EXPERIMENTAL STUDY OF COMPOSITE COLD-FORMED STEEL C-SECTION CONNECTED BACK-TO-BACK

RESEARCH MANAGEMENT INSTITUTE UNIVERSITI TEKNOLOGI MARA 40450 SHAH ALAM, SELANGOR MALAYSIA

PREPARED BY:

MOHAMAD ROHAIDZAT BIN MOHAMED RASHID

NOORSAIDI BIN MAHAT

NAZRI BIN NASIR

MEI 2009

CANDIDATE DECLARATION

We declare that this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. The work is our own and that appropriate credit has been given where reference has been made to the work of others. This topic has not been submitted to any other academic or non-academic institution for any degree or qualification.

Name of candidate Mohamad Rohaidzat Bin Mohamed Rashid

IC No.

Faculty

810201-14-5535 Civil Engineering

Name of candidate				
IC No.				
Faculty				

820703-12-5533 **Civil Engineering**

Noorsaidi Bin Mahat

Nazri Bin Nasir

NATE

Name of candidate						
IC	No.					
Fac	culty					

810718-14-5765

Architecture, Planning and Surveying

z

Date

11 MAY 2009

ABSTRACT

This thesis describes the results of an experimental investigation involving the testing of push out specimens. This study was aimed to develop a new type of shear connector that is easy to construct for a composite beam. The test specimens were designed to study the effect on the different shapes of shear connectors that have been applied for cold-formed steel lipped C-sections connected back-to-back. The test specimens have been categorized into two series which are four numbers of specimens for the first series and two numbers of specimens for the second series. For the first series variations of shear transfer mechanisms were tested, where prefabricated bent-up tabs of square shape and prefabricated bent-up tabs of triangular shape were employed at the surface of the flanges embedded in the concrete to provide shear transfer capacity. Second series of specimens were selected based on the results from the first series. The primary differences between the specimens are the shapes of the shear connectors and angles of bent-up. Failure mechanisms also were observed during testing. In this study, longitudinal cracks were observed from most of the specimens that were tested. Results show that the shear capacities of specimens with proposed type of shear connectors increase and the slips reduce compare to control specimen that only relies on natural bond (i.e. without shear connector) between steel and concrete to resist shear. Between the two types of shear connectors used, prefabricated bent-up tab (square shape) provides better performance in-term of strength, compare to the prefabricated bent-up tab (triangular shape). Concerning the angle of bent-up tab, higher degree of bent-up gives better performance.

TABLE OF CONTENTS

СНАР	TER	F	AGE	
	Declaration			
	Acknowledgement			
	Abstract			
	Notation			
	Table of contents			
1	INTRODUCTION			
	1.1	Background	1	
	1.2	Objective	5	
	1.3	Problem statement	5	
	1.4	Scope of work	7	
	1.5	Significant of study	8	
2	2 LITERATURE REVIEW		9	
	2.1	Introduction	9	
	2.2	Design consideration of common steel-concrete composite beam	s 11	
	2.3	Composite Beam Component	13	
		2.3.1 Steel beam	14	
		2.3.2 Concrete slab	14	
		2.3.3 Shear connectors	15	
	2.4	Research Studies on Steel-Concrete Composite Beam	19	
	2.5	Cold-formed steel section as a component for steel-concrete	24	
		composite beams		
		2.5.1 Advantages of Cold-Formed Steel Sections	25	
	2.6	Research Studies Cold-formed Composite Beam	29	
	2.7	Application of Cold-Formed Steel in Developed Countries	31	

.

And In Malaysia

3	RESEA	RESEARCH METHODOLOGY		
	3.1	Introduction	32	
	3.2	Preparation of specimens	32	
	:	3.2.1 First Series of specimens	32	
	:	3.2.2 Second Series of specimens	37	
	3.3	Fabrication of specimens	37	
	3.4	Test Setup and Instrumentation	40	
	3.5	3.5 Push-out Test Procedure		
	3.6	Material Properties	41	
	:	3.6.1 Cold-formed Lipped C-section	42	
	:	3.6.2 Concrete	44	
4	EXPERIMENTAL RESULTS			
	4.1 In	troduction	45	
	4.2 Te	est Results	45	
	4.3 Fi	rst Series of tested specimens	47	
	4.4 Se	econd Series of tested specimens	51	
5	DISCUSSIONS, CONCLUSIONS AND RECOMMENDATION			
	5.1 D	ISCUSSIONS	54	
	5.2 C	ONCLUSIONS	56	
	5.3 RI	ECOMMENDATION	57	
6	REFERENCES			
7	APPEN	APPENDIX A		