
International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol.7, No.4 (2014), pp.23-36

http://dx.doi.org/10.14257/ijsip.2014.7.4.03

ISSN: 2005-4254 IJSIP

Copyright ⓒ 2014 SERSC

Practical Segmentation Methods for Logical and Geometric Layout

Analysis to Improve Scanned PDF Accessibility to Vision Impaired

 Azadeh Nazemi, Iain Murray and David A. Mc Meekin

Electrical and Computer Engineering Spatial Sciences,

Curtin University ,Perth ,WA,Australia

Azadeh.nazemi@postgrad.curtin.edu.au I,murray@curtin.edu.au.

D.McMeekin@curtin.edu.au

Abstract

The use of electronic documents has rapidly increased in recent decades and the PDF is one the

most commonly used electronic document formats. A scanned PDF is an image and does not actually

contain any text. For the vision–impaired user who is dependent upon a screen reader to access this

information, this format is not useful. Thus addressing PDF accessibility through assistive technology

has now become an important concern. PDF layout analysis provides precious formatting information

that supports PDF component classification. This classification facilitates the tag generation. Accurate

tagging produces a searchable and navigable scanned PDF document. This paper describes several

practical segmentation methods which are easy to implement and efficient for PDF layout analysis so

that the scanned PDF document can be navigated or searched using assistive technologies.

Keywords: PDF layout analysis, Optical character recognition (OCR), Vision-impaired

1. Introduction

To generate a scanned PDF document that is accessible withan assistive technology such

asa screen readers Optical Character Recognition (OCR) software is required. OCR extracts

text from images and creates a plain text format from a scanned PDF document [1]. OCR

software output does not include any mark up or tags to help with the documents navigability

with assistive technologies.

HTML OCR an open standard which defines a data format for representation

of OCR output. The standard aims to embed layout, recognition confidence, style and other

information into the recognized text itself. Embedding this data into text in the

standard HTML format is used to improve accessibility and achieve navigation ability. [2]

OCRopus is an OCR software package which saves output results in an html (hOCR) file.

However, in some cases all of the different components within the PDF document are not

indicated. For example hOCR does not have a specific tag for mathematics formulae [3].

Document layout analysis is the process of identifying and categorizing the regions of

interest in the scanned image of a text document. It requires the segmentation of text zones

from non-textual ones and the arrangement in their correct reading order [4] Detection and

labeling of the different zones (or blocks) as text body, illustrations, math symbols, and tables

embedded in a document is called geometric layout analysis. Semantic labeling and

classification text zones based on different logical roles inside the document (titles, captions,

footnote, etc.,) the logical layout analysis [5].

Document layout analysisis typically performed before a document image is sent to an

OCR engine. The approaches described in this paper aim to improve layout analysis

performance and add more specific and detailed tags to hOCR tagging system.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DCU Online Research Access Service

https://core.ac.uk/display/195384481?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol.7, No.4 (2014)

24 Copyright ⓒ 2014 SERSC

To add more specific and detailed tags to the hOCR tagging system.

Segmentation Modules

Running PDF document component segmentation can provide tags for different parts of

the PDF document based on PDF component properties. The layout analysis is the factor,

when working with scanned PDF documents that provides the ability for the document to be

searched and navigated. This ability is based on the discovery of the bounding boxes of

various components from within the scanned PDF document. Performing multiple layer

segmentation facilitates the discovery and extraction of the data from the bounding boxes in

the scanned PDF document’s images. These different segmentation layers are:

 Block segmentation

 Text–image–segmentation

 Line–segmentation

 Word–segmentations

 Vertical–Horizontal–recursive–segmentation

3. Pre Processing

The PDF document image can be either colored or grey scale. The majority of images have

a top/bottom, left/right margin. In some cases during the scanning process, the PDF document

may rotate slightly. Image color, size, margins and skew are effective factors in the

segmentation result. Therefore, the preprocessing module before starting segmentation is

essential to generate smooth input data for the first segmentation layer.

In developing an application that automatically pre-processes all of the required steps for

the segmentation process, in this research project, the Open Source image processing

package, Image Magick was used. The pre-processing includes the following stages:

3.1. Format Conversion

The scanned PDF document is converted to the Magick Persistent Cache (mpc) image file

format. MPC is the native in-memory uncompressed file format. This file format is an

identical representation of the image in memory in which the file read is directly mapped into

memory. The MPC file format is not portable and is not a suitable format for archiving.

However, it is a suitable file format as an intermediate step for high-performance image

processing. The MPC format requires two files to support a single image. The image

attributes are written to one file, with the extension. mpc and the image pixels are written to a

second file with the extension cache. In converting the PDF document to. mpc it is first

converted to a portable pixel map format (ppm):

1. convert document.pdf to document.ppm

2. convert document.ppm to document.mpc

Converting PDF format toMagick Persistent Cache image file format(mpc). MPC is the

native in-memory uncompressed file format. This file format is identical to represent images

c

3.2. Binarization

A greyscale image can be used to create a binary image through thresholding [6].

Thresholding a colour image is done through designating a separate threshold for each RGB

component in the image and then combining them with an AND operation [7]. The following

steps demonstrate the process:

1. convert document.mpc to separate.png
Image greyscale separation

Thresholding greyscale image

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol.7, No.4 (2014)

Copyright ⓒ 2014 SERSC 25

2. convert separate.png using an 80% threshold to binary.mpc

Figure 1. Binarization

3.3. Scaling Image

Reducinga large image document by 50% increases the image processing speed during the

segmentation process.

1. convert binary.mpc -scale by 50% half.mpc

3.4. Margin Removal

A PDF document layout analysis is based on block segmentation. Accurate recognition of

white space areas leads to access block separator segments. Top-bottom and left-right

margins often interfere with the accurate recognition of white space areas as block segments

separator. Use of a margin removal module removes all margins prior to running the block

segmentation. The main tasks for the margin removal module are:

 Finding the bounding box of the foreground pixels:

(Xmin_foreground _pixels,Xmax_foreground _pixels)

(Ymin_foreground _pixels,Ymax_foreground _pixels)

 Converting the original image to an image without a margin by cropping the

original image using the obtained bounding box

in="$1"

ext=$(echo "$in"|sed 's/\./!/g'|sed 's/.*!//g')

name=$(echo "$in"|sed 's/\./!/g'|sed 's/!.*//g')

if [[$ext == "pdf"]];then

pdftoppm $in ppm

convert ppm-1.ppm -threshold 80% $name.png

else

convert $in -threshold 80% $name.png

fi

convert $name.png txt:-|grep -Evwhite|sed 's/:.*#/ /g;1d;s/,/ /g' > pixel.txt

cat pixel.txt |awk '{print $1}'|sort -b -k1n,1 >x.txt

cat pixel.txt |awk '{print $2}'|sort -b -k1n,1 >y.txt

xs=$(cat x.txt |awk 'NR==1')

xe=$(cat x.txt |awk 'END{print }')

ys=$(cat y.txt |awk 'NR==1')

ye=$(cat y.txt |awk 'END{print }')

echo $ye $ys

x=$(($xe-$xs))

y=$(($ye-$ys))

Foreground bounding box finding

Cropping original image basedon bounding box of foreground pixels

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol.7, No.4 (2014)

26 Copyright ⓒ 2014 SERSC

convert $name.png -crop $x"x"$y"+"$xs"+"$ys $name"_without_margin.p f

3.5. Skew Detection and Correction

In some cases during the process of scanning into a PDF document,the document may

rotate slightly, reducing the PDF document layout analysis’ accuracy. To address this issue

askew detection and correction module is applied; this is performed before running the PDF

document layout analysis. The application of this module, rather than obtaining the bounding

box of the foreground pixels in the image, it extracts the following data from. Mpc image:

 X_in _Ymax_foreground_pixels

 Y_in_Xmin_foreground_pixels

 H=Height of the image
#!/bin/bash

in="$1"

ext=$(echo "$in"|sed 's/\./!/g'|sed 's/.*!//g')

name=$(echo "$in"|sed 's/\./!/g'|sed 's/!.*//g')

if [[$ext == "pdf"]];then

pdftoppm $in ppm

convert ppm-1.ppm -threshold 80% $name.png

else

convert $in -threshold 80% $name.png

fi

convert $name.png txt:-|grep -Evwhite|sed 's/:.*#/ /g;1d;s/,/ /g' > pixel.txt

cat pixel.txt |awk '{print $1}'|sort -b -k1n,1 >x.txt

cat pixel.txt |awk '{print $2}'|sort -b -k1n,1 >y.txt

xs=$(cat x.txt |awk 'NR==1')

xe=$(cat x.txt |awk 'END{print }')

ys=$(cat y.txt |awk 'NR==1')

ye=$(cat y.txt |awk 'END{print }')

x=$(($xe-$xs))

y=$(($ye-$ys))

convert $name.png -crop $x"x"$y"+"$xs"+"$ys $name"_without_margin.mpc"

convert $name.png -crop $x"x"$y"+"$xs"+"$ys wm.txt

cat wm.txt|grep -Evwhite|sed 's/:.*#/ /g;1d;s/,/ /g'|awk '{print $1, $2}' > wpixel.txt

height=$(identify -format "%h" $name"_without_margin.mpc")

xs=$(cat wpixel.txt|sort -b -k1n,1|awk 'NR==1'|awk '{print $1}')

ye=$(cat wpixel.txt|sort -b -k2n,2|awk '{print $2}'|awk 'END{print}')

yxs=$(cat wpixel.txt|awk '$1=='$xs''|awk '{print $2}'|awk '{sum+=$1} END { print sum/NR}'|bc -l)

xye=$(cat wpixel.txt|awk '$2=='$ye''|awk '{print $1}'|awk '{sum+=$1} END { print sum/NR}'|bc -l)

delx=`echo "$xye" | bc -l`

dely=`echo "$height-$yxs" | bc -l`

tangant=`echo "$dely/$delx" | bc -l`

roting=$(echo "scale=3;a($angle)/0.017453293" | bc -l)

rotating_angle=$(($(echo $roting |awk '{printf "%d" ,$1+1}')))

convert $name"_without_margin.mpc" -rotate -$rot $name"_unrotate.png"

Finding x in y _max and y in x_min

Rotating angle Tangent calculation

Arctangent calculation & rotating angle finding

Rotating original image(–rotating angle)

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol.7, No.4 (2014)

Copyright ⓒ 2014 SERSC 27

Figure 2. Rotating PDF Document

4. Block Segmentation

Block segmentation divides the page into logical blocks, preserving the reading order. In a

double column document the OCR results would not keep the reading order. Block

segmentation is responsible for identifyingthe extended vertical black lines or extended

vertical whitespace as shown in Figure 3.

Figure 3. Image Morophlogy Dilated and Eroded, Horizontal Block
Segnentatuion and Combination of Vertical Horizontal Segmentation

Block Segmentation utilizes the combination of morphological operations it is through the

Image Morphology method that the structure of the shapes within an image is able to be

cleaned up and studied. This happens by comparing each pixel in the image with its neighbors

in multiple ways, so as to add or remove, brighten or darken that pixel. When this is applied

over a whole image, even repetitively, specific shapes can be found and/or removed and

modified. If a pixel is white and is completely surrounded by other white pixels, this means

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol.7, No.4 (2014)

28 Copyright ⓒ 2014 SERSC

that that pixel is not on the edge of the image [8]. The entire process depends on the definition

Kernel that defines what pixels are to be classed as neighbors within each specific

morphological method. The dilate operation returns the maximum value in the neighborhood

while the erode operation returns the minimum value in the neighborhood using the following

steps:

1. convert bin.mpc -morphology dilate:1 diamond dilate.mpc

2. convert dilate.mpc -morphology erode:5 diamond -clip-mask bin.mpcerode.mpc

Morphology helps to remove non-interested white space between texts and

recognizeremained white space area as blocks separator.

Since PDF document may contain different logical layout such as footer and multi columns,

block segmentation must be done both vertical and horizontal as following:

 Considering horizontal white space area

 Running horizontal segmentation

 Considering vertical white space area

 Applying vertical segmentation for all extracted horizontal segments
 E

_vertical()

{

n=$1

height=`convert $n"-hor.mpc" +gravity +repage -format '%[fx:u.h-1]' -identify original.mpc`

width=`convert $n"-hor.mpc" +gravity +repage -format '%[fx:u.w-1]' -identify original.mpc`

convert $n-hor.mpc -morphology dilate:1 diamond dilate.mpc

convertdilate.mpc -morphology erode:5 diamond -clip-mask $n-hor.mpcerode.mpc

convert erode.mpc txt:-|sed 's/:.*#/ /g;1d;s/,/ /g;s/white/1/g;s/black/0/g'|awk '{print $1,$2,$4}'|awk '{if

($3!=1) $3=0}{print $1,$2,$3}'>erode.txt

y=$(cat erode.txt|sort -b -k2n,2|awk '$3==0'|awk '{ a[$2]++}END { for(i in a) print i,a[i]}'|sort -b -

k2n,2|awk 'END{print $1}')

xofy=$(cat erode.txt|sort -b -k2n,2|awk '$3==0 && $2=='$y''|sort -b -k1n,1 |awk '{print $1}'|awk

'p{print $1,$1-p,p}{p=$1}{if (NR==1)print $1,$1,0}'|sort -b -k2n,2|awk '{print $2}'|uniq|tail -n

3|head -n 1)

x=($(cat erode.txt|sort -b -k2n,2|awk '$3==0 && $2=='$y''|sort -b -k1n,1|awk '{print $1}'|awk

'p{print $1,$1-p,p}{p=$1}{if (NR==1)print $1,$1,0}'|awk '$2>'$xofy''|awk '{print $1}'))

noy=${#x[@]}

if [[$noy -gt 0]];then

for ((e=0;e<$(($noy));e++))

do

l=$(($e+1))

if [[$e -ne $(($noy-1))]] ;then

convert $n-hor.mpc -crop $((${x[$l]}-${x[$e]}))"x0+"${x[$e]}"+0" $n-ver$e.mpc

else

convert $n-hor.mpc -crop $(($width-${x[$e]}))"x0+"${x[$e]}"+0" $n-ver$e.mpc

fi

done

else

convert $n-hor.mpc $n-ver1.mpc

fi

convert $n-ver*.mpc -rotate 90 -background blue -splice 1x3+0+0 -append -rotate -90 result$n.mpc

}

in="$1"

Applying all horizontal segments to vertical segmentation function and obtaining blocks

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol.7, No.4 (2014)

Copyright ⓒ 2014 SERSC 29

height=`convert "$in" +gravity +repage -format '%[fx:u.h-1]' -identify original.mpc`

convert "$in" -threshold 60% -fuzz 1% -trim +repage -scale 50% bin.mpc

convertbin.mpc -morphology dilate:1 diamond dilate.mpc

convertdilate.mpc -morphology erode:5 diamond -clip-mask bin.mpcerode.mpc

mh=$(convert erode.mpc txt:-|sed 's/:.*#/ /g;1d;s/,/ /g;s/white/1/g;s/black/0/g'|awk '{print

$1,$2,$4}'|sort -b -k2n,2|awk '$3==1'|awk '{ a[$2]++}END { for(i in a) print i,a[i]}'|sort -b -

k2n,2|awk 'END{print $2}')

echo $mh

x=($(convert erode.mpc txt:-|sed 's/:.*#/ /g;1d;s/,/ /g;s/white/1/g;s/black/0/g'|awk '{print

$1,$2,$4}'|sort -b -k2n,2|awk '$3==1'|awk '{ a[$2]++}END { for(i in a) print i,a[i]}'|sort -b -

k2n,2|awk ''$mh'-$2<5'|sort -b -k1n,1|awk '{print $1}'|awk 'p{print $1,p}{p=$1}'|awk '$1-$2!=1'|awk

'{print $1}'))

nox=${#x[@]}

for ((e=0;e<$(($nox));e++))

do

l=$(($e+1))

if [[$e -ne $(($nox-1))]] ;then

convertbin.mpc -crop "0x"$((${x[$l]}-${x[$e]}))"+0+"${x[$e]} $e-hor.mpc

else

convertbin.mpc -crop "0x"$(($height-${x[$e]}))"+0+"${x[$e]} $e-hor.mpc

fi

done

for ((v=0;v<$(($nox));v++))

do

_vertical $v

done

convert *-hor.mpc -background red -splice 1x1+0+0 -append horizon.png

convert result*.mpc -background blue -splice 1x1+0+0 -append x:

As in Figure 4 is shown this method is suitable for horizontal block segmentation

For a bill document but during vertical segmentation over segmentation is occurred.

Figure 4. Sample Bill Segmentation

5. Text-Image Segmentation

Morphology is also used in the separation textual components from graphical components

in image documents. To separate the text from the image, first the binary image is dilated,

Horizontal space area finding and performing horizontal segmentation

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol.7, No.4 (2014)

30 Copyright ⓒ 2014 SERSC

thenthe conditional eroding is performed on the dilated image using the original image as the

mask until the image part is complete again. The original image is used as a mask to protect

parts of the image from changes.It will restore all shapes that still have some seed part left, so

only the image has been left. Since image parts contain fatter lines and larger blobs than text

parts, images can be extracted by dilating the image until all letters are gone, but some parts

of the image still remain

convertBLOCKsegment.mpc -morphology dilate: 3 diamond dilated.mpc

convertBLOCK_segment.mpc -morphology dilate:3 diamond mpc:-|convert mpc:-

txt:-|grep -Ev '#FFFFFF'|sed ‘1d;s/:.*//g;s/,/ /g’>rgb.txt

xs=$(cat rgb0.txt|awk '{print $1}'|sort -b -k1n,1|awk 'NR==1')

xe=$(cat rgb0.txt|awk '{print $1}'|sort -b -k1n,1 |awk END'{print}')

ys=$(cat rgb0.txt| awk '{print $2}'|sort -b -k1n,1|awk 'NR==1')

ye=$(cat rgb0.txt|awk '{print $2}'|sort -b -k1n,1|awk END'{print}')

x=$(($xe-$xs));y=$(($ye-$ys))

convertBLOCK_segment .mpc -draw "fill white rectangle $xs,$ys $xe,$ye"

textonly.mpc

convertBLOCKsegemnt.mpc -crop $x"x"$y"+"$xs"+"$ysimageonly .mpc

Another method to extract textual part is:

convertdilated.mpc -morphology erode:20 diamond -clip-mask

BLOCKsegment.mpceroded.mpc

Finally using image contains only image and original image to obtain text only image:

convert eroded.mpc -negate BLOCK_segment.mpc -compose plus -composite tesxtonly.png

Figue.5. illustrates text and graphical component segmentation

Figure 5. Text-Image Segmentation

6. Line Segmentation

Once the block segmentation and the text-image segmentation hasfinished executing,the

line segmentation modules is executed generating all of the lines and bounding boxes.

#!/bin/bash

Dilating the BINARY block segmented

Obtaining bounding box of graphical part remaining in dilated image

Making non textual part white, what left from original image is text

Extracting image only from original image using its bounding box

Eroding dilated image

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol.7, No.4 (2014)

Copyright ⓒ 2014 SERSC 31

#One_Column_Page_Line_Segmentation

in="$1"

convert "$in" -threshold 60% -scale 50% bin.mpc

convert bin.png txt:-|sed 's/:.*#/ /g;1d;s/,/ /g;s/white/1/g;s/black/0/g'|awk '{print

$1,$2,$4}'>data.dat

height=`convert bin.png +gravity +repage -format '%[fx:u.h-1]' -identify original.mpc`

width=`convert bin.png +gravity +repage -format '%[fx:u.w-1]' -identify original.mpc`

for ((i=0;i<=$height;i++))

do

hgap=$(cat data.dat|awk '$2=='$i''|awk '$3==1'|wc -l)

diff=$(($hgap-$width))

if [[($diff -lt 3)&&($diff -gt -3)]]; then

echo $i>>hgap.dat

fi

done

‘base="bin.png"

cat hgap.dat|awk 'p{print $1,p,$1-pf}{p=$1}'|awk '$3>5'|awk 'p{print p,$2,NR}{p=$2}'|awk

'{print "convert '$base' -crop 0x"$2-$1"+0+"$1" line"$3".png"}'>>crop.sh

chmod +x crop.sh

./crop.sh

convert line*.png -background red -splice 0x1+0+0 -append x:

Figure 6. Matematical PDF Line Segmentation

The bounding box for each line is represented by a pair of coordinate values:

Binarization and scaling

Pixel coordinate value(x,y) and color extraction, considering 1 for background and 0 for foreground

Obtain exact image size

Finding all lines with background colour as horizontal gaps

Crop original image based on horizontal gaps position to create line segments.

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol.7, No.4 (2014)

32 Copyright ⓒ 2014 SERSC

()(or (, , ,)all following lines properties can be collected and used to

logical layout analysis and generate appropriate tag for PDF components.

Line Intention =Left Margin=lm=

h= or h=$(identify-format “%h” line.bin.png)

w= or w=$(identify-format “%w” line.bin.png)

Right Margin=rm=w-

White Spaces=ws

 Vertical Spaces Between Lines=vs

no of recognized character=$(cat line.txt|sed ‘s/ //g’|sed ‘s/!//g’|wc –c)

Character Recognition Ratio= crr = number of recognized character /w

aspect-ratio =ar=w/h

mean (vs)=1/n(∑

)

ws=$(convert line.png txt:-|grep –c FFFFFF) : based on number of white pixels in line

segment

 = +)/2

ratio(lm) = /min(lm)

 =1/n∑

ratio(h)=h/mean(h)

In terms of line segmentation accuracy in mathematical PDF documents, the lines have been

divided into four categories as follows:

• Fully-Segmented: the line is completely segmented with its subscript or superscript.

Figure 7. Full-Segmented

• Over-Segmented: the line is either split into more than one text-line, or partially

detected. Figure 8 shows over -segmentation occurrence during ordinary line

segmentation, which splits one line into two separate segments.

Figure 8. Over-Segmentation

• Under-Segmented: the line is merged with some other lines. Figure 9 illustrates a line

segment which has been merged with the superscript of the previous line and

subscript of the next line.

Figure 9. Under-Segmentation

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol.7, No.4 (2014)

Copyright ⓒ 2014 SERSC 33

• Broken symbol or character:

Figure 10. Broken Symbol

Using the currentline-segmentation method solves the problems of mathematical PDF.

Additionally, hand written document pages have been successfully segmentedwith this

method.

Figure 11. Line Segmentation Mathematic Hand Writing Document

7. Word Segmentation

Since line segments may contain embedded mathematics formulae or non-alphanumeric

components which OCR cannot recognize them, applying line segments to word

segmentation module supports to classify ordinary words and other components.

in="$1"

nogap=8

convert "$in" -fuzz 1% -trim +repage -threshold 60% -rotate 90 bin.png

width=`convert bin.png +gravity +repage -format '%[fx:u.h-1]' -identify original.mpc`

convertoriginal.mpc -crop 0x1 -format '%k %[pixel:s]' info:pixels

exec<pixels

x=0 ys=$x

segment=0

readys_xsys_color

while x=`expr $x + 1`; read xs color; do

if [$ys_xs -eq 1 -a \($xs -ne 1 -o "$ys_color" != "$color" \)] || [$ys_xs -ne 1 -a $xs -eq 1

]; then

if [$ys_xs -ne 1]; then

 w=`expr $x - $ys`

xposition_start[$segment]=$ys

xposition_end[$segment]=$(($ys+$w))

Pixel information extraction

Read data pixel by pixel to find connected components properties until reaching gap

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol.7, No.4 (2014)

34 Copyright ⓒ 2014 SERSC

if [[$segment -gt 1]];then

gap=$((${xposition_start[$segment]}-${xposition_end[$(($segment-1))]}))

else

gap=${xposition_end[$segment]}

fi

if [[$gap -lt $nogap]]; then

xposition_start[$segment]=${xposition_start[$(($segment-1))]}

fi

echo $segment ${xposition_start[$segment]} ${xposition_end[$segment]} >>gap.dat

segment=`expr $segment + 1`

echo "component $segment:width $w"

fi

ys=$x ys_xs=$xsys_color="$color"

fi

done

catgap.dat|awk 'p{print $2,$3,$2-p}{p=$2}'|awk '$3!=0'|awk 'p{print p ,$2}{p=$2}'

>ggap.dat

crop=$(($(cat ggap.dat|wc -l)-1))

for ((j=0;j<=$crop;j++))

do

catggap.dat|awk 'NR=='$j''|awk '{print "convert '$in' -crop ",$2-$1"x0+"$1"+0 ",

"word"'$j'".png"}'>>crop.sh

done

chmod +x crop.sh

./crop.sh

convert -size 0x0 canvas:white result.png

for ((j=1;j<=$crop;j++))

do

convert result.png word$j.png -background red -splice 1x0+0+0 +append result.png

done

Figure 12. Word Segmentation a Line with Embedded Formulae

8. Vertical-Horizontal-Recursive-Segmentation

If a mathematical formulae is extracted by the word segmentation module, prior to sending

this segment to the mathematical OCR for character recognition, it must be segmented into

primitive components .Since mathematical formulae are mostly multi-dimensional and not

linear, thus to recognize the order of primitive components, another segmentation method was

used in this research.Vertical-Horizontal–recursive-segmentation covers all of the primitive

components and saves their bounding boxes to a database. This database is used to define

relationship between primitive components and finding their order.

Ignoring non interested gaps between characters

Save words bounding boxes information ina database to use for words classification based on feature extracted and accurate layout analysis

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol.7, No.4 (2014)

Copyright ⓒ 2014 SERSC 35

Figure 13. Vertical-Horizontal–Recursive-Segmentation

8. Conclusion

The research undertaken provides open source bash script codes for PDF document

segmentation which easily can be run from command line in ordinary Linux machine

or virtual machine. In order to design affordable, stand-aloneand simple to use

software/hardware embedded system for reading electronic documents to vision

impaired further development contains running these scripts in System on Chip

(SoCs) platform such as ODROID-X2 with UbuntueLinaro operating system OS .

References

[1] S. O Brein, “Optical Character Recognition”, Worcester Polytechnic Institute, (2012).

[2] T. M. Breuel and U. Kaiserslautern, “The hOCR Micro format for OCR Workflow and Results”, Document

Analysis and Recognition, 2007.ICDAR 2007.Ninth International Conference on, (2007).

[3] T. M. Breuel, “The OCRopus open source OCR system”, In Proc. SPIE Document Recognition and Retrieval

XV, pages 0F1–0F15, San Jose, CA, USA, doi:10.1117/12.783598, (2008)

[4] H. S. Baird, "Anatomy of a versatile page reader", Proc. of IEEE, vol. 80, no. 7, (1992), pp. 1056-1065.

[5] R. M. Haralick, “Document image understanding: geometric and logical layout”, Computer Vision and

Pattern Recognition, 1994. Proceedings CVPR '94, 1994 IEEE Computer Society Conference on, (1994).

[6] G. Shapiro, G, Linda and G. C. Stockman, "Computer Vision", Prentice Hall, ISBN 0-13-030796-3, (2002).

[7] N. Pham, A. Morrison and J. Schwock, “Quantitative image analysis of immunohistochemical stains using a

CMYK color model. DiagnPathol, vol. 2, (2007), pp. 8.

[8] E. R. Dougherty, “An Introduction to Morphological Image Processing , ISBN 0-8194-0845-X, (1992).

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol.7, No.4 (2014)

36 Copyright ⓒ 2014 SERSC

