GP distributions were compared using EWS data taken at 

offshore locations in [209]. GP appeared to fit available data better 

than GEV in all of the locations. 

The authors of [210] proposed a distribution that mirrored the 

traditional Weibull distribution until an assigned threshold; after that 

threshold, the proposed distribution followed the GP distribution. The 

proposed model was compared to traditional Weibull distribution. 

 

4.3. A NEW INVERSE BURR DISTRIBUTION FOR EXTREME 

VALUES OF WIND SPEED  

The IB distribution has recently been used in some extreme values 

studies [211,212], proving its versatility in economics and as a stress-

strength model for reliability applications [213], but it has never been 

used for EWS.  

The proposal is to test the validity of the distribution for modelling 

EWS [189].  

Parameters of the IB distribution were estimated in relevant literature 

through the well-known MLE and ME procedures. A new parameter 

estimation procedure is proposed in this sub-Section: the QE 
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procedure, that simply consists of the algebraic solution of an equation 

in specific conditions, thus allowing a faster and easier evaluation.  

To provide fair comparisons, results of the three parameter estimation 

procedures will be compared in terms of both GOF tests on real EWS 

data, and also in terms of errors coming from the estimation based 

upon synthetic EWS samples from known distributions. 

Details about the proposed IB distribution for EWS characterization 

and on the corresponding parameter estimation procedures are reported 

in the following sub-Section 4.3.1; numerical applications based on 

real and synthetic data are in sub-Section 4.6. 

4.3.1. Analytic formulation 

The IB distribution is also known as ―Dagum‖ distribution in literature 

[211,212]; the analytic expressions of IB PDF and CDF for the generic 

random variable   are, respectively: 
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where   is the scale parameter, and     are the shape parameters, 

defined as positive numbers. The median value of the IB distribution 

is: 
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if the shape parameter    , then    ̅  , whatever the value of  . 

Indeed, also from Eq. (4.2), it is trivial to note that              
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 of the IB distribution is: 
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Quantile formulation in Eq. (4.4) is very simple to handle; hence, 

random samples can be easily generated from IB distribution through 

the well-known inversion method [214]. Obviously, Eq. (4.4) falls into 

Eq. (4.3) when       . Moreover, if     (and therefore    ̅  ), 

the following, simple relation between the generic   -quantile    

    
 

and the median    ̅   holds: 
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Note that the position     is not a strict assumption, since, from the 

experience made on real datasets,   is usually not far from this value in 

many EWS applications. 

It is useful to express also the mean value     and the variance    
  of 

the Inverse Burr distribution: 
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where        is the Beta function.  

The expression of the generic   
th

 order moment is: 
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4.3.2. Parameter estimation procedures 

Since the topic was already discussed in literature [211], only brief 

hints to the classical MLE and ME of IB distribution are shown here, 

for sake of conciseness.  

The MLE procedure consists in maximizing the likelihood of a given 

dataset   ,         
   

    - of    
    

 independent samples of the 

variable  . Since the Log-likelihood is usually an easier function to be 

handled, maximizing the likelihood is often achieved by maximizing 

the log-likelihood function. For an IB distribution, the Log-likelihood 

function              is: 
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the MLE of parameters       of IB distribution is therefore achieved 

by solving the following equation system:  
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The MLE procedure can sometimes yield convergence problems [211]. 

The ME procedure consists instead in solving a system of three Eqs. 

(4.9) for three different values of   ; it is common to select the lowest 

orders (first, second and third) to avoid numerical singularities. The 

equation system to be solved is: 
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However, the solution of the ME system (4.12) is rather cumbersome 

due to the special function Beta involved, and can be found only 

numerically. 

To avoid such problems, the proposed QE procedure consists in 

solving a system of three Eqs. (4.4) for three different values of   , 

e.g.,    
    

    
. The sample quantiles  ̅       ̅       ̅      are 

calculated from dataset   for each of the quantile levels, and the 

equation system to be solved therefore is: 
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A comparison between equation systems (4.11), (4.23), and (4.13) 

suggests that QE can be a simpler and more intuitive alternative 

procedure to the MLE and ME procedures, since no special functions 

are involved in the solution of the system. Also, if     , the solution 

of the QE procedure can be expressed in closed analytic form, which 

yields to a significant simplification. 
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4.4.  A NEW INVERSE BURR - INVERSE WEIBULL MIXTURE 

DISTRIBUTION FOR EXTREME VALUES OF WIND SPEED  

The proposal shown in this sub-Section is a finite M-IB-IW that 

combines the IB and the IW distributions in the mixture framework, in 

order to suit different scenarios [190].  

Mixture distributions are sometimes questionable, since they usually 

introduce severe difficulties in their parameter estimation [194,215]. 

To cope with this point of concern, an EM procedure that is 

particularly suitable for estimating parameters of mixture distributions 

is also proposed.  

The analytic formulation of the proposed M-IB-IW distribution for 

EWS characterization is reported in the following sub-Section 4.4.1, 

with hints on its classical MLE procedure; details on the proposed EM 

parameter estimation procedure are in sub-Section 4.4.2. 

4.4.1. Analytic formulation 

The M-IB-IW distribution proposed for EWS modeling in this Chapter 

is obtained through a weighted sum of IB and IW distributions. 

Obviously, in order to satisfy that the resulting function is still a 

probability distribution, the sum of both weights must be unitary.  

Assuming the same parameter formulation for IW and IB distributions 

depicted in sub-Sections 4.5.3 and 4.3.1, respectively, the PDF and 

CDF of the M-IB-IW distribution are expressed as follows, 

respectively: 
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where     are the scale and shape parameters of the IW distribution, 

respectively, and        is the weight parameter. The random 

variable   is defined only for positive values; the mean value 
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         of the M-IB-IW distribution is defined only if     and 

   , and it is: 
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The MLE of mixture distributions is not easily formulated and can 

suffer from convergence problems [194,215]. Indeed, the main 

peculiarity is that the logarithmic transformation of the mixture 

likelihood function does not simplify the problem of finding the 

solutions of the maximization problem, as the weighted sum of two 

probability functions cannot be separated in distinct terms. The 

approach followed to obtain numerical solutions of the M-IB-IW 

problem is the maximization of the likelihood function 

                        , given the dataset 

  ,         
   

         - of    
         

 independent samples of 

the variable  . Estimations of parameters are found in their 

corresponding domains by maximizing the likelihood function, that 

obviously is: 
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(4.17) 

 

The solution of the M-IB-IW MLE can be found numerically, e.g., in 

MATLAB environment; however, it sometimes yields convergence 

problems. Indeed, the accuracy of the results is strongly affected by the 

choice of the initial values of variables provided to the maximization 

algorithm; in fact, if the initials points were arbitrarily assigned, the M-

IB-IW MLE procedure could lead to misleading results, or could not 

converge. In order to avoid the above problems, the MLEs of the two 

constituent distributions were necessary in order to provide suitable 

initial values of the IB and IW parameters; the weight    is initially 

set to 0.5. However, it is worth noting that performing initial MLEs for 

constituent distributions is not a trivial task for mixtures of complex 
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distributions, or for mixtures of more than two constituent 

distributions. Therefore, further solutions need to be developed to 

avoid these problems. 

4.4.2. Parameter estimation procedures 

A more elaborate technique that does not fail to find solutions of the 

likelihood maximization is desirable when a mixture distribution is 

considered, due to the aforementioned problems of the classical MLE 

procedure. The EM procedure [215] was considered for this task, as its 

formulation avoids convergence problems in case of mixture 

distributions, and it also provides results that were, on average, slightly 

more accurate in numerical experiments. 

The aim of the EM procedure is still to maximize the likelihood 

function                                       , where 

                 is the vector of M-IB-IW parameters that is 

conveniently introduced to lighten the notation. The EM is based on 

the hypothesis of additional, hidden parameters used to simplify the 

likelihood function. 

Let‘s assume that a set of unobservable (and, therefore, unobserved) 

data   ,         
   

         - exists, and let‘s assume that the 

unobserved data is able to provide some hints about which component 

distribution (the IB or the IW) generated each data point of the dataset 

  (i.e.,      or      if the value    was drawn from the IB or the 

IW distribution, respectively,   ). Obviously, given the set of observed 

(incomplete) data  , the complete data is        .  

The log-likelihood function               of the incomplete data   

modeled through a M-IB-IW distribution is the natural logarithm of 

Eq. (4.17). If one could know the data  , the joint probability theorem 

would assure that the log-likelihood               of the complete 

data is: 
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Obviously, the unobservable data   is not available, and therefore Eq. 

(4.18) cannot be directly computed. However, given an initial point 

estimate  ̂  of  , both corresponding terms in Eq. (4.20) still can be 

found: 
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If the weights in Eq. (4.19) are considered as prior probabilities for IB 

and IW distributions, the Bayes‘ formula can be applied to find the 

posterior probability  ( |   ̂ ) of the unobservable data  , given the 

observed data   and the initial point estimate  ̂ : 
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It is trivial to note that: 
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The EM algorithm aims to maximize the expected value   ( | ̂ ) of 

the log-likelihood               of the complete data in Eq. (4.18), 

given the observed data   and the initial point estimate  ̂ : 
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The second factor of the function to be integrated in Eq. (4.26) 

corresponds to Eq. (4.23). With application to the M-IB-IW 

distribution, Eq. (4.26) is transformed in the following form through 

some manipulations shown in the Appendix of [190]: 
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The only unknown parameter in the first two sums of Eq. (4.27) is the 

weight   ; the unknown parameters in the remaining two sums of Eq. 

(4.27) are          . Thus, it is possible to decouple the maximization 

of   ( | ̂ ) in two steps, i.e., the maximization of the first two sums 

(expectation step) and the maximization of the remaining two sums 

(maximization step).  

An analytic solution of the expectation step can be provided by setting 

the partial derivative in    of the first two sums in Eq. (4.27) to zero; 

it is: 
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while the solution of the maximization step is found numerically. 
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The EM algorithm therefore is the following. Starting from an initial 

point estimate  ̂ , solve the expectation step applying Eq. (4.28) and 

the maximization step numerically in order to find  ̂. Then, a test of 

convergence is run. Given an arbitrary threshold  ̅    , the EM 

algorithm stops if ‖ ̂   ̂ ‖   ̅    ; otherwise, the initial point 

estimate  ̂  is refreshed by setting it equal to the parameters estimated 

in the expectation and maximization steps ( ̂   ̂). If the test of 

convergence is not satisfied, the whole process is repeated until the 

condition on the threshold is satisfied. Obviously, threshold selection 

derives from a compromise between accuracy and computational effort 

of the EM procedure. Considering that both vectors  ̂ and  ̂  are 

made of six components, after few runs of the algorithm on test cases, 

a reasonable threshold  ̅          is selected for all of the analyses 

reported in Chapter. 

 

4.5. NUMERICAL APPLICATIONS 

Numerical applications based on real and synthetic EWS data are 

shown in this sub-Section to test the usefulness of the proposed 

models. In particular, benchmark distributions used to compare the 

proposed models to acknowledged models are shown in sub-Section 

4.5.1. The validity of the IB distribution is assessed in sub-Section 

4.5.2, while the validity of the M-IB-IW distribution is assessed in sub-

Section 4.5.3. 

4.5.1. Benchmark distributions for modeling EWS 

An accurate comparison with the acknowledged distributions that are 

already available in relevant literature EWS modelling is obviously 

mandatory in order to catch the usefulness of the new proposals. The 

GEV, the GU and the IW distributions are briefly recalled in this sub-

Section, since they were used as benchmark models to compare the 

performances of the IB and the M-IB-IW distributions in terms of 

GOF. 

4.5.1.1. The Generalized Extreme Value distribution 

The analytic expressions of GEV PDF and CDF for the generic 

random variable   are, respectively: 
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where   is a positive scale parameter,   is a real location parameter and 

  is a real shape parameter that determines the distribution Type (i.e., 

Type I for    , Type II for     and Type III for    ). Note that 

Type I distribution is GU distribution; it is treated in details in sub-

Section 4.5.1.2 since it is a widely-used distribution for EWS. 

Therefore, only Type II and III GEV distributions are treated in the 

following. In such conditions, the random variable   is defined in the 

intervals: 
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The mean value      of the Type II or Type III GEV distribution is 

defined only for    , and it is: 
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where      is the Gamma function. The variance     
  of the Type II or 

Type III GEV distribution is defined only for      , and it is: 
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4.5.1.2. The Gumbel distribution 

The analytic expressions of GU PDF and CDF for the generic random 

variable   are, respectively: 
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where     are the location parameter, defined as a real number, and 

the scale parameter, defined as a positive number, respectively. The 

median value of GU distribution is: 
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The generic   -quantile    

    
 of the GU distribution is: 
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It is useful to express also the mean value     and the variance    
  of 

the GU distribution, respectively, as: 
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where  ̅          is Euler-Mascheroni constant.  

4.5.1.3. The Inverse Weibull distribution 

The analytic expressions of IW PDF and CDF for the generic random 

variable   are, respectively: 
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      , (4.44) 

 

where     are the scale parameter and the shape parameter, 

respectively, both defined as positive numbers. The median value of 

IW distribution is: 
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The generic   -quantile    

    
 of the IW distribution is: 
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It is useful to express also the mean value     and the variance    
  of 

the IW distribution: 
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where      denotes the Gamma function. Note that the mean value is 

defined only if    , and the variance is defined only if    . The 

expression of the generic   
th

 order moment is: 
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 . (4.49) 

 

4.5.2. Inverse Burr distribution 

The IB distribution was tested in order to prove its usefulness for EWS 

characterization. Datasets of actual measurements of wind speed 

collected in different sites were selected and modeled through the GU 

and IW distributions, and through the proposed IB distribution, in 

order to justify the proposal of the latter for EWS characterization. For 
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each dataset, Kolmogorov-Smirnov (KS) test [216] and Chi-square 

(CS) test [217] were performed in order to compare the models; the 

parameters of each distribution were estimated through the MLE, ME 

and QE procedures shown in sub-Section 4.3.2. In particular, the IB 

QE was performed considering 0.1-, 0.5- and 0.9-quantiles of each 

dataset. 

A further comparison among the results obtained through the different 

estimation procedures was performed also on synthetic samples of 

EWS, drawn from known IB distributions through the inversion 

method [214]. This helps to test the accuracy of the generic estimated 

parameter, comparing it to a known value; it is possible to directly 

compare the results obtained through the different estimation 

procedures for IB distributions. 

Information on the characteristics of measured EWS data are provided 

in sub-Section 4.5.2.1; results of the fitting GU, IW, and IB on 

measured EWS data are shown in sub-Section 4.5.2.2. Eventually, IB 

parameter estimation procedures applied to synthetic EWS samples are 

compared in sub-Section 4.5.3.3.   

4.5.2.1. Data characteristics 

Different datasets were collected from several locations in different 

years, in order to validate the proposed IB distribution in many 

different conditions.  

The first and second datasets (D1 and D2) were drawn from a set of 

1578240 observations of peak values of wind speed, collected each 

minute from 1 January 2012 to 31 December 2014 by NREL National 

Wind Technology Center M2 Tower; Boulder, Colorado, USA at 

latitude 39°54′ north and longitude 105°14′ west [218]. Two smaller 

datasets, D1 and D2 respectively, were then extracted in a PMA 

framework from this set of measurements, in order to be used for the 

EWS statistical characterization. In particular, the 36 maximum values 

registered in each of the 36 months of observation were selected to 

build dataset D1, while the 52 maximum values registered in each of 

the 52 weeks of year 2014 were selected to build dataset D2. 

The third and fourth datasets (D3 and D4) were drawn from a set of 

1578240 observations of peak values of wind speed, collected each 

minute from 1 August 2010 to 31 July 2013 in the framework of 
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NREL Solar Resource & Meteorological Assessment Project in 

Milford, Utah, USA (latitude 38°41′ north and longitude 113°03′ west) 

[219]. Then, the 36 maximum values registered in each of the 36 

months of observation were selected to build dataset D3, while the 52 

maximum values registered in each of the 52 weeks of year 2010 were 

selected in a PMA framework to build dataset D4. 

The fifth and sixth datasets (D5 and D6) were drawn from a set of 

105120 observations of wind speed, averaged each 10 minutes from 1 

January 2001 to 31 December 2002. Measurements were publically 

provided by Gestore dei Servizi Energetici (the Italian state-owned 

company that promotes and supports renewable energies) and were 

collected in Forenza, Italy (latitude 40°52′ north and longitude 15°51′ 

east) [180]. Then, the 24 maximum values registered in each of the 24 

months of observation were selected to build dataset D5, while the 52 

maximum values registered in each of the 52 weeks of year 2001 were 

selected to build dataset D6. 

The seventh dataset (D7) was drawn from a set of 8760 observations of 

wind speed, averaged each hour from 1 January 2006 to 31 December 

2006. Measurements were publically provided by the Sustainable 

Energy Authority of Ireland and were collected in Sligo, Ireland 

(latitude 54°16′ north and longitude 8°28′ west [220]. The 52 

maximum values registered in each of the 52 weeks of year 2006 were 

selected to build dataset D7. 

All of the seven datasets were initially filtered by first eliminating 

missing and bad data. Then, the Tukey‘s test [221] was performed to 

individuate possible outliers and suspicious values: values external to 

the following interval were considered as probable outliers, and then 

required for further investigation: 

 

0
 ̅            ( ̅        ̅      ) 

 ̅            ( ̅        ̅      )
1 . (4.50) 

 

In Eq. (4.50),  ̅       and  ̅       are the 0.25-quantile and the 0.75-

quantile of each dataset, respectively; the coefficient       was set as 

          to determine the outliers, and then as         to 

determine suspicious values. However, for the seven datasets D1-D7 
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considered in our applications, no values were found outside the 

interval (4.50) with coefficient        ; therefore the initial filtering 

of data appeared to eliminate bad values that would have led to 

incorrect estimations. 

4.5.2.2. Assessment of Gumbel, Inverse Weibull, and Inverse Burr 

distributions on measured EWS data 

GU, IW, and IB distributions were used to fit the datasets D1-D7. 

Parameters of the corresponding distributions estimated through the 

MLE, ME and QE procedures are shown in Table 4.1. Examples of the 

corresponding CDFs are shown in Figs. 4.1-4.3 only for one datasets, 

to avoid unnecessary redundancy: the estimated CDFs for dataset D2 

are therefore shown in Figs. 4.1, 4.2, and 4.3. 

 

Table 4.1 - Values of Gumbel, Inverse Weibull, and Inverse Burr parameters 

estimated through MLE, ME, and QE procedures. 

Dataset and 

estimation 

procedure 

Estimated distribution parameters 

Gumbel Inverse Weibull Inverse Burr 

              

D1 - MLE 27.901 5.787 0.037 4.983 24.208 5.937 2.745 

D1 - ME 28.076 5.412 0.036 6.709 34.223 10.712 0.526 

D1 - QE 27.153 6.970 0.037 4.307 8.380 0.642 33.851 

D2 - MLE 22.620 5.933 0.046 3.651 23.824 6.106 1.209 

D2 - ME 22.692 5.652 0.044 5.532 28.519 8.212 0.564 

D2 - QE 22.835 5.462 0.044 4.596 4.577 5.485 15.811 

D3 - MLE 18.896 2.597 0.053 7.167 20.936 15.032 0.701 

D3 - ME 18.967 2.261 0.053 9.909 21.156 15.030 0.646 

D3 - QE 18.979 2.200 0.053 9.062 22.192 22.222 0.323 

D4 - MLE 15.574 4.000 0.067 3.403 19.903 11.879 0.422 

D4 - ME 15.760 3.122 0.064 6.546 20.028 11.753 0.415 

D4 - QE 15.953 3.132 0.063 5.516 20.647 17.215 0.257 

D5 - MLE 23.517 4.305 0.043 5.386 24.586 8.702 1.204 

D5 - ME 23.561 4.048 0.042 7.383 26.513 10.209 0.780 

D5 - QE 24.096 3.815 0.042 6.744 26.231 8.702 0.782 

D6 - MLE 17.507 5.621 0.061 2.886 19.812 5.382 0.954 

D6 - ME 17.414 5.311 0.057 4.837 24.244 7.733 0.438 

D6 - QE 18.115 5.787 0.056 3.532 16.468 4.489 1.663 

D7 - MLE 15.289 3.695 0.068 4.044 17.987 8.023 0.738 

D7 - ME 15.397 3.320 0.065 6.142 19.163 9.665 0.521 

D7 - QE 15.439 3.180 0.065 5.276 19.502 8.121 0.550 
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Figure 4.1 – Gumbel fitting of dataset D2 through (a) MLE procedure; (b) ME 

procedure; (c) QE procedure 

 

 
Figure 4.2 - Inverse Weibull fitting of dataset D2 through (a) MLE procedure; (b) 

ME procedure; (c) QE procedure. 
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Figure 4.3 - Inverse Burr fitting of dataset D2 through (a) MLE procedure; (b) ME 

procedure; (c) QE procedure. 
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distribution shows no appreciable differences on the basis of the 
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same also in IW fitting, since parameter   shows no appreciable 
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different procedures. From a graphical comparison between Figs. 4.1-

4.3, IB distributions appear in some cases to better fit actual samples of 

EWS than the corresponding GU and IW distributions. However, 
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quality of estimation and GOF. 
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the size of the sample dataset to be fitted. Thus, the critical value for 

datasets D1 and D3 is 0.2212; the critical value for datasets D2, D4, 

D6 and D7 is 0.1848, and the critical value for dataset D5 is 0.2693. 

Results of the KS test statistics (    ) and results of CS test statistics 

(    ) are shown in Table 4.2. 

 

Table 4.2 - Kolmogorov-Smirnov test statistics and Chi-square test statistics for 

Gumbel, Inverse Weibull, and Inverse Burr fitting distributions. Bold italic values 

denote failed tests, while underlined values correspond to the best-fitting 

distributions for each dataset. 

Dataset and 

estimation 

procedure 

Test statistics for estimated distributions 

Gumbel Inverse Weibull Inverse Burr 

                              

D1 - MLE 0.153 2.745 0.174 3.543 0.152 3.016 

D1 - ME 0.144 3.034 0.185 7.810 0.118 6.713 

D1 - QE 0.148 1.852 0.170 2.731 0.125 0.121 

D2 - MLE 0.090 2.783 0.131 1.136 0.071 2.699 

D2 - ME 0.078 2.240 0.080 3.398 0.103 5.219 

D2 - QE 0.065 1.977 0.070 1.920 0.067 2.311 

D3 - MLE 0.149 4.495 0.171 2.719 0.086 1.130 

D3 - ME 0.155 3.365 0.175 2.472 0.083 1.216 

D3 - QE 0.156 3.624 0.168 2.976 0.086 0.786 

D4 - MLE 0.151 5.595 0.181 14.908 0.079 1.183 

D4 - ME 0.161 2.862 0.201 6.367 0.076 1.255 

D4 - QE 0.140 3.752 0.159 3.988 0.071 2.243 

D5 - MLE 0.112 0.202 0.147 0.520 0.080 0.339 

D5 - ME 0.108 0.150 0.132 1.642 0.103 0.710 

D5 - QE 0.096 0.562 0.113 0.357 0.082 0.358 

D6 - MLE 0.074 4.002 0.137 6.233 0.068 4.043 

D6 - ME 0.066 4.404 0.134 2.309 0.117 4.957 

D6 - QE 0.117 4.782 0.091 1.649 0.086 4.111 

D7 - MLE 0.088 6.463 0.127 8.292 0.059 2.862 

D7 - ME 0.098 5.920 0.144 4.547 0.055 1.846 

D7 - QE 0.102 6.133 0.119 5.380 0.090 5.755 

 

Bold values in Table 4.2 correspond to unsuccessful tests; only IW 

distribution failed to pass one of the GOF tests in three cases. In 

particular, the null hypothesis of the CS test was rejected twice (once 

for the MLE of D4 and once for the MLE of D7), while the null 

hypothesis of the KS test was rejected only for the ME of D4. In all 

other cases, the null hypothesis was accepted, since the small amount 
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of samples contained in each dataset. However, further indications 

about the goodness of fitting can be drawn from the values of test 

statistics.      is a negatively-oriented test statistic; values closer to 

zero are likely to indicate a better level of fitting. Underlined values in 

Table 4.2 correspond to the lowest values of      for each dataset. In 

five of seven considered dataset, the proposed IB model provided the 

lowest value of     ; GU distribution provided instead the lowest 

values of      for D2 and D6 only. These results suggest that IB 

model and GU models appear to be more indicated than IW model for 

all the considered datasets, with a clear better behavior of IB model.  

CS test is used here to confirm results of KS test in terms of 

acceptance or refusal of models. Since CS test is conveniently used for 

categorical variables [217], the number of degrees of freedom was 

obtained numerically in MATLAB environment. 

4.5.2.3. Assessment of Inverse Burr distribution on synthetic EWS 

data 

Samples of EWS were drawn from IB distributions with known 

parameters through the inversion method, and the corresponding 

parameters were then estimated through the MLE, ME and QE 

procedures to test their evaluation performances. The goodness of the 

generic parameter estimated through the different procedures was 

quantified in terms of MAE and MAPE indices, averaging the errors 

obtained with respect to the actual value of the parameter at each 

iteration. 

Median value of EWS was set to  ̅      for each cycle of variation 

of parameters    . In particular,   was assumed to be equal to five 

values (               ), and for each cycle of variation of   the 

parameter   was changed 50 times, keeping the ratio between 

theoretical standard deviation and theoretical mean under 20%. Tables 

4.3 and 4.4 show the results of accuracy of estimation of the generic 

parameter in terms of MAE and MAPE respectively. 

 

 

 

 



132 

 

Table 4.3 - Mean Absolute Errors in the Inverse Burr parameter estimation 

procedures. 

  

Mean Absolute Errors in the parameter estimation procedures 

MLE ME QE 

                  

1 1.568 0.095 0.069 1.624 0.107 0.069 2.463 0.104 0.137 

1.5 1.387 0.137 0.125 1.394 0.146 0.129 2.046 0.201 0.176 

2 1.284 0.112 0.162 1.328 0.112 0.166 1.756 0.281 0.211 

2.5 1.338 0.145 0.261 1.269 0.163 0.269 2.099 0.483 0.245 

3 1.500 0.146 0.355 1.575 0.139 0.349 2.107 0.789 0.354 

 

Table 4.4 - Mean Absolute percentage Errors in the Inverse Burr parameter 

estimation procedures. 

  

Mean Absolute Percentage Errors in the parameter estimation procedures 

MLE ME QE 

                  

1 2.746 0.244 6.835 3.110 0.282 6.885 4.638 0.456 13.732 

1.5 2.770 0.362 8.332 2.795 0.378 8.636 4.085 0.466 11.738 

2 2.186 0.282 8.096 2.212 0.275 8.297 4.060 0.719 10.546 

2.5 2.296 0.414 10.436 2.217 0.429 10.759 3.586 0.900 9.813 

3 2.526 0.420 11.840 2.634 0.391 11.656 3.871 0.969 11.796 

 

From the analysis of Tables 4.3 and 4.4, classical estimation 

procedures (i.e., MLE and ME) appear to perform in similar way, since 

the corresponding values of indices are very similar for each of the 

three IB parameters. In particular, percentage indices allow a direct 

comparison between estimation procedures for different values of 

parameters. As a significant example, values of the MAPE for  

  estimated through MLE and ME appear to increase as the value of 

the parameter   increases, and therefore the estimation appear to be 

less reliable for greater values of  . However, values of MAPE for   

estimated through QE do not show the same behavior; QE indices are 

slightly greater on average than the corresponding MLE and ME 

indices. Nevertheless, QE procedure is way much simpler to be solved, 

and the differences in terms of parameter estimation errors are not very 

remarkable, especially when parameter   is considered known; this 

justifies its application in some non-unusual situations. On average, 
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parameter   is estimated with the lowest values of percentage error 

with all the considered procedures. 

4.5.3. Mixture Inverse Burr – Inverse Weibull distribution 

The M-IB-IW distribution was tested in order to prove its usefulness 

for EWS characterization. A comparison with the GU, IW, IB, and 

GEV distributions is performed in terms of ―classical‖ CS GOF test, 

and also in terms of the Determination Coefficient (DC)    
  and 

Adjusted Determination Coefficient (ADC)     
  [222], using real 

EWS data
17

. The ADC is specifically selected in order to assess if the 

addition of an increased number of parameters in the mixture 

distribution is justified by an according overall increased GOF, 

assigning a sort of penalization to distributions that have a high 

number of parameters. 

The parameters of GU, IW, IB, and GEV distributions are estimated 

through the MLE procedure on several actual public datasets described 

in sub-Section 4.5.3.1; the parameters of the proposed M-IB-IW 

distribution are estimated through both MLE and EM procedures. 

The results of the comparison with benchmark models are shown in 

sub-Section 4.5.3.2. 

Eventually, an error analysis is performed in sub-Section 4.5.3.3 on 

synthetic EWS samples drawn from credible M-IB-IW distributions 

with known parameters. The EM procedure was applied to these 

samples, and the estimated parameters are compared to the actual, 

known values. The MAPEs are displayed to provide a quantitative 

evaluation of the quality the proposed procedure. 

A sensitivity analysis was also run to individuate the impact of the 

variation of each parameter of the M-IB-IW distribution on the 

resulting GOF. In particular, keeping the values of five parameters 

constant, the other parameter is varied in the range of the 

corresponding estimated confidence interval, and the CS test statistics 

    , DC, and ADC are provided to individuate the most-influencing 

parameters in terms of GOF. Results are not shown in this sub-Section, 

only for sake of conciseness. 

                                                 
17

 Definitions of DC and ADC are in the Appendix. 
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4.5.3.1. Data characteristics 

Different EWS are considered in several regions and for different 

intervals of time, in order to test the proposed M-IB-IW distribution 

and its EM estimation procedure in different conditions. Values of 

wind speed are initially collected and post-processed, in order to avoid 

missing and bad data. The extreme events in the PMA framework are 

stored in order to form eight EWS datasets that were to be fitted 

through the GEV, GU, IW, IB, and M-IB-IW distributions. Extreme 

values should accurately be selected in order to exclude outliers; as in 

the previous analyses of sub-Section 4.5.2.1, the Tukey‘s test was run 

to identify values that could be outliers, in order to singularly 

investigate them. However, in all of the eight datasets, no suspect 

outliers were identified, and therefore the EWS datasets were directly 

build. 

Two EWS datasets (D3 and D7) are the same as the ones described in 

sub-Section 4.5.2.1, for comparative purposes. 

The third and fourth EWS datasets (D8 and D9) consisted respectively 

of the 36 monthly maximum values and of the 156 weekly maximum 

values of wind speed registered in Boulder, Colorado, USA (latitude 

39°54‘ north, longitude 105°14‘ west) by the NREL National Wind 

Technology Center M2 Tower [218], from 1 January 2012 to 31 

December 2014. 

The fifth EWS dataset (D10) consisted of the 156 weekly maximum 

values of wind speed collected in Milford, Utah, USA (latitude 38°41‘ 

north, longitude 113°03‘ west) by the NREL Solar Resource & 

Meteorological Assessment from 1 August 2010 to 31 July 2013 [219]. 

The sixth and seventh EWS datasets (D11 and D12, respectively) 

consisted of the 52 weekly maximum values of wind speed provided in 

the context of the Gefcom2014 [12] for the site no. 1 and for the site 

no. 10, respectively, from 1 January 2012 to 31 December 2012. 

The eighth EWS dataset (D13) consisted of the 52 weekly maximum 

values of wind speed collected in Forenza, Italy (latitude 40°52‘ north, 

longitude 15°51‘ east) by the Gestore dei Servizi Energetici (the Italian 

state-owned company that promotes and supports renewable energies) 

from 1 January 2002 to 31 December 2002 [180]. 
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4.5.3.2. Assessment of Generalized Extreme Value, Gumbel, Inverse 

Weibull, Inverse Burr, and mixture Inverse Burr - Inverse 

Weibull distributions on measured EWS data 

Parameters of GEV, GU, IB, IW and M-IB-IW distributions estimated 

through MLE are presented in Table 4.5 for each dataset described in 

the previous sub-Section. M-IB-IW distributions are also fitted through 

the proposed EM procedure; the initial points provided to both the M-

IB-IW MLE and M-IB-IW EM procedures were calculated from initial 

MLEs of IB and IW constituent distributions, to provide a fair 

comparison of the results. 

  

Table 4.5 – Values of Generalized Extreme Value, Gumbel, Inverse Weibull, Inverse 

Burr, and mixture Inverse Burr – Inverse Weibull parameters.  

Distribution 

parameter 

Dataset 

D3 D7 D8 D9 D10 D11 D12 D13 

GEV 

  2.65 3.83 3.97 4.57 3.45 2.01 1.99 4.94 

  19.11 15.59 23.03 18.53 15.27 11.07 11.15 16.06 

  -0.15 -0.15 0.05 -0.04 -0.20 -0.16 -0.17 -0.23 

GU 
  18.90 15.29 23.14 18.44 14.89 10.90 10.97 15.47 

  2.60 3.70 4.06 4.52 3.44 1.97 1.91 4.56 

IB 

  20.94 17.99 16.21 18.34 18.68 11.85 12.00 23.29 

  15.03 8.02 6.29 5.92 12.04 10.04 9.90 11.58 

  0.70 0.74 9.27 1.51 0.45 0.95 0.93 0.26 

IW 
  0.05 0.07 0.04 0.06 0.07 0.09 0.09 0.07 

  7.17 4.04 5.93 4.09 3.91 5.26 5.73 3.39 

M-IB-IW 

MLE 

  19.77 17.11 18.17 16.28 18.27 13.02 11.64 22.62 

  23.27 8.35 8.20 5.64 11.61 11.04 10.51 14.16 

  2.92 1.36 22.63 2.72 0.57 0.62 1.66 0.79 

  0.06 0.09 0.05 0.08 0.10 0.09 0.11 0.08 

  7.25 8.33 9.10 27.9 5.28 14.26 11.38 4.59 

   0.50 0.82 0.51 0.96 0.94 0.76 0.81 0.45 

M-IB-IW 

EM 

  14.70 14.18 19.77 18.52 19.45 12.38 11.58 22.72 

  20.46 7.59 8.16 6.37 13.54 10.07 10.52 14.28 

  0.98 4.96 11.19 2.07 0.36 0.70 1.81 0.75 

  0.06 0.09 0.05 0.07 0.07 0.09 0.11 0.08 

  7.34 6.55 8.66 5.32 10.55 8.91 10.75 4.61 

   0.50 0.73 0.50 0.75 0.88 0.61 0.78 0.45 
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Examples of empirical CDFs and fitted CDFs are shown in Figs. 4.4-

4.6 only for dataset D13, for sake of conciseness. 

The visual comparison for dataset D13 suggests that the proposed M-

IB-IW distribution fits particularly well the data D13, both through the 

MLE and the EM procedures. Indeed, the estimated parameters with 

both procedures are very similar, as shown in the last column of Table 

4.5. In general, M-IB-IW parameters estimated through the MLE and 

EM procedures are similar, but differences are not always 

unintelligible (e.g., the shape parameter   for dataset D8 estimated 

through the MLE procedure is twice the one estimated through the EM 

procedure); this however is not always easy to be identified 

graphically. Thus, a quantitative tool is necessary to perform an 

objective comparison in order to select the best-fitting CDF; also the 

MLE needs for a further investigation on the corresponding confidence 

intervals, that can provide hints on the trust put in each of the fitting 

parameters. 

 
Figure 4.4 – Generalized Extreme Value (a) and Gumbel (b) fitting of dataset D13 

through MLE procedure. 

 
Figure 4.5 - Inverse Burr (a) and Inverse Weibull (b) fitting of dataset D13 through 

MLE procedure. 

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Wind Speed [m/s]

(a)

C
D

F

 

 

 

Empirical CDF

GEV CDF

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Wind Speed [m/s]

(b)

C
D

F

 

 

 

Empirical CDF

GU CDF

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Wind Speed [m/s]

(a)

C
D

F

 

 

 

Empirical CDF

IB CDF

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Wind Speed [m/s]

(b)

C
D

F

 

 

 

Empirical CDF

IW CDF



137 

 

 
Figure 4.6 – Mixture Inverse Burr – Inverse Weibull fitting of dataset D13 through 

(a) MLE procedure, and (b) EM procedure. 

 

The results of the CS test at 5% of significance level, the 

corresponding values of CS test statistics     , the DC and ADC are 

shown in Tables 4.6-4.9 for datasets D3, D7-D13, allowing for an 

immediate comparison between fitting distributions. 

 

Table 4.6 - Chi-square test statistics and values of the Determination Coefficients 

and Adjusted Determination Coefficients for datasets D3 and D7. Bold italic values 

denote failed tests, while underlined values correspond to the best-fitting 

distributions for each dataset. 

Distribution 

Dataset D3 Dataset D7 

     

Determination 

coefficients      

Determination 

coefficients 

   
      

     
      

  

GEV 9.1152 0.9728 0.9712 10.0804 0.9903 0.9899 

GU 11.0339 0.9579 0.9567 8.6918 0.9838 0.9835 

IB 6.1941 0.9861 0.9853 8.7313 0.9926 0.9923 

IW 14.6073 0.9376 0.9358 13.5971 0.9558 0.9549 

M-IB-IW 

MLE 
4.7830 0.9953 0.9945 7.1561 0.9943 0.9937 

M-IB-IW 

EM 
4.2512 0.9945 0.9936 7.0241 0.9952 0.9947 
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Table 4.7 – Chi-square test statistics and values of the Determination Coefficients 

and Adjusted Determination Coefficients for datasets D8 and D9. Bold italic values 

denote failed tests, while underlined values correspond to the best-fitting 

distributions for each dataset. 

Distribution 

Dataset D8 Dataset D9 

     

Determination 

coefficients      

Determination 

coefficients 

   
      

     
      

  

GEV 2.4495 0.9869 0.9861 6.7129 0.9974 0.9974 

GU 2.4310 0.9858 0.9854 7.0262 0.9977 0.9977 

IB 2.5962 0.9864 0.9856 9.1318 0.9966 0.9966 

IW 2.3177 0.9862 0.9858 17.6829 0.9871 0.9870 

M-IB-IW 

MLE 
2.0862 0.9886 0.9867 10.1191 0.9962 0.9961 

M-IB-IW 

EM 
2.1130 0.9890 0.9872 9.4319 0.9968 0.9967 

 

Table 4.8 - Chi-square test statistics and values of the Determination Coefficients 

and Adjusted Determination Coefficients for datasets D10 and D11. Bold italic 

values denote failed tests, while underlined values correspond to the best-fitting 

distributions for each dataset. 

Distribution 

Dataset D10 Dataset D11 

     

Determination 

coefficients      

Determination 

coefficients 

   
      

     
      

  

GEV 11.6086 0.9922 0.9921 6.9502 0.9894 0.9890 

GU 28.4556 0.9710 0.9708 6.3639 0.9850 0.9847 

IB 8.8935 0.9957 0.9956 5.1538 0.9936 0.9933 

IW 59.3152 0.9213 0.9208 10.3665 0.9594 0.9586 

M-IB-IW 

MLE 
7.6053 0.9956 0.9955 4.8772 0.9942 0.9936 

M-IB-IW 

EM 
8.7223 0.9968 0.9967 4.9595 0.9945 0.9939 
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Table 4.9 - Chi-square test statistics and values of the Determination Coefficients 

and Adjusted Determination Coefficients for datasets D12 and D13. Bold italic 

values denote failed tests, while underlined values correspond to the best-fitting 

distributions for each dataset. 

Distribution 

Dataset D12 Dataset D13 

     

Determination 

coefficients      

Determination 

coefficients 

   
      

     
      

  

GEV 3.0901 0.9936 0.9933 13.4349 0.9705 0.9693 

GU 3.3251 0.9869 0.9866 11.8078 0.9691 0.9685 

IB 2.1568 0.9937 0.9934 17.7939 0.9639 0.9624 

IW 5.8916 0.9698 0.9692 10.1175 0.9610 0.9602 

M-IB-IW 

MLE 
1.1509 0.9958 0.9953 5.6044 0.9933 0.9926 

M-IB-IW 

EM 
1.2032 0.9958 0.9953 5.6021 0.9933 0.9926 

 

The CS test is performed in MATLAB environment. The IW 

distribution failed to pass the CS test in 4 on 8 cases; the IB and the 

GU failed to pass the CS test in only one case; the GEV and the M-IB-

IW always passed the test. We recall here that the rejection or 

acceptance of the null hypothesis depends on the number of the 

parameters of the fitting distributions; distributions with a large 

number of parameters are ―penalized‖ with respect to distributions 

with fewer parameters.  

GOF can be evaluated also in terms of DC and ADC. The highest 

value of both DC and ADC is reached through the proposed M-IB-IW 

distribution in 7 on 8 cases. However, the same applies also for the 

ADC, thus confirming that the augmented number of parameters of the 

M-IB-IW distribution is not a disadvantage of the model. In 5 on 8 

cases, the M-IB-IW EM performed better than the M-IB-IW MLE; in 2 

on 8 cases, they showed the same value of DC (and ADC); in only one 

case, the M-IB-IW MLE performed better than the M-IB-IW EM 

distribution in terms of DC (and ADC). 

As a further example, in Table 4.10 one can find the results of the M-

IB-IW MLE and M-IB-IW EM fitting for dataset D8 when the same, 

arbitrary initial point (i.e., not provided through initial MLEs of 

constituent IB and IW distributions) was chosen in both procedures. 

From the comparison between the results shown in Tables 4.7 and 
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4.10, it is clear that the choice of initial point really matters in the 

MLE; indeed, the performance drastically drops when an arbitrary 

point is selected. Note that the MLE procedure in these conditions 

exceeded the maximum number of iterations (i.e., 10
6
), thus not 

providing any assurance on the convergence of the maximum 

likelihood maximization. This instead does not apply for the EM 

procedure, since convergence was reached in only 30 expectation and 

maximization steps; also, the differences with the results obtained 

assigning the IB and IW MLEs as initial points (ref. Table 4.7) are 

almost unintelligible. 

 

Table 4.10 – Chi-square test statistics and values of the Determination Coefficients 

and Adjusted Determination Coefficients for datasets D8 when random initial points 

are chosen. Bold italic values denote failed tests, while underlined values correspond 

to the best-fitting distributions for each dataset. 

Distribution 

Dataset D8 

     

Determination 

coefficients 

   
      

  

M-IB-IW MLE 4.1508 0.5207 0.4408 

M-IB-IW EM 2.0441 0.9900 0.9883 

 

4.5.3.3. Assessment of mixture Inverse Burr - Inverse Weibull 

distribution on synthetic EWS data 

The error analysis was performed on synthetic EWS datasets, each 

constituted by 2000 samples drawn from several M-IB-IW 

distributions with known parameters through the inversion method 

[214]. Different scenarios were developed by setting the theoretical 

medians of the constituting IB and IW distributions to 38 m
2
/s and 20 

m
2
/s, respectively, and by setting the weight coefficient    to 0.1, 0.2, 

…, 0.9; each scenario was analysed for five values of parameter   (in 

particular,                ) and twenty independent different 

values of both parameters   and  , selected in credible ranges. A total 

number of 900 scenarios was considered in the whole error analysis. 

The ratios between theoretical standard deviations and theoretical 

means of the resulting distributions was kept under 20%. The proposed 

EM procedure was performed on these different-scenarios synthetic 

EWS datasets. The estimated value of each parameter in each scenario 
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was compared to the actual value of the parameter, and the 

corresponding MAPEs are shown in Table 4.11 in order to quantify the 

GOF for each weight-coefficient scenario. As suggested by these 

numerical values, the EM procedure appears to be reliable for the 

parameter estimation of M-IB-IW distributions in all of the considered 

weight-coefficient scenarios, as MAPE is always smaller than 5% for 

each parameter. On average, the lowest MAPEs occurred in the 

scenario       .  

 

Table 4.11 – Results of the error analysis in terms of MAPEs, averaged for each 

parameter of the mixture Inverse Burr – Inverse Weibull distribution estimated 

through the EM procedure, and for each value of the weight   . 

Weight 

coefficient 

scenario 

  

MAPE 

[%] 

  

MAPE 

[%] 

  

MAPE 

[%] 

  

MAPE 

[%] 

  

MAPE 

[%] 

   

MAPE 

[%] 

       4.42 0.96 3.34 1.98 1.06 2.72 

       4.10 0.89 2.24 0.54 4.51 0.51 

       4.97 0.90 0.97 2.66 2.93 3.37 

       1.06 0.57 1.28 0.51 0.74 0.65 

       0.97 0.69 0.72 1.69 3.14 3.97 

       1.59 3.57 1.21 1.03 1.06 2.09 

       0.88 1.25 1.36 1.68 0.72 3.27 

       0.70 4.62 3.01 4.10 1.21 0.72 

       0.92 1.73 1.03 0.83 0.70 1.02 

 

4.6. CONCLUSIONS 

EWS play a key role in power system planning and operation, due the 

increased penetration of wind power plants and due the EWS effect on 

sensible structures, such as wind towers and overhead lines. A correct 

characterization and estimation of the EWS potential is then mandatory 

in order to make decisions that allow power systems to be operated in 

reliable, efficient way.  

Two contributions to the state of the art on EWS probabilistic 

modeling were presented in this Chapter. 

The first contribution was the proposal of the IB distribution as a 

rational and efficient alternative to more popular models for EWS, 

such as the GU and the IW distributions. The problem of the 

estimation of IB parameters was discussed by applying different 
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procedures, such as classical MLE and ME, to several real EWS data; 

moreover, a new proposal, the QE which is sometimes easier to be 

used, was compared to traditional parameter estimation procedures. 

The estimators were tested on both datasets of real EWS measured 

during different years and at different locations, and on synthetic 

samples of EWS extracted from known distributions. The results of a 

large set of numerical simulations confirmed the usefulness of the 

proposed model in terms of both accuracy and efficiency. 

The second contribution was the proposal a new finite M-IB-IW 

distribution for EWS characterization, and the development of its EM 

procedure to cope with convergence problems of the classical MLE, 

that often occur when dealing with mixture distributions.  

Several real datasets of EWS have been considered in order to compare 

the proposed model to the existing models in different conditions; 

results showed that the proposed M-IB-IW distribution is a versatile 

tool that allows for a suitable characterization in the majority of cases. 

Also, the EM procedure performed on average better than the classical 

MLE for M-IB-IW parameters, both on real and synthetic EWS 

datasets, without suffering from typical convergence issues.  

In all of the performed analyses, the M-IB-IW proved to outperform 

the IB distribution in terms of GOF tests. 
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CONCLUSIONS 
 

 

 

 

 

The transformation of power systems into smart, multi-device 

structures inevitably implies the need for advanced forecasting 

systems, to take into account the random nature of influencing 

variables such as wind speed, solar irradiance, and electric loads.  

This Thesis provided four contributions to the state of the art of 

forecasting in power systems.   

The first and second contributions were a Bayesian-based probabilistic 

method and a probabilistic competitive ensemble method to forecast 

photovoltaic generation in short-term scenarios. 

With reference to the proposed Bayesian-based probabilistic method, 

the main innovative contributions were:  

(i) the use of two models to respectively link the hourly active 

power generated by photovoltaic systems to the hourly clearness 

index and to hourly solar irradiance. Note that two different 

distributions were selected to model the probabilistic behaviour 

of such variables, namely a modified Gamma distribution and a 

Beta distribution; some parameters of these distributions were 

estimated in a Bayesian framework;  

(ii) the development of new time series models with exogenous 

inputs (cloud cover, ambient temperature, pressure, and relative 

humidity) to predict the future mean value of the input random 

variable, i.e., solar irradiance or hourly clearness index;  

(iii) the critical comparison of two different hybrid Bayesian-based 

approaches for the photovoltaic power forecasting, one 

considering the clearness index as input and the other 

considering solar irradiance as input. 

With reference to the proposed probabilistic competitive ensemble 

method, the main original contributions were:  
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(i) the proposal of a linear pooling tool to combine probabilistic 

forecasts coming from different base predictors, in order to 

improve the overall quality of the probabilistic forecasts; 

(ii) the development of a multi-objective optimization system to 

overcome the well-known problems resulting from the linear 

pooling of forecasts. Indeed, linear pooling proved to produce 

forecasts that were over-dispersed, even if base predictors were 

normally dispersed; 

(iii) the comparison of the results obtained through the multi-

objective optimization system with those obtained through the 

classical minimization of a proper score in the training step. 

 

The third contribution was a deterministic industrial load forecasting 

method based on regression models. 

The main original contributions on this topic were:  

(i) the development of methods that were able to forecast industrial 

loads at both aggregate and single-load levels, considering inputs 

that could be very different from those usually selected in 

aggregated national, regional or sub-station load forecasting; 

(ii) the comparison of multiple linear regression and support vector 

regression models built through two different model selection 

techniques, one based on classical 10-fold cross-validation and 

the other based on lasso analysis; 

(iii) the applications of such models not only to active power 

forecasting, but also to reactive power forecasting. 

 

The fourth contribution dealt with the proposals of an Inverse Burr 

distribution and a mixture Inverse Burr – Inverse Weibull distribution 

for modeling extreme values of wind speed; both distributions were 

presented with appropriate parameter estimation procedures.  

With reference to the proposed Inverse Burr distribution for modeling 

extreme values of wind speed, the main original contributions were:  

(i) the application of the Inverse Burr distribution to model extreme 

values of wind speed. Its comparison to the most used 

distributions (i.e., Inverse Weibull and Gumbel distributions) in 

this field appeared to validate its usefulness in the majority of the 

analyzed cases; 
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(ii) the development of a parameter estimation procedure based on 

the quantile estimation, that in particular cases resulted in the 

algebraic solution of an equation, allowing to avoid convergence 

problems. 

With reference to the proposed mixture Inverse Burr – Inverse Weibull 

distribution for modeling extreme values of wind speed, the main 

original contributions were:  

(i) the application of the mixture Inverse Burr – Inverse Weibull 

distribution to model extreme values of wind speed. The 

additional complexity added by the increased number of the 

parameters seemed to be fully justified by the increased 

versatility and better fitting; 

(ii) the development of an expectation-maximization parameter 

estimation procedure, that is specifically aimed to overcome 

problems resulting in the maximum likelihood and moment 

estimations of mixture distributions. 

 

The results of comprehensive numerical applications, always based on 

real data, proved the validity of all of the proposals with respect to 

benchmarks that are commonly used in relevant literature.  

The researches that led to the proposals presented in this Thesis will be 

further pursued and enhanced.  

Future works on photovoltaic power forecasting will focus on the 

improvement of the probabilistic competitive ensemble method, e.g., 

by merging more probabilistic base predictors and considering new 

techniques to combine probabilistic forecasts.  

The results of the deterministic industrial load forecasting method 

suggested to explore different techniques for the model selection in 

industrial load forecasting scenarios. Also, load forecasting methods 

will be improved in their probabilistic framework, in order to be used 

as parts of sophisticated procedures aimed at forecasting the dynamic 

rating of electric components, such as lines and transformers, in the 

context of an optimal operation of a smart grid. 
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APPENDIX 
 

 

 

 

 

The error indices and tools used in this Thesis for the assessment of 

forecasts in both deterministic and probabilistic frameworks are shown 

in this Appendix. In particular, deterministic error indices for the 

assessment of the quality of forecasts in a spot-value framework are 

shown in sub-Section A.1. Probabilistic error indices and graphical 

tools for the assessment of the quality of forecasts in a probabilistic 

framework are shown in sub-Section A.2. Indices for the assessment of 

the GOF of PDFs on available independent samples are shown in sub-

Section A.3. 

 

A.1. DETERMINISTIC INDICES FOR THE ASSESSMENT OF THE 

QUALITY OF FORECASTS 

The quality of deterministic forecasts is immediately assessed by 

comparing the single (spot) value provided by the deterministic 

method to the realization   
  of the generic random variable   at the 

desired forecast time horizon  . The spot-value framework can be 

easily extended also to probabilistic forecasts; indeed, the quality of 

probabilistic forecasts can be assessed by extracting a single value 

(e.g., the mean, the median, or a specific quantile) from the predictive 

distribution given by the probabilistic method, and comparing it to the 

realization   
  of the generic random variable   at the desired forecast 

time horizon  . Therefore, the symbol  ̂  is here treated as both a 

deterministic forecast, or a spot value extracted from a probabilistic 

forecast for the desired forecast time horizon  . 

Indices for this type of forecast verification are well known and have 

been extensively used in relevant literature. The MAE, the RMSE, the 

NMAE, the NRMSE, the Mean Absolute Percentage Error (MAPE), 

and the Root Mean Squared Percentage Error (RMSPE) are considered 

in this thesis. These indices are respectively defined as: 
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where      is a reference value for the normalization (e.g., the rated 

power of a generator or of a load, or the average value of past 

observations of the variable  ), and     is the total number of 

forecasts.  

MAE and RMSE provide indications on the absolute deviation from 

the actual value of the variable; they are unadvisable when comparing 

results of forecasts performed for variables of different order of 

magnitude (e.g., two generators with very different rated powers). 

Percentage errors (MAPE and RMSPE) overcome in part this problem; 

however, they suffer the presence of singularities in correspondence of 

quasi-zero actual values. In some applications, a threshold is fixed in 

order to discard contributions to the percentage errors in 

correspondence of these quasi-zero actual values.  

Normalized errors (NMAE and NRMSE) are advisable when 

comparing results of forecasts performed for variables of different 

order of magnitude, and do not suffer from singularities. However, the 
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reference value      must be accurately chosen, in order to avoid 

uninformative too-low or too-high error values. 

The abovementioned indices are not able to catch the economic 

―value‖ of forecasting errors. For example, electrical energy is sold 

and, thus, has an economic value; moreover, the price of energy varies 

with time, i.e., with the hours of the day (for example in the day-ahead 

market). Therefore, when producing power forecasts, the same error 

can cause different economic consequences depending on the hour of 

the day. Novel cost-based indices that take into account not only the 

magnitude of the errors, but also the economic value of these errors, 

are proposed in [99] to deal with this aspect, although further 

researches are still to be pursued. 

 

A.2. PROBABILISTIC INDICES FOR THE ASSESSMENT OF THE 

QUALITY OF FORECASTS 

Two major requirements must be met simultaneously by all 

probabilistic forecasts, i.e., the forecasts must be sharp and also 

calibrated (or equivalently reliable) [223,224]. Note that sharpness and 

reliability are not distinct one each other, as one property significantly 

influences the other, and vice versa. After a brief introduction on these 

features of probabilistic forecasts (sub-Sections A.2.1 and A.2.2, 

respectively), indices and tools aimed to assess sharpness and 

reliability are presented in sub-Sections A.2.3, A.2.4, and A.2.5. 

A.2.1. Sharpness 

Sharpness is a property of the forecast alone, as the realization of the 

random variable is not involved in its definition. Sharpness, in the case 

of forecasts for a real-value variable, can be easily assessed in terms of 

the associated prediction intervals. The narrower the intervals, the 

better is the forecast (if the corresponding coverage is however 

coherent, as shown in [224]). Usually 50%, 90%, 95% and 99% 

prediction intervals are considered for probabilistic forecasting. 

Prediction intervals can be easily extracted from a forecasted 

predictive distribution. 
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A.2.2. Reliability 

Reliability is a property of the probabilistic forecast and of the 

realization. It involves the correspondence between estimated 

coverages and actual coverages. 

Indeed, let‘s suppose that a 50% prediction interval is provided for a 

random variable; the forecast is therefore considered reliable if the 

observation of the random variable lies in that interval with probability 

0.5 for the given time horizon.  

The same property can be defined also for predictive quantiles; e.g., if 

the 0.5-quantile (median) is predicted for a given horizon time, the 

realizations should be equal or smaller than the 0.5-quantile in 50% of 

cases [149,225,226]. 

A.2.3. Reliability diagrams 

Reliability diagrams are very effective tools to evaluate the reliability 

of a probabilistic method [225,227,228]; they show the estimated 

coverage versus the nominal one, for various nominal coverage values 

(usually from 0.05 to 0.95, with a 0.05 step, or from 0.1 to 0.9 with a 

0.1 step).  

The estimated coverages can be found from a predictive distribution in 

a very intuitive manner. Let  ̂ 

    
 be the forecasted   -quantile 

extracted from the forecasted distribution of the generic random 

variable   at the desired time horizon  . The indicator  ̂ 

    
 is defined 

from the comparison between the actual value   
  and the forecasted 

quantile  ̂ 

    
, as follows: 
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and, consequently, the estimation  ̂  of the actual coverage    based 

on a set of     forecasts is: 
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Obviously, the probabilistic forecasting method is considered reliable 

if the estimated coverages do not significantly differ from the nominal 

ones. A necessary condition for the probabilistic calibration is the 

normal dispersion of forecasts, and this results in a reliability curve 

that is close to the 45-degree diagonal line (representing the ideal 

reliability). Instead, over-dispersed forecasts (usually due to lack of 

sharpness) result in an inverse-S-shaped reliability curve, while under-

dispersed forecasts (usually due to too much sharpness) result in a S-

shaped reliability curve. Biased forecasts are easily recognized, as the 

corresponding reliability diagrams strongly differ from perfect curve. 

Fig. A.1 shows examples of reliability diagrams for reliable, over-

dispersed, under-dispersed and biased forecasts. 

 
Figure A.1 – Examples of reliability diagrams. 

 

The maximum deviation from perfect reliability   is straightforwardly 

defined as the maximum error between estimated coverages and 

nominal coverages; i.e.: 
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where   is the total number of considered coverages (e.g.,      if 

coverages are from 0.05 to 0.95, with a 0.05 step, or     if coverages 

are from 0.1 to 0.9 with a 0.1 step). 

A.2.4. Probability integral transform histograms 

PIT histograms [223,229] can also be used to empirically check the 

calibration of forecasts. In these histograms the PIT values
18

 are 

plotted: for a probabilistically calibrated forecast, the PIT histogram is 

statistically uniform. Even if the uniformity of PIT histograms is a 

necessary, but not sufficient condition for the forecast to be perfect 

[229], from the behavior of PIT histograms, can be derived useful 

information; in particular, U-shaped histograms indicate under-

dispersed predictive distributions as well as inverse-U shaped 

histograms suggest that the predictive distributions are over-dispersed. 

Biased predictive distributions have a very irregular PIT histograms. 

Fig. A.2 shows examples of PIT histograms for reliable, over-

dispersed, under-dispersed and biased forecasts. 

 
Figure A.2 – Examples of Probability Integral Transform histograms. 

 

                                                 
18

 In a nutshell, the PIT is the value that the predictive CDF attains at the 

observation, with suitable adaptions at any points of discontinuity [223]. 
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Anyway, formal tests of the hypothesis that a given forecasting method 

is probabilistically calibrated are also available, provided that these 

tests account for complex dependence structures. The reader can refer 

to specialized literature to deepen this subject [223,225]. 

A.2.5. Proper scores 

Probabilistic forecasts can be assessed numerically through the 

evaluation of proper scores [230]. Two of the most common and 

versatile proper scores are the CRPS and the PLF; they simultaneously 

address both calibration and sharpness [154,230]. 

In practice, the CRPS compares the predictive distribution with the 

observation, both in terms of cumulative distribution functions. In 

particular, the CDF of the observation is a Heaviside function      

centered in the observation   
 , and the CRPS probabilistically 

accounts for the error area between predictive and actual CDFs (Fig. 

A.3). 

 
Figure A.3 – Graphical interpretation of the Continuous Ranked Probability Score. 
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predictive CDF at the time horizon  ; hourly CRPS can be evaluated 

as follows: 

 

      ∫ [ ̂            
  ]

 
   

  

  
 . (A10) 

 

From the analysis of Eq. (A4), it clearly appears that the CRPS is 

linked to the total area between the predictive CDF and the Heaviside 

function. It can be seen that the area (and, consequently, the      ) 

decreases as the predictive distribution approximates the step function. 

The calculation of the       will result in a value that has the units of 

the forecast variable. For a total number     of forecasts, the average 

CRPS is: 
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and it can be interpreted as a probabilistic version of the mean absolute 

error [230]. 

Similarly to cost-based deterministic indices, the cost-based extension 

of the CRPS is developed in [99] to provide also information on the 

value of probabilistic forecast errors. 

The PLF is another widely-used proper score [12,230]. The 

contribution to the PLF of the   -quantile at time   is defined as 

follows: 
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Summing up the PLFs across all of the   considered quantiles and 

averaging them throughout the total number     of forecasts, the PLF 

of the corresponding probabilistic forecasts is obtained. 
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A.3. GOODNESS OF FITTING INDICES 

The DC and the ADC, used to assess the GOF of PDFs and CDFs on a 

given dataset             
   

       of    
     

 independent samples, 

are introduced in this sub-Section. 

The DC    
  and the ADC     

  [222] can directly be used for 

comparison; they are both positively oriented, i.e., the greater they are, 

the better the fitting.  

Initially, the probability space in which the variable of interest   can 

range must be clustered in    bins                 . The indices 

compare the empirical number of observations      
 that lie in the  th

 

bin, with the theoretical frequency      
 for the same bin of the 

hypothesized distribution. 

The expressions of    
  and     

  are, respectively: 
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 , (A14) 

 

where  ̅    is the mean value of      
 for          , and      is the 

number of parameters of the hypothesized distribution. The ADC is 

indeed introduced to compare the performances of fitting distributions 

that differ in terms of number of parameters, penalizing the ones that 

have an increased number of parameters. 
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