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Abstract. This paper describes our tools and method for an evaluation of the practical and logical implications of combining 

common linked data vocabularies into a single local logical model for the purpose of reasoning or performing quality evalua-

tions. These vocabularies need to be unified to form a combined model because they reference or reuse terms from other linked 

data vocabularies and thus the definitions of those terms must be imported. We found that strong interdependencies between 

vocabularies are common and that a significant number of logical and practical problems make this model unification incon-

sistent. In addition to identifying problems, this paper suggests a set of recommendations for linked data ontology design best 

practice. Finally we make some suggestions for improving OWL’s support for distributed authoring and ontology reuse. 
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1. Introduction 

One of the central tenets of the linked data move-

ment is the reuse of terms from existing well-known 

vocabularies [1] when developing new schemata or 

datasets. The Semantic Web infrastructure and the 

RDF, RDFS and OWL languages support this with 

their inherently distributed and modular nature. 

Linked data schemata which reuse vocabularies con-

stitute a knowledge model based on multiple, inde-

pendently devised ontologies that often exhibit vary-

ing definitional semantics [2]. In order to reason about 

linked data datasets – for example to validate that a 

dataset correctly uses a term from another vocabulary, 

a basic requirement is the ability to create a unified 

knowledge model which combines the referenced on-

tologies and vocabularies. For example, the Asset De-

scription Metadata Schema (adms) ontology contains 

the triple: 

adms:Asset   rdfs:subClassOf  dcat:Dataset 

In order to validate any dataset which uses the 

adms:Asset term we must combine the adms ontology 

and the dcat ontology in order to ensure that dcat:Da-

taset is a valid class.  

There are, however, significant theoretical and 

practical problems in creating a sound and consistent 

logical model from the vocabularies typically used in 

linked data. For example, linked data often freely 

mixes references to ontologies defined in OWL and 

vocabularies defined in RDFS. As OWL is a syntactic 

but not semantic extension of RDF, there are well-

known problems in creating any unification between 

RDF models and OWL models [3]. Beyond the theo-

retical problems, there are significant practical prob-

lems in any system where components are developed 

independently from one another and later combined 

[4]. For example the well-known ontology hijacking 

problem (defined by Hogan et al as redefining external 

classes/properties in a local ontology) is often caused 

by misuse of OWL’s equivalence statements [5].  

Although such problems are well known in theory, 

there has been little work in systematically assessing 

their practical manifestations in published linked data. 

This is largely a consequence of the lack of tools 

which can help to identify the problems, especially 

given the permissiveness of the OWL open world se-

mantics applied in standard reasoners.  

In this paper we investigate the following research 

questions: (1) to what extent can current heterogene-

ous linked data vocabularies be unified into consistent 

logical models that can detect logical or syntactic er-
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rors in the resultant schemata? (2) What is the distri-

bution of logical or syntactical schemata errors present 

in the current Web of Data?  

To address such questions we have constructed a 

reasoner as part of the Dacura Quality Service1,  which 

is designed to consume OWL and RDF linked data 

schemata and identify potential problems in their spec-

ifications. This reasoner uses a much less permissive 

interpretation than that of standard OWL to find issues 

which are likely to stem from specification errors, 

even in cases where they produce valid OWL models. 

This tool is integrated into a general purpose ontology 

analysis framework in the Dacura platform [6] which 

also identifies structural dependencies between ontol-

ogies and highlights instances of ontology hijacking.  

The contribution of this paper is an identification of 

the challenges present when combining the models of 

linked data schemata observed in the current Web of 

Data for validation, a description of the Dacura Qual-

ity Service approach to model combination, an exten-

sive quality evaluation of linked data vocabularies in 

use for logical and syntactical errors and finally a set 

of recommendations on best practice for constructing 

linked data vocabularies that will produce unified log-

ical models without errors in the distributed authoring 

environment of the web. 

The structure of the rest of this paper is as follows: 

in Section 2 we discuss the challenges for linked data 

schema validation, in Section 3 we discuss related 

work, in Section 4 there is a description of the ap-

proach and validation capabilities of the Dacura Qual-

ity Service, Section 5 describes the methodology used 

for a wide-scale validation of linked data vocabularies 

conducted with the Dacura Quality Service, then the 

results of this evaluation are presented in Section 6. In 

Section 7 we present a set of recommendations for best 

practice in linked data vocabulary design and specifi-

cation, and finally Section 8 describes our conclusions 

and discusses future work. 

2. Challenges for Linked Data Schemata 

Validation 

We define a linked data schema as the formal de-

scription of the structure of a linked data dataset, ex-

pressed in RDF, RDFS and/or OWL vocabularies or 
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ontologies, which is sufficiently complete that all in-

dividuals in the dataset are described in terms of a con-

sistent logical model of their classes, properties or 

datatypes. Thus, there are no unspecified terms used 

in the schema and it is possible to combine all the def-

initions into a single logical model that respects the 

specification semantics of the component vocabularies 

without resorting to an empty schema as a valid model. 

The schema must be coherent (i.e., have no necessarily 

unsatisfiable classes), consistent when combined with 

the data at hand, and mention each of the classes, prop-

erties and datatypes present in the data. To be useful, 

the schema should also be non-trivial, in that it should 

impose some meaningful constraints upon instance 

data that conforms to it2. 

According to ISO 9001, validation is the confirma-

tion, through objective evidence, that requirements for 

a specific intended use or application have been ful-

filled [7]. This highlights the central role of evidence, 

assessment and intended use. The Dictionary of Com-

puting [8] defines data validation as “the process of 

checking that data conforms to specification”. A 

linked data schema thus enables validation: all terms 

used must be defined, the definitions must not lead to 

inconsistency and for some use cases the definitions 

form the basis for integrity constraints on data de-

scribed by the schema.  In the Dacura approach, vali-

dation is the act of rejecting schemata that have no 

possible models along with the provision of evidence 

in the form of witness statements that identify the 

terms that prevent model formation (see Section 4 for 

details). The purpose of validation is to identify syn-

tactic or logical errors that are often unintended con-

sequences of the ontology engineering process. 

2.1. Challenge 1: Heterogeneous Use of RDF, RDFS, 

OWL and others 

OWL DL ontologies describe a formal domain 

model based on description logic. It is a difficult task 

to produce a logical model which accurately and cor-

rectly encapsulates any non-trivial domain [9]. This 

has probably influenced the relative popularity of 

RDFS terms in linked data [10]. In the wild, RDF and 

OWL are mixed very freely [2], [10]. Polleres et al 

[10] phrase this as their second challenge for reason-

ing over linked data i.e. linked data is not pure “OWL”. 

In fact some common linked data vocabularies make 



reference to other ontologies which are not compatible 

with OWL at all, but specified in raw RDF collection 

types, or worse DAML or even other esoteric lan-

guages (see Section 6 for the evidence we have col-

lected). Since these ontologies reference each other’s 

terms, full validation cannot proceed without deter-

mining whether the referenced ontologies are them-

selves consistent and complete.  

If linked data was limited to the use of RDFS or 

OWL DL, or perhaps even some extension of OWL  

DL which could encompass elements of OWL Full 

(such as predication over classes and properties) then 

consistent model checking would be possible.  How-

ever the problematic historical unification of RDF and 

OWL as OWL Full has led to an interpretative fissure 

between it and OWL DL [11]. OWL DL provides a 

clear model theoretic semantics which allows one to 

decidably determine whether a given OWL ontology, 

potentially coupled with instance data, is consistent. 

By contrast, OWL Full attempts to mix in the very 

loose syntactic rules of RDF to arrive at a compromise 

between OWL and RDF and is not decidable due to 

mixing logical and metalogical symbols. In fact the 

full unification of RDF and OWL was dropped as a 

requirement for OWL Full in OWL 2 [12].  

Two very problematic deficiencies that are encoun-

tered when interpreting RDF/RDFS ontologies as 

OWL for the purpose of model unification are the use 

of primitive RDF collection types and predication. 

The primitive RDF properties rdf:first, and rdf:next 

are seen in the wild but these are used as internal syn-

tactic symbols of OWL. This means that they cannot 

be used by properties and classes without leading to 

inconsistency.  

The second problem which arises in the wild is the 

question of predication. In OWL DL, one may not re-

fer to classes of classes, or properties whose domains 

are themselves classes or properties. This was done in 

order both to ensure decidability and to avoid well 

known “Russell-type” paradoxes such as this one de-

rived from [13]. 
ex:noResources a owl:Restriction . 
ex:noResources owl:onProperty rdf:type ; 
ex:noResources owl:onClass  
     ex:hasAResource ; 
     ex:noResources  
          owl:maxQualifiedCardinality 
            "0"^^xsd:nonNegativeInteger ; 
ex:hasAResource owl:oneOf  
     ( ex:noResources ) . 

This particular OWL description is satisfied only 

when it is not, and vice versa. The difficulty arises 

from the ability to quantify naively over the rdf:type 

property itself. This is very similar to Russell's use of 

the set of all sets. There are methods, well known to 

logicians [14], of allowing predication over classes 

and predicates by introducing some sort of stratifica-

tion to the quantification, but no syntax to do so is pre-

sent in OWL. 

In summary the heterogeneity of linked data sche-

mata means that OWL Full is insufficient for valida-

tion and the incompatibilities between RDF and OWL 

DL mean that even if a single model could be con-

structed, OWL Full would be undecidable and/or in-

complete. 

2.2. Challenge 2: Linked Data Import and 

Referencing Semantics 

In linked data schemata there are two ways that 

other ontologies/vocabularies are referenced, either by 

explicitly including them using owl:imports, or im-

plicitly by making reference to URIs of properties and 

classes in an external namespace. The meaning of the 

first is given a precise semantics under OWL DL 

(which is not unproblematic in its own right as we will 

see later) and the entire imported ontology is unioned 

with the current one during reasoning. The second is a 

widely used convention that URIs are referred to with-

out importation, for example see [15]. This leads to the 

question of how to validate over such opaque refer-

ences. This is a serious problem as one could poten-

tially be referring to an instance as a class, or a class 

as an instance, one could have references to a class 

which refers to a third ontology which is shared and 

does not allow sound subsumption, or any number of 

other such problematic mixing of meanings without 

any way of checking for correctness.  

2.3. Challenge 3: The Impact of Distributed 

Authoring and Publication 

Developing ontologies that can be easily reused in 

contexts that were not anticipated by the ontology de-

veloper is analogous to the software engineering chal-

lenge of developing libraries for reuse in situations 

where they must coexist with a wide variety of other 

libraries – many of the same principles apply.  For ex-

ample, a basic principle of software engineering is that 

libraries which use other libraries should not change 

their behavior for other libraries.  Similarly, ontologies 

which alter other ontologies are dangerous. Gruber ex-

pressed one aspect of this as being “able to define new 

terms for special uses based on the existing vocabulary, 



in a way that does not require the revision of the exist-

ing definitions” [16]. This sensitivity to ontological hi-

jacking is particularly relevant as OWL’s support for 

modularity is extremely primitive – the import state-

ment unifies models into a common model that has a 

global scope.  

To understand why ontology hijacking is a problem, 

consider the following example. Vocabulary A im-

ports vocabulary B and changes the definition of class 

X within it with the owl:equivalentClass predicate. 

Vocabulary C also imports ontology B and uses class 

X, then imports vocabulary A to use an unrelated term 

within it. Unless the author of C carefully checks the 

definition of A, they will find themselves unknow-

ingly using a modified version of class X which may 

render vocabulary C as invalid. This is closely analo-

gous to the situation where a software library modifies 

the behavior of other libraries – a situation which has 

been widely recognized as breaking good software en-

gineering practices since the 1970s: software libraries 

should not have external side effects.  

 Of course if A, B and C are subsequently unified 

into a single model, then logical inconsistencies can 

become apparent. Due to the complexity of OWL, 

these inconsistencies may only be detectable by rea-

soner and despite the prevalence of OWL terms in 

linked data vocabularies it is evident from our findings 

that many creators of these vocabularies do not per-

form reasoner-based checks. There are situations 

where ontology hijacking may be necessary, for exam-

ple, if an expressively impoverished existing ontology 

is to be used in a scenario where more powerful defi-

nitions are needed. In such situations, care should be 

taken to ensure that the hijacked ontology is not a de-

pendency of any other imported ontologies.  

Linked data’s focus on the reuse of independently 

developed and maintained ontologies introduces other 

significant practical problems. Ontologies that reuse 

other ontologies are vulnerable to these referenced on-

tologies becoming unavailable over time, or changing 

in ways that render them incompatible [10]. This high-

lights the weaknesses in OWL and especially RDFS’s 

ontology or vocabulary lifecycle support and the vari-

ety of practices observed makes automated ap-

proaches untenable for the open Web of Data where 

many core vocabularies predate even OWL 2’s limited 

versioning metadata. Given the wide diversity of con-

texts in which they have been developed – and the cost 

and difficulty in maintaining them – there is a signifi-

cant risk of ontologies degenerating over time due to 

changes in the availability or structure of their depend-

ent ontologies.  

The OWL API [17] is one approach to addressing 

this problem – it supports locality of information al-

lowing one to only treat assertions made in a specified 

or local context. However, this depends upon all con-

cerned ontologies using this mechanism correctly and 

ontologies being well structured.  

2.4. Challenge 4: Permissivity of OWL and RDFS 

OWL and RDFS are an extremely permissive lan-

guages –  reasoners will create a valid model wherever 

possible, inferring many elements automatically [18]. 

Thus a number of OWL and RDFS descriptions which 

are formally correct contain human errors not intended 

by the ontology designer, and yet will produce valid 

models. For example, the following assertions:  

ex:name rdfs:domain ex:Bear, ex:Pig; 
ex:peter a ex:Man;  
ex:peter ex:name “Peter”.  

These will create Peter as an instance of a “Man-

BearPig” due to OWL and RDFS allowing inference 

of class axioms that would produce a valid model. This 

is counter-intuitive to software engineers who assume 

a class structure that must be declared in advance. 

Thus, such specification errors are common in practice 

yet they are not detected by standard reasoners. 

3. Related work and how it differs from our work 

There is a wide variety of existing research that is 

relevant to our work but we categorize it here under 

three main headings: (1) frameworks and approaches 

for assessing linked data quality, (2) theoretical stud-

ies on the unification of RDF and OWL and (3) rea-

soning and consuming linked data. Each of these is 

discussed in turn in the subsections below. 

3.1. Frameworks and approaches for assessing 

linked data quality 

The underlying framework for current linked data 

quality assessment has been defined by Zalveri et al. 

[23]. In terms of their quality framework our current 

work addresses mainly intrinsic dimensions of the 

schema – syntactic validity, semantic accuracy (in 

terms of misuse of properties) and consistency. How-

ever we also address the contextual dimension of un-

derstandability by checking for human-readable label-

ling of properties and classes. 



Our current work builds upon the previous version 

of our Dacura data curation platform [6] by extending 

the simple rule-based data validation implemented in 

Apache Jena/Java described in our Workshop on 

Linked Data Quality 2014 publication [19] with a cus-

tom reasoner and ACID (Atomic, Consistent, Isolated, 

Durable) triple-store for validation and data integrity 

enforcement. This new component, the Dacura Qual-

ity Service, is built in SWI-Prolog on ClioPatria [20] 

and is described in the next section. An earlier version 

of the Dacura Quality Service which covered a much 

smaller set of OWL features was described in a paper 

at the 2nd Workshop on Linked Data Quality [19]. 

That paper has been extended here to also include a 

discussion of the new Dacura Schema Management 

service, our experimental validation of linked data 

schemata in the wild and new recommendations for 

best practice when constructing new linked data vo-

cabularies. 

The RDFUnit methodology for test-driven quality 

assessment by Kontokostas et al. [21] is a SPARQL-

based approach to validating linked data schemata and 

datasets. RDFUnit is very close to being a union of 

SPIN and the Stardog3 ICV approach to validation, 

which is itself the successor to Pellet ICV [22]. 

RDFUnit is described by Zaveri et al. [23] as being 

able to detect intrinsic data quality dimensions for syn-

tactic and semantic accuracy but in common with all 

SPARQL-based approaches the lack of reasoning abil-

ity means that it is difficult to detect consistency prob-

lems that may be present. For a specific dataset it is 

possible to manually generate specific SPARQL-

based tests that could detect these errors but the effort 

required is probably prohibitive and is brittle in the 

presence of schemata change over time. Similar ap-

proaches have been taken with SPARQL and SPIN 

(SPARQL Inferencing Notation) [24] and the Pellet 

Integrity Constraint Validator (ICV) [22]. 

Since 2014, the W3C’s Data Shapes Working 

Group has been working on SHACL (Shapes Con-

straint Language) to describe structural constraints 

and validate RDF instance data against those. Instance 

data validation, (except where the data is part of the 

schema for example when using owl:oneOf to define 

a class), is outside the scope of this paper. However it 

is possible that suitable SHACL constraints could be 

used to validate RDF graphs describing schemata. As 

with the basic SHACL-based approach to instance 
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data validation, it is unclear why re-stating a specifi-

cation in another formalism (SHACL) is a good ap-

proach to schema validation. See [25] for discussoin 

of the applicability of description logics to constraints. 

Luzzu [26] is a stream-oriented linked data quality 

assessment framework that focuses on data instance 

centric measurement of user-defined baskets of qual-

ity metrics. Although the metrics are expressed in a 

domain specific language that is described as extensi-

ble it would be necessary for the user to write java 

code to implement the necessary checks. This is not 

feasible for most users, even knowledge engineers:  

the user would have to write an OWL 2 reasoner to 

detect the logical errors in the unified dependency tree 

of a linked data schema which Dacura identifies. The 

framework is potentially of great practical use to users 

of linked data datasets that wish to assess their quality 

based on a custom basket of measures, but provides 

very little assistance when assessing the logical sound-

ness of the schema. One innovation of Luzzu is the 

specification of a Quality Report Ontology to provide 

machine-readable quality assessment results. Dacura 

has a similar ontology defined for reporting reasoning 

errors, the Reasoning Violations Ontology4. 

Much closer to our Dacura schema validation ser-

vice is Suárez-Figueroa et al.’s OntOlogy Pitfall Scan-

ner, OOPS! [27]. This is a web-based tool for ontology 

evaluation. It is aimed at detecting ontology anomalies 

or “worst practices” as a form of automated ontology 

evaluation.  It is based on evaluation of an input ontol-

ogy against a catalogue of common errors or pitfalls 

seen in ontologies. There is very little overlap between 

the 41 pitfalls currently detected by OOPS! and the set 

of errors detected by Dacura due to the lack of reason-

ing or model combination in OOPS!. There are some 

easy to detect “best practice” pitfalls such as “P08 

Missing annotations” which Dacura does not currently 

detect but which are simple extensions of our current 

best practice rules and will be added in future work. It 

is interesting to note that in their extensive analysis of 

current ontologies and the ontology engineering com-

munity, OOPS! decided, like us, to define class cycles 

as a potential source of errors in linked data schemata, 

despite being legal in many cases in OWL 2. The im-

plementation of OOPS! as a restful web service is very 

attractive and useful for integration into both a basic 

public webpage for checking and as a service called 

by other ontology engineering tools. 



3.2. Theoretical work on unification of RDF & OWL 

The challenges for reasoning caused by the unifica-

tion of RDF and OWL has been extensively discussed 

in the literature, for example see Patel-Schneider and 

Fensel [28] where, even before OWL 1 was standard-

ized, these incompatibilities were summarized as “de-

fining the model theory of OWL as an extension of the 

model theory of RDF and representing OWL con-

structs syntactically in RDF leads to paradoxical situ-

ations, i.e., ill-defined model theories for OWL”. The 

authors’ five approaches to layering OWL over RDF, 

including identifying the presence of Russell-type par-

adox if OWL is directly layered over RDFS as a same-

syntax solution. Nonetheless this was the approach 

adopted in OWL-Full. The ramifications of these de-

cisions live on today in our challenge 1 for validating 

linked data schemata. 

Later, when the OWL 1 standard was agreed, the 

principal authors of the OWL Semantics documented 

the “difficult trade-offs” that they made during the de-

sign of OWL 1 [29]. Horrocks et al. identify four broad 

classes of problems: syntactic, semantic, expressive 

power and computational problems. While the latter 

two categories seem less relevant for our current work 

it was in fact the computational overheads introduced 

by allowing the use of classes as instances that led to 

the exclusion of this feature from OWL-DL and as will 

be seen in our experimental work, under the title of 

impredicativity, this causes many observed issues in 

linked data. In Section 6.2 of that paper the solution 

proposed for dealing with malformed OWL syntax ex-

pressed in RDF leads to the creation of additional 

anonymous classes despite them being “almost cer-

tainly not what was intended by the user”. This is an 

example of our challenge 4 (permissivity of OWL) 

that leads to standard reasoners being unable to detect 

these issues in linked data schemata without human 

inspection of the resultant reasoned ontology. In con-

trast our approach highlights these potential errors and 

presents them to the user or validator for verification. 

Finally in the discussion on future extensions despite 

the admission that the import of ontologies by other is 

likely to be the norm in the Semantic Web (as we now 

see in linked data) the OWL import facility is de-

scribed as “very trivial” and this underpins our chal-

lenges 2 and 3 for linked data schemata validation. 

Both the closed world and unique name assumptions 

are identified as being desirable in some situations de-

spite being outside the scope of the general OWL 

model. Our approach to schemata validation and the 

experimental evidence we have collected demonstrate 

the practical applicability of these assumptions for val-

idation, even on the open web. 

When the OWL standard was revised as OWL 2 in 

2008, the process was again documented by some of 

the principal authors [30]. Grau et al. identified addi-

tional issues with OWL 1 ontology specifications, in-

cluding an additional complication in the import se-

mantics whereby two (or more) ontologies written in 

the same OWL species can interact in unpredictable 

and unintuitive ways when one ontology imports the 

other, leading to a new ontology that is contained in a 

different species. OWL 2 introduces the idea of decla-

ration consistency which means all types must be de-

clared, although not syntactically necessary, this 

forms the basis for additional validation checks to 

catch mistyping of entity terms. However this ap-

proach is not applicable to linked data that is not writ-

ten in OWL 2. The validation checks performed by our 

approach can detect such trivial typing errors in gen-

eral linked data schemata e.g. misspelt names of clas-

ses. OWL 2 also improves support for imports by 

tightening the specification of ontology name URIs as 

both name and published location of the. However, as 

our experimental results show (section 6) not all com-

monly imported ontologies in the current Web of Data 

are at their stated locations. Ontology versioning man-

agement support is also added, but this is still primi-

tive and the species or profile impacts of imports is 

still unintuitive and unpredictable (challenge 2). 

Most recently, as the success of the open linked data 

movement has become apparent, with billions of tri-

ples published, the question of data quality and hence 

validation has come to the fore [31], [32]. Patel-

Schneider [25] discusses the issues and approaches to 

applying description logic to validation, attacking the 

claim that closed world or unique name interpretations 

have no place in the description logic world (and 

hence within OWL/RDFS) and can be applied to 

linked data for validation. Although Patel-Schneider 

focuses on RDFS and a SPARQL-based approach to 

validation of linked data, our approach adopts some of 

the same assumptions about closed worlds and unique 

names in our custom reasoner. 

3.3. Reasoning and consuming linked data  

The original Semantic Web vision included the goal 

of applying reasoning at a web scale [33]. Linked data 

provides the basis of the current Web of Data and so 

reasoning over it has naturally been tackled by several 

researchers, see for example [34], [35] and [10]. Given 

the divergence of linked data from the Semantic Web 



ideal, a wide variety of non-standard reasoning ap-

proaches have been applied from probabilistic tech-

niques [35] to rule-based approaches [34]. Given our 

interest in RDFS and OWL-based schemata validation 

we focus here on approaches that support the RDFS 

and OWL standards. The challenges for applying rea-

soning to linked data as laid out by Polleres et al. [10] 

may be summarized as data scale, data heterogeneity 

(mixing OWL DL, OWL Full and RDFS), data incon-

sistency, data dynamics and extending inference be-

yond RDFS and OWL. Data scale is less of an issue 

for our work since we focus on schemata and thus pri-

marily TBox assertions, although some linked data 

schemata (e.g OpenCyc – see section 6) include in-

stance data which render them very large. Nonetheless 

the focus of open web reasoning work on operating on 

billions of triples largely addresses challenges which 

are out of scope for our validator. Tackling heteroge-

neity is also a focus of our work (challenge 1) but 

whereas we aim to identify inconsistent or incomplete 

schemata in order to fix them and improve their qual-

ity, the common approach to reasoning over linked 

data is to try and do the best possible with the triples 

available. While appropriate for many use cases, it of-

ten leads to strategies that weaken consistency or 

soundness constraints to make the problem tractable, 

by silently discarding problematic triples or reducing 

the materialisation of inferred triples compared to 

OWL’s Direct Semantics [10]. Although there are 

points of similarity, in general these approaches would 

produce weaker validation results than our approach 

since they are not sound and less complete. 

4. Linked Data Schemata Validation in the 

Dacura Quality Service 

 
Figure 1: Screenshot of the Dacura Schema Manager 

To meet the challenges of linked data schemata val-

idation, we have developed the Dacura Quality Ser-

vice (DQS) and the Dacura Schema Manager. Both are 

integrated into our Dacura platform for data curation 

described elsewhere [6]. The Dacura Schema Manager 

(fig. 1) acts as the user interface for loading new linked 

data schemata into the system. It recursively loads all 

the implicitly or explicitly imported vocabularies or 

ontologies from web, creates the master schema based 

on the union of all referenced terms, gathers statistics 

and performs some basic quality checks. The valida-

tion view of the Dacura Schema Manager allows a 

user to select specific reasoner-based validation 

checks, call the DQS through its API to perform the 

checks and renders the results in human-readable form. 

The DQS as an ACID  triplestore for the storage of 

OWL ontologies and instance data. We treat con-

sistency as internal consistency of the OWL ontology 

as well as consistency of instance data with respect to 

this ontology. In this way we have produced a triple-

store in which stored information always respects the 

ontology as it is impossible to perform updates which 

are not consistent. If the schema changes, the instance 

data must also change in a fashion conformant to the 

new schema. The DQS is built in SWI Prolog in the 

ClioPatria Semantic Web infrastructure [36]. The 

source code is available online under a GPL2 license. 

To do this, we have built a custom reasoner as part 

of the DQS which treats all ontologies which are used 

as a relatively large but custom fragment of OWL DL 

(see table 1 for the OWL 2 features implemented so 

far) subject to additional constraints that increase the 

ability of the reasoner to deal with the unification of 

OWL and RDF/RDFS in linked data schemata (chal-

lenge 1, challenge 2), detect likely validation errors 

(challenge 3, challenge 4) and improve efficiency. 

This fragment of OWL DL has also been shaped by 

the modelling requirements of ontology development 

for the Seshat:Global History Databank [37] which is 

our initial use case, as well as the OWL 2 vocabularies 

we found most often used in linked data schemata on 

the Web of Data. The range of support for OWL 2 con-

structs is substantially increased from our earlier paper 

[19] which focused on RDFS. It is anticipated that we 

will continue to extend the support for further OWL 2 

features in future work. 

The overall strategy of the DQS reasoner is not to 

prove that there is a possible model for any given on-

tology but instead to reject ontologies that cannot have 

a possible model or which are incompletely specified 

without inferring new classes (as these are often 

caused by user errors) under a closed world assump-

tion. Due to the ontology import actions of the Dacura 

Schema Manager, the closed world in this case corre-

sponds to the whole of the Web of Data, at the level of 

schema specification. We do not claim that the rea-

soner is sound or complete under OWL 2 DL, just that 

it is capable of detecting many errors in linked data 



schemata, including errors undetectable by standard 

reasoning. Our approach is supported by building a 

subsumption prover in SWI Prolog. Due to the com-

plexity of performing subsumption computations with 

equivalences, we have opted in DQS to ignore non 

definitional equivalence, hence we do support 

owl:equivalentClass in one direction but not as a sym-

metric property. This is because OWL does not distin-

guish between the definitional and judgmental use of 

this assertion. In practice this allows users to define a 

class as a formula of other classes but does not allow 

them to provide an assertion of two classes being 

equivalent. In the wild we see the first case used ex-

tensively and the second only rarely and when it is it 

is often problematic (see Table 5 Ontology Hijacking) 

or recommended to be avoided by ontology engineer-

ing best practice (this case is listed as pitfall number 

P02 in the OOPS! catalogue of common pitfalls 5). 

Hence we term this as partial support by Dacura for 

owl:equivalentClass in Table 1. 

Dacura does not currently support validation of 

owl:disjointWith assertions. Such assertions are im-

portant and relatively commonly used in practice. 

However, they are typically used within schema defi-

nitions to constrain instance data (e.g. by asserting that 

no entity can be a member of two specific classes at 

the same time) and are rarely relevant to schema vali-

dation, which is the focus of the work presented in this 

paper. It is our intention to implement this feature in 

our ongoing development effort to apply Dacura to in-

stance data validation. It should be noted that Dacura 

does not currently detect (rare) schema level violations 

of owl:disjointWith assertions but that this will not af-

fect the correctness of the errors that it does identify.  

It should also be noted that, in both cases, our de-

pendency analysis tool correctly recognizes that both 

predicates introduce dependencies between ontologies 

– however the analysis of the validity of the specified 

relationships is limited to one-directional equivalence. 

We also require that there are no cycles in the declared 

subsumption of classes or predicates. This again does 

not give us the full power of OWL 2 DL, however it 

was very rare that we found any actual intended use of 

cycles in practice.

Table 1 OWL 2 vocabulary features supported by DQS Reasoner 

 

                                                           
5 http://oops.linkeddata.es/catalogue.jsp 

Language Elements Supported Language Elements (cont.) Supported Axioms and Assertions (cont.) Supported

Classes, Datatype and Restriction owl:hasValue Y Property Expression Axioms 

owl:Class Y owl:SelfRestriction N rdfs:subPropertyOf Y

owl:intersectionOf Y Special classes owl:inverseOf Y

owl:unionOf Y owl:Thing Y owl:equivalentProperty N

owl:complementOf Y owl:Nothing Y owl:property DisjointWith Y

owl:oneOf Y Properties Y rdfs:domain Y

rdfs:Datatype Y owl:DatatypeProperty Y rdfs:range Y

owl:datatypeComplementOf N owl:ObjectProperty Y owl:propertyChain Y

owl:oneOf Y Special properties owl:FunctionalProperty Y

owl:onDatatype Y owl:TopDataProperty Y owl:InverseFunctionalProperty N

owl:withRestrictions Y owl:BottomDataProperty Y owl:ReflexiveProperty P

owl:Restriction Y owl:TopObjectProperty Y owl:IrreflexiveProperty N

owl:onProperty Y owl:BottomObjectProperty Y owl:SymmetricProperty P

owl:onClass Y Individuals owl:AsymmetricProperty P

owl:onDataRange Y owl:NamedIndividual N owl:TransitiveProperty Y

owl:onProperties Y Axioms and Assertions owl:hasKey Y

owl:cardinality Y Class Expression Axioms Assertions 

owl:maxCardinality Y rdfs:subClassOf Y owl:NegativePropertyAssertion N

owl:minCardinality Y owl:equivalentClass P owl:sourceIndividual N

owl:minQualifiedCardinality Y owl:disjointWith N owl:assertionProperty N

owl:minQualifiedCardinality Y owl:disjointUnionOf Y owl:targetValue N

owl:qualifiedCardinality Y Individual Axioms owl:targetIndividual N

owl:allValuesFrom Y owl:differentFrom N owl:AllDifferent N

owl:someValuesFrom Y owl:sameAs N owl:AllDisjointClasses N

owl:AllDisjointProperties N

Y= Yes, P = Partial, N = No owl:members N



Table 2 – OWL/RDF/RDFS terms that create structural dependencies between ontologies 

DQS provides an interface to a triple store via 

HTTP using a simple JSON format for updates (both 

inserts and deletes) of triples, and of both instance and 

ontology data. The service responds to updates either 

with a success message stating that the insertion is 

consistent, or a message describing the precise reason 

for failure of consistency according to the reasoner. 

The reasoner ensures that it builds up a witness of fail-

ure which demonstrates the counter-example to con-

sistency satisfaction which can then be used by the cli-

ent to come up with a suitable strategy for dealing with 

the failure. The results of our evaluation of linked data 

schemata (see Sections 5 and 6) were compiled by 

loading ontologies in the Dacura Schema Manager, 

and then testing them against the Dacura Quality Ser-

vice, and then looking at the error reports provided. 

Next we examine the specific solutions implemented 

in the Dacura Schema Manager and Dacura Quality 

Service to address the challenges of linked data sche-

mata validation. 

4.1. Overcoming Challenge 1: Heterogeneity 

As discussed in the background section, the free 

mixing of RDF, RDFS and OWL triples gives rise to 

different interpretations. Our approach is to deliber-

ately misinterpret as OWL the RDF/RDFS classes and 

properties that are normally outside the scope of 

OWL-DL when there is no immediate conflict in do-

ing so, e.g. a rdfs:class is treated as equivalent to an 

owl:class. This doesn't present an insurmountable dif-

ficulty for reasoning. Similarly rdf:Property is treated 

at an equivalent level to owl:DatatypeProperty and 

owl:ObjectProperty and no overlap is allowed be-

tween them. All domains and ranges that are asserted 

are checked to ensure they support subsumption. Mis-

use of language features and low level RDF syntax 

with reserved meaning in OWL such as rdf:List is de-

tected as an error. 

This approach is applicable in situations where the 

data is going to be published only for the combined 

ontology, or used only internally to a system which in-

terprets the instance data as OWL 2. This is in line 

with common practice for linked data but presents po-

tential problems for interoperability of the produced 

linked data since OWL 2 reasoners might deem it in-

consistent due to the fact that we still allow a mix 

RDFS and OWL and hence are not a proper subset of 

OWL 2 DL. However, as our experimental results will 

show, this is necessary for dealing with the commonly 

used vocabularies on the Web of Data today.  

4.2. Overcoming Challenge 2: Imports 

Since there are a range of ways that linked data 

schemata reference or import each other, it was neces-

sary to define a mechanism to construct the composite 

ontology defined by a linked data schemata to enable 

validation under a closed world assumption. For this 

reason, we have treated all dependencies to external 

namespaces as implicit owl:imports. 

Dependencies between ontologies were defined as 

either property dependence or structural dependence:  

Property dependence: if an ontology A uses a prop-

erty from another ontology B, then A is considered to 

have a dependence on B.  

Structural dependence: if an ontology A contains a 

statement which defines its classes or properties in 

terms of entities in ontology B, then A is considered 

to have a structural dependence on B.  Table 2 shows 

the specific OWL terms which we consider create 

structural links between ontologies. Other references 

to external URIs in a schema were ignored. 

Having defined what we consider to amount to the 

class of dependencies between ontologies, the Dacura 

Schema Manager tool implements these rules to ana-

lyse any given ontology and recursively create its de-

pendency tree, fetch the constituent ontologies or vo-

cabularies and create a union between them for check-

ing by the DQS.   

4.3. Overcoming Challenge 3: Distributed Authoring 

The Dacura Schema Manager detects all dependen-

cies between ontologies as described in the last section. 

Namespace Term 

rdf Type 

rdfs range, domain, subPropertyOf, subClassOf, member 

owl inverseOf, unionOf, complementOf, datatypeComplementOf, intersectionOf, oneOf, data-

Range, disjointWith, imports, allValuesFrom, someValuesFrom, equivalentClass, equiva-

lentProperty, disjointUnionOf, propertyDisjointWith, members, disjointWith, propertyDis-

jointWith, onProperty, onClass, propertyChainAxiom 



This forms the basis for detecting references to miss-

ing or unavailable ontologies. It can also detect 

namespace violations such as ontology hijacking 

when they occur in input ontologies. The logical con-

sequences of building unified models from many on-

tologies are detected by the DQS, especially when lo-

cal work-arounds have been made that render the uni-

fied model inconsistent. 

4.4. Overcoming Challenge 4: OWL Permissivity 

By applying the closed world assumption to the full 

graph imported from the Web of Data that specifies a 

linked data schema it is possible to detect orphan clas-

ses. These are rejected as incompletely specified (sim-

ilar to the use of declarations in OWL 2 but without 

the need to augment existing ontologies with new dec-

larations). In addition, the detection of subsumption 

failures and cycles in class or property declarations al-

lows us to detect potential misuse of OWL features. 

5. Evaluation Methodology 

In order to evaluate the interoperability of the vari-

ous ontologies and vocabularies which are commonly 

used by linked data documents, it is first necessary to 

establish which ontologies or vocabularies are the 

most common, and by what measure(s) in the Web of 

Data today. In order to do this we rely on the extensive 

literature that catalogs the development and makeup 

of the Web of Data and the live reports from the 

Linked Open Vocabularies (LOV) site6 [38]. At the 

time of writing LOV was hosting 542 vocabularies. 

Table 3: Top 20 Vocabularies as Reported by LOV, March 2016 

by number of uses – (see Table 6 for vocabulary shorthand codes) 

Vocabulary Used in schemas Used in datasets 

dc 439 327 

dc11 361 178 

foaf 325 249 

vann 201 19 

skos 200 152 

cc 87 21 

vs 81 11 

schema 48 12 

prov 38 39 

gr 38 20 

geo 37 49 

event 36 9 

                                                           
6 http://lov.okfn.org/dataset/lov/ 

time 30 47 

bibo 27 43 

void 25 77 

org 23 7 

adms 23 3 

dctype 22 13 

sioc 21 18 

qb 19 9 

frbr 19 12 

doap 18 23 

voaf 15 2 

gn 15 14 

ssn 14 0 

Despite the undoubted utility of LOV it is clear that 

it services a specific community of users and so we 

looked for a wider base of evidence. The ranking in 

terms of vocabulary reuse is also arguable, compared 

to the proliferation of a vocabulary’s terms in data. 

Schmachtenberg et al. in 2014 [39] provided a sur-

vey of the results of an extensive crawl of the Web of 

Data (over 8 million resources were visited) based on 

the vocabularies registered with datahub.io. This study, 

as a follow-up to a 2011 baseline, showed an increased 

reliance by linked data publishers on a small set of 

core vocabularies compared to 2011. In table 5 of that 

paper they provide the list of the most often encoun-

tered vocabularies in terms of the 18 vocabularies that 

are used by more than 5% of all datasets. Their list is 

shown in our Table 4. 

Table 4: Most Popular Vocabularies in Linked Data, April 2014 by 
percentage of ontologies which use them (Schmachtenberg et al.) 

Vocab % Vocab % 

rdf 98.22 void 13.51 

rdfs 72.58 bio 12.32 

foaf 69.13 qb 11.24 

dc 56.01 rss 9.76 

owl 36.49 odc 8.48 

geo 25.05 w3con 7.6 

sioc 17.65 doap 6.41 

admin 15.48 bibo 6.11 

skos 14.11 dcat 5.82 

In addition, they report that, of the nearly 1000 da-

tasets visited, only 23% used local vocabularies that 

are not used in any other dataset, while nearly all used 

vocabularies common to multiple datsets. This shows 

the consolidation of the Web of Data towards fewer 

vocabularies as in 2011 64.11% of datasets were found 

to use local vocabularies not used elsewhere. 



Finally in 2011 Hogan et al. surveyed the state of 

the Web of Data with a crawl of approximately 4 mil-

lion RDF/XML documents and 1 billion quads [40]. 

Their Table 2, provided here in abbreviated form as 

Table 5, shows the top 25 most popular vocabularies, 

based on the number of instances of each namespace 

within their analysis dataset. 

Table 5: Most Frequently Occurring Vocabularies in Linked Data 

2011 by instance count (Hogan et al.) 

Vocab Instances Vocab Instances 

foaf 615,110,022 dc11 6,400,202 

rdfs 219,205,911 b2rns 5,839,771 

rdf 213,652,227 sioc 5,411,725 

b2r 43,182,736 vote 4,057,450 

lldpubmed 27,944,794 gn 3,985,276 

lldegene 22,228,436 skipinions 3,466,560 

skos 19,870,999 dbo 3,299,442 

fb 17,500,405 uniprot 2,964,084 

owl 13,140,895 eatoc 2,630,198 

opiumfield 11,594,699 lldlifeskim 2,603,123 

mo 11,322,417 ptime 2,519,543 

dc 9,238,140 dbpedia 2,371,396 

estoc 9,175,574   

In summary, the most common vocabularies that 

appear in all three surveys are: foaf, dc, sioc and skos; 

in addition dc, bibo, qb, doap, geo, void and gn, rdf, 

rdfs and owl appear twice. Hence we must have cov-

erage of all of these core vocabularies to evaluate the 

foundations of linked data. From these studies of vo-

cabulary usage, we identified the top 50 most com-

monly used vocabularies and ontologies in use.  

5.1. Identifying Dependencies 

In order to validate an ontology, we need to com-

bine all of its dependencies. We applied the Dacura 

Schema Manager dependencies tool to all of the top 

50 ontologies identified above. The output of this tool 

(fig 1) was used to identify the set of ontologies and 

vocabularies that each ontology depends on directly.  

Next, we included these ontologies, also identifying 

the set of ontologies needed by these included ontolo-

gies, continuing until all of the dependencies were in-

cluded or were deemed to be impossible to include. 

This produced a breadth-first dependency tree for each 

ontology. This increased the number of ontologies in 

our analysis set to 91 (Table 6).  We then analyzed all 

these ontologies with the DQS tool to identify to what 

extent they exhibited problems in terms of creating a 

unified knowledge model that incorporated them.  It 

should be noted that the ontologies that were included 

through this dependency analysis are almost all due to 

the inclusion of the two most common vocabularies 

(dc and foaf) and thus most of the dependency tree 

shown here is common to virtually all linked data vo-

cabularies. 

Figure 2 gives an example of the dependency tree 

for one ontology: Open Annotation [41]. This depend-

ency tree covers 22 of the top 25 vocabularies rated as 

most popular by LOV in terms of vocabulary reuse 

(incoming links) as seen in Table 3. This ontology was 

selected as an example for both practical and theoreti-

cal reasons. Practically, we wished to implement a 

system for the Seshat: Global Hostory Databank in 

which users could annotate content at a variety of 

scopes and we wanted to be able to validate instance 

data which was expressed according to the ontology. 

Theoretically, it represented a good example of a 

linked data schema in the wild, as is shown by the 

analysis above. It has been constructed by a W3C 

community group according to the linked data princi-

ples, using well known third party vocabularies and 

ontologies and it is in use in practice. It is ranked by 

LOV as the 32rd most popular linked data vocabulary 

overall (from 542 vocabularies) and its dependency 

tree, as discovered by Dacura, includes 25 of the 31 

vocabularies rated as more popular than it by LOV. 

Our dependency analysis terminated whenever we 

came to an ontology that we could not retrieve, either 

because we discovered that the ontology no longer ex-

isted (e.g. WordNet), or because we proved unable to 

locate a machine-readable version of the ontology on 

the internet, after approximately 8 hours of effort in 

searching.  In one case our dependency tree brought us 

to an ontology that was simply too big for our tools to 

handle – OpenCyc (rdf/xml file: 246 MB) due to in-

sufficient memory on our test computer. There was 

only two structural links to this ontology from the rest, 

so the omission can be considered to be relatively mi-

nor. In two cases dependent ontologies were written in 

DAML, a predecessor of OWL and these ontologies 

were not automatically analyzed as our tools were not 

capable of interpreting them. Manual analysis of both 

revealed that they had no further dependencies.  

5.2. Schema Validation 

Once the dependency tree of ontologies for each on-

tology had been established, the composite schema so 

defined (consisting of the union of all of the imported 

ontologies) was analyzed by the DQS reasoner and the 

OOPS! tool for validation errors for each ontology in 

table 6. See the next section for the results. 



 
Table 6.  Ontologies analyzed as part of this work.  

shorthand URL Description 

adms http://www.w3.org/ns/adms# Asset Description Metadata Schema (ADMS) 

ao http://purl.org/ontology/ao/core# The Association Ontology 

atom http://bblfish.net/work/atom-owl/2006-06-

06/# 
Atom syndication format 

basic http://def.see-

grid.csiro.au/isotc211/iso19103/2005/basic# 
OWL representation of ISO 19103 (Basic types 

package) 

bbc http://www.bbc.co.uk/ontologies/bbc/ BBC Ontology 

bbccor http://www.bbc.co.uk/ontologies/corecon-

cepts 
BBC Core Concepts 

bbcpro http://www.bbc.co.uk/ontologies/provenance BBC Provenance Ontology 

bibo http://purl.org/ontology/bibo/ The Bibliographic Ontology 

bio http://purl.org/vocab/bio/0.1/ BIO: A vocabulary for biographical information 

cc http://creativecommons.org/ns# Creative Commons 

cms http://www.bbc.co.uk/ontologies/cms/ CMS Ontology 

contact http://www.w3.org/2000/10/swap/pim/con-

tact# 
Contact: Utility concepts for everyday life 

cpa http://www.ontologydesignpatterns.org/sche-

mas/cpannotationschema.owl# 
Content Pattern Annotations 

crm http://purl.org/NET/cidoc-crm/core# CIDOC Conceptual Reference Model 

cwork http://www.bbc.co.uk/ontologies/creative-

work 
Creative Work Ontology 

dbox http://dublincore.org/documents/dcmi-box/ (Empty) DCMI-Box encoding scheme 

dbpedia http://dbpedia.org/ontology/ The DBpedia Ontology 

dc  http://purl.org/dc/terms/ DCMI Metadata Terms – other 

dc11  http://purl.org/dc/elements/1.1/ Dublin Core Metadata Element Set, Version 1.1 

dcam http://purl.org/dc/dcam/ Metadata terms related to the DCMI Abstract 

Model 

dcat http://www.w3.org/ns/dcat# The data catalog vocabulary 

dctype http://purl.org/dc/dcmitype/ DCMI Type Vocabulary 

doap http://usefulinc.com/ns/doap# Description of a Project (DOAP) vocabulary 

doc http://www.w3.org/2000/10/swap/pim/doc# Document vocabulary 

dtest http://www.w3.org/2006/03/test-description# Test Description Vocabulary 

dtype http://www.linkedmodel.org/schema/dtype# Specification of simple data types 

dul http://www.loa-cnr.it/ontologies/DUL.owl# DOLCE+DnS Ultralite 

event http://purl.org/NET/c4dm/event.owl# The Event ontology 

foaf http://xmlns.com/foaf/0.1/ Friend of a Friend (FOAF) vocabulary 

frbr http://purl.org/vocab/frbr/core# Expression of Core FRBR Concepts in RDF 

geo http://www.w3.org/2003/01/geo/wgs84_pos# WGS84 Geo Positioning 

geometry http://data.ordnancesurvey.co.uk/ontology/ge-

ometry/ 
A ontology to describe abstract geometries. 

gn http://www.geonames.org/ontology# The Geonames ontology 

gr http://purl.org/goodrelations/v1 Good Relations Ontology 



grddl http://www.w3.org/2003/g/data-view# GRDDL Gleaning Resource Descriptions 

gsp http://www.opengis.net/ont/geosparql OGC GeoSPARQL 

hcard http://purl.org/uF/hCard/terms/ HCard Vocabulary 

http http://www.w3.org/2006/http# A namespace for describing HTTP messages 

iana http://www.iana.org/assignments/relation/ Link Relations 

ical http://www.w3.org/2002/12/cal/ical# RDF Calendar 

icalspec http://www.w3.org/2002/12/cal/icalSpec# ICAL specifications 

infreal http://www.ontologydesignpat-

terns.org/cp/owl/informationrealization.owl# 
Information Realization ontology 

irw 

 

http://www.ontologydesignpat-

terns.org/ont/web/irw.owl# 
The Identity of Resources on the Web ontology 

keys http://purl.org/NET/c4dm/keys.owl# Musical keys 

label http://purl.org/net/vocab/2004/03/label# Term definitions for singular and plural label prop-

erties 

leo http://linkedevents.org/ontology/ Linking Open Descriptions of Events 

log http://www.w3.org/2000/10/swap/log# Logic Ontology 

mo http://purl.org/ontology/mo/ The Music Ontology 

neogeo http://geovocab.org/spatial# A vocabulary for describing topological relations 

between features 

nrl http://www.semanticdesktop.org/ontolo-

gies/2007/08/15/nrl# 
NEPOMUK Representational Language 

oa http://www.w3.org/ns/oa# Open Annotation Data Model 

obo http://purl.obolibrary.org/obo/obi.owl Ontology for Biomedical Investigations 

ont http://www.w3.org/2006/gen/ont# An Ontology for Relating Generic and Specific In-

formation Resources 

opmv http://purl.org/net/opmv/ns# The Core OPMV Vocabulary 

org http://www.w3.org/ns/org# Core Organization Ontology 

ov http://open.vocab.org/terms/ Open Vocabulary 

prv http://purl.og/net/provenance/ns# Provenance Vocabulary Core Ontology 

prov http://www.w3.org/ns/prov# W3C PROVenance Interchange Ontology  

qb http://purl.org/linked-data/cube# The data cube vocabulary 

qudt http://qudt.org/schema/qudt Quantities, Units, Dimensions and Types 

rdaa http://rdaregistry.info/Elements/a/ RDA Agent properties 

rdac http://rdaregistry.info/Elements/c/ RDA Classes 

rdae http://rdaregistry.info/Elements/e/ RDA Expression Properties 

rdai http://rdaregistry.info/Elements/i/ RDA Item Properties 

rdam http://rdaregistry.info/Elements/m/ RDA Manifestation Properties 

rdau http://rdaregistry.info/Elements/u/ RDA Unconstrained Properties 

rdaw http://rdaregistry.info/Elements/w/ RDA Work Properties 

rdfa http://www.w3.org/ns/rdfa# RDFA specification 

rdfg http://www.w3.org/2004/03/trix/rdfg-1/ RDF Graph 

rel http://purl.org/vocab/relationship/ A vocabulary for describing relationships between 

people 



rev http://purl.org/stuff/rev# RDF Review Vocabulary 

schema http://schema.org/ Schema.org (converted to OWL by TopQuadrant) 

scovo http://purl.org/NET/scovo# The Statistical Core Vocabulary (SCOVO) 

sim http://purl.org/ontology/similarity/ The Similarity Ontology 

sioc http://rdfs.org/sioc/ns# Semantically Interlinked Online Communities  

sioctypes http://rdfs.org/sioc/types# SIOC Types Ontology 

skos http://www.w3.org/2004/02/skos/core# SKOS Vocabulary 

ssn http://www.w3.org/2005/Incuba-

tor/ssn/ssnx/ssn 
Semantic Sensor Network Ontology 

time http://www.w3.org/2006/time# An OWL Ontology of Time (OWL-Time) 

timezone http://www.w3.org/2006/timezone# A time zone ontology 

ubench http://swat.cse.lehigh.edu/onto/univ-

bench.owl# 
An university ontology for benchmark tests 

vaem http://www.linkedmodel.org/schema/vaem# Vocabulary for Attaching Essential Metadata 

vann http://purl.org/vocab/vann/ Vocabulary for annotating vocabulary descriptions 

vcard http://www.w3.org/2006/vcard/ns# Vcard vocabulary 

voaf http://purl.org/vocommons/voaf# Vocabulary of a Friend 

void http://rdfs.org/ns/void# Vocabulary of Interlinked Datasets (VoID) 

vs http://www.w3.org/2003/06/sw-vocab-sta-

tus/ns# 
SemWeb Vocab Status ontology 

wdrs http://www.w3.org/2007/05/powder-s# POWDER-S Vocabulary 

xhv http://www.w3.org/1999/xhtml/vocab# XHTML specification 

 

 
Figure 2 Open Annotation dependency tree of linked data vocabularies and ontologies 



Table 7: References to missing or unavailable dependencies detected 

6. Validation Results 

Our analysis of the 91 ontologies revealed that 30 

ontologies (33%) contained ontology hijacking viola-

tions (making assertions about entities defined in other 

ontologies with global scope). 11 ontologies contained 

dependencies on a total of 14 missing ontologies 

(12%). 3 ontologies contained basic errors that were 

categorized as typos (3.3%). 15 ontologies (16.5%) 

contained statements that are illegal in OWL DL due 

to them being impredicative – predicating over classes 

or properties which is illegal in first order logic en-

tirely - and basic misuses of language constructs (e.g 

subclassing owl:differentFrom and expecting its se-

mantics to be retained). One ontology (1%) contained 

both property and class cycles – and in both cases 

manual analysis revealed that they were, as anticipated, 

highly likely to be the result of specification errors ra-

ther than obtuse ways of defining a single class or 

property. The detailed validation results are presented 

in the tables below. 

6.1. References to Missing Ontologies 

As is to be expected in the evolving Web of Data a 

number of the referenced ontologies were no longer 

available (at least they are not currently available at 

the advertised URL and we were unable to find them 

elsewhere) - Table 7. The linked data community 

should be aware of the implication of this for linked 

data quality – if schema specifications are going to be 

rendered incomplete due to changes in the availability 

of imported ontologies or terms then it places a limit 

on the degree of validation that can be performed – 

terms from such vocabularies become simple untyped 

variable names with zero semantics associated with 

them.  

6.2. Ontology hijacking 

A widespread pattern observed in the ontologies un-

der analysis was the presence of assertions designed to 

support interoperability of ontologies. For example, a 

very common pattern was to specify that certain prop-

erties from imported ontologies were defined to be of 

type owl:AnnotationProperty – to allow them to be 

processed by standard OWL tools which do not know 

how to deal with properties defined as rdf:Property. 

Ontology Missing (or unavailable) Dependencies 

atom property: http://eulersharp.sourceforge.net/2004/04test/rogier#productProperty (1 use) 

atom:scheme rdfs:range http://sw.nokia.com/WebArch-1/InformationResource rdfs:subPropertyOf 

http://sw.nokia.com/WebArch-1/representation 

atom:src rdfs:range http://sw.nokia.com/WebArch-1/InformationResource  

_:atom31 rdf:type file:///Users/hjs/Programming/sommer/www/atom/2006-06-06/AtomOwl.n3#update  

_:atom37 rdf:type file:///Users/hjs/Programming/sommer/www/atom/2006-06-06/AtomOwl.n3#rel  

doap doap:Project rdfs:subClassOf  http://xmlns.com/wordnet/1.6/Project   

frbr frbr:Work rdfs:subClassOf http://xmlns.com/wordnet/1.6/Work~2 

frbr:Event rdfs:subClassOf http://www.isi.edu/~pan/damltime/time-entry.owl#Event 

gn gn:Feature owl:equivalentClass http://www.mindswap.org/2003/owl/geo/geoFeatures20040307.owl#Ge-

ographicFeature 

grddl Properties: http://www.rddl.org/purposes#normative-reference (3 uses) & http://webns.net/mvcb/genera-

torAgent (1 use) 

neogeo http://geovocab.org/spatial owl:imports http://geovocab.org/mappings/spatial 

qudt VOAG ontology only retrievable as invalid turtle file  

qudt: http://voag.linkedmodel.org/schema/voag#withAttributionTo qudt:NASA-ARC-Attribution 

qudt: http://voag.linkedmodel.org/schema/voag#hasLicenseType voag:CC-SHAREALIKE_3PT0-US   

rda* 

 

All RDA ontologies use terms from missing ontologies http://metadataregistry.org/uri/profile/regap/ and 

http://metadataregistry.org/uri/profile/rdakit/ 

timezone 

  

timezone owl:imports http://www.daml.org/2001/09/countries/iso-3166-ont 

timezone owl:imports http://www.daml.ri.cmu.edu/ont/USRegionState.daml 

dbox Ontology is empty – contains no classes 

cwork http://www.bbc.co.uk/ontologies/tagging/ ontology does not exist 

cwork:tag rdfs:range http://www.bbc.co.uk/ontologies/tagging/TagConcept 

cwork:about rdfs:range http://www.bbc.co.uk/ontologies/tagging/TagConcept 

cwork:mentions rdfs:range  http://www.bbc.co.uk/ontologies/tagging/TagConcept 



The basic problem with this pattern is that this 

amounts to non-coordinated interoperability on a li-

brary scope – each ontology attempts to handle in-

teroperability for its own scope, but when these ontol-

ogies are combined together, each piecemeal attempt 

at interoperability is combined into a common model 

and the union of these piecemeal attempts at library 

level interoperability without any facilities for modu-

larity leads to inconsistency.  

The second major category of ontology hijacking 

observed in the data are illegal assertions that serve to 

silently kill error reporting in tools. For example the 

assertion:  
rdfs:Class a owl:Class 

is used in two separate ontologies – it declares that 

an RDFS class is an instance of an OWL class – an 

interpretation that is illegal under OWL DL or Full but 

it manages to successfully silence error checking in a 

number of tools.  These type of assertions are particu-

larly unwise because they make the knowledge model 

inconsistent and break the robustness principle by de-

liberately producing malformed specifications rather 

than compensating for real-world variation and noise 

at input.  

Finally, in a certain number of cases, ontologies 

knowingly and explicitly change other ontologies for 

convenience in utilizing external class definitions.  

This type of usage is most pointedly described in the 

bibo ontology:  
dc:Agent a owl:Class ;  

owl:equivalentClass foaf:Agent ; 

An editorial note in the ontology states:  

“BIBO assert that a dcterms:Agent is an equivalent 

class to foaf:Agent. This means that all the individuals 

belonging to the foaf:Agent class also belongs to the 

dcterms:Agent class. This way, dcterms:contributor 

can be used on foaf:Person, foaf:Organization, 

foaf:Agent and foaf:Group. Even if this link is not 

done in neither the FOAF nor the DCTERMS ontolo-

gies this is a wide spread fact that is asserted by BIBO.” 

 In such cases it would be more appropriate to use 

local sub-classing to achieve the equivalent effect 

without over-writing the definitions in external 

namespaces.

Table 8: Ontology hijacking violations detected 

Ontology Count Third party ontologies altered (number of entities altered) 

atom 5 iana 

bibo 50 rdf (3), rdfs (1), owl (2), dc (19), skos (6), vs (1), event (7), foaf (11) 

crm 10 vann (2), dc (3), cc (1), label (1), skos (3) 

event 8 dc11 (3), foaf (3), geo (1), vs (1) 

foaf 10 owl (1), rdfs (1), dc11 (3), vs (1), geo (1), skos (1), wot (2 – only use)  

frbr 32 rdf (1), foaf (3), dc (5), dc11 (7), vann (3), skos (1), cc (11), geo (1) 

geometry 3 rdfs (2), dc11 (1) 

gn 3 foaf (1), skos (2) 

gr 19 owl (1), schema (10), dc11 (5), dc (1), foaf (2) 

grddl 1 owl 

http 2 rdfs (1), xsd (1) 

icalspec 2 xsd 

infreal 10 owl (1), rdfs (3), cpa (6) 

irw 3 owl (1), infreal (2) 

leo 4 crm (3), event (1) 

lode 15 leo (11), crm (3), event (1) 

mo 1 vs  

opmv 6 owl (1), time (5) 

prov 6 owl (2), rdfs (4) 

prv 33 dc (7), prov(10), infreal (1), foaf (7), wot (4), xhv (2), irw (2) 

qudt 8 skos (2), dc11 (6) 

rel 1 foaf 

rev 9 rdfs (2), dc11 (3), foaf (2), vs (2) 

sim 5 owl (1), dc (2), vs (1), foaf (1) 

sioc 10 dc (5), foaf (5) 



sioctypes 2 skos (1), sioc (1) 

ssn 39 rdfs (4), dc11 (6), dc (2), cc (1), dul (26) 

time 1 timezone 

vaem 12 owl (1), dc (11) 

Table 9: Typos detected 

Ontology Typos (underlined) 

contact contact:assistant rdfs:ramge foaf:Agent   

contact:participant rdfs:ramge foaf:Agent 

dcat dcat:landingPage rdfs:subPropertyOf foaf:Page 

nrl nrl:subGraphOf rdfs:subPropertyOf http://www.w3.org/2004/03/trix/rdfg-1#subGraphOf 

nrl:Graph    rdfs:subClassOf http://www.w3.org/2004/03/trix/rdfg-1#Graph 

nrl:equivalentGraph  rdfs:subPropertyOf   http://www.w3.org/2004/03/trix/rdfg-1#equivalentGraph 

6.3. Typos 

Three ontology were found to contain basic errors 

which were interpreted as typos – the predicate 

rdfs:ramge appears twice in contact (rather than 

rdfs:range). In dcat, the property name foaf:Page is 

used, whereas foaf:page (without capitalization) is the 

correct property name, while in nrl, 3 incorrect URLs 

are used to refer to classes and properties in rdfg (the 

correct URLs use ‘/’ rather than ‘#’ as an element pre-

fix). The presence of such errors in long established 

and public ontologies highlights the lack of tool sup-

port for ontology validation – they are simple and ob-

vious errors but they will not be identified by standard 

OWL reasoners.  

6.4. Impredicativity / misuse of language constructs 

Since OWL DL is a first order theory, it is not pos-

sible to quantify over classes and predicates. Yet no 

such restriction exists in RDF. This leads to a number 

of problems when using OWL ontologies which refer-

ence RDF ontologies which make use of higher-order 

and impredicative features.  

In the very widely used dc ontology, the rdf:type 

relation is given a range of rdfs:Class. This is imme-

diately problematic as rdfs:Class is the class of all 

classes and such impredicative statements cannot be 

made in OWL DL but are dangerous regardless, due 

to the very real threat of paradox. Similarly the 

rdf:subClassOf relation is used to derive a subclass of 

the class of classes. This again is higher order reason-

ing, without any guarantee of predicativity.  

In skos we see the use rdf:List as a range, but 

rdf:List is an internal syntactic element of OWL. Free 

mixing of rdf:first and rdf:next would leave reasoners 

unable to distinguish what is intended as a property 

and what is intended to be syntax of the language itself.  

While this problem has been described thoroughly 

[11], it also has not been stamped out in the wild, and 

skos is a very widely used ontology purporting to be 

OWL. 

In gn, log, void, qb, wdrs, atom and voaf we see the 

very common use of higher order logic, with subclass-

ing of class, properties, and assignation of ranges over 

properties and classes. In most of these cases the state-

ments were probably unnecessary. However higher or-

der reasoning may sometimes be useful and we will 

discuss later how such things can be achieved without 

stepping into undecidability. 

In atom there is an even more unusual metalogical 

statement, making a statement about statements them-

selves! Without some sort of stratification such logic 

is dubious at best. Atom additionally makes use of in-

ference facilities that are not themselves part of OWL. 

Utilizing ontologies of this form requires a tool chain 

which is capable of making these inferences - some-

thing that  is not widely available. 

 

 

Table 10: Instances of impredicativity/misuse of reserved language constructs detected 

Vocab Triple(s) Error Description 

dc dc:type rdfs:range rdfs:Class ; Predicating over class 

dc  dc:AgentClass rdfs:subClassOf rdfs:Class Overriding basic language construct 



skos skos:memberList rdfs:range rdf:List ; rdf:List is an internal structural element of OWL – it 

can’t be used directly 

grddl grddl:TransformationProperty rdfs:subClassOf 

owl:FunctionalProperty ; 

Higher order use of the rdfs:subClassOf relation  

wdrs wdrs:Document rdfs:subClassOf owl:Ontology . Higher order use of the rdfs:subClassOf relation  

rel rel:friendOf rdfs:subPropertyOf owl:differentFrom (32 

times) 

Higher order use of the rdfs:subClassOf relation  

atom atom:RelationType rdfs:subClassOf owl:ObjectProp-

erty . 

Higher order use of the rdfs:subClassOf relation  

atom atom:Link rdfs:subClassOf  rdf:Statement  Creating subclasses of a higher order feature 

atom atom:rel rdfs:subPropertyOf rdf:predicate Creating subclasses of a higher order feature 

atom atom:subject rdfs:subPropertyOf rdf:subject Creating subclasses of a higher order feature 

atom atom:to rdfs:subPropertyOf rdf:object Creating subclasses of a higher order feature 

bio bio:differentFrom rdfs:subPropertyOf owl:differ-

entFrom (15 times) 

Higher order use of the rdfs:subClassOf relation 

gn gn:featureClass rdfs:subPropertyOf dc:type ; Using impredicative property from dc 

log log:definitiveDocument rdfs:domain rdf:Property Predicating over class of properties 

log log:definitiveService rdfs:domain rdf:Property ; Predicating over class of properties 

void void:linkPredicate rdfs:range rdf:Property Predicating over class of properties 

void void:property rdfs:range rdf:Property Predicating over class of properties 

voaf voaf:occurrences a owl:objectProperty,                             

rdfs:range xsd:integer 

Mismatch between objectProperty and literal range 

type 

qb qb:parentChildProperty rdfs:range rdf:Property Predicating over class of properties 

qb qb:ComponentProperty rdfs:subClassOf rdf:Property Higher order use of the rdfs:subClassOf relation  

bbcpro bbcpro:transitions rdfs:range rdf:Property Predicating over class of properties 

nrl nrl:cardinality rdfs:domain rdf:Property 

nrl:maxCardinality rdfs:domain rdf:Property 

nrl:minCardinality rdfs:domain rdf:Property 

nrl:inverseProperty rdfs:domain rdf:Property 

nrl:inverseProperty rdfs:range rdf:Property 

Predicating over class of properties 

nrl nrl:NonDefiningProperty rdfs:subClassOf rdfs:Property Higher order use of the rdfs:subClassOf relation  

qudt qudt:QuantityKindCategory rdfs:subClassOf owl:Class Higher order use of the rdfs:subClassOf relation  

6.5. Property / Class Cycles 

Table 11 presents the class or property cycles de-

tected in the crm ontology. The first example, asserts 

that a legal body is equivalent to a group, which seems 

highly questionable, though it would require the crm 

authors to confirm. The second looks more likely, but 

still questionable, where they establishing an equiva-

lence between “bearing a feature” and “being com-

posed of”. 

We have also noticed that many statements of 

equivalence were between classes in different ontolo-

gies, establishing a link between an element in one 

place, and that in another. However, these equiva-

lences were often coupled with additional qualifica-

tions. Such behavior completely negates the capacity 

to use linked data in an interoperable fashion, as the 

original publisher of the ontologies data may very well 

have instance data which is deemed invalid when read, 

by the second publisher, and vice versa. This “ontol-

ogy hijacking” [5] should be highly discouraged.  

6.6. Comparison to OOPS!  

The 50 most commonly used vocabularies were 

also analysed with OOPS! (OntOlogy Pitfall Scanner) 

[27] for comparison (although four failed to load).  Ta-

ble 12 contains the results. OOPS! analyzes ontologies 

in isolation without loading any dependencies, thus 

the dependent ontologies analyzed by Dacura were not 

included. An anlysis of the results reveals very little 

intersection between the classes of violations / pitfalls 

identified between the two systems because OOPS! is 

primarily a syntax scanner and it does not attempt to 

incorporate dependent ontologies and combine them 

into a unified model, nor does it apply any significant 

reasoning.  However, OOPS! does check for several 

additional types of best-practice violations that are not 

considered to be violations from Dacura’s point of 



view. For example, the P08 missing annotations code 

produced by OOPS! reports cases where classes or 

properties are missing labels – while this is a useful 

check, there is nothing illegal about such missing ele-

ments and they thus do not cause Dacura to reject the 

ontology. Dacura and OOPS! do overlap in some ar-

eas: for example both aim to identify absent domain / 

range assertions for properties and untyped classes and 

properties (OOPS! codes P11, P34 and P35 respec-

tively). However, in Dacura, they are considered to be 

strictly informational messages as in many cases, such 

missing assertions are consistent with best practice, 

e.g. when the domain or range is specified in a super-

property. In such cases, OOPS! violations will in fact 

be incorrect because it does not attempt to load super-

properties and respecifying the domain or range in a 

sub-property duplicates information which compli-

cates schema change management. By virtue of com-

bining models, Dacura can accurately identify when 

such situations are truly problematic – which is impos-

sible to achieve when analysing an ontology in isola-

tion. The one true exception is OOPS! pitfall code 40, 

which checks for ontology hijacks – all of which 

should be detectable without combining models. How-

ever, in this case, OOPS! detects only a small subset 

of the violations detected by Dacura (37 violations in 

12 ontologies detected by OOPS! versus 310 viola-

tions in 30 ontologies detected by Dacura).  

Table 11: Property/Class cycles detected in crm ontology 

Triple(s) Problem 

crm:E40_Legal_Body rdfs:subClassOf crm:E74_Group  

crm:E74_Group rdfs:subClassOf ns1:E40_Legal_body 

Cycle in class hierarchy 

crm:P46_is_composed_of rdfs:subPropertyOf crm:P56_bears_feature; 

crm:P56_bears_feature rdfs:subPropertyOf crm:P46_is_composed_of 

Cycle in property hierarchy 

 

Table 12: Results returned by OOPS! Pitfall Scanner – numbers indicate pitfall count per OOPS! code 

 OOPS! Pitfall Codes – for code meanings see http://oops.linkeddata.es/catalogue.jsp 

Ontology 2 4 7 8 10 11 12 13 19 20 21 22 23 24 25 26 30 31 32 34 35 36 38 39 40 41 

adms      9  11            6 3     1 

basic      4  2         2   1       

bbccor                      1     

bbcpro                      1     

bibo  1  70 1 40  48    1  1   2    1     1 

bio                         1  

cc                       1 1  1 

cpa                      1    1 

dbpedia                       1 1   

dcat    1 1   10  2          6 4     1 

dc11                           

dc                    20 16  1 1  1 

dctype                       1 1  1 

doap  2  2  7 2 27    1        9 1      

dul    16  3    1    20 9 9 4     1    1 

event  1  63  17  14    1  2   1     1    1 

foaf  2  2  7 2 27    1        4 1     1 

frbr  9  69  11  6              1   8  



geo                    1 1  1 1  1 

gn    21 1 13 1 15            7 3    2 1 

gr   3 11  6  43    1  2 2 2 2 2         

gsp    69  13  53           13 2      1 

leo    4 1   7    1        10 12    2  

mo                         1  

nrl                    9 2  1 1  1 

oa  1  1 1 14  14            1 2     1 

obo Failed to load 

opmv    1    13            2      1 

org    3  4  14  6          6 4    1  

prov    23  2  42 2                 1 

prv  13  35  27                     

qb  1  5  6  17            3 1 1     

qudt  1 10 296  107 5 32    1  2 1 1    1     8  

rdac                    4   1   1 

rdaw Failed to load 

rdfg                    1   1   1 

schema                    10 9  1 1  1 

scovo  3   1                    5 1 

sim Failed to load 

sioc  3  12  41 2 18    1        2      1 

skos    16  13  5                  1 

ssn 1   23  44  27  1    17 4 4 6 1       1  

time    53  7  10      2          1  1 

vann Failed to load 

vcard 2 4  30  75  50   1 1     1 1        1 

voaf  1  1 1 5  14            3 2    1  

void  1   1               1     5 1 

vs                         2 1 

wdrs      1              3    1  1 

7. Recommendations for Correcting Problems in 

Linked Data Schemata 

Given our experiences in constructing the DQS and 

the experimental analysis performed of real world 

linked data schemata we offer the following recom-

mendations for improving best practice in linked data 

vocabulary design. 

7.1. Metareasoning with rdf:List 

Ontologies in OWL cannot use the underlying syn-

tactic elements of rdf:List within the logic of the on-

tology, as is done in skos. The appropriate way to deal 



with this problem is to have a drop in replacement for 

RDF collections written in OWL such that there is no 

syntactic/logical mixing. There have been some list 

ontologies constructed such as the Ordered List Ontol-

ogy 7 , CO-ODE List Ontology 8 , however what is 

needed is a drop in replacement for RDF collections in 

general. Bags are trivial to construct in OWL, and both 

ordered lists and indexed sequences have also been 

demonstrated, so creating such an ontology is more a 

collation task than an ontology engineering one. Mi-

grating current OWL ontologies to use such a drop in 

replacement would be a relatively minor task and 

would allow them to be compliant OWL 2 DL. 

7.2. Impredication and Higher order features 

The impredicative and higher order features of RDF 

are used by 15 of the top 50 ontologies (including their 

dependencies) and hence it can be considered both a 

common problem and a desirable feature. Supporting 

such behavior does not require abandoning soundness 

or allowing paradoxes. Type theory, going back to 

Russell, developed techniques to avoid impredicative 

paradoxes through the use of stratification, which 

could be used to extend OWL 2 DL. The complexity 

or indeed decidability of such an extension remains to 

be explored. 

A lot of the uses of predication over types (eg in dc) 

are useful and have known solutions, e.g. [42], [43] so 

it is strange to reject it as outside OWL 2 DL. This is 

the reason naïve set theory is inconsistent. Punning 

provides some useful ways of providing information 

about classes and properties. However, this does not 

enable the same logical power which is available 

through stratified predication where reasoning can be 

extended to the metalogical level. 

7.3. Equivalence and Hijacking 

From the ontologies surveyed, it appears that equiv-

alence within a given ontology is rarely needed. If a 

class is the same as another class, it seems unlikely to 

be the case that the ontology designer does not know 

it. If two classes are indeed the same, it is best to com-

bine the definitions of the classes into a single class, 

which improves referential transparency and simpli-

fies ontology management. If two names are needed, 

simply assigning more than one rdfs:label is recom-

mended as a better solution. 

                                                           
7 https://smiy.wordpress.com/2010/07/15/the-ordered-list-ontology/ 
8 http://owl.cs.manchester.ac.uk/wp-content/uploads/2015/07/list.owl_.txt 

However, there is the further use of identification of 

one class with that of another ontology. Such identifi-

cation of classes with other ontologies leads to the 

question of why one would simply not use the class 

name from the alternative ontology unless one wants 

to actually hijack the class for extension? And if it is 

the later, then it seems unfair that the contract be en-

tirely one sided, as any published linked data which 

comes from the ontology will no longer have the same 

meaning as that given in the original ontology.  

One potential answer to this problem is that ontolo-

gies which intend to coordinate, and actually mean to 

be equivalent, utilise subclassing in either direction. 

So for instance, instead of saying:  
ex:Tome owl:EquivalentClass library:Book 

One could say, in the ex and library ontologies re-

spectively:  
ex:Tome rdfs:subClassOf library:Book 
library:Book rdfs:subClassOf ex:Tome 

In this scenario, collaboration between ontology de-

signers would be required, such that hijacking was less 

of a concern. 

Where it is necessary to make ontologies backward 

compatible with existing tools, a custom ontology 

should be constructed and all interoperability asser-

tions should be placed within it and then imported. Be-

yond such cases, Ontology hijacking should be 

avoided in all cases – just like when using external li-

braries in software engineering, importing ontologies 

should not have side effects on other ontologies. We 

propose a general design principle that importing on-

tologies should have no side effects.  

8. Conclusions and Future Work 

We have shown that is effective to pursue a rea-

soner-based approach to detect logical or syntactic er-

rors in linked data schemata based on unified logical 

models. We have made a first study of the prevalence 

of errors in schema errors in the Web of Data by ana-

lyzing 91 common vocabulary or ontology specifica-

tions. Our validation detected a total of 6 typos, 14 

missing or unavailable ontologies, 73 language level 

errors, 310 instances of ontology namespace viola-

tions and 2 class cycles which we believe to be errors. 

Although our analysis is not complete – there are un-

doubtedly further errors which we have not detected –

all of these errors represent genuine problems with the 



analyzed ontologies and there are no other tools avail-

able which can identify more than a small fraction of 

them.  

Our analysis began with the practical concern of us-

ing Open Annotation (OA) as infrastructure for our 

own ontology development. After producing a soft-

ware tool-chain which included ontology management 

and reasoning, we were able to proceed to testing of 

our ontology over OA and all of the ontologies which 

it made reference to and from there to extend our sur-

vey to all of the most commonly used 50 ontologies 

and all of their dependencies. The results of our survey 

give valuable information about the state of ontology 

development, the relative lack of interoperability in-

cluding the free mixing of ontological frameworks 

which are logically incompatible, and the fact that 

tool-chain development is at a very low level since 

many problems which we found would otherwise have 

been spotted already. 

We make a number of recommendations regarding 

how to deal with the realities of ontologies as they cur-

rently exist, and how to use them in conjunction with 

reasoning tool-chains.  

We also note the fairly widespread use of higher or-

der features used for meta-modelling, and suggest a 

way to include such features in a sound fashion free of 

paradoxes. We hope to explore the consequences of 

adding stratification to OWL 2 DL and the decidabil-

ity and complexity consequences thereof in the future. 

The utilization of rdf:List in OWL ontologies really 

has to be eliminated as it leads to incoherence and the 

incapacity to reason. In the future, we hope to develop 

a drop in replacement ontology for rdf collections de-

fined in OWL 2 DL exclusively.  

We will be extending our reasoner to include a 

larger fragment of OWL 2 DL. Our system has already 

proved useful in finding errors and contains the major-

ity of OWL descriptions which we found in the ontol-

ogies explored. A larger fragment should improve the 

usefulness as it extends the reasoning facility to a 

greater class of ontologies. Further, we will be testing 

our reasoner against ontologies which have extant in-

stance data, and this is likely to reveal more problems 

than the ones detailed here which are exclusively at the 

schema level.  
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