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Introduction 

The spatial organization of the chromosomes in the nucleus of mammalian cells has a key 
role in cell vital functions like the regulation of gene transcription and expression (Misteli, 
2007; Lieberman-Aiden et al., 2009; Dekker et al., 2013, Tanay & Cavalli, 2013; Bickmore 

& van Steensel, 2013). Understanding chromosome architecture, its folding mechanisms 

and its interplay with gene regulation is a current challenging problem. In the last decade, 
new experimental technologies have been developed, the Chromosome Conformation 

Capture (3C) techniques (Dekker et al., 2013), that give information about inter and intra 

chromosome interactions, allowing to investigate, for the first time, the chromosomes 
three-dimensional spatial folding in a quantitative way. Briefly, these experiments measure 

the frequency of interactions between pairs of genomic regions, that are close in 3D space, 
but may have a large separation along the linear genomic sequence. An important variant 
of such technologies, Hi-C, has extended the possibility to map pairwise chromosome 

interactions genome-wide. Such novel technologies led to the discovery that 
chromosomes are characterized by a complex, non-random, 3D organization that occurs 

at different genomic length scales, through many local and long-range interactions 
(Lieberman-Aiden et al., 2009). Chromosomes occupy distinct territories (Cremer&Cremer, 

2001) and have preferred positions depending on cell type and transcription activity 

(Misteli, 2007; Tanay & Cavalli 2013; Bickmore & van Steensel, 2013). Within chromosomes, 
the genome is folded into a sequence of domains, called “topological associating domains” 

or briefly TADs (Dixon et al., 2012; Nora et al., 2012), in which segments of DNA interact 
frequently with each other. TADs are in turn only one level of a more complex, hierarchical 

organization of higher-order domains (metaTADs) extending up to chromosomal scales 
(Fraser et al., 2015) and patterns are also seen within TADs (Sexton et al., 2012; Philips-

Cremins et al., 2013). Chromatin 3D structure have crucial biological roles, as the control 

of the gene activity through the formation of loops between regulatory regions and genes. 

The disruption of such interaction network can alter the regular gene activity and produce 
effects on the fenotype (Spielmann & Mundlos, 2013; Lupianez et al., 2015). Nevertheless, 

the mechanisms shaping chromatin spatial organization are still largely unknown. Polymer 
physics models have been proposed to interpret the rich amount of data from large-scale 

3C experiments in terms of chromatin 3D structure and to identify key physical mechanisms 
underlying chromatin folding, in an innovative and fascinating research field at the border 
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between physics and biology. (Chiariello et al., 2016; Fudenberg et al., 2016; Tiana et al. 

2016; Sanborn et al., 2015; Nicodemi & Pombo, 2014; Giorgetti et al., 2014; Jost et al., 

2014; Brackley et al., 2013; Barbieri et al., 2012; Rosa & Everaers, 2008; Marenduzzo et al., 

2006; Sachs et al., 1995).  
 
The research presented in this PhD thesis has been conceived in this general picture. It has 
been conducted in the Physics Department of University of Naples Federico II, under the 

supervision of Professor Mario Nicodemi, in the group of Complex Systems. Many results 
have been published or are currently work in progress in collaboration with the Epigenetic 

Regulation and Chromatin Architecture group directed by Prof. Ana Pombo, at Max 
Delbruck Centre For Molecular Medicine (Berlin), the Development and Disease Group 

directed by Professor Stefan Mundlos, at Max Planck Institute for Molecular Genetics 
(Berlin), and the Genome Biology group directed by Professor Jim Hughes, at Oxford 

University. 

This thesis is organized in four chapters. In Chapter 1, we try to highlight the importance of 
the chromatin spatial organization, and recall very briefly some concepts necessary to the 

comprehension of this research activity, as the Hi-C technique, the interpretation of the 
chromosome interaction data and the relationship between spatial organization and cell 

functionality. Then, we review the polymer models currently proposed to describe the 
genome three-dimensional architecture. In Chapter 2 we focus on the employment of 

polymer models to quantitatively explain the information contained in the Hi-C interaction 
data. In particular, we show how polymer thermodynamics concepts can be used to explain 

the long-range contact profile of chromosomes; then we try to schematically model the 
hierarchical structure of the DNA, and finally we present a theoretical study of the multiple 

co-localization contact landscape. In Chapter 3, we introduce more sophisticated polymer 
models by which we can reconstruct the 3D genome structure with very high accuracy, 

and we will study some important chromosome loci in detail. In Chapter 4, we will test the 
power of such polymer models to predict, for the first time, the effects on chromosome 
architecture of genomic mutations, like deletions, inversions and duplications. Genome 

rearrangements can result in a re-wiring of interactions between genes and regulatory 
sequences, leading to abnormal gene expression and disease (Lupiáñez et al. 2015). We 

will show how polymer modeling can be employed as a valid tool to predict interactions 
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and analyze the disease-causing potential of rearrangements in-silico, without performing 

extensive 3C-based experiments. 
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1. Chromatin spatial organization in the cell 
nucleus 

 
1.1 Introduction 
The spatial organization of the DNA in the cell nucleus of eukaryotic organisms is likely to 
be of great importance for fundamental biological functions like the regulation of gene 

expression. In recent years, many studies and experimental techniques have been 
developed to better understand how the genome is spatially organized and how such 

organization affects the cell functions. In this chapter, far from being exhaustive about this 
huge topic, we briefly review some recent, very important, results that are crucial in this 

research field and that will help the comprehension of our research activity described in the 
following chapters. Specifically, in Sections 1.2 and 1.3 we recall very elementary concepts 

of molecular biology together with some recent advances regarding gene regulation and 
epigenetics; in Section 1.4 we discuss the fundamental technologies that allow to 

quantitatively investigate the spatial architecture of the genome and in particular we focus 
on the Hi-C experimental technique; in Section 1.5 we report recent discoveries derived 

from the analysis of the data provided by these experimental methods, and we describe 
the emerging scenario about how DNA appears to be organized in the cell nucleus; finally, 

in Section 1.6 we review the most recent polymer models that aim to quantitatively explain 
and reconstruct the three-dimensional structure of the genome. Most of the results 
described in this chapter have been introduced and discussed in the papers: Lieberman-

Aiden et al., 2009, Dixon et al. 2012; Nora et al. 2012, Dekker et al., 2013. 

 

1.2 DNA packaging: chromosomes and chromatin 

DNA (deoxyribonucleic acid) is a molecule that carries the genetic information used in the 

functioning of all known organisms. In eukaryotes nearly all the DNA is included in the 

nucleus, which occupies about 10% of the total cell volume. DNA is a double helix made 

of two paired long polymers of simple units called nucleotides, which are made of three 

components: a five-carbon sugar, a phosphate group, and a nitrogenous base. The base 
may be either adenine (A), cytosine (C), guanine (G), or thymine (T). The two strands of DNA 
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run in opposite directions to each other, one backbone is oriented 3' (three prime) and the 

other 5' (five prime): this notation refers to the direction along which the 3rd and 5th carbon 
of the sugar group of each nucleotide are encountered along the sequence. The two 

strands of DNA are linked together by hydrogen bonds between the nucleotides. Adenine 
only binds the opposite Thymine, while Cytosine only binds Guanine. It is the sequence of 

these four nucleobases along the backbone that encodes the genetic information.  

 

Nuclear DNA is packaged into different linear filaments called chromosomes, occupying 

distinct spatial regions that are indicated as chromosomal territories (CT) and are clearly 

visible with microscopy techniques (Fig. 1.1, Cremer&Cremer, 2001). The genomic length, 

i.e. the number of base pairs (bp) composing the genome, and the number of 

chromosomes depends on the considered species. For instance, human genome consists 
of approximately 3.2 × 109 bp and it is distributed over 23 chromosomes. The majority of 

eukaryotic cells are diploid, i.e. they contain two copies of each chromosome, referred to 

as homologous chromosomes.  The linear length of the total human genome is about 2m, 

included in a nucleus having a diameter of approximately 10÷15μm. This compaction level 
is achieved through an efficient interaction between DNA and proteins.  

 

 
Figure 1.1: Chromosomes territories in the cell nucleus 

In this microscopy image, chromosomes are marked by different colors. They tend to 
occupy regions in the nucleus that are distinct from each other, named chromosomal 
territories (CT). The image shows a mid-plane section of chicken fibroblast cells (figure 
adapted from Cremer&Cremer, 2001).  
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Chromatin is the complex of DNA and its bound proteins which is found in normal 

physiological conditions within the nucleus. This is the real physical structure containing 
the information to be processed. The organization of chromatin occurs at different genomic 

length scales and degree of compaction (Fig. 1.2a). Histones are responsible for the first 

and most basic level of chromosome packing, called nucleosome. Each individual 

nucleosome consists of a structure of eight histone proteins (two molecules each of histone 
H2A, H2B, H3 and H4) around which a double-strand of DNA is wrapped. The length of 

DNA associated with each nucleosome is 147 bp. This structure is called nucleosome core 
particle. Each nucleosome core particle (which is about 11nm) is separated from the next 

by a filament of linker DNA, which can vary in length from a few nucleotides pairs up to 
about 80. On average, nucleosomes repeat at intervals of about 200 nucleotide pairs. So, 

since human genome has 6.4×109 bp, it consists of about 30×106 nucleosomes. This 
structure is known as “beads on a string” (where the “bead” is the nucleosome and the 

“string” is linker DNA) organization. Linear arrays of nucleosomes fold into higher-order 
chromatin fibers, first through local chromatin interactions, but eventually giving rise to 

discrete 1 μm wide chromosome territories (CTs) [Cremer&Cremer, 2001]. Within a 
chromosome, it is possible to classify the chromosomal regions into two categories: 

euchromatin and heterochromatin. DNA in both types of chromatin is packaged into 

nucleosomes. Heterochromatic regions are composed by nucleosomal DNA that shows a 

high degree of compaction, while euchromatic nucleosomes are much less compacted 

(Fig. 1.2b). The high level of compaction reduces the accessibility of the DNA contained in 

these regions, which are therefore associated with a very low level of transcription.  
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Figure 1.2: The organization of chromatin  

a. Hierarchical folding of the chromatin and its basic unit, the nucleosome with its histone 
core octamer (Lodish et.al., 2000). b. Left: Euchromatic nucleosomes are composed by 
nucleosomal DNA that shows a low degree of compaction. Acetylation (light blue triangle) 
of histone tails can be a transcription activating mark. Right: Heterochromatic regions are 
much more compacted and are associated with a very low level of transcription. 
Methylation (red hexagon) of histone tails can be a transcription repressive mark. (figure 
adapted from Allis&Jenuwein, 2016).  
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1.3 Genetic regulation and epigenetics 
Every cell in a multicellular organism has the same DNA. Yet each cell type, such as muscle 

cells and skin cells in humans, has to generate a different set of proteins and even within a 

single cell type, its needs change throughout its life. Transcriptional regulation of gene 

expression plays a significant role in establishing the diversity of cell types and biological 

functions from a common set of genes. The components of regulatory control include cis- 

regulatory elements, such as promoters, enhancers, silencers and insulators, that act 

across immense genomic distances to influence the spatial and temporal distribution of 
gene expression (Noonan&McCallion, 2010). The transcriptional activity of a given gene is 

primarily regulated by the nearby DNA control sequence, called the gene promoter. The 

promoter, a sequence usually located in eukaryotes within 1kb upstream of the gene 

transcription starting site (TSS), is the fulcrum around which transcription starts, as it serves 
as an assembly point for the basal transcriptional machinery, including the polymerase 

holoenzyme, and defines the orientation and origin of transcription. The promoter activity 

is supplemented by other DNA regulatory regions. Among those, enhancers play a central 

role in driving cell-type-specific gene expression and are capable of activating transcription 
of their target genes at great distances, ranging from several to hundreds, in rare cases 

even thousands, of kilobases (Calo&Wysocka, 2013; Bulger&Groudine, 2011; Ong&Corces, 

2011, 2012). Regulatory proteins, known as Transcription Factors (TFs), bind there along 

with other regulatory factors (e.g., non coding RNAs), to activate the gene. Chromatin is, 
thus, folded into loops to bring distal regulatory elements into contact with their target 

genes.  
 

Cis-acting elements can often be identified by their high evolutionary sequence 

conservation or by specific epigenetic marks associated to them. Epigenetics is the 

study of heritable changes in gene activity that are not caused by changes in the DNA 
sequence. Examples of mechanisms that produce such epigenetic changes are DNA 

methylation and histone modification, each of which alters how genes are expressed 

without altering the underlying nucleotide sequence. In fact, as discussed in the previous 

section, the packing of the eukaryotic genome into chromatin provides the means for 
compaction of the entire genome inside the nucleus, but, at the same time, this packing 

restricts the access to DNA of the many regulatory proteins essential for biological 
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processes like transcription, replication, DNA repair and recombination (Konberg&Lorch, 

1999). Epigenetic mechanisms, including covalent modification of histone tails like 
acetylation, methylation, phosphorylation and ubiquitination, can counterbalance the 

repressive nature of chromatin, allowing access to nucleosomal DNA (de la Cruz et al. 2005) 

(Fig. 1.2b). In recent years, technological advances, such as chromatin 

immunoprecipitation followed by next-generation sequencing (ChIP–seq), have 

enabled the genome-wide analysis of the epigenetic modifications at or near base-pair 
resolution. Briefly, ChIP-seq is a method to detect where a protein is bounded along the 

DNA, by use of specific antibodies that target the protein of interest. In particular, 
antibodies can recognise a histone protein with a specific modification. Such techniques 

lead to the identification of some consistent patterns of histone marks, used for example 
to better define DNA regulatory regions: for example H3K4me1 (histone H3 lysine 4 
monomethilation) and H3K27ac (histone H3 lysine 27 acetylation) characterize enhancer 

regions, H3K4me3 (histone H3 lysine 4 trimethilation)  promoter regions, H3K36me3 
(histone H3 lysine 36 trimethilation) transcribed regions, H3K27me3 (histone H3 lysine 27 

trimethilation)  Polycomb-mediated repressed regions and H3K9me3 (histone H3 lysine 9 
trimethilation) heterochromatin regions (Allis&Jenuwein, 2016). 

 

1.4 The Chromosome Conformation Capture (3C) based 
techniques 
As discussed above an important role in regulating gene expression is played by a complex 
network of short and long range contacts between genes and their regulatory sequences, 

so highlighting the central role of the three-dimensional organization of the chromatin in the 
functioning of the cell. During the last decade, a series of molecular and genomic 

approaches have been developed and can be used to study 3D chromosome folding with 

unprecedented accuracy. These methods are all based on the chromosome 

conformation capture (3C). They allow the determination of the frequency with which any 

pair of loci in the genome is in close enough physical proximity (in the range of 10÷100nm) 

to become crosslinked (i.e. the pair can be bound by some molecule). Schematically, the 
steps common to all the 3C methods are the following: the cells in the population are 

crosslinked with formaldehyde to covalently link chromatin segments that are in close 
spatial proximity; next, chromatin is fragmented by sonication or restriction enzyme 
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digestion; crosslinked fragments are then ligated to form unique hybrid DNA molecules and 

finally the DNA is purified and analyzed (Dekker et al.  2013). The difference among the 

specific methods is how the ligation product is detected. The most common methods are 
the 3C, 4C, 5C and HiC (see next subsections). 

1.4.1. 3C, 4C and 5C methods 

The biochemical experimental details can be found in the reference papers. Here, we will 

just discuss about what kind of data they produce. The 3C (Dekker et al., 2002) and 4C 

(Simonis et al., 2006) methods generate single interaction signals for individual loci. The 3C 

method yields a long-range interaction profile of a selected genomic region, like a gene 

promoter or other genomic element of interest, with chromatin in genomic proximity (Fig. 

1.3a). The 4C method generates a genome-wide interaction profile for a selected locus 

(anchor or viewpoint, Fig. 1.3b). These data sets can be represented as single tracks that 

can be plotted along the genome. 5C method (Dostie et al., 2006) is not anchored on a 

single locus of interest but instead generate matrices of interaction frequencies that can be 

represented as two-dimensional heat maps (i.e. the intensity is indicated by the color 

scheme) with the genomic positions along the two axes (Fig. 1.3c). The Hi-C method will 

be discussed with some more detail in the next subsection.  

 

Figure 1.3.1: Examples of 3C, 4C and 5C data sets.  
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a. Example of chromosome conformation capture (3C) data. b. Example of 4C data from 
the mouse genome. In 3C and 4C, on the x-axis is reported the distance from the anchor 
point, or point of view. c. Example of a 5C interaction map for the ENCODE ENm009 region 
in K562 cells. The different rows contain an interaction profile of a transcription start site 
(TSS) in the 1 Mb region on human chromosome 11, that contains the β-globin locus. 
(Figure adapted from Dekker et al., 2013.) 

 

1.4.2. The Hi-C method 

The Hi-C method (Lieberman-Aiden et al., 2009) is the first genome-wide adaptation of 3C 

and include a further step in which, after restriction digestion, the staggered DNA ends are 

filled in with biotinylated nucleotides (Fig. 1.4A). The resulting DNA sample is composed 

by ligation products of chromatin that were in spatial proximity in the nucleus, with biotin 
at the ligation junction. This facilitates selective purification of ligation junctions that are 

collected in a Hi-C library and then directly sequenced along the genome, producing a list 
of interacting fragments.  

Then, data are organized in a genome-wide contact matrix, obtained by dividing the 

genome into windows (indicated as loci) of fixed length (in the first version, this length was 

1Mb=1000000bp long). This important parameter defines the Hi-C data resolution. Each 

bin of the matrix xij contains the number of ligation products between the locus i and locus 
j. So, the extracted information is the contact frequency of any pair of loci i and j in the 

chromosome, that is obviously directly related to the chromosome spatial architecture.  

In Fig. 1.4B-D, is reported an example of interaction matrix for an entire chromosome at 

1Mb resolution. Since the Hi-C technique can detect interactions between any two loci in 
the genome, to each chromosome is associated its contact matrix (Cis data). Interactions 

between loci belonging to different chromosomes are also detected (with a much lower 

frequency), and are organized in Trans contact matrices. In all this work, we will focus only 

on Cis contact matrices. 

Summarizing, Hi-C, as well as all the 3C-based methods gives information about the 

frequency in a cell population by which two loci i and j are in close spatial proximity. 
Anyway, the method does not give information about the nature of the contact, not 

distinguishing functional from non-functional associations and it does not reveal the 
mechanisms producing loci co-localization. Spatial proximity can be the result of contacts 



 
 

	 12	

CHAPTER	1		 			 	

mediated by protein complexes that bind them or of indirect co-localization to the same 

sub-nuclear structure (as the nuclear lamina). Loci co-localization can also be due to 
random collisions between distant regions of chromatin in the nucleus, caused by the 

chromosome flexibility. Also, the exact 3D structure of a specific region is highly variable 
from cell to cell, even if they are in the same differentiation stage. Each ligation product due 

to an interaction represents a contact involving a pair of loci in a single cell in the population. 
Thus, Hi-C (and all 3C-based) interaction frequency data represent the fraction of cells in 

which pairs of loci i and j are in spatial proximity at the time the cells are fixed. The final 
value contained in the matrix bin xij represent the sum of interactions over a large cell 

population, and in each cell chromosomes conformation is determined by many different 

factors that act on the chromatin polymer and make the structure highly variable. 

 

 

Figure 1.4.1: Hi-C technique  

A. Schematic representation of the Hi-C experimental procedure. Cells are cross-linked 
with formaldehyde to covalently link spatially adjacent chromatin segments; chromatin is 
digested with a restriction enzyme (for example HindIII or NcoI), and the resulting sticky 
ends are biotinylated; crosslinked fragments are then ligated to form unique hybrid DNA 
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molecules; DNA is purified and sheared. The labeling with biotin allow to efficiently detect 
the ligated fragments, which are finally identified by paired-end sequencing. 
B. Example of Hi-C data output. Data are collected in a bidimensional heatmap (as in the 
5C case). Hi-C data from the entire mouse chromosome 14 are shown, at 1Mb resolution, 
so that each pixel represents all interactions between a 1 Mb locus and another 1 Mb locus; 
intensity corresponds to the total number of reads (0 to 50).  
C and D: Comparison between biological replicates using the same restriction enzyme [C] 
and using a different restriction enzyme [D, NcoI].  
(Figure from Lieberman-Aiden et al., 2009).  

 
1.5 Chromatin 3D features from Hi-C data 
1.5.1. A/B compartments 

Since the 5C and Hi-C methods were introduced, interaction data have been analyzed to 

identify structural features of chromatin. A fundamental discovery, made through a principal 

component analysis (Fig. 1.5a) and also confirmed by microscopy experiments, is that each 

chromosome can be partitioned in two classes of regions, named A and B compartments 

(Lieberman-Aiden et al., 2009, Rao et al., 2014). Regions in the same compartment are 

enriched in mutual interaction while regions belonging to different compartments are 

depleted in mutual interaction. Compartments are considerably large regions of chromatin, 
having a characteristic size of 5÷10 Mb, and alternate along the chromosomes. 

Compartment A is typically associated with euchromatin, since it is less compact and 
correlates with gene enrichment, expression and accessibility, while compartment B has 

higher interaction values (Lieberman-Aiden et al., 2009). This finding is compatible with the 

known presence in the nucleus of open and closed chromatin (Fig. 1.5b). 
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Figure 1.5: A and B compartments 

a. Pearson correlation map of chromosome 14 and the principal component (PC) 
associated. The PC correlates with the plaid pattern in the correlation matrix, defining the 
compartment A (positive PC values) and B (negative PC values). b. Schematic 
representation of chromatin organization at nuclear scale, where chromosome territories 
(hundreds of Mb) occupy distinct regions, and at chromosome scale, where open and 
closed chromatin regions (5÷10 Mb) alternate. Figure adapted from Lieberman-Aiden et al., 
2009. 

 

1.5.2. Topologically associated domains (TADs) 

Beyond the compartments A and B, the analysis of the patterns contained in the Hi-C 
contact data has brought to the discovery of other levels of organization and structural 

units. Importantly, a common feature among several organisms, from drosophila 

melanogaster to mouse and human, is the existence of discrete regions, much smaller than 
A and B compartments, where chromatin is marked by high levels of internal interactions. 

To indicate such domains, various names have been used in literature, as topological 

domains (Dixon et al., 2012) and topological associating domains or, briefly, TADs (Nora 

et al., 2012). As standardly used in literature now, we will use the latter in the following. In 

5C or Hi-C matrices, TADs appear as squares of high intensity along the diagonal (Fig. 

	 PC 

	

a b 
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1.6a). From the structural point of view, this correspond to the fact that distinct loci located 

in the same TAD tend to interact with each other much more than two loci located in two 
different TADs. Microscopy experiments also confirm this scenario (Dixon et al., 2012). 

TADs are found to be universal building blocks of chromosomes, as both mouse and 

human are composed by more than 2000 TAD domains, covering almost all the genome. 
Furthermore, they are largely conserved between different species (Dixon et al., 2012). Their 

typical size (approximately 0.5÷1 Mb) is much smaller than the A and B compartment, and 
they can be active or inactive. To identify TADs several computational algorithms have been 

developed (Dixon et al., 2012, Rao et al., 2014, Fraser et al., 2015). The mechanism that 

regulates the formation of TADs is still not clearly understood, and polymer models have 
been proposed to quantitatively describe it (Barbieri et al., 2012, Brackley et al., 2013, 

Sanborn et al., 2015, Fudenberg et al., 2016, Chiariello et al., 2016). 

 

 

 
Figure 1.6: Topological Associating Domains (TADs) 

Hi-C interaction data for a region along chromosome 6 in mouse embryonic stem cells 
(mESC). TAD domains appear as high intensity square blocks along the diagonal of Hi-C 
matrix (here only the upper triangular matrix is represented, since Hi-C is symmetric by 
construction). Loci belonging to the same TAD interact more frequently than loci in different 
TADs. (Figure from Dixon et al., 2012). 
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1.5.3. Further research developments 

The results reviewed in this chapter represent only a limited part, yet fundamental, of the 

key points in the recent history of this research field. In the previous subsections, we have 
seen that chromosomes are folded into a sequence of mega-base sized domains of strong 

internal Hi-C interactions, named TADs (Dixon et al. 2012; Nora et al. 2012) and that larger 

structures have been also identified, such as the 10 Mb wide A/B compartments linked 
respectively to more transcribed and repressed chromatin sequences (Lieberman-Aiden et 

al. 2009). Yet, patterns are visible also within and across TADS at lower as much as at very 

large scales (Phillips-Cremins et al. 2013). In Fraser et al 2015, higher-order chromatin 3D 

structures were identified by analyzing the interactions between TADs, through mouse 
neuronal differentiation. Chromatin was found to be organized in a hierarchy of domains-

within-domains, named “metaTADs”, up to chromosomal scales Importantly, MetaTADs, 

are correlated with a variety of epigenetic features, pointing towards a functional role of 

this organization. (Fraser et al 2015, reviewed in Bianco et al. 2017) 

Another important feature that has recently been discovered is the formation of chromatin 

“loops” (Rao et al 2014), which specifically bring together pairs of sites that are distant 

along the linear sequence of the chromosome. Loops appear as point-like peaks of very 
high interaction in the Hi-C matrix and often occur at TAD boundaries (Rao et al 2014).  

In general, as the technology quickly evolves, more sophisticated and refined experiments 
have been performed, producing better and higher quality data. In this way, very complex 

and more complete Hi-C datasets are available, with higher resolutions (up to 1Kb, Rao et 

al., 2014, Dixon et al., 2015) and for an increasing number of tissues and cell lines. In 

parallel, other experimental technologies have been developed to detect chromatin 
contacts (Khalor et al. 2011; Rao et al., 2014; Beagrie et al., 2017). Furthermore, 

experiments have been performed to evaluate the impact of chromatin structure alterations 
on health (as TADs disruption, described in Lupiáñez et al., 2015, or neoTAD formation, 

described in Franke et al., 2016). These notable works demonstrate the deep relationship 

between chromatin organization and individual fenotype, and confirm once more the 

importance of investigating the genome architecture in space. Overall, these more recent 
results allow to improve our knowledge (far anyway from being complete) about the 

chromatin organization, contributing to further enrich the scientific landscape about this 
interesting topic. 
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1.6. Polymer models of chromatin folding 

Together with the improvements of the experimental techniques, also the theoretical 
technologies improve so to develop models that describe genome architecture. Many 

models have been proposed to explain quantitatively the behavior of chromatin in the 
nucleus, and in this subsection we will list very briefly some of them, for sake of 

completeness. We start considering the fundamental String and Binders Switch (SBS) 

model (Barbieri et al., 2012), where a chromatin fiber is modeled as a bead chain, where 

some of those (binding sites) can interact with floating particles (binders), and the polymer 

folds through the interaction between binding sites and binders. In the following chapters, 
we will use this model as starting point for our considerations about chromatin architecture. 

The idea of chromatin interacting with floating particles has been used also in other studies 
(Brackeley et al., 2013, Chiariello et al., 2016). After the developments of the Hi-C 

technology, the first proposed model as possible genome structure was the Fractal 

Globule (Lieberman-Aiden et al., 2009), which emerges as result of polymer condensation 

during which topological constraints prevent knotting and slow down equilibration of the 

polymer (Dekker et al., 2013). Another important model is the Dynamic Loop model 

(Bohn&Heerman, 2010), where chromatin moves under diffusional motion and when two 

sites co-localize, they form a loop with a certain probability for a certain lifetime. Another 
model consider chromatin as a sequence of regions characterized by an epigenetic state 

(Jost et al. 2014) with regions in the same state having specific interactions. Other models 

consider chromatin folding as the result of interaction of TAD boundary elements through 

dynamic mechanisms of Loop Extrusion (Sanborn et al., 2015, Fudenberg et al., 2016). In 

this process, cis-acting loop-extruding factors (as cohesin) form progressively larger loops 
but stop at TAD boundaries due to interactions with boundary proteins, like CTCF 

(Fudenberg et al., 2016).
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2. Polymer physics reproduces key features of the 
chromatin large-scale 3D architecture 

 
2.1 Introduction 
In this chapter, we will show how polymer physics can explain key features of the complex 
3D organization of the chromatin. In Sections 2.2, we will introduce the Strings and Binders 

Switch Model (SBS) of chromatin, originally presented in the work by Barbieri et al. (2012), 

and, in Section 2.3, its Molecular Dynamics (MD) implementation. We will show the resulting 
phase diagram, with a novel thermodynamic stable state (Section 2.4). Next, in Section 2.5 

we will show how, with few parameters, we are able to recapitulate the average behavior 
of the experimental chromatin contact frequency, as mapped from Hi-C methods, in a large 

range of genomic lengths going up to chromosomal scales. In the following Section 2.6, 
we will see how the SBS model can reproduce important features of chromatin organization 

like TADs and higher order structures. Furthermore, we will describe the theoretical multiple 
contact profile, which recently have been discovered to be very important (Olivares-
Chauvet et al., 2016, Beagrie et al., 2017) for genome architecture and regulation (Section 

2.7).   

 
Most of the material presented in this Chapter, including figures, paragraphs and 

sentences, is adapted or taken literally from the published papers: Chiariello et al. 2016, 

Annunziatella et al., 2016 and Annunziatella et al., Submitted (2017), which I coauthored. 
                        

 

2.2 The Strings and Binders Switch (SBS) model 
In the Stings and Binders Switch (SBS) model (Nicodemi&Prisco, 2009, Barbieri et al., 

2012), a chromatin filament is represented as a classical Self-Avoiding-Walk (SAW) chain 

of beads. The beads can interact with molecular binders diffusing in the surrounding 
environment, though an attractive potential with interaction energy Eint. The binders have a 

concentration c, and can bridge the beads of the chain and fold spontaneously the polymer. 

Different equilibrium thermodynamics phases exist according to the value of control 
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parameters, Eint and c, giving rise to specific, corresponding conformational classes (see 

Section 2.4). A schematic representation of the SBS model is shown in Fig. 2.1, showing 

the case with only one type of binders and binding sites (red); yet, to describe more 
complex situations, different types of beads (and cognate binders) can be introduced, 

schematically represented by different “colors” (Bianco et al. Submitted (2017), Barbieri et 
al. 2017, Chiariello et al. 2016, Annunziatella et al. 2016). 
 

 

 

 

 

 

 

	

Figure 2.1: The Strings and Binders Switch (SBS) model 

The SBS model is a self-avoiding chain of beads (the “string”) interacting with diffusing 
molecules (the “binders”) having a concentration, c, and a binding affinity Eint. The binders 

can bridge distant chain beads and loop the polymer. (Figure adapted from Chiariello et al. 

2016) 
 

2.3 Molecular Dynamics simulations of the SBS model  

Molecular Dynamics (MD) techniques are very powerful and standard methods to 

investigate molecular structures, and are broadly used to study the folding processes and 
conformational properties of other important molecules like proteins (Di Carlo, Minicozzi et 

al., 2015). For our simulations, we used the open source software LAMMPS (Large Atomic 

Molecular Massive Parallel Simulator, employing the Verlet algorithm (Plimpton, 1995)). 
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2.3.1. Langevin equation 

In computer simulations, the chromatin filament is represented as a polymer composed by 

N beads, having each a diameter σ. The system composed by the polymer beads chain 
and its binders, is embedded in a surrounding viscous fluid, describing the cell nuclear 

environment, and undergoes a Brownian motion. Hence, the dynamics of each of the 

system particles obeys to the Langevin equation (Kremer&Grest, 1990): 

 

(1)                                           𝑚"#	(&)
"&

= −𝜁𝑣	 𝑡 + 	𝑓 𝑡 − 𝛻V 

 

where m is the mass of the generic particle, v(t) the particle velocity, V is the potential acting 

on the particles (see next subsection) and f(t) a stochastic random force that takes into 

account the thermic fluctuation of the environment. The friction coefficient  ζ is related to 

the viscosity of the solvent η from the Stokes relation ζ=3πησ. As usual in MD simulations, 
we work in dimensionless units (Kremer&Grest, 1990). So, we set the diameter of the 

polymer bead σ equal to 1 (for simplicity, we do the same for the binder diameter). The 
diameter fixes our length unit. Analogously, we set the mass of the particle m equal to 1. 

The energy scales are measured in kBT, where the Boltzmann constant kB is 1 and the 

temperature T is 1. For the dynamics, we set 𝜁=0.5 (Kremer&Grest, 1990; Rosa&Everaers, 
2008; Brackley et al., 2013). The Langevin equation is integrated using the Verlet algorithm 

(Plimpton, 1995). All these settings are standard choices and are well described in 
Kremer&Grest, 1990. The simulation box, with boundary periodic conditions, has a linear 

size D, that is as large as the gyration radius of a SAW with the same number of beads (D 

∝ N0.588). Physical units will be obtained once we fix the length scale and other parameters 

of the system (see subsection 2.3.5).   

2.3.2. Potentials 

The potential energy V(x), of a particle having a position x, includes three components (Fig. 

2.2). First, between two consecutive beads of the chain there is a potential that models a 

finitely extensible non-linear elastic (FENE, Kremer&Grest, 1990) spring: 
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(2)                                                   𝑉2343	 = −0.5𝐾𝑅:; ln 1 − 𝑟
𝑅0

2
 

where R0 is the maximum extension of the spring and K is the strength of the spring. We 

set R0=1.6σ and K=30kBT/σ2 (Kremer&Grest, 1990; Brackley et al., 2013). Second, to 

consider excluded volume effects between any two particles, there is a hard-core repulsive 

force 𝑉ABC"	(𝑟), modeled by a shifted Lennard-Jones (LJ) potential: 

 

(3)                  	𝑉ABC"	(𝑟) = 	
4	 EFGF

C

H;
− EFGF

C

I
− EFGF

H.H;

H;
+ EFGF

H.H;

I
						𝑟 < 1.12

																				
	0																																																																										𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

The third contribution to the total potential in the system, is represented by the interaction 

between bead and binder. A bead of the polymer can interact with its cognate binder 
through an attractive, cut, Lennard-Jones 𝑉QR&	(𝑟): 

 

(4)                 𝑉QR&	(𝑟) = 	
4	𝜖QR&

EFGF
C

H;
− EFGF

C

I
− EFGF

C	TUV

H;

+ EFGF
C	TUV

I

						𝑟 < 𝑟	QR&

																				
	0																																																																										𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

where 	𝜖QR&, in kBT units, is the parameter that controls the strength of the interaction, 𝑟	QR& 

is the cut-off distance that regulates the interaction range and σXYX is the distance between 

bead and binder when they are close in space (i.e. the sum of their radii, therefore in our 

case is 1σ). In our simulations, we set 𝑟	QR& = 1.3σ, unless otherwise stated. The energy of 

the interaction between beads and binders is given by the minimum of the interaction 

potential 𝑉QR&	(𝑟): 

 

(5) 

 

𝐸QR& 	 = \4	𝜖QR& ]^
σXYX
𝑟	QR&

_
I

− ^
σXYX
𝑟	QR&

_
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Figure 2.2: Schematic representation of the potentials 

a. Between any two particles, there is a purely repulsive LJ potential, defined in equation 
(3), necessary to model the excluded volume effects. b. Between two consecutive polymer 
beads, the bond is a finite extensible non-linear elastic (FENE) potential, defined in equation 
(2). c. Between bead and binders the interaction is modeled with an attractive, shifted 
Lennard-Jones potential, defined in equation (4).  

 

 

2.3.3. Preparation of the initial Self-Avoiding Walk states 
 

In our simulations, the polymer is initially prepared in a random SAW configuration. To 

produce a SAW configuration, we use the following standard approach (Kremer&Grest, 
1990): we generate a random walk chain, where the distance between two consecutive 

beads is equal to the average length of an equilibrium SAW chain under the FENE potential 
above described (i.e., 0.97σ). Then, to remove overlaps between beads and binders, we let 

the system equilibrate, for some timesteps, where the hard-core LJ repulsion is replaced 
by a soft potential 𝑉abc& 𝑟  (Kremer&Grest, 1990; Brackley et al., 2013):  

 

(6)   𝑉abc& 𝑟 = 	
	𝐴 1 + cos hC

;
i
jE

									𝑟	 < 	2H Iσ

																				
	0																																											𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

where the factor A increases linearly in time. To check that a SAW state has been 

approached it is convenient to monitor a set of physical quantities. An important one is the 

gyration radius Rg associated to the polymer, defined by the following relation: 

	 	

	 	

a	

	 	

b	

	 	

r 

c	
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(7)                                           𝑅k; =
H
l
			∑QnH

4		𝑚Q 𝑟Q − 𝑟ol ; 

where mi and ri are respectively the mass and the position of the i-th bead, M is the total 

mass of the polymer and rCM is the position of the center of mass of the polymer. The 

gyration radius gives an estimation of the size of the average sphere enclosing the polymer. 

In MD simulation, it is necessary to record Rg as a function of time t during the dynamics: 

when it reaches a plateau, the equilibrium SAW state should have been reached. An 
important additional check that the equilibrium state is attained is based on studying the 

scaling properties of the gyration radius Rg as function of the polymer length N. In fact, as 
known from polymer physics (de Gennes, 1979), for SAW states Rg exhibits a power-law 

behaviour, Rg
2

 ∝N2ν where the scaling exponent ν is 0.588. 

 
2.3.4.  Polymer folding dynamics 

Starting from a polymer in a SAW configuration, the binders are introduced, randomly 

located in the simulation box at the concentration, c, of interest. The interactions between 
bead and binders fold the system in its thermodynamics equilibrium state. That can be 

monitored by checking the time evolution of the polymer gyration radius Rg and its scaling 

properties at the steady state. For instance, in case the system starts from a SAW state 
and is folded into its globular state (see next section), Rg is initially high (SAW configuration) 

and then decreases until reaching a plateau value in the final equilibrium globular state (Fig. 

2.3).  
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Figure 2.3: Polymer folding dynamics 

The folding dynamics of the coil-globule transition is monitored by the gyration radius Rg 
(relative to its initial value) as a function of the MD time steps. As the dynamics proceeds, 
the polymer folds and and Rg decreases towards a plateau when equilibrium is reached. 
(Figure adapted from Annunziatella et al. Submitted (2017)) 

 

 

2.3.5. Mapping MD units into physical units 

MD simulations use dimensionless units, called Lennard-Jones or reduced units. This 

means that σ, ε=kbT and m are taken as units of length, energy and mass respectively. The 

physical results can be easily obtained by a simple multiplication by a factor representing 
the specific physical unit, linked to the molecular details of the system or to experimental 

data (Allen&Tildesley, 1987). For instance, the physical unit of length can be obtained by 
imposing that the local density of chromatin equals the expected average density of DNA 

in the whole nucleus. Following this assumption, the expression for the physical length of 
the bead diameter is σ = (s0/G) 1/3 D0, where G is the total genomic content of DNA in the 

cell, D0 the average nuclear diameter of the considered cell type and s0 the genomic content 

of each chain bead of the chromatin model (Barbieri et al., 2012). The concentrations are 

estimated by using the relation c=P/VNA, where P is the absolute number of binders in 

solution, V is the box volume and NA is the Avogadro number. Analogously, the time scale 
τ is estimated by fixing the viscosity η and energy scale ε through the relation τ=η (6πσ3/ε). 

So, by considering η=0.1P at room temperature T=300K, we obtain τ=0.03s. In the 
following polymer models, the physical units will be calculated in this way. 
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2.4 Phase diagram of a homo-polymer SBS chain 
In this section, we will focus on the simplest SBS model system, where all the polymer 

beads are identical (homo-polymer model) and they all interact with the binders. We will 
use such a model to describe the average behavior of a generic region of the genome (i.e. 

a chromosome) and to extract quantitative information about its structure. Given the 
genomic length L of the region to be modeled, the corresponding genomic content (i.e. the 

number of bases) per bead is s0=L/N, where N is the number of beads forming the chain. 

Here, we consider polymers made of N=1000 beads. Since a typical chromosome have a 
genomic length of approximately L=100Mb, each bead contains s0=L/N=100Kb. We 

consider mouse embryonic stem cells, for which D0=3.5μm and G=6.5Gb, so the resulting 

bead diameter of our polymers is σ=87nm (see subsection 2.3.5).  

	

	

	

	

	

	

	

	

	

	

	

Figure 2.4: The Phase Diagram 

As known in polymer physics the model stable architectural classes correspond to the 
different phases of its phase diagram: the polymer is open and randomly folded or, above 
its Θ-point transition, closed in more compact conformations; in the closed state, its 
binders can have a transition from a disordered to an ordered arrangement. Conformational 
changes can be sharply controlled (switch-like) by phase transitions driven by increasing c 
above threshold, e.g., by up up-regulation of the binder genes, or by chemical 
modifications of their binding sites, acting on EInt. (Figure adapted from Chiariello et al. 
2016). 
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2.4.1.  Thermodynamic conformational classes 

The equilibrium state and the conformational folding class of the system depend on two 

control parameters: the interaction energy Eint between bead and binders and the 
concentration c of binders. As known from polymer physics, there is a coil-globule folding 

transition, highlighted by a sharp drop of the gyration radius (that is the order parameter of 

this transition) when crossing the theta point in the phase diagram (in Fig. 2.4). The coil 

state is characterized by small values of Eint and c, i.e. when the binders not succeed in 

forming stable loops, and the polymer remains open (as in a SAW, Fig. 2.4b, light blue 

box). On the contrary, in the globular state the polymer is in a close configuration, 

occupying a very small fraction of the open state volume (Fig. 2.4b, red box).  

We identify also a new phase transition, occurring in the polymer globular phase, where the 
binders undergo an order-disorder transition, despite that they do not interact directly with 

each other. Two states exist: at low energies or concentrations, the binders form a 
disordered aggregate attached to the polymer chain, while at high energies, with a 
sufficiently high concentration, they form an ordered aggregate. The phase diagram is 

represented in Fig. 2.4. Such thermodynamic stable states are expected to play an 

important role in the chromatin organization. The different nature of these configurations is 

visually evident in Fig. 2.5d, and will be discussed in detail in the next subsection. 

2.4.2.  The order parameters of the transitions 

To identify the values of EInt and c which give the transitions discussed above, we proceed 

as follows. The coil-globule transition is identified (Barbieri et al., 2012) by studying the 

gyration radius Rg associated to the polymer, defined above by equation (7), that is 

essentially a measure of the average linear size of the polymer (Fig. 2.5). The order-disorder 

transition is highlighted by two quantities associated to the configuration of the binders: 

the pair distribution function g(r) and the structure factor function S(k). They are defined 

as follows (Allen&Tildesley, 1987): 

(8)                                              𝑔(𝑟) = H
q4r

𝛿(𝑟 − 𝑟Qt)QutQ  

 

(9)                                   𝑆(𝑘) = 1 + 4πρ 𝑟; sin 𝑘𝑟 /(𝑘𝑟)|
: 𝑔(𝑟)𝑑𝑟 
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where ρ=Nb/V is the concentration of the binders attached to the polymer, δ is the Dirac 

delta function. The structure factor S(k) is basically the Fourier transform of the pair 

distribution function. It is almost flat when the binders are in a disordered configuration, 
while it is characterized by sharp peaks when the binders are in an ordered configuration 

(Fig. 2.6). In our study, we consider as order parameter the ratio S(k*)/SMAX, where k* is the 

position of the second peak in the S(k) function and SMAX is a normalization constant equal 

to the maximum value of S(k*) among the different studied cases, so to have a quantity 

normalized between 0 and 1. Such order parameter have a sharp jump at the order-disorder 

transition (Fig. 2.5). Analogous results are obtained if other peaks of S(k) (for instance the 

first peak or the third peak) are taken. 
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Figure 2.5: The order parameters of the transitions 

a. The gyration radius of the SBS polymer, Rg, signals its coil-globule transition point as a 
function of the concentration of binders. b. Three different configurations at different 
concentration. c. The structure factor S(k) peak marks the order-disorder transition in the 
arrangement of the binders around the folded polymer. d. The binders in disordered 
configuration (Eint=3.1kBT, green box) and in an ordered configuration (Eint=4.1kBT, red box). 
(Figure adapted from Chiariello et al. 2016) 

	

	

	

	

	

	

	

	

	

	

	

	

Figure 2.6: The pair function distribution g(r) and the structure function S(k) 

a. An example of pair distribution function g(r) defined by equation (8), in the closed state. 
In the disordered state (blue curve, interaction energy Eint=3.1kBT) it is characterized by a 
smooth behavior, while in the ordered state (light blue curve, interaction energy Eint=4.1kBT) 
it has several sharp peaks. b. The structure factor S(k), i.e. the Fourier transform of the g(r) 
function (eq. (9)), is practically flat for the disordered state, while it has sharp peaks in the 
ordered state.  

 

	

	

	

	

a	 b	

         Eint = 4.1kBT  (Ordered state)  

         Eint = 3.1kBT  (Disorderd state) 
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2.5 Fit of the average contact probability of chromosomes  
To characterize the folding state of our homo-polymer model, we calculated the average 

contact probability Pc(s) of beads pairs separated by a given genomic distance s. The 

behavior of Pc(s) depends on the state of the system (Fig. 2.7a). In the open state the 

probability decreases as a power law with s, i.e. Pc(s) ~ s−α, where the exponent α is about 

2.1, as predicted by polymer physics (de Gennes, 1979).  At the theta point, the exponent 
becomes 1.5, while in the closed state the probability has different shapes depending on 

whether the system is in the disordered or in the ordered state. In the former, it has an 
asymptotic plateau, with the power law exponent equal to 0, in the latter it decreases with 

an observed exponent 1.0. The mean square distance between bead pairs R2(s) has a 

complementary behavior to the Pc(s) function, as shown in Fig. 2.7b, so it depends on the 

thermodynamic state of the system. These properties are general features of this kind of 

systems. The finer details of the polymer configurations depend anyway on other aspects, 
like the position of the binding sites on the chain, the presence of ‘inert’ neutral sites and 

confinement. In the following chapters, we will consider more complex polymer models, 
which, by use of appropriate binding sites positioning, can describe the detailed three-

dimensional structure of specific genomic regions. Furthermore, off-equilibrium, unstable 
conformations are also expected to be encountered in real chromosomal regions, for 

example during changes in the folding state. 

 

	

	

	

	

	

	

	

	

 

co
nt

ac
t p

ro
ba

bi
lit

y  

Open 

Closed 
disordered 

Closed 
ordered 

Θ-point  

s 

Open 

Closed 
disordered 

Closed 
ordered 

Θ-point 

10 102 103 10 102 103 

Genomic distance (s/σ) Genomic distance (s/σ) 



 
 

	 30	

CHAPTER	2	

Figure 2.7: Contact probability Pc(s) and mean square distance R2(s)  

a. The SBS homo-polymer contact probability as a function of the contour distance s (i.e. 
genomic distance), in its different thermodynamic phases. b. The mean square distance of 
two generic sites having a contour distance s along the polymer.  (Figure adapted from 
Chiariello et al. 2016) 

  

To compare our very simple model with the Hi-C experiments, we considered that a single 

chromosome is likely to be a mixture of differently folded regions, with some regions more 

compact than others, like euchromatin and heterochromatin (see Chapter 1). The regions 

can change their conformation from cell to cell according to functional purposes (Nagano 
et al., 2013). At a first approximation, the conformation of each region must belong to the 

stable thermodynamic states (Nicodemi et al., 2009; Barbieri et al., 2012) previously 

identified (Fig 2.4), as schematically represented in Fig. 2.8a. So, in a simple coarse-

grained approach where chromatin is approximately a homo-polymer, the model Pc(s) is 

simply a linear combination of the different contact probability profiles represented in Fig. 

2.7a. This combination depends on the relative abundances of the states in the mixture 

and on a scale factor necessary to map the bead size into genomic distances. The fit of 

genome-wide Hi-C average pairwise contact data as a function of the pairwise genomic 
separation is done by use of the Least Square Method (LSM). We compute the model 

predicted contact probability of a mixture of open and closed states by using the 
independently derived corresponding contact probabilities from the MD simulations of the 

homo-polymer chain. Then, by LSM we find the composition of the mixture of open and 
closed states that minimize the distance between the predicted PC(s) and the one derived 

from Hi-C data. Interestingly, we find that the model can fit the experimental contact 

probability data over very large length scales, from the sub-mega base scale up to the 

whole chromosome length. This results is valid for genome wide averaged data (Fig. 2.8b) 

and for single chromosomes data (Fig. 2.8c). Furthermore, we use data obtained from 

different experimental techniques (Hi-C, TCC and in-situ Hi-C), and the results are similar. 

From the data fit we obtain the percentages of open and closed state that best describe 

the chromatin in a cell type (averaged over all the chromosomes), or the percentage that 
best describe the chromatin for a fixed chromosome. We find different results depending 

on the cell type: in the human embryonic stem cells (hESC, from Dixon et al., 2012), the 
open state is approximately 75%, while in the differentiated cells as IMR90 fibroblast (data 
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from Dixon et al., 2012), this value is approximately 50%, in agreement with expectations. 

If we consider contact probabilities extracted from data obtained from different 

experimental techniques (Hi-C vs TCC, data from Dekker and from Kalhor et al. 
respectively), the fit gives similar results, with a closed ordered state of 40%, but a slightly 

different balance between the other states. For a fixed cell type, we find a wide variability 

of these fractions among the different chromosomes, as shown in Fig. 2.8e, for IMR90 cell 

type. For instance, chromosome X is very compact with a 75% of closed ordered state, 
while chromosome 1 has a 50% of open state. Generally, the percentage of open state 

decreases with the chromosome size, while the closed disordered phase increases, even 
though it represents a very small fraction (always less than 20%). 

 

 

Figure 2.8:  Chromatin is a mixture of regions folded in different thermodynamic 
states.  
	

a. We model a chromatin filament as a mixture of differently folded regions, each belonging 
to one of the stable conformational classes. In this view, the average pairwise contact 
probability is only determined by the relative abundances of the states in the mixture, as 
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each state has a fixed, specific pairwise contact probability. b. Genome-wide average 
contact frequencies across human cell types, obtained from various experimental 
techniques, can be fitted from the sub-Mb to chromosomal scales by such a mixture model. 
c. Single chromosome data (here from IMR90 cells) can be similarly explained. d. Different 
cell types have a different chromatin composition, with hESC (orange circle) more open 
than differentiated cells, such as IMR90 (blue circle). e. Within a given cell type (here IMR90, 
as in panel c) distinct chromosomes have also a different composition, with chromosome 
X formed mostly of closed regions, whereas gene rich chromosomes, e.g., chr.19, are up 
to 70% open. 
(Figure from Chiariello et al. 2016) 
	

	

2.6 The SBS model reproduces TADs and higher-order 
structures 
2.6.1.  Two colors polymer models 

The model just discussed have one kind of bead that can interact with all the binders 
floating in the surrounding environment. Despite its simplicity, it recapitulates the average 

long-range contact properties of chromosomes. Nevertheless, the real Hi-C matrices have 
a very complex structure (see previous Chapters 1), and it is necessary to complicate the 

model to further investigate the patterns of the experimental data beyond the average long-
range contact probability. To this aim, we now consider a block-copolymer, with two types 
of beads (visually represented by two colors, red and green), that can interact only with a 

specific kind of binder (red and green respectively). We consider as first case a 2-block co-
polymer where each block is made of 500 beads, one red and one green, and the entire 

polymer is made of 1000 beads in total (Fig. 2.9a). To give a sense of length scales, we 

consider scales one order of magnitude lower than the chromosome modeling, which are 

typical genomic lengths where chromatin is known to be subjected to 
compartmentalization (Lieberman-Aiden et al., 2009). Thus, we suppose that the region is 

10Mb long. To estimate the length scale, we proceed as before and we find that the bead 

has a diameter σ=64nm. The time step results to be 0.003s, assuming a viscosity of 2.5cP. 
The concentrations and interaction energies are sampled so to cover the three 

thermodynamic stable states identified in the homo-polymer study. When equilibrium is 
reached, each block folds in the configurations discussed in the previous subsection, and 
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two stable globular domains are formed, that can be interpreted as TADs. These objects 

correspond to enriched interaction squares along the diagonal of the contact matrix (Fig. 

2.9a). The contact probability Pc(s) and the average square distance R2(s) associated to this 

conformation are reported in Fig. 2.9b. It is apparent the crossover at the domain boundary, 

where the Pc(s) has a sharp drop at s=N/2, and complementary, R2(s) reaches the maximum 

value as a plateau. In the second block co-polymer, the distribution of the colors along the 

polymer consists of four consecutive blocks (red-green-red-green, Fig. 2.10a), each block 

250 beads long (as before, the total polymer is composed by 1000 beads). As before, each 

block can fold in the stable configuration and it forms, at the beginning of the dynamic 

process, a lower level structure, resembling a TAD sequence. (Fig. 2.10a, central matrix). 

When equilibrium is completely reached, the blocks of the same color interact, and the  
 

 
 

Figure 2.9: Formation of domains 

a. The folding of a block co-polymer model made of two types of beads (red and green), 
interacting with two types of binders, bring to the formation of chromatin domains 
resembling TADs. (Figure adapted from Barbieri et al. 2012) b. Contact probability (left plot) 
and quadratic distance (right plot) in the 2-block co-polymer, for the three thermodynamic 
stable phases. (Figure adapted from Annunziatella et al. 2016). 
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Figure 2.10: Hierarchical self-assembly of domains 

a. Block co-polymer model made of four consecutive blocks alternating their color (green-
red-green-red). The dynamics of the systems is marked by a decrease of the gyration 
radius, and a hierarchical self-assembly of domains spontaneously occur, as in the 
corresponding contact matrices (here Eint=4.1kBT). (Figure adapted from Chiariello et al. 
2016). b. Contact probability (left plot) and quadratic distance (right plot) in the 4-block co-
polymer. (Figure adapted from Annunziatella et al. 2016). 
 
 

 

result is a hierarchical organization of higher-order structures, which is known to be a 

feature of the mammalian genome (Fraser et al., 2015). In the contact matrix (Fig. 2.10a, 

right matrix), such organization is represented by a chessboard-like pattern. Pc(s) and R2(s) 
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are reported in Fig. 2.10b, and they reflect the information contained in the matrix. In fact, 

we register a sharp drop at s=N/4, then it increases since there are higher order 

interactions, and then it sharply drops again at s=3N/4. In the framework of our model, such 
structural features naturally emerge by specialization of the involved molecular factors 

under the laws of polymer physics.  
 

An interesting consequence of the self-assembly of domains, that probably can have 
functional roles, is a symmetry-breaking mechanism occurring in the spatial organization 

of the loci. Since TAD boundaries have been associated to an insulating role in the cell 
functionality, we consider the effect of the domains on the physical distance between pairs 

of sites differently located with respect to the domain itself. Specifically, we consider two 
pairs of loci having the same genomic distance (i.e. the same contour distance along the 

polymer). We focus on two cases where the sites can be symmetrically or asymmetrically 
located with respect to the boundary of the domains. We find that the symmetrical pair 

have on average a larger spatial distance than the asymmetrical one, while in the open state 
(i.e. the SAW) no difference is observed. This is found for both closed states (ordered and 

disordered), as shown in Fig. 2.11. The details of the distances and contact matrices 

computation are given in the next subsection. 

 

2.6.2.  Computation of distance distributions 

To measure the physical distances between two sites in the block co-polymer model, we 

consider two loci A and B, belonging to different blocks (A in the red block and B in the 
green block). In both cases, their contour distance is d=125σ. In the symmetric case, they 

are equally distant from the boundary of the domain, while in the asymmetric case the site 
A is located at distance of 5σ from the domain boundary, and consequently the site B is 

120σ from the boundary (so it is well inside the domain). To increase the statistics, we 
consider also the case where B is located at 5σ from the boundary and A at 120σ. The 

asymmetric distribution plotted in Fig. 2.11 is an average of the two cases. The result is 

valid also if the distance from the boundary is higher (we checked the case 25σ from the 

boundary and similar results are found).   
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2.6.3.  Computation of contact matrices  

The polymer average pairwise contact frequency matrices for all polymer models discussed 
above are obtained in the following way. We fix a contact threshold distance Aσ, where σ 

is the length unit, and A is a dimensionless constant threshold, which we set to A=3.5. For 
a given 3D conformation of the polymer chain, we consider the distance rij between each 

bead pair i and j, (i≠j, where i and j are bead indices along the chain). If rij < Aσ, then we 
count a contact between the beads i and j. We then compute the average of these matrices 

across the different configurations in the considered polymer state. 

The mean contact probability, 𝑃�(𝑠), of a pair of polymer beads having a contour separation, 
s (genomic distance) is recorded in an analogous way by averaging also over all the bead 

pairs with the same given contour distance. 

 
 
 

                                            
 

Figure 2.11: Symmetry-breaking mechanism in the physical distances 

The physical distance distribution r (in dimensionless σ units) of a pair of sites having the 
same contour distance (here 125σ), differently located with respect to the TAD boundary 
position. In the open phase, as expected no difference is observed (blue distributions). Yet, 
in the closed phases (ordered, in yellow, and disordered, in purple) the symmetry is broken, 
and the loci with asymmetric positions (dashed line distributions) are closer in space than 
the symmetric pair (solid line distributions). (Figure adapted from Chiariello et al. 2016). 
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2.7.  Multiple contacts interaction landscape 

In this section, we discuss the many-body contacts, i.e. the probability of co-localization 
events of multiple sites. This is essentially a generalization of the pairwise contact 

interaction profile described in the previous section, where the dimension and the 
complexity of the interaction event is increased. To investigate this aspect of the polymer 

architecture, we first explore in details the probability of triple contact events Pc(s1,s2) (i.e. 

triplets probability), where the three beads are separated by different genomic separations 
s1 and s2. Then we compute the frequency of observing n (n>3) sites in physical contact, 

and we do this in the three thermodynamic states identified previously. In particular, in the 

closed states many-body contacts are exponentially more frequent than in the open state.  

2.7.1. Computational approach for the many-body contact 

To estimate the average number of many-body contacts involving simultaneous 
interactions of k beads occurring in a given polymer conformation, we count the number of 

beads 𝑛Q that are in contact with the i-esim bead within the fixed threshold A (for this 

computation, we use as above A=3.5), and the number of possible combinations of k 

simultaneous contacts that contain the i-esim bead, RT
�YH . We average that number over 

all the beads in the polymer. As normalization factor, we consider the number of total 

possible many-body contacts of k particles with the i-esim bead, �
�YH . In Fig. 2.12a, we 

show the value of this frequency as a function of the multiplet complexity n, computed in 

the homopolymer case. 

2.7.2. The triplet surface 

The calculation described in the previous subsection gives an estimate of the many-body 

contact average probability. A more accurate calculation is made for the computation of 
the multiple contact profile when the complexity n of the multiplet is 3 (i.e. the triplets). As 

in the pairwise contacts probability the mathematical object is a 1-dimensional curve (Fig. 

2.4) and the parameter is the genomic distance s, here we need a 2-dimensional surface 

and the parameters are the two genomic separations s1 and s2 that separates the first bead 

and the second bead, and the second with the third bead, as schematically represented in 

Fig. 2.12b, bottom part. As expected, the surface is symmetric, and in the particular case 

where s1 or s2 equal to zero (i.e. two beads coincide) we recover the pairwise contact profile. 
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Figure 2.12: The theoretical multiple contact interaction profile 

a. The plot shows the frequency, of observing n sites in simultaneous physical contact 
(normalized by the number of possible combinations of n sites) along the SBS homo-
polymer discussed previously. The top-left inset shows the ratio in the compact-disordered 
and open states. b. The plot shows the contact probability of bead triplets at different 
contour separations, Pc(s1 ,s2), along the SBS homo-polymer in its different 
thermodynamics phases. (Figure from Chiariello et al. 2016) 

 

2.7.3. Importance of multiple contacts 

Multiple interactions cannot be detected by Hi-C, yet our model highlights that they are 

likely to be an abundant structural component of chromatin, as is emerging from new 
researches in the field (Olivares-Chauvet et al., 2016, Beagrie et al., 2017). That hints 

towards an important functional role of chromatin domains where multiple regulatory 

regions (like enhancers) can loop simultaneously onto a given target (gene promoter) with 
a much higher probability than in open regions. Taken together our results support a view 

whereby basic mechanism of polymer folding could play key functional roles in the 
regulation of the genome by controlling the spatial organization of chromatin. 

 

a b 
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3. Polymer models of specific DNA loci 

 
3.1. Introduction 
A locus (plural loci) in genetics is any fixed portion of DNA along a chromosome. In this 

Chapter, we will show how the SBS model can be used to describe and reconstruct the 3D 

architecture of real loci in the DNA. In the first part of the previous chapter we showed how 
with a very simple model (homo-polymer model), polymer physics is able to recapitulate 

with a good degree of accuracy the average behavior of the chromosome structure in a 
wide range of genomic lengths (from the sub-Mb scale up to the whole chromosome scale). 

Next, we introduced an extended model, with the introduction of a second type of bead 
(the red-green polymer models), in order to explain other aspects of the chromatin 

architecture and to highlight mechanisms that could have important functional roles: the 
existence of TAD domains, the symmetry-breaking in the distance distribution, and the 

hierarchical structure contained in the experimental Hi-C contact matrices, occurring in a 
spontaneous self-assembly process. In this Chapter, we will see how the SBS model can 

capture the finer spatial structure of specific regions of the genome. To this aim, we 
generalize the SBS model by introducing a multicolor polymer, where each color can 

interact only with its cognate type of binder (Fig. 3.1a). Based on this generalized SBS 

polymer model, we developed a Simulated Annealing Monte Carlo optimisation procedure, 

named PRISMR (Polymer-based Recursive Statistical Inference Method), which aims 

to infer the minimal factors that shape the folding of a chromatin locus and its equilibrium 

3D structure under the laws of physics, without a-priori assumptions and no additional or 
tunable parameters. The PRISMR algorithm takes as input an experimental Hi-C matrix, 

and gives as output the optimal SBS polymer model of the corresponding genomic locus, 

with the minimum number and types (“colors”) of required binding sites (Fig. 3.1b).  

The details of the PRISMR procedure will be described in Section 3.2. Although PRISMR 

polymer models are derived from Hi-C pairwise contacts, they can be used to derive any 
further aspect of folding, that cannot be directly obtained from Hi-C, such as the ensemble 

of 3D conformations that the given locus assumes, its higher-order contacts, or the 
physical distances of genes and regulatory regions. As a first application, in Section 3.3 we 
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will present the results about the modeling of the Epha4 locus, which is a key 

developmental region associated with different types of limb malformations (Lupiáñez et al. 

Cell 2015). In Section 3.4 we will presents the results about the modeling of the Sox9 locus, 
containing a very important gene for the cell functionality (Franke et al., 2016). In Section 

3.5 we will model the 7q locus, which is important for Neurogenetics applications. Finally, 

in Section 3.6 we will discuss the general validity of the method. In the next Chapter, we 

will use the results of Section 3.2 on Epha4, to discuss another, fundamental, application 
of PRISMR polymer models, that is the prediction of the effect of genomic rearrangements 

on loci folding.  

Most of the material presented in this Chapter, including figures, paragraphs and 
sentences, is adapted or taken literally from the following papers, which I coauthored: 

Bianco et al., Submitted 2017 (Sections 3.2, 3.3); Chiariello et al., 2016 (Section 3.4); 

Chiariello et al., 2017 (Section 3.5). 

 

3.2. The PRISMR method 
For sake of definiteness, we focus on the case where a chromatin locus filament is modeled 
with the SBS polymer model, but the method can be straightforwardly generalized to other 

cases. In the generalized SBS (Fig. 3.1a), as mentioned above, the different types of 

interacting polymer beads within the chain are identified by different “colors”, while “gray” 

marks inert beads in our notation, i.e., sites that do no interact with any binder except for 
“excluded volume” effects. We name n the number of different colors allowed in the model.  

Our PRISMR (Polymer-based Recursive Statistical Inference Method) algorithm aims 

to find the minimal number and types (“colors”) of binding sites in a SBS polymer chain, 

and their position along the chain, that best reproduce an input contact matrix of a given 

chromosomal locus (Fig. 3.1b). PRISMR is based on a standard Simulated Annealing 

Monte Carlo (SA) optimization procedure that minimizes the distance between the 

predicted polymer model and the Hi-C contact matrix, under a Bayesian weighting factor 
to avoid overfitting.  
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Figure 3.1: The PRISMR method.  
	

a. In the generalized SBS model, different types of binding sites (and their cognate bridging 
molecules) are visualized by different colors. b. PRISMR samples the thermodynamics 
ensemble of the conformations of a given SBS model to derive its contact matrix from 
polymer physics. By Simulated Annealing, it iteratively finds the model that best describes 
the input contact matrix. (Figure adapted from Bianco et al. Submitted (2017)) 

 

For a given experimental genomic resolution of the contact matrix of the DNA region of 

interest, such as a Hi-C pairwise matrix, the locus is divided in bins. Below, we name L 

their total number. For instance, a 6Mb locus at a 10kb resolution is partitioned in L=600 
bins. As a single DNA bin along the locus could include many binding sites, we consider a 

polymer chain that has a resolution r times larger than the bins of the corresponding Hi-C 

data. This way we can resolve finer details such as the different binding sites located within 
a bin. The minimal value of r required to explain the input data is one of the outputs of 

PRISMR (see below). In the practical cases discussed here, the number of binding sites 
within a bead is typically smaller than the total number of different types of binders, hence 

as we show below r=n is a safe assumption. For simplicity, in the description of the 

algorithm we consider the case with r=n. 

A given SBS polymer model is fully assigned by the arrangement of binding sites along the 

chain and by the sequence of their types (colors). A given arrangement of beads along the 
polymer chain, i.e., a given SBS model, is characterized by the set of its “color” variables 
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ci = 0, 1, ..., n (0 corresponding to gray, inert sites), where i = 1,...,N is an index identifying 

the i-th bead.  

PRISMR aims to find the color arrangement {ci} of the chain, i.e., the polymer model that at 

equilibrium best describes the input contact matrix under a given cost function, H. In the 

approach considered here, H includes two terms accounting for two main requirements, 
the need to fit well the data and the attempt to avoid overfitting: 

a) one term, H0, considers how far is the input Hi-C matrix, Cexp(i,j), from the one, C(i,j), 

predicted by polymer physics thermodynamics given the arrangement of binding sites on 

the polymer, {ci}. H0 is normalized to the average contact frequency and to the total number 

of sites. A constant scale factor F is used to map the total counts in Hi-C matrix data, 
Cexp(i,j), onto the derived physical contact frequencies of loci in our 3D models, C(i,j); the 

value of F is returned by the optimization algorithm itself. 

b) another component is a Bayesian term (a chemical potential in Statistical Mechanics), 

Hl,, that penalizes the addition of new interacting beads to avoid over-fitting. Hl is 

proportional, through a parameter l, to the total number of binding sites in the polymer 

model and it is normalized to the total number of beads of the polymer chain, N. 

In our approach the weight of the Bayesian term is given by a factor λ: if λ=0 there is no 

Bayesian term, the larger λ the stronger its impact, because as λ grows, the value of the 

cost function deteriorates. In the l=0 case, PRISMR would find the best arrangements of 

bead colors to minimize the difference between the experimental and the SBS predicted 

contact frequencies, irrespective of noise and experimental error. A non zero l is used to 

avoid overfitting, i.e., to select the minimum number of interacting beads required to explain 
the input matrix within a given statistical accuracy, as described below. For a given color 

arrangement {ci} of the chain, the model average contact frequency, C(i,j), between any 
bead pair i and j, is derived within PRISMR from polymer physics by sampling the 

thermodynamics ensemble of allowed 3D conformations of the SBS polymer, in its different 

thermodynamics conformational states (see below).  

For a given value of the two parameters n and l, PRISMR samples the space of all allowed 

color arrangements, {ci}, of the chain in order to find the one, named {ci}m, that minimizes 

the above cost function: 



 
 

	 43	

CHAPTER	3	

{ci}m=argmin{ci} [ H({ci}) ] 

To find {ci}m in the huge space of all possible color arrangements on the chain (which has 

(n+1)N elements), our approach employs a standard Simulated Annealing (SA) iterative 
procedure (MacCallum et al. 2015, Parisi G. 1998) whereby the color of a randomly chosen 

bead is changed at random, the average contact matrix of the new polymer computed and 
the cost function weighted until convergence is approached (see Section 3.2.3 on the SA 

procedure).  

Finding {ci}m is only an intermediate output of the method. The procedure is repeated to 

search for the minimal allowed value of n, n*, and then for the maximum of l, l*, required 

to fit the data within a predefined accuracy (see Section 3.2.2. on the SA procedure). The 

best color arrangement {ci}m, here named {ci}*, corresponding to n* and l* is the final output 

of the algorithm, returning the minimal required number of binding domains (colors) and 

their best positioning along the SBS polymer to explain the input data within the predefined 

accuracy (Fig. 3.4a).  

A computationally demanding step of PRISMR is the calculation of the equilibrium 

thermodynamics average contact frequency, C(i,j), for the sites of a given polymer model, 

i.e., a polymer with a given color arrangement, {ci}. That can be achieved, for instance, by 
Molecular Dynamics (MD) computer simulations, which may require huge computational 

efforts, or by enhanced folding algorithms (see, e.g., MELD, MacCallum et al. 2015), which 

albeit approximate can be much faster.  

3.2.1. The Mean-Field approximation 

To speed up the computation of C(i,j) and to make our procedure feasible over genomic 

scales, we considered an approximation typical of mean-field methods of Statistical 
Mechanics (Parisi G. 1998). In our approach, the average contact frequency, C(i,j), over the 

thermodynamics ensemble of allowed 3D conformations of the polymer, is estimated from 

the average contact frequency between two sites at the same genomic separation in a 
homopolymer SBS model of N beads. More specifically, under the above mean-field 

approximation, the contact matrix, C(i,j), is approximated as follows. The contact 

frequency, C(i,j), of two gray sites i and j (i.e., not interacting) is approximated to the average 
one between two non-interacting beads in the corresponding SBS homo-polymer made of 

N gray sites. Analogously, in case i and j are binding sites of the same color, C(i,j) takes the 
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value of the average contact frequency of the two sites in the corresponding SBS homo-

polymer of interacting beads (Barbieri et al. 2012). In particular, as envisaged by polymer 

thermodynamics (Barbieri et al. 2012, de Gennes P. G. 1979), the interacting SBS 
homopolymer can fold in two conformational classes, corresponding to the coil and to the 

globule thermodynamics state. PRISMR also finds the optimal value of the fraction, f, of 
loci folded in the coil state across the sampled cell population (Barbieri et al. 2012). For 

clarity of presentation, below we illustrate the case f=0. Finally, in case i and j belong to 

different color types, C(i,j) is set to the value of the interaction frequencies between beads 

belonging to different types in different domains in the SBS model (Barbieri et al. 2012), 

which is typically found to be negligible with respect to the other cases. A limitation of the 
above approximation is that it neglects, in particular, correlation effects induced by the 

other beads on the chain. The impact of such an approximation is partially moderated by 
the existence of TADs along chromosomes, i.e., chromatin stretches having strong local 

interactions, and thus a predominant color.  

We tested by extensive Molecular Dynamics (MD) simulations that such approximation 

performs comparatively well. Specifically, to test the above approximation, we simulated 

the derived optimal model by full-scale Molecular Dynamics (MD) simulations and we find 
that the contact matrices obtained by MD have a correlation with the mean-field contact 

matrices ranging from r=0.91 to r=0.95 across the studied cases (Bianco et. al Submitted 

(2017)). The major advantage of the mean-field approximation is that the contact matrices 
can be calculated in a comparatively easy way, and used throughout the SA Monte Carlo 

procedure to make computation times feasible. Next, we can run MD simulations (i.e., full 
Langevin dynamics, see Chapter 2) of the optimal model found by the SA procedure to 

derive its contact matrix without any approximation.  

3.2.2. The Simulated Annealing procedure and its parameters 

To optimize the cost function H, we customized a standard Simulated Annealing (SA) 
procedure based on a repeated sequence of Monte Carlo sweeps at decreasing 
temperatures in sawtooth-like discrete steps (Kirkpatrick et al. 1983, Salamon& Frost 2002). 

Here we report the details of our SA procedure referring to the in-situ Hi-C data of the 

mouse Epha4 locus, that will be discussed in the next Section 3.3, but similar results are 

found in the other cases. Specifically, we refer to the case where the input matrix is from 

in-situ Hi-C data with KR normalization in CH12-LX cells (Rao et al. 2014), concerning a 
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6Mb long region (chr1:73000000-79000000, mm9) around the Epha4 gene at a 10kb 

resolution. For sake of definiteness, we illustrate the case with r=n=20 and l=0, but we 

applied the same criteria discussed below to the other cases.  

The algorithm that we employ is based on standard procedure used in Simulated Annealing 

(Kirkpatrick et al. 1983, Salamon& Frost 2002). The inverse temperature values, b, used in 

the sweeps of single SA saw-tooth steps were selected in order to have a range of 

acceptance rates in the Monte Carlo moves spanning from 1 (at the highest temperature) 
to 10-3 (at the lowest temperature), equally spaced on a log scale. In the SA procedure, the 

temperature in each saw-tooth step is hold fixed for a time t(b), depending on b, long 

enough to ensure convergence of the cost function to its equilibrium value at that 

temperature. For a given b, we measure the number of sweeps, t0(b), required to decrease 

the cost function 95% of its asymptotic spanned range. In the cases studied here, t0(b) 

ranges up to 102 Monte Carlo sweeps. The scale of t(b) is chosen 10 times larger than t0(b), 

except at the highest temperature where t = t0, as the acceptance rate is 1, and at the 

lowest temperature where t = 50t0 to most accurately locate the local minimum of H. The 

values of b and t(b) for r=n=20 and l=0 are identified by very general criteria and, in 

practical terms, we find that they can be safely employed in the other cases we dealt with, 

as no major changes are found. The plot in Fig. 3.2 shows how the convergence of the 

cost function is achieved during a saw-tooth run of our SA procedure. Finally, the SA saw-
teeth steps are iteratively repeated until the changes in the estimated optimal value of the 

cost function are within 0.1%. Additionally, we considered the impact of the initial values 
on the SA algorithm outcome. To this aim, we employed the standard strategy in Simulated 
Annealing that is to consider a number of runs from independent initial states. Thus, the 

entire optimization procedure is repeated over up to 5x102 independent runs from different 
initial random states, and their absolute minimum used as output. Importantly, we find that 

the final values of the cost function, obtained for the different initial conditions, differ from 
each other of less than 0.5%, with the best 10 minima differing less than 0.1%, so that the 

algorithm outcome is largely independent from the initial conditions, i.e. different runs, 
considered.  
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Figure 3.2: Convergence of our SA algorithm during a saw-tooth run. 

The convergence of the cost function during a single saw-tooth run of our SA algorithm to 
its asymptotic value is shown. The different visible steps in the plot correspond to the 
different SA temperatures sampled by the algorithm (from very high, initial region, to almost 
zero, final step). The plot shows that a stable minimum is approached well within the time 
scales of our simulations. (Figure from Bianco et al. Submitted (2017)) 

 

To find the minimal number of colors, n*, required to describe the input contact matrix, we 
evaluate the cost function, H0(n), as a function of n with our SA procedure. As expected, 

H0(n) decreases with n, towards an asymptotic plateau (Fig. 3.3a). We choose n* as the 

value where H0(n) has decreased below 90% of its spanned range. Analogously, next we 

find l* by computing H0 v.s. l. H0 increases with l, and l* is the value where it has increased 

above 10% of its initial plateau (Fig. 3.3b). Finally, the minimal required value of r, r*, is 

determined in an analogous way by finding where H0 v.s. r decreases below 90% of its 

spanned range (Fig. 3.3c). As r* is smaller than n* in all the cases considered here, for 

simplicity we set r*=n*. In the case of the in-situ Hi-C data on the Epha4 locus in CH12-LX 

cells (Rao et al. 2014), the above procedure returns n*=21 and l*=1.0. In the following, 

unless otherwise stated, we simplify the notation and n* and r* are renamed n and r. 
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Figure 3.3: Determination of PRISMR parameters.  

a. The decay of the minimum of the cost function, H0, in our SA algorithm as a function of 
the total allowed number of different types of binding sites, n, in the studied murine Epha4 
locus (case shown λ=0). b. The increase of the minimum of the cost function, H0, in our SA 
algorithm as a function of the cost to add an additional binding site, λ, in the studied locus 
(case shown n=21). c. The decay of the minimum of the cost function, H0, in our SA 
algorithm as a function of the resolution of a single polymer bead, r, in the studied locus 
(case shown λ=1, n=21).  (Figure from Bianco et al. Submitted (2017)) 

 

 

3.3. Modeling of the Epha4 locus in mouse CH12-LX cells 
As a first application of the model we consider the Epha4 locus employed above to illustare 

the details of the SA procedure. Specifically, we consider a 6Mb long DNA sequence 
around the Epha4 gene (chr1:73000000-79000000, mm9) in mouse CH12-LX cells. Epha4 

is a key developmental region associated with different types of limb malformations. A 
variety of genomic rearrangements, like deletions, inversions and duplications cause 

distinct phenotypes (brachydactyly, syndactyly, polydactyly) by altering the chromatin 
organization of the locus, thereby causing rewiring of enhancer-promoter contacts and 

gene misexpression (Lupiáñez et al. Cell 2015). The results obtained here about the Epha4 

modeling, will be used in the next Chapter to test the capability of our polymer models to 
predict the effect of genomic rearrangements.  

The Hi-C datsets used to infer the polymer model are published from Rao et al., 2014, in 

mouse CH12-LX cells, at 10kb resolution, and are shown in Fig. 3.4b, upper part . The 

experimental data used are normalized with the KR (Knights and Ruiz) normalization, that 

is a standard precedure (Knight& Ruiz, 2013). A scheme of the locus is shown in Fig. 3.4b, 



 
 

	 48	

CHAPTER	3	

middle part. Applying the PRISMR algorithm decribed in the previous section, we identify 

the different “binding domains” of the locus, i.e., the sets of binding sites of the same type 

(i.e., color) determining of the folding patterns (Fig. 3.4a). In this case, as showed above, 

the model predicts n=21 different binding domains. To check the robustness of our SA 
procedure we showed that its best minima return comparable fits to Hi-C data and similar 

corresponding polymer models (p-value<1e-250, subsection 3.3.4); additionally, the 
optimal model is robust to changes to the number of the colors (see subsection 3.3.4). The 

model binding domains can be broadly divided into 2 categories (Fig. 3.4a). One category 

includes domains largely overlapping with annotated TADs (type-I), and another with 

domains extending over several TADs or even the whole analyzed region (type-II) (see 

subsection 3.3.3).   

 

 

Figure 3.4: Polymer physics recapitulates 3D conformation at the Epha4 locus  

a. PRISMR identifies the different binding sites along the locus that shape its 3D structure. 
The binding sites of the same type (color) form the shown different binding domains. In 
case of Epha4 locus in CH12-LX cells, there are 21 statistically significant (Wilcoxon’s rank 
sum test; p-value <1.1e-7, see subsection 3.3.4) different binding domains. The bar plots 
represent their abundance (in percentage) along the genomic sequence. Type-I domains 
are spatially restricted whereas Type-II are ubiquitous, covering the whole region. Their 
overlapping genomic positions produce the observed complex interaction patterns.  
b. Published in-situ Hi-C data (Rao et al. 2014, top matrix) compare well with the contact 
matrix derived by PRISMR (bottom matrix). Their Pearson correlation, r is 0.91. In the 
middle, the Epha4 locus is represented, with some important genes (Wnt6, Epha4, Pax3) 
and Epha4 enhancer (Enh) highlighted. c. The shown 3D conformation is a snapshot of the 
model of the Epha4 locus with the relative positions of genes and regulator highlighted. The 
color scheme used is reported in panel b along the linear sequence of the locus. 
(Figure adapted from Bianco et al. Submitted (2017)) 
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Asstated in the previous Section, once we have obtained the optimum arrangement of the 

binding sites along the polymer, we performed MD simulations to recostruct the 3D 
structure of Epha4. To test the accuracy of our structures, we compute, from the ensemble 

of configurations formed in the dinamics process, the average contact maps and compare 

it with the experimental data. As shown in Fig. 3.4b, bottom matrix, the simulated contact 

matix obtained is very similar to experimental data. The Pearson correlation coefficient 

between in-situ Hi-C data and simulated contact frequency matrix is r=0.91, proving that 
our model captures relevant features of the mechanisms determining the folding of Epha4. 

In Fig. 3.2, a snapshot of a single typical 3D configuration, obtained from the dinamics, 

when the polymer is fully equilibrated, i.e. when it is in the closed state. Here, we represent 

the relative positioning of Epha4, Wnt6 and Pax3 and the Enh regulator. 

 
3.3.1. Simulation details  

To model the 3D structure of the Epha4 locus in CH12-LX cells, we use a chain made of 

N=12600 beads. Since the region to model is L=6Mb long, the corresponding genomic 

content per chain bead is s0=L/N= 476bp. Furthermore, to speed up the folding of the 
polymer, we start the simulation with a shorter polymer made of N/3 beads, then we add 

the remaining beads by reducing the original bead diameter of a factor 1/3, and the other 
MD parameters change accordingly in order to keep the same interaction energy. The total 

binder concentration, c, was sampled in the range from zero to 250nmol/l and the 
interaction energy Eint=0kBT or 8.1kBT, corresponding to the polymer coil and globule state 

respectively. The dimensionless friction coefficient is set to ζ=0.5 (Kremer, K. & Grest, 1990, 

Chiariello et al. 2016). The MD integration time step is Δt=0.012 (Rosa & Everaers, 2008) 
and we let the system evolve up to 109 time steps, to reach stationarity. Our ensemble 

averages span up to 4x102 independent runs for each set of system parameters. The 3D 

structure presented in Fig. 3.2, is obtained from the polymer dynamics, in the equilibrium 

closed phase. Mathematically, it is a smooth curve described by a third order polynomial 
spline passing through the centers of each polymer bead.  

 

3.3.2. Computation of contact maps 

The contact maps presented in this Chapter, are computed following the approach 

described in the previous Chapter, with a variant where only contacts between beads of 
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the same type are considered. In the case of Epha4, the parameter for the interaction 

threshold is set to A=9 (in the same notation of Chapter 2, see section 2.6.3). The same 

approach is used for the models presented in the following sections and chapter, where 
we computed the matrices with the parameter A ranging from 2 to 10, and we find similar 
results in all cases. In the framework of the SBS model, we consider separately the open 

phase (i.e. the SAW conformational class) and the closed phase (i.e. the equilibrium phase 
after the complete folding of the polymer). Then, we consider a mixture of the contact 

matrices in the coil and in the globule states, as discussed in Barbieri et al. (2012); Chiariello 

et al. (2016), and we seek the open-closed mixture that maximizes the Pearson correlation 

coefficient between model inferred and Hi-C data. For example, we find that the Epha4 
locus discussed here is made of 89% of open and 11% of closed state. As Hi-C matrices 

are computed from sequencing reads, a scale factor must be used in the comparison. The 
corresponding matrix for the Epha4 locus is shown in Fig.3.4b. 

3.3.3. Characterization of the identified binding domains 
 
The different n* binding domains identified by PRISMR in the best polymer {ci}* are 

specified by the coordinates (in bases) of their binding sites along the locus. To quantify 

the similarity between pairs of binding domains we measured their genomic overlap, q. 

For a generic pair of binding domains (colors) k1 and k2, q is defined as: 
 

(10)    q(k1,k2) =  ∑i=1
L fi(k1)*fi(k2)/sqrt[ ∑i=1

L  fi
2(k1)* ∑i=1

L  fi
2(k2)] 

 

where fi(kj) is the occurrence number of the binding sites of domain kj in the i-th bin of the 
genomic sequence of length L.  

 
We also measured the overlaps of binding domains with the locus TADs annotated in Dixon 

et al. 2012. For a given TAD, we define as above a signal fi that is equal to 1 if the i-th bin 

of the polymer chain is inside the TAD and equal to 0 if not. For the TADs at the edges, 
which extend beyond the boundaries of the locus, we cut their coordinates at the border 

so to consider just the part inside the given locus.  
 

To assign the binding domains to the type I-II classes described above, we used their 

overlaps with TADs (Dixon et al. 2012): specifically, a binding domain is of type I if it strongly 
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overlaps only one TAD or two consecutive TADs, else it is of type II. We considered as 

‘strong overlaps’ values that exceed the median of the overlaps between all pairs of TADs 
and binding domains.  

 

3.3.4. Statistical significance and robustness of the binding domains 

To check the robustness of our approach and, more specifically, of the different types of 

binding sites and their locations along the polymer chain identified by PRISMR, we 

compared the minimum {ci}* (i.e., the best polymer model) found for n*=21 (and l*=1.0) 

(Fig. 3.1a) with the minima found when the allowed number of colors, n, is increased or 

decreased by 30% (i.e., with the minima for n=27 and n=15), and against a random control 

model. We find that the in-situ Hi-C contact matrix has a Pearson correlation coefficient 
equal to r=0.95 with the PRISMR predicted contact matrix in the optimal n*=21 case. A 

r=0.95 correlation is also found in the case where n=27, decreasing to r=0.93 for n=15. 

Such a comparison supports the view that n*=21 is a good estimate of the required number 

of different types of binding domains (colors) in the model of Epha4, as it strikes a good 
balance between overfitting and returning a good description of the data because 

comparatively higher values of n would not return significantly better correlations. 

To check the level of randomness inherent to the binding domains identified by PRISMR in 

{ci}*, we compared their overlap (see overlap definition subsection 3.3.3) with each other 

against the expected overlap in a control random model. More specifically, we first 
measured the overlap, q, between different colors in the optimal output {ci}*, i.e., the 

overlap of the positions of the beads belonging to two different types of sites in the n*=21 

case. Then, we measured the positional overlaps between pairs of binding domains 
(different colors) in a random model obtained from the optimal configuration {ci}* by 

bootstrapping. We found that the average overlap between domains within {ci}* is q=15%, 

which is significantly smaller (p-value = 1.9e-130, Wilcoxon’s rank sum test) than the 

average overlap found in the random control, qrand=40% (the distribution of random 

overlaps has a standard deviation srand=3%). Furthermore, the body of the distribution of 

the values of q extends from zero up to 35%, remaining thus below the average value of 

the random control case. Those results show that the binding domains identified by 

PRISMR are far from randomly positioned in the Epha4 locus.  
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Next, to test the robustness of our results to changes in the algorithm procedure, we 

compared the similarity of the binding domains found for n=27 with those for n*=21, i.e., 

the overlap of the colors in the two cases. Specifically, we measured the positional overlap 
between the beads of all the possible pairs of colors in the n=27 and n*=21 cases. We then 

linked, in an exclusive way, a given color type in the n*=21 case with the most overlapping 

color in the n=27 case and found that for 90% of domains the overlap is larger than 

qrand+2srand, spanning a range from 98% down to 41%. Similarly, the comparison of the 

domains identified for n=15 and n*=21 shows that 87% of domains have an overlap larger 

than qrand+2srand. Hence, the color domains found in the case n=15 and n=27 are similar, in 

a statistically significant way (p-values = 1.1e-7 and 2.4e-13 respectively, Wilcoxon’s rank 

sum test), to those of the optimal case n*=21. 

Finally, to check the robustness of the absolute minimum found by PRISMR, we compared 

the best 10 discovered minima (whose related cost functions differ less than 0.1% (see 

subsection 3.2.2.) in the optimal case n*=21 and found that the overlap between the top 

30% overlapping binding domains is above 90%, while overall the average overlap 
between corresponding binding domains is 65%, significantly higher than the average 

overlap found in the random control model (p-value<1e-250, Wilcoxon’s rank sum test). 
Such a result shows that if a comparable fit to real Hi-C data is obtained by two different 

runs, then the two runs produce polymer models that are very similar to each other.  

Taken together our results support the view that the optimal polymer {ci}* identified by 

PRISMR and its binding domains are far from random and robust to changes in the 
parameters of the algorithm. Similar results are found in the other datasets considered 

here and in the next Chapter. 

3.3.5. Comparison of the binding domains with epigenetic features 

As an initial step to investigate the molecular nature of the factors contributing to define 
the different types of binding sites (‘colours’) envisaged by PRISMR, we derived their 

epigenomic barcode. In murine erythroleukemia CH12-LX cells, chromatin data are 
available from the ENCODE project database (ENCODE Project Consortium, 2004; Wu et 

al. 2011) that we use to characterize the binding domains identified by PRISMR. We 

crossed the information about their genomic positions with a number of published 

chromatin features, such as histone modifications and transcription factors (see Section 



 
 

	 53	

CHAPTER	3	

1.3 for some basic information about epigenetics). Specifically, for each binding domain 

(‘colour’) and for each chromatin feature we calculated the Pearson correlation coefficient 
between the number of binding sites of that domain at a 10kb resolution and the number 

of called peaks present in those 10kb wide bins (by at least a base pair) as identified by the 

widespread bedtools coverage tool (Quinlan A. R, 2014, Quinlan&Hall, 2010) (Fig. 3.4). 

Afterwards, in order to find only statistical significant correlations, we employed a random 
control model where Pearson correlations are computed between chromatin marks and 

random binding domains, obtained from ours by bootstrapping. Correlations with a specific 
chromatin mark are considered significant if above the 95th percentile or below the 5th 

percentile of the corresponding random correlations distribution. We find that single 
colours do not correspond to single molecular factors, as each usually correlates with a 

combination of different marks.  

 

 

Figure 3.4: Epigenetic barcoding of the binding domains envisaged by PRISMR in the 
Epha4 locus of CH12-LX cells 

a. In the Epha4 locus of CH12-LX murine cells, PRISMR envisages n=21 different binding 
domains (colors). Their genomic position and abundance are here recapitulated.  b. 
ENCODE chromatin features (ENCODE Project Consortium, 2004; Wu et al. 2011) for the 
same DNA region are here listed. c. Matrix with the statistically significant Pearson 
correlation coefficients of the different binding domains of panel (a) with the ENCODE 
signals of panel (b). The domains have been clustered according to the similarity of their 
epigenetic barcode. (Figure from Bianco et al. Submitted (2017)) 
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Finally, a hierarchical clustering was performed on the significant correlations matrix by 

using the Python SciPy clustering package. From the clustering analysis a nontrivial 

relationship emerges between binding domains and epigenetic features. For instance, we 
find that Type-I binding domains can be broadly subdivided in two categories linked 
respectively to repressive epigenetic marks (e.g., H3K27me3) and active marks (e.g., 

H3K4me1/2/3 and Pol-II). Many Type-I binding domains also correlate with the 
CTCF/Cohesin (CTCF/Rad21/Smc3) system, known to play an important role in chromatin 

architecture through the formation of chromatin loops (Nora et al. 2017, Schwarzer et al. 

2016, Sanborn et al. 2015, Fudenberg et al. 2016). However, they also correlate with other, 

different groups of ENCODE marks, returning the view that additional factors can aid, 
specify or constrain CTCF linked interactions. This is consistent with recent experiments 

showing that targeted depletion of CTCF can have a minor effect on chromatin organization 
(Kubo et al. 2017). Our finding that other factors, beyond CTCF, may play a role in chromatin 

organization is also consistent with recent exciting developments in the literature where 
additional players are being identified, such as PRC1 (Kundu et al. 2017), MLL3/4 (Yan et 

al. 2017), Active/Poised Pol-II (Barbieri et al. 2017), etc. Additionally, many other colours 

have no significant correlation with CTCF/Cohesin. Type-II colors can be subdivided, as 

well, in a group correlated to H3K27me3 and in a group anti-correlated with H3K27me3. 
However, they are mainly characterized by lack of significant correlations with most of the 
other available ENCODE marks, which could point towards the existence of other, yet 

unidentified structurally relevant chromatin factors.  

Taken together, our epigenetic analysis shows that the different types of binding sites, and 

their cognate binders, envisaged by PRISMR do not simply correspond to a single 
molecular factor associated to chromatin, but rather to combinations of different factors. It 

supports the view that several, structurally relevant chromatin organizers exist beyond 
CTCF/Cohesin, including factors yet unmapped in ENCODE, which act in combinations to 
induce, specify or constrain folding. This is consistent with recent developments in the 

literature where novel factors are being discovered linked to chromosome folding (Kubo et 

al. 2017, Kundu et al. 2017, Yan et al. 2017, Barbieri et al. 2017, Hug et al. 2017). 
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3.4. Modeling of the Sox9 locus in mouse ES cells (mESCs) 
In this Section, we apply the PRISMR method just described above to another locus, to 

test the general validity of our approach and consider it as a powerful tool to reconstruct 
and visualize the 3D architecture of real loci in the genome. We focus on the Sox9 locus 

(chr11:109000000-115000000, mm9), a 6Mb long region around the Sox9 gene, which is a 

very important locus linked to congenital diseases (Franke et al., 2016), including gene rich 

regions and gene desert regions, as shown in Fig. 3.5a, upper part. The experimental Hi-C 

data used to infer the polymer are published from Dixon et al., 2012, in mouse ESC-J1 cell 

line, at 40kb resolution, and are normalized as described in Yaffe&Tanay, 2011 (Fig. 3.5b). 

The PRISMR inference procedure gives in this case a total of n=15 different binding 

domains (colors), as represented in Fig 3.5a. As seen for the Epha4 locus before, the 

binding domains tend to overlap with the different TADs existing in the locus, but they also 

overlap with each other and produce interactions between TADs, giving the hierarchical 

structure (metaTADs) visible in the  original experimental matrix (Fig. 3.5b, top matrix). Our 

method returns a contact matrix very similar to the experimental data, with a Pearson 

correlation coefficient r=0.95 between model and data, as shown in Fig. 3.5. A snapshot of 

a single typical configuration, in the closed state, is shown in Fig. 3.5c, where the relative 

positioning of Sox9 and other genes in the locus, across its different higher order domains, 

can be visualized. For instance, the transcription starting sites (TSSs) of the Sox9 and Kcnj2 

genes have a genomic separation almost four times larger than the TSSs of Sox9 and 

Slc39a11 (1.72 Mb v.s. 0.46 Mb), but the average physical distances of the two pairs are 

proportionally closer (1.19 μ m v.s. 0.59 μ m) as the three genes belong to consecutive 
regional areas. The Sox9 locus is marked by many-body contacts (see Chapter 2 Section 

2.7) that are exponentially more abundant than expected in a randomly folded conformation 

(Fig. 3.5d, error bars within symbol size). As shown Fig. 3.5e, the self-assembly of the locus 

spatial structure starts from a totally random SAW initial state (open confromational class) 
and proceeds hierarchically, passing through early local domains folding into larger and 

larger domains that cover the whole locus. The same snapshot of the full 3D structure of 

the Sox9 locus in Fig. 3.5c, along with a comparison with its average contact matrix and 

TADs, is shown in Fig. 3.6 with an alternative color scheme that follows the coordinates of 

the original TADs identified in Dixon et al. 2012. This way, for example, it is visible that TAD 
D (red) has a complex internal 3D structure, with a large part of it mostly associated to TAD 
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E. Additionally, the dynamics of the interactions between the genes within the locus and 

their regulators can be derived. Summarizing, the variety of information on Sox9 and its 

folding mechanisms that can be inferred from polymer physics extends well beyond the Hi-
C pair-wise contact data used to infer the model.  

 

 

Figure 3.5: Polymer physics captures the folding of the Sox9 locus.  
 
a. Top: the considered Sox9 locus in mESC-J1 cells, with a few marker genes. Bottom: the 
SBS polymer model that best explain the Hi-C contact map of the Sox9 region has the 
shown different types of binding sites, as seen in the zoom (different colors); their 
abundance is represented as a histogram over the genomic sequence. The bar at the 
bottom highlights three main regional areas to help 3D visualization. b. The model derived 
pairwise contact frequency matrix (bottom) has a 95% Pearson correlation with Hi-C 
experimental data (top). c. A snapshot of the Sox9 locus in its closed disordered state as 
derived by the polymer model, with the position of TSSs of some key genes highlighted. d. 
In the locus, many-body contacts of n sites are exponentially more abundant than in 
random SAW conformations (the ratio of the average number is plotted v.s. n), which could 
help the simultaneous colocalization of multiple functional regulatory regions. e. The Sox9 
locus folding dynamics from an initially open conformation towards the closed disordered 
state is represented by the gyration radius, Rg(t). Chromatin domains self-assemble 
hierarchically in higher-order structures, in approx. 20s. 
(Figure from Chiariello et al. 2016) 
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Figure 3.6: 3D reconstruction of the Sox9 locus in mESC-J1 cells, alternative color 
scheme 

The same configuration of the full 3D structure of the Sox9 locus in mESC-J1 represented 
in Fig. 3.5c, with a color scheme reflecting the TADs position (from Dixon et al. 2012). It 
allows to visually interpret the patterns seen in its Hi-C map and the relative organization 
and interactions of TADs. 
(Figure adapted from Bianco et al. 2017) 
 
 

3.4.1. Simulation details of the Sox9 polymer model 

For the considered 6Mb region around the Sox9 gene in mESC-J1, the PRISMR procedure 

returns a polymer composed by n=15 colors and made of N=2250 beads. So, the 
elementary bead of the polymer has a genomic content of L/N=2.67Kb. The size of the 

bead is thus 26nm, as follows from the calculation described in Section 2.3.5. The 
parameters used in the MD simulations (potentials, interaction energies and 

concentrations) are the same used for the modeling of the Epha4 locus. The 3D structures 

are produced as previously described. 
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3.5. Modeling of the murine orthologue of the 7q11.23 human 
locus  
In this Section, as a further example of application of our method, we show the results of 

the modeling of the 7q11.23 locus, a genomic region of great interest in Neurogenetics. In 
this region, structural variants (deletions and duplications) are associated with a variety of 

neurological disorders. For example, the 7q11.23 duplication syndrome is associated with 
speech problems and behavioral issues such as increased anxiety levels and autism (see 
Berg et al., 2007; Merla et al., 2010; Ramocki et al., 2010; Ebert et al., 2014). Deletions at 

the 7q11.23 locus, encompassing a couple of dozens genes, are instead associated to the 
Williams-Beuren syndrome (WSB), a complex developmental disorder (see Nature 

Research Highlights, 2011; Sanders et al., 2011; Chailangkarn et al., 2016). The attribution 
of the various features of WBS to specific genes is a complex, on-going effort. Besides the 

role of the genes in the deleted/duplicated region or epigenetic mechanisms, a factor that 
may be implicated in determining the genotype-phenotype relationship is the effect of such 

structural variants on the 3D folding of the locus. With such motivation, we report the first, 
albeit initial polymer physics exploration of the 3D conformation of the 7q11.23 locus.  

 
Using the same procedure described above for the Epha4 and Sox9 loci, we modelled a 

8Mb region (chr5:129500000-137500000, Fig. 3.7a) in mouse ESC-46C cell line, syntenic 

with the 7q11.23 locus in human genome. The dataset used is from Fraser et al. (2015), 
binned at 50kb, with ICE normalization (Imakaev et al., 2012). The PRISMR inferred contact 

matrix is highly correlated with the experimental matrix (Fig. 3.7a), with a Pearson 

correlation coefficient r = 0.97. The polymer model of the locus involves n=15 different 
types of binding sites, whose position and abundance along the DNA sequence is 

represented by the different color histograms in Fig. 3.7c. The associated inferred 

conformations of the polymer model help explaining the 3D features of this locus. In Fig. 

3.7b, two possible configurations, obtained from independent simulations, are showed. For 

sake of clarity, we color in green, orange and cyan respectively the three major domains 

visible in the matrix (labeled again as A, B and C, Fig. 3.7a), so we can easily compare the 

contact pattern with the spatial reconstruction. At a first visual analysis, we can recognize 

the A, B and C domains as distinguishable and individual blocks, in agreement with the 
experimental data.  
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Figure 3.7: 3D reconstruction of the 7q11.23 locus in ESC-46C cells.  
a. The modeled 8Mb chromosome region in mouse ESC-46C cells is shown. This region is 
syntenic with the 7q11.23 locus in human genome, which is linked to neurological disorders 
such as autism. The Hi-C experimental data (top matrix) are reproduced by the model 
derived contact data (bottom matrix) with good accuracy (Pearson r = 0.97). b. Two 
examples of independent 3D structures derived by Molecular Dynamics simulations. The 
three major contact domains (A, B, C) have complex, long range interactions with each 
other (e.g., the contacts between the green and cyan domains), in agreement with the Hi-
C data. c. The SBS inferred n=15 binding domains of the locus, which drive its folding, are 
here shown. d. Pearson correlation coefficients between the relative abundance of the SBS 
binding domains with epigenetic chromatin features. (Figure from Chiariello et al. 2017) 
 

 

 A more deeper inspection reveal a non-random contact between domain A and domain C, 

which is again in agreement with the long-range interaction contained in the experimental 
matrix, even though it is a higher-order detail. Importantly, a collection of much smaller 

domains (the strong red triangles in the contact matrix) close to the diagonal is evident, and 
a complex pattern of higher order interactions among them is present, so to give the typical 

hierarchical internal substructure to the major domains. The model also captures such 
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lower level organization. For sake of clarity, we do not color all these domains in the polymer 

representation of Fig. 3.7b. As the model does capture not only general aspects of the 

locus organization, but also its finer features, it can be used to derive relevant biological 

implications of the 3D structure. To this aim, as made for the Epha4 locus in Section 3.3 

(see Fig 3.4), we analyze databases of epigenetic features and cross them with the relative 

abundance of the binding sites (Bianco et al., 2017, Bianco et al., Submitted (2017)). In Fig. 

3.7d are reported the results, which reveal again a complex, not trivial, pattern of 

correlations. Interestingly, several binding domains exhibit high correlations with many of 

the considered features, reflecting the biological complexity of the locus, highly enriched 

in genes (Fig. 3.7a). Conversely, few of the binding domains (e.g., type 5 and 11, Fig. 

3.7c,d) do not correlate with the considered epigenetic features, and result to be 

associated with the central, gene poor, region of the locus.  

 
In summary, our polymer model of the murine genomic region syntenic with the 7q11.23 

locus in human provides a first reconstruction of the ensemble of 3D conformation of the 
locus. A complex network of higher-order interactions of the locus emerges from our 

analysis, whose rewiring could be important to understand the effects of disease 
associated structural variants. 

 

3.6. General applicability of the PRISMR method 
We have discussed in this Chapter how polymer physics can reproduce with high accuracy 

(Pearson correlation coefficients higher than 0.9) the details of the structure of specific DNA 
regions, as emerge from Hi-C experiments. And we have seen how the polymer models 

inferred from Hi-C, can be used to derive further information about the 3D organization of 
the corresponding loci, beyond pairwise Hi-C contacts data. In particular, we focused on 

three important loci of DNA (Epha4, Sox9, 7911.23), linked to development and diseases. 

Using the same approach, we have modelled a dozen of other genomic loci, each 2-10Mb 
long, in different cell lines and tissues, obtaining similar levels of accuracy and various 

insights into the 3D chromatin architecture. Some of these studies are made in 
collaboration with the group of Professor Stefan Mundlos, at Max Planck Institute for 

Molecular Genetics, Berlin (Bianco et al., Submitted (2017), Kragesteen et al., Submitted 
(2017)), and the group directed by Professor Jim Hughes, at Oxford University (Oudelaar et 
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al, in preparation) and are not yet published. Others can be found in the papers Chiariello 

et al., 2016, Annunziatella et al., 2016, Bianco et al., 2017, Chiariello et al. 2017. These 

results will not be reported here for brevity. Here, we just want to highlight that in the 
different studied loci we used experimental contact data produced with different 

techniques (as 5C, Hi-C, in-situ Hi-C, etc.), at different resolutions and normalized in 
completely different ways (e.g., KR or ICE normalization). In this way, we enforce the validity 

of the method, that results to be unaffected by the underlying experimental technique and 
data treatments. Furthermore, in a collaboration with the group of Professor Ana Pombo at 

Max Delbruck Center for Molecular Medicine in Berlin, we adapted the PRISMR algorithm 
to work with a completely new type of experimental data, produced by GAM method 

(Beagrie et al. 2017), which, unlike all the others, is not a 3C-based technique (see Section 

1.4). Moreover, in case of mouse ESC cells, we have extended the modeling genome-wide, 
i.e. to the entire set of 19 chromosomes of the mouse genome. The results of these studies 

have not been published yet and represent current research projects of the group.  
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4. Prediction of the effects of Structural Variants (SVs) 
on chromatin organization 

 

4.1. Introduction 
In the previous Chapter, we have introduced the PRISMR method as a powerful tool to 
describe the folding of DNA loci and reconstruct their detailed 3D structure.  That is 

achieved by use of the SBS polymer model (Chapter 2) together with information obtained 
from Hi-C experiments (Chapter 1).  In this final Chapter, we will present a stringent test of 

the model. We will try to predict how the folding of a DNA locus changes after genomic 
rearrangements along its genomic sequence. In fact, the chromosome 3D folding, and 

especially the organization of TADs (Section 1.5.2), can be disrupted by genomic 

rearrangements, such as deletions, duplications or inversions, collectively called structural 

variants (SVs) (Lupiáñez et al. 2015, Hnisz et al. 2016, Lupiáñez et al. 2016, Franke et al. 

2016). SVs can result in a re-wiring of enhancer-promoter contacts (Section 1.3), gene 

misexpression and disease. However, it is currently difficult to predict such ectopic 
interactions without performing extensive 3C-based experiments (Section 1.4) in cells or 

tissues carrying the rearranged chromosomes. In this scenario, polymer modelling by 
PRISMR emerges as a valid approach to predict interactions in silico, thereby providing a 

tool for analyzing the disease-causing potential of SVs. 

In this Chapter, we will analyze a set of SVs, along the EPHA4 locus, associated with 

different limb malformations (Lupiáñez et al. 2015), in four different mouse and human cell 

types (Section 4.2). In Section 4.3 we will model with PRISMR the wild-type, i.e. non-
rearranged, EPHA4 locus using all the four datasets. In Sections 4.4 and 4.5 we will discuss 

the model predictions, in mouse and human respectively, of the effects of SVs and will 

compare them to Capture Hi-C data generated from mouse limb buds and patient-derived 
fibroblasts.  

 
Most of the material presented in this Chapter, including figures, paragraphs and 

sentences, is adapted or taken literally from the paper Bianco et al., Submitted (2017), 
which I coauthored. 
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4.2. Capture Hi-C (cHi-C) experiments and studied datasets 
To test the predictive value of PRISMR, we chose the EPHA4 locus, a key developmental 

region associated with different types of limb malformations (Lupiáñez et al. 2015). This 

study has been developed in collaboration with the group of Professor Stefan Mundlos at 

Max Planck for Molecular Genetics in Berlin, that performed the Capture Hi-C (cHi-C) 

experiment (Franke et al. 2016), one variant of Hi-C methods, and produced the datasets 

that we used for modeling the EPHA4 locus. In a previous study by Mundlos group, the 

authors showed, using 4C experiments, that structural variants (SVs) at the EPHA4 locus, 

like deletions, inversions and duplications, cause distinct phenotypes (brachydactyly, 

syndactyly, polydactyly) by altering the chromatin organization of the locus, thereby 
causing rewiring of enhancer-promoter contacts and gene misexpression (Lupiáñez et al. 

2015). As seen in Section 1.4.1, 4C experiments only give information about the contacts 
of a single genomic position (the viewpoint) with the rest of the locus. To analyze the 3D 

configuration of the entire locus, as part of this new study, we performed cHi-C experiments 
from E11.5 mouse limb buds and human skin fibroblasts. We also analyzed the same locus 

from previously published Hi-C datasets from CH12-LX murine and IMR90 human cells 
(Rao et al. 2014).  

To test the model predictions, new experimental cHi-C dataset was next produced from 

mouse limb buds carrying previously reported homozygous structural variants (Lupiáñez 

et al. 2015): a 1.6 Mb deletion, DelB (coordinates mm9 chr1: 76388978-78060839), a 1.5 

Mb deletion, DelBs (coordinates mm9 chr1: 76388978-77858974), and a 1.1 Mb inversion, 

InvF (coordinates mm9 chr1: 74832836-75898707). The term homozygous means that both 
alleles at the Epha4 locus on the homologous chromosomes (Section 1.2) carry the 

mutation. On the contrary, a structural variant is heterozygous if present only on one allele, 

the other being of wild-type kind. To test the potential of PRISMR to predict the effects of 
heterozygous SVs on chromatin organization as they are commonly observed in human 

patient samples, fibroblasts obtained from human patients were used to perform cHi-C. In 
particular, we analyzed a 1.6 Mb deletion associated with brachydactyly (coordinates hg19 

chr2: 221276849-223021152, similar to mouse DelB), a 900 Kb duplication (coordinates 

hg19 chr2: 219875536-220789199, DupP) associated with polydactyly and IHH activation, 
and a 1.4 Mb duplication (coordinates hg19 chr2: 219713606-221090946, DupF) 

associated with syndactyly and WNT6 gene activation (Lupiáñez et al. 2015). 
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The murine Epha4 locus discussed here is the 6Mb long region around the Epha4 gene 

introduced in Section 3.3 (coordinates mm9 chr1: 73,000,000-79,000,000). We employ in-

situ Hi-C data from wild type (wt) CH12-LX cells (Rao et al. 2014) and cHi-C data in wt and 
mutants E11.5 mouse limb buds, at a 10kb resolution. The studied human EPHA4 locus in 

skin fibroblasts is 5.77Mb long (coordinates hg19 chr2: 218,320,000-224,090,000); in that 

system cHi-C data for human healthy control [or wild-type (WT)] and patients are produced 
at 10kb resolution. We also studied the EPHA4 locus in WT human IMR90 cells, where we 

used previously published in-situ Hi-C at 10kb resolution ((Rao et al. 2014); the considered 

locus is 8Mb long (coordinates hg19 chr2: 217,000,000-225,000,000). All the datasets have 
been normalized applying the KR (Knights and Ruiz) normalization (Knights&Ruiz, 2013), a 

matrix balancing algorithm that ensures equal sums for all rows and columns of the map. 
The underlying assumption for this type of normalization is that all loci should have an equal 

representation in the map. Since we did not work directly to the experimental stage, all the 
biological and chemical details of the cHi-C experiment, biological samples, preparation of 

the libraries and sequencing, will not be discussed here.  
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Figure 4.1: PRISMR recapitulates 3D conformation at the EPHA4 locus 

Hi-C data from Rao et al. 2014 (left) and our capture Hi-C data (right) compare well with the 
contact matrices derived by PRISMR. Their Pearson correlation, r, and distance-corrected 
Pearson correlation coefficient, r’, are: r=0.91, r’=0.56 in CH12-LX (see also Fig. 3.4), 
r=0.94, r’=0.60 in limb tissue E11.5, r=0.92, r’=0.64 in IMR90 and r=0.93, r’=0.69 in human 
fibroblasts. 	
(Figure adapted from Bianco et al. Submitted (2017)) 
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4.3. Polymer models of the wild type EPHA4 locus in mouse 
and human cells 
 

4.3.1. PRISMR models of the EPHA4 locus  

In Fig. 4.1 (top matrices) the different wild-type Hi-C datasets mentioned in the previous 

section are shown. Regardless of the cell or tissue type or the species, we observe in Hi-C 

maps a subdivision of the wild-type EPHA4 locus in one large TAD-containing only EPHA4, 

a smaller TAD-containing the genes PAX3 and SGPP2, and a gene dense region on the 

centromeric side that shows no clear TAD structure. Differences within the EPHA4 TAD 
were apparent, that are likely to reflect cell and tissue-specific patterns of interaction and 

gene regulation.   

Towards developing predictive models of the architecture of the EPHA4 locus across the 

different cell types, we applied PRISMR to all four datasets. As shown in the previous 

Chapter, PRISMR identifies the different binding domains of the locus, i.e., the sets of 

binding sites of the same type (i.e., color) determining the folding patterns. In case of the 
10kb resolution in-situ Hi-C data on the Epha4 locus in CH12-LX cells (Rao et al. 2014), we 

have seen that the model predicts n=21 different binding domains and l=1.0. (Chapter 3, 

Figs. 3.3, 3.4). In the case of 10kb resolution, KR normalized, cHi-C data in mouse limb 

tissue similar values are found and we also use n=21 and l=1.0. Applied to 10kb resolution, 

KR normalized, in-situ Hi-C data in human IMR90 cells (Rao et al. 2014) on the considered 

human Epha4 locus, PRISMR gives n=16 and l=1.0. For 10kb resolution, KR normalized, 

cHi-C data in human fibroblast produced in this study we find n=24 and l=1.0.  The model 

contact matrices, derived from Molecular Dynamics (MD) simulations of the identified 
polymer models as discussed in the previous Chapter, are similar to the original Hi-C, not 

only recapitulating the global TAD conformation of the locus, but also cell-specific intra-

TAD organization (Fig. 4.1): the Pearson correlation coefficient, r, range up to r=0.95 (Fig. 

4.1).  

As the simple Pearson correlation is dominated by distance-dependence of Hi-C data, we 

also considered a finer measure to compare experimental and model matrices, the 

distance-corrected correlation. Thus, we have measured the Pearson correlation, r’, after 

the effect of genomic distance is subtracted from a contact map. (Fig. 4.2). Specifically, we 
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subtracted from each diagonal of the contact matrices (experimental and predicted) their 

average contact frequency (corresponding to a fixed genomic distance), and then 
calculated the Pearson correlation coefficient, excluding the effect of strong outliers 

(>99.9th percentile) in the murine datasets. As control case, we considered the correlation 
between distance-corrected experimental matrix and distance-corrected predicted matrix 

with bootstrapped diagonals where we obtained values of r‘ lower than 0.05, well below 

the values for the real data that range up to r’=0.69 (Figs. 4.1, 4.2). Furthermore, the 

correlation values found between our model matrices and experiments are comparable to 
the estimation of the correlation levels between biological replicates of the KR normalized 

cHi-C maps; for example, in human we find that r’ is around 0.65 across replicates (Bianco 
et al., Submitted (2017)). That is an indication that our models accurately describe 

experimental data. 

 

 

 

Figure 4.2: Comparison of cHi-C and model data in human fibroblast cells after 
correcting for genomic proximity effects.   

The model derived contact matrix (bottom left) of the EPHA4 locus in human fibroblast cells 
has a high Pearson correlation with our cHi-C data (top left, r=0.93). The matrices in the 
right panel are obtained by subtraction of the average interaction at a given genomic 
distance. The patterns in the data are still captured by the model after the effects of 
genomic distance are subtracted: the Pearson correlation coefficients remains high 
(r’=0.69). (Figure from Bianco et al. Submitted (2017)) 
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4.3.2. PRISMR+CTCF models of the Epha4 locus  

One major factor known to organise chromatin folding is the architectural protein CTCF, a 

DNA-binding transcription factor thought to facilitate the formation of chromatin loops 
(Sanborn et al. 2015, Guo et al. 2015, Fudenberg et al. 2016, Nora et al. 2017). Interestingly, 

as discussed in the previous Chapter (subsection 3.3.5), some binding site types envisaged 
by PRISMR correlate with CTCF. As our method does not exploit prior information on 

binding sites and factors, to test its reach we considered a variant of the model where we 
include previous knowledge on the location of CTCF binding sites in the locus, which are 

added to interact with an additional type of binders bridging opposed (forward/reverse) 
CTCF sites. In limb tissue E11.5 cells, for instance, this variant (named ‘PRISMR+CTCF’) 

has correlations with Hi-C data similar to the initial model: it improved the visualisation of 
the large Epha4 TAD, mainly by strengthening the loop anchors characteristic for CTCF-

associated loops; however, it also results in additional contacts in the neighbouring gene 

dense region that are not present in the original cHi-C data (Fig. 4.3, top right). Conversely, 

a model with only CTCF (named ‘CTCF only’) can describe some of the loops seen in the 

data (Sanborn et al. 2015, Fudenberg et al. 2016), but poorly captures the global contact 

patterns of the Epha4 locus (Fig. 4.3, bottom right), resulting in a lower correlation 

coefficient (r’=0.05). These results indicate that other factors besides CTCF are important 
in chromatin folding and TAD configuration and that our approach can recapitulate most of 

the interactions of Hi-C data without a-priori information on binding factors. Nevertheless, 

such information can be added to adapt and improve model predictions. 
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Figure 4.3: comparison of original model predictions with the model also including 
prior knowledge on CTCF and with a model with only CTCF 

The figure shows the contact matrices from our cHi-C data in mouse E11.5 limb bud tissue 
(top-left) and from three different models. The bottom left panel reports the results derived 
by our PRISMR method: they have a Pearson, r, and distance-corrected Pearson 
correlation, r’, with cHi-C data equal to, respectively, r=0.94 and r’=0.60. The top right panel 
shows the data from a variant of PRISMR (the ‘PRISMR+CTCF’ model) that takes into 
account prior knowledge of the CTCF binding sites of the locus; its correlations with cHi-C 
data are r=0.95 and r’=0.52, comparable to the initial PRISMR model. Conversely, a model 
that only includes CTCF sites (bottom right) has a lower correlation with cHi-C data (r=0.89, 
r’=0.05).  (Figure from Bianco et al. Submitted (2017)) 

 

4.3.3. Simulations details and calculation of contact matrices 

To simulate the model derived from the wild type Epha4 locus in mouse E11.5 cell, we used 

the same MD parameters used for CH12-LX cells, given in Section 3.3.1. Similarly, to model 
the InvF inversion, and the DelBs and DelB deletions in mouse, that will be discussed in the 

next Section, we used polymers with N=12600, N=9093 and N=9513 beads respectively.  

Analogously, to model the human wild-type EPHA4 locus in human skin fibroblast cells we 

used a polymer made of N=13848 beads, so the genomic content results s0=417bp. As in 

the mouse case, to speed up simulations, we start with a shorter polymer, made of N/4 
beads in this case, and then we add the remaining beads by reducing the original bead 

diameter of a factor 1/4. The polymer models of the DelB deletion and the DupP and DupF 

duplications, that will be discussed in Section 4.5, were made of N=9672, N=16032 and 
N=17160 beads respectively. The range explored of the total binder concentration, c, was 

from zero to c=300nmol/l, and the interaction energy used is the same than in the mouse 

cases. Finally, our polymer models of the EPHA4 locus in IMR90 human cells, were made 

of N=12800, while interaction energy and concentrations were in the same range of the 
other simulations. 

To simulate the PRISMR+CTCT model, to the binding sites of our PRISMR polymer we 

added new specific binding sites corresponding to the genomic locations of CTCF peaks. 
We used peak-called CTCF ChIP-seq data (ENCODE Project Consortium, 2012) and to 

avoid background effects we only considered the peaks having a score higher than a 
stringent threshold. We performed a standard motif finding analysis (using the FIMO tool in 
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the MEME Suite online software) (Grant et al., 2011) to identify the best matching peak, 

within the considered 10Kb bin, with the CTCF binding motif (Barski et al., 2007). 

Analogously, an orientation was attributed to the motif according to its location on the 
forward or reverse strand (Grant et al., 2011). In the PRISMR model of the locus, we add 

two new types of binding sites, one for forward and one for reverse CTCF binding sites. 

We also add a new type of binder that can only bind and bridge opposed oriented CTCF 
sites. The binding energy is taken to be the same used for all other binders in our model. 

To speed up MD simulations of the novel model (i.e., PRIMR with CTCF sites), the system 
starts initially from the already folded configurations of the original PRISMR model. To 

speed up the preparation of the initial conformation, elastic springs are used to bring in 
close physical proximity nearest neighbor forward-reverse CTCF site pairs.  

Finally, to try to dissect the specific effects of CTCF alone, we considered a simpler polymer 

model where only the above described CTCF binding sites are included (i.e., the different 
‘colours’ of the PRISMR model are not considered). As above, opposite CTCF site pairs 

can interact with their specific binders and the system is prepared and equilibrated as 
before.  

To extract the average pairwise contact frequency matrices of the polymer models, we 

proceed as discussed in Chapter 2 (section 2.6.3, see also section 3.3.2 of Chapter 3). As 
mentioned in section 3.3.2, we used a threshold parameter A that ranges from 2 to 10, with 

similar results in all cases. For example, as already stated there, in the model of the mouse 
wild-type Epha4 locus in CH12-LX cells, we find a 89%-11% open-closed mixture and a 

correlation coefficient r=0.91 with in-situ Hi-C data (Fig. 3.4 and Fig. 4.1). Analogously, in 

the case of our human fibroblast cell data (Fig. 4.1, log color scale), the correlation 

coefficient between model and cHi-C is r=0.93, with a 70%-30% mixture. In all cases, we 

find correlation coefficients between model and experimental contact maps from r=0.88 to 

r=0.94 (Tables 4.1 and 4.3). 
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4.4. Prediction of the effects of homozygous SVs on Epha4 
locus folding in mouse   
To test if PRISMR was able to predict the effects of homozygous SVs on chromatin folding, 

we investigated three previously reported variants (Lupiáñez et al. 2015) at the Epha4 
mouse locus: a deletion (DelB) encompassing a large part of the Epha4 TAD and the 

telomeric TAD boundary (associated with brachydactyly, due to misexpression of the gene 

Pax3), a slightly smaller deletion (DelBs) that leaves the TAD boundary intact (no 

misexpression, no phenotype), and a balanced 1.1 Mb inversion (InvF) (causing 
misexpression of Wnt6) (see Section 4.2). We implemented the mutations in the polymer 

models of the wild-type (wt) CH12-LX (in Fig. 3.4a) and E11.5 limbs cells inferred by 

PRISMR (see previous Section) and re-run Molecular Dynamics simulations to derive an 
average contact matrix for the mutated locus. For E11.5 limb tissue, we tested both the 

PRISMR polymer model (subsection 3.4.1) and the PRISMR+CTCF version (subsection 

3.4.2) with the addition of CTCF sites (Figs 4.4A, 4.5A, 4.6A top matrices).  
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Figure 4.4: PRISMR+CTCF model based on wild-type mouse limbs E11.5 cHiC data 
predicts the effects of homozygous structural variants on chromatin architecture  

A. Contact matrices are shown from model predictions based on our cHi-C obtained from 
wt E11.5 limb bud tissue (top). Data from cHi-C in mutant E11.5 limb bud tissue are shown 
below. The genomic region with its genes is shown schematically. Deleted/inverted regions 
are in grey. 

DelB/DelB: PRISMR predicts the 3D chromatin effects of a 1.6 Mb deletion encompassing 
parts of the Epha4 TAD and the Epha4/Pax3 boundary (r=0.95, r’=0.41). Arrowhead and 
blue bars indicate the regions of interaction between the remaining Epha4 and Pax3 TADs. 
DelBs/DelBs: PRISMR predicts the chromatin effects of a 1.5 Mb deletion encompassing 
parts of the Epha4 TAD but not the Epha4/Pax3 boundary (r=0.95, r’=0.50). Arrowhead and 
blue bars indicate the interaction between the remaining Epha4 TAD and the Epha4/Pax3 
boundary (blue hexagon). InvF/InvF: PRISMR predicts the chromatin effects of a 1.1 Mb 
homozygous inversion (r=0.95, r’=0.60). Arrowheads and blue bars mark the region of 
interaction between the enhancer region and the genomic location of Wnt6. Note that 
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contacts are interrupted at the position of the inverted boundary element. A small genomic 
region at the centromeric inverted region (containing the Wnt10a gene) also interacts de-
novo with the Epha4 TAD. The centromeric Epha4 boundary retains its functionality despite 
its inversion (blue hexagon).  

B. Subtraction maps produced between wt and mutants from predictions and cHi-C data. 
Above threshold gain of interaction is displayed in red and loss in blue. Arrowheads and 
blue bars indicate regions of ectopic interaction between the Epha4 TAD and other regions 
of the genome.  

C. Virtual 4C plots derived from predictions and cHi-C data from the viewpoint on the 
respective phenotype causing gene. 
DelB/DelB: note increased interaction of Pax3 promoter with the remaining Epha4 TAD, 
including the enhancer cluster in both, the prediction and experimental data. The immediate 
downstream gene Spp2 shows no increased interaction with the enhancer cluster. 
DelBs/DelBs: note that the promoter of Pax3 interacts less frequently with the Epha4 TAD 
compared to DelB/DelB mutants. InVF/InvF: note increased interaction between Wnt6 gene 
promoter and the Epha4 enhancer cluster in both predictions and experimental data. 

(Figure from Bianco et al. Submitted (2017)) 
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Figure 4.5: PRISMR model based on wild-type mouse limbs E11.5 cHiC data predicts 
the effects of homozygous structural variants on chromatin architecture  

As in Fig. 4.4, for PRISMR model (without ad-hoc addition of CTCF) predictions based on 
our capture Hi-C obtained from E11.5 limb. 

(Figure from Bianco et al. Submitted (2017)) 
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Figure 4.6: PRISMR model based on mouse wild-type CH12-LX Hi-C data predicts the 
effects of homozygous structural variants on chromatin architecture 

As in Fig. 4.4, for PRISMR model predictions based on in-situ Hi-C data from Rao et al. 
2014 in CH12-LX cells. 

(Figure from Bianco et al. Submitted (2017)) 
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To identify the regions of statistically significant ectopic interactions in each predicted 

rearrangement, we subtracted each mutant matrix from the wt (Figs. 4.4B, 4.5B, 4.6B, see 

subsection 4.4.2 for details). Although the studied locus is populated by more than 40 

genes, our matrices predicted that only certain regions, which contain a limited number of 

genes, displayed changes in the interaction profiles. For example, in the larger deletion 

(DelB) including the Epha4 TAD boundary we identified new contacts predicting a fusion 

between the remaining Epha4 and Pax3 TADs, thus facilitating the association between 
Epha4 enhancers and Pax3 that results in ectopic gene activation and a pathogenic 

phenotype (Lupiáñez et al. 2015). Ectopic contacts between the same regions were also 

predicted in the smaller deletion (DelBs), which leaves the Epha4/Pax3 boundary intact.  

However, virtual 4C analysis derived from our predictions showed that the enhancers/Pax3 

ectopic interaction is diminished, consistent with the absence of Pax3 activation in these 

mutants (Figs. 4.4C, 4.5B, 4.6C, see subsection 4.4.3 for details). The inversion (InvF) was 

predicted to result in the rearrangement of the genomic content of the two adjacent TADs 
with interaction hotspots between Epha4 enhancers and a gene dense region (3 genes 

affected) that is consistent with the ectopic Wnt6 activation reported previously. In addition, 

we also observed ectopic interactions between a region near the centromeric breakpoint 

containing the Wnt10a gene and the remaining Epha4 TAD. Therefore, PRISMR identified 
specific and localized regions of ectopic interactions across the entire locus, highlighting a 

very limited number of genes whose regulation might be directly influenced by large 
genomic rearrangements. 

As a next step, we tested the accuracy of our predictions by comparison against a new 
experimental cHi-C dataset from mouse limb buds carrying the homozygous mutations. 

Our dataset revealed the same regions of ectopic interaction and displayed a remarkable 
high agreement with PRISMR predictions, not only across the entire locus but also when 

the regions of ectopic interaction were compared (Figs. 4.4, 4.5, 4.6, 4.7 and Tables 4.1, 

4.2). Again, our results confirmed that the larger deletion in DelB mutant led to a fusion of 

the Epha4 and Pax3 TADs, not ocurring in the smaller DelBs mutation, where the TAD 
boundary remains intact. In the inversion, ectopic contacts are observed between Wnt6 

and the Epha4 enhancer region, which facilitate Wnt6 activation as previously observed in 

vivo (Lupiáñez et al. 2015), and between a region at the centromeric breakpoint with the 

entire Epha4 TAD. Interestingly, the observed ectopic interaction is interrupted by the 
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Epha4 centromeric boundary that, although inverted, appears to retain its functionality. 

Hence, deletions and inversions that include boundary elements can result in TAD fusions 

or TAD reorganisations, respectively. 

 

 

Figure 4.7: Regions of ectopic interaction in murine cell mutants.  

Zoom of the regions exhibiting significant ectopic interactions within the subtraction 
matrices from:  
(A) PRISMR+CTCF model of E11.5 limb tissue (Fig. 4.4b).  
(B) PRISMR model of E11.5 limb tissue (Fig. 4.5b). 
(C) PRISMR model of  CH12-LX cells (Fig. 4.6b). 
(D) Experimental cHi-C data in E11.5 limb tissue (Fig. 4.4b). 
The distance-corrected correlation coefficient between model and experiment is reported 
in Table 4.2 for all the shown cases.  
(Figure from Bianco et al. Submitted (2017)) 
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Dataset Genotype Coefficient r Coefficient r’ 

E11.5 limbs 
cHi-C v.s. 

PRISMR+CTCF 

wild type r=0.95 r´=0.52 

DelB r=0.95 r´=0.41 

DelBs r=0.95 r´=0.50 

InvF r=0.95 r´=0.60 

E11.5 limbs  
cHi-C v.s.  
PRISMR 

wild type r=0.94 r´=0.60 

DelB r=0.94 r´=0.50 

DelBs r=0.95 r´=0.55 

InvF r=0.93 r´=0.52 
E11.5 limbs 
cHi-C v.s.  

PRISMR derived 
from mouse 
 CH12-LX 

(Rao et al, 2014)  
 

wild type r=0.91 r´=0.56 

DelB r=0.93 r´=0.45 

DelBs r=0.93 r´=0.46 

InvF r=0.92 r´=0.49 
 
Table 4.1: Pearson correlations between models and experimental data in mouse.  
Summary of Pearson correlations (r) and distance corrected Pearson correlations (r’) for all 
the considered datasets and variants in mouse. (Table adapted from Bianco et al. 
Submitted (2017)) 
 

Dataset Mutation Coefficient r’ 

E11.5 limbs 
cHi-C v.s. 

 PRISMR+CTCF 

DelB r’=0.52 
DelBs r’=0.75 
InvF r’=0.55 

E11.5 limbs 
cHi-C v.s.  
PRISMR 

DelB r´=0.57 
DelBs r´=0.69 
InvF r´=0.64 

E11.5 limbs 
cHi-C v.s.  

PRISMR derived from 
mouse CH12-LX 
(Rao et al, 2014) 

 

DelB r´=0.59 

DelBs r´=0.65 

InvF r´=0.61 
 

Table 4.2: distance-corrected Pearson correlations in regions of ectopic interactions. 
We report here the distance-corrected Pearson correlation coefficients between model 
predicted and Hi-C contact change matrices (i.e., the correlation between the ‘subtraction 
maps’, wt – mutants, from model and Hi-C) restricted to the regions with significant ectopic 
contacts, for all the mutations considered. (Table adapted from Bianco et al. Submitted 
(2017)) 
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4.4.1. 3D conformations of the Epha4 locus and its mutations 

By use of our polymer models we derived not just the pairwise contact matrix for each 
given locus/mutation, but also the ensemble of the corresponding 3D conformations. In our 

MD simulations such 3D conformations are breathing in time, even at stationarity. The 

examples shown in Fig. 4.8 are time-snapshots from such an ensemble of conformations 

at equilibrium. The shown polymer is obtained by a geometric interpolation with a smooth 
spline curve mathematically described by a third-order polynomial, passing through the 

coordinates of the beads of the polymer chain. The snapshots of the predicted 3D 
structures help clarifying, e.g., the relative positions of regulatory regions and promoters, 

and the nature of the changes in folding captured by the pairwise contact matrix. The 3D 

snapshots in Fig. 4.8 refer to the Epha4 locus in mouse CH12-LX cells, where the wt case 

is inferred by PRISMR from published in-situ Hi-C data (Rao et al. 2014) and the mutations 

are predicted as described above and in the Main Text. The 3D snapshots illustrate that 
the deletions, beyond producing such specific interactions, bring in closer proximity 

regions that in wt are genomically distant, thus increasing their generic overall contacts.  
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Figure 4.8: PRISMR predicted 3D conformations of the Epha4 locus in murine CH12- 
LX cells.  

Top-left: the PRISMR model based on published Hi-C data in murine CH12-LX cells 

recapitulates (r=0.91, r’=0.56) the experimental pairwise contact matrix (see also Fig. 4.1). 
The shown 3D conformation is a snapshot of the model of the locus with the relative 
positions of genes and regulator highlighted.  Bottom-left: the PRISMR model inferred from 
the above wt data is informed with the DelB/DelB deletion and the effects on chromatin 
folding predicted (see also Fig. 4.6). The shown 3D conformation is a snapshot of the model 
bearing the DelB deletion. Top-right: Analogous results for the DelBs/DelBs shorter 
deletion. Bottom-right: Analogous results for the InvF/InvF inversion. (Figure from Bianco 
et al. Submitted (2017)) 

 

4.4.2. Determination of significant ectopic interactions 

In order to identify the statistically significant ectopic interactions in the contact matrices 
after SVs from experimental data and from PRISMR model predictions, we consider the 
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normalized difference matrices (Figs 4.4B, 4.5B, 4.6B and 4.7) between the mutated 

contact matrix and the wt contact matrix. Specifically, we multiply the matrix corresponding 
to the mutation (experimental and simulated) by a factor that equalizes the reads count 

equivalent of the regions that are not involved in the mutation, then we subtract from the 
mutated matrix the wt matrix. To take into account the genomic distance bias, we 

normalized the difference matrix by dividing each sub-diagonal by the average wt reads 
count at its corresponding pairwise genomic distance.  

Next, in order to identify the statistically significant differences, we only retain the values of 

the normalized difference matrix falling above two standard deviations of the distributions 
of values in each sub-diagonal (that corresponds to an average one tail p-value less than 

0.1 across genomic distances, over the different samples). In the calculation of the standard 
deviations, we filter out the points above 96th percentile in the cases where the data are 

marked by strong outliers, as in the human deletion data discussed in the next Section. 
Finally, to correct for finite size effect, we used a higher threshold (four standard deviations) 

near the edge of the matrix (within the 5% of the matrix size). The same higher threshold is 
used when the data sample gets smaller, as in the case of genomic distances larger than 

half of the matrix size. To check our results, we also tested a procedure where the threshold 
is increased linearly with the genomic distance along the contact matrix, without finding 

major differences; this is shown in the case of human mutations (next Section). Since the 
mouse cHi-C matrices are homozygous mutants, the data corresponding to the deleted 

genomic segments are not represented (Figs. 4.4, 4.5, 4.6). The experimental subtraction 

matrices were computed on the raw count cHi-C maps.  

4.4.3. Virtual 4C analysis 

In order to better highlight ectopic interactions, we produced virtual-4C plots (see Section 

1.4.1 for a brief description of real 4C-seq experiments) from the viewpoint of the 

phenotype causative genes in each mutant in mouse (Figs. 4.4C, 4.5C, 4.6C) and in human 

(next Section). Virtual 4C are obtained by plotting the column in the contact matrix 
corresponding to the considered viewpoint. To have a fair comparison between wt and 

mutation, we first normalised the wt matrix by equalizing the number of its reads to the total 
reads in the mutation, as described in the previous subsection. 
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4.5. Prediction of the effects of heterozygous SVs on EPHA4 
locus folding in human   
In the previous Section, we have seen how PRISMR was able to predict, to a large extent, 

the effects of three different homozygous SVs on the Epha4 locus folding, in mouse cell 
and tissue. Here, we want to test its potential to predict the effects of heterozygous SVs on 

chromatin folding as they are usually observed in human patients (see Section 4.2). We 
considered a 1.6 Mb deletion associated with brachydactyly (analogous to mouse DelB), a 

900 Kb duplication (DupP) associated with polydactyly and IHH gene activation, and a 1.4 

Mb duplication (DupF) associated with syndactyly and activation of WNT6 gene (Lupiáñez 

et al. 2015). The starting point is the PRISMR model of the wild-type EPHA4 locus, that 

was inferred from our cHi-C data of healthy human fibroblast and discussed in Section 4.3 

(Fig. 4.9).  

 

 

Figure 4.9: PRISMR model of the wild-type (WT) human fibroblasts cHiC data. 

a. PRISMR identified n=24 different binding domains (colors) in the model of the EPHA4 
locus in healthy human fibroblasts (see Section 4.3). b. Experimental cHiC (top) and model 
derived (bottom) contact matrix of the EHPA4 locus in human fibroblasts (already shown in 
Fig. 4.1, bottom right). Pearson correlation is r=0.93 and distance-corrected correlation 
r’=0.69. (Figure adapted from Bianco et al. Submitted (2017)) 
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The considered SVs were implemented in such polymer model, in order to predict their 

effects on the locus contact matrices (Figs. 4.10A, top matrices). To obtain models for 

heterozygous mutants, the corresponding simulated contact matrices are equally averaged 

with the simulated wild-type matrix (for details about MD simulations of the human 
fibroblast polymer models, see Section 4.3.3.). To test the model predictions, we performed 

cHi-C on fibroblasts obtained from human patients carrying the different heterozygous Svs 

(Fig. 4.10A, bottom matrices).  

Subtraction maps were computed to identify the precise regions and intensity of significant 

ectopic interactions (Figs. 4.10B, 4.11, see Section 4.4.2). In the brachydactyly associated 

deletion, both PRISMR and the fibroblast derived cHi-C data detected the same region of 

ectopic interaction as seen for the equivalent mouse mutant DelB, displaying increased 

interaction between PAX3 and the EPHA4 enhancer cluster. In the duplication DupF, we 

observe ectopic interactions not only between the enhancer cluster and WNT6, but also 
with the neighboring gene WNT10a. In DupP the disease-causing gene IHH displayed 

increased interaction with the enhancers, as well as the two neighboring genes, genes 

CCDC108 and NHEJ1. Comparison of the PRISMR predictions with cHi-C data from 

patient fibroblasts revealed a high correlation (Tables 4.3 and 4.4), demonstrating that 

PRISMR can also predict the effects of SVs on misfolded chromatin contacts in 

heterozygous samples, thus facilitating the identification of disease-causing genes. 

 

 

human 
fibroblasts 

cHi-C 
v.s.  PRISMR 

WT r=0.93 r´=0.69 
DelB r=0.93 r´=0.61 
DupF r=0.88 r´=0.52 
DupP r=0.90 r´=0.56 

	

Table 4.3: Pearson correlations between models and experimental data. Summary of 
Pearson correlations (r) and distance corrected Pearson correlations (r’) for all the 
considered datasets and variants. (Table adapted from Bianco et al. Submitted (2017)) 
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Figure 4.10: PRISMR predicts the effects of human heterozygous structural variants 
on chromatin architecture 

(A) Contact matrices are shown from model predictions derived from WT data (top) and 
cHi-C experiments in mutation carrying cultured human skin fibroblasts (bottom). The 
genomic region and its genes are indicated schematically. The human phenotype 
associated with the rearrangement is indicated on right. See Methods for sample collection. 

DelB/+: PRISMR predicts the chromatin effects of a 1.6 Mb heterozygous deletion (r=0.93, 
r’=0.61). Arrowhead and blue bars mark the region of interaction between the remaining 
EPHA4 and PAX3 TADs resulting in misexpression of PAX3 and brachydactyly. DupF/+: 
PRISMR predicts the chromatin effects of a heterozygous 1.4 Mb duplication (r=0.88, 
r’=0.52). Arrowhead and blue bars mark the regions of interaction between the EPHA4 
enhancer cluster and a genomic region containing WNT6. DupP/+: PRISMR predicts the 
chromatin effects of a heterozygous 900 bp duplication (r=0.90, r’=0.56). Arrowhead and 
blue bars mark the regions of interaction between the EPHA4 enhancer cluster and a 
genomic region containing IHH. 
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(B) Subtraction maps produced between wt and mutants from predictions and cHi-C data. 
Above threshold gain of interaction is displayed in red and loss in blue. Arrowheads and 
blue bars mark regions of interaction involving EPHA4 enhancers and disease causing 
genes. See Methods for description of statistics. 

(C) Virtual 4C plots derived from predictions and cHi-C data from the viewpoint on the 
respective phenotype causing gene. 

DelB/+: note increased interaction of Pax3 promoter with the remaining EPHA4 TAD, 
including the EPHA4 enhancer cluster in both, the prediction and experimental data. 
DupF/+: note increased interaction of WNT6 promoter with the EPHA4 enhancer cluster in 
both, the prediction and experimental data. DupP/+: note increased interaction of IHH 
promoter with the EPHA4 enhancer cluster in both, the prediction and experimental data. 
(Figure from Bianco et al. Submitted (2017)) 

	

 

Figure 4.11: Regions of ectopic interaction in human fibroblast cells.  

Zoom of the regions exhibiting significant ectopic interactions within the subtraction 
matrices from the PRISMR model (top) and cHiC data (bottom) in human fibroblast cells. 
(Figure from Bianco et al. Submitted (2017)) 
 
 

human fibroblasts 
cHi-C v.s. PRISMR 

DelB r´=0.41 
DupF r´=0.54 
DupP r´=0.49 

	

Table 4.4: distance-corrected Pearson correlations in regions of ectopic interactions. 
(Table adapted from Bianco et al. Submitted (2017)) 
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In Fig. 4.12 snapshots of 3D conformations are shown, derived by MD simulations for the 

model of the WT and mutant EPHA4 locus in human fibroblasts. The 3D snapshots of the 

duplications illustrate, for instance, that part of the ectopic contacts discussed in Fig. 4.10 

are produced because the duplicated segments tend to twist back in a loop onto each 

other. The color code in the mouse case (Fig. 4.8) is derived from the one of the human 

case based on their synteny (as determined by the liftOver tool in the UCSC Genome 

Browser).   

Collectively, our results demonstrate that PRISMR is an efficient tool to predict alterations 

in chromatin contacts induced by disease-associated SVs, in both homozygous and 
heterozygous samples and even in complex genomic regions with high gene density. 

PRISMR predictions can be used to identify regions of ectopic interaction that can then be 
scanned for their content, i.e. the presence of genes and enhancers that could interact. 

Furthermore, our results indicate that PRISMR can be used in cases where affected tissues 
or equivalent cell types are not available. The recent advance in Next Generation 

Sequencing (NGS) has boosted the identification of SVs (Gilissen et al., 2014, Hehir-Kwa 
et al., 2016, Newman et al., 2015). In this scenario, polymer modelling by PRISMR emerges 

as a valid method to predict pathogenic effects, facilitating the interpretation and diagnosis 

of this type of genomic rearrangements. 
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Figure 4.12: PRISMR predicted 3D conformations of the EPHA4 locus in human 
fibroblast cells.  

Top-left: the PRISMR model based on our cHi-C data in healthy human fibroblast cells 
recapitulates (r=0.93, r’=0.69) the experimental pairwise contact matrix (see also Fig. 4.1). 
The shown 3D conformation is a snapshot of the model of the locus with the relative 
positions of genes and regulator highlighted.  
Top-right: The PRISMR model inferred from the above wild-type control data is informed 
with the DelB heterozygous deletion (DelB/+) and the effects on chromatin folding 
predicted (see also Fig. 4). The shown 3D conformation is a model derived snapshot of 
the mutated locus.  
Bottom-left: Analogous results for the DupF/+ duplication.  
Bottom-right: Analogous results for the DupP/+ duplication. 
(Figure from Bianco et al. Submitted (2017))
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Conclusion and perspectives 

In this work, we have discussed the application of polymer physics models to investigate 
quantitatively the chromatin three-dimensional structure in mammalian genomes. Such 
work is motivated by the observation that chromatin architecture has a crucial role in vital 

biological functions and that its abnormal folding is often linked to severe human diseases, 
like congenital diseases and cancers. New experimental techniques, such as Hi-C, revealed 

that chromatin have a complex spatial structure, with interesting features like the formation, 
along its sequence, of TAD domains of strong internal interactions, that weakly interact with 

each other. However, a unified quantitative framework describing spatial chromatin 
organization is still lacking and polymer modeling can help to face such challenging 

problem. In this work, we focused on the Strings and Binders Switch (SBS) polymer model, 
in which chromatin 3D conformations form through the interaction of diffusing molecular 

binders with binding sites along the polymer chain describing chromatin. As a first step, we 
recapitulated with a very simple and essential model some important aspects of chromatin 

folding as, for instance, the formation of TADs and the spontaneous hierarchical folding 
mechanism. Next, we generalized the SBS model and developed an innovative method, 

PRISMR, to obtain highly accurate 3D reconstructions of specific genomic regions. Such 
method is interesting also because it gives information on the position of binding sites for 

bridging binders along the chromatin filament, that can be crossed with several available 
epigenomic datasets to try to infer the molecular nature of the complexes that mediate 

chromatin interaction. Such epigenetics analysis revealed that the different types of binding 
sites, and their cognate binders, do not simply correspond to a single molecular factor 
associated to chromatin, but rather to combinations of different factors, including known 

factors shaping chromatin structure like CTCF/Cohesin complex. However, such analysis 
is still at an early stage and the extension of the modeling genome-wide and at higher 

resolutions, together with further experimental work seems a promising means to unravel 
the molecular determinants of chromatin folding. Finally, we showed that our polymer 

models can be employed to predict with a high degree of accuracy the effect of structural 
variants in the genomic sequence on the 3D architecture, thus providing a valuable tool for 

analyzing their disease-causing potential. We analyzed a set of deletions, inversions and 
duplications. However, our method can be straightforwardly extended to model 

translocations or insertions of regions deriving from the same locus. The case of 
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translocations/insertions deriving from a distinct genomic region would require modeling 

also the other DNA region or additional hypothesis on the structure of the polymer segment 
to be inserted, for example by exploiting the epigenetic barcode of that region. Another 

aspect we are currently working on is the employment of our polymer models to capture 
the structural differences of a fixed genomic region during differentiation or in any two 

different cell types. In summary, we are following new researches lines, not described in 
this thesis, in order to improve the predictive power of our model and to investigate at a 

deeper level the numerous, still unknown, mechanisms involved in the genome 
organization.  
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