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ABSTRACT 

The effect of moderate non-zero Reynolds number on the nonlinear peristaltic transport of a 

blood flow through narrow arteries, where blood flow behaves similarly as a Casson fluid 

under the externally applied uniform magnetic field is investigated numerically. The 

governing equations for blood flow model of Casson fluid are formulated to a system of 

nonlinear coupled partial differential equations, which are exposed to Galerkin’s finite element 

method. The assumptions of lubrication theory are neglected, due to which the effects of 

moderate Reynolds number and wave number along with other parameters are presented. To 

ensure the accuracy of developed code, obtained results are compared to that of available 

results in the literature and found in excellent agreement. The analysis shows that increasing 

Reynolds and Hartmann numbers enhance the velocity of the fluid. One of the findings of this 

study is the nonlinear behavior of pressure rise for large values of Reynolds and Hartmann 

numbers. Increasing wave number enhances the pressure rise in the peristaltic pumping region. 

The study also discussed to effect of Casson fluid parameter and time mean flow through 

graphs of velocity, pressure rise and contours of streamlines. 

Keywords: peristaltic flow; blood flow Casson fluid model; magnetohydrodynamics; finite 

element method. 

 

ABSTRAK 

Kesan nombor Reynolds sederhana tak sifar terhadap pengangkutan peristalsis tak linear bagi 

aliran darah melalui arteri sempit yang tingkah laku aliran darah menyerupai bendalir Casson 

di bawah medan magnet seragam luaran, telah dikaji secara berangka. Persamaan menakluk 

bagi model aliran darah bendalir Casson diformulasi kepada suatu sistem persamaan 

pembezaan separa terganding tak linear, yang diselesaikan dengan kaedah unsur terhingga 

Galerkin. Andaian bagi teori pelinciran diabaikan, yang kesan nombor Reynolds sederhana 

dan nombor gelombang bersama parameter lain dipersembahkan. Bagi memastikan ketepatan 

kod berangka yang dibangunkan, keputusan yang terhasil dibandingkan dengan keputusan 

yang ada daripada kajian lepas dan didapati hasil bandingan adalah sangat baik. Analisis 

menunjukkan peningkatan nombor Reynolds dan nombor Hartmann meningkatkan halaju 

bendalir. Satu daripada penemuan kajian ini adalah tingkah laku tak linear kenaikan tekanan 

bagi nilai nombor Reynolds dan nombor Hartmann yang besar. Peningkatan nombor 

gelombang meningkatkan kenaikan tekanan dalam kawasan pengepaman peristalsis. Dalam 

kajian ini juga dibincangkan kesan parameter bendalir Casson dan aliran min masa melalui 

graf halaju, kenaikan tekanan dan kontur garis strim.  

Kata kunci: aliran peristalsis; model aliran darah bendalir Casson; magnetohidrodinamik; 

kaedah unsur terhingga 
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1. Introduction 

The circumferential progressive wave of either expansion or contraction generated along the 

tube is known as a mechanism of peristalsis. Peristalsis can be found in several organisms, in 

a variety of organs and in a number of industrial processes. Peristalsis is now getting more 

interest by engineers, a scientist as well as the researchers of biomedical sciences due to its 

vast applications in transporting of fluids. Physiologists considered peristalsis as one of the 

key mechanism of fluid transportation in biological systems. It includes transportation/ 

movement of urine in a body, movement of chime, transportation of spermatozoa in the 

cervical canal, vasomotion in small blood vessels and in the movement of lymph in the 

lymphatic vessels. The study of peristaltic flows give more effective mechanism for 

transporting in a sanitary fluid, industrial peristaltic pumping and in preparation of medical 

devices. In the printing industry, transporting of viscous fluids in mechanical roller pump and 

shifting of noxious fluids are good examples of peristaltic flows. Nowadays, many medical 

devices are manufactured on the basis of peristaltic mechanism to transport fluid without 

moving internal machinery parts such as heart-lung machine and dialysis system etc. 

For quite some time, mechanism of peristalsis for mechanical as well as physiological 

research has become the major core of subject of scientific research. The first investigation 

was provided by Latham (1966). After him, several theoretical and experimental efforts are 

made to understand the peristalsis, so can apply practically more efficiently. The earliest and 

pioneer studies by Shapiro (1967), Fung and Yih (1968) and Shapiro et al. (1969) presented 

the phenomenon of peristalsis in the two-dimensional channel by an infinite wave of 

sinusoidal nature, this thus gives only qualitative relation by the ureter. These models also 

contain the explanation of biological and medical phenomena of reflux. Later, Weinberg et. 

al. (1971) and Lykoudis (1971) presented few more peristaltic models of ureteral waves. Fung 

(1971) studied the effect of coupling forces dynamics involving in ureteral muscle and 

functioning of the fluid mechanical organ. But the study of the peristaltic mechanism is not 

only important for ureteral physiology in the field of biosciences. One can find a number of 

investigations in which blood and other physiological fluid assumed to act like Newtonian 

fluids. But recently it has been found that most of the times physiological fluids show the 

properties of non-Newtonian fluids. The first comprehensive numerical approach about the 

peristaltic mechanism in the channel was given in Takabatake and Ayukawa (1982) and later 

Takabatake et al. (1988) provide results for two-dimensional peristaltic flow in the tube. The 

finite difference technique based on SOR method is applied in both studies to predict the 

characteristics of peristaltic flow for the ratio of wave amplitude and width of the channel for 

moderate Reynolds number and argued on the limitations of Jaffrin (1973) and Burns and 

Parkes (1967) perturbation results. They also concluded that in a cylindrical tube, peristaltic 

transport and mixing is greater as compared to that of the plane channel, and turbulence in the 

flow occurs when Reynolds number becomes greater than 2, while backward flow with 

trapping bolus exists at comparatively high values of Reynolds number for flow in the 

channel.  The finite element technique is used by Takabatake et al. (1989) to study the 

peristaltic transport in the two-dimensional channel and presented the remarkable increasing 

effect of large wall slope at zero time mean flow on pressure rise. 

The plasma shows the Newtonian fluid behavior while blood shows non-Newtonian 

behavior given in Johnston et al. (2004). At low shear rates, blood shows non-Newtonian 

behavior in small arteries but in large arteries at high shear rates, it behaves as Newtonian 

given in Rathod and Tanveer (2009). When blood flows through narrow arteries at a low 

shear rate, it behaves like a Casson fluid given in Sankar (2009), Srivastava and Srivastava 

(2009), and Nagarani et al. (2006). In narrow arteries with a diameter of 130 –  1000 𝜇𝑚, 
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Casson fluid is useful to consider it as a blood flow model given in Merill et al. (1965) and 

Venkatesan et al. (2013). But on reviewing the literature, it is evident that no rigorous effort 

has been made to present the transport of the fluid of non-Newtonian category in case of a 

small amplitude of wave before Raju and Deventhan (1972). Srivastava and Srivastava (1984) 

investigated blood transportation by ignoring peripheral layer which allows blood to behave 

as single layered Casson fluid. Later, Srivastava (1987) presented the study for the 

axisymmetric flow of Casson fluid in a circular tube. Das and Batara (1993) investigated the 

fully developed model of Casson fluid for steady flow passing through the tube at low Dean 

number. Elshehawey et al. (1998) presented peristaltic transport model of Carreu fluid in a 

channel with the assumption of long wavelength and low Reynolds number. Some recent 

studies related to peristaltic motion and other flow model under the influence of magnetic 

field and other physical situations are found in literature (Siddiqui & Schwarz 1994; Kumar & 

Naidu 1995; Khan et al. 2018; Hayat et al. 2018). Khan et al. (2017a) gave a comparison of 

Casson fluid with homogeneous/heterogeneous reactions. Khan et al. (2017b) extended the 

work presented in (2017a) and investigated the stagnation point flow of Casson fluid over a 

stretching sheet with homogeneous/heterogeneous reactions. The flow of Casson fluid over a 

stretching cylinder under the influence of magnetic field was investigated by Tamoor et al. 

(2017). The effects of the non-orthogonal inclined magnetic field on the flow of micropolar 

Casson fluid was studied by Iqbal et al. (2017) using the Keller box scheme.  

Motivated by above-mentioned studies, the present investigation is carried out in the 

viewing of the fact that long wavelength and low Reynolds number assumptions buried many 

aspects of the peristaltic motion. So, in this study, the mathematical modelling and simulation 

of peristaltic transportation of the Casson fluid passing through the tube under the influence of 

magnetic field without implementation of the assumptions of lubrication theory i.e. the 

assumptions of long wavelength and low Reynolds number is presented, which allows to 

predict the effects of dominant inertial forces and wave number which are not yet discussed in 

the literature. By dropping such assumptions our model becomes a system of non-linear 

partial differential equations. An efficient technique based on Galerkin's formulation finite 

element method is used to obtain the numerical results for velocity, pressure and stream 

function along with vorticity for different variations of other parameters and Reynolds 

number are presented the first time in literature. The obtained results are also deduced to 

lubrication theory, and hence validated and found in good agreement.    

2. Mathematical Modeling 

Consider the peristaltic transport of an electrically conducting Casson fluid motion of blood 

flow passing through a horizontal tube of width 2𝑎. Peristaltic tube is subject to the influence 

of applied magnetic field of uniform strength 𝐵0 perpendicular to the direction of the flow. 

Here, due to small conductivity of fluid, the low magnetic Reynolds number 𝑅𝑚-

approximation is assumed which allows to neglect induced magnetic field caused by applied 

magnetic field. Unsteady flow is considered with constant thermos-physical properties in 

which flow is caused by peristaltic walls along 𝑧 −direction and 𝑟 −direction is taken along 

radial direction. The symmetry of the peristaltic flow is about z-direction and schematic of the 

flow is presented in Figure 1. The peristaltic walls of tube moves and follows the relation 

given as 

 𝐻(𝑍, 𝑡) = 𝑎 − 𝑏 cos [
2 𝜋

𝜆
 (𝑍 − 𝑐𝑡)], (1) 

where 𝑏, 𝜆  and 𝑐 are wave amplitude, wavelength and speed of the flow respectively. 
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Figure 1: Geometrical flow diagram 

 

The governing equations that describe the flow of Casson fluid in a tube under the influence 

of magnetic effects appeared through Lorentz force term are partial differential equations as 

follows: 

 
𝜕𝑊

𝜕𝑍
+

1

𝑅

𝜕(𝑅𝑈)

𝜕𝑅
= 0, (2) 

 𝜌 (
𝜕𝑊

𝜕𝑡
+ 𝑊

𝜕𝑊

𝜕𝑍
+ 𝑈

𝜕𝑊

𝜕𝑅
) = −

𝜕𝑃

𝜕𝑍
+ 𝜇 (1 +

1

𝛽
)

1

𝑅

𝜕

𝜕𝑅
(𝑅

𝜕𝑊

𝜕𝑅
) +

𝜕2𝑊

𝜕𝑍2 − 𝜎𝐵0
2𝑊, (3) 

 𝜌 (
𝜕𝑈

𝜕𝑡
+ 𝑊

𝜕𝑈

𝜕𝑍
+ 𝑈

𝜕𝑈

𝜕𝑅
) = −

𝜕𝑃

𝜕𝑅
+ 𝜇 (1 +

1

𝛽
)

𝜕

𝜕𝑅
(

1

𝑅

𝜕(𝑅𝑈)

𝜕𝑅
) +

𝜕2𝑈

𝜕𝑍2, (4) 

where 𝜌 is the density,  𝜇 is the viscosity and 𝛽 is the Casson fluid parameter. Casson fluid is 

basically shear thinning fluid which holds the property that it at zero shear rate Casson fluid 

attains infinite viscosity and consequently below yield stress by which no flow occurs and on  

the other hand Casson fluid have zero viscosity at infinite shear rate by which fluid model 

reduces to a model for Newtonian fluid. The suitable boundary conditions that assist the 

discussed flow are given as 

 
𝜕𝑊

𝜕𝑅
= 0,    𝑈 = 0    at    𝑅 = 0  and 𝑊 = 0,    𝑈 =

𝜕𝐻

𝜕𝑡
    at    𝑅 = 𝐻.   (5) 

The defined boundary condition in Eq. (5) on 𝑊 at 𝑅 = 0 corresponds to symmetry of flow 

and 𝑅 = 𝐻 corresponds to no-slip of the wall. While the defined boundary condition on 𝑈 at 

 𝑅 = 𝐻 as 𝑈 = 𝜕𝐻 𝜕𝑡⁄  reflects that the velocity of fluid is equal to the velocity of the wall. At 

center of the tube, transverse velocity is zero so that we have boundary condition at 𝑅 = 0 as 

𝑈 = 0. The conversion relation between the lab and wave frame of reference given in 

Siddiqui and Schwarz (1994) are  

 𝑤∗ = 𝑊 − 𝑐, 𝑢∗ = 𝑈, 𝑧∗ = 𝑍 − 𝑐𝑡, 𝑟∗ = 𝑅,     (6) 

where 𝑧∗, 𝑟∗ and 𝑍, 𝑅 represent the velocity components in moving and fixed frame 

respectively. After incorporating the above transformation in Eqs. (2) to (4), we get 

 
1

𝑟∗

𝜕(𝑟∗𝑢∗)

𝜕𝑟∗ +
𝜕𝑤∗

𝜕𝑧∗ = 0, (7) 

 𝜌 (𝑤∗ 𝜕𝑤∗

𝜕𝑧∗ + 𝑢∗ 𝜕𝑤∗

𝜕𝑟∗ ) = −
𝜕𝑝∗

𝜕𝑧∗ + 𝜇 (1 +
1

𝛽
)

1

𝑟∗

𝜕

𝜕𝑟∗ (𝑟∗ 𝜕𝑤∗

𝜕𝑟∗ ) +
𝜕2𝑤∗

𝜕𝑧∗2 − 𝜎𝐵0
2(𝑤∗ + 𝑐), (8) 

 𝜌 (𝑤∗ 𝜕𝑢∗

𝜕𝑧∗ + 𝑢∗ 𝜕𝑢∗

𝜕𝑟∗) = −
𝜕𝑝∗

𝜕𝑟∗ + 𝜇 (1 +
1

𝛽
)

𝜕

𝜕𝑟∗ (
1

𝑟∗

𝜕(𝑟∗𝑢)

𝜕𝑟∗ ) +
𝜕2𝑢∗

𝜕𝑧∗2. (9) 

Introducing the following dimensionless variables to the system of equations 
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𝑤 =
𝑤∗

𝑐
, 𝑢 =

𝑢∗

𝑐
 𝑧 =

𝑧∗

𝜆
, 𝑟 =

𝑟∗

𝑎
, 𝛼 =

𝑎

𝜆
, 𝜙 =

𝑏

𝑎
, 𝜓 =

𝜓∗

𝑐𝑎
, 𝜔 =

𝜔∗

𝑐 𝑎⁄
,

𝑝 =
𝑎2

𝜆𝜇𝑐
𝑝∗(𝑧), 𝑞 =

𝑞∗

𝑐𝑎
, 𝜂 =

𝜂∗

𝑎
, ℎ =

ℎ(𝑥∗)

𝑎
, 𝑅𝑒 =

𝑐𝑎

𝜈
𝛼, 𝑀 = √

𝜎

𝜇
𝐵0𝑎

}. (10) 

The associated boundary conditions (Kumar & Naidu 1995) for the flow at center and wall of 

the tube are given by 

 𝜓∗ = 0    at   𝑟∗ = 0 and 𝜓∗ = 𝑞∗
  at   𝑟 = 𝜂(𝑧∗), (11) 

where 𝜓∗ represents stream function and  rates in the wave frame are related by the 

expression 𝑞∗ = 𝑄∗ − 𝑐𝐻2 with the time mean flow in the laboratory frame 𝑄∗. Eliminating 

pressure gradient term by cross differentiation, and by introducing the relations 𝑢 =

−
𝛼

𝑟
𝜕𝜓 𝜕𝑧⁄  and 𝑤 =

1

𝑟
𝜕𝜓 𝜕𝑟 ⁄ , the governing equations for the considered flow formulation 

are as follows: 

 
𝛼2

𝑟

𝜕2𝜓

𝜕𝑧2 +
𝜕

𝜕𝑟
(

1

𝑟

𝜕𝜓

𝜕𝑟
) = −𝜔,  (12) 

 𝑅𝑒 (
𝜕𝜓

𝜕𝑟

𝜕

𝜕𝑧
(

𝜔

𝑟
) −

𝜕𝜓

𝜕𝑧

𝜕

𝜕𝑟
(

𝜔

𝑟
)) = (1 +

1

𝛽
)

1

𝑟
D2(𝑟𝜔) + 𝑀2 𝜕

𝜕𝑟
(

1

𝑟

𝜕𝜓

𝜕𝑟
),  (13) 

where 𝑅𝑒 is Reynolds number and 𝑀 is Hartmann number. Modified form of Laplacian 

operator D2 is defined as D2 = 𝛼2 𝜕2

𝜕𝑧2 +
𝜕2

𝜕𝑟2 −
1

𝑟

𝜕

𝜕𝑟
 and boundary conditions yield the form as 

 
𝜓 = 0,   

𝜕

𝜕𝑟
(

1

𝑟

𝜕𝜓

𝜕𝑟
) = 0,   

1

𝑟

𝜕𝜓

𝜕𝑧
= 0                at    𝑟 = 0

𝜓 = 𝑞,   
1

𝑟

𝜕𝜓

𝜕𝑟
= −1,     

1

𝑟

𝜕𝜓

𝜕𝑧
= 2𝜋𝜙 sin 2𝜋𝑧     at    𝑟 = 𝜂(𝑧)

}. (14) 

At the center of the tube 𝑧 = 0, pressure rise per wavelength is defined in wave frame as  

 Δ𝑝𝜆 = ∫
𝜕𝑝

𝜕𝑧

𝜆

0
𝑑𝑧. (15) 

3. Numerical Analysis 

In the present analysis, the governing equations are obtained by dropping the assumptions of 

lubrication theory i.e. long wavelength and low Reynolds number. So, we have set of coupled 

partial differential equations which are solved numerically by using finite element method 

based on Galerkin’s formulation. We discretize the considered domain into a mesh of 

triangular elements contains six nodes per element. The solution of each triangular mesh is 

found and assemble all solution to form a global system. Finally, the solution has been 

obtained by using the Newton-Raphson method. In all cases, highly convergent results are 

obtained by our own built MATLAB code with a tolerance of 10−14 in 3 − 5 iterations.  

The stream function 𝜓 and vorticity 𝜔 is approximated by the following approximation 

 𝜓 = ∑ 𝑁𝑘𝜓𝑘
𝑛
𝑘=1 ,    𝜔 = ∑ 𝑁𝑘𝜔𝑘

𝑛
𝑘=1 ,  (16) 

where 𝜓𝑘 and 𝜔𝑘 are nodal element approximation of 𝜓 and 𝜔 respectively. Galerkin’s finite 

element approach turns Eqs. (12) and (13) as 

 ∫ 𝑤1Ω
(

𝛼2

𝑟

𝜕2𝜓

𝜕𝑧2 +
𝜕

𝜕𝑟
(

1

𝑟

𝜕𝜓

𝜕𝑟
) + 𝜔) 𝑑Ω = 0, (17) 

 ∫ 𝑤2 (𝑅𝑒 (
𝜕𝜓

𝜕𝑟

𝜕

𝜕𝑧
(

𝜔

𝑟
) −

𝜕𝜓

𝜕𝑧

𝜕

𝜕𝑟
(

𝜔

𝑟
)) − 𝑀2 𝜕

𝜕𝑟
(

1

𝑟

𝜕𝜓

𝜕𝑟
) − (1 +

1

𝛽
)

1

𝑟
D2(𝑟𝜔))

Ω
𝑑Ω = 0, 

(18) 

in which  𝑤1 and 𝑤2 are weight functions and 𝑑Ω = 2𝜋𝑟𝑑𝑟𝑑𝑧. Simplification of Eqs. (17) 

and (18) yields 
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 ∫ (
𝛼2

𝑟

𝜕𝑤1

𝜕𝑧

𝜕𝜓

𝜕𝑧
+

𝜕𝑤1

𝜕𝑟
(

1

𝑟

𝜕𝜓

𝜕𝑟
) − 𝑤1𝜔) 𝑑Ω

Ω
= ∫ 𝑤1

𝜕𝜓

𝜕𝑛
𝑑Γ

Γ
  (19) 

 
∫ 𝑤2Ω

𝑅𝑒 (
𝜕𝜓

𝜕𝑟

𝜕

𝜕𝑧
(

𝜔

𝑟
) −

𝜕𝜓

𝜕𝑧

𝜕

𝜕𝑟
(

𝜔

𝑟
)) 𝑑Ω + (1 +

1

𝛽
) ∫ (

𝜕𝑤2

𝜕𝑟

1

𝑟

𝜕(𝑟𝜔)

𝜕𝑟
+

Ω

𝛼2

𝑟

𝜕𝑤2

𝜕𝑧

𝜕(𝑟𝜔)

𝜕𝑧
) 𝑑Ω  +𝑀2 ∫ (

𝜕𝑤2

𝜕𝑟

1

𝑟

𝜕𝜓

𝜕𝑟
) 𝑑Ω

Ω
= (1 +

1

𝛽
) ∫ 𝑤2

𝜕(𝑟𝜔)

𝜕𝑛
𝑑Γ +

Γ

𝑀2 ∫ 𝑤2
𝜕𝜓

𝜕𝑛
𝑑Γ

Γ
, (20) 

where 𝑑Γ is defined as  𝑑Γ = 𝜋𝑟𝑑𝑟𝑑𝑧. Introducing approximations defined in Eq. (16) into 

Eqs. (19) and (20) and after discretizing the domain, we get 

 
− ∑ 𝐵𝑘𝑖

𝑒 𝜔𝑖 +𝑖 ∑ 𝐴𝑘𝑖
𝑒 𝜓𝑖 𝑖 = 𝑆𝑛

𝑘𝑒
, (21) 

 
𝑅𝑒 ∑ 𝐶𝑘𝑖𝑗

𝑒 𝜓𝑖𝜔𝑖 +𝑖 (1 +
1

𝛽
) ∑ 𝐴𝑘𝑖

𝑒 𝜔𝑖𝑖 + 𝑀2 ∑ 𝐷𝑘𝑖
𝑒 𝜓𝑖 𝑖 = 𝑀2𝑆𝑛

𝑘𝑒
. (22) 

where   

 
𝐴𝑘𝑖

𝑒 = ∫ (
𝛼2

𝑟

𝜕𝑁𝑘

𝜕𝑧

𝜕𝑁𝑖

𝜕𝑧
+

𝜕𝑁𝑘

𝜕𝑟
(

1

𝑟

𝜕𝑁𝑖

𝜕𝑟
)) 𝑑Ω

Ω𝑒 , (23) 

 𝐵𝑘𝑖
𝑒 = ∫ 𝑁𝑘𝑁𝑖𝑑Ω

Ω𝑒 , 
(24) 

 
𝐶𝑘𝑖𝑗

𝑒 = ∫ 𝑁𝑘Ω
(

𝜕𝑁𝑖

𝜕𝑟

𝜕

𝜕𝑧
(

𝑁𝑗

𝑟
) −

𝜕𝑁𝑗

𝜕𝑧

𝜕

𝜕𝑟
(

𝑁𝑖

𝑟
)) 𝑑Ω, 

(25) 

 𝐷𝑘𝑖
𝑒 = ∫ (

𝜕𝑁𝑘

𝜕𝑟

1

𝑟

𝜕𝑁𝑘

𝜕𝑟
) 𝑑Ω

Ω
, 

(26) 

 𝑆𝑛
𝑘𝑒

= ∫ 𝑁𝑘𝑆𝑘𝑑Γ
Γ

, 
(27) 

The global system in matrix form is defined as 

 𝑲𝑨 = 𝑭, (28) 

where 

 

𝐾𝑖𝑗 = [

−𝐵𝑘𝑖
𝑒 𝐴𝑘𝑖

𝑒

(1 +
1

𝛽
) 𝐴𝑘𝑖

𝑒 𝑅𝑒𝐶𝑘𝑖𝑗
𝑒 𝜔𝑖 + 𝑀2𝐷𝑘𝑖

𝑒 ] , 𝐴𝑘 = [
𝜔𝑘

𝜓𝑘
] , 𝐹𝑘 = [

𝑆𝑛
𝑘𝑒

𝑀2𝑆𝑛
𝑘𝑒]. (29) 

4. Results and Discussion 

The numerical scheme discussed in the previous section is implemented using MATLAB to 

obtain the graphs of velocity, pressure, contours of streamlines and vorticity. Influence of 

involved parameters like Reynolds number 𝑅𝑒, amplitude ratio 𝜙, wave number 𝛼, volume 

flow rate 𝑄, Hartmann number 𝑀 and Casson fluid parameter 𝛽 on the quantities of the 

interest is presented graphically with detailed discussion. 

4.1. Validation 

This section is dedicated for authentication of our own build MATLAB code of finite element 

method which gives the numerical solution of a modeled system of nonlinear partial 

differential equations. Shapiro et al. (1969) give results of peristaltic transport by applying 

lubrication theory. These results are purely analytical and hence considered to be a benchmark 

solution in this comparison. The obtained results of pressure distribution are compared with 
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that of results given Shapiro et al. (1969) by plotting both results in Figure 2. The graphs 

presented in Figure 2 exhibits good agreement for  𝑀 = 0, 1 𝛽⁄ = 0 under assumption of long 

wavelength and low Reynolds number with corresponding results of Shapiro et al. (1969). 

 
Figure 2: Comparison of computed pressure distribution with that of results provided by Shapiro et al. (1969) 

 

4.2. Velocity profile 

In this section, the behavior of longitudinal velocity at cross-section 𝑧 = 0 is analyzed and 

discussed after plotting the graphs of Reynolds number 𝑅𝑒, wave number 𝛼, Casson fluid 

parameter 𝛽, Hartmann number 𝑀 and time mean flow for different set of parameters 

involved in the model. In Figure 3, the effect of different values of Hartmann number on the 

behavior of velocity for various values of Reynolds number is presented by plotting velocity 

profile against Reynolds number 𝑅𝑒. We observe that increasing the Hartmann number 

enhances the velocity independent of the choice of the Reynolds number.  It is also observed 

that maximum value is achieved at 𝑅𝑒 = 99 and solution remains smooth for large values of 

Reynolds number.  

 
Figure 3: Variation of velocity distribution against  𝑅𝑒 for different 𝑀 

 

The velocity field presented in Figure 4 exhibits that behavior of velocity in the central region 

of the tube and in the vicinity of peristaltic wall is not similar for cases of different Reynolds 

number 𝑅𝑒 Hartmann number 𝑀, wave number 𝛼 and Casson fluid parameter 𝛽. In the 

literature, lubrication theory is widely used to study the peristaltic mechanism which is not 

able to predict the effects of inertial forces. The ratio of inertial forces to viscous forces 

corresponds to Reynolds number. The effects of different values of Reynolds number are 

shown in Figure 4(a). The increase in the Reynolds number relates to the dominance of 

inertial forces as compared to viscous forces which enhances the flow in the central region of 
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the tube but opposite effect is noticed in the vicinity of the peristaltic wall. These facts are 

reported first time for transportation of peristaltic motion of Casson fluid in a tube in any 

physical situation.  Figure 4(b) is plotted for velocity profile to show the effects of different 

wave number. The ratio of the width of the tube to the wavelength is presented by wave 

number. Increasing wave number reduces the velocity in the center of the tube and a slight 

increase is noted near the walls of the tube. The viscosity of the Casson fluid is zero at an 

infinite shear rate and infinite at zero shear rate.  

  

(a)  (b) 

  

(c) (d) 

 

(e) 

Figure 4: Longitudinal velocity distribution for different values of (a) 𝑅𝑒, (b) 𝛼, (c) 𝛽 , (d) 𝑀 and (e) 𝑄 with fixed 

values of other parameters 
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The viscosity of the Casson fluid can be controlled by setting the Casson fluid parameter in 

different ranges. Figure 5(c) is presented to shown the effects of the Casson fluid parameter 

on the velocity profile which are as same as in the case of wave number. The Hartmann 

number corresponds to the ration of electromagnetic forces to viscous forces, so increasing 

the value of Hartmann number reflects the enhancement of electromagnetic forces which is 

caused by increasing the strength of magnetic field. The enhancement in the strength of the 

electromagnetic forces increases the velocity in the region near the peristaltic wall and causes 

resistance to the flow in the central region of the tube as shown in Figure 5(d). The effect of 

time means flow on the velocity of the Casson fluid is presented in Figure 5(e). It reveals that 

the behavior of time mean flow rate is quite different as compared to other participated 

parameters as it shows same behavior in both the central region of the tube and in the region 

near the walls of the tube. The increase in time-mean flow rate increases the longitudinal 

velocity of the fluid in the whole region of the tube. 

4.3. Pressure distribution 

This section is dedicated to detail discussion on the pressure of the peristaltic transportation of 

Casson fluid. The importance of Casson fluid of blood flow model is highly dependent on 

pressure rise per wavelength in narrow arteries where at low shear rates blood behaves like 

Casson fluid transport of Casson fluid of blood flow is presented in Figure 5.  

  

(a) (b) 

  

(c) (d) 

Figure 5: Pressure rise per wavelength for different values for (a) 𝑅𝑒, (b) 𝛼, (c) 𝛽 and (d) 𝑀, with fixed values of 

other parameters 
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Figure 5(a) reveals the effect of Reynolds number 𝑅𝑒 on pressure rise per wavelength. It is 

observed that for large values of Reynolds number, the rise in pressure shows non-linear 

behavior due to strong inertial forces. It is also noted that dominance of inertial forces to 

viscous forces causes augmentation in a rise in pressure and this fact is not reported in any 

previous study. Furthermore, increasing wave number 𝛼 shows analogous behavior as to that 

of Reynolds number. The decrease in pressure rise in the pumping region is noticed due to 

increase in Casson fluid parameter 𝛽, because due to rise in viscosity, flow becomes slow and 

the pressure rise decreases. On the other hand, the increase in rise in pressure is noticed with 

increasing values of Hartmann number 𝑀. Usually, the three ranges of pumping in peristalsis 

are possible, for Δ𝑃 > 0 corresponds to augmented pumping region while Δ𝑃 = 0 is the free 

pumping region and Δ𝑃 < 0 is the co-pumping region. We have presented only first to which 

are of most interest for engineering and have vastly applicable in bio-medical sciences. The 

pressure rise per wavelength in peristaltic So, one way to control the pressure rise of 

peristaltic motion of Casson fluid of blood flow by varying the strength of the applied 

magnetic field, this fact is widely used in MRI and other bio medical treatments. Figure 5(d) 

exhibits that in the region of augmented pumping 0.7 < 𝑄 < 1, pressure rise shows opposite 

behavior as compared to that of pumping region corresponds to interval 0 < 𝑄 < 0.7. Free 

pumping corresponds to the relation Δ𝑃 = 0 at 𝑄 = 0.7.   

4.4. Trapping and vorticity 

Another important phenomenon of peristaltic motion is trapping which is basically due to the 

formation of bolus by internal circulation of streamlines. This physical phenomenon relates to 

thrombus formation of blood and motion of fluid bolus in the gastrointestinal tract. The 

trapping phenomena for variation of different parameters involved are presented in Figures 6 

to 10. Figure 6 shows the contours of streamlines for different values of Reynolds number 

with 𝛼 = 0.3, 𝜙 = 0.5, 𝑀 = 2.0, 𝛽 = 0.5, 𝑄 = 1.2. It shows that increase in Reynolds number 

magnifying the size of bolus as well as increases the number of bolus. In other words, the 

cluster of bolus can be shifted on right side of the tube by enhancing the inertial forces, by  

   

Figure 6: Contours of streamlines for 𝑅𝑒 = 1 , 5 and 10 with fixed 𝛼 = 0.1, 𝜙 = 0.5, 𝑀 = 2.0, 𝛽 = 0.5, 𝑄 = 1.2 in 

wave frame 

   

Figure 7: Contours of streamlines for 𝛽 = 0.1 1.0 and 5.0 with fixed 𝑅𝑒 = 5, 𝛼 = 0.1, 𝜙 = 0.5, 𝑀 = 2.0, 𝑄 = 1.2 

in wave frame 
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Figure 8: Contours of streamlines for 𝑀 = 1, 3 and 5 with fixed 𝑅𝑒 = 5.0, 𝛼 = 0.3, 𝜙 = 0.5, 𝛽 = 0.5, 𝑄 = 1.2 in 

wave frame 

   

Figure 9: Contours of streamlines for 𝑄 = 0.8,1.0 and 1.2 with fixed 𝑅𝑒 = 5.0, 𝛼 = 0.3, 𝜙 = 0.5, 𝑀 = 2.0, 𝛽 =
0.5 in wave frame 

 

increasing Reynolds number. Figure 7 shows the variation of streamlines for different values 

of Casson fluid parameter 𝛽 with 𝑅𝑒 = 5, 𝛼 = 0.1, 𝜙 = 0.5, 𝑀 = 2.0, 𝑄 = 1.2. The increase 

in number and size of bolus is noted as a result of increasing Casson fluid parameter. The 

effect of Hartmann number 𝑀 on the streamlines are presented by plotting contours in Figure 

8 with fixed 𝑅𝑒 = 5.0, 𝛼 = 0.3, 𝜙 = 0.5, 𝛽 = 0.5, 𝑄 = 1.2. The opposite behavior is noticed 

as in case of Casson fluid parameter. The contours of streamlines for various values of time 

mean flow rate 𝑄 are presented in Figure 9 with fixed values of other involved parameters i.e. 

𝑅𝑒 = 5.0, 𝛼 = 0.3, 𝜙 = 0.5, 𝑀 = 2.0, 𝛽 = 0.5. Figure 9 exhibits that the flow is generated 

and moves along the peristaltic wall for 𝑄 < 1 and streamlines of almost same trajectory of 

peristaltic wall are appeared, while for 𝑄 = 1 formation of bolus are found in crest region of 

the tube shows circulatory motion of the fluid and some streamlines still moves along the wall 

and obeys the same path in the vicinity of the peristaltic wall. The flow becomes smooth in 

the central region of the tube for 𝑄 > 1 with increase in bolus is noted The contours of 

vorticity for  𝑅𝑒 are presented in Figure 10 which exhibits that flow generates on the center of 

the tube and ends on the peristaltic wall and in the central region. 

   

Figure 10: Contours of vortices for 𝑅𝑒 = 1 5 and 10 with fixed 𝛼 = 0.1, 𝜙 = 0.5, 𝑀 = 2.0, 𝛽 = 0.5, 𝑄 = 1.2 in 

wave frame 
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5. Conclusion 

The effect of Reynolds number on a peristaltic transportation of non-Newtonian behavior of 

blood has been investigated by considering blood as a Casson fluid. The governing equations 

are developed and modeled by dropping the long wavelength and low Reynolds number 

which allow us to predict the features of peristaltic motion for moderate values of Reynolds 

number and wave number. The flow is subjected to the external uniform magnetic field to 

observe the effect of Hartmann number in different situations. Finite element method is used 

to solve modeled set of coupled partial differential equations. The investigation found that the 

velocity shows opposite behavior at the central region of the tube and near the wall. It is 

concluded that increasing values Reynolds number enhances velocity at the center of the tube, 

while opposite behavior is observed for increasing wave number. The same opposite behavior 

is also observed in case of Casson fluid parameter and Hartmann number. Unlikely to other 

parameters, time mean flow rate effects the velocity with the same attitude through the whole 

region. Pressure rise per wavelength is decreased by increasing Casson flow parameter. 

Opposite effects are noticed for Reynolds number and wave number while for high values of 

Reynolds number, pressure rise per wavelength exhibits nonlinear behavior. The increasing 

values of Hartman number ensure strengthen of electromagnetic forces as compared to 

viscous forces that cause the reduction in size and number of trapping bolus. The increase in 

Casson flow parameter enhances the thickness of fluid and caused reduction of size and 

number of the bolus. The dominate inertial forces caused by an increase in Reynolds number 

increases the magnitude and number of trapped bolus and vorticity exhibit the generation of 

the flow field in the narrow part of the tube in this case. First time in literature, this study 

includes the solution of the full form of Navier-Stokes equations for the peristaltic motion for 

Casson fluid passing through a tube filled with the porous medium in a magnetic field. Hence, 

it is hoped that present study serves as a benchmark for further research on peristaltic flows of 

non-Newtonian fluids without applying assumption of lubrication theory. 
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