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Abstract. This paper presents the DELTA-R approach that detects and 

classifies the changes between two versions of a linked dataset. It contributes 

to the state of the art firstly: by proposing a more granular classification of 

the resource level changes, and secondly: by automatically selecting the 

appropriate resource properties to identify the same resources in different 

versions of a linked dataset with different URIs and similar representation. 

The paper also presents the DELTA-R change model to represent the 

changes detected by the DELTA-R approach. This model bridges the gap 

between resource-centric and triple-centric views of changes in linked 

datasets. As a result, a single change detection mechanism will be able to 

support the use cases like interlink maintenance and dataset or replica 

synchronization. Additionally, the paper describes an experiment conducted 

to examine the accuracy of the DELTA-R approach in detecting the changes 

between two versions of a linked dataset. The result indicates that the 

accuracy of DELTA-R approach outperforms the state of the art approaches 

by up to 4%. It is demonstrated that the proposed more granular 

classification of changes helped to identifyup to 1529 additional updated 
resources compered to X.By means of a case study, we demonstrate the 

support of DELTA-R approach and change model for an interlink 

maintenance use case. The result shows that 100% of the broken interlinks 

were repaired between DBpedia person snapshot 3.7 and Freebase. 

Keywords: Change detection, link maintenance, dataset dynamics, linked 

data 

1   INTRODUCTION 

Many linked datasets are highly dynamic in nature [8]. For an application 

consuming a dynamic linked dataset, the dynamic nature of the dataset may result 

in issues for the application such as broken interlinks or outdated data [1].  
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These issues are typically encapsulated in the research community using the 

term “dataset dynamics”. Dataset dynamics investigates the approaches that deal 

with changes in linked datasets at different levels of granularity (triple, resource, 

or graph-level), during the evolution of the datasets [2]. The aim is to build: (i) 

vocabularies to represent the change information, (ii) mechanisms for change 

detection, and (iii) change propagation methods. Change detection in linked 

datasets has proven to be important for supporting use cases like interlink 

maintenance and synchronization of dataset versions, replicas, and interconnected 

datasets [1, 5]. However, existing change detection mechanisms have certain 

limitations in our opinion (see below). 

These limitations have motivated our research in dataset dynamics: (a) 

Classification granularity limitation – the existing classification of changes does not 

distinctly identify all the resources that changed their representation and may lead 

to semantically broken interlinks. An interlink is semantically broken when the 

meaning of the representation of source and target resources differs from each 

other; (b) Properties selection limitation – the existing approaches either use 

specific properties or all the object properties (graph structure) of a resource to 

identify the resources that have changed their address and possibly their 

representation (structure and/or values) too. Identification of specific properties is 

generally based on its entropy or coverage in the dataset, the calculation of which 

requires an additional effort (pre-change detection) [1]. The reliance on object 

properties may give good recall, but the precision could be severely affected, as 

some of the object properties are highly generic in nature, the argument is 

supported by the results in [6]; (c) Change model1 limitation – the existing change 

models do not allow one to represent the changes such that one can access a 

resource level change along with its corresponding changed triples. We believe 

that the existence of this gap between resource centric view and triple centric 

view of changes in linked dataset restricts a single change detection mechanism to 

support use cases like interlink maintenance, dataset or replica synchronization. 

The specific research question under evaluation in this paper is to what extent 

we can detect and classify the resource level changes between two versions of a 

linked dataset. 

The contribution of this paper is as follows: Firstly, it proposes DELTA-R, a 

novel change detection and classification approach for linked datasets. DELTA-R 

addresses the limitations in the state of the art (a) and (b) described above. 

Secondly, it proposes the DELTA-R change model to represent the changes 

identified by the DELTA-R approach, it  addresses limitation (c). Thirdly, it 

evaluates the accuracy of the DELTA-R approach using real world data compared 

                                                           
1The generic model to represent changes. This model can be incorporated in ontology, XML 

schema, or any other vocabulary. 



to state of the art change detection approaches. Fourthly, it demonstrates how the 

changes detected can be used to support a structurally broken interlink repair use 

case.  

The paper is organized as follows: Section 2 discusses how the aforementioned 

limitations exist in state of the art approaches. Section 3 describes the proposed 

DELTA-R approach. Section 4 describes the DELTA-R change model proposed. 

Section 5 presents an evaluation of DELTA-R in terms of accuracy achieved. 

Section 6 discusses a case study that was performed to fix structurally broken 

interlinks using the change information generated by DELTA-R. Conclusions are 

drawn in Section 7. 

2   RELATED WORK 

Popitsch and Haslhofer [1] proposed three representative use cases where 

applications consuming linked dataset need to be informed about the changes in a 

consumed dataset. Use Case 1a - Semantic link maintenance – in this, the 

applications need to be informed about the resources that have changed their 

representation. Use Case 1b - Structural link maintenance – in this, the applications 

need to be informed about the resources that have changed their address (Subject 

URI) or have been deleted from the dataset. Use cases 1a and 1b need the 

information about changed resources thus, what is called resource level change 
information is required to support these use cases. Use Case 2 - Dataset 

synchronization – in order to synchronize a replica of a linked dataset, it is 

important to identify the triples that have been deleted or added in the main 

dataset. Use Case 3 - Data caching – applications consuming remote linked 

dataset(s) maintain a http cache to store remote data locally [1]. To synchronize 

the locally stored data, it is again important to identify the triples that have been 

deleted and added in the remote datasets. Use case (2) and (3) need the 

information about the changed triples, thus, what is called triple level change 
information is required to support these use cases. The approaches that support 

these use cases are discussed in this section. Table 1 summarizes the categorization 

of the state of the art approaches according to their target use case(s) and level of 

change information required. 

Table 1. Categorization of the SOA approaches according to their target use case and change 

information level required. 

Approaches Change 

Information 

Level 

Interlink Maintenance Dataset 

Synchro

nization 

Data 

Caching Structural Semantic 

Popitsch et al. [1] Resource X    

Pourzaferani et al. [6] Resource X    



Kovilakath et al. [3] Resource  X   

Pernelle et al. [7] Triple   X X 

Lee et al. [10] Triple 

  

X X 

 

Approaches proposed in [1,3, and 6] identify the change information at resource 

level. The approach in [3] detects semantically broken interlinks by keeping track 

of updated resources using PubSubHubbub. However, this approach is only able to 

partially detect semantically broken interlinks, as the approach is not able to 

detect the updated resources that also have changed its subject URI at the same 

time. The approach in [6] detects the resources that changed its subject URI to 

identify and repair structurally broken interlinks. However, this approach is not 

able to cater for all structurally broken interlinks as this approach does not 

identify removed resources. To identify all the possible candidate resources that 

can lead to structurally broken interlinks, the approach in [1] detects and classifies 

the changes in linked datasets during its evolution. To the best of our knowledge 

the approach provides the most granular classification of changes in linked 

datasets at resource level. There are four types of changes that exist in this 

classification:  

a) Create – addition of a new resource in linked dataset;  

b) Remove – deletion of an existing resource from the dataset;  

c) Update – change in representation of an existing resource in the dataset;  

d) Move – change in the subject URI (address) of an existing resource in the 

dataset. Also, it is possible that the representation of the resource has also been 

changed. Using the remove and move type of changes, one can identify all the 

potential candidate resources that can lead to structurally broken interlinks. [1] 

did not intend to support the semantically broken interlink maintenance use case, 

but the classification in itself is able to support this use case by the identification of 

updated resources. However, not all of the updated resources can be identified 

using this classification. This is because this classification does not differentiate 

between the resources that changed their address and the resources that changed 

both their address and representation at the same time. This limitation in 

classification granularity has been termed in the introduction section as limitation 

(a). 

Out of all the resource level change detection approaches discussed above, only 

[1 and 6] can identify moved resources. However, [1] requires configurable 

properties, while [6] relies on object properties for the identification of moved 

resources. This limitation of property selection has been referred in the 

introduction as limitation (b). 

To identify the triple level change information, [7] proposes an approach of 

change detection for evolving RDF datasets. This approach identifies the triples 

that have been deleted and added in the dataset during its evolution. Another 

approach in [10], also identify triple level change information in RDF datasets. 



This approach considers the existence of blank nodes in RDF datasets. The 

approaches in [7 and 10] identify the triple level change information, thus, are 

suitable to support use cases 2 and 3. 

In this section so far, we have identified that the state of the art approaches 

detect changes at two levels, triple and resource, with the different levels 

supporting different use cases. To the best of our knowledge, the existing 

approaches do not detect and represent change information at both resource and 

triple levels. 

Out of the approaches discussed above only [1] and [7] proposed vocabularies to 

represent the detected changes in RDF or linked datasets. [7] proposed an 

ontology ODE to represent triple level changes. In ODE, each reified triple that 

belongs to either added or deleted set of triples detected between two versions of 

an RDF dataset, is a class instance. In the reification of triples, the proposed 

approach, adds the type of each added or deleted triple. This type also includes the 

addition, deletion, and enrichment (update) of an instance. This reification bridges 

the gap between resource (instance) and triple centric view of changes. However, 

we believe it is not a very effective approach, as a resource (instance), constitutes 

multiple triples, so, this reification will generate redundant information about the 

resource level changes. On the other hand, [1] provides a vocabulary to represent 

the changes in linked dataset at resource level. The vocabulary by [1] also has a 

“hasAffectedTriples” property that can be used to specify the affected triples due 

to the changes in a resource. This property bridges some of the gap between the 

resource and triple centric view of changes in linked datasets. However, the 

vocabulary still does not provide a way to distinctly identify the added and deleted 

triples due to the changes in the representation of a resource. This limitation in 

representing the resource and triple level changes together has been referred in 

the introduction as limitation (c). 

We have shown that limitations mentioned in the introduction exist in state of 

the art approaches. We argue in this paper that in order to address these 

limitations we need to: (a) separate in a classification of resources that only change 

their address and resources that both change their address and representation at 

the same time, i.e. sub classify the “move” type of change; (b) a change mechanism 

that does not require pre-determined properties for the identification of moved 

resources; (c) a change model that bridges the gap between resource and triple 

centric view of changes. 

3   The DELTA-R Approach 

The main objective of the DELTA-R approach is to address the limitations (a) and 

(b) of current approaches. To address limitation (a), DELTA-R proposes a new 



classification for resource level changes in linked datasets. The proposed 

classification has the following types of changes: Create – addition of a resource in 

a linked dataset; Remove – removal of a resource from a linked dataset; Update – 

change in the representation of an existing resource of a linked dataset; Move – 

change in the subject URI(address) of an existing resource; Renew – change in the 

address as well as in the representation of an existing resource. To address 

limitation (b), the approach first identifies all the potential moved and renewed 

resources using all the properties present in the resources. Then to filter out the 

incorrect moved or renewed resources, the approach determines the critical 

properties (section 3.3) automatically. 

The DELTA-R approach contains four major activities (see Figure 1). First is the 

Ingestion activity (section 3.1) – it uploads both the older and newer versions of a 

linked dataset into a triple store. Second is the Feature extraction activity (section 

3.2) –this uses the earlier uploaded versions of the dataset to extract the properties 

and object information of new and deleted resources. Third is the Change 

detection and classification activity (section 3.3) – it uses the extracted properties 

and objects of new and deleted resources to identify the updated, moved and 

renewed resources. Fourth is the Transformation activity (section 3.4) – it 

transforms the identified change information into RDF using the DELTA-R 

change model vocabulary (explained in section 4). 

 

 
 

Figure 1: Overview of the major activities in the DELTA-R approach 

 

In the following sub-sections, each activity of DELTA-R approach in described in 

more detail. 

3.1   INGESTION ACTIVITY 

Requirements: The aim of this activity is to upload the RDF dataset dumps in a 

triple store, in a way that the different dumps can be distinctly identified inside 

the triple store. 

Implementation: we have implemented an Ingestion component which uploads 

RDF dataset dump for both older and newer versions in a triple store, in two 

distinct graphs. We have used the sem:rdf-load() function of the semantic API of 

the MarkLogic  platform to upload the RDF dataset dumps in the MarkLogic 



triple store2. First, the older version, then the newer version was uploaded, in two 

distinct graphs.  

3.2   FEATURE EXTRACTION ACTIVITY 

Requirements: The aim of this activity is to extract every property and object of 

each newly added and deleted resource from the uploaded datasets. The extracted 

information is required to generate keys that can be used for the change detection 

mechanism. This is important to identify the same resources with different subject 

URI and similar representation (but not the same). 

Implementation: We implemented a Feature Extraction Component that extracts 

the properties and objects of each newly added and deleted resource in the 

uploaded dataset versions. The aim is to create and store a separate representation 

of the extracted properties and object in the MarkLogic database3. The subject URI 

of a resource is also attached in its separate representation. This representation 

will be utilized at the change detection stage. Figure 2 provides a brief description 

of all the steps performed by this component. 

 

Figure 2. Sequence of steps of the Feature extraction component 

Step 1, SPARQL queries described in Figure 2 are used to identify the newly added 

and deleted resources between the older and newer version of the dataset.  

 

 

Figure 2. SPARQL queries used to identify newly added and deleted resources 

Step 2, The component then extract the properties and object of the identified 

resources from earlier uploaded dataset versions and additional information4 that 

                                                           
2https://www.marklogic.com/product/marklogic-database-overview/database-

features/semantics/ 
3https://www.marklogic.com/ 
4This additional information could be provenance, archival mementos, etc. 



may exist. Before executing this step, the additional information (for both older 

and newer version of the dataset) is uploaded in the triple store, in distinct graphs. 

It is an optional step. Step 3, to cope with the potential errors generally made by 

humans at data entry stage [9], algorithm transforms the object values (from triples 

in the earlier uploaded versions and additional information) of the identified 

resources into keys. The created keys will be used to calculate the similarity 

between two resources in different versions. The keys are formed differently for 

different types of object values: 

– URIs (object properties that contains no numeric character): The algorithm uses 

the last token (tokenize with ‘/’) of URI path as the key; 

– text (data properties that contains no numeric character): only the first three 

tokens (using \s) of the strings are used for the key creation. The algorithm 

combines the sub-keys from each token to form a single key. To create the sub-

key of each token, the algorithm takes all the distinct vowels in a token, first and 

last character of the token, and the primary key of double metaphone5 encoding 

for the token; For an instance, be “Hamid” a single token object value, the key for 

this will be “aihhmtd”, where “ai” are distinct vowels, “h” is the first character, 

“hmt” is the primary key of the metaphone encoding, and “d” is the last character 

of the object. The combination of vowels, first and last characters, and phonetic 

encoding has been used to improve the accuracy of the algorithm while 

calculating the similarity of two resources [12]. 

– Numbers/ string with digits: the algorithm uses the exact value of the objects as 

key. Step 4, the generated keys are combined with their property/ predicate name 

into a feature and the XML representation of the features is known as Feature 

XML. A snippet of Feature XML is shown in Figure 3.  

 

  
Figure 3. Feature XML for a resource key 

 
Step 5, MarkLogic database is used to store the Feature XMLs. The algorithm 

stores the Feature XMLs of the newer and older resources in “new” and “delete” 

collections6 respectively. At this stage, there is no separate collection for the 

updated resources.  

                                                           
5http://www.b-eye-network.com/view/1596 
6https://docs.marklogic.com/guide/search-dev/collections 



3.3   CHANGE DETECTION AND CLASSIFICATION ACTIVITY 

Requirement: We need an activity to: (a) classify updated resources; – (b) identify 

resources that have only changed their address and classify them as move – (c) 

identify resources that have changed both their address and representation at the 

same time and classify them as renew. 

Implementation: To fulfill requirement (a), the component identifies the 

updated resources, their corresponding added and deleted triples and stores all the 

identified information in “update” collection. To achieve this, the component 

performs the following steps: Step 1: For an updated resource, a Feature XML must 

be present in both new and delete collection. Feature XML in the delete and new 

will be denoted by older and newer XML respectively in this section. The 

component iterates over older XMLs to get the subject URI attached to them. Step 

2: If a newer XML has the same subject URI, the component extracts all the triples 

of this subject URI from older and newer version of the dataset uploaded earlier. 

Step 3: Then the component compares the extracted triples to identify the added 

and deleted triples. Step 4: The component then stores the information of the 

subject URI along with their added and deleted triples in “update” collection. 

Finally, the older and newer XML gets deleted from delete and new collection 

respectively. 

For requirement (b), the component identifies the moved resources by 

matching the remaining older XMLs with the remaining newer XMLs. A pair of 

older and newer XML is decided as match, when older and newer XML shares 

similar features. The component incorporates three configuration parameters to 

facilitate matching: - accept threshold: a match having confidence value7 equal or 

above this threshold is selected as an authentic match; - audit threshold: a match 

having confidence value above this threshold and lower than the accept threshold 

goes to the audit routine, which decides the authenticity of the match; - critical 
feature threshold: in the context of DELTA-R, a feature is critical if its rate of 

being same in matches (confidence value > accept threshold) is greater than the 

critical feature threshold. The critical features are used by audit routine to decide 

the authenticity of a match. Finally, the component stores the information of the 

authentic matches in “move” collection. Figure 4 provides a brief description of all 

the steps performed by this component. 

                                                           
7 The confidence value is calculated by the following formula: ((no of features matched 

between the older and newer XML) / (no. of features in the older XML)) * 100 



  

Figure 4: Requirement (b) - identification and classification of moved resources 

Step 1: The component iterates over the remaining older XMLs. Step 2: Then, 

the component searches for a similar newer XML by searching all the features in 

an older XML individually in the newer XMLs. Each older feature can be found in 

more than one newer XML. The component keeps the listing of all the newer 

XMLs that appeared in the search of all features of an older XML. Step 3: The 

newer XML with the highest occurrences in the listing will get matched, i.e. the 

resource URI attached to both older and newer XML will be kept as a pair for 

further processing and will be denoted by “moved resources” in this paper. Next, 

the component calculates the confidence value of the identified match. Step 4a: If 
the confidence value is greater than the accept threshold, the match is authentic. 

The component records these matches in memory for next step. Step 4b: Next, the 

component identifies the critical features by comparing each feature of the 

matched XMLs of the recorded matches. Step 4c, 4d: Subsequently, to decide the 

authenticity of the matches having confidence value between accept and audit 

threshold, the audit routine ensures that the critical features are same in the 

matched XMLs. The component discards all the matches having confidence value 

lower than the audit threshold. Step 4e: The component stores the information of 

moved resources corresponding to all the authentic matches in “move” collection. 

Finally, the component deletes all the matched XMLs from the delete and new 

collection. 

For requirement (c), the component identifies the renewed resources by 

checking if the identified moved resources have a difference in their 

representation. To achieve this, the component performs the following steps: Step 
1: The component iterates over each moved resource’s information stored in 

“move” collection. Step 2: the component extracts the properties and objects of the 

moved resources from the older and newer version of the dataset and compares 

them. Step 3: For all the moved resources which has an added or deleted property 

or object, the component transfers the information of these moved resources from 

the “move” to “renew” collection. Otherwise, the component does not perform 

any operation. 

The change detection and classification component classifies the changed 

resources into updated, moved and renewed resources. The resources related to 



the remaining Features XMLs in delete and new collection are the deleted and 

created resources respectively. 

3.4   TRANSFORMATION ACTIVTY 

Requirement: The aim is to represent the information of the classified changes in 

RDF that follows DELTA-R change model (explained in section 4). 

Implementation: We have designed a transformation component to implement 

this activity, which performs the following steps: To achieve this, the component 

performs the following steps: Step1: The component sequentially accesses the 

information in each new, delete, update, move, and renew collection. Step 2: The 

component transforms the XML information in each collection to RDF that 

follows the DELTA-R change model. Step 3: Finally, the component stores the 

transformed information in distinct graphs. To create the distinct graph URIs, the 

component suffixes a predefined string (http://marklogic.com/semantics/changes/) 

with the type of change. 

4   DELTA-R CHANGE MODEL 

To represent the changes identified by DELTA-R approach, we propose the 

DELTA-R Change Model. This model addresses limitation (c) mentioned in the 

introduction. The DELTA-R model is based on the model proposed in [11]. [11] 

has proposed a Layered Log Change Model for representing ontology changes. 

This model contains two levels of granularity: first level - represents the 

information of change operation at atomic level; second level – represents the 

objective of the atomic change. A similar multi-level model can be applied to 

represent the changes of linked datasets, which in result will bridge the gap 

between the resource and triple centric view of changes. Analogous to [11], we 

can represent the deleted and added triples at the atomic (first) level, while at the 

second level the objective of deleting or adding a triple can be represented as the 

creation, removal, update, movement, or renewal of a resource. Figure 6 describes 

DELTA-R change model. This is a generic model that can be incorporated in 

ontologies, XML schema, or any other vocabulary. 

 



 

Figure 6: DELTA-R change model 

In Figure 6, the “base version” and the “updated version” entities are the older and 

newer version of a linked dataset used for change detection; the “change type” 

entity represents the type of resource level change i.e. create, remove, update, 

move, renew; “SOC in base” and “SOC in updated” entities represents the subject 

of change (resource URI) in base and updated version respectively; finally, the 

“removed triples” and “added triples” entities are used to represent the 

information of the deleted and added triples respectively. Using such change 

model, one can identify the resource level changes in linked datasets along with 

their corresponding added and deleted triples. 

5   EVALUATION – Accuracy of DELTA-R 

The purpose of the experiment was to determine the accuracy of DELTA-R 

approach and compare with existing approaches [1 and 6]. To the best of our 

knowledge only [1 and 6] use the similar change metrics as DELTA-R, which is 

why these approaches have been selected for the evaluation. The hypothesis was 

that the accuracy of DELTA-R approach would be better than [1 and 6] in terms of 

F-measure. 

Datasets: The experiment has been conducted using two different sets of input. 

Single set of input contains, two versions of a linked dataset, additional 

information datasets, and a gold standard to determine the accuracy of DELTA-R 

approach. 
First set: For change detection, we have used the enriched DBpedia person 

snapshots 3.2 (20,284 resources) and 3.3 (29,498 resources) provided by [1]. For the 

resources in snapshot 3.2 and 3.3 we have used the additional information present 

in the article category dataset 3.28 and 3.39 respectively. The following are the 

                                                           
8 http://oldwiki.dbpedia.org/Downloads32#articlescategories 
9 http://oldwiki.dbpedia.org/Downloads33#articlescategories 



reasons to include article category datasets as additional information: - to 

demonstrate that DELTA-R approach is easily extensible to include additional 

information; - to provide a wider range of properties to DELTA-R approach for 

determining critical features; - [6] have also used the article category dataset for 

the identification of moved resources. So, including the same dataset in our change 

detection process will give us an opportunity to discuss the impact of critical 

features on the results. 

To determine the accuracy of DELTA-R approach, we used the gold standard 

provided by [1]. The gold standard contains 179 move type of changes. During the 

analysis of our results, we found 1 move resource10 that is not covered by the gold 

standard as move type of change. Hence, we increased the move type of changes 

in gold standard by 1. Also, 5666 resources were excluded by [1] for detecting 

changes. These resources are mentioned as “unknown-created” and “unknown-

removed” in the gold standard. In order to have the same baseline, we omitted 

these resources for change detection. The used datasets and the gold standard are 

available online11. 
Second set: We have also applied DELTA-R approach on DBpedia person 

snapshot 3.612 (296,595 resources) and 3.713 (790,703 resources). These datasets 

are much bigger than the datasets in the first set. Again, for the additional 

information, we have used the article category dataset of the corresponding 

DBpedia versions. To the best of our knowledge, the information of gold standard 

for the changes between these versions is not available in the community. Thus, to 

determine the accuracy of DELTA-R, we created a gold standard for the resources 

that changed their address or both address and representation. The Gold standard 

has been created in following three steps: Step 1: We used DBpedia redirect 

dataset version 3.714 and extracted the redirects in which the source URI is 

present in person snapshot 3.6 and target URI is present in the person snapshot 

3.7. By doing this, we were able to identify 3390 redirects. These redirects can be 

treated as the resources that have changed their address. Step 2: During the 

analysis of our results we found some of the detected move and renew type of 

changes in DBpedia disambiguation dataset version 3.7 15 . In DBpedia 

disambiguation dataset 3.7, some of the resources URIs of person snapshot 3.6 are 

linked with one or more different resources URIs of the person snapshot 3.7. 

However, there is only a single link between older resource URI and newer 

                                                           
10 Older: http://dbpedia.org/resource/Kim_Jin-Kyu; newer: 

http://dbpedia.org/resource/Kim_Jin-Kyu_%28football_player%29 
11 http://www.cibiv.at/~niko/dsnotify/Download.html#pub 
12 http://oldwiki.dbpedia.org/Downloads36#persondata 
13 http://oldwiki.dbpedia.org/Downloads37#persondata 
14 http://oldwiki.dbpedia.org/Downloads37#redirects 
15 http://oldwiki.dbpedia.org/Downloads37#disambiguationlinks 

http://dbpedia.org/resource/Kim_Jin-Kyu
http://dbpedia.org/resource/Kim_Jin-Kyu_%28football_player%29


resource URIs, which denotes that both older and newer resource are the same, it 

is just that the older resource has been moved to a different address(URI). We 

have filtered out 585 this type of links from the disambiguation dataset to prepare 

the gold standard. Step 3: Finally, we have manually verified the move and renew 

types of changes from our results, which are not present in the gold standard 

prepared in Step 1 and 2. In the verification, we found 296 instances of move and 

renew type of changes that are correctly detected by DELTA-R approach. 

Experimental method: We conducted the experiment on a machine having 7th 

generation i7 processor with 16 GB RAM. The experiment has been conducted in 

two stages. First stage – the DELTA-R approach has been applied to the datasets of 

the first input set. For this, we uploaded the person snapshot 3.2 and 3.3 in 

MarkLogic triple store, in two distinct graphs. We then uploaded the additional 

information datasets in MarkLogic triple store, in two other distinct graphs. Next, 

we extracted and stored the features of the resources in the person snapshot 3.2 

and 3.3, by using the functionality of the feature extraction component (explained 

in section 3.2). Once the features have been created in the new and delete 

collection, the change detection mechanism has been invoked using the following 

three configurations: accept threshold – 80%; audit threshold – 40%; critical 

feature threshold – 98%. This resulted in classified changes between person 

snapshot 3.2 and 3.3. For determining the accuracy of the detected changes, the 

results were first compared with the gold standard, and the extra changes detected 

by DELTA-R were manually verified. Second stage – the same steps from first 

stage have been executed. 

Results: Table 2 describes the classification of changes detected by DELTA-R 

approach for both sets of input. For first set of input, we identified 3820 resources 

that were newly added in the person snapshot 3.3 and 240 resources that were 

part of the snapshot 3.2 but were not included in the snapshot 3.3. It has also been 

identified that the representation of 4161 resources have been changed from the 

snapshot 3.2 to snapshot 3.3. Having these 4161 resources analyzed, we observed 

that the representation of these resources was changed in three ways: - change in 

the object value of the existing triples of a resource; - addition of new properties in 

a resource; - deletion of existing properties of a resource. Additionally, we have 

identified 124 resources that were using a different subject URI in the snapshot 3.2 

than in snapshot 3.3. Furthermore, we detected 45 renewed resources. These are 

special type of resources because the subject URI and the representation of these 

resources have changed from the snapshot 3.2 to 3.3. These 45 resources were 

detected with the help of the proposed new classification of the resource level 

changes in linked datasets, as existing classifications do not distinctly identify 

renewed resources. Hence, we can say with the proposed classification of changes, 

we were able to identify 45 additional resources that changed their representation 

may lead to semantically broken interlinks. Similarly, we have detected and 



classified the changes for second set of input. As the second set of input is much 

wider than the first input set, thus, the number of detected changes for second 

input set are much greater than the changes detected for the first set of input. For 

second set of input, in comparison to the existing classification of changes, we 

identified 1529 additional resources that changed their representation and may 

lead to semantically broken interlinks. 

Table 2: Detected changes for first and second set of input 

Set of input Create Remove Update Move Renew 

First 3819 239 4161 124 46 

Second 499590 5482 50380 2723 1529 

 

To determine the accuracy of DELTA-R approach, we only compared the move 

and renew types of changes with gold standard. This is because the state of the art 

emphasizes on determining the accuracy for detecting the resources that have 

changed their address and possibly their representation too. Since the gold 

standard does not cater move and renew types of changes separately, we have 

merged the detected move and renew types of changes as move type of changes. 

Move and renew types of change will be referred to as the move type of change in 

this section from now onwards. Table 3 describes the accuracy of DELTA-R 

approach in detecting move type of changes. For the first set of input, the 

precision of the DELTA-R approach is 1, this is because the approach ensures that 

the critical features are same in the low confidence matches. For the recall, the 

approach was not able to detect 10 moved resources. Out of 10, 5 moved resources 

got rejected by the audit routine as the match (pair of older and newer resource’s 

feature XML) did not have the same critical features. Rest 5 moved resources had 

one to many matches, i.e. one older resource was matched with more than one 

newer resources. Hence, the DELTA-R approach decided to discard these matches. 

Overall the calculated F-measure for the first input set is 0.9714. 

We observed that the precision has come down for the second set of input. The 

incorrect move type of changes exist in two forms: incorrect move with higher 

confidence value; incorrect move with lower confidence value. We have analyzed 

these incorrect move type of changes and found that the majority (~ 50%) of the 

these belongs to the move with lower confidence value (< 50). Move with such 

low confidence value were not identified for the first set of input. This suggests 

that the audit threshold needs to go slightly up, i.e. from 40 to 50%. Doing so, the 

precision will increase by ~2% with a slight impact on the recall i.e. a decrease in 

recall by ~0.1%. We have also investigated the incorrect move with higher 

confidence value and found that the older and newer XML shares high percentage 

of same features, which include the critical features as well. For the second set of 

input the calculated recall is greater than the recall for the first input set. We 



believe that the reason for this would be the presence of the wider range of 

information about the resources in the second input set, which allowed the 

DELTA-R approach to have more one to one matches between older and newer 

resource’s Feature XML. 

Table 3: Accuracy of DELTA-R in detecting moved resources 

Set of 

input 

Move in gold 

standard 

Move by 

DELTA-R Precision Recall F-measure 

First 180 170 1 0.9444 0.9714 

Second 4271 4252 0.9597 0.9555 0.9579 

 

[1 and 6] have also evaluated their system using the first set of input. To 

identify the moved resources [1] performed the experiment using various 

configuration properties. The maximum recorded precision and recall were using 

the foaf:name property, i.e. the precision was 1.0 and the recall was ~0.91. Their 

results showed the decrease in the F-measure with the increase in the events i.e. 

the increase in the number of resources for matching. The maximum recorded f-

measure for foaf:name was ~0.95. The other approach in [6] has recorded its 

precision ~0.87 and the recorded recall was ~0.99. The approach has used only the 

object properties (graphical structure of resources) to identify the moved 

resources, which we believe is the reason for the lower precision and extremely 

good recall. The recorded f-measure by [6] was ~0.93. We had also included the 

same object properties through additional information for the creation of features. 

However, deciding the critical features out of all the features helped us in 

achieving more precise results. By comparing our results of first input set with the 

aforementioned results of the approaches [1 and 6], it has been identified that the 

DELTA-R approach outperforms [1] by ~2% and [6] by ~4% in terms of F-

measure. Hence the results are in support of the hypothesis. We were not able to 

compare the results of the second input set with any other approach, as to the best 

of our knowledge, only [6] has published their results of the detected moved 

resources between DBpedia person snapshot 3.6 and 3.7. But the gold standard 

used by [6] has a different count than the gold standard used by us. [6] neither 

contains the information of the creation of their gold standard precisely, nor they 

have published their gold standard. This refrains us to compare our results of 

second input set with other approaches. For evaluation of the change detection 

approaches to be proposed in future, the gold standard prepared by us for the 

moved and renewed resources between DBpedia person snapshot 3.6 and 3.7 is 

available online{LINK}. 



6   CASE STUDY: Repair of broken interlinks of DBpedia 

In this case study, we demonstrate that the classification of changes by DELTA-R 

approach and their representation using DELTA-R change model can be utilized 

to repair the structurally broken interlinks automatically. For this, we have 

repaired and validated the structurally broken interlinks in source DBpedia person 

snapshot 3.7 to target Freebase16. We have conducted this case study by executing 

following steps: Step 1 – the interlink dataset17 that contains links from source to 

target has been uploaded to the MarkLogic triple store in a distinct graph18. Step 2 

– Before repair, we identified the number of structurally broken interlinks from 

source to target using a different approach than DELTA-R. For this, we used the 

SUMMR interlink validation template [4]. It identified 704 broken interlinks in 

source DBpedia. Step 3 – we have used the detected changes by DELTA-R 

approach for DBpedia person snapshot 3.6 and 3.7 (second input set) to identify 

the broken interlinks from source to target. We identified the same no. of broken 

interlinks using the SPARQL templates available online{LINK}. However, in step 

3, we were also able to identify the reason of broken interlinks, i.e. 659, 17, 28 

links were broken due to the removed, moved, and renewed resources 

respectively. Step 4 – the identified broken interlinks were repaired using the 

SPARQL templates available online{LINK}. In repair process, the SPARQL 

templates only deletes the broken interlinks corresponding to the removed 

resources. For the broken interlinks corresponding to the move and renew 

resources, the template first deletes the broken interlinks, then adds a new link 

using the subject URI of the newer resource. The SPARQL template removed the 

659 broken interlinks corresponding to the removed resources. Out of 17 broken 

interlinks corresponding to the moved resources, the SPARQL template identified 

that 12 repaired interlinks (links using the subject URI of the newer resources) 

were already there in the interlink dataset. So, the template deleted all the 17 

broken interlinks, but added only 5 new interlinks in the interlink dataset. For 28 

broken interlinks corresponding to the renewed resources, all the repaired 

interlinks were already there in the interlink dataset. Hence, 28 broken interlinks 

were deleted but no new interlink was added. Step 5 – after repair we have again 

used the SUMMR interlink validation template to identify the broken interlinks. 

The template identified 0 broken interlinks. 

By means of this case study we demonstrated that DELTA-R approach and 

DELTA-R change model can support automatic repair of structurally broken 

                                                           
16 This case study is not about repairing the broken interlinks in target dataset. 
17 http://oldwiki.dbpedia.org/Downloads37#linkstofreebase 
18 http://marklogic.com/semantics/DBpedia/interlinks.nt 



interlinks. In future, we will demonstrate the support of DELTA-R approach and 

DELTA-R change model for other use cases mentioned in the related work as well. 

7   CONCLUSION 

The paper presents DELTA-R, an approach to detect and classify the changes 

between two versions of a linked dataset. To represent the detected changes, the 

paper also presents DELTA-R change model that bridges the gap between resource 

and triple centric view of changes in linked datasets. 

The research question presented in this paper is to what extent we can detect 

and classify the resource level changes between two versions of a linked dataset. 

To answer the research question, an experiment was conducted by applying the 

DELTA-R approach on DBpedia person snapshots 3.2 (20,284 resources) and 3.3 

(29,498 resources), and DBpedia person snapshot 3.6 (296,595 resources) and 3.7 

(790,703 resources). For the former set of snapshots, the approach detected 3819 
created, 239 removed, 4161 updated, 124 moved, and 46 renewed resources, while 

on the latter set of snapshots we detected 499590 created, 5482 removed, 50380 
updated, 2723 moved, and 1529 renewed resources. In the evaluation, we found 

that the formed hypothesis is supported by the results, as the DELTA-R approach 

outperforms the state of the art approaches by ~2 - 4 % in terms of accuracy. Also, 

in comparison to the existing classification of the resource level changes, the more 

granular classification of changes by DELTA-R approach identified 46 and 1529 

additional resources that have changed their representation and may lead to 

semantically broken interlinks, for former and latter set of datasets respectively. 

Finally, we demonstrated the support of DELTA-R approach and change model 

for interlink maintenance use case. For this, we performed a case study to repair 

the structurally broken interlinks from DBpedia person snapshot 3.7 to Freebase. 

In the case study, 704 structurally broken interlinks were repaired. The repaired 

interlinks were then validated by using SUMMR interlink validation template. 
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