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Abstract. This paper presents a retrospective analysis of students’ use
of self-regulated learning strategies while using an educational technol-
ogy that connects physical and digital learning spaces. A classroom study
was carried out in a Data Structures & Algorithms course offered by the
School of Computer Science. Students’ reviewing behaviors were logged
and the associated learning impacts were analyzed by monitoring their
progress throughout the course. The study confirmed that students who
had an improvement in their performance spent more time and effort
reviewing formal assessments, particularly their mistakes. These students
also demonstrated consistency in their reviewing behavior throughout
the semester. In contrast, students who fell behind in class ineffectively
reviewed their graded assessments by focusing mostly on what they
already knew instead of their knowledge misconceptions.
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1 Introduction

Successful learners monitor their own memory, comprehension, and performance
to evaluate their progress. They use this information to adapt their current
strategies and behavior [1]. Aside from motivation, metacognition, and resource
management strategy, being able to monitor one’s progress and understanding
is critical to succeed in problem solving in programming learning [2–5]. Unfortu-
nately, novices and experts employ different such self-regulated learning (SRL)
strategies [6].

This raises several research questions that are worth investigating as research
on SRL in programming learning is still limited. However, due to the complex
nature of programming problem solving, research in this discipline involves using
qualitative methods, such as questionnaires, think-aloud protocols, and inter-
views. These are used to code student’s behaviors according to corresponding
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SRL motivation and strategies. We have begun to see more empirical and qualita-
tive mixed method studies reporting SRL during programming problem solving.
For instance, students solve code rearrangement Parson problems using sub-goal
labelling [7]; the iterative programming process framework supports SRL activi-
ties [3]; adequate prior knowledge affects the searching and evaluating processes
in programming problem solving [8].

To address such limitations, researchers have started developing technologies
that focus on integrating and modelling physical learning activities while making
use of advanced learning analytics. Clickers [9] and multi-touch tabletops [10]
are some of the examples. In our case, we developed a system that captures and
connects multimodal learning analytics from both the physical and the digital
worlds in the programming learning domain. It has the capability of digitizing
paper-based artifacts, such as paper assessments, and providing an interface
for grading and delivery of feedback to classes with large number of students.
It logs how students interact with it (timing, frequency, sequence, attention,
and changes of patterns when performing the reflecting actions towards their
learning). Most importantly, the system supports students in managing their
learning by integrating assessment content, feedback, and learning outcome in
classes with blended instruction. Our goal is to systematically track students’
learning activities across the physical and the digital spaces. In this paper, we
focused on the monitoring and reflecting SRL behaviors.
The rest of the paper aims to answer the following research questions:

RQ1: What are the behavioral differences between high-achieving and low-
achieving students in terms of monitoring and reviewing? Do high-achieving
students review more thoroughly or frequently?
RQ2: What is the magnitude of difference in reviewing behavior of students
when grouped according to their performance trajectories? Do improving
students review differently from others?
RQ3: Which reviewing behaviors are more effective towards learning?

The paper is organized as follow. First, we discuss the role of feedback and
behavioral analytics in programming learning. Next, we provide an overview of
our research platform and the data gathering approach. Finally, we present the
evaluation results along with its educational implications.

2 Literature Review

2.1 Feedback in Programming Learning

Feedback has been considered one of the most influential factors that affect
educational achievement [11]. In Science, Technology, Engineering and Mathe-
matics (STEM) subjects, such as programming, physics, or math, automated
grading of assessment is one of the most popular methods in providing feedback.
Such method is particularly pertinent for large classes as it guarantees a short
turnaround time. Systems like WEB-CAT [12] or ASSYST [13] apply pattern-
matching techniques that verify students’ answers by running a set of unit test
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cases and comparing them with the correct answers. Unfortunately, in the pro-
gramming learning domain, these platforms typically check the concrete aspects
of the solutions. The logic and reasoning of students are often neglected. As a
result, instructors had to manually examine the program quality. Several alter-
native approaches have been proposed to address the issue of providing semantic
and constructive feedback as well as the issue of scaling of the generation of feed-
back. For example: crowdsourcing code solutions which will then be suggested
to students [14]; using parameterized exercises to create a sizable collection of
questions to facilitate automatic programming evaluation [15]; PeerGrader [8]
and PeerWise [16] utilizing student cohorts to provide peer feedback.

Regardless of the feedback generation methods, all of the above mentioned
systems and approaches focused on evaluating digital artifacts, less is discussed
in assessing paper-based programming problems. There has been a few relevant
early innovations addressing the problem by digitizing exams (e.g. GradeScope
[17]). Digitization essentially provides several advantages (e.g. some default feed-
back can be kept on the digital pages with the predefined rubrics; students’ iden-
tity can be kept anonymous which eliminates any of the grader’s biases, etc.)
As our system has the ability to capture how students attend to their graded
assessments, we explored these reviewing behaviors to understand their impacts
on learning.

2.2 Behavioral Analytics in Programming Learning

Modelling student’s programming learning is not a new topic. Student mod-
els reside in intelligent tutors or any adaptive educational systems. Student’s
learning is typically estimated based on their behavior logs, such as the inter-
actions with tutors resulting in the updates on the knowledge components. In
modelling programming language learning, several parameters are used to esti-
mate students’ coding knowledge. For instance, learning can be gauged based on
the sequence of programming problem solving success [18], programming assign-
ments progression [19], dialogic strategies [20], programming information seeking
strategies [21], assignment submission compilation behavior [22], troubleshooting
& testing behaviors [23], code snapshot process state [24], and generic Error Quo-
tient measures [24]. Additionally, Educational Data Mining (EDM) techniques
have helped educational researchers to analyze snapshots of learning processes,
such as a combination of automated and semi-automated real-time coding to
identify meaningful meta-cognitive planning processes in an online virtual lab
environment [25]; supervised and unsupervised classification on log files and eye-
tracking data to find meaningful events in an exploratory learning environment
[26]; the sequences of reviewing and reflecting behaviors Hidden Markov Models
(HMM) to predict students’ learning performances [27]. In learning analytics
literature, Blikstein [28] proposed an automatic analytic tool to access student’s
learning in an open-ended environment. This considers a range of behavioral
analytics to predict learning, such as the amount of code changing, compilation
behavior, and code editing.
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3 Research Methodology

3.1 Research Platform and Data Collection

WebPGA1 was developed to serve as a platform that connects the physical and
the digital learning spaces in programming learning. This system enables the dig-
itization, grading, and distribution of paper-based assessments. Further details
regarding the rationale and the design of the platform can be found in [27].
All events (which mostly are students’ clickstream) are logged along with their
timestamp. Examples of which include: logging in and out, clicking on a question
to review, bookmarking a question, navigating through an exam, and taking of
notes.

The data were collected from a classroom study conducted in a Data
Structure and Algorithms course offered during the Fall 2016 semester. This
class had a total of 3 exams and 13 quizzes. Among the 13 quizzes, only 6 were
graded while the remaining 7 were recorded only for attendance (full credit was
given regardless of the answers). There were 283 students enrolled in the class
but only 246 (86.93%) were included in the study as those who dropped the
course in the middle of the semester, did not take the three exams, or did not
use the reviewing platform at all had to be removed. In this study, we analyzed
review actions performed by students. A review action is an event where a stu-
dent examines his or her graded answer. It includes reading the question, the
answer, the assigned score and the feedback provided by the grader (see Fig. 1).

Fig. 1. Screenshot of what the student sees when reviewing his or her graded answer

1 https://cidsewpga.fulton.asu.edu/.

https://cidsewpga.fulton.asu.edu/
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3.2 Data Processing

In order to understand how students’ monitoring and reviewing behavior affect
their learning, students were labeled and grouped in two different ways. First,
they were labeled according to their overall academic performance. Second, they
were labeled according to their performance trajectory in a given period.

Overall Academic Performance. The average of the three exams was used to
determine the overall academic performance of a student. Students were divided
into two groups: high-achieving and low-achieving. Figure 2 shows the grades’
distribution. Jenks natural breaks classification method [29] was used to identify
the optimal break-point (77.60%) to divide the two groups.

Fig. 2. Distribution of academic performance of students

Performance Trajectory. The exams served as milestones to identify the
change in the performance of the students in a given period. There were two time
periods in this analysis, namely: Exam1-Exam2, between the first and the second
exam, and Exam2-Exam3, between the second and the third. The difference in
the scores between the second and the first exam in a given period is computed.
Students are labeled improving if the difference is positive; dropping if negative;
retaining if zero.

Reviewing Behavior. A total of N = 17,518 review actions were extracted
from the logs for this analysis. The score of the student in a particular question
determines the label of a review action. The review action is labeled as r correct
if the student got the question right. Otherwise, it is labeled as r incorrect.
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3.3 Descriptive Data

An exam is considered reviewed if at least one of its questions is reviewed.
Table 1 shows an overview of how students reviewed their exams. This includes
the average performance of the class, the number of students who reviewed
them, and the average time it took students before their first review attempt
(hereinafter referred to as “reviewing delay”). A downward trend can be seen
for both the number of students reviewing and their reviewing delay.

Table 1. Overview of students’ reviewing behavior

Exam Avg. score No. of students who
reviewed the exam

Avg. time before
first review attempt

Standard deviation

Exam1 81.2% 230 (93.50%) 4.5 days 14 days

Exam2 78.7% 224 (91.06%) 2 days 6 days

Exam3 80.6% 196 (79.67%) 0.8 days 2.4 days

In terms of exam reviewing behaviors, most students reviewed past exams
before taking the next one. During the Exam1-Exam2 time period, there were
217 students (88.21%) who reviewed Exam 1 prior to taking Exam 2. During
the Exam2-Exam3, it was also 217 students (88.21%) who reviewed Exam 1 or
Exam 2 (or both) prior to taking Exam 3. However, these may not necessarily
be the same set of students.

4 Evaluation Results

4.1 Association Between Reviewing Behavior and Learning
Performance

To identify the impact of reviewing exams on the learning performance of a
student, we compared the effort exerted by high-achieving students and low-
achieving students. To answer this question, the contents of the first two exams
were manually inspected. Based on the number of questions in the two exams, a
student only needs to perform at least 16 review actions to cover all the items.
Following the Pigeonhole principle, performing more than 16 review actions
could indicate that a question is reviewed more than once. Furthermore, per-
forming less than 16 review actions could indicate that not all questions were
reviewed. Review actions for the third exam were omitted since the impacts of
these actions cannot be captured and measured anymore (the class has ended).

Table 2 summarizes the average number of review actions performed by the
two groups. Using t-test, we found that high-achieving students significantly
(t = −2.16, p = 0.03) did more reviews than low-achieving students. It is inter-
esting to note that, on average, high-achieving students performed 20.3 review
actions. It could indicate that they reviewed their exams after it was made
available and possibly prior to taking the next exam. This reflects their effort
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in studying the material. On the other hand, low-achieving students, on aver-
age, performed 15.4 review actions. This shows how they barely reviewed their
exams. This is clearly a bad habit since students are not able to take advantage
of learning from the feedback they were provided, which could help them correct
any of their misconceptions.

Table 2. Average review actions prior to Exam 3

Group No. of students Avg. review actions on exams Standard deviation

High-achieving 158 20.3 19.1

Low-achieving 88 15.4 12.2

Doing more review does not necessarily translate to an effective one. Students
may be doing a lot of review but not on the items where they really need to
focus—their mistakes. Unfortunately, with the current grouping of students, it
would not be surprising to find that majority of the review actions done by
high-achieving students would be r correct (answers they got correctly). This is
because it is dependent on their academic performance. Therefore, a different
grouping was used to answer this question.

4.2 Effectiveness of Reviewing Behavior

To address the issue mentioned above, students were grouped according to their
performance trajectory in a given period. Table 3 summarizes the average num-
ber of review actions done by the improving and dropping students. The retaining
group was omitted since it only has few students. During the Exam1-Exam2
period, there was no significant difference on the number of review actions
performed by the two groups. Interestingly, during the Exam2-Exam3 period,
dropping students performed significantly more review actions. This possibly
happened because during the Exam1-Exam2 period, students only had one exam
to review, while during the Exam2-Exam3 they had two. This led us to investi-
gate why there was a drop in the grades of those who reviewed more.

Table 3. Review count of improving and dropping students

Group Exam1-Exam2 Exam2-Exam3

n Mean SD n Mean SD

Improving 104 9.57 8.88 115 10.23 11.52

Dropping 109 8.93 8.45 100 11.89 12.54
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Table 4. Reviewing behavior of improving and dropping students

Review action Group Exam1-Exam2 Exam2-Exam3

Mean SD Mean SD

R Correct Improving 0.16 0.18 0.22 0.25

Dropping 0.22 0.24 0.36 0.28

R Incorrect Improving 0.84 0.18 0.78 0.25

Dropping 0.78 0.24 0.64 0.28

Improving Group Reviewed Strategically and Effectively. An improving
student may not necessarily be a high-achieving student. It is interesting to inves-
tigate what led to the improvement of their exam scores. Table 4 summarizes
the reviewing behavior of both the improving and dropping students. Although
not statistically significant, improving students during the Exam1-Exam2 period
reviewed their mistakes more than the dropping students (t = −1.82, p = 0.07).
During the Exam2-Exam3 period, a similar trend can be seen, but now statisti-
cally significant (t = −3.69, p < 0.05). This shows that this strategy, where you
focus on your mistakes to get them right, helps in improving your grade.

Dropping Group Reviewed Ineffectively. During the Exam1-Exam2
period, dropping students reviewed their correct answers more than the improv-
ing students, though not statistically significant (t = −1.82, p = 0.07). However,
during the Exam2-Exam3 period, the same trend was seen and is statistically
significant (t = −3.69, p < 0.05). Although dropping students devoted more time
in reviewing their mistakes, the effort they spent was not enough. There was no
improvement in their grades. It is also possible that they may have overlooked
their mistakes. Since this effect was found in both time periods, this demon-
strates the persistent ineffectiveness in reviewing of the dropping students. This
is concerning especially for students who are struggling or experiencing difficul-
ties in class. Intervention strategies should be developed and applied.

4.3 Reviewing Behavior Efficiency

The reviewing delay of students was modeled as a function of their review effi-
ciency and their effort in learning the material. The average reviewing delay
for each student (the average of all the delays for each assessment the student
reviewed) was computed. Afterwards, it was correlated to their academic per-
formance. It was found that there is a significant negative linear correlation
that exists (Pearson’s), r = −0.24, p < 0.05. This means that better performing
students tend to attend and review their graded answers sooner.

The trend on how students attended to their assessments throughout the
semester was visualized (see Fig. 3). Students were grouped according to their
academic performance. The groups’ average reviewing delay was computed. The
first three quizzes were omitted since the logging feature was only introduced
after the third quiz. It can be seen that high-achieving students generally spent
less time before they begin to review their assessments (notice that the green
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Fig. 3. The reviewing delay curve of students when grouped according to their overall
academic performance (Color figure online)

line is generally the lowest line throughout the semester). All students were more
attentive in reviewing the three exams (shown by the dips) than the quizzes. This
is not surprising. This suggests that the higher the credits that are at stake, the
more attentive students become. One possible reason why students took longer
time before they reviewed between the fourth to the sixth quizzes is that they did
not review it right after it was made available. Students may have only reviewed
them prior to taking Exam2. The chart also shows that students learned to
use the platform over time as indicated by the downward trend. Interestingly,
students started to review assessments sooner, even when the quiz was not for
credit. This is an encouraging note and an evidence how students self-regulated
their own learning in reviewing assessments.

The same steps were undertaken to investigate if similar findings could be
obtained if students are grouped according to their performance trajectory.
Unfortunately, there was no significant correlation between their magnitude of
change (difference in their exam scores) and their average reviewing delay for
both time periods.

Lastly, the trend for the two periods: Exam1-Exam2 (Fig. 4(a)) and Exam2-
Exam3 (Fig. 4(b)) were visualized. It was not surprising to see that the improving
group attended to their assessments sooner (notice that the green line is generally
lower than the red line). This is consistent with the earlier finding which indicates
that better performing students review sooner. This showed that being more
vigilant in reviewing could potentially be associated to an improvement in grades.
Another interpretation is that students who get better grades started seriously
preparing for the exam earlier. Students likely reviewed their past exams at the
start of preparing for the exam, so the fact that high-performing students did
that earlier is not surprising.
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Fig. 4. The reviewing delay curve of students when grouped according to their perfor-
mance trajectory (Color figure online)

4.4 Subjective Evaluation

An online survey was administered at the end of the semester to know the
experience of students when using the system. Also, to identify possible features
that could help them review effectively and efficiently. Only 74 students (30.10%)
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Fig. 5. Selected questions from the online survey

responded to the survey. Figure 5 shows some of the questions and the students’
responses.

Learning and the Reviewing Platform. More than half of the respondents
(54.1%) believed that the system helped them learn the class material. When
asked how they prepare for programming exams, they would review lecture notes
(78.2%) or past assignments and assessments (68%). Some even create study
guides (45.7%). We also found that 60% would even use our system. All these
strategies involve a range of reviewing activities.

Ease of Using the Platform. The system enables the students to access and
review their graded assessments anytime and anywhere. Majority (60.3%) of the
respondents found the system easy to navigate and use as it only took them
around 1–2 quizzes to be comfortable using it.

Awareness of Features. A color coding scheme was used to display the graded
answers of the students, which majority of the respondents were aware of. How-
ever, some features, such as bookmarking and filtering were not used as they
were not aware of the existence of such features. Finally, we asked for sugges-
tions on how to improve user experience. One popular suggestion was for the
system to be able to inform students what content or question to focus on when
reviewing (51.2%).
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5 Conclusion

This study focused on analyzing and understanding student reviewing and learn-
ing behaviors captured by an educational tool that enables students to review
their paper-based assessments. A classroom study was conducted where data
from a Data Structure & Algorithms class were collected. Students were grouped
based on their overall performance: high-achieving and low-achieving; and based
on their performance in a given time period: improving, retaining, and dropping.
By comparing their reviewing behaviors, high-achievers were found to review
more and quicker than low-achievers. Both improving and dropping students
reviewed their mistakes. However, improving students reviewed and focused on
their mistakes more than dropping students. This clearly indicates the effective-
ness and the willingness of improving students to learn more from their mistakes.
It also indicates a failure on the part of the dropping students to pay enough
attention to address their misconceptions.

In addition, this study provides empirical data on how students review their
paper-based assessments. This contribution could be used to improve the design
of existing educational technologies. Letting the students focus on their mistakes
(guided navigation) and advising them to attend to their graded assessments
sooner (through prompts) would have a positive impact on their learning.

Finally, reviewing patterns can be extracted from the student behavioral
actions and leveraged to train predictive models. These models will enable the
further personalization of the feedback and potential interventions that will
be provided to future students such as suggested reviewing assessments and
material.

6 Future Work and Limitations

There are a number of limitations in the current study. The analysis only focused
on students’ voluntarily reviewing behavior to signify one of the self-regulated
learning processes: in the abstract form of monitoring and reviewing their own
learning. In the future, a more comprehensive scenario such as planning, com-
prehension monitoring, and self-explaining will be considered. In addition, the
platform was informally introduced to students and no tutorial on how to use
it was provided. They had to familiarize it on their own. The usability of the
platform is currently being studied. Finally, this study will be further extended
to other courses and cohorts to investigate the generalizability of these findings
in Computer Science Education.
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