
Linked data schemata: fixing unsound

foundations

Kevin Chekov Feeney, Rob Brennan and Gavin Mendel Gleason
Knowledge and Data Engineering Group & ADAPT Centre, School of Computer Science & Statistics, Trinity

College Dublin, Ireland

Abstract. This paper describes our tools and method for an evaluation of the practical and logical implications of combining

common linked data vocabularies into a single local logical model for the purpose of reasoning or performing quality evalua-

tions. These vocabularies need to be unified to form a combined model because they reference or reuse terms from other linked

data vocabularies and thus the definitions of those terms must be imported. We found that strong interdependencies between

vocabularies are common and that a significant number of logical and practical problems make this model unification incon-

sistent. In addition to identifying problems, this paper suggests a set of recommendations for linked data ontology design best

practice. Finally we make some suggestions for improving OWL’s support for distributed authoring and ontology reuse.

Keywords: Linked Data, Reasoning, Data Quality

1. Introduction

One of the central tenets of the linked data move-

ment is the reuse of terms from existing well-known

vocabularies [1] when developing new schemata or

datasets. The Semantic Web infrastructure and the

RDF, RDFS and OWL languages support this with

their inherently distributed and modular nature.

Linked data schemata which reuse vocabularies con-

stitute a knowledge model based on multiple, inde-

pendently devised ontologies that often exhibit vary-

ing definitional semantics [2]. In order to reason about

linked data datasets – for example to validate that a

dataset correctly uses a term from another vocabulary,

a basic requirement is the ability to create a unified

knowledge model which combines the referenced on-

tologies and vocabularies. For example, the Asset De-

scription Metadata Schema (adms) ontology contains

the triple:

adms:Asset rdfs:subClassOf dcat:Dataset

In order to validate any dataset which uses the

adms:Asset term we must combine the adms ontology

and the dcat ontology in order to ensure that dcat:Da-

taset is a valid class.

There are, however, significant theoretical and

practical problems in creating a sound and consistent

logical model from the vocabularies typically used in

linked data. For example, linked data often freely

mixes references to ontologies defined in OWL and

vocabularies defined in RDFS. As OWL is a syntactic

but not semantic extension of RDF, there are well-

known problems in creating any unification between

RDF models and OWL models [3]. Beyond the theo-

retical problems, there are significant practical prob-

lems in any system where components are developed

independently from one another and later combined

[4]. For example the well-known ontology hijacking

problem (defined by Hogan et al as redefining external

classes/properties in a local ontology) is often caused

by misuse of OWL’s equivalence statements [5].

Although such problems are well known in theory,

there has been little work in systematically assessing

their practical manifestations in published linked data.

This is largely a consequence of the lack of tools

which can help to identify the problems, especially

given the permissiveness of the OWL open world se-

mantics applied in standard reasoners.

In this paper we investigate the following research

questions: (1) to what extent can current heterogene-

ous linked data vocabularies be unified into consistent

logical models that can detect logical or syntactic er-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DCU Online Research Access Service

https://core.ac.uk/display/195384458?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

rors in the resultant schemata? (2) What is the distri-

bution of logical or syntactical schemata errors present

in the current Web of Data?

To address such questions we have constructed a

reasoner as part of the Dacura Quality Service1, which

is designed to consume OWL and RDF linked data

schemata and identify potential problems in their spec-

ifications. This reasoner uses a much less permissive

interpretation than that of standard OWL to find issues

which are likely to stem from specification errors,

even in cases where they produce valid OWL models.

This tool is integrated into a general purpose ontology

analysis framework in the Dacura platform [6] which

also identifies structural dependencies between ontol-

ogies and highlights instances of ontology hijacking.

The contribution of this paper is an identification of

the challenges present when combining the models of

linked data schemata observed in the current Web of

Data for validation, a description of the Dacura Qual-

ity Service approach to model combination, an exten-

sive quality evaluation of linked data vocabularies in

use for logical and syntactical errors and finally a set

of recommendations on best practice for constructing

linked data vocabularies that will produce unified log-

ical models without errors in the distributed authoring

environment of the web.

The structure of the rest of this paper is as follows:

in Section 2 we discuss the challenges for linked data

schema validation, in Section 3 we discuss related

work, in Section 4 there is a description of the ap-

proach and validation capabilities of the Dacura Qual-

ity Service, Section 5 describes the methodology used

for a wide-scale validation of linked data vocabularies

conducted with the Dacura Quality Service, then the

results of this evaluation are presented in Section 6. In

Section 7 we present a set of recommendations for best

practice in linked data vocabulary design and specifi-

cation, and finally Section 8 describes our conclusions

and discusses future work.

2. Challenges for Linked Data Schemata

Validation

We define a linked data schema as the formal de-

scription of the structure of a linked data dataset, ex-

pressed in RDF, RDFS and/or OWL vocabularies or

1 Source code available at https://github.com/GavinMendelGleason/dacura
2 It is trivial to generate valid OWL restrictions which do not impose any meaningful constraints on instance data.
For example, the ical ontology contains 120 assertions which restrict properties to an owl:minCardinality of 0!

ontologies, which is sufficiently complete that all in-

dividuals in the dataset are described in terms of a con-

sistent logical model of their classes, properties or

datatypes. Thus, there are no unspecified terms used

in the schema and it is possible to combine all the def-

initions into a single logical model that respects the

specification semantics of the component vocabularies

without resorting to an empty schema as a valid model.

The schema must be coherent (i.e., have no necessarily

unsatisfiable classes), consistent when combined with

the data at hand, and mention each of the classes, prop-

erties and datatypes present in the data. To be useful,

the schema should also be non-trivial, in that it should

impose some meaningful constraints upon instance

data that conforms to it2.

According to ISO 9001, validation is the confirma-

tion, through objective evidence, that requirements for

a specific intended use or application have been ful-

filled [7]. This highlights the central role of evidence,

assessment and intended use. The Dictionary of Com-

puting [8] defines data validation as “the process of

checking that data conforms to specification”. A

linked data schema thus enables validation: all terms

used must be defined, the definitions must not lead to

inconsistency and for some use cases the definitions

form the basis for integrity constraints on data de-

scribed by the schema. In the Dacura approach, vali-

dation is the act of rejecting schemata that have no

possible models along with the provision of evidence

in the form of witness statements that identify the

terms that prevent model formation (see Section 4 for

details). The purpose of validation is to identify syn-

tactic or logical errors that are often unintended con-

sequences of the ontology engineering process.

2.1. Challenge 1: Heterogeneous Use of RDF, RDFS,

OWL and others

OWL DL ontologies describe a formal domain

model based on description logic. It is a difficult task

to produce a logical model which accurately and cor-

rectly encapsulates any non-trivial domain [9]. This

has probably influenced the relative popularity of

RDFS terms in linked data [10]. In the wild, RDF and

OWL are mixed very freely [2], [10]. Polleres et al

[10] phrase this as their second challenge for reason-

ing over linked data i.e. linked data is not pure “OWL”.

In fact some common linked data vocabularies make

reference to other ontologies which are not compatible

with OWL at all, but specified in raw RDF collection

types, or worse DAML or even other esoteric lan-

guages (see Section 6 for the evidence we have col-

lected). Since these ontologies reference each other’s

terms, full validation cannot proceed without deter-

mining whether the referenced ontologies are them-

selves consistent and complete.

If linked data was limited to the use of RDFS or

OWL DL, or perhaps even some extension of OWL

DL which could encompass elements of OWL Full

(such as predication over classes and properties) then

consistent model checking would be possible. How-

ever the problematic historical unification of RDF and

OWL as OWL Full has led to an interpretative fissure

between it and OWL DL [11]. OWL DL provides a

clear model theoretic semantics which allows one to

decidably determine whether a given OWL ontology,

potentially coupled with instance data, is consistent.

By contrast, OWL Full attempts to mix in the very

loose syntactic rules of RDF to arrive at a compromise

between OWL and RDF and is not decidable due to

mixing logical and metalogical symbols. In fact the

full unification of RDF and OWL was dropped as a

requirement for OWL Full in OWL 2 [12].

Two very problematic deficiencies that are encoun-

tered when interpreting RDF/RDFS ontologies as

OWL for the purpose of model unification are the use

of primitive RDF collection types and predication.

The primitive RDF properties rdf:first, and rdf:next

are seen in the wild but these are used as internal syn-

tactic symbols of OWL. This means that they cannot

be used by properties and classes without leading to

inconsistency.

The second problem which arises in the wild is the

question of predication. In OWL DL, one may not re-

fer to classes of classes, or properties whose domains

are themselves classes or properties. This was done in

order both to ensure decidability and to avoid well

known “Russell-type” paradoxes such as this one de-

rived from [13].
ex:noResources a owl:Restriction .
ex:noResources owl:onProperty rdf:type ;
ex:noResources owl:onClass
 ex:hasAResource ;
 ex:noResources
 owl:maxQualifiedCardinality
 "0"^^xsd:nonNegativeInteger ;
ex:hasAResource owl:oneOf
 (ex:noResources) .

This particular OWL description is satisfied only

when it is not, and vice versa. The difficulty arises

from the ability to quantify naively over the rdf:type

property itself. This is very similar to Russell's use of

the set of all sets. There are methods, well known to

logicians [14], of allowing predication over classes

and predicates by introducing some sort of stratifica-

tion to the quantification, but no syntax to do so is pre-

sent in OWL.

In summary the heterogeneity of linked data sche-

mata means that OWL Full is insufficient for valida-

tion and the incompatibilities between RDF and OWL

DL mean that even if a single model could be con-

structed, OWL Full would be undecidable and/or in-

complete.

2.2. Challenge 2: Linked Data Import and

Referencing Semantics

In linked data schemata there are two ways that

other ontologies/vocabularies are referenced, either by

explicitly including them using owl:imports, or im-

plicitly by making reference to URIs of properties and

classes in an external namespace. The meaning of the

first is given a precise semantics under OWL DL

(which is not unproblematic in its own right as we will

see later) and the entire imported ontology is unioned

with the current one during reasoning. The second is a

widely used convention that URIs are referred to with-

out importation, for example see [15]. This leads to the

question of how to validate over such opaque refer-

ences. This is a serious problem as one could poten-

tially be referring to an instance as a class, or a class

as an instance, one could have references to a class

which refers to a third ontology which is shared and

does not allow sound subsumption, or any number of

other such problematic mixing of meanings without

any way of checking for correctness.

2.3. Challenge 3: The Impact of Distributed

Authoring and Publication

Developing ontologies that can be easily reused in

contexts that were not anticipated by the ontology de-

veloper is analogous to the software engineering chal-

lenge of developing libraries for reuse in situations

where they must coexist with a wide variety of other

libraries – many of the same principles apply. For ex-

ample, a basic principle of software engineering is that

libraries which use other libraries should not change

their behavior for other libraries. Similarly, ontologies

which alter other ontologies are dangerous. Gruber ex-

pressed one aspect of this as being “able to define new

terms for special uses based on the existing vocabulary,

in a way that does not require the revision of the exist-

ing definitions” [16]. This sensitivity to ontological hi-

jacking is particularly relevant as OWL’s support for

modularity is extremely primitive – the import state-

ment unifies models into a common model that has a

global scope.

To understand why ontology hijacking is a problem,

consider the following example. Vocabulary A im-

ports vocabulary B and changes the definition of class

X within it with the owl:equivalentClass predicate.

Vocabulary C also imports ontology B and uses class

X, then imports vocabulary A to use an unrelated term

within it. Unless the author of C carefully checks the

definition of A, they will find themselves unknow-

ingly using a modified version of class X which may

render vocabulary C as invalid. This is closely analo-

gous to the situation where a software library modifies

the behavior of other libraries – a situation which has

been widely recognized as breaking good software en-

gineering practices since the 1970s: software libraries

should not have external side effects.

 Of course if A, B and C are subsequently unified

into a single model, then logical inconsistencies can

become apparent. Due to the complexity of OWL,

these inconsistencies may only be detectable by rea-

soner and despite the prevalence of OWL terms in

linked data vocabularies it is evident from our findings

that many creators of these vocabularies do not per-

form reasoner-based checks. There are situations

where ontology hijacking may be necessary, for exam-

ple, if an expressively impoverished existing ontology

is to be used in a scenario where more powerful defi-

nitions are needed. In such situations, care should be

taken to ensure that the hijacked ontology is not a de-

pendency of any other imported ontologies.

Linked data’s focus on the reuse of independently

developed and maintained ontologies introduces other

significant practical problems. Ontologies that reuse

other ontologies are vulnerable to these referenced on-

tologies becoming unavailable over time, or changing

in ways that render them incompatible [10]. This high-

lights the weaknesses in OWL and especially RDFS’s

ontology or vocabulary lifecycle support and the vari-

ety of practices observed makes automated ap-

proaches untenable for the open Web of Data where

many core vocabularies predate even OWL 2’s limited

versioning metadata. Given the wide diversity of con-

texts in which they have been developed – and the cost

and difficulty in maintaining them – there is a signifi-

cant risk of ontologies degenerating over time due to

changes in the availability or structure of their depend-

ent ontologies.

The OWL API [17] is one approach to addressing

this problem – it supports locality of information al-

lowing one to only treat assertions made in a specified

or local context. However, this depends upon all con-

cerned ontologies using this mechanism correctly and

ontologies being well structured.

2.4. Challenge 4: Permissivity of OWL and RDFS

OWL and RDFS are an extremely permissive lan-

guages – reasoners will create a valid model wherever

possible, inferring many elements automatically [18].

Thus a number of OWL and RDFS descriptions which

are formally correct contain human errors not intended

by the ontology designer, and yet will produce valid

models. For example, the following assertions:

ex:name rdfs:domain ex:Bear, ex:Pig;
ex:peter a ex:Man;
ex:peter ex:name “Peter”.

These will create Peter as an instance of a “Man-

BearPig” due to OWL and RDFS allowing inference

of class axioms that would produce a valid model. This

is counter-intuitive to software engineers who assume

a class structure that must be declared in advance.

Thus, such specification errors are common in practice

yet they are not detected by standard reasoners.

3. Related work and how it differs from our work

There is a wide variety of existing research that is

relevant to our work but we categorize it here under

three main headings: (1) frameworks and approaches

for assessing linked data quality, (2) theoretical stud-

ies on the unification of RDF and OWL and (3) rea-

soning and consuming linked data. Each of these is

discussed in turn in the subsections below.

3.1. Frameworks and approaches for assessing

linked data quality

The underlying framework for current linked data

quality assessment has been defined by Zalveri et al.

[23]. In terms of their quality framework our current

work addresses mainly intrinsic dimensions of the

schema – syntactic validity, semantic accuracy (in

terms of misuse of properties) and consistency. How-

ever we also address the contextual dimension of un-

derstandability by checking for human-readable label-

ling of properties and classes.

Our current work builds upon the previous version

of our Dacura data curation platform [6] by extending

the simple rule-based data validation implemented in

Apache Jena/Java described in our Workshop on

Linked Data Quality 2014 publication [19] with a cus-

tom reasoner and ACID (Atomic, Consistent, Isolated,

Durable) triple-store for validation and data integrity

enforcement. This new component, the Dacura Qual-

ity Service, is built in SWI-Prolog on ClioPatria [20]

and is described in the next section. An earlier version

of the Dacura Quality Service which covered a much

smaller set of OWL features was described in a paper

at the 2nd Workshop on Linked Data Quality [19].

That paper has been extended here to also include a

discussion of the new Dacura Schema Management

service, our experimental validation of linked data

schemata in the wild and new recommendations for

best practice when constructing new linked data vo-

cabularies.

The RDFUnit methodology for test-driven quality

assessment by Kontokostas et al. [21] is a SPARQL-

based approach to validating linked data schemata and

datasets. RDFUnit is very close to being a union of

SPIN and the Stardog3 ICV approach to validation,

which is itself the successor to Pellet ICV [22].

RDFUnit is described by Zaveri et al. [23] as being

able to detect intrinsic data quality dimensions for syn-

tactic and semantic accuracy but in common with all

SPARQL-based approaches the lack of reasoning abil-

ity means that it is difficult to detect consistency prob-

lems that may be present. For a specific dataset it is

possible to manually generate specific SPARQL-

based tests that could detect these errors but the effort

required is probably prohibitive and is brittle in the

presence of schemata change over time. Similar ap-

proaches have been taken with SPARQL and SPIN

(SPARQL Inferencing Notation) [24] and the Pellet

Integrity Constraint Validator (ICV) [22].

Since 2014, the W3C’s Data Shapes Working

Group has been working on SHACL (Shapes Con-

straint Language) to describe structural constraints

and validate RDF instance data against those. Instance

data validation, (except where the data is part of the

schema for example when using owl:oneOf to define

a class), is outside the scope of this paper. However it

is possible that suitable SHACL constraints could be

used to validate RDF graphs describing schemata. As

with the basic SHACL-based approach to instance

3 Stardog, http://stardog.com/
4 http://www.essepuntato.it/lode/owlapi/https://w3id.org/rvo

data validation, it is unclear why re-stating a specifi-

cation in another formalism (SHACL) is a good ap-

proach to schema validation. See [25] for discussoin

of the applicability of description logics to constraints.

Luzzu [26] is a stream-oriented linked data quality

assessment framework that focuses on data instance

centric measurement of user-defined baskets of qual-

ity metrics. Although the metrics are expressed in a

domain specific language that is described as extensi-

ble it would be necessary for the user to write java

code to implement the necessary checks. This is not

feasible for most users, even knowledge engineers:

the user would have to write an OWL 2 reasoner to

detect the logical errors in the unified dependency tree

of a linked data schema which Dacura identifies. The

framework is potentially of great practical use to users

of linked data datasets that wish to assess their quality

based on a custom basket of measures, but provides

very little assistance when assessing the logical sound-

ness of the schema. One innovation of Luzzu is the

specification of a Quality Report Ontology to provide

machine-readable quality assessment results. Dacura

has a similar ontology defined for reporting reasoning

errors, the Reasoning Violations Ontology4.

Much closer to our Dacura schema validation ser-

vice is Suárez-Figueroa et al.’s OntOlogy Pitfall Scan-

ner, OOPS! [27]. This is a web-based tool for ontology

evaluation. It is aimed at detecting ontology anomalies

or “worst practices” as a form of automated ontology

evaluation. It is based on evaluation of an input ontol-

ogy against a catalogue of common errors or pitfalls

seen in ontologies. There is very little overlap between

the 41 pitfalls currently detected by OOPS! and the set

of errors detected by Dacura due to the lack of reason-

ing or model combination in OOPS!. There are some

easy to detect “best practice” pitfalls such as “P08

Missing annotations” which Dacura does not currently

detect but which are simple extensions of our current

best practice rules and will be added in future work. It

is interesting to note that in their extensive analysis of

current ontologies and the ontology engineering com-

munity, OOPS! decided, like us, to define class cycles

as a potential source of errors in linked data schemata,

despite being legal in many cases in OWL 2. The im-

plementation of OOPS! as a restful web service is very

attractive and useful for integration into both a basic

public webpage for checking and as a service called

by other ontology engineering tools.

3.2. Theoretical work on unification of RDF & OWL

The challenges for reasoning caused by the unifica-

tion of RDF and OWL has been extensively discussed

in the literature, for example see Patel-Schneider and

Fensel [28] where, even before OWL 1 was standard-

ized, these incompatibilities were summarized as “de-

fining the model theory of OWL as an extension of the

model theory of RDF and representing OWL con-

structs syntactically in RDF leads to paradoxical situ-

ations, i.e., ill-defined model theories for OWL”. The

authors’ five approaches to layering OWL over RDF,

including identifying the presence of Russell-type par-

adox if OWL is directly layered over RDFS as a same-

syntax solution. Nonetheless this was the approach

adopted in OWL-Full. The ramifications of these de-

cisions live on today in our challenge 1 for validating

linked data schemata.

Later, when the OWL 1 standard was agreed, the

principal authors of the OWL Semantics documented

the “difficult trade-offs” that they made during the de-

sign of OWL 1 [29]. Horrocks et al. identify four broad

classes of problems: syntactic, semantic, expressive

power and computational problems. While the latter

two categories seem less relevant for our current work

it was in fact the computational overheads introduced

by allowing the use of classes as instances that led to

the exclusion of this feature from OWL-DL and as will

be seen in our experimental work, under the title of

impredicativity, this causes many observed issues in

linked data. In Section 6.2 of that paper the solution

proposed for dealing with malformed OWL syntax ex-

pressed in RDF leads to the creation of additional

anonymous classes despite them being “almost cer-

tainly not what was intended by the user”. This is an

example of our challenge 4 (permissivity of OWL)

that leads to standard reasoners being unable to detect

these issues in linked data schemata without human

inspection of the resultant reasoned ontology. In con-

trast our approach highlights these potential errors and

presents them to the user or validator for verification.

Finally in the discussion on future extensions despite

the admission that the import of ontologies by other is

likely to be the norm in the Semantic Web (as we now

see in linked data) the OWL import facility is de-

scribed as “very trivial” and this underpins our chal-

lenges 2 and 3 for linked data schemata validation.

Both the closed world and unique name assumptions

are identified as being desirable in some situations de-

spite being outside the scope of the general OWL

model. Our approach to schemata validation and the

experimental evidence we have collected demonstrate

the practical applicability of these assumptions for val-

idation, even on the open web.

When the OWL standard was revised as OWL 2 in

2008, the process was again documented by some of

the principal authors [30]. Grau et al. identified addi-

tional issues with OWL 1 ontology specifications, in-

cluding an additional complication in the import se-

mantics whereby two (or more) ontologies written in

the same OWL species can interact in unpredictable

and unintuitive ways when one ontology imports the

other, leading to a new ontology that is contained in a

different species. OWL 2 introduces the idea of decla-

ration consistency which means all types must be de-

clared, although not syntactically necessary, this

forms the basis for additional validation checks to

catch mistyping of entity terms. However this ap-

proach is not applicable to linked data that is not writ-

ten in OWL 2. The validation checks performed by our

approach can detect such trivial typing errors in gen-

eral linked data schemata e.g. misspelt names of clas-

ses. OWL 2 also improves support for imports by

tightening the specification of ontology name URIs as

both name and published location of the. However, as

our experimental results show (section 6) not all com-

monly imported ontologies in the current Web of Data

are at their stated locations. Ontology versioning man-

agement support is also added, but this is still primi-

tive and the species or profile impacts of imports is

still unintuitive and unpredictable (challenge 2).

Most recently, as the success of the open linked data

movement has become apparent, with billions of tri-

ples published, the question of data quality and hence

validation has come to the fore [31], [32]. Patel-

Schneider [25] discusses the issues and approaches to

applying description logic to validation, attacking the

claim that closed world or unique name interpretations

have no place in the description logic world (and

hence within OWL/RDFS) and can be applied to

linked data for validation. Although Patel-Schneider

focuses on RDFS and a SPARQL-based approach to

validation of linked data, our approach adopts some of

the same assumptions about closed worlds and unique

names in our custom reasoner.

3.3. Reasoning and consuming linked data

The original Semantic Web vision included the goal

of applying reasoning at a web scale [33]. Linked data

provides the basis of the current Web of Data and so

reasoning over it has naturally been tackled by several

researchers, see for example [34], [35] and [10]. Given

the divergence of linked data from the Semantic Web

ideal, a wide variety of non-standard reasoning ap-

proaches have been applied from probabilistic tech-

niques [35] to rule-based approaches [34]. Given our

interest in RDFS and OWL-based schemata validation

we focus here on approaches that support the RDFS

and OWL standards. The challenges for applying rea-

soning to linked data as laid out by Polleres et al. [10]

may be summarized as data scale, data heterogeneity

(mixing OWL DL, OWL Full and RDFS), data incon-

sistency, data dynamics and extending inference be-

yond RDFS and OWL. Data scale is less of an issue

for our work since we focus on schemata and thus pri-

marily TBox assertions, although some linked data

schemata (e.g OpenCyc – see section 6) include in-

stance data which render them very large. Nonetheless

the focus of open web reasoning work on operating on

billions of triples largely addresses challenges which

are out of scope for our validator. Tackling heteroge-

neity is also a focus of our work (challenge 1) but

whereas we aim to identify inconsistent or incomplete

schemata in order to fix them and improve their qual-

ity, the common approach to reasoning over linked

data is to try and do the best possible with the triples

available. While appropriate for many use cases, it of-

ten leads to strategies that weaken consistency or

soundness constraints to make the problem tractable,

by silently discarding problematic triples or reducing

the materialisation of inferred triples compared to

OWL’s Direct Semantics [10]. Although there are

points of similarity, in general these approaches would

produce weaker validation results than our approach

since they are not sound and less complete.

4. Linked Data Schemata Validation in the

Dacura Quality Service

Figure 1: Screenshot of the Dacura Schema Manager

To meet the challenges of linked data schemata val-

idation, we have developed the Dacura Quality Ser-

vice (DQS) and the Dacura Schema Manager. Both are

integrated into our Dacura platform for data curation

described elsewhere [6]. The Dacura Schema Manager

(fig. 1) acts as the user interface for loading new linked

data schemata into the system. It recursively loads all

the implicitly or explicitly imported vocabularies or

ontologies from web, creates the master schema based

on the union of all referenced terms, gathers statistics

and performs some basic quality checks. The valida-

tion view of the Dacura Schema Manager allows a

user to select specific reasoner-based validation

checks, call the DQS through its API to perform the

checks and renders the results in human-readable form.

The DQS as an ACID triplestore for the storage of

OWL ontologies and instance data. We treat con-

sistency as internal consistency of the OWL ontology

as well as consistency of instance data with respect to

this ontology. In this way we have produced a triple-

store in which stored information always respects the

ontology as it is impossible to perform updates which

are not consistent. If the schema changes, the instance

data must also change in a fashion conformant to the

new schema. The DQS is built in SWI Prolog in the

ClioPatria Semantic Web infrastructure [36]. The

source code is available online under a GPL2 license.

To do this, we have built a custom reasoner as part

of the DQS which treats all ontologies which are used

as a relatively large but custom fragment of OWL DL

(see table 1 for the OWL 2 features implemented so

far) subject to additional constraints that increase the

ability of the reasoner to deal with the unification of

OWL and RDF/RDFS in linked data schemata (chal-

lenge 1, challenge 2), detect likely validation errors

(challenge 3, challenge 4) and improve efficiency.

This fragment of OWL DL has also been shaped by

the modelling requirements of ontology development

for the Seshat:Global History Databank [37] which is

our initial use case, as well as the OWL 2 vocabularies

we found most often used in linked data schemata on

the Web of Data. The range of support for OWL 2 con-

structs is substantially increased from our earlier paper

[19] which focused on RDFS. It is anticipated that we

will continue to extend the support for further OWL 2

features in future work.

The overall strategy of the DQS reasoner is not to

prove that there is a possible model for any given on-

tology but instead to reject ontologies that cannot have

a possible model or which are incompletely specified

without inferring new classes (as these are often

caused by user errors) under a closed world assump-

tion. Due to the ontology import actions of the Dacura

Schema Manager, the closed world in this case corre-

sponds to the whole of the Web of Data, at the level of

schema specification. We do not claim that the rea-

soner is sound or complete under OWL 2 DL, just that

it is capable of detecting many errors in linked data

schemata, including errors undetectable by standard

reasoning. Our approach is supported by building a

subsumption prover in SWI Prolog. Due to the com-

plexity of performing subsumption computations with

equivalences, we have opted in DQS to ignore non

definitional equivalence, hence we do support

owl:equivalentClass in one direction but not as a sym-

metric property. This is because OWL does not distin-

guish between the definitional and judgmental use of

this assertion. In practice this allows users to define a

class as a formula of other classes but does not allow

them to provide an assertion of two classes being

equivalent. In the wild we see the first case used ex-

tensively and the second only rarely and when it is it

is often problematic (see Table 5 Ontology Hijacking)

or recommended to be avoided by ontology engineer-

ing best practice (this case is listed as pitfall number

P02 in the OOPS! catalogue of common pitfalls 5).

Hence we term this as partial support by Dacura for

owl:equivalentClass in Table 1.

Dacura does not currently support validation of

owl:disjointWith assertions. Such assertions are im-

portant and relatively commonly used in practice.

However, they are typically used within schema defi-

nitions to constrain instance data (e.g. by asserting that

no entity can be a member of two specific classes at

the same time) and are rarely relevant to schema vali-

dation, which is the focus of the work presented in this

paper. It is our intention to implement this feature in

our ongoing development effort to apply Dacura to in-

stance data validation. It should be noted that Dacura

does not currently detect (rare) schema level violations

of owl:disjointWith assertions but that this will not af-

fect the correctness of the errors that it does identify.

It should also be noted that, in both cases, our de-

pendency analysis tool correctly recognizes that both

predicates introduce dependencies between ontologies

– however the analysis of the validity of the specified

relationships is limited to one-directional equivalence.

We also require that there are no cycles in the declared

subsumption of classes or predicates. This again does

not give us the full power of OWL 2 DL, however it

was very rare that we found any actual intended use of

cycles in practice.

Table 1 OWL 2 vocabulary features supported by DQS Reasoner

5 http://oops.linkeddata.es/catalogue.jsp

Language Elements Supported Language Elements (cont.) Supported Axioms and Assertions (cont.) Supported

Classes, Datatype and Restriction owl:hasValue Y Property Expression Axioms

owl:Class Y owl:SelfRestriction N rdfs:subPropertyOf Y

owl:intersectionOf Y Special classes owl:inverseOf Y

owl:unionOf Y owl:Thing Y owl:equivalentProperty N

owl:complementOf Y owl:Nothing Y owl:property DisjointWith Y

owl:oneOf Y Properties Y rdfs:domain Y

rdfs:Datatype Y owl:DatatypeProperty Y rdfs:range Y

owl:datatypeComplementOf N owl:ObjectProperty Y owl:propertyChain Y

owl:oneOf Y Special properties owl:FunctionalProperty Y

owl:onDatatype Y owl:TopDataProperty Y owl:InverseFunctionalProperty N

owl:withRestrictions Y owl:BottomDataProperty Y owl:ReflexiveProperty P

owl:Restriction Y owl:TopObjectProperty Y owl:IrreflexiveProperty N

owl:onProperty Y owl:BottomObjectProperty Y owl:SymmetricProperty P

owl:onClass Y Individuals owl:AsymmetricProperty P

owl:onDataRange Y owl:NamedIndividual N owl:TransitiveProperty Y

owl:onProperties Y Axioms and Assertions owl:hasKey Y

owl:cardinality Y Class Expression Axioms Assertions

owl:maxCardinality Y rdfs:subClassOf Y owl:NegativePropertyAssertion N

owl:minCardinality Y owl:equivalentClass P owl:sourceIndividual N

owl:minQualifiedCardinality Y owl:disjointWith N owl:assertionProperty N

owl:minQualifiedCardinality Y owl:disjointUnionOf Y owl:targetValue N

owl:qualifiedCardinality Y Individual Axioms owl:targetIndividual N

owl:allValuesFrom Y owl:differentFrom N owl:AllDifferent N

owl:someValuesFrom Y owl:sameAs N owl:AllDisjointClasses N

owl:AllDisjointProperties N

Y= Yes, P = Partial, N = No owl:members N

Table 2 – OWL/RDF/RDFS terms that create structural dependencies between ontologies

DQS provides an interface to a triple store via

HTTP using a simple JSON format for updates (both

inserts and deletes) of triples, and of both instance and

ontology data. The service responds to updates either

with a success message stating that the insertion is

consistent, or a message describing the precise reason

for failure of consistency according to the reasoner.

The reasoner ensures that it builds up a witness of fail-

ure which demonstrates the counter-example to con-

sistency satisfaction which can then be used by the cli-

ent to come up with a suitable strategy for dealing with

the failure. The results of our evaluation of linked data

schemata (see Sections 5 and 6) were compiled by

loading ontologies in the Dacura Schema Manager,

and then testing them against the Dacura Quality Ser-

vice, and then looking at the error reports provided.

Next we examine the specific solutions implemented

in the Dacura Schema Manager and Dacura Quality

Service to address the challenges of linked data sche-

mata validation.

4.1. Overcoming Challenge 1: Heterogeneity

As discussed in the background section, the free

mixing of RDF, RDFS and OWL triples gives rise to

different interpretations. Our approach is to deliber-

ately misinterpret as OWL the RDF/RDFS classes and

properties that are normally outside the scope of

OWL-DL when there is no immediate conflict in do-

ing so, e.g. a rdfs:class is treated as equivalent to an

owl:class. This doesn't present an insurmountable dif-

ficulty for reasoning. Similarly rdf:Property is treated

at an equivalent level to owl:DatatypeProperty and

owl:ObjectProperty and no overlap is allowed be-

tween them. All domains and ranges that are asserted

are checked to ensure they support subsumption. Mis-

use of language features and low level RDF syntax

with reserved meaning in OWL such as rdf:List is de-

tected as an error.

This approach is applicable in situations where the

data is going to be published only for the combined

ontology, or used only internally to a system which in-

terprets the instance data as OWL 2. This is in line

with common practice for linked data but presents po-

tential problems for interoperability of the produced

linked data since OWL 2 reasoners might deem it in-

consistent due to the fact that we still allow a mix

RDFS and OWL and hence are not a proper subset of

OWL 2 DL. However, as our experimental results will

show, this is necessary for dealing with the commonly

used vocabularies on the Web of Data today.

4.2. Overcoming Challenge 2: Imports

Since there are a range of ways that linked data

schemata reference or import each other, it was neces-

sary to define a mechanism to construct the composite

ontology defined by a linked data schemata to enable

validation under a closed world assumption. For this

reason, we have treated all dependencies to external

namespaces as implicit owl:imports.

Dependencies between ontologies were defined as

either property dependence or structural dependence:

Property dependence: if an ontology A uses a prop-

erty from another ontology B, then A is considered to

have a dependence on B.

Structural dependence: if an ontology A contains a

statement which defines its classes or properties in

terms of entities in ontology B, then A is considered

to have a structural dependence on B. Table 2 shows

the specific OWL terms which we consider create

structural links between ontologies. Other references

to external URIs in a schema were ignored.

Having defined what we consider to amount to the

class of dependencies between ontologies, the Dacura

Schema Manager tool implements these rules to ana-

lyse any given ontology and recursively create its de-

pendency tree, fetch the constituent ontologies or vo-

cabularies and create a union between them for check-

ing by the DQS.

4.3. Overcoming Challenge 3: Distributed Authoring

The Dacura Schema Manager detects all dependen-

cies between ontologies as described in the last section.

Namespace Term

rdf Type

rdfs range, domain, subPropertyOf, subClassOf, member

owl inverseOf, unionOf, complementOf, datatypeComplementOf, intersectionOf, oneOf, data-

Range, disjointWith, imports, allValuesFrom, someValuesFrom, equivalentClass, equiva-

lentProperty, disjointUnionOf, propertyDisjointWith, members, disjointWith, propertyDis-

jointWith, onProperty, onClass, propertyChainAxiom

This forms the basis for detecting references to miss-

ing or unavailable ontologies. It can also detect

namespace violations such as ontology hijacking

when they occur in input ontologies. The logical con-

sequences of building unified models from many on-

tologies are detected by the DQS, especially when lo-

cal work-arounds have been made that render the uni-

fied model inconsistent.

4.4. Overcoming Challenge 4: OWL Permissivity

By applying the closed world assumption to the full

graph imported from the Web of Data that specifies a

linked data schema it is possible to detect orphan clas-

ses. These are rejected as incompletely specified (sim-

ilar to the use of declarations in OWL 2 but without

the need to augment existing ontologies with new dec-

larations). In addition, the detection of subsumption

failures and cycles in class or property declarations al-

lows us to detect potential misuse of OWL features.

5. Evaluation Methodology

In order to evaluate the interoperability of the vari-

ous ontologies and vocabularies which are commonly

used by linked data documents, it is first necessary to

establish which ontologies or vocabularies are the

most common, and by what measure(s) in the Web of

Data today. In order to do this we rely on the extensive

literature that catalogs the development and makeup

of the Web of Data and the live reports from the

Linked Open Vocabularies (LOV) site6 [38]. At the

time of writing LOV was hosting 542 vocabularies.

Table 3: Top 20 Vocabularies as Reported by LOV, March 2016

by number of uses – (see Table 6 for vocabulary shorthand codes)

Vocabulary Used in schemas Used in datasets

dc 439 327

dc11 361 178

foaf 325 249

vann 201 19

skos 200 152

cc 87 21

vs 81 11

schema 48 12

prov 38 39

gr 38 20

geo 37 49

event 36 9

6 http://lov.okfn.org/dataset/lov/

time 30 47

bibo 27 43

void 25 77

org 23 7

adms 23 3

dctype 22 13

sioc 21 18

qb 19 9

frbr 19 12

doap 18 23

voaf 15 2

gn 15 14

ssn 14 0

Despite the undoubted utility of LOV it is clear that

it services a specific community of users and so we

looked for a wider base of evidence. The ranking in

terms of vocabulary reuse is also arguable, compared

to the proliferation of a vocabulary’s terms in data.

Schmachtenberg et al. in 2014 [39] provided a sur-

vey of the results of an extensive crawl of the Web of

Data (over 8 million resources were visited) based on

the vocabularies registered with datahub.io. This study,

as a follow-up to a 2011 baseline, showed an increased

reliance by linked data publishers on a small set of

core vocabularies compared to 2011. In table 5 of that

paper they provide the list of the most often encoun-

tered vocabularies in terms of the 18 vocabularies that

are used by more than 5% of all datasets. Their list is

shown in our Table 4.

Table 4: Most Popular Vocabularies in Linked Data, April 2014 by
percentage of ontologies which use them (Schmachtenberg et al.)

Vocab % Vocab %

rdf 98.22 void 13.51

rdfs 72.58 bio 12.32

foaf 69.13 qb 11.24

dc 56.01 rss 9.76

owl 36.49 odc 8.48

geo 25.05 w3con 7.6

sioc 17.65 doap 6.41

admin 15.48 bibo 6.11

skos 14.11 dcat 5.82

In addition, they report that, of the nearly 1000 da-

tasets visited, only 23% used local vocabularies that

are not used in any other dataset, while nearly all used

vocabularies common to multiple datsets. This shows

the consolidation of the Web of Data towards fewer

vocabularies as in 2011 64.11% of datasets were found

to use local vocabularies not used elsewhere.

Finally in 2011 Hogan et al. surveyed the state of

the Web of Data with a crawl of approximately 4 mil-

lion RDF/XML documents and 1 billion quads [40].

Their Table 2, provided here in abbreviated form as

Table 5, shows the top 25 most popular vocabularies,

based on the number of instances of each namespace

within their analysis dataset.

Table 5: Most Frequently Occurring Vocabularies in Linked Data

2011 by instance count (Hogan et al.)

Vocab Instances Vocab Instances

foaf 615,110,022 dc11 6,400,202

rdfs 219,205,911 b2rns 5,839,771

rdf 213,652,227 sioc 5,411,725

b2r 43,182,736 vote 4,057,450

lldpubmed 27,944,794 gn 3,985,276

lldegene 22,228,436 skipinions 3,466,560

skos 19,870,999 dbo 3,299,442

fb 17,500,405 uniprot 2,964,084

owl 13,140,895 eatoc 2,630,198

opiumfield 11,594,699 lldlifeskim 2,603,123

mo 11,322,417 ptime 2,519,543

dc 9,238,140 dbpedia 2,371,396

estoc 9,175,574

In summary, the most common vocabularies that

appear in all three surveys are: foaf, dc, sioc and skos;

in addition dc, bibo, qb, doap, geo, void and gn, rdf,

rdfs and owl appear twice. Hence we must have cov-

erage of all of these core vocabularies to evaluate the

foundations of linked data. From these studies of vo-

cabulary usage, we identified the top 50 most com-

monly used vocabularies and ontologies in use.

5.1. Identifying Dependencies

In order to validate an ontology, we need to com-

bine all of its dependencies. We applied the Dacura

Schema Manager dependencies tool to all of the top

50 ontologies identified above. The output of this tool

(fig 1) was used to identify the set of ontologies and

vocabularies that each ontology depends on directly.

Next, we included these ontologies, also identifying

the set of ontologies needed by these included ontolo-

gies, continuing until all of the dependencies were in-

cluded or were deemed to be impossible to include.

This produced a breadth-first dependency tree for each

ontology. This increased the number of ontologies in

our analysis set to 91 (Table 6). We then analyzed all

these ontologies with the DQS tool to identify to what

extent they exhibited problems in terms of creating a

unified knowledge model that incorporated them. It

should be noted that the ontologies that were included

through this dependency analysis are almost all due to

the inclusion of the two most common vocabularies

(dc and foaf) and thus most of the dependency tree

shown here is common to virtually all linked data vo-

cabularies.

Figure 2 gives an example of the dependency tree

for one ontology: Open Annotation [41]. This depend-

ency tree covers 22 of the top 25 vocabularies rated as

most popular by LOV in terms of vocabulary reuse

(incoming links) as seen in Table 3. This ontology was

selected as an example for both practical and theoreti-

cal reasons. Practically, we wished to implement a

system for the Seshat: Global Hostory Databank in

which users could annotate content at a variety of

scopes and we wanted to be able to validate instance

data which was expressed according to the ontology.

Theoretically, it represented a good example of a

linked data schema in the wild, as is shown by the

analysis above. It has been constructed by a W3C

community group according to the linked data princi-

ples, using well known third party vocabularies and

ontologies and it is in use in practice. It is ranked by

LOV as the 32rd most popular linked data vocabulary

overall (from 542 vocabularies) and its dependency

tree, as discovered by Dacura, includes 25 of the 31

vocabularies rated as more popular than it by LOV.

Our dependency analysis terminated whenever we

came to an ontology that we could not retrieve, either

because we discovered that the ontology no longer ex-

isted (e.g. WordNet), or because we proved unable to

locate a machine-readable version of the ontology on

the internet, after approximately 8 hours of effort in

searching. In one case our dependency tree brought us

to an ontology that was simply too big for our tools to

handle – OpenCyc (rdf/xml file: 246 MB) due to in-

sufficient memory on our test computer. There was

only two structural links to this ontology from the rest,

so the omission can be considered to be relatively mi-

nor. In two cases dependent ontologies were written in

DAML, a predecessor of OWL and these ontologies

were not automatically analyzed as our tools were not

capable of interpreting them. Manual analysis of both

revealed that they had no further dependencies.

5.2. Schema Validation

Once the dependency tree of ontologies for each on-

tology had been established, the composite schema so

defined (consisting of the union of all of the imported

ontologies) was analyzed by the DQS reasoner and the

OOPS! tool for validation errors for each ontology in

table 6. See the next section for the results.

Table 6. Ontologies analyzed as part of this work.

shorthand URL Description

adms http://www.w3.org/ns/adms# Asset Description Metadata Schema (ADMS)

ao http://purl.org/ontology/ao/core# The Association Ontology

atom http://bblfish.net/work/atom-owl/2006-06-

06/#
Atom syndication format

basic http://def.see-

grid.csiro.au/isotc211/iso19103/2005/basic#
OWL representation of ISO 19103 (Basic types

package)

bbc http://www.bbc.co.uk/ontologies/bbc/ BBC Ontology

bbccor http://www.bbc.co.uk/ontologies/corecon-

cepts
BBC Core Concepts

bbcpro http://www.bbc.co.uk/ontologies/provenance BBC Provenance Ontology

bibo http://purl.org/ontology/bibo/ The Bibliographic Ontology

bio http://purl.org/vocab/bio/0.1/ BIO: A vocabulary for biographical information

cc http://creativecommons.org/ns# Creative Commons

cms http://www.bbc.co.uk/ontologies/cms/ CMS Ontology

contact http://www.w3.org/2000/10/swap/pim/con-

tact#
Contact: Utility concepts for everyday life

cpa http://www.ontologydesignpatterns.org/sche-

mas/cpannotationschema.owl#
Content Pattern Annotations

crm http://purl.org/NET/cidoc-crm/core# CIDOC Conceptual Reference Model

cwork http://www.bbc.co.uk/ontologies/creative-

work
Creative Work Ontology

dbox http://dublincore.org/documents/dcmi-box/ (Empty) DCMI-Box encoding scheme

dbpedia http://dbpedia.org/ontology/ The DBpedia Ontology

dc http://purl.org/dc/terms/ DCMI Metadata Terms – other

dc11 http://purl.org/dc/elements/1.1/ Dublin Core Metadata Element Set, Version 1.1

dcam http://purl.org/dc/dcam/ Metadata terms related to the DCMI Abstract

Model

dcat http://www.w3.org/ns/dcat# The data catalog vocabulary

dctype http://purl.org/dc/dcmitype/ DCMI Type Vocabulary

doap http://usefulinc.com/ns/doap# Description of a Project (DOAP) vocabulary

doc http://www.w3.org/2000/10/swap/pim/doc# Document vocabulary

dtest http://www.w3.org/2006/03/test-description# Test Description Vocabulary

dtype http://www.linkedmodel.org/schema/dtype# Specification of simple data types

dul http://www.loa-cnr.it/ontologies/DUL.owl# DOLCE+DnS Ultralite

event http://purl.org/NET/c4dm/event.owl# The Event ontology

foaf http://xmlns.com/foaf/0.1/ Friend of a Friend (FOAF) vocabulary

frbr http://purl.org/vocab/frbr/core# Expression of Core FRBR Concepts in RDF

geo http://www.w3.org/2003/01/geo/wgs84_pos# WGS84 Geo Positioning

geometry http://data.ordnancesurvey.co.uk/ontology/ge-

ometry/
A ontology to describe abstract geometries.

gn http://www.geonames.org/ontology# The Geonames ontology

gr http://purl.org/goodrelations/v1 Good Relations Ontology

grddl http://www.w3.org/2003/g/data-view# GRDDL Gleaning Resource Descriptions

gsp http://www.opengis.net/ont/geosparql OGC GeoSPARQL

hcard http://purl.org/uF/hCard/terms/ HCard Vocabulary

http http://www.w3.org/2006/http# A namespace for describing HTTP messages

iana http://www.iana.org/assignments/relation/ Link Relations

ical http://www.w3.org/2002/12/cal/ical# RDF Calendar

icalspec http://www.w3.org/2002/12/cal/icalSpec# ICAL specifications

infreal http://www.ontologydesignpat-

terns.org/cp/owl/informationrealization.owl#
Information Realization ontology

irw

http://www.ontologydesignpat-

terns.org/ont/web/irw.owl#
The Identity of Resources on the Web ontology

keys http://purl.org/NET/c4dm/keys.owl# Musical keys

label http://purl.org/net/vocab/2004/03/label# Term definitions for singular and plural label prop-

erties

leo http://linkedevents.org/ontology/ Linking Open Descriptions of Events

log http://www.w3.org/2000/10/swap/log# Logic Ontology

mo http://purl.org/ontology/mo/ The Music Ontology

neogeo http://geovocab.org/spatial# A vocabulary for describing topological relations

between features

nrl http://www.semanticdesktop.org/ontolo-

gies/2007/08/15/nrl#
NEPOMUK Representational Language

oa http://www.w3.org/ns/oa# Open Annotation Data Model

obo http://purl.obolibrary.org/obo/obi.owl Ontology for Biomedical Investigations

ont http://www.w3.org/2006/gen/ont# An Ontology for Relating Generic and Specific In-

formation Resources

opmv http://purl.org/net/opmv/ns# The Core OPMV Vocabulary

org http://www.w3.org/ns/org# Core Organization Ontology

ov http://open.vocab.org/terms/ Open Vocabulary

prv http://purl.og/net/provenance/ns# Provenance Vocabulary Core Ontology

prov http://www.w3.org/ns/prov# W3C PROVenance Interchange Ontology

qb http://purl.org/linked-data/cube# The data cube vocabulary

qudt http://qudt.org/schema/qudt Quantities, Units, Dimensions and Types

rdaa http://rdaregistry.info/Elements/a/ RDA Agent properties

rdac http://rdaregistry.info/Elements/c/ RDA Classes

rdae http://rdaregistry.info/Elements/e/ RDA Expression Properties

rdai http://rdaregistry.info/Elements/i/ RDA Item Properties

rdam http://rdaregistry.info/Elements/m/ RDA Manifestation Properties

rdau http://rdaregistry.info/Elements/u/ RDA Unconstrained Properties

rdaw http://rdaregistry.info/Elements/w/ RDA Work Properties

rdfa http://www.w3.org/ns/rdfa# RDFA specification

rdfg http://www.w3.org/2004/03/trix/rdfg-1/ RDF Graph

rel http://purl.org/vocab/relationship/ A vocabulary for describing relationships between

people

rev http://purl.org/stuff/rev# RDF Review Vocabulary

schema http://schema.org/ Schema.org (converted to OWL by TopQuadrant)

scovo http://purl.org/NET/scovo# The Statistical Core Vocabulary (SCOVO)

sim http://purl.org/ontology/similarity/ The Similarity Ontology

sioc http://rdfs.org/sioc/ns# Semantically Interlinked Online Communities

sioctypes http://rdfs.org/sioc/types# SIOC Types Ontology

skos http://www.w3.org/2004/02/skos/core# SKOS Vocabulary

ssn http://www.w3.org/2005/Incuba-

tor/ssn/ssnx/ssn
Semantic Sensor Network Ontology

time http://www.w3.org/2006/time# An OWL Ontology of Time (OWL-Time)

timezone http://www.w3.org/2006/timezone# A time zone ontology

ubench http://swat.cse.lehigh.edu/onto/univ-

bench.owl#
An university ontology for benchmark tests

vaem http://www.linkedmodel.org/schema/vaem# Vocabulary for Attaching Essential Metadata

vann http://purl.org/vocab/vann/ Vocabulary for annotating vocabulary descriptions

vcard http://www.w3.org/2006/vcard/ns# Vcard vocabulary

voaf http://purl.org/vocommons/voaf# Vocabulary of a Friend

void http://rdfs.org/ns/void# Vocabulary of Interlinked Datasets (VoID)

vs http://www.w3.org/2003/06/sw-vocab-sta-

tus/ns#
SemWeb Vocab Status ontology

wdrs http://www.w3.org/2007/05/powder-s# POWDER-S Vocabulary

xhv http://www.w3.org/1999/xhtml/vocab# XHTML specification

Figure 2 Open Annotation dependency tree of linked data vocabularies and ontologies

Table 7: References to missing or unavailable dependencies detected

6. Validation Results

Our analysis of the 91 ontologies revealed that 30

ontologies (33%) contained ontology hijacking viola-

tions (making assertions about entities defined in other

ontologies with global scope). 11 ontologies contained

dependencies on a total of 14 missing ontologies

(12%). 3 ontologies contained basic errors that were

categorized as typos (3.3%). 15 ontologies (16.5%)

contained statements that are illegal in OWL DL due

to them being impredicative – predicating over classes

or properties which is illegal in first order logic en-

tirely - and basic misuses of language constructs (e.g

subclassing owl:differentFrom and expecting its se-

mantics to be retained). One ontology (1%) contained

both property and class cycles – and in both cases

manual analysis revealed that they were, as anticipated,

highly likely to be the result of specification errors ra-

ther than obtuse ways of defining a single class or

property. The detailed validation results are presented

in the tables below.

6.1. References to Missing Ontologies

As is to be expected in the evolving Web of Data a

number of the referenced ontologies were no longer

available (at least they are not currently available at

the advertised URL and we were unable to find them

elsewhere) - Table 7. The linked data community

should be aware of the implication of this for linked

data quality – if schema specifications are going to be

rendered incomplete due to changes in the availability

of imported ontologies or terms then it places a limit

on the degree of validation that can be performed –

terms from such vocabularies become simple untyped

variable names with zero semantics associated with

them.

6.2. Ontology hijacking

A widespread pattern observed in the ontologies un-

der analysis was the presence of assertions designed to

support interoperability of ontologies. For example, a

very common pattern was to specify that certain prop-

erties from imported ontologies were defined to be of

type owl:AnnotationProperty – to allow them to be

processed by standard OWL tools which do not know

how to deal with properties defined as rdf:Property.

Ontology Missing (or unavailable) Dependencies

atom property: http://eulersharp.sourceforge.net/2004/04test/rogier#productProperty (1 use)

atom:scheme rdfs:range http://sw.nokia.com/WebArch-1/InformationResource rdfs:subPropertyOf

http://sw.nokia.com/WebArch-1/representation

atom:src rdfs:range http://sw.nokia.com/WebArch-1/InformationResource

_:atom31 rdf:type file:///Users/hjs/Programming/sommer/www/atom/2006-06-06/AtomOwl.n3#update

_:atom37 rdf:type file:///Users/hjs/Programming/sommer/www/atom/2006-06-06/AtomOwl.n3#rel

doap doap:Project rdfs:subClassOf http://xmlns.com/wordnet/1.6/Project

frbr frbr:Work rdfs:subClassOf http://xmlns.com/wordnet/1.6/Work~2

frbr:Event rdfs:subClassOf http://www.isi.edu/~pan/damltime/time-entry.owl#Event

gn gn:Feature owl:equivalentClass http://www.mindswap.org/2003/owl/geo/geoFeatures20040307.owl#Ge-

ographicFeature

grddl Properties: http://www.rddl.org/purposes#normative-reference (3 uses) & http://webns.net/mvcb/genera-

torAgent (1 use)

neogeo http://geovocab.org/spatial owl:imports http://geovocab.org/mappings/spatial

qudt VOAG ontology only retrievable as invalid turtle file

qudt: http://voag.linkedmodel.org/schema/voag#withAttributionTo qudt:NASA-ARC-Attribution

qudt: http://voag.linkedmodel.org/schema/voag#hasLicenseType voag:CC-SHAREALIKE_3PT0-US

rda*

All RDA ontologies use terms from missing ontologies http://metadataregistry.org/uri/profile/regap/ and

http://metadataregistry.org/uri/profile/rdakit/

timezone

timezone owl:imports http://www.daml.org/2001/09/countries/iso-3166-ont

timezone owl:imports http://www.daml.ri.cmu.edu/ont/USRegionState.daml

dbox Ontology is empty – contains no classes

cwork http://www.bbc.co.uk/ontologies/tagging/ ontology does not exist

cwork:tag rdfs:range http://www.bbc.co.uk/ontologies/tagging/TagConcept

cwork:about rdfs:range http://www.bbc.co.uk/ontologies/tagging/TagConcept

cwork:mentions rdfs:range http://www.bbc.co.uk/ontologies/tagging/TagConcept

The basic problem with this pattern is that this

amounts to non-coordinated interoperability on a li-

brary scope – each ontology attempts to handle in-

teroperability for its own scope, but when these ontol-

ogies are combined together, each piecemeal attempt

at interoperability is combined into a common model

and the union of these piecemeal attempts at library

level interoperability without any facilities for modu-

larity leads to inconsistency.

The second major category of ontology hijacking

observed in the data are illegal assertions that serve to

silently kill error reporting in tools. For example the

assertion:
rdfs:Class a owl:Class

is used in two separate ontologies – it declares that

an RDFS class is an instance of an OWL class – an

interpretation that is illegal under OWL DL or Full but

it manages to successfully silence error checking in a

number of tools. These type of assertions are particu-

larly unwise because they make the knowledge model

inconsistent and break the robustness principle by de-

liberately producing malformed specifications rather

than compensating for real-world variation and noise

at input.

Finally, in a certain number of cases, ontologies

knowingly and explicitly change other ontologies for

convenience in utilizing external class definitions.

This type of usage is most pointedly described in the

bibo ontology:
dc:Agent a owl:Class ;

owl:equivalentClass foaf:Agent ;

An editorial note in the ontology states:

“BIBO assert that a dcterms:Agent is an equivalent

class to foaf:Agent. This means that all the individuals

belonging to the foaf:Agent class also belongs to the

dcterms:Agent class. This way, dcterms:contributor

can be used on foaf:Person, foaf:Organization,

foaf:Agent and foaf:Group. Even if this link is not

done in neither the FOAF nor the DCTERMS ontolo-

gies this is a wide spread fact that is asserted by BIBO.”

 In such cases it would be more appropriate to use

local sub-classing to achieve the equivalent effect

without over-writing the definitions in external

namespaces.

Table 8: Ontology hijacking violations detected

Ontology Count Third party ontologies altered (number of entities altered)

atom 5 iana

bibo 50 rdf (3), rdfs (1), owl (2), dc (19), skos (6), vs (1), event (7), foaf (11)

crm 10 vann (2), dc (3), cc (1), label (1), skos (3)

event 8 dc11 (3), foaf (3), geo (1), vs (1)

foaf 10 owl (1), rdfs (1), dc11 (3), vs (1), geo (1), skos (1), wot (2 – only use)

frbr 32 rdf (1), foaf (3), dc (5), dc11 (7), vann (3), skos (1), cc (11), geo (1)

geometry 3 rdfs (2), dc11 (1)

gn 3 foaf (1), skos (2)

gr 19 owl (1), schema (10), dc11 (5), dc (1), foaf (2)

grddl 1 owl

http 2 rdfs (1), xsd (1)

icalspec 2 xsd

infreal 10 owl (1), rdfs (3), cpa (6)

irw 3 owl (1), infreal (2)

leo 4 crm (3), event (1)

lode 15 leo (11), crm (3), event (1)

mo 1 vs

opmv 6 owl (1), time (5)

prov 6 owl (2), rdfs (4)

prv 33 dc (7), prov(10), infreal (1), foaf (7), wot (4), xhv (2), irw (2)

qudt 8 skos (2), dc11 (6)

rel 1 foaf

rev 9 rdfs (2), dc11 (3), foaf (2), vs (2)

sim 5 owl (1), dc (2), vs (1), foaf (1)

sioc 10 dc (5), foaf (5)

sioctypes 2 skos (1), sioc (1)

ssn 39 rdfs (4), dc11 (6), dc (2), cc (1), dul (26)

time 1 timezone

vaem 12 owl (1), dc (11)

Table 9: Typos detected

Ontology Typos (underlined)

contact contact:assistant rdfs:ramge foaf:Agent

contact:participant rdfs:ramge foaf:Agent

dcat dcat:landingPage rdfs:subPropertyOf foaf:Page

nrl nrl:subGraphOf rdfs:subPropertyOf http://www.w3.org/2004/03/trix/rdfg-1#subGraphOf

nrl:Graph rdfs:subClassOf http://www.w3.org/2004/03/trix/rdfg-1#Graph

nrl:equivalentGraph rdfs:subPropertyOf http://www.w3.org/2004/03/trix/rdfg-1#equivalentGraph

6.3. Typos

Three ontology were found to contain basic errors

which were interpreted as typos – the predicate

rdfs:ramge appears twice in contact (rather than

rdfs:range). In dcat, the property name foaf:Page is

used, whereas foaf:page (without capitalization) is the

correct property name, while in nrl, 3 incorrect URLs

are used to refer to classes and properties in rdfg (the

correct URLs use ‘/’ rather than ‘#’ as an element pre-

fix). The presence of such errors in long established

and public ontologies highlights the lack of tool sup-

port for ontology validation – they are simple and ob-

vious errors but they will not be identified by standard

OWL reasoners.

6.4. Impredicativity / misuse of language constructs

Since OWL DL is a first order theory, it is not pos-

sible to quantify over classes and predicates. Yet no

such restriction exists in RDF. This leads to a number

of problems when using OWL ontologies which refer-

ence RDF ontologies which make use of higher-order

and impredicative features.

In the very widely used dc ontology, the rdf:type

relation is given a range of rdfs:Class. This is imme-

diately problematic as rdfs:Class is the class of all

classes and such impredicative statements cannot be

made in OWL DL but are dangerous regardless, due

to the very real threat of paradox. Similarly the

rdf:subClassOf relation is used to derive a subclass of

the class of classes. This again is higher order reason-

ing, without any guarantee of predicativity.

In skos we see the use rdf:List as a range, but

rdf:List is an internal syntactic element of OWL. Free

mixing of rdf:first and rdf:next would leave reasoners

unable to distinguish what is intended as a property

and what is intended to be syntax of the language itself.

While this problem has been described thoroughly

[11], it also has not been stamped out in the wild, and

skos is a very widely used ontology purporting to be

OWL.

In gn, log, void, qb, wdrs, atom and voaf we see the

very common use of higher order logic, with subclass-

ing of class, properties, and assignation of ranges over

properties and classes. In most of these cases the state-

ments were probably unnecessary. However higher or-

der reasoning may sometimes be useful and we will

discuss later how such things can be achieved without

stepping into undecidability.

In atom there is an even more unusual metalogical

statement, making a statement about statements them-

selves! Without some sort of stratification such logic

is dubious at best. Atom additionally makes use of in-

ference facilities that are not themselves part of OWL.

Utilizing ontologies of this form requires a tool chain

which is capable of making these inferences - some-

thing that is not widely available.

Table 10: Instances of impredicativity/misuse of reserved language constructs detected

Vocab Triple(s) Error Description

dc dc:type rdfs:range rdfs:Class ; Predicating over class

dc dc:AgentClass rdfs:subClassOf rdfs:Class Overriding basic language construct

skos skos:memberList rdfs:range rdf:List ; rdf:List is an internal structural element of OWL – it

can’t be used directly

grddl grddl:TransformationProperty rdfs:subClassOf

owl:FunctionalProperty ;

Higher order use of the rdfs:subClassOf relation

wdrs wdrs:Document rdfs:subClassOf owl:Ontology . Higher order use of the rdfs:subClassOf relation

rel rel:friendOf rdfs:subPropertyOf owl:differentFrom (32

times)

Higher order use of the rdfs:subClassOf relation

atom atom:RelationType rdfs:subClassOf owl:ObjectProp-

erty .

Higher order use of the rdfs:subClassOf relation

atom atom:Link rdfs:subClassOf rdf:Statement Creating subclasses of a higher order feature

atom atom:rel rdfs:subPropertyOf rdf:predicate Creating subclasses of a higher order feature

atom atom:subject rdfs:subPropertyOf rdf:subject Creating subclasses of a higher order feature

atom atom:to rdfs:subPropertyOf rdf:object Creating subclasses of a higher order feature

bio bio:differentFrom rdfs:subPropertyOf owl:differ-

entFrom (15 times)

Higher order use of the rdfs:subClassOf relation

gn gn:featureClass rdfs:subPropertyOf dc:type ; Using impredicative property from dc

log log:definitiveDocument rdfs:domain rdf:Property Predicating over class of properties

log log:definitiveService rdfs:domain rdf:Property ; Predicating over class of properties

void void:linkPredicate rdfs:range rdf:Property Predicating over class of properties

void void:property rdfs:range rdf:Property Predicating over class of properties

voaf voaf:occurrences a owl:objectProperty,

rdfs:range xsd:integer

Mismatch between objectProperty and literal range

type

qb qb:parentChildProperty rdfs:range rdf:Property Predicating over class of properties

qb qb:ComponentProperty rdfs:subClassOf rdf:Property Higher order use of the rdfs:subClassOf relation

bbcpro bbcpro:transitions rdfs:range rdf:Property Predicating over class of properties

nrl nrl:cardinality rdfs:domain rdf:Property

nrl:maxCardinality rdfs:domain rdf:Property

nrl:minCardinality rdfs:domain rdf:Property

nrl:inverseProperty rdfs:domain rdf:Property

nrl:inverseProperty rdfs:range rdf:Property

Predicating over class of properties

nrl nrl:NonDefiningProperty rdfs:subClassOf rdfs:Property Higher order use of the rdfs:subClassOf relation

qudt qudt:QuantityKindCategory rdfs:subClassOf owl:Class Higher order use of the rdfs:subClassOf relation

6.5. Property / Class Cycles

Table 11 presents the class or property cycles de-

tected in the crm ontology. The first example, asserts

that a legal body is equivalent to a group, which seems

highly questionable, though it would require the crm

authors to confirm. The second looks more likely, but

still questionable, where they establishing an equiva-

lence between “bearing a feature” and “being com-

posed of”.

We have also noticed that many statements of

equivalence were between classes in different ontolo-

gies, establishing a link between an element in one

place, and that in another. However, these equiva-

lences were often coupled with additional qualifica-

tions. Such behavior completely negates the capacity

to use linked data in an interoperable fashion, as the

original publisher of the ontologies data may very well

have instance data which is deemed invalid when read,

by the second publisher, and vice versa. This “ontol-

ogy hijacking” [5] should be highly discouraged.

6.6. Comparison to OOPS!

The 50 most commonly used vocabularies were

also analysed with OOPS! (OntOlogy Pitfall Scanner)

[27] for comparison (although four failed to load). Ta-

ble 12 contains the results. OOPS! analyzes ontologies

in isolation without loading any dependencies, thus

the dependent ontologies analyzed by Dacura were not

included. An anlysis of the results reveals very little

intersection between the classes of violations / pitfalls

identified between the two systems because OOPS! is

primarily a syntax scanner and it does not attempt to

incorporate dependent ontologies and combine them

into a unified model, nor does it apply any significant

reasoning. However, OOPS! does check for several

additional types of best-practice violations that are not

considered to be violations from Dacura’s point of

view. For example, the P08 missing annotations code

produced by OOPS! reports cases where classes or

properties are missing labels – while this is a useful

check, there is nothing illegal about such missing ele-

ments and they thus do not cause Dacura to reject the

ontology. Dacura and OOPS! do overlap in some ar-

eas: for example both aim to identify absent domain /

range assertions for properties and untyped classes and

properties (OOPS! codes P11, P34 and P35 respec-

tively). However, in Dacura, they are considered to be

strictly informational messages as in many cases, such

missing assertions are consistent with best practice,

e.g. when the domain or range is specified in a super-

property. In such cases, OOPS! violations will in fact

be incorrect because it does not attempt to load super-

properties and respecifying the domain or range in a

sub-property duplicates information which compli-

cates schema change management. By virtue of com-

bining models, Dacura can accurately identify when

such situations are truly problematic – which is impos-

sible to achieve when analysing an ontology in isola-

tion. The one true exception is OOPS! pitfall code 40,

which checks for ontology hijacks – all of which

should be detectable without combining models. How-

ever, in this case, OOPS! detects only a small subset

of the violations detected by Dacura (37 violations in

12 ontologies detected by OOPS! versus 310 viola-

tions in 30 ontologies detected by Dacura).

Table 11: Property/Class cycles detected in crm ontology

Triple(s) Problem

crm:E40_Legal_Body rdfs:subClassOf crm:E74_Group

crm:E74_Group rdfs:subClassOf ns1:E40_Legal_body

Cycle in class hierarchy

crm:P46_is_composed_of rdfs:subPropertyOf crm:P56_bears_feature;

crm:P56_bears_feature rdfs:subPropertyOf crm:P46_is_composed_of

Cycle in property hierarchy

Table 12: Results returned by OOPS! Pitfall Scanner – numbers indicate pitfall count per OOPS! code

 OOPS! Pitfall Codes – for code meanings see http://oops.linkeddata.es/catalogue.jsp

Ontology 2 4 7 8 10 11 12 13 19 20 21 22 23 24 25 26 30 31 32 34 35 36 38 39 40 41

adms 9 11 6 3 1

basic 4 2 2 1

bbccor 1

bbcpro 1

bibo 1 70 1 40 48 1 1 2 1 1

bio 1

cc 1 1 1

cpa 1 1

dbpedia 1 1

dcat 1 1 10 2 6 4 1

dc11

dc 20 16 1 1 1

dctype 1 1 1

doap 2 2 7 2 27 1 9 1

dul 16 3 1 20 9 9 4 1 1

event 1 63 17 14 1 2 1 1 1

foaf 2 2 7 2 27 1 4 1 1

frbr 9 69 11 6 1 8

geo 1 1 1 1 1

gn 21 1 13 1 15 7 3 2 1

gr 3 11 6 43 1 2 2 2 2 2

gsp 69 13 53 13 2 1

leo 4 1 7 1 10 12 2

mo 1

nrl 9 2 1 1 1

oa 1 1 1 14 14 1 2 1

obo Failed to load

opmv 1 13 2 1

org 3 4 14 6 6 4 1

prov 23 2 42 2 1

prv 13 35 27

qb 1 5 6 17 3 1 1

qudt 1 10 296 107 5 32 1 2 1 1 1 8

rdac 4 1 1

rdaw Failed to load

rdfg 1 1 1

schema 10 9 1 1 1

scovo 3 1 5 1

sim Failed to load

sioc 3 12 41 2 18 1 2 1

skos 16 13 5 1

ssn 1 23 44 27 1 17 4 4 6 1 1

time 53 7 10 2 1 1

vann Failed to load

vcard 2 4 30 75 50 1 1 1 1 1

voaf 1 1 1 5 14 3 2 1

void 1 1 1 5 1

vs 2 1

wdrs 1 3 1 1

7. Recommendations for Correcting Problems in

Linked Data Schemata

Given our experiences in constructing the DQS and

the experimental analysis performed of real world

linked data schemata we offer the following recom-

mendations for improving best practice in linked data

vocabulary design.

7.1. Metareasoning with rdf:List

Ontologies in OWL cannot use the underlying syn-

tactic elements of rdf:List within the logic of the on-

tology, as is done in skos. The appropriate way to deal

with this problem is to have a drop in replacement for

RDF collections written in OWL such that there is no

syntactic/logical mixing. There have been some list

ontologies constructed such as the Ordered List Ontol-

ogy 7 , CO-ODE List Ontology 8 , however what is

needed is a drop in replacement for RDF collections in

general. Bags are trivial to construct in OWL, and both

ordered lists and indexed sequences have also been

demonstrated, so creating such an ontology is more a

collation task than an ontology engineering one. Mi-

grating current OWL ontologies to use such a drop in

replacement would be a relatively minor task and

would allow them to be compliant OWL 2 DL.

7.2. Impredication and Higher order features

The impredicative and higher order features of RDF

are used by 15 of the top 50 ontologies (including their

dependencies) and hence it can be considered both a

common problem and a desirable feature. Supporting

such behavior does not require abandoning soundness

or allowing paradoxes. Type theory, going back to

Russell, developed techniques to avoid impredicative

paradoxes through the use of stratification, which

could be used to extend OWL 2 DL. The complexity

or indeed decidability of such an extension remains to

be explored.

A lot of the uses of predication over types (eg in dc)

are useful and have known solutions, e.g. [42], [43] so

it is strange to reject it as outside OWL 2 DL. This is

the reason naïve set theory is inconsistent. Punning

provides some useful ways of providing information

about classes and properties. However, this does not

enable the same logical power which is available

through stratified predication where reasoning can be

extended to the metalogical level.

7.3. Equivalence and Hijacking

From the ontologies surveyed, it appears that equiv-

alence within a given ontology is rarely needed. If a

class is the same as another class, it seems unlikely to

be the case that the ontology designer does not know

it. If two classes are indeed the same, it is best to com-

bine the definitions of the classes into a single class,

which improves referential transparency and simpli-

fies ontology management. If two names are needed,

simply assigning more than one rdfs:label is recom-

mended as a better solution.

7 https://smiy.wordpress.com/2010/07/15/the-ordered-list-ontology/
8 http://owl.cs.manchester.ac.uk/wp-content/uploads/2015/07/list.owl_.txt

However, there is the further use of identification of

one class with that of another ontology. Such identifi-

cation of classes with other ontologies leads to the

question of why one would simply not use the class

name from the alternative ontology unless one wants

to actually hijack the class for extension? And if it is

the later, then it seems unfair that the contract be en-

tirely one sided, as any published linked data which

comes from the ontology will no longer have the same

meaning as that given in the original ontology.

One potential answer to this problem is that ontolo-

gies which intend to coordinate, and actually mean to

be equivalent, utilise subclassing in either direction.

So for instance, instead of saying:
ex:Tome owl:EquivalentClass library:Book

One could say, in the ex and library ontologies re-

spectively:
ex:Tome rdfs:subClassOf library:Book
library:Book rdfs:subClassOf ex:Tome

In this scenario, collaboration between ontology de-

signers would be required, such that hijacking was less

of a concern.

Where it is necessary to make ontologies backward

compatible with existing tools, a custom ontology

should be constructed and all interoperability asser-

tions should be placed within it and then imported. Be-

yond such cases, Ontology hijacking should be

avoided in all cases – just like when using external li-

braries in software engineering, importing ontologies

should not have side effects on other ontologies. We

propose a general design principle that importing on-

tologies should have no side effects.

8. Conclusions and Future Work

We have shown that is effective to pursue a rea-

soner-based approach to detect logical or syntactic er-

rors in linked data schemata based on unified logical

models. We have made a first study of the prevalence

of errors in schema errors in the Web of Data by ana-

lyzing 91 common vocabulary or ontology specifica-

tions. Our validation detected a total of 6 typos, 14

missing or unavailable ontologies, 73 language level

errors, 310 instances of ontology namespace viola-

tions and 2 class cycles which we believe to be errors.

Although our analysis is not complete – there are un-

doubtedly further errors which we have not detected –

all of these errors represent genuine problems with the

analyzed ontologies and there are no other tools avail-

able which can identify more than a small fraction of

them.

Our analysis began with the practical concern of us-

ing Open Annotation (OA) as infrastructure for our

own ontology development. After producing a soft-

ware tool-chain which included ontology management

and reasoning, we were able to proceed to testing of

our ontology over OA and all of the ontologies which

it made reference to and from there to extend our sur-

vey to all of the most commonly used 50 ontologies

and all of their dependencies. The results of our survey

give valuable information about the state of ontology

development, the relative lack of interoperability in-

cluding the free mixing of ontological frameworks

which are logically incompatible, and the fact that

tool-chain development is at a very low level since

many problems which we found would otherwise have

been spotted already.

We make a number of recommendations regarding

how to deal with the realities of ontologies as they cur-

rently exist, and how to use them in conjunction with

reasoning tool-chains.

We also note the fairly widespread use of higher or-

der features used for meta-modelling, and suggest a

way to include such features in a sound fashion free of

paradoxes. We hope to explore the consequences of

adding stratification to OWL 2 DL and the decidabil-

ity and complexity consequences thereof in the future.

The utilization of rdf:List in OWL ontologies really

has to be eliminated as it leads to incoherence and the

incapacity to reason. In the future, we hope to develop

a drop in replacement ontology for rdf collections de-

fined in OWL 2 DL exclusively.

We will be extending our reasoner to include a

larger fragment of OWL 2 DL. Our system has already

proved useful in finding errors and contains the major-

ity of OWL descriptions which we found in the ontol-

ogies explored. A larger fragment should improve the

usefulness as it extends the reasoning facility to a

greater class of ontologies. Further, we will be testing

our reasoner against ontologies which have extant in-

stance data, and this is likely to reveal more problems

than the ones detailed here which are exclusively at the

schema level.

Acknowledgement

The authors would like to thank Odhran Gavin at

TCD for his assistance with manuscript preparation

and editing.

This research has received funding from the Euro-

pean Union’s Horizon 2020 research and innovation

programme under grant agreement No 644055, the

ALIGNED project (www.aligned-project.eu) and

from the ADAPT Centre for Digital Content Technol-

ogy, funded under the SFI Research Centres Pro-

gramme (Grant 13/RC/2106) and co-funded by the

European Regional Development Fund.

References

[1] C. Bizer, T. Heath and T. Berners-Lee (2009) Linked Data -
The Story So Far. International Journal on Semantic Web and In-

formation Systems, Vol. 5(3), Pages 1-22. DOI:

10.4018/jswis.2009081901
[2] A. Hogan, J. Umbrich, A. Harth, R. Cyganiak, A. Polleres, S.

Decker, An empirical survey of Linked Data conformance, Journal

of Web Semantics, 14, 14–44, 2012
[3] I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen.

From SHIQ and RDF to OWL: The Making of a Web Ontology

Language. Journal of Web Semantics, 1(1):7-26, 2003
[4] G. T. Heineman and W. T. Councill (Eds.). 2001. Compo-

nent-Based Software Engineering: Putting the Pieces Together. Ad-

dison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.
[5] Aidan Hogan, Andreas Harth, Alexandre Passant, Stefan

Decker, Axel Polleres, Weaving the pedantic web, in: 3rd Interna-

tional Workshop on Linked Data on the Web, LDOW2010, April
2010.

[6] Kevin C. Feeney, Declan O'Sullivan, Wei Tai, and Rob Bren-

nan. Improving curated Web-Data quality with structured harvest-
ing and assessment. International Journal on Semantic Web and In-

formation Systems 10(2):35-62, April 2014

[7] Hepp, M., Possible Ontologies: How Reality Constrains the
Development of Relevant Ontologies, in Internet Computing, IEEE,

vol.11, no.1, pp.90-96, Jan.-Feb. 2007.

[8] ISO 9001:2015 Quality Management Systems - Require-
ments, ISO/TC 176, Quality management and quality assurance,

Subcommittee SC 2, Quality systems. 2015

[9] John Daintith, A Dictionary of Computing 2004, Oxford Uni-

versity Press 2004.

[10] Axel Polleres, Aidan Hogan, Renaud Delbru, and Jurgen

Umbrich, (2013) RDFS and OWL Reasoning for Linked Data, Rea-
soning Web Summer School, Mannheim, 91–149, Springer, 2013.

Available at: https://www.deri.ie/sites/default/files/publications/pa-

per.pdf
[11] I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen.

From SHIQ and RDF to OWL: The Making of a Web Ontology

Language. J. of Web Semantics, 1(1):7-26, 2003
[12] Bernardo Cuenca Grau, Ian Horrocks, Boris Motik, Bijan

Parsia, Peter Patel-Schneider, and Ulrike Sattler. 2008. OWL 2: The

next step for OWL Journal of Web Semantics. 6, 4 (November
2008), 309-322.

[13] P. F. Patel-Schneider, D. Fensel, Layering the Semantic
Web:Problems and Directions, First International Semantic Web

Conference (ISWC2002), Sardinia, Italy, June 2002.

[14] Z. Luo, An Extended Calculus of Constructions, PhD. The-

sis, University of Edinburgh, 1990 Available at:

http://www.lfcs.inf.ed.ac.uk/reports/90/ECS-LFCS-90-118/ECS-

LFCS-90-118.pdf
[15] Mélanie Courtot, Frank Gibson, Allyson L. Lister, James

Malone, Daniel Schober, Ryan R. Brinkman, Alan Ruttenberg

(2009), MIREOT: the Minimum Information to Reference an Ex-

ternal Ontology Term, Proc. First International Conference on Bio-

medical Ontology, 26 July 2009
[16] Gruber, Thomas Robert (1992). Toward Principles for the

Design of Ontologies Used for Knowledge Sharing. International

Journal Human-Computer Studies 43: 907–928.
[17] Matthem Horridge, Sean Bechhofer, The OWL API: A Java

API for OWL Ontologies, Semantic Web Journal 2(1), Special Issue

on Semantic Web Tools and Systems, pp. 11-21, 2011
[18] B. Motik, P. F. Patel-Schneider, B. C. Grau (Eds.) OWL 2

Web Ontology Language - Direct Semantics (Second Edition),

W3C Recommendation 11 December 2012, Available at:
http://www.w3.org/TR/2012/REC-owl2-direct-semantics-

20121211/

[19] Gavin Mendel-Gleason, Kevin Feeney, Rob Brennan
(2015) Ontology Consistency and Instance Checking for Real

World Linked Data, Proceedings of the 2nd Workshop on Linked

Data Quality co-located with 12th Extended Semantic Web Confer-
ence (ESWC 2015), Portorož, Slovenia, June 1, 2015. Available at:

http://ceur-ws.org/Vol-1376/LDQ2015_paper_03.pdf

[20] Jan Wielemaker, Wouter Beek, Michiel Hildebrand, Jacco
van Ossenbruggen, (2015) ClioPatria: A SWI-Prolog infrastructure

for the Semantic Web, Semantic Web, vol. Preprint, no. Preprint, pp.

1-13, 2015, DOI: 10.3233/SW-150191
[21] Dimitris Kontokostas, Patrick Westphal, Sören Auer, Se-

bastian Hellmann, Jens Lehmann, Roland Cornelissen, and Am-
rapali Zaveri. 2014. Test-driven evaluation of linked data quality. In

Proceedings of the 23rd international conference on World wide

web (WWW '14). ACM, New York, NY, USA, 747-758.
DOI=http://dx.doi.org/10.1145/2566486.2568002

[22] E. Sirin and J. Tao. Towards integrity constraints in owl. In

Proceedings of the Workshop on OWL:Experiences and Directions,
OWLED, 2009.

[23] Amrapali Zaveri, Anisa Rula, Andrea Maurino, Ricardo

Pietrobon, Jens Lehmann and Sören Auer. (2015). Quality assess-
ment for linked data: a survey. Semantic Web. vol. Preprint, no. Pre-

print, pp. 1-31, 2015 DOI: 10.3233/SW-150175

[24] C. Furber and M. Hepp. Using sparql and spin for data qual-
ity management on the semantic web. In W. Abramowicz and R.

Tolksdorf, editors, BIS, volume 47 of Lecture Notes in Business In-

formation Processing , pages 35-46. Springer, 2010.
[25] Peter F. Patel-Schneider, (2015)Using Description Logics

for RDF Constraint Checking and Closed-World Recognition,

Twenty-Ninth AAAI Conference on Artificial Intelligence, AAAI-

2015, January 25–30, 2015, Austin Texas, USA. Available at:

http://arxiv.org/abs/1411.4156v2

[26] Jeremy Debattista, Christoph Lange, Sören Auer: Luzzu - A
Framework for Linked Data Quality Assessment. International Se-

mantic Web Conference (Posters & Demos) 2015

[27] María Poveda-Villalón, Asunción Gómez-Pérez and Mari
Carmen Suárez-Figueroa, OOPS! (OntOlogy Pitfall Scanner!): An

On-line Tool for Ontology Evaluation IJSWIS 10.2 (2014): 7-34.

Web. 15 Mar. 2016. doi:10.4018/ijswis.2014040102
[28] P. F. Patel-Schneider, D. Fensel, Layering the Semantic

Web:Problems and Directions, First International Semantic Web

Conference (ISWC2002), Sardinia, Italy, June 2002
[29] I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen.

From SHIQ and RDF to OWL: The Making of a Web Ontology

Language. J. of Web Semantics, 1(1):7-26, 2003
[30] Bernardo Cuenca Grau, Ian Horrocks, Boris Motik, Bijan

Parsia, Peter Patel-Schneider, and Ulrike Sattler. 2008. OWL 2: The

next step for OWL. J. Web Semantics. 6, 4 (November 2008), 309-
322. DOI=http://dx.doi.org/10.1016/j.websem.2008.05.001

[31] Mendes, P., Muhleisen, H., and Bizer, C. Sieve: Linked data

quality assessment and fusion. In LWDM (March 2012).

[32] Chris Bizer. Quality-Driven Information Filtering in the

Context of Web-Based Information Systems. PhD thesis, Freie Uni-

versität Berlin, March 2007.
[33] Tim Berners-Lee, James Hendler and Ora Lassila (2001).

The Semantic Web. Scientific American, May 2001, p. 29-37.

[34] Atanas Kiryakov, Damyan Ognyanoff, Ruslan Velkov,
Zdravko Tashev, Ivan Peikov (2009) LDSR: Materialized Reason-

able View to the Web of Linked Data, OWL: Experiences and Di-

rections workshop (OWLED). Chantilly, Virginia, USA, 2009.
[35] Gianluca Demartini, Djellel Eddine Difallah, Philippe

Cudré-Mauroux, Large-scale linked data integration using probabil-

istic reasoning and crowdsourcing, The VLDB Journal (2013)
22:665–687, DOI 10.1007/s00778-013-0324-z

[36] Jan Wielemaker, Wouter Beek, Michiel Hildebrand, Jacco

van Ossenbruggen, (2015) ClioPatria: A SWI-Prolog infrastructure
for the Semantic Web, Semantic Web, vol. Preprint, no. Preprint, pp.

1-13, 2015, DOI: 10.3233/SW-150191

[37] Turchin, Peter; Brennan, Rob; Currie, Thomas; Feeney,
Kevin; Francois, Pieter; Hoyer, Daniel; et al.(2015). Seshat: The

Global History Databank. Cliodynamics: The Journal of Quantita-

tive History and Cultural Evolution, 6(1). irows_cliodynam-
ics_27917. Retrieved from: http://escholar-

ship.org/uc/item/9qx38718

[38] Pierre-Yves Vandenbussche, Ghislain A. Atemezing, Maria
Poveda, Bernard Vatant, Linked Open Vocabularies (LOV): a gate-

way to reusable semantic vocabularies on the Web, in press,
http://www.semantic-web-journal.net/content/linked-open-vocabu-

laries-lov-gateway-reusable-semantic-vocabularies-web-1

[39] Max Schmachtenberg, Christian Bizer, and Heiko Paulheim,
Adoption of the Linked Data Best Practices in Different Topical Do-

mains, in P. Mika et al. (Eds.) ISWC 2014, Part I, LNCS 8796, pp.

245–260, 2014.
[40] Aidan Hogan, Jürgen Umbrich, Andreas Harth, Richard Cy-

ganiak, Axel Polleres, Stefan Decker, An empirical survey of

Linked Data conformance, Web Semantics: Science, Services and
Agents on the World Wide Web 14 (2012) 14–44

[41] Robert Sanderson, Paolo Ciccarese, Herbert Van de Sompel

(Eds.), (2013) Open Annotation Data Model, W3C Community
Draft, 8 February 2013, Available at: http://www.openannota-

tion.org/spec/core/20130208/

[42] Z. Luo, An Extended Calculus of Constructions, PhD. The-
sis, University of Edinburgh, 1990 Available at:

http://www.lfcs.inf.ed.ac.uk/reports/90/ECS-LFCS-90-118/ECS-

LFCS-90-118.pdf

[43] Bourbaki, Nicolas (1972). "Univers". In Michael Artin, Al-

exandre Grothendieck, Jean-Louis Verdier, eds. Séminaire de Géo-

métrie Algébrique du Bois Marie – 1963-64 – Théorie des topos et
cohomologie étale des schémas – (SGA 4) – vol. 1 (Lecture notes

in mathematics 269) (in French). Berlin; New York: Springer-Ver-

lag. pp. 185–217.

http://arxiv.org/abs/1411.4156v2
http://www.semantic-web-journal.net/content/linked-open-vocabularies-lov-gateway-reusable-semantic-vocabularies-web-1
http://www.semantic-web-journal.net/content/linked-open-vocabularies-lov-gateway-reusable-semantic-vocabularies-web-1
http://www.openannotation.org/spec/core/20130208/
http://www.openannotation.org/spec/core/20130208/

