
Automatic Processing of
Code-mixed Social Media Content

Utsab Barman

B.Tech., M.Tech.

A dissertation submitted in fulfilment of the requirements for the award of

Doctor of Philosophy (Ph.D.)

to the

Dublin City University

School of Computing

Supervisors:
Dr. Jennifer Foster

Dr. Joachim Wagner

July 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DCU Online Research Access Service

https://core.ac.uk/display/195384423?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I hereby certify that this material, which I now submit for assessment on the
programme of study leading to the award of Ph.D. is entirely my own work, that
I have exercised reasonable care to ensure that the work is original, and does not
to the best of my knowledge breach any law of copyright, and has not been taken
from the work of others save and to the extent that such work has been cited and
acknowledged within the text of my work.

Signed:

(Candidate) ID No.:

Date:

Contents

Acknowledgements xi

Abstract xii

1 Introduction 1

1.1 Challenges of Code-Mixed NLP . 3

1.2 Research Questions . 4

1.3 Contributions . 6

1.4 Structure of Thesis . 9

2 Code-mixing: Linguistic Aspects 11

2.1 Types of Code-mixing . 11

2.2 Motivations for Code-mixing . 12

2.3 Linguistic Theories of Code-mixing 13

2.3.1 Grammatical Constraints of Poplack (1980) 13

2.3.2 Matrix Language Frame (MLF) 14

2.4 Indian Languages and Code-mixing 16

2.5 Conclusion . 16

3 Data 17

3.1 English-Hindi-Bengali Facebook Corpus 18

3.1.1 Annotation . 18

3.1.2 Inter Annotator Agreement 21

3.1.3 Data Characteristics . 22

i

3.2 Unlabelled Monolingual Data . 27

3.3 Conclusion . 28

4 Language Identification 29

4.1 Chapter Organization . 31

4.2 Background . 31

4.3 Research Questions . 35

4.4 Experiments . 37

4.4.1 Resource . 37

4.4.2 Dictionaries . 37

4.4.3 Support Vector Machine (SVM) 39

4.4.4 Conditional random field (CRF) 41

4.4.5 Long Short Term Memory (LSTM) 41

4.5 Analysis and Discussion . 49

4.5.1 Statistical Significance Test 50

4.5.2 Ambiguous vs Non-ambiguous Words 50

4.5.3 Code-Mixing Points . 51

4.5.4 Monolingual vs Code-Mixed Sentences 54

4.5.5 Word-based Vs. Word+Character-based LSTM 54

4.5.6 Error Categories . 55

4.6 Conclusion . 57

5 Part-of-Speech Tagging 60

5.1 Chapter Organization . 61

5.2 Background . 62

5.3 Research Questions . 67

5.4 Experiments . 68

5.4.1 Baseline . 68

5.4.2 Exploiting Monolingual Taggers 69

5.4.3 Long Short Term Memory (LSTM) 72

ii

5.5 Analysis and Discussion . 75

5.5.1 Statistical Significance Testing 75

5.5.2 Effect of LID as Pre-processing module 75

5.5.3 Stacked vs Pipeline Systems 76

5.5.4 Monolingual vs Code-mixed Sentences 76

5.5.5 Code-mixing Points . 77

5.5.6 Error Categories . 78

5.6 Conclusion . 79

6 Multitask Learning 81

6.1 Chapter Organization . 83

6.2 Background . 83

6.3 Research Questions . 89

6.4 Experiments . 89

6.4.1 Factorial Conditional Random Fields (FCRF) 90

6.4.2 Long Short Term Memory (LSTM) 92

6.5 Analysis and Discussion . 98

6.5.1 Statistical Significance Testing 99

6.5.2 Ambiguous vs Non-ambiguous Words 99

6.5.3 Code-Mixing Points . 100

6.5.4 Model Comparisons . 103

6.6 Conclusion . 104

7 Conclusions 106

7.1 Use Cases . 108

7.2 Future Work . 109

7.2.1 Improving Performance at Code-mixed Points 109

7.2.2 Unified LID and POS Tagging for Indian Languages 109

7.2.3 LID for Similar Languages . 109

7.2.4 Word-Level MTL: Inclusion of Multiple Tasks 110

iii

Bibliography 111

Appendix A SVM-based LID Results for Nepali-English Data. 1

iv

List of Figures

1.1 Example of Romanisation, Bengali has been written using Roman

scripts. 1

3.1 English-Bengali-Hindi Code-mixed Data Set (Curated): POS distri-

bution across language labels, column visualization. 27

4.1 Architecture of the dictionary-based system, where EN = text8 cor-

pus, BN = Bengali lyrics corpus, HI = Hindi lyrics corpus, Training

Data = relevant 4/5 of training data and LexNorm List = lexical

normalisation list of Baldwin . 38

4.2 Model Architecture: Word-level LSTM Model for LID, unrolled across

three time steps, where wi−1:i+1 are the words and yi−1:i+1 are lan-

guage labels. 44

4.3 Model Architecture: Word + Character-level LSTM model, unrolled

across three time steps, where wi−1:i+1 are the words and yi−1:i+1 are

language labels. 46

4.4 Performance of different systems for ambiguous and non-ambiguous

tokens where DICT = dictionary-based system (e.g. EBHTL), SVM

= SVM-based system (e.g. GDLCP1N1), CRF = CRF-based system

(e.g. GDLCP1N1) and LSTM = LSTM-based system (e.g. word +

character level bidirectional LSTM-based system). 51

v

4.5 Performance at code-mixed points and surroundings: Considering 0

as code-mixing point, +i means i token to right of a code-mixed point

and -i means i token to the left where DICT = dictionary-based sys-

tem (e.g. EBHTL), SVM = SVM-based system (e.g. GDLCP1N1),

CRF = CRF-based system (e.g. GDLCP1N1) and LSTM = LSTM-

based system (e.g. word + character level bidirectional LSTM-based

system). 52

4.6 Performance at code-mixed point: Ambiguous and non-ambiguous

tokens, where DICT = dictionary-based system (e.g. EBHTL), SVM

= SVM-based system (e.g. GDLCP1N1), CRF = CRF-based system

(e.g. GDLCP1N1) and LSTM = LSTM-based system (e.g. word +

character level bidirectional LSTM-based system). 53

4.7 Performance of different systems on monolingual and code-mixed sen-

tences where DICT = dictionary-based system (e.g. EBHTL), SVM

= SVM-based system (e.g. GDLCP1N1), CRF = CRF-based system

(e.g. GDLCP1N1) and LSTM = LSTM-based system (e.g. word +

character level bidirectional LSTM-based system). 53

5.1 Pipeline systems: system V1 and V2 (Section 5.4.2.1). 69

5.2 Stacked systems: system S1 and S2 (Section 5.4.2.2). 71

5.3 Pipeline Systems in Stacking: S3 (stacked-V1) and S4 (stacked-V2) . 72

5.4 Performance of different systems on monolingual and code-mixed sen-

tences where V2 = pipeline system, S2 = stacked system and LSTM

= LSTM-based system. 77

5.5 POS accuracy at code-mixed points and surroundings. 78

6.1 Sharing a common representation across multiple tasks. This ap-

proach is also known as hard parameter sharing. 86

6.2 Multiple Layers for Multiple Tasks: A high-level architecture. 87

vi

6.3 Neural architecture of Hashimoto et al. (2016). This performs multi-

ple lower-level tasks to complete a higher-level task where POS = POS

tagging DEP = dependency parsing and CHUNK = chunking. These

tasks are accomplished by the use of task-specific separate LSTMs.

Picture credit (Hashimoto et al., 2016). 87

6.4 Neural architecture of Bhat et al. (2018). This performs POS tagging

and parsing. This tasks are accomplished by the use of task-specific

separate LSTMs. Picture credit (Bhat et al., 2018). 88

6.5 Joint Labelling Approach: Model architecture unrolled across three

time steps. 93

6.6 Multi-level Approach: Model architecture unrolled across three time

steps. 95

6.7 Cascaded Approach: Model architecture unrolled across three time

steps. 97

6.8 Performance of different systems for ambiguous and non-ambiguous

tokens in LID. approach. 99

6.9 Performance of different systems for ambiguous and non-ambiguous

tokens in POS tagging. 100

6.10 Performance of different systems at code-mixed points in LID where

joint = joint approach, cascaded = cascaded approach, multi-level =

multi-level approach. 101

6.11 Performance of different systems at code-mixed points in POS tagging.101

vii

List of Tables

3.1 English-Bengali-Hindi Code-mixed Data Set (Curated): Language la-

bel distribution of tokens. 24

3.2 English-Bengali-Hindi Code-mixed Data Set (Curated): Language la-

bel distribution of sentences. 25

3.3 English-Bengali-Hindi Code-mixed Data Set (Curated): POS label

distribution of tokens. 26

3.4 English-Bengali-Hindi Code-mixed Data Set (Curated): POS distri-

bution across language labels . 26

4.1 Average cross-validation accuracy of dictionary-based detection, where

E = text8 corpus, B = Bengali song lyrics, H = Hindi Song Lyrics,

T = relevant 4/5 of the training data, and L = LexNormList. All-E,

All-B and All-H are those systems where all tokens are predicted as

English, Bengali and Hindi respectively. Reported results are average

of 5-fold cross-validation accuracy. 39

4.2 Features generated for a word ‘amar ’ which is a part of a text frag-

ment: ‘je amar prothom’. 40

4.3 Average cross-validation accuracy for SVM word-level classification,

G = char-n-gram, L = binary length features, D = presence in dictio-

naries and C = capitalization features and P-i = previous i word(s)

, N-i = next i word(s). 41

viii

4.4 Average cross-validation accuracy for CRF word-level classification,

G = char-n-gram, L = binary length features, D = presence in dictio-

naries and C = capitalization features and P-i = previous i word(s)

, N-i = next i word(s). 42

4.5 Hyper parameters for embedding training 43

4.6 Hyper for word-Level LSTM . 45

4.7 Accuracy of LSTM with word2vec, CWE and fasttext embeddings.

Reported results are average five fold cross-validation accuracy. 46

4.8 Hyper parameters for word + character-level LSTM 49

4.9 Comparison of word-level and word+char-level LSTM for fasttext em-

beddings. Reported results are average of five fold cross-validation . . 49

4.10 Performance of word+char-level LSTM. 49

4.11 Per label accuracy of different systems, where dict = dictionary-based

system (e.g. EBHTL), SVM = SVM-based system (e.g. GDLCP1N1),

CRF = CRF-based system (e.g. GDLCP1N1) and LSTM = LSTM-

based system (e.g. word + character level bidirectional LSTM-based

system). 50

4.12 Comparison of Word-based and Word + Character-based LSTM: Re-

ported Results are F1 scores. 55

4.13 Confusion Matrix of Word + Character-level LSTM Model 55

4.14 Top three errors categories for different systems where DICT = dictionary-

based system (e.g. EBHTL), SVM = SVM-based system (e.g. GDLCP1N1),

CRF = CRF-based system (e.g. GDLCP1N1). 57

5.1 Average cross-validation accuracy of POS tagging systems. 73

5.2 Word + Character-level LSTM with and without language features. . 74

5.3 Hyper parameters for word + character-level LSTM 74

5.4 Performance of the LSTM based model with language features. . . . 74

5.5 Performance of the LSTM based model without language features. . 74

ix

5.6 POS tagging accuracy of V1, V2 and S2 with gold-level language

labels and SVM-based language labels. 76

5.7 Confusion Matrix for the LSTM with fasttext skip-gram embed-

dings with language features. 79

6.1 Performance of FCRF in LID and POS tagging with different features

sets. Reported results are average cross-validation accuracy. 90

6.2 LID features generated for a word ‘amar ’ which is a part of a text

fragment: ‘je amar prothom’. 91

6.3 Performance of MTL approaches and individual taggers. 94

6.4 Label wise F1 score for LID: Performance of three MTL approaches. . 102

6.5 Label wise F1 score for POS: Performance of three MTL approaches. 102

6.6 Performance of three different MTL approaches in two code-mixed

data sets, where A: code-mixed data set of Barman et al. (2016) and

B: code-mixed data set of Jamatia et al. (2015). Reported results are

average of five-fold cross-validation accuracy. 104

A.1 Average Cross-Validation Accuracy for SVM-6-Way based Prediction

for Nepali-English Training, Data Set, G = Char-N-Gram, L = Binary

Length Features, D = Dict.-Based Labels and C = Capitalization

features. For more detail, please visit the Language Identification

Chapter. 1

A.2 Test set results (overall accuracy) for Nepali-English and Spanish-

English Tweet Data and Surprise Genre 1

x

Acknowledgments

My deepest regards and thanks to my supervisors, Dr. Jennifer Foster and Dr.
Joachim Wagner, probably, the best supervisors one can ever have. Without them
finishing this thesis was not possible by any means. I also like to thank Dr. Andy
Way and Dr. Qun Liu for their motivation and support. My sincere thanks to
Dr. Monojit Choudhury for his valuable comments, suggestions and inspirations. I
would like to thank ADAPT centre for providing me the opportunity to pursue this
PhD. My thanks and regards to the colleagues and friends of ADAPT. Finally, I
would like to thank my parents for their support and love, without them this journey
was impossible.

xi

Automatic Processing of

Code-mixed Social Media Content

Utsab Barman

Abstract

Code-mixing or language-mixing is a linguistic phenomenon where multiple language

mix together during conversation. Standard natural language processing (NLP)

tools such as part-of-speech (POS) tagger and parsers perform poorly because such

tools are generally trained with monolingual content. Thus there is a need for

code-mixed NLP. This research focuses on creating a code-mixed corpus in English-

Hindi-Bengali and using it to develop a world-level language identifier and a POS

tagger for such code-mixed content. The first target of this research is word-level

language identification. A data set of romanised and code-mixed content written in

English, Hindi and Bengali was created and annotated. Word-level language iden-

tification (LID) was performed on this data using dictionaries and machine learn-

ing techniques. We find that among a dictionary-based system, a character-n-gram

based linear model, a character-n-gram based first order Conditional Random Fields

(CRF) and a recurrent neural network in the form of a Long Short Term Memory

(LSTM) that consider words as well as characters, LSTM outperformed the other

methods. We also took part in the First Workshop of Computational Approaches to

Code-Switching, EMNLP, 2014 where we achieved the highest token-level accuracy

in the word-level language identification task of Nepali-English. The second target

of this research is part-of-speech (POS) tagging. POS tagging methods for code-

mixed data (e.g. pipeline and stacked systems and LSTM-based neural models) have

been implemented, among them, neural approach outperformed the other approach.

Further, we investigate building a joint model to perform language identification

and POS tagging jointly. We compare between a factorial CRF (FCRF) based joint

model and three LSTM-based multi-task models for word-level language identifi-

cation and POS tagging. The neural models achieve good accuracy in language

xii

identification and POS tagging by outperforming the FCRF approach. Further-

more, we found that it is better to go for a multi-task learning approach than to

perform individual task (e.g. language identification and POS tagging) using neural

approach. Comparison between the three neural approaches revealed that without

using task-specific recurrent layers, it is possible to achieve good accuracy by careful

handling of output layers for these two tasks e.g. LID and POS tagging.

xiii

Chapter 1

Introduction

Code-mixing is a linguistic phenomenon where language switching occurs at a sen-

tence boundary (inter-sentential), or within a sentence (intra-sentential) or within a

word (word-level). This phenomenon can be observed among multilingual speakers

in many languages. While communicating, writers/speakers mix their native and a

foreign language and/or they embed foreign language words in native language sen-

tences. It is a well known practice among social media users from language-dense

areas and from bilingual or multilingual societies (Cárdenas-Claros and Isharyanti,

2009; Shafie and Nayan, 2013). It can occur not only between languages but also di-

alects of the same language (Gardner-Chloros, 1991). Further, languages that have

non-Roman script are often written using Roman script in social media and SMS

communication (Sowmya et al., 2010). This is known as Romanisation. Figure 1.1 is

an example of Romanisation, where Bengali has been written using Roman scripts.

The following is an example, taken from a Facebook group of Indian students which

exhibits trilingual code-mixing and Romanisation:

Figure 1.1: Example of Romanisation, Bengali has been written using Roman
scripts.

1

Example 1.0.1. Original: Yaar tu to, GOD hain. tui JU te ki korchis? Hail u

man!

Translation: Buddy you are GOD. What are you doing in JU? Hail u man!

Three languages are present in this comment: English, Hindi (italics) and Bengali

(bold). Bengali and Hindi words are written in romanised forms. These phenomena

(code-mixing and Romanisation) can occur simultaneously and increase the ambi-

guity of words. For example, in the previous comment, ‘to’ could be mistaken as

an English word but it is a romanised Hindi word. Moreover, the romanised form

of a native word may vary according to the user’s preference. When speakers mix

languages within a conversation, a sentence or even within a word and Romani-

sation is present, standard NLP tasks, for example, Language Identification (LID),

Part-of-Speech (POS) Tagging and Name Entity Recognition (NER) are challenging.

Code-mixed NLP in Indian languages is an interesting problem and it is being

investigated by a number of researchers (Das and Gambäck, 2014; Sequiera et al.,

2015b; Dey and Fung, 2014; Bhat et al., 2018) in recent years. Indian languages

that belong to the same language family (e.g. Bengali and Hindi) also share a

large number of common words. The romanised versions of such words may follow

the same orthographic structure which will increase the ambiguity for automatic

processing. Besides, there are also other challenges associated with code-mixed

NLP, discussed in the next subsection (Section 1.1).

In this thesis, we present our studies of automatic processing (LID and POS

Tagging) of code-mixed social media content in the following Indian languages: En-

glish, Bengali and Hindi1. The rest of the chapter is organized as follows: Section 1.1

describes the challenges associated with code-mixed NLP in Indian language. We

formulate our research questions in Section 1.2. Section 1.3 enlists the contributions

of this thesis and in 1.4 we describe the structure of this thesis.

1We have also carried out SVM based LID for Nepali-English data in the shared task of LID
at the First Workshop on Computational Approaches to Code Switching, EMNLP, 2014 Solorio
et al. (2014b). These results are included in the Appendix.

2

1.1 Challenges of Code-Mixed NLP

Following are the challenges associated with automatic NLP when dealing with

code-mixed and romanised Indian social media content.

• Ambiguous Words: Let us consider the Example 1.0.1, the word ‘to’ in

the example could be mistaken as an English word but it is a romanised Hindi

word. Again, ‘man’ is a English word but the similar lexical form can be viewed

as a variable representation of a romanised Bengali word ‘mon’. Furthermore,

Bengali and Hindi belong to the same language family and share a set of

common vocabulary. For example, ‘baba’, ‘ma’, ‘ghar’, ‘desh’ belongs to the

shared vocabulary of Bengali, Hindi and many other Indian languages. During

automatic processing (e.g. LID, POS tagging), these words must be tagged

properly given the proper context.

• Variable Lexical Representations: The romanised form of a native word

may vary according to the user’s preference. There is no standard lexical

form for most romanised Bengali and Hindi words. For example, ‘korchis’ in

Example 1.0.1 is a romanised Bengali word and it can be written as ‘krchis’,

‘krchs’, ‘korchs’ and ‘karchis’.

• Word-level Code-mixing: Language mixing also occur at word-level. For

example, ‘chapless’ is mixed word of Bengali and English. The first part ‘chap’

is a Bengali word and the latter part ‘less’ is an English suffix. To detect and to

identify the involved languages for such words is probably the deepest level of

language identification which needs to be addressed for automatic code-mixed

NLP.

• Reduplication: Another challenge is proper tagging of reduplicated words.

This phenomenon is quite common in Indian languages. For example, ‘deka

teka’, the first word ‘deka’ means ‘to see’ in Bengali, however the second

word does not have a meaning on its own but together with the first word it

3

becomes a multi word expression (MWE) which means ‘to see’. Reduplication

also takes part in code-mixing in an interesting fashion. For example ‘post

fost’, ‘boss toss’. The first words (i.e. ‘post’ and ‘boss’) in these example

are English which are followed by Bengali reduplicated words (i.e. ‘fost’ and

‘toss’). Moreover in the second example, ‘toss’ also bears lexical ambiguity (i.e.

English word ‘Toss’). Word-level LID and POS tagging of such expressions

are difficult when multiple languages and Romanisation is involved.

• Word Orders: Indian languages and English follow different word orders.

English follows Subject-Verb-Object format. On the other hand, Indian lan-

guages (e.g. Bengali and Hindi) follow Subject-Object-Verb format. When

code-mixing occurs between English and Indian languages, these two types of

word-order get mixed up. This phenomenon presents challenges to POS tag-

ging. POS taggers trained with monolingual content on a particular language

might get biased to a specific word-order and perform poorly for the other

languages.

1.2 Research Questions

Code-mixing is a prominent characteristic of multilingual social media content. The

nature of social media content is noisy and exhibits several challenges for auto-

matic NLP, for example, short-length, spelling variation, non-grammatical con-

structs. Code-mixing increases the challenges by incorporating lexical ambiguity

(i.e. same spelling but different meanings in different languages). For this reason,

code-mixing is attracting serious attention within the NLP community worldwide.

In recent research various challenges associated with code-mixed NLP (e.g. language

modelling, POS tagging, parsing, machine translation) have been investigated and

discussed in depth (Çetinoğlu et al., 2016). A number of workshops are being or-

ganized to re-investigate standard NLP tasks for code-mixed social media data,

for example, Language Identification (LID) (Solorio et al., 2014a), Part-of-Speech

4

(POS) tagging (Jamatia and Das, 2016), Sentiment Analysis (Patra et al., 2018).

The aim of this thesis is to develop NLP capabilities for automatic processing of

code-mixed and romanised social media content. We focus on two important tasks:

(1) word-level LID and (2) POS tagging. The first one is essential for a number of

NLP tasks (e.g. POS tagging, Machine Translation) and the second one also plays a

vital role for automatic understanding (e.g. sentiment analysis) of code-mixed social

media content. We also introduce a novel multi-tasking framework to perform LID

and POS tagging jointly. Though we use standard machine learning (ML) methods

like Support Vector Machines (SVM) and Conditional Random Fields (CRF), we

also explore the use of Recurrent Neural Networks (RNN). Standard machine learn-

ing methods relies on hand-crafted features. The generation of such features de-

mands human effort and domain knowledge. On the other hand, neural approaches

learn the representations or features needed for the task automatically. In recent

NLP literature, it has been seen that neural approaches outperform standard feature

based ML methods significantly (Collobert and Weston, 2008). With this in mind,

we formulate our first research question:

1. Is it possible to achieve better performance than feature based ML

(SVM and CRF) by using a neural approach for LID and POS tagging

of code-mixed social media content?

It has been seen in recent literature of code-mixed NLP that monolingual taggers

are used to achieve multilingual objectives (Solorio and Liu, 2008b; Vyas et al., 2014).

Considering these facts we aim to investigate the following question:

2. How well can we exploit monolingual taggers to perform POS tagging

for code-mixed data? Further, can a neural approach be effective?

Recent studies have shown that performing a joint labelling or multi-task learning

(MTL) results in better performance than performing individual tasks (Chen et al.,

2016). Multi-task learning with code-mixed data is a relatively under explored area.

5

In that context we want to investigate a multi-task model for code-mixed data that

performs LID and POS tagging jointly. Considering the previous studies of MTL in

NLP, it is interesting to see:

3. How well does a neural MTL approach perform for code-mixed con-

tent? Does MTL achieve better accuracy than individual taggers for code-

mixed data?

Based on these (1, 2 and 3), we present task specific research questions for LID in

Section 1.3 of Chapter 4, for POS tagging we present task specific research questions

in Section 1.2 of Chapter 5 and for MTL these questions are presented in Section

1.3 of Chapter 6.

1.3 Contributions

In this thesis, we present our study ‘Automatic Processing of Code-mixed Social

Media Content’ with a trilingual (English-Bengali-Hindi) code-mixed corpus. We

investigate word-level LID, POS tagging and a muti-tasking framework to perform

LID and POS tagging simultaneously. Following are the contributions of this re-

search:

• Corpus: Language and POS annotated English-Bengali-Hindi code-mixed

corpus, collected from Facebook (Barman et al., 2014a, 2016). This corpus

has been used by other researchers (Das and Gambäck, 2014; Çetinoğlu et al.,

2016).

• Experiments on Language Identification: We perform word-level lan-

guage identification using dictionaries, SVM, CRF and LSTM. We investigate

the use of hand-crafted features (e.g. character-n-grams, presence in dictionar-

ies, length of a word and capitalisation information) with SVM and CRF. We

investigate three different word embeddings (e.g. word2vec, CWE and fast-

text) with LSTM. We propose a novel LSTM-based neural architecture that

6

combines word and character embeddings to learn a common representation

of words, that can be useful for word-level LID with code-mixed data. We find

that the proposed model can outperform a word-level LSTM based system sig-

nificantly. Moreover, it can also achieve good word-level performance for less

frequent instances (e.g. name entity, acronym and word-level code-mixing) in

our code-mixed corpus.

• Experiments on POS Tagging: We investigate POS tagging with our code-

mixed corpus using SVM and CRF with hand-crafted features, using a pipeline

of a language identifier and three monolingual taggers (e.g. English, Hindi and

Bengali), stacking (Solorio and Liu, 2008b) approaches that combine monolin-

gual taggers, language identifiers and transliterations of romanised code-mixed

data and a word + character-level LSTM-based system (same architecture as

LID) that incorporates language information in word representation. We find

that, among all of these approaches, the LSTM-based approach performs best.

We also find that a stacking approach is better than the monolingual tagger

combination, and features like LID labels and transliterations of tokens in-

crease the performance of a stacking approach.

• Experiments on MTL approaches: We perform joint labelling of LID and

POS tagging using a Factorial CRF and three neural MTL approaches. To

the best of our knowledge this is the first attempt to employ neural MTL to

perform word-level tasks (e.g. LID and POS tagging) with code-mixed social

media content. We find that a neural approach that uses a common repre-

sentation of words to predict multiple labels, LID and POS, is outperformed

by individual neural LID and POS taggers. On the other hand, the two other

neural approaches that use the common representation of words and share the

output of one task to the input of another task, can perform better than the

previously mentioned neural MTL approach and individual neural LID and

POS taggers. Finally, we show that it is not always necessary to introduce

7

multiple RNN layers to model multiple tasks, using only a shared RNN layer

and output propagation it is possible to achieve similar performance. Further,

a shared RNN layer combined with output propagation can reduce the num-

ber of model parameters and training time significantly compared to a MTL

model that uses multiple RNN to model multiple tasks.

The following papers were published during the course of the project.

• Barman, U., Das, A., Wagner, J., and Foster, J. (2014a). Code mixing: A

challenge for language identification in the language of social media. In Pro-

ceedings of the First Workshop on Computational Approaches to Code Switch-

ing. EMNLP 2014, Conference on Empirical Methods in Natural Language

Processing, pages 13–23, Doha, Qatar. Association for Computational Lin-

guistics.

This paper describes our data collection (English-Bengali-Hindi code-mixed

corpus), annotation (language) and initial experiments on word-level LID.

• Barman, U., Wagner, J., Chrupa la, G., and Foster, J. (2014b). DCU-UVT:

Word-level language classification with code-mixed data. In Proceedings of

the First Workshop on Computational Approaches to Code Switching , pages

127–132.

This paper is the result of our participation in the shared task of LID at the

First Workshop on Computational Approaches to Code Switching, EMNLP,

2014. In this shared task our language identifier for Nepali-English code-

mixed social media content achieved highest word-level accuracy among all

participants.

• Barman, U., Wagner, J., and Foster, J. (2016). Part-of-speech tagging of

code-mixed social media content: Pipeline, stacking and joint modelling. In

Proceedings of the Second Workshop on Computational Approaches to Code

Switching, pages 30–39.

8

This paper describes the POS annotated subset of our English-Bengali-Hindi

code-mixed corpus. In this paper we compare three approaches to POS tag-

ging: (1) pipeline (e.g. linear combination of LID and monolingual taggers),

(2) stacking and (3) joint modelling using Factorial CRF (FCRF).

The following paper was published during the course of the project but this is

not related to the topic of this thesis.

• Wagner, J., Arora, P., Cortes, S., Barman, U., Bogdanova, D., Foster, J., and

Tounsi, L. (2014). DCU: Aspect-based polarity classification for semeval task

4. In Proceedings of the 8th International Workshop on Semantic Evaluation

(SemEval2014), pages 223–229.

This paper describes our work on aspect-based sentiment analysis. Our SVM-

based system achieved the best performance among all participants of this

shared task.

1.4 Structure of Thesis

The rest of the thesis is structured as follows:

• Chapter 2: In this chapter we discuss linguistic aspects of code-mixing in-

cluding types and motivations for code-mixing and two popular linguistic the-

ories of code-mixing. We also describe some aspects of code-mixing in Indian

languages.

• Chapter 3: In this chapter we describe our data collection and annotation

process. Our corpus is a trilingual romanised code-mixed corpus of English,

Bengali and Hindi. We also present the characteristics of the annotated data

in this chapter.

• Chapter 4: This chapter describes the machine learning methods used in

our experiments. These methods are Support Vector Machine (SVM), Condi-

9

tional Random Fields (CRF) and Recurrent Neural Networks (RNN). We also

describe neural word embeddings in this chapter.

• Chapter 5: Word-level language identification is a key preprocessing step

that needs to be resolved before any other steps, e.g. part-of-speech tagging

and parsing. The task is to assign language labels to each word of a sentence.

We report our language identification experiments with English-Hindi-Bengali

code-mixed data using both dictionary lookup and machine learning methods,

e.g. SVM, CRF and RNN in the form of Long Short Term Memory (LSTM).

• Chapter 6: POS tagging is the process of assigning each word in a sen-

tence to its particular POS. This is an important step that helps in further

understanding (sentiment analysis, named-entity recognition etc.) of natural

language. In this chapter we present our experiments on POS tagging with

code-mixed data using machine learning methods (e.g. SVM, CRF and LSTM)

and using combinations of monolingual taggers.

• Chapter 7: Multi-task learning is the approach of modelling several tasks to-

gether. In this chapter, we perform multi-task learning, LID and POS tagging

of code-mixed data using a Factorial CRF and three neural approaches. These

neural approaches are mainly based on LSTM but differ in architectures.

• Chapter 8: In this chapter, we discuss our findings based on the research

questions of individual chapters and propose future directions for this research.

10

Chapter 2

Code-mixing: Linguistic Aspects

A number of researchers have investigated different aspects of code-mixing including

socio-linguistic (Auer, 1984; Kachru, 1978) and structural analysis (Sankoff and

Poplack, 1981; Myers-Scotton and Jake, 1995; Muysken et al., 2000). In this chapter

we discuss these aspects of code-mixing. We also describe two widely discussed

theories of code-mixing - the grammatical constraint model of Poplack (1980) and

the Matrix Language Frame theory of Myers-Scotton and Jake (1995) in this chapter.

2.1 Types of Code-mixing

Scholars distinguish between inter-sentence, intra-sentence and intra-word code mix-

ing. Inter-Sentential code-mixing occurs at sentence boundaries. Example 2.1.1

is an instance of Hindi-English inter-sentential code-mixing. English is written in

bold and Hindi in italics.

Example 2.1.1.

Itna izzat diye aapne mujhe !!! Tears of joy. :’(:’(

Some researchers, (Poplack, 1980) also refer to ‘extra-sentential’ code-mixing, this

occurs when certain words or phrases from one language are inserted at the end of

a sentence of another language. Some English examples are: “okay”, “well” or

“you know”. Intra-Sentential mixing occurs within a sentence or a clause. Exam-

11

ple 2.1.2 is an example of English-Bengali intra-sentential code-mixing. English is

written in bold and Bengali in italics.

Example 2.1.2.

... sei bujhe i have 2 choose between dwaitto nie chokano ba move on ,

however difficult it may be ...

On the other hand, word-level mixing occurs within a word itself, such as at a

morpheme boundary. In Example 2.1.3 the word ‘tymer ’ is an example of word-

level code-mixing. The word ‘tym’ is a lexical variant of the English word ‘time’ and

‘er’ is a Bengali genitive inflection. Similarly in Example 2.1.4 the word ‘chapless’

is another example of word-level code-mixing. In the text fragment the word ‘chap’

is Bengali. It means ‘tension’ and ‘less’ is an English suffix. The meaning of this

text fragment is ‘tension-less job’.

Example 2.1.3. tymer dam

English Translation: value of time

Example 2.1.4. chapless kaj

English Translation: tension-less job

2.2 Motivations for Code-mixing

Studies can be found in the literature (Milroy and Muysken, 1995; Muysken et al.,

2000; Alex, 2008; Sharma and Motlani, 2015; Auer, 2013) that mainly discuss the

sociological and conversational necessities behind code-mixing as well as its linguistic

properties. While investigating the types of code-mixing, Muysken et al. (2000)

described some linguistic processes that are responsible for the generation of different

types and patterns of code-mixed content: these are , ‘insertion’, ‘alternation’ and

‘congruent lexicalisation’. Muysken et al. (2000) define code-mixing as following:

“... all cases where lexical items and grammatical features from two

languages appear in one sentence”.

12

Some researchers have stated that code-mixing is the representation of the exchange

of language models, like morphemes, terms, or sentences from one language into

another (Kachru, 1976). Li (2000) and San (2009) indicate that mainly linguistic

motivations trigger code-mixing in highly bilingual societies. On the other hand,

Dewaele (2010) claims that ‘strong emotional arousal’ instigates code-mixing. Social

media study (Hidayat, 2012) show that social media users mainly use inter-sentential

switching, and reports that 45% of the switching is motivated by lexical needs, 40%

is used for talking about a particular topic, and 5% for content clarification. Dey

and Fung (2014) present a speech corpus of English-Hindi code-mixing in student

interviews. They analyse the grammatical contexts and motivations behind code-

mixing in their corpus. They find that each sentence in their corpus contains almost

68% of Hindi word and 32% English words. Moreover, intra-sentential code-mixing is

more prominent than inter-sentential switching in their corpus. They also find that

most Hindi speakers, during the interviews, perform code-switching (from English

to Hindi) because of the ease of use.

2.3 Linguistic Theories of Code-mixing

2.3.1 Grammatical Constraints of Poplack (1980)

Poplack (1980); Sankoff and Poplack (1981) investigated the grammatical aspects of

code-switching and proposed that during code-switching the constituents preserve

their monolingual structural characteristics. According to (Poplack, 1980; Sankoff

and Poplack, 1981) code-mixing is governed by two constraints: the free-morpheme

constraint and the equivalence constraint. The free morpheme constraint indicates

that a language switch can occur between a lexical form and a bound morpheme

unless that lexical form is integrated into the language of the bound morpheme.

The second constraint states that language switches happen only at points where

the surface structures of the languages coincide, i.e. that in a bilingual code-switched

sentence, a code switch tends to occur at a point where the juxtaposition of languages

13

does not ‘violate a syntactic rule of either language’. Let us consider an example:

Example 2.3.1. chap nei I ’ll take care of that ...

The above snippet is an example of Bengali (italics) English (bold) bilingual code-

mixing and supports the model of Poplack (1980) because the constituents on both

sides of the switch are grammatical in Bengali and English. However, scholars

often criticise this theory for being insufficiently restrictive, sometimes code-mixed

sentences that are valid by the theory does not occur in real life communication.

For example:

Example 2.3.2. Original:

They had visto la peĺıcula italiana

Translation: They had seen the Italian movie

The above sentence seems to be valid by free-morpheme constraint but generally

does not appear in Spanish English code-mixing (Belazi et al., 1994).

2.3.2 Matrix Language Frame (MLF)

Matrix Language Frame (Joshi, 1982; Myers-Scotton, 1997, 1995) proposes a frame-

work to explain bilingual code-mixing. It assumes, during bilingual intra-sentential

code-mixing, the participating languages are related in the following way - (1) one

language (L1) provides a morpho-syntactic frame which is also the dominant lan-

guage, (2) the other language (L2) acts as guest and words from the other language

are embedded in the morpho-syntactic frame of L1. Let us consider the following

snippet:

Example 2.3.3. Yaar tu to GOD hain.

In the above example, two languages are present English (bold) and Hindi. It can

be clearly seen that Hindi is the matrix language of the sentence and English word

‘GOD’ is ‘embedded’ in the sentence. In MLF model morphemes are distinguished

14

in two categories - the content morphemes and system morphemes. Content mor-

phemes comes from the embedded language (L2) and are generally - nouns, verbs

and adjectives. In the above example the word ‘GOD’ is an example of a content

morpheme. On the other hand, morphemes that constitutes the grammatical frame

are system morphemes (e.g function words) . According to this model, during bilin-

gual code-mixing, system morphemes can only come from the matrix language and

content morphemes can be taken from both the matrix language and embedded

language. In this theory, distinctions are also made between the matrix language

hierarchy and embedded language hierarchy. The former can be described as one

language taking control of the grammar of the bilingual utterance and latter can be

described as when the switched elements are at the periphery of the utterance. Bhat

et al. (2016); Winata et al. (2018b) have argued about the limitations of MLF re-

garding the identification of the matrix language, sometimes it is not straightforward

due to the criteria by which matrix language is determined.

It is worth mentioning that in recent years, these two models were implemented

computationally. The models of Poplack (1980) and Myers-Scotton and Jake (1995)

were implemented in recent studies (Pratapa et al., 2018; Bhat et al., 2016). Pratapa

et al. (2018) tried to create synthetic grammatically valid code-mixed data based on

the Equivalence Constraint theory of Poplack (1980). They showed that appropriate

use of this synthetic data with original data reduce the perplexity of an code-mixed

language model. On the other hand Bhat et al. (2016) implemented models for intra-

sentential code-switching based on the Equivalence Constraint (Poplack, 1980) and

Matrix Language Frame (Myers-Scotton and Jake, 1995) and proposed a new model

that combines features of both the theories. They also observed that both of the

models are highly constrained and do not allow some commonly seen code-mixed

patterns of Hindi-English data of social media.

15

2.4 Indian Languages and Code-mixing

Some important studies of code-mixing in Indian languages was done by Kachru

(Kachru, 1976, 1986, 1983, 1978). He described code-mixing as a ‘nativisation’

process (Kachru, 1983). He also pointed out that in South Asia as carrying English

is a symbol of ‘modernization’, ‘success’, and ‘mobility’ (Kachru, 1986). Code mixing

is very frequent in the Indian sub-continent (Gambäck and Das, 2014) because

languages change within very short geographical distances and people generally have

a basic knowledge of their neighboring languages. India is a country with hundreds

of spoken languages, among which 22 are official 1. English and Hindi are two of

the widely spoken languages of India. Almost every state in India has their own

language. Further, a number of dialects are also possible for Indian languages. The

nature of code-mixing in Indian languages varies from state to state. For example,

in a state where Bengali is the main language (e.g. West Bengal), code-mixing can

occur between English-Bengali, English-Hindi, Bengali-Hindi, moreover trilingual

mixing of English-Hindi-Bengali is also possible. Kachru (1983) called the processes

of mixing as Englishization (English is mixed), Nativisation (where Native language

is mixed). It is worth mentioning that Indian languages that belong to the same

language family (e.g. Bengali and Hindi) also share a large number of common

words. The romanised versions of such words may follow the same orthographic

structure which will increase the ambiguity for automatic processing of code-mixed

content from Indian social media.

2.5 Conclusion

In this chapter, we have discussed different types of code-mixing, motivations behind

code-mixing and two popular linguistic theories regarding code-mixing. We have also

discussed the nature of Indian language code-mixing. In the next chapter, we will

describe the data and the annotation process of our code-mixed corpus.

1https://en.wikipedia.org/wiki/Languages_with_official_status_in_India

16

https://en.wikipedia.org/wiki/Languages_with_official_status_in_India

Chapter 3

Data

This chapter talks about the data collection and the annotation procedure for social

media text. The collected and processed data set is a mixture of three languages:

English, Hindi and Bengali. To perform code-mixed NLP we choose Indian lan-

guages because India is a country hundreds of spoken languages, among which 22

are official 1. Code mixing is very frequent in the Indian sub-continent (Gambäck

and Das, 2014) because languages change within very short geographical distances

and people generally have a basic knowledge of their neighboring languages.

The data source for this research is a Facebook forum of Jadavpur University,

Kolkata, India. The corpus is created using the posts and the comments of this fo-

rum. The reason to select such data source is that researchers have found, code mix-

ing is frequent among speakers who are multilingual and younger in age (Cárdenas-

Claros and Isharyanti, 2009). The participants of this forum are students between

the 20-30 year age group. The university is located at Kolkata, West Bengal, which

is one of the metro cities of India, where Bengali is the major spoken language.

However, it is the political and the cultural capital of West Bengal so Hindi and En-

glish is also spoken widely. The young population of the city is trilingual. Bengali

is the mother tongue, Hindi is widely spoken for geo-cultural reasons and English

is the medium of higher education. This chapter describes the corpus creation, the

1https://en.wikipedia.org/wiki/Languages_with_official_status_in_India

17

https://en.wikipedia.org/wiki/Languages_with_official_status_in_India

annotation rules and data characteristics. This corpus has been used create the

language identifiers, the POS taggers and the multitasking systems.

3.1 English-Hindi-Bengali Facebook Corpus

A Facebook group2 and 11 Facebook users (known to the authors) were selected to

obtain publicly available posts and comments. The Facebook graph API explorer

was used for data collection. Since these Facebook users are from West Bengal,

the most dominant language is Bengali (Native Language), followed by English and

then Hindi (National Language of India). The posts and comments in Bengali and

Hindi script were discarded during data collection, resulting in 2335 posts and 9813

comments.

3.1.1 Annotation

Four annotators took part in the annotation task. Three were computer science stu-

dents and the other was one of the author. The annotators are proficient in all three

languages of our corpus. A simple annotation tool was developed which enabled

these annotators to identify and distinguish the different languages present in the

content by tagging them. Annotators were supplied with 4 basic tags (viz. sentence,

fragment, inclusion and wlcm (word-level code mixing)) to annotate different levels

of code mixing. Under each tag, six attributes were provided, viz. English (en),

Bengali (bn), Hindi (hi), Mixed (mixd), Universal (univ) and Undefined (undef).

The attribute univ is associated with symbols, numbers, emoticons and universal

expressions (e.g. hahaha, lol). The attribute undef is specified for a sentence or

a word for which no language tags can be attributed or cannot be categorized as

univ. In addition, annotators were instructed to annotate named entities separately.

What follows are descriptions of each of the annotation tags.

Sentence (sent): This tag refers to a sentence and can be used to mark inter-

2https://www.facebook.com/jumatrimonial

18

sentential code mixing. Annotators were instructed to identify a sentence with its

base language (e.g. en, bn, hi and mixd) or with other types (e.g. univ, undef) as

the first task of annotation. Only the attribute mixd is used to refer to a sentence

which contains multiple languages in the same proportion. A sentence may contain

any number of inclusions, fragments and word-level code mixing. A sentence can

be attributed as univ if and only if it contains symbols, numbers, emoticons, chat

acronyms and no other words (Hindi, English or Bengali). A sentence can be at-

tributed as undef if it is not a sentence marked as univ and has words/tokens that

cannot be categorized as Hindi, English or Bengali. Some examples of sentence-level

annotations are the following:

1. English-Sentence:

[sent lang=“en”] what a.....6 hrs long...but really nice tennis.... [/sent]

2. Bengali-Sentence:

[sent lang=“bn”] shubho nabo borsho.. :) [/sent]

3. Hindi Sentence:

[sent lang=“hi”] karwa sachh :([/sent]

4. Mixed-Sentence:

[sent lang=“mixd”] [frag lang=“hi”] oye hoye angreji me kahte hai ke

[/frag] [frag lang=“en”] I love u.. !!! [/frag] [/sent]

5. Univ-Sentence:

[sent-lang=“univ”] hahahahahahah....!!!!! [/sent]

6. Undef-Sentence:

[sent lang=“undef”] Hablando de una triple amenaza. [/sent]

Fragment (frag): This refers to a group of foreign words, grammatically re-

lated, in a sentence. The presence of this tag in a sentence conveys that intra-

sentential code mixing has occurred within the sentence boundary. Identification of

fragments (if present) in a sentence was the second task of annotation. A sentence

(sent) with attribute mixd must contain multiple fragments (frag) with a specific

19

language attribute. In the fourth example above, the sentence contains a Hindi

fragment oye hoye angreji me kahte hai ke and an English fragment I love u..

!!!, hence it is considered a mixd sentence. A fragment can have any number of

inclusions and word-level code mixing. In the first example below, Jio is a popular

Bengali word appearing in the English fragment Jio.. good joke, hence tagged as

a Bengali inclusion. One can argue that the word Jio could be a separate Bengali

inclusion (i.e. can be tagged as a Bengali inclusion outside the English fragment).

But looking at the syntactic pattern and the sense expressed by the comment, the

annotator kept it as a single unit. In the second example below, an instance of

word-level code mixing, typer, has been found in an English fragment (where the

root English word type has the Bengali suffix r).

1. Fragment with Inclusion:

[sent-lang=“mixd”] [frag-lang=“en”] [incl-lang=“bn”] Jio.. [/incl] good joke

[/frag] [frag lang=“bn”] ”amar Babin” [/frag] [/sent]

2. Fragment with Word-Level code mixing:

[sent-lang=“mixd”] [frag-lang=“en”] ” I will find u and marry you ” [/frag]

[frag-lang=“bn”] [wlcm-type=“en-and-bn-suffix”] typer [/wlcm] hoe glo to! :D

[/frag] [/sent]

Inclusion (incl): An inclusion is a foreign word or phrase in a sentence or in a

fragment which is assimilated or used very frequently in native language. Identifi-

cation of inclusions can be performed after annotating a sentence and fragment (if

present in that sentence). An inclusion within a sentence or fragment also denotes

intra-sentential code mixing. In the example below, seriously is an English inclusion

which is assimilated in today’s colloquial Bengali and Hindi. The only tag that an

inclusion may contain is word-level code mixing.

1. Sentence with Inclusion:

[sent-lang=“bn”] Na re [incl-lang=“en”] seriously [/incl] ami khub kharap achi.

[/sent]

20

Word-Level code mixing (wlcm): This is the smallest unit of code mixing.

This tag was introduced to capture intra-word code mixing and denotes cases where

code mixing has occurred within a single word. Identifying word-level code mixing

is the last task of annotation. Annotators were told to mention the type of word-

level code mixing in the form of an attribute (Base Language + Second Language)

format. Some examples are provided below. In the first example below, the root

word class is English and e is an Bengali suffix that has been added. In the third

example below, the opposite can be observed – the root word Kando is Bengali, and

an English suffix z has been added. In the second example below, a named entity

suman is present with a Bengali suffix er.

1. Word-Level code mixing (EN-BN):

[wlcm-type=“en-and-bn-suffix”] classe [/wlcm]

2. Word-Level code mixing (NE-BN):

[wlcm-type=“NE-and-bn-suffix”] sumaner [/wlcm]

3. Word-Level code mixing (BN-EN):

[wlcm-type=“bn-and-en-suffix”] kandoz [/wlcm]

3.1.2 Inter Annotator Agreement

We calculate word-level inter annotator agreement (Cohen’s Kappa) on a subset of

100 comments (randomly selected) between two annotators. Two annotators are in

agreement about a word if they both annotate the word with the same attribute

(en, bn, hi, univ, undef), regardless of whether the word is inside an inclusion,

fragment or sentence. Our observations that the word-level annotation process is

not a very ambiguous task and that annotation instruction is also straightforward

are confirmed in a high inter-annotator agreement (IAA) with a Kappa value of

0.884.

21

3.1.3 Data Characteristics

In our corpus, inter- and intra-sentential code mixing are more prominent than word-

level code mixing, which is similar to the findings of Hidayat (2012) . Our corpus

contains every type of code mixing in English, Hindi and Bengali viz. inter/intra-

sentential and word-level as described in the previous section. Some examples of

different types of code mixing in our corpus are presented below.

1. Inter-Sentential:

[sent-lang=“hi”] Itna izzat diye aapne mujhe !!! [/sent]

[sent-lang=“en”] Tears of joy. :’(:’([/sent]

2. Intra-Sentential:

[sent-lang=“bn”] [incl-lang=“en”] by d way [/incl] ei [frag-lang=“en”] my

craving arms shall forever remain empty .. never hold u close .. [/frag] line ta

baddo [incl-lang=“en”] cheezy [/incl] :P ;) [/sent]

3. Word-Level:

[sent-lang=“bn”] [incl-lang=“en”] 1st yr [/incl] eo to ei [wlcm-type=“en+bnSuffix”]

tymer [/wlcm] modhye sobar jute jay .. [/sent]

Annotators were instructed to tag an English word as English irrespective of any

influence of word borrowing or foreign inclusion but an inspection of the annotations

revealed that English words were sometimes annotated as Bengali or Hindi. There

are two reasons why this is happening:

• Same Words Across Languages Some words are the same (e.g. baba, maa,

na, khali) in Hindi and Bengali because both of the languages originated from

a single language Sanskrit and share a good amount of common vocabulary.

It also occurred in English-Hindi and English-Bengali as a result of word bor-

rowing. Most of these are commonly used inclusions like clg, dept, question,

cigarette, and topic. Sometimes the annotators were careful enough to tag such

words as English and sometimes these words were tagged in the annotators’

22

native languages. During cross checking of the annotated data the same error

patterns were observed for multiple annotators, i.e. tagging commonly used

foreign words into native language. It demonstrates that these English words

are highly assimilated in the conversational vocabulary of Bengali and Hindi.

• Phonetic Similarity of Spellings Due to phonetic typing some words share

the same surface form across two and sometimes across three languages. As

an example, to is a word in the three languages: it has occurred 1209 times

as English, 715 times as Bengali and 55 times as Hindi in our data. The

meaning of these words (e.g. to, bolo, die) is different in different languages.

This phenomenon is perhaps exacerbated by the trend towards short and noisy

spelling in SMC.

When building word-level annotated corpora for code-mixed NLP, such character-

istics (e.g. word-borrowing, annotation errors) can result in poor performance for

the classifiers due to label inconsistency. To reduce such errors, manual inspection

has been done over the annotated corpora to select and extract correctly labelled

sentences. No normalization (e.g. ‘toh’ for ‘to’ in Bengali) is done for phonetically

similar words across languages. We assume that correct labels for these words can

be learned during classification if contextual clues are considered. Further, we assign

‘mixed’ label to all word-level code-mixing instances in this subset. The curated sub-

set contains 1,239 code-mixed posts and comments from the English-Bengali-Hindi

corpus. This corpus contains word-level language annotations. Each word in the

corpus is tagged with one of the following labels: (1) English (en), (2) Hindi (hi), (3)

Bengali (bn), (4) Mixed (mixed), (5) Universal (univ), (6) Named Entity (ne) and

(7) Acronym (acro). The label Universal is associated with symbols, punctuation,

numbers, emoticons and universal expressions (e.g. hahaha and lol). This subset

contains 25,383 tokens and 6,883 types.

The language label statistics of our data are shown in the Table 3.1. In terms of

tokens Bengali is the dominant language (48.40%) of the corpus, followed by English

23

Label Count Percentage
bn 12285.0 48.40
en 5917.0 23.31
hi 1496.0 5.89
mixed 67.0 0.26
ne 657.0 2.59
acro 213.0 0.84
univ 4748.0 18.71

Table 3.1: English-Bengali-Hindi Code-mixed Data Set (Curated): Language label
distribution of tokens.

(23.31%) and the least frequent language is Hindi (5.89%) in terms of token. The

proportion of universal tokens is 18.71%. The instances of word-level code-mixing

is 0.26%, which is the lowest percentage among all labels. The proportion of named

entities and acronyms are also very low, 2.59% and 0.84% respectively.

We also measure the label of type-level ambiguity (discussed in Section 3.1.3) in

our corpus. We find 95.64% of all types are unambiguous and 4.32% are ambiguous

in nature. Among the ambiguous types, the most frequent ambiguity is the Bengali-

Hindi ambiguity, which is 33.66% of total ambiguous types. Some examples of these

types are ‘toh’, ‘baap’, ‘dar’, ‘jiyo’ and ‘mamu’. These ambiguous types are either

from the shared vocabulary of Bengali and Hindi or a result of Romanisation. The

proportion of Bengali-English ambiguity is relatively low (19% of total ambiguous

types), this ambiguity is caused by phonetic similarity of spellings due to Romani-

sation. This fact is also valid for English Hindi ambiguous types, which contributes,

only 4.33% to the total ambiguous types. The most ambiguous type found in the

data is ‘a’, which is present as a part of a name entity, as an acronym, as an English

token, as a Bengali token and as a part of word-level code-mixing.

Given the token-level tags, we also analyze the amount of code-mixed and mono-

lingual sentences in our corpus. We split a post or a comment based on the four

types of sentence marker, ‘.’, repeated occurrences of ‘.’, ‘!’ and ‘?’. The sentence-

level language distribution is shown in Table 3.2. The splitting results in 3,048

sentences of which 53.21% are monolingual and the rest are code-mixed sentences.

24

Label Count Percentage
bn 660.0 21.65
en 428.0 14.04
hi 139.0 4.56
univ 395.0 12.96
en bn 1264.0 41.47
en hi 111.0 3.64
hi bn 24.0 0.79
en bn hi 27.0 0.89

Table 3.2: English-Bengali-Hindi Code-mixed Data Set (Curated): Language label
distribution of sentences.

We find that 45.90% of the total sentences are bilingual code-mixing. Only 0.89% of

the total sentences are trilingual code-mixing. The most frequent type of bilingual

code-mixing is Bengali-English code-mixing (41.47% of the total sentences), followed

by English-Hindi (3.64% of the total sentences). The least frequent type of bilingual

code-mixing is Bengali-Hindi which is only 0.79% of the total sentences. We also

find that 12.96% of the total sentences are universal sentences. These sentences con-

sist of language independent tokens, e.g. symbols, numbers, names. We find that

the average length of monolingual sentences varies between 6.37 to 7.32 except the

universal sentences. The average length of universal sentences is 1.51. The average

length of bilingual sentences varies from 8.75 to 11.68 and the trilingual sentences

have an average length of 17.85.

Manual annotation for POS for this subset is done using the universal POS tag

set 3 of Petrov et al. (2011). These annotations were performed by an annotator who

is proficient in all three languages of the corpus. As we had no second annotator

proficient in all three languages, we cannot present the inter-annotator agreement

for the annotations. The POS label distributions for our data set are shown in

Table 3.3. In terms of frequency, the top three POS categories are noun, verb and

punctuation, (30% tokens are noun, 16% are verb and 15% are punctuation). The

least frequent labels are numbers, ‘X’ (mostly emoticons) and conjunctions.

3An alternative tag set is the one introduced for code-mixed data by Jamatia and Das (2014)
However, we prefer the universal tag set because of its simplicity, its applicability to many languages
and its popularity within the NLP community.

25

Label Count
ADJ 1836
ADP 1255
ADV 701
CONJ 686
DET 834
NOUN 7751
NUM 148
PRON 2306
PRT 1234
PUNCT 3959
VERB 4086
X 587

Table 3.3: English-Bengali-Hindi Code-mixed Data Set (Curated): POS label dis-
tribution of tokens.

P\L en bn hi mixed ne acro univ Total

ADJ 566 1184 85 0 0 0 1 1836

ADP 340 750 163 0 0 0 2 1255

ADV 323 342 28 1 0 0 7 701

CONJ 164 491 20 0 0 0 11 686

DET 318 495 20 1 0 0 0 834

NOUN 2740 3519 478 63 657 213 81 7751

NUM 33 5 0 0 0 0 110 148

PRON 463 1640 199 0 0 0 4 2306

PRT 87 1061 83 0 0 0 3 1234

PUNCT 0 0 0 0 0 0 3959 3959

VERB 871 2796 414 2 0 0 3 4086

X 12 2 6 0 0 0 567 587

Table 3.4: English-Bengali-Hindi Code-mixed Data Set (Curated): POS distribution
across language labels

26

Figure 3.1: English-Bengali-Hindi Code-mixed Data Set (Curated): POS distribu-
tion across language labels, column visualization.

The distribution of POS tags across language labels is depicted in Table 3.4 and

in Figure 3.1. In terms of language, Bengali is the most dominant across all POS

labels except ‘NUM’. Only 5 occurrences of Bengali numbers can be seen in the

corpus. It can be observed that some universal tokens (0.01%) are tagged as nouns.

These tokens are mainly universal sounds (e.g. ’vroooomm vroooomm’) and creative

spelling variations (e.g. ‘dadaaaaaaa’, ’a****a’, ’kkrrr’). Most of the mixed tokens

(97%) are nouns, these are mainly nouns with suffixes from other languages, for

example: ‘school er, time r’ (Bengali suffixes - ‘er’, ‘r’ are augmented with English

nouns).

3.2 Unlabelled Monolingual Data

The following corpora (unlabelled) were collected to create dictionaries and to train

word embeddings in our experiments.

• Bengali Song Lyrics Corpus: This is a collection of romanised Bengali song

lyrics collected from www.lyricsbangla.com/. It contains 310,565 tokens and

27

www.lyricsbangla.com/

30,933 types.

• Hindi Song Lyrics Corpus: This is a collection of romanised Bengali song

lyrics collected from www.smriti.com/hindi-songs. It contains 501,212 to-

kens and 19,547 types.

• Unlabelled Facebook Corpus: This is a collection of 77K unlabelled mono-

lingual or code-mixed posts and comments in English, Bengali and Hindi. It

contains 1,553,290 tokens and 86,662 types.

3.3 Conclusion

In this chapter, we have describe the data collection and annotation procedure. We

also have described our data characteristics. We found intra-sentential code-mixing

is prominent in our social media corpus. We also found that word-ambiguity due to

Romanisation is also present in our corpus. In the next chapters, we use this corpus

to build LID and POS tagging systems.

28

www.smriti.com/hindi-songs

Chapter 4

Language Identification

Language identification (LID) is the task of identifying the language(s) of a given

text or utterance. The necessity of accurate LID of a given document is multifold.

For example, delivering web content in user’s native language is an important fac-

tor to attract visitors (Kralisch and Mandl, 2006). Several NLP and Information

Retrieval (IR) methods start with the assumption that the language of an input is

known or fixed. In that context, a major target of LID is to make sure that only

relevant input (i.e in a particular language) is presented to such NLP and IR sys-

tems. For Machine Translation (MT), LID is also a prerequisite factor that describes

the source language of a document from which it is to be translated into a target

language.

LID has been investigated both linguistically (Johnson, 1993; Grefenstette, 1995)

and statistically (Dunning, 1994; Damashek, 1995) and has been categorized as a

text categorization task (Cavnar and Trenkle, 1994; Elworthy, 1999). It has been in-

vestigated at various granularities: from document-level (Dunning, 1994; Damashek,

1995; Prager, 1999; McNamee, 2005), sub document-level (Yamaguchi and Tanaka-

Ishii, 2012; King and Abney, 2013), sentence-level (Zaidan and Callison-Burch, 2011)

and word-level (Nguyen and Doğruöz, 2013; Solorio and Liu, 2008a). Document level

LID is the task of assigning a unique language to a document. Researchers have

achieved good accuracy in document-level LID with formal content (Dunning, 1994;

29

Damashek, 1995; McNamee, 2005) (e.g. news articles and Wikipedia). It is rel-

atively easier than other types of LID (e.g. sentence-level, word-level) when large

monolingual documents and a small number of languages are considered (McNamee,

2005). Sub-document level LID is performed for multilingual documents, is more

difficult than the document-level LID and has been investigated for forum (King and

Abney, 2013) and blog posts (Yamaguchi and Tanaka-Ishii, 2012). Sentence-level

LID is more fine grained than the previous two and has been studied for different

domains, for example: short text (Baldwin and Lui, 2010a), queries (Gottron and

Lipka, 2010), tweets (Lui and Baldwin, 2014). The last and probably the deepest

level LID (Das and Gambäck, 2014) is performed on the word-level with code-mixed

content, and in recent years has been investigated by a large number of NLP re-

searchers (Solorio et al., 2014b; Sequiera et al., 2015b).

The majority of research on LID is concentrated on widely spoken and well

resourced languages (e.g. English) (Hughes et al., 2006). On the other hand, there is

a growing need for research on the low-resourced languages, especially, in the domain

of the social media content. The nature of social media content is noisy and exhibits

several socio-linguistic phenomena, e.g. short length, informality, Romanisation,

spelling variation, multilingualism. Each of these factors presents challenges to the

LID systems that are trained with formal content. So researchers (Hughes et al.,

2006; Das and Gambäck, 2015) have focused more on obtaining accurate word-level

LID for social media content. Further, Hong et al. (2011) show that half of the tweets

in Twitter are not English. Hughes et al. (2006) also argue that the approaches which

perform well for major languages may not perform well for minority languages.

In recent research, supporting low resourced languages (Lui and Baldwin, 2014;

Hong et al., 2011), handling code-mixing (Solorio and Liu, 2008a), Romanisation of

non-Roman script languages (Barman et al., 2014a; Das and Gambäck, 2014) have

become popular topics of LID research.

30

4.1 Chapter Organization

In this chapter, we present our experiments on word-level LID with a trilingual

(English-Bengali-Hindi) code-mixed social media content. We discuss related studies

of LID with code-mixing in Section 4.2, present our research questions in Section

4.3, and describe our experiments in Section 4.4. Section 4.5 describes the analysis

of the performance of different systems and finally we summarize this chapter in

Section 4.6 by answering the research questions and by highlighting other findings.

4.2 Background

Before discussing the related research of word-level LID with code-mixed data, first

we discuss some important work on LID. As discussed above, LID has been inves-

tigated mainly in four ways: document classification, short text classification, word

and sub word-level sequence classification.

One of the most important works on automatic LID was carried out by Cavnar

and Trenkle (1994), where LID was treated as document classification. They use n-

gram models to create document and language profiles and classified each document

by measuring rank-order similarity across language profiles. The use of n-grams has

been popularized by Cavnar and Trenkle (1994) and many other researchers have

used and updated it in many ways (Dunning, 1994; Sibun and Reynar, 1996). Dun-

ning (1994) used Markov models and a Bayesian classifier that discriminates words

and byte n-grams across languages in the training set and finds similar patterns

in the test set. They performed their study for news articles. Grefenstette (1995)

performs a comparative study of two methods: (1) character trigram-based and (2)

short word-based for European languages and found both of these methods perform

well for long texts (word count ≥ 50), but that a trigram-based method is more

robust for shorter texts. Prager (1999) used a tf-idf based vector space model which

uses the cosine similarity between the training and test language model. In their

study words and n-grams were used to classify monolingual documents in 20 dif-

31

ferent languages and found that for short texts their method did not perform well.

In another comparative study (Padró and Padró, 2004), Markov models, trigram

frequency vectors, and n-gram text categorization were used to perform LID in six

different languages, among these models, the Markov models outperformed the other

two methods. Similar studies have been made by other researchers (Grothe et al.,

2008), where methods like short word-based model, frequent word-based model and

the character n-gram-based model are compared, after tuning different parameters,

the performance of all three methods become similar. Supervised machine learning

based LID (e.g. k-Nearest Neighbours, SVM, Naive Bayes) with n-grams as features

was presented in the study of Baldwin and Lui (2010b). They performed LID for

web documents and found that a simple 1-NN model and an SVM with a linear ker-

nel (that uses byte n-grams as features) is best for the their task. They concluded

that LID becomes challenging (1) if the number of target languages is large, (2) the

size of the training set is small and (3) document length is shorter. Later, Lui and

Baldwin (2011) developed a Naive Bayes-based method for cross-domain language

identification, which mines the discriminated features across 97 languages and across

5 data sets and outperforms the method of Cavnar and Trenkle (1994). Finally, Lui

and Baldwin (2012) developed an off-the-shelf LID tool (langid.py) that uses Naive

Bayes algorithm with n-grams as features. It is a well known tool for LID among the

NLP community for its ease of use and robustness. Among other document-level LID

studies, hidden Markov models (HMM) (Xafopoulos et al., 2004), URL-based LID

by keyword extraction (Baykan et al., 2008) and corpus creation for low-resourced

languages (Scannell, 2007) can be seen.

Sentence-level LID, on the other hand, is much harder than document level LID

because of the short length and possible inclusion of noise (i.e. tweets or social media

posts and comments). Tromp and Pechenizkiy (2011) used a graph-based n-gram

approach to classify tweets in six languages. Bergsma et al. (2012) investigated

LID techniques with tweets of 9 languages. In their work they only considered

monolingual tweets. Vogel and Tresner-Kirsch (2012) included linguistic features

32

on top of the method of Tromp and Pechenizkiy (2011) and achieved near perfect

accuracy. The use of Bayesian classifiers was also investigated for tweets (Laboreiro

et al., 2013) and short texts (e.g.film subtitles) (Winkelmolen and Mascardi, 2011).

Goldszmidt et al. (2013) used character frequencies to build a boot-strapping-based

statistical LID to classify tweets of five different languages. They used Wikipedia

for training and found that Wikipedia is not suitable for such data because the

words of social media are quite different from their training data. Carter et al.

(2013) investigated the use of contextual features, hash tags, author, mentions in

five major European languages: Dutch, English, French, German, and Spanish.

They found the combination of all features performed best. LID for short text in

Indian languages (e.g. Hindi, Bengali, Marathi, Punjabi, Oriya, Telugu, Tamil,

Malayalam and Kannada) was investigated by Murthy and Kumar (2006) using

linear regression. However, their work was based on language specific scripts. They

did not consider Romanisation in their work.

The granularity of multilingualism is not limited to the sentence level. Code-

mixing (e.g. intra-sentential and word-level) is a prominent example of this fact.

When multiple languages are mixed in a sentence it is necessary to use a word-level

strategy. Recently, a number of research articles have been published for code-

mixed LID. Solorio and Liu (2008a) tried to predict the points inside a set of spoken

Spanish-English sentences where the speakers switch between the two languages.

To do this, they used a dictionary-based and character n-gram-based LID approach.

They also showed that by exploiting language information, monolingual POS tag-

gers can be used to achieve a good accuracy to detect code-switch points. Yam-

aguchi and Tanaka-Ishii (2012) performed language identification through dynamic

programming using artificial multilingual data, created by randomly sampling text

segments from monolingual documents. King and Abney (2013) used weakly semi-

supervised methods to perform word-level language identification. A dataset of 30

languages has been used in their work. They explored several language identification

approaches, including a Naive Bayes classifier for individual word-level classifica-

33

tion and sequence labelling with CRF trained with Generalized Expectation criteria

(Mann and McCallum, 2008, 2010), which achieved the highest scores. Another work

on this topic is Nguyen and Doğruöz (2013). They report on language identification

experiments performed on Turkish and Dutch forum data. Experiments were been

carried out using language models, dictionaries, logistic regression classification and

CRF. They found that language models are more robust than dictionaries and that

contextual information is helpful for the task. Lignos and Marcus (2013) performed

LID for bi-lingual Spanish-English tweets using the ratio of the probability of a word

in a language. However, the risk of word ambiguity due to lexical similarity is not

included in their work. Voss et al. (2014) present their work on Romanized Mo-

roccan Arabic, English and French code-mixed tweets using a Maximum Entropy

classifier. Chittaranjan et al. (2014) performed language identification with CRF

with hand-crafted orthographic and contextual features. Rijhwani et al. (2017) on

the other hand, attempted to obtain a generalized model to identify code-mixing for

a number of language pairs by combining multiple hidden Markov models.

Word-level LID for code-mixed data gained popularity through recent share

tasks, for example, the First Workshop of Computational approaches to code-switching,

(Solorio et al., 2014a), the FIRE 2015 Shared Task on Mixed Script Information

Retrieval (Sequiera et al., 2015b) and the Second Workshop of Computational Ap-

proaches to Code-switching (Diab et al., 2016). Word-level LID for multiple lan-

guage pairs (e.g. Nepali-English, Spanish-English, Hindi-English) was investigated

in these workshops by many researchers using a number of machine learning algo-

rithms, including, CRF (Chittaranjan et al., 2014; Jain and Bhat, 2014; Xia, 2016),

SVM (Barman et al., 2014b; Bar and Dershowitz, 2014), logistic regression (Shir-

vani et al., 2016) and LSTM (Jaech et al., 2016). Other than neural methods most

of the researchers focused on extracting handcrafted orthographic and contextual

information as features in their algorithm. These features are mainly: character n-

grams, use of language model and dictionaries, capitalisation information, presence

of number and punctuation in a word etc.

34

Neural methods for code-mixed word-level LID are gaining popularity. One of

the benefits of neural approaches is that it allows us to avoid handcrafted feature en-

gineering. Neural word representations or embeddings are often used in the place of

hand crafted features like character n-grams. Some researchers have used word rep-

resentations obtained from shallow neural models as features to standard sequence

labelling methods (e.g. CRF). For example, Xia (2016) used word embeddings with

handcrafted features for CRF and found that using both types of features results

in better word-level accuracy. Chang and Lin (2014), on the other hand, used

Jordan-type RNN and Elman-type RNN with character n-grams and word embed-

dings as features and concluded that adding character n-grams as features improves

the performance of their RNN-based models. The use of character n-grams as fea-

tures along with word embeddings is mainly due to the morphological structure of

a word. Some embedding (e.g. word2vec) techniques use the word as the atomic

unit to learn representations. Sub-word-level information is not present when words

are considered as atoms. To retain the word and character level information, Samih

et al. (2016), used an architecture of two parallel LSTMs, one used word embeddings

and the other used character embeddings of a word as input, and generated two dif-

ferent word representations, which are concatenated, and finally a softmax/CRF

was applied to the concatenated representation to predict the language of a token.

Another architecture was proposed by Jaech et al. (2016), who used a CNN-LSTM

architecture where CNNs were used to obtain word vectors from character represen-

tation, and then fed as a sequence of vectors to a bidirectional LSTM, followed by a

softmax to generate the output. LSTM with character and phonetic encoding was

used to classify Bengali-English code-mixed data (Mandal et al., 2018).

4.3 Research Questions

In this chapter we focus on word-level LID with code-mixed and romanised social

media content collected from Facebook. Three languages are involved, English and

35

two relatively low resourced Indian languages, Hindi and Bengali. For word level

language identification we try to find the answers of the following:

• How well does a simple method like a dictionary-based language identification

system behaves for such data?

• How well does the non-neural machine learning method (e.g. Support Vector

Machines and Conditional Random Fields) perform with useful features (e.g.

character-n-grams) in language identification experiments with such data ?

Do these methods perform better than dictionary-based system?

• Neural word embeddings have been successfully used in many NLP tasks in

recent years, e.g., language modelling, POS tagging. Can the recurrent neu-

ral sequence labelling methods (e.g. Long Short Term Memory) with these

embeddings perform better than Support Vector Machines and Conditional

Random Fields based systems in language identification?

• Social media code-mixed data with ad-hoc Romanisation exhibits word am-

biguity across languages. The contextual information is necessary to resolve

this ambiguity. How well can sequential learning methods (e.g. CRF, LSTM)

learn from contextual clues to disambiguate such words ?

• When exploring neural methods, the choice of neural embedding is an impor-

tant factor. There are some embedding techniques that consider individual

words as units (e.g. word2vec). Also some other embeddings (e.g. fasttext)

are available which not only consider the words but also considers the com-

positions features (e.g. character-n-grams) of a word to learn the word rep-

resentation. In this context we propose to investigate the following question:

which one is the better choice for social media’s code-mixed unnormalised data

word2vec or fasttext ?

36

4.4 Experiments

4.4.1 Resource

We use the following corpora in our experiments as dictionaries and as unlabelled

training data to obtain neural embeddings for word and characters.

• text8: This is an English corpus, a collection of Wikipedia articles and con-

tains 17M tokens and 253,855 types. The corpus is freely available with the

word2vec toolkit.

• Bengali Song Lyrics Corpus: This is a collection of romanised Bengali song

lyrics collected from www.lyricsbangla.com/. It contains 310,565 tokens and

30,933 types.

• Hindi Song Lyrics Corpus: This is a collection of romanised Bengali song

lyrics collected from www.smriti.com/hindi-songs. It contains 501,212 to-

kens and 19,547 types.

• LexNormList: Spelling variation is a well known phenomenon in social media

content. We use a lexical normalization dictionary created by Han et al. (2012)

to handle the different English spelling variations in our data.

• Unlabelled Facebook Corpus: This is a collection of 77K unlabelled mono-

lingual or code-mixed posts and comments in English, Bengali and Hindi. It

contains 1,553,290 tokens and 86,662 types.

4.4.2 Dictionaries

We start with a dictionary-based system as our baseline. We process English, Ben-

gali and Hindi dictionaries from lower-cased and most-frequent words of text8, Ben-

gali lyrics and Hindi lyrics corpus. We also include LexNormList and relevant 4/5

of the training data as dictionaries in our experiment. The architecture of the

37

www.lyricsbangla.com/
www.smriti.com/hindi-songs

Figure 4.1: Architecture of the dictionary-based system, where EN = text8 corpus,
BN = Bengali lyrics corpus, HI = Hindi lyrics corpus, Training Data = relevant 4/5
of training data and LexNorm List = lexical normalisation list of Baldwin

dictionary-based system is shown in Figure 4.1. To predict the label for each token

in the relevant test split, we consider the following steps:

• A simple rule-based method is applied to predict universal expressions as the

first step. A token is considered as univ if any of the following conditions

satisfies:

1. All characters of the token are symbols or numbers.

2. The token contains certain repetitions identified by regular expressions

(e.g. hahaha).

3. The token is a hash-tag or URL or mention-tags (e.g. @Sumit).

4. Tokens (e.g. lol) identified by a word list compiled from the relevant

4/5th of the training data.

38

• If a token is not ‘UNIV’, then we consult the relevant 4/5 of the training data.

If the test token is present in the training data we predict the most frequent

label according to the training split.

• If the test token is absent from the training data we consult the English,

Bengali and Hindi dictionaries. Prediction is made based on (i) the presence

and (ii) the normalised frequency of the token in three dictionaries.

• If the token is absent from the relevant training split and in the dictionaries,

we check the presence of the token in LexNormList. We predict the ‘EN’ if the

token is present in the LexNormList otherwise we choose the most frequent

label in the relevant training split (e.g. ‘BN’).

Dictionaries Accuracy(%)

All-E 52.75

All-B 60.00

All-H 20.83

E 70.18

EB 84.99

EBH 80.70

EBHT 89.35

EBHTL 90.22

Table 4.1: Average cross-validation accuracy of dictionary-based detection, where
E = text8 corpus, B = Bengali song lyrics, H = Hindi Song Lyrics, T = relevant
4/5 of the training data, and L = LexNormList. All-E, All-B and All-H are those
systems where all tokens are predicted as English, Bengali and Hindi respectively.
Reported results are average of 5-fold cross-validation accuracy.

We try different combinations and frequency thresholds of the above dictionaries.

Table 4.1 shows the average accuracy of 5-fold cross-validation of some dictionary

combinations. We find that using all dictionaries (e.g. EBHTL in Table 4.1) gives

the best cross-validation accuracy (90.22%).

4.4.3 Support Vector Machine (SVM)

We perform experiments with a SVM classifier (linear kernel) for different combina-

tions of the following features:

39

1. character n-gram Features (G): We use the most common n-grams which

is used by many language identification researchers. Following the work of

King and Abney (2013), we select character n-grams (n=1 to 5) and the word

as the features in our experiments.

2. Presence in Dictionaries (D): We use presence in a dictionary as a features

for all available dictionaries in previous experiments.

3. Length of the word (L): We create multiple features for length using a

decision tree (J48). We use length as the only feature to train a decision

tree for each fold and use the nodes obtained from the tree to create Boolean

features.

4. Capitalisation (C): We use 3 Boolean features to encode capitalization in-

formation: whether any letter in the word is capitalized, whether all letters in

the word are capitalized and whether the first letter is capitalized.

5. Context (PiNi): Contextual clues can play a very important role in word-

level language identification. To provide contextual information we consider

the previous and next word of token as features.

In our experiments we identified the word boundaries. We use ‘$’ to indicate

start of a word and ‘£’ to indicate end of a word. Table 4.2 is an example of our

feature set.

Feature Name Features Examples (with value = 1)
G (char-n-gram) $a, m, a, r£, $am, ma, ar£, $ama, mar£, $amar£
D (Dictionary) <dict-train-bn>
L (Length ranges) <4-6>
C (Capitalization) -
P1N1 (Context) <p1-je>,<n1-prothom>

Table 4.2: Features generated for a word ‘amar ’ which is a part of a text fragment:
‘je amar prothom’.

According to Hsu et al. (2010) the SVM linear kernel with parameter C opti-

mization is good enough when dealing with a large number of features. Though

40

an RBF kernel can be more effective than a linear one, it is possible only after

proper optimization of C and γ parameters, which is computationally expensive

for a large feature set. Parameter optimization (C range 2-15 to 210) for SVM are

performed for each feature set and best cross-validation accuracy is found for the

GDLCP1N1-based run (93.06%) at C = 0.0312 (see Table 4.3).

Features Accuracy C

G 91.75 0.0156

GD 92.45 0.0009

GDL 92.61 0.0019

GDLC 92.59 0.0019

GDLCP1N1 93.06 0.0312

Table 4.3: Average cross-validation accuracy for SVM word-level classification, G
= char-n-gram, L = binary length features, D = presence in dictionaries and C =
capitalization features and P-i = previous i word(s) , N-i = next i word(s).

4.4.4 Conditional random field (CRF)

We employ a first order linear chain CRF with stochastic gradient decent and L1

penalty parameters. We use similar features as those in SVM LID experiments.

For character n-grams we use prefix and suffix n-grams of length 5. We use the

dictionary-based predictions of the baseline system to generate a single dictionary

feature for each token and only the raw length value of a token instead of binarised

length features. The capitalisation features are kept same as SVM-based experi-

ments. We optimize each feature combination by varying the learning rate from 2-5

to 20. The best performance of 92.29% average cross-validation accuracy is obtained

with GDLCP1N1 feature set and using learning rate = 0.0625.

4.4.5 Long Short Term Memory (LSTM)

LSTM RNNs have shown good performance in sequence labelling tasks (e.g. LID,

POS tagging, NER). In code-mixed LID, the use of LSTMs has been investigated

in recent years (Samih et al., 2016; Mandal et al., 2018). We use the bi-directional

41

Features Accuracy Learning Rate

G 91.74 0.125

GD 92.24 0.031

GDL 91.56 0.001

GDLC 92.25 0.125

GDLCP1N1 92.29 0.0625

Table 4.4: Average cross-validation accuracy for CRF word-level classification, G
= char-n-gram, L = binary length features, D = presence in dictionaries and C =
capitalization features and P-i = previous i word(s) , N-i = next i word(s).

LSTM to perform word-level language identification. Two different architectures are

employed to perform word-level LID. The first one is a simple bi-directional LSTM

which only considers word vectors as input, and the second one is a combination of

two LSTMs, one for the character level and another for the word level.

4.4.5.1 Embeddings and Common Settings

As features to the LSTM network, we compare the use of word2vec (Mikolov et al.,

2013), which treats words as atoms, the CWE (Chen et al., 2015) which jointly learns

both word embeddings and character embeddings and fasttext (Joulin et al., 2016;

Bojanowski et al., 2016) which considers bags of word n-grams and represents each

word by a sum of its character n-grams. CWE and fasttext embeddings can be

expected to be useful for morphological rich languages and also effective with high

spelling variation such as in social media content, especially with ad-hoc Roman-

isation of non-Latin scripts. The detailed information of these embedding can be

found in Chapter 3. All embeddings are trained with negative sampling using a cor-

pus that incorporates monolingual, and code-mixed contents in English, Hindi and

Bengali (see Section 4.4.1). The hyper parameters used to train the embeddings are

described in Table 4.5. It is worth mentioning that, word2vec and CWE embedding

do not generate word vectors for out-of-vocabulary (OOV) words, to cope with this

we introduce a special token ‘unk’ to replace the low frequency words (frequency

<= 5) in our corpus. However, fasttext can generate word vectors for OOV words

as it considers character n-grams while building the vector representation of a word.

42

Hyper Paramters Value
Learning rate 0.05
Minimum word count 2
Context window 3
Vector size 100
Iteration 50

Table 4.5: Hyper parameters for embedding training

During training, fasttext considers a range of character n-grams as an extra hyper

parameter which has been set to the range of 1 to 5. The rest of the hyper pa-

rameters of fasttext are the same as word2vec and CWE. We use these embedding

models to obtain word and character representations to initialize the embedding

layer of our LSTM-based models.

Neural networks tend, to over-fit when operating on small sets of training data.

To mitigate this, dropout (Hinton et al., 2012) is used in different parts of our

architectures. Dropout with a certain threshold indicates that that percentage of

the internal neurons will be switched off during training. Dropout is applied after

an embedding layer, after bi-LSTM and before the output layer of the network.

As prepossessing steps, maximum word length is set to 30 characters, maximum

sentence length (i.e. the temporal dimension of LSTM) is set to 78 words. All

words having less than 30 characters are padded with a special token to achieve

same length for all words, similar thing is done with sentences to achieve the same

sentence length over the data.

4.4.5.2 Word-level Bidirectional LSTM

This model takes an input sequence of words, (w = w1, ..., wT). For a given word

wt, a vector representation xt ∈ Rdw is generated from a word embedding look-up

table which is the first layer of this network. For the sequence of such vectors x1:T

the LSTM network maps the input sequence x1:T to an output sequence y1:T by per-

forming calculation over the network unit activations using the following equations

43

Figure 4.2: Model Architecture: Word-level LSTM Model for LID, unrolled across
three time steps, where wi−1:i+1 are the words and yi−1:i+1 are language labels.

in an iterative way from t = 1 to T :

it = σ(W x
i xt +W h

i ht−1 +W c
i ct−1 + bi)

ft = σ(W x
f xt +W h

f ht−1 +W c
f ct−1 + bf)

ot = σ(W x
o xt +W h

o ht−1 +W c
o ct−1 + bo)

ct = ft � ct−1 + it � tanh(W x
c xt +W h

c ht−1 + bc)

ht = ot � tanh(ct)

At time step t, xt ∈ Rdw is the input vector to the LSTM, it specifies the input

gate’s activation vector, ft is the forget gate’s activation vector, ot is the output

gate’s activation vector, ct denotes the cell state vector, and ht denotes the hidden

vector of LSTM unit. W s specifies weight matrices, bs specifies bias vectors, σ is

the logistic sigmoid activation function, tanh is the hyperbolic tangent activation

function and � is the entry-wise product of vectors. For two LSTMs (one in forward

44

Hyper Paramters Value
Learning rate 0.05
LSTM hidden unit 256
Dropout rate 0.5
Batch size 64
Epochs 10
word vector dimension (dw) 100

Table 4.6: Hyper for word-Level LSTM

direction and another in backward direction), we have two output vectors hforward
t

and hbackward
t , the final output vector h̃t is a concatenation of these two vectors,

h̃t = hforward
t ⊕ hbackward

t

Here, ⊕ is the concatenation operation. Finally, the concatenated vector passes

through a fully connected layer with a softmax activation function to generate yt:

yt = softmax(Wyh̃t + by) (4.1)

The architecture of this model is illustrated in Figure 4.2. We use categorical cross

entropy as the loss function to this network:

Lcross entropy(y, ŷ) = −
∑
i

yilog(ŷi) (4.2)

The hyper parameters of our model are described in Table 4.6.

This network is used to monitor the performance of different embeddings: word2vec,

CWE and fasttext. Table 5.2 shows that fasttext outperforms word2vec and

cwe with both CBOW and skip-gram models. The best performance (96.38%) is

achieved by the fastext with skip-gram embedding in terms of average 5-fold cross-

validation.

45

Type Model Accuracy Type Model Accuracy
word2vec CBOW 95.20 word2vec skip-gram 95.16

CWE

CBOW 95.31

CWE

skip-gram 95.14
CBOW+P 95.43 skip-gram+P 95.76
CBOW+L 95.59 skip-gram+L 95.81

fasttext CBOW 96.27 fasttext skip-gram 96.38

Table 4.7: Accuracy of LSTM with word2vec, CWE and fasttext embeddings. Re-
ported results are average five fold cross-validation accuracy.

Figure 4.3: Model Architecture: Word + Character-level LSTM model, unrolled
across three time steps, where wi−1:i+1 are the words and yi−1:i+1 are language labels.

46

4.4.5.3 Word + Character-level Bidirectional LSTM

This model considers words and the characters of the words as input to the network.

For a given word wt, at time step t, let the character sequence of the word be

cwt
1:M = {cwt

1 , c
wt
2 , ..., c

wt
m , ..., c

wt
M}. A character’s one-hot representation cwt

m passes

through a character embedding look-up table and generates dc dimensional vector

chm. These embeddings are obtained using the fasttext skip-gram model. Thus

for wt an embedding matrix of size M × dc is generated which serves as the input

to the character-level bi-directional LSTM (char-LSTM). The char-LSTM encodes

its input to a fixed size representation hcM , which is the concatenation of the final

output vectors (after M steps) of forward and backward char-LSTMs. Further, a

vector representation xt ∈ Rdw for wt is generated from a word embedding look-up

table. Finally, the two representations (i.e. xt and hcM) of wt are concatenated to

obtain a single representation vt. For, a sequence of words, w1, w2,wT a vector

representation v1, v2,vT is obtained and is passed to another bidirectional LSTM

(word-LSTM) which operates at word-level and generates the output y1, y2, ..., yT .

The architecture of this model is shown in Figure 4.3. Following is the formal

definition of the model (on the next page):

47

Char-LSTM

icharm = σ(W ch
i chm +W h

i h
char
m−1 +W c

i c
char
m−1 + bchari)

f char
m = σ(W ch

f chm +W h
f h

char
m−1 +W c

f c
char
m−1 + bcharf)

ocharm = σ(W ch
o chm +W h

o h
char
m−1 +W c

o c
char
m−1 + bcharo)

ccharm = f char
m � ccharm−1 + icharm � tanh(W ch

c chm +W h
c h

char
m−1 + bcharc)

hcharm = ocharm � tanh(ccharm)

after final step, i.e m = M , considering bi-directional case

hcM = (hcharM)forward ⊕ (hcharM)backward

obtaining single representation vt for wt

vt = hcM ⊕ xt

Word-LSTM

iword
t = σ(W v

i vt +W h
i h

word
t−1 +W c

i c
word
t−1 + bword

i)

fword
t = σ(W v

f vt +W h
f h

word
t−1 +W c

f c
word
t−1 + bword

f)

oword
t = σ(W v

o vt +W h
o h

word
t−1 +W c

o c
word
t−1 + bword

o)

cword
t = fword

t � cword
t−1 + iword

t � tanh(W v
c vt +W h

c h
word
t−1 + bword

c)

hword
t = oword

t � tanh(cword
t)

considering bi-directional case

˜hword
t = (hword

t)forward ⊕ (hword
t)backward

yt = softmax(Wy
˜hword
t + by)

(4.3)

48

Hyper Paramters Value
Learning rate 0.05
LSTM hidden unit 256
Dropout rate 0.5
Batch size 64
Epochs 10
word vector dimension (dw) 100
character vector dimension (dc) 100

Table 4.8: Hyper parameters for word + character-level LSTM

Model CBOW skip-gram
Word-level LSTM 96.27 96.38
Word+Char-level LSTM 97.23 97.98

Table 4.9: Comparison of word-level and word+char-level LSTM for fasttext em-
beddings. Reported results are average of five fold cross-validation

We use categorical cross entropy (see Equation 4.2) as the loss function to this

network. The hyper parameter of this model is described in Table 5.3. The word

+ character-level LSTM outperforms the word-level LSTM model skip-gram em-

bedding by 1.04% when using fasttext CBOW and 1.60% when using fasttext

skip-gram embedding (Table 4.9).

4.5 Analysis and Discussion

Manual analysis is performed with the best performing systems of each kind. These

systems are: (i) dictionary-based system (e.g. EBHTL), (ii) SVM-based system

(e.g. GDLCP1N1), (iii) CRF-based system (e.g. GDLCP1N1) and (iv) word +

Label Precision Recall F-Score
bn 0.99 0.99 0.99
en 0.96 0.98 0.97
hi 0.95 0.96 0.96
mixed 0.95 0.57 0.71
ne 0.95 0.78 0.86
acro 0.86 0.78 0.82
univ 1.00 0.99 0.99

Table 4.10: Performance of word+char-level LSTM.

49

Label(s) Dict SVM CRF LSTM
en 90.99 93.00 92.49 98.47
bn 95.18 94.81 96.91 99.16
hi 58.62 72.05 74.19 96.25
mixed 17.91 50.74 17.91 56.71
ne 25.41 75.49 24.80 77.92
acro 55.86 76.05 53.05 78.40
univ 97.95 99.05 97.99 99.11
overall 90.22 93.06 92.29 97.98

Table 4.11: Per label accuracy of different systems, where dict = dictionary-based
system (e.g. EBHTL), SVM = SVM-based system (e.g. GDLCP1N1), CRF = CRF-
based system (e.g. GDLCP1N1) and LSTM = LSTM-based system (e.g. word +
character level bidirectional LSTM-based system).

character level bidirectional LSTM-based system with fasttext skip-gram embed-

dings. Table 4.11 shows the per label and overall accuracy on our data produced by

these systems. In terms of five-fold cross-validation accuracy the word + character

level bidirectional LSTM-based system achieves the highest accuracy with a score

of 97.98%. We further perform different analysis on these results described in the

following subsections.

4.5.1 Statistical Significance Test

For statistical significance testing we use two-sided bootstrap re-sampling Efron

(1979) by implementing the pseudo-code of Graham et al. (2014). We use a sample

size of 1K and α = 0.05. We find that (i) the improvement of SVM, CRF and

LSTM over dictionary-based system is statistically significant, (ii) the improvement

of SVM over CRF is also statistically significant and (iii) the improvement of LSTM

over SVM and CRF is statistically significant.

4.5.2 Ambiguous vs Non-ambiguous Words

The output of these systems are analysed for the ambiguous and non-ambiguous to-

kens. Figure 4.4 shows the performance of different systems for these two categories.

We find that for the ambiguous tokens LSTM achieves highest accuracy (95.02%)

50

Figure 4.4: Performance of different systems for ambiguous and non-ambiguous to-
kens where DICT = dictionary-based system (e.g. EBHTL), SVM = SVM-based
system (e.g. GDLCP1N1), CRF = CRF-based system (e.g. GDLCP1N1) and LSTM
= LSTM-based system (e.g. word + character level bidirectional LSTM-based sys-
tem).

which is followed by the performance of CRF ((85.06%), SVM (84.51%) and the

dictionary-based system (77.05%). LSTM also achieves highest accuracy for the non-

ambiguous tokens (98.63%). The performance of CRF (93.88%), SVM (94.93%) and

dictionary-based system (93.10%) are competitive for the non-ambiguous tokens.

4.5.3 Code-Mixing Points

A code-mixed point is the point where language changes happen (e.g. English to

Bengali, Hindi to English). We consider a token as a code-mixed point (token-0)

if the language of the token has been changed compared to the language of the

previous token. Labels such as ‘ne’, ‘acro’, ‘univ’ and ‘mixed’ are not considered

as change of language. It can be observed that the LID accuracy suffers at the

code-mixed points. Figure 4.5 shows the result of our analysis, where +1 means one

token to right of a code-mixed point and -1 means one token to the left. It can be

seen that all tested methods perform poorly at code-mixed points. Performance of

these systems increases as the distance to code-mixed points increases. For example,

let us consider the following sentence:

aap/hi/hi toh/hi/hi [go/en/hi] went/en/en gone/en/en

51

Figure 4.5: Performance at code-mixed points and surroundings: Considering 0 as
code-mixing point, +i means i token to right of a code-mixed point and -i means
i token to the left where DICT = dictionary-based system (e.g. EBHTL), SVM =
SVM-based system (e.g. GDLCP1N1), CRF = CRF-based system (e.g. GDLCP1N1)
and LSTM = LSTM-based system (e.g. word + character level bidirectional LSTM-
based system).

In the above sentence ‘go’ is the code-mixed point. Gold labels are written in bold

and predicted labels are written in italics. It can be seen the word in the code-mixed

point is actually an English word but all systems have classified it incorrectly. As

a reason it can be noted that this particular lexical form ‘go’ is shared across three

languages due to Romanisation. In Bengali and Hindi it is also frequent. Such

ambiguous words when preceded by a particular language (in this case Hindi) all

of our systems tend to tag it by the language of the previous word. To understand

this effect, we also investigate that how an ambiguous token affects the accuracy at

a code-mixed point (see Figure 4.6). We find that 20.69% code-mixed points are

made of ambiguous tokens. We observe that the performance of all methods suffers

if an ambiguous token is present at a code-mixed point. On the other hand for a

non-ambiguous token at a code-mixed point, the accuracy of all systems is higher

than 93.00%.

52

Figure 4.6: Performance at code-mixed point: Ambiguous and non-ambiguous to-
kens, where DICT = dictionary-based system (e.g. EBHTL), SVM = SVM-based
system (e.g. GDLCP1N1), CRF = CRF-based system (e.g. GDLCP1N1) and LSTM
= LSTM-based system (e.g. word + character level bidirectional LSTM-based sys-
tem).

Figure 4.7: Performance of different systems on monolingual and code-mixed sen-
tences where DICT = dictionary-based system (e.g. EBHTL), SVM = SVM-based
system (e.g. GDLCP1N1), CRF = CRF-based system (e.g. GDLCP1N1) and LSTM
= LSTM-based system (e.g. word + character level bidirectional LSTM-based sys-
tem).

53

4.5.4 Monolingual vs Code-Mixed Sentences

Figure 5.4 shows the performance of different systems for monolingual and for code-

mixed sentences. Among monolingual sentences, we observe that LSTM performs

best in terms of average word-level accuracy of 98.06%. The dictionary-based sys-

tem is always outperformed by SVM, CRF and LSTM. For bilingual and trilingual

mixing, again LSTM is the best performer achieving 98.16% and 97.75% average

word-level accuracy. Other systems, suffers heavily when classifying bilingual and

bilingual sentences (less than 90%) but for tringual sentences the performance of all

systems is near (dictionary) or over (SVM, CRF) 90%. To understand this effect we

analyse the number of code-switching points in bilingual and trilingual sentences,

and find that the total number of code-mixing points is 2,891 in bilingual sentences,

whereas it is only 43 for the trilingual sentences. It has been seen that the perfor-

mance of all of the systems suffers at code-mixed points. This can be one of the

reasons of the poor performance of all the systems in a bilingual content.

4.5.5 Word-based Vs. Word+Character-based LSTM

Table 4.12 shows the comparison of the two systems word-based LSTM and word

+ character-based LSTM models. It can be observed that for each label the word

+ character-based model outperforms the word-based model. The performance for

‘mixed’, ’ne’ and ’acro’ achieved significant improvement when character-level LSTM

has been used in the network. This indicates that even if the two networks have

been presented with the same word representation (fasttext) that considers the

character n-grams, the word + character level model has learned some extra features

that are helpful to classify word-level code-mixing, name-entity and acronym. The

word + character level LSTM consistently outperforms the word-level model.

54

Label Word-LSTM
Word+Character
LSTM

bn 0.98 0.99
en 0.96 0.97
hi 0.93 0.96
mixed 0.44 0.71
ne 0.71 0.86
acro 0.62 0.82
univ 0.99 0.99

Table 4.12: Comparison of Word-based and Word + Character-based LSTM: Re-
ported Results are F1 scores.

Label en bn hi mixed ne acro univ
en 5827 37 20 1 9 14 9
bn 74 12182 12 1 6 4 6
hi 16 33 1440 0 5 0 2
mixed 21 6 0 38 0 2 0
ne 57 41 39 0 512 7 1
acro 31 8 3 0 4 167 0
univ 26 10 3 0 3 0 4706

Table 4.13: Confusion Matrix of Word + Character-level LSTM Model

4.5.6 Error Categories

Table 4.13 shows the confusion matrix for the best performer (word + character-

level LSTM). The most frequent error categories are: ’bn’ to ’en’ (i.e. Bengali word

is miss-classified as English) and ‘ne’ to ‘en, bn and hi’. For the first category, it

has been observed that the most of the miss-classified Bengali words are ambiguous

in nature, for example: ‘day’, ‘pass’ and ‘ful’. Some errors (‘bn’-’en’) also occurred

for the code-mixed reduplicated expressions, for example - ‘kiss-tiss, boss-toss, post-

fost’. For these expressions, the second word is the Bengali word but both of the

words are tagged as English. For other instances of this error category, we find that

either the Romanisaed versions of these words are very close to some English words,

for example ‘prten (pertain), chrome (chrame)’, or these words are very short words

(length <= 2), for example: ‘a, k, v’ with a very small amount of context, for

example:

• ... k bol ?

55

• a ma ...

• or jonne ..

Named entities are miss-classified as Bengali, Hindi or English. In romanised social

media content, feature like ‘capitalisation’ is inconsistent. In the Indian languages

(e.g. indo-aryan language family) ambiguity occurs between between common and

proper nouns for named entity identification. For example: the word, ‘akash’ can be

a name (e.g. ‘akash sinha’, proper noun) or it can be a common noun which means

‘sky’. Further, adhoc Rromanisation also increases ambiguity. Considering these

facts we observe that most of ‘ne to other languages’ errors follow the ambiguity

pattern. For example, ‘rimjim’, ‘nana’, ‘mamata’ for Bengali (each of these word can

be a part of named entity or can be other words depending on the context). These

words have been incorrectly classified as Bengali words. We also find that that most

of these words appeared after a Bengali word in the content. As for Hindi, similar

error patterns can be observed where a ambiguous word (e.g. ‘ne’/‘hi’) preceded

by a Hindi word has been incorrectly classified. For example: ‘day’, ‘bhole’, ‘zahir’.

We also observe another pattern of error where the first token of a named entity has

been incorrectly classified as a language token. For example:

• ... science city ..

• ... the telegraph ...

The words, ‘science’ and ’the’ is included in the named entity but all of our systems

have produced wrong level (e.g. ‘en’) for the two tokens. Name entity identification

is benefited if features like POS, chunks are available. However, in our LID exper-

iments we did not include such features whcih can be an explanation for this type

of error.

The top three error categories produced by SVM, CRF and dictionary-based

systems are shown in Table 4.14. The most common error pattern produced by

all three systems (see first row of Table 4.14) is hi-bn, i.e. Hindi words that are

56

Errors DICT CRF SVM
hi-bn 533 316 559
en-bn 426 333 303
ne-bn 283 278 314

Table 4.14: Top three errors categories for different systems where DICT
= dictionary-based system (e.g. EBHTL), SVM = SVM-based system (e.g.
GDLCP1N1), CRF = CRF-based system (e.g. GDLCP1N1).

classified as Bengali words. The following comment is an example where this type

of error has been occurred:

er/bn manei/bn holo-vai/bn sab/hi ka/hi nahi/hi lagta/hi

The word ‘sab’ is a shared word among Bengali and Hindi. It appeared 8 times as

Bengali and 5 times as Hindi in the data set. In this sentence the word ‘sab’ is a

code-mixed point and is misclassified as Bengali by all of our systems. Following is

an example of a en-bn error, i.e. English word ‘age’ has been classified as an Bengali

word by all of our systems.

.../univ from/en my/en personal/en experience/en age/en doesn’t/en

matter/en

The word ‘age’ is an ambiguous word and appeared 17 times as Bengali, 2 times as

Hindi and 2 times as English in our data set. An example of ‘ne-bn’ error category

is ‘Manna/ne Dey/ne’, where Dey has been classified as Bengali by all of our

systems. The word ‘Dey’ is also an ambiguous word which appeared 6 times as

Bengali and only once as a part of name entity in our data set.

4.6 Conclusion

We have performed 7-way word-level language identification with trilingual code-

mixed content using a dictionary-based baseline, with an SVM, with a CRF and with

an LSTM. We have explored character n-grams, presence in dictionaries, length,

capitalisation, previous and next word as features with SVM and CRF. We also

57

explored the use of neural word-embeddings with LSTM. In this section we answer

the set of research questions mentioned in this chapter (Section 4.3) which were the

motivation for this chapter.

• We find that a carefully designed dictionary-based system that combines mono-

lingual and code-mixed data can perform reasonably well (over 90%) with this

trilingual code-mixed data.

• However, an SVM (93.06%) and a CRF (92.29%) when trained with useful

features (e.g. character n-grams, presence in dictionaries, length, capitalisa-

tion, previous and next word) can outperform the dictionary-based system

significantly.

• It is possible to outperform SVM and CRF using LSTMs (word-level and word

+ character-level) with neural word embeddings (fasttext). In fact, our word

+ character-level LSTM outperforms all other systems in our experiments

(98%).

• The word ambiguity due to Romanisation and other reasons (e.g. shared

vocabulary across Bengali and Hindi) is a critical point of word-level LID. We

observe that all of our systems suffer due to this ambiguity. Among all the

systems our word + character-level LSTM performs better than the other, and

achieves 95% word-level average accuracy for these words (Figure 4.4).

• We observe that embeddings that use characters as well as words (e.g. CWE,

fasttext) are better than embeddings (word2vec) that only consider words

as a feature. The results are depicted in Table 5.2.

We also observe that the accuracy of each model suffers at the code-mixed points

(Figure 4.5) due to the presence of ambiguous tokens (Figure 4.6). It is also observed

in error analysis that code-mixed reduplicated expressions are difficult instances to

classify. As for word and word + character-level model, we find that the latter

has performed better at word-level. Both of these models are presented with an

58

embedding that considers character n-grams. However, the word + character-level

model learns some extra information from the character-level representation of the

word. It can be seen in Table 4.12 and Table 4.9 which indicates that necessity of the

character-level representation in LID for code-mixed social media content. In the

next chapter, we describe our experiments of POS tagging, we investigate the use of

LID (e.g. as a feature, as decision boundary for language specific chunks) in different

POS tagging methods. We also use SVMs, CRFs and word + character-based neural

model in POS tagging task.

59

Chapter 5

Part-of-Speech Tagging

Part-of-Speech (POS) tagging is the process of automatically assigning lexical cat-

egories (noun, pronoun, verb etc.) to each word in a sentence and is a well-known

problem in NLP which facilitates the further processing and understanding of nat-

ural language through other modules, e.g. word sense disambiguation, parsing and

sentiment analysis. POS tagging is a well explored problem in NLP and researchers

have developed highly accurate POS taggers for monolingual and formal content.

The classical problem in automatic POS tagging is to handle the ambiguity of words.

The following are the examples:

• A/DT plant/NN needs/VB light/NN and/CC water/NN ./.

• Each/DT student/NN will/MD plant/VB one/CD ./.

Each word in the above examples is annotated with the POS tag of the Penn Tree-

bank tag set (Marcus et al., 1993). In the first sentence the word ‘plant’ is used

as a noun (NN), but in the second example it is used as a verb (VB). In the case

of social media data, POS tagging is harder because of spelling variations and in-

formal writing style. Moreover, the task is even harder if the social media data is

code-mixed and romanised.

• .../SYM age/NN doesnt/VBZ

matter/VB .../SYM take/VB a/DT bow/NN :D/SYM .../SYM

60

• manush/bn/N NN to/bn/RP RPD age/bn/N NST nijeke/bn/PR PRF

chene/bn/V VM jane/bn/V VM valo/bn/JJ kore/bn/V AUX .../univ/SYM

nijer/bn/PR PRF culture/en/N NN take/bn/PSP boje/bn/V VM .../univ/SYM

The above examples are Facebook posts, taken from our English-Bengali-Hindi

code-mixed data. The first example is an English post and the tagging follows the

convention of the Penn Tree bank Marcus et al. (1993). The second example is a

Bengali-English code-mixed post. Here, we follow the standardised LDC-IL POS tag

set to tag this post and we add language tags for convenience.1 In the first example,

‘age’ is an English word, whereas in the second example ‘age’ is a Bengali romanised

word. Another instance of vocabulary sharing due to Romanisation can be found

for the word ‘take’ in both of these examples. In the second example the presence

of an English word ‘culture’ indicates that this post is code-mixed. However, to the

annotators it is clear that ‘take’ is a Bengali word in this sentence and that it is a

post-position (PSP), not a verb as in English. Considering these two examples, it

can be assumed that code-mixing and phonetic typing increase POS ambiguity.

5.1 Chapter Organization

In this chapter, we present our experiments on POS with a trilingual (English-

Bengali-Hindi) code-mixed social media content. We discuss related studies of POS

tagging in Section 5.2, present our research questions in Section 5.3, and describe our

experiments in Section 5.4. Section 5.5 describes the analysis of the performance of

different systems and finally we summarize this chapter in Section 5.6 by answering

the research questions and by highlighting other findings.

1http://www.ldcil.org/standardsTextPOS.aspx

61

5.2 Background

Different methods have been developed for the POS tagging problem, e.g. hand-

written rule-based (Voutilainen, 1995) and stochastic (Cutting et al., 1992; Brants,

2000) methods. Brants (2000) developed a stochastic HMM-based tagger called

TnT. The tagger uses a second order Markov model with smoothing techniques (e.g.

linear interpolation) and suffix analysis for handling unknown words. Toutanova and

Manning (2000) used a Maximum Entropy Markov Model (MEMM) with capital-

isation features and a set of disambiguation features (e.g. the tense of verbs) and

achieved over 96% accuracy on a Wall Street Journal (WSJ) test set. Nakagawa

et al. (2001) proposed a method for POS tagging of unknown English words using

SVMs. They used contextual and sub-string information of a token as features in

their experiments. A disadvantage of their system is that it takes a long time to

train. Giménez and Màrquez (2004) proposed an SVM-based POS tagger (SVM-

Tool) which is faster than the previous one. They used a rich feature set to train

their system. These features are word n-grams, orthographic features, the length

of a word, prefix and suffix information of a word and the POS features from the

training data (e.g. POS window and ambiguous classes for a word). They tested

their system on two languages, Spanish and English, and they found that their tag-

ger outperformed the TnT tagger. Schmid (1994b) combined a Markov model with

estimation of transition probabilities with decision trees. The system is called “Tree-

Tagger” and parameters for 19 languages are available.2 Lafferty et al. (2001) used

CRFs in POS tagging, which achieved better performance than HMM and MEMM

in their experiments. Other machine learning techniques have also been used in this

area, e.g. decision trees (Black et al., 1992) and CRFs (Lafferty et al., 2001).

POS tagging in social media is hard due to the nature of social media content.

Foster et al. (2011) evaluated off-the-shelf tools in POS tagging and parsing of

Twitter data. They found that propagation of POS tagging errors leads to poor

parsing results. Gimpel et al. (2011) performed POS tagging on Twitter data with

2http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/

62

http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/

CRFs and adapted their features to Twitter characteristics. They also designed

and developed a POS tag set for Twitter. Owoputi et al. (2013) used a first order

MEMM for POS tagging in Twitter data with large-scale unsupervised word clusters

and lexical features. They found that their MEMM-based model outperformed their

previous CRF-based model. As an explanation, they pointed out that the quality

of lexical features is much more important than the type of sequence model.

POS tagging of Indian languages is a very challenging task. The reasons are the

limited availability of annotated corpora and the morphological richness of Indian

languages. Indian languages can be categorised into two major linguistic families,

namely Indo-Aryan (e.g. Bengali and Hindi) and Dravidian (e.g. Tamil and Telugu).

The two groups of languages have different grammatical structure. Moreover the

Dravidian family is agglutinative and the Indo-Aryan family is inflective. Many

POS taggers for Indian languages use morphological analysers. For example, Ray

et al. (2003) performed POS tagging in Hindi using lexical sequence constraints,

ontological information and a morphological analyser. Singh et al. (2006) used

morphological information and the CN2 decision tree induction algorithm to build

a Hindi POS tagger. They tested their system on a BBC news corpus and achieved

over 93% accuracy. Palanisamy and Devi (2006) developed a POS tagger for Tamil

using an HMM-based model. Shrivastava et al. (2006) investigated the use of CRFs

in Hindi POS tagging. They used lexical features and spelling features in their

experiments. Dandapat et al. (2004) investigated the use of an HMM-based POS

tagger in Bengali. They used tagged and untagged data by partially supervised

learning. First the tagged data was processed by supervised learning in their method,

then through multiple iterations they processed the untagged data and updated

the transition and emission probabilities of their supervised HMM-based system.

They also used a morphological analyser in their system and concluded that the

accuracy of the morphological analyser must be increased and typographical errors

of untagged data must be corrected for better POS tagging. Later, Dandapat et al.

(2007) compared supervised and semi-supervised HMM-based models with MEMM-

63

based models for Bengali and found that, with a small amount of training data,

MEMM-based models perform better but with a large amount of training data

the performances are comparable. Ekbal and Bandyopadhyay (2008) developed

POS taggers for Bengali, Hindi and Telugu using SVMs and HMMs. They found

that SVMs perform better than HMMs in all three languages. In 2007, as part

of the Shallow Parsing for South Asian Languages (SPSAL) workshop at IJCAI-

07, a competition on POS tagging and chunking for south Asian languages (e.g.

Hindi, Bengali and Telugu) was conducted, where different participants applied a

wide range of learning techniques such as HMM, MEMM, decision trees, CRFs and

Naive Bayes. The best POS tagging accuracy of 77.61% in Bengali was achieved

using an MEMM-based model Dandapat et al. (2007). For Hindi and Telugu the

best accuracies of 78.66% and 77.37% were achieved by CRF-based methods PVS

and Karthik (2007).

POS tagging with Spanish-English code-mixed data was first explored by Solorio

and Liu (2008b). They examined heuristic and machine learning methods. They use

two monolingual taggers, a Spanish tagger and an English tagger, in their experi-

ments. Their heuristic method used confidence thresholds and a few other indicators

(e.g. tags that indicate a foreign word and the lemma of a word) from the two dif-

ferent taggers. They also combined a dictionary-based language identifier with their

heuristic method and observe a performance boost. In their machine learning meth-

ods, the monolingual POS taggers were used again to extract features (e.g. the word,

POS tags, the lemma and confidence scores according to both Spanish and English

taggers) for their experiments. Among different machine learning methods (e.g.

SVM, Naive Bayes, decision trees), the highest accuracy blue achieved by an SVM

classifier. The following features are employed in their SVM-based experiments: (1)

the word itself, (2) English POS tag, (3) English POS tagger lemma, (4) English

POS tagger confidence, (5) Spanish POS tag, (6) Spanish POS tagger lemma and

(7) Spanish POS tagger confidence.

Vyas et al. (2014) implemented a pipeline approach for POS tagging in English-

64

Hindi code-mixed data. Word-level language identification, text normalisation,

transliteration and POS tagging are performed sequentially with the help of off-

the-shelf tools. They divided the text into contiguous maximal word chunks which

are in the same language. After that, language-specific POS taggers were applied

to predict the POS labels of those word chunks. They identify that normalisation

and transliteration are two challenging problems in this pipeline approach. This

pipeline approach is also investigated by Jamatia and Das (2014) for non-romanised

English-Hindi tweets. However, they identified that the combination of two different

POS taggers leads to lower accuracy for their data.

Jamatia and Das (2014) explored POS tagging in Hindi-English tweets. Most

of their data is in Hindi script. The number of code-mixed tweets is small, only

400 out of 1,700 tweets and the remaining tweets were monolingual Hindi tweets.

For monolingual Hindi tweets, they trained an off-the-shelf POS tagger with 1,200

monolingual tweets and tested it on 100 tweets. They achieved 86% accuracy with

this method. They performed experiments with different learning algorithms (e.g.

SMO, Naive Bayes and decision tree) with prefix and suffix character n-grams,

current, previous and next words as features. Among these, random forest performed

best. For code-mixed tweets, they applied the same learning algorithms with the

same features for POS tagging in code-mixed data and found that random forest

achieved best accuracy (63.65%). They also used two different POS taggers to

predict the POS label for words (i.e. English POS tagger for an English word and

Hindi Post tagger for a Hindi word) like Vyas et al. (2014). However, they identify

that the combination of two different POS taggers leads to lower accuracy compared

to their decision tree based method for their data. The following are the features that

were employed in their experiments: (1) The word itself, (2) previous three words, (3)

previous 3 tags, (4) next 3 words, (5) 4-gram prefix, (6) four-gram suffix and (7) word

length threshold ≤ 4. Combining monolingual taggers and language identification is

a common trend in code-mixed POS tagging, either language identification decisions

are made to obtain correct POS tag (Vyas et al., 2014; AlGhamdi et al., 2016) or

65

they are used to extract features (Jamatia et al., 2015; Sequiera et al., 2015a; Schulz

and Keller, 2016). Ghosh et al. (2016) investigated code-mixed POS tagging using

CRFs that incorporate of-the-shelf parsers and linguistic resources. As features they

used prefix, suffix, the word and its neighbour and multiple doctrinaires and other

handcrafted indicators (e.g. the word contains digit or not, is the word represents

quantities). However, for acronyms, names and universal symbols they used some

post processing rules. Feature extraction based POS tagging is also investigated by

Pimpale and Patel (2016) by using Naive Bayes, multilayer Perceptrons and Decision

Trees. Similar work (Jamatia et al., 2015) can be found where hand-crafted features

were used with CRF, SVM, Naive Bayes and Random Forests (RF) to perform

English-Hindi code-mixed POS tagging. Similar approaches were also investigated

by Gupta et al. (2017); Ramesh and Kumar (2016) using CRF.

In the above works, monolingual POS taggers were used in two ways: (1) code-

mixed sentences were broken into language specific chunks and then language specific

POS taggers are applied to these chunks (Vyas et al., 2014), and (2) code-mixed

sentences were sent to the taggers, similar to (Solorio and Liu, 2008b). Monolin-

gual taggers are typically trained on full monolingual sentences. If language-specific

text fragments are presented to such monolingual taggers, the taggers treat these

fragments as full sentences. At the start and at the end of the input, the prediction

of such taggers may become biased to some specific patterns (e.g. NN and NNP)

that have been observed frequently at the start and at the end end tag sequence of

sentences during training. Any approach that uses two monolingual POS taggers

to process language-specific chunks (Vyas et al., 2014) may have suffered from this

effect. On the other hand, when a code-mixed sentence is sent to both of the taggers

as it is (Solorio and Liu, 2008b), each tagger may fail to tag foreign words with the

special foreign word (FW) tag. The decision of an individual tagger might be af-

fected at a code-mixed point. However, Solorio and Liu (2008b) use the information

obtained from the taggers as features in their SVM-based experiments. Therefore,

it is possible that their system repairs tagging errors of the monolingual taggers.

66

Furthermore, a pipeline approach (Vyas et al., 2014) suffers from error propagation

from a particular module to the next module. As Vyas et al. (2014) use translit-

eration as a key module in their pipeline, transliteration errors may have affected

the performance of POS tagging in their experiments. Transliteration from social

media data is itself a challenging task due to spelling variations.

Recently, RNN models have been shown to have good performance in POS tag-

ging of formal content, but for code-mixed POS tagging these methods are not well

explored. Wang et al. (2015) have investigated the use of bidirectional LSTM on

the Penn Treebank WSJ test set and achieved state-of-the-art performance. Zen-

naki et al. (2015) used RNN on low resourced languages and found comparable re-

sults with state-of-the-art POS taggers (Das and Petrov, 2011; Duong et al., 2013).

Among neural approaches to code-mixed POS tagging, Patel et al. (2016) used re-

current newural network (RNNs, LSTMs and GRUs) with word embeddings for

Hindi-English code-mixed content and found that the GRU baed model has outper-

formed the other models. Bhat et al. (2018) presented a treebank of Hindi-English

code-mixed tweets and proposed a neural stacking model for parsing. They also

performed POS tagging as a intermediate task in the stacking model.

5.3 Research Questions

In recent research (Solorio and Liu, 2008b; Vyas et al., 2014; Ghosh et al., 2016;

Jamatia et al., 2015; Gupta et al., 2017; Ramesh and Kumar, 2016) it has been

seen that code-mixed POS tagging can be improved by exploiting monolingual POS

tagger. Given this approache, we will try to find the answers to the following

questions in this chapter.

• How well will an single classifier like SVM or a first-order CRF with hand-

carfted features works for trilingual romanised and code-mixed content?

• Which one is the best approach for code-mixed POS tagging - Pipeline or

Stacking ? Do these methods perform better than SVM and CRF taggers?

67

• Training/developing monolingual taggers requires effort when low-resourced

languages are considered. Can a recurrent neural sequence labelling method

(e.g. Long Short Term Memory) with neural embeddings perform better than

the previous methods?

• What is the effect of the use of language labels in POS tagging?

5.4 Experiments

We divide the experiments into four parts. We implement baselines for POS tagging

in Section 5.4.1. In Section 5.4.2.1 we implement pipeline systems. In Section 5.4.2.2

we present our stacking systems. In section 5.4.3 we present our LSTM based

systems. We perform five fold cross-validation with the data and report average

cross-validation accuracy.

5.4.1 Baseline

We investigate the use of hand-crafted features and features that can be obtained

from monolingual POS taggers (stacking). We perform experiments with differ-

ent combinations of these feature sets. The following are the features used in our

experiments.

1. Hand-crafted Features: Following Barman et al. (2014a), we use prefix

and suffix character-n-grams (n = 1 to 5), presence in dictionaries, length of

the word, capitalisation information and the previous and the next word as

hand-crafted features.

2. Stacking Features: These features are obtained from the output of a POS

tagging system. These features are tokens, predicted labels, and prediction

confidence of a POS tagging system.

3. Combined Features: This feature set is a union of previous two feature sets.

68

Figure 5.1: Pipeline systems: system V1 and V2 (Section 5.4.2.1).

We use our LID classifier using handcrafted features and SVM. Its predictions

are used in the POS tagging experiments below. This method only uses the code-

mixed romanised data and hand-crafted features. We try an linear kernel SVM and

a linear chain CRF classifier (see Table 5.1). In terms of average cross-validation

accuracy, the SVM classifier (85.00% for C = 0.00097) performs better than the

CRF classifier (83.89%) in optimised settings.

5.4.2 Exploiting Monolingual Taggers

5.4.2.1 Pipeline

Following Vyas et al. (2014), the training data for this method is monolingual non-

romanised. First, it uses an LID system (trained on romanised data) to identify

language-specific chunks. After that it applies monolingual POS taggers to the

relevant language chunks to produce the output. The component POS taggers are

trained on monolingual non-romanised data.

Code-mixed romanised data passes through a pipeline of LID, transliteration

and POS tagging modules. For example, for Bengali-English romanised code-mixed

content, the LID module produces Bengali and English chunks, and the Bengali

chunks are transliterated into Bengali script and are sent to a Bengali tagger. The

English chunks are sent to an English tagger as they are. The final output combines

the results from the individual taggers. To implement this method we carry out the

following steps:

69

1. We perform transliteration based on language using Google Transliteration3

for Hindi and Bengali tokens. (Vyas et al. (2014) use an in-house tool).

2. For the next step of the pipeline, we train monolingual POS taggers for Ben-

gali and Hindi using the SNLTR Bengali and Hindi corpus4 with TreeTagger5

(Schmid, 1994a). For English we use the default English model which is avail-

able with the TreeTagger package. We also use a lightweight Bengali and

Hindi stemmer to provide a stemmed lexicon to TreeTagger during training.

We use these taggers to make predictions on English, transliterated Bengali

and transliterated Hindi chunks.

The black lines in Figure 5.1 show the pipeline of this method (V1). The three

training data sets for the three POS taggers follow different tag sets, we map these

tags to the universal POS tags after prediction.6 We achieve 71.12% average cross-

validation accuracy with this method (V1) (third row of Table 5.1).

In method V1, the TreeTagger models are trained on full monolingual sentences.

If language specific text fragments are presented to such monolingual taggers, the

taggers may treat these fragments as full sentences. At the start and at the end

of the input, the prediction of such taggers may become biased to some specific

patterns (e.g. NOUN + PUNCT) that have been observed frequently as a start

and an end tag sequence of sentences during training. To avoid this problem we

implement a variant (V2) of this system in which we present full sentences (that

may contain junk transliteration) to each POS tagger. We perform transliteration as

the first component of the system. We present the transliterated content in Bengali

script to the Bengali tagger, original romanised content to the English tagger and

transliterated content in Hindi script to the Hindi tagger. Finally, we choose from

the outputs of these three taggers based on the language prediction by the SVM

3https://developers.google.com/transliterate
4http://nltr.org/snltr-software/
5http://www.cis.uni-muenchen.de/ schmid/tools/TreeTagger/
6We also implement a system where all the tags in the SNLTR corpus are converted to universal

POS tags before training. This variant does not outperform the current system.

70

Figure 5.2: Stacked systems: system S1 and S2 (Section 5.4.2.2).

classifier for the original (romanised) content. The pipeline of this system (V2) is

shown by the dotted lines in Figure 5.1. We achieve 71.27% average cross-validation

accuracy in this method (V2) (fourth row of Table 5.1).

5.4.2.2 Stacking

This method uses non-romanised monolingual and romanised code-mixed data with

hand crafted, stacking and combined features. This method follows the approach

of Solorio and Liu (2008b) with necessary adjustments. In this method, romanised

code-mixed content is transliterated blindly in all languages and is presented to

different POS taggers (trained with non-romanised monolingual data), as in method

V2. The romanised words and the output from the monolingual taggers are used as

features to train an SVM classifier on romanised code-mixed content. To keep our

methodology as similar as possible to Solorio and Liu (2008b) we follow the steps

described below:

1. We train a Bengali and a Hindi TreeTagger (Schmid, 1994a) using the SNLTR

corpus with default settings as described in Section 5.4.2.1.

2. We transliterate each token of a sentence into Hindi and Bengali irrespective

of its language using Google Transliteration as in system V2.

3. After transliteration we send each transliterated output to the respective Tree-

Tagger, i.e. we send the original sentence to the English TreeTagger, Bengali

transliterated output to the Bengali TreeTagger and the Hindi transliterated

output to the Hindi TreeTagger.

71

Figure 5.3: Pipeline Systems in Stacking: S3 (stacked-V1) and S4 (stacked-V2)

After that we follow the stacking approach of Solorio and Liu (2008b). Here, we

stack an SVM classifier on top of the predictions generated by the TreeTaggers. We

train a linear kernel SVM with stacking features and optimise parameter C in five

fold cross-validation. The black lines in Figure 5.2 show the pipeline of this system

(S1). The average cross-validation accuracy of this system is shown in the fifth row

of Table 5.1. Average cross-validation accuracy of 86.57% is found by this method

(S1). Given the setup, we further experiment by using the combined features from

romanised and transliterated tokens and also consider SVM language predictions

as a feature. We observe that combining these features boosts the accuracy. After

trying combinations of these features the best accuracy (87.59%) is achieved by

adding all features together (S2) (sixth row of Table 5.1). The architecture of the

system is shown by the dotted lines in Figure 5.2. We also investigate the use of

pipeline systems in stacking. The idea is to use all the predictions from a pipeline

system and feed them into an SVM classifier. The stacked version of V1 (stacked-

V1) achieves 85.99% and the stacked version of V2 (stacked-V2) achieves 85.83%

average cross-validation accuracy with SVM using combined features. The black

lines in Figure 5.3 show the pipeline of S3, stacked-V1 and the dotted lines show the

pipeline of S4, stacked-V2. These methods do not outperform our implementation

of Solorio and Liu (2008b)’s method S1 or its extended version S2.

5.4.3 Long Short Term Memory (LSTM)

The basic neural model for POS tagging is the same as the word + character-level

LSTM that was used in the previous chapter for LID. We apply two versions of the

72

Type Systems Acc.

Baseline
SVM 85.00%
CRF 83.89%

Pipeline
V1: Vyas 71.12%
V2: Extn. of V1 71.27%

Stacking

S1: Solorio 86.57%
S2: Extn. of S1 87.59%
S3: Stacked-V1 85.99%
S4: Stacked-V2 85.83%

LSTM language features 92.71%

Table 5.1: Average cross-validation accuracy of POS tagging systems.

model: (1) without and (2) with language identification. To include language labels

as features we use the one-hot output of our neural language classifier. During word

representation the output of the language identifier network is concatenated with

the word and character level representation:

vt = hcM ⊕ xt ⊕ lt (5.1)

where, lt is the output of our language identifier system, xt is the pre-trained word

embedding and hcM is the word representation from the character-level LSTM. We

use categorical cross-entropy as our loss function to this network. Dropout (Hinton

et al., 2012) is used in different parts of our architectures. Dropout (with a keep

probability of 0.5) is applied after the embedding layer, after bi-LSTM and before

the output layer of the network. As prepossessing steps, maximum word length

is set to 30 characters, maximum sentence length (i.e. the temporal dimension of

LSTM) is set to 78 words. All words having less than 30 characters are padded

with a special token to achieve same length for all words, similar thing is done with

sentences to achieve characters the same sentence length over the data. The hyper

parameters of this model is shown in Table 5.3. When using language identification

as extra feature we achieve 92.71% and without language information the word +

character level LSTM performs reasonably well (91.60%). These results are shown

in Table 5.2, 5.4 and 5.5.

73

Model Performance
Without LID Features 91.60
With LID Features 92.71

Table 5.2: Word + Character-level LSTM with and without language features.

Hyper Paramters Value
Learning rate 0.05
LSTM hidden unit 256
Dropout rate 0.5
Batch size 64
Epochs 10
word vector dimension (dw) 100
character vector dimension (dc) 100

Table 5.3: Hyper parameters for word + character-level LSTM

Label Precision Recall F-Score
punct 1.00 1.00 1.00
adj 0.89 0.87 0.88
adp 0.89 0.82 0.85
adv 0.90 0.86 0.88
conj 0.85 0.90 0.87
det 0.89 0.90 0.89
noun 0.93 0.94 0.93
num 0.93 0.95 0.94
pron 0.91 0.92 0.91
prt 0.89 0.95 0.92
verb 0.93 0.92 0.92
x 0.94 0.96 0.95

Table 5.4: Performance of the LSTM based model with language features.

Label Precision Recall F-Score
punct 1.00 1.00 1.00
adj 0.91 0.81 0.86
adp 0.88 0.81 0.84
adv 0.91 0.80 0.85
conj 0.85 0.84 0.84
det 0.89 0.89 0.89
noun 0.90 0.94 0.92
num 0.94 0.93 0.94
pron 0.90 0.91 0.90
prt 0.89 0.93 0.91
verb 0.91 0.90 0.91
x 0.95 0.94 0.94

Table 5.5: Performance of the LSTM based model without language features.

74

5.5 Analysis and Discussion

We perform manual analysis on different categories as followings: (i) pipeline system

(e.g. V2), (ii) stacking system (e.g. S2) and (iii) LSTM-based system (e.g. word +

Character-level LSTM with language features and fasttext skip-gram embedding

and with language features).

5.5.1 Statistical Significance Testing

For statistical significance testing we use two-sided bootstrap re-sampling (Efron,

1979) by implementing the pseudo-code of Graham et al. (2014). We find that the

small improvement of V2 over V1 is statistically significant. Among other systems,

we find that LSTM and stacked systems are significantly better than the monolingual

tagger combinations (V1 and V2) and the improvement of LSTM over S2 is also

statistically significant.

5.5.2 Effect of LID as Pre-processing module

In SVM-based LID, the most frequent error category is the confusion of Hindi words

as Bengali words. We believe that the reason behind this is the small number of Hindi

tokens in our training data. Most of these errors occur for tokens which are lexically

identical in Hindi and Bengali, e.g. ‘na’, ‘chup’, ‘sale’ and ‘toh’. To quantify the

error propagation from SVM language prediction we repeat the experiments of V1,

V2 and S2 with the gold language labels and observe that the performance of each

system is increased (Table 5.6). Table 5.6 shows the increase of performance of these

systems with original language labels over SVM classifiers predicted language labels.

We observe that original language labels boost the accuracy of each system in this

experiment. As for the LSTM based system, we find that language information is

useful when performing POS tagging in code-mixed data, the LSTM based network

improves 1.11% after considering the language features.

75

Systems Gold LID SVM LID
V1 72.09 71.12
V2 72.07 71.27
S2 88.92 87.59

Table 5.6: POS tagging accuracy of V1, V2 and S2 with gold-level language labels
and SVM-based language labels.

5.5.3 Stacked vs Pipeline Systems

A reason for the poor accuracy of V1 and V2 is the difference between training

and test data. The TreeTaggers are trained on monolingual non-romanised formal

content while the test data is romanised code-mixed content. Secondly, error propa-

gation through transliteration and LID might increase the error rate in this method.

The accuracy of these systems improved (12.98% for V1 and 12.97% for V2) when

we engage these systems in stacking using in-domain training data (see stacked-V1

and stacked-V2 in Table 5.1). We find that choosing the tagger(s) based on LID

does not help in stacking approaches (e.g. stacked-V1 and stacked-V2), but using all

taggers to generate features for the stacked classifier results in higher accuracy (e.g.

S1 and S2). We find that a stacked approach (e.g. S2) trained with monolingual

and code-mixed training data outperforms the other approaches of Table 5.1. This

method (S2) follows the approach of Solorio and Liu (2008b), but includes three

additional features: transliterated words, character n-gram and language prediction

of our SVM language classifier.

5.5.4 Monolingual vs Code-mixed Sentences

We test the accuracy on code-mixed sentences and on monolingual sentences. V2

achieves 70.49% accuracy on code-mixed sentences and 72.20% on monolingual sen-

tences. S2 achieves 83.42% on code-mixed sentences and 86.23% on the monolin-

gual sentences. LSTM achieves 92.06% in code-mixed and 92.95% on monolingual

sentences. All these systems perform better for monolingual sentences than their

performance on code-mixed sentences. This result supports the hypothesis that per-

76

Figure 5.4: Performance of different systems on monolingual and code-mixed sen-
tences where V2 = pipeline system, S2 = stacked system and LSTM = LSTM-based
system.

forming POS tagging is harder on code-mixed sentences than it is on monolingual

sentences. The performance of different systems is depicted in Figure 5.4.

5.5.5 Code-mixing Points

We also observe that POS tagger accuracy suffers at the code-mixed points. We

consider a token as a code-mixed point (token-0) if the language of the token has

been changed compared to the language of the previous token (named enity, acronym

and, universal tokens are not included). Figure 5.5 shows the result of our analysis,

where +1 means one token to right of a code-mixed point and -1 means one token

to the left. It can be seen that all tested methods perform poorly at code-mixed

points. Performance of these systems increases as the distance to code-mixed points

rises. LSTM with fasttext skip-gram embeddings with language features achieves

highest accuracy in code-mixed points and surroundings than that of the other

models. The average word-level accuracy of LSTM-based system at code-mixed

point is 90.06%, at previous token the accuracy is 95.70%, at the next token the

accuracy is 92.06% It can bee seen from Figure 5.5 that the LSTM based system

achieved better accuracy than other systems. We also find that 20.69% code-mixed

77

−3 −2 −1 0 1 2 3

60

65

70

75

80

85

90

95

100

distance from code-mixed point in tokens

ac
cu

ra
cy

V2 S2 LSTM

Figure 5.5: POS accuracy at code-mixed points and surroundings.

points consist of ambiguous tokens which might be a reason for the low performance.

5.5.6 Error Categories

The most common error pattern produced by all systems is adj-noun, i.e. English

adjectives that are classified as NOUN. The number of these errors decreases with

the better performing models, as expected. We observe that most of the chat-specific

tokens (e.g. emoticons) are misclassified by V2. This system is trained with formal

content. We also observe that LSTM-based system identifies correctly the sequence

of code-mixed nouns while other systems suffers on that. Another prominent error

category is verb-noun, i.e. verbs are classified as nouns. This error occured most of

time for Bengali verbs. For example:

... kora jaina ... vaba jaina ...

Some of the verb-noun type errors occurred when two consecutive Bengali verbs

are present (in the above example). We also observe that, when such patterns

appeared at the start of a sentence (social media content is well-equipped with non-

grammatical usage) all of our systems mis-classified such patterns. Among other

78

Labels punct adj adp adv conj det noun num pron prt verb x

punct 3958 0 0 0 0 0 0 1 0 0 0 0

adj 0 1597 4 8 5 7 172 2 9 1 29 2

adp 1 2 1032 8 19 33 46 1 52 24 37 0

adv 0 19 2 602 7 2 39 0 4 3 23 0

conj 0 6 7 5 615 0 17 0 11 15 10 0

det 0 17 8 5 6 748 12 1 12 16 8 1

noun 1 109 21 27 21 33 7252 2 86 28 143 28

num 0 5 0 0 0 0 1 140 1 1 0 0

pron 0 8 22 1 34 16 55 1 2112 36 21 0

prt 0 3 5 2 8 2 17 2 12 1169 14 0

verb 0 22 62 7 7 3 187 0 26 22 3748 2

x 1 1 0 2 0 0 18 0 1 1 1 562

Table 5.7: Confusion Matrix for the LSTM with fasttext skip-gram embeddings
with language features.

errors, another prominent category is noun-verb, where nouns are mis-classified as

verbs. For example:

... gach chas korbi ...

Here, ‘chas’ which originally means ‘cultivation’ is lexically similar to a Bengali

word ’chas’ which means ’want or ask’. For such ambiguous words all of our system

performed poorly. Word ambiguity is in fact a major challenge when handling code-

mixed social media content. The confusion matrix of our best performing system is

described in Table 5.7.

5.6 Conclusion

We have performed POS tagging with trilingual code-mixed and romanised social

media content and explored three different approaches: (i) SVM and CRF, (ii)

pipeline, (iii) stacking and (iv) LSTM with fasttext skip-gram embedding. We

also observe that the POS tagging accuracy is affected at code-mixed points for all

systems. We find that a stacking approach (S2) that uses the combined feature

set outperform monolingual tagger-based systems. We also observe that the perfor-

mance of a pipeline system heavily depends on previous modules (e.g LID). The best

pipeline approach achieves the lowest accuracy, even if it lags behind from the single

79

classifier based baseline systems (e.g. SVM and CRF). Considering these facts we

answer the research questions described in Section 5.3:

• An SVM or a CRF with useful features (e.g. character n-grams, length,

presence in dictionary) can achieve a reasonable accuracy (over 80%). More-

over, these systems can outperform monolingual tagger-based pipeline meth-

ods (71%).

• According to our experiments a stacking approach is better than a pipeline

approach when dealing with code-mixed social media content. We find that

when SVM is used on top the pipeline systems, it increases the performance

drastically.

• The LSTM-based system achieves the highest accuracy which indicates that

without using monolingual taggers it is possible to achieve state-of-the art

accuracy with neural word and character embedding and LSTMs.

• Language information can help a POS tagging system. Section 5.5.2 shows that

the use of gold level language tags improves the performance of monolingual

tagger combinations and the stacking approach. For LSTM based systems the

language information is also helpful. This is shown in Table 5.4 and Table 5.5.

It can be observed that for most of the POS labels the F1 scores have been

improved after the addition of language information.

In the next chapter, we perform LID and POS tagging jointly. The motivation

behind that is to see whether the joint learning approach outperforms the individual

tagging approach, which is a key research question of this thesis.

80

Chapter 6

Multitask Learning

Joint modelling or multi task learning (MTL) is an interesting topic in NLP. It

has been investigated in the last decade using graphical models to perform multiple

NLP tasks, for example, word segmentation and POS tagging (Zhang and Clark,

2008), noun phrase chunking (Sutton et al., 2007), name entity and relation ex-

traction (Yu and Lam, 2010). However, in recent years, the use of neural models

has gained popularity. Unlike graphical approaches (e.g. dynamic or factorial CRF

and HMMs), there is no need to extract handcrafted features, using word embed-

dings, researchers have explored a number of neural MTL techniques (Collobert and

Weston, 2008; Hatori et al., 2012; Søgaard and Goldberg, 2016) that can perform

multiple tasks together with encouraging efficiency and accuracy.

Recent research work related to code-mixing are focused on performing different

NLP tasks, for example, LID (Chittaranjan et al., 2014; Barman et al., 2014b;

Shirvani et al., 2016; Jaech et al., 2016), POS Tagging (Jamatia et al., 2015; Sequiera

et al., 2015a; Ghosh et al., 2016; Pimpale and Patel, 2016; Gupta et al., 2017), NER

(Banerjee et al., 2016), sentiment analysis (Patra et al., 2018) but exploration for a

unified approach that models a number of tasks together is not yet well investigated.

Code-mixed content presents a great opportunity to test MTL approaches because

NLP tasks are interdependent for code-mixed data. For example, let us consider the

following snippet taken from the English-Hindi-Bengali code-mixed data:

81

Example 6.0.1. ...

Mdridul/ bn/ noun/ b-per

kar/ bn/ noun/ i-per

tumi/ bn/ pron/ other

ok/ bn/ pron/ other

die/ bn/ verb/ other

dio/ bn/ verb/ other

...

Each line in the above example has the following format: the first token is the word,

the second token is the language of the word, the third token is the POS tag and

the last token is the name entity tag. Tokens are separated using ‘/’ character. The

word ‘ok’ can be considered as a English word but it is a Bengali word which means

‘him’. For a POS tagger that attempts to perform tagging, language information

is beneficial for this word. This is also true for the word ‘die’, which is a Bengali

word and it means ‘give’. Similarly, for a named entity recognition (NER) system,

language and POS information is also beneficial while performing NER in code-

mixed social media content. For example, let us consider the first two words of this

snippet. Here, ‘Mridul’ is the first name and ‘kar’ is the surname but in Bengali

‘kar’ can also mean ‘whose’ or ‘to do’ depending on the context. To tag the name

entity correctly, the POS information of the word ‘kar’ is necessary.

As discussed in Chapter 5, separate taggers are often arranged in a pipeline (Vyas

et al., 2014), where output from the lower level tagger (e.g. language tagger) is either

treated as input to the higher level tagger or decisions are made according to the

lower label tag to maintain the data flow. This approach is risky because any error

from the lower level tagger can flow through the pipeline and affect the performance

of the higher level tagger. Further, a joint tagging scheme with label concatenation

(Sequiera et al., 2015a) (e.g. labels of different tasks are concatenated to obtain

a single label) increases the label sparsity and the computational complexity of a

model. Another approach is stacking (Solorio and Liu, 2008a; Barman et al., 2016),

82

where a final task is accomplished by a classifier using the features obtained from

lower level taggers. This approach is good when the number of tasks is small (e.g.

LID, POS tagging), however, when the number of tasks is large, a stacking approach

requires significant resources to train lower level taggers. To cope with the situation

MTL is necessary so that multiple task can be learned simultaneously through a

single model.

6.1 Chapter Organization

In this chapter, we investigate the use of a graphical model (FCRF) with handcrafted

features and three neural MTL approaches to model LID and POS tagging jointly.

This chapter is organized in the following way: Section 6.2 describes related work

in MTL. Section 6.3 describes the research questions. The experiments and analysis

are presented in Section 6.4 and 6.5. Finally we conclude in Section 6.6 by answering

the research questions and other findings.

6.2 Background

Joint modelling or multi-task learning (MTL) is a well researched area of NLP and

machine learning. Before the boom of neural NLP, MTL was dominated by the

use of probabilistic graphical models (McCallum et al., 2003; Duh, 2005; Sutton

et al., 2007; Li et al., 2011; Wang and Kan, 2013). The use of dynamic CRFs

and factorial hidden Markov (HMM) models was very popular. Tasks were mainly

monolingual and closely related. For example, the task of POS tagging and chunking

was investigated by McCallum et al. (2003) using dynamic CRFs. Duh (2005) used

factorial HMM to performed POS tagging and noun phrase chunking. Wang and

Kan (2013) perform word segmentation and POS tagging using factorial CRFs.

The use of such graphical models requires hand-crafted feature extraction. When

the number of tasks is large the complexity of such a model grows exponentially.

83

During inference, the computation of marginal probabilities is also expensive in

terms of computational resources for such models.

Recently, several neural MTL approach have been proposed to perform multiple

tasks, for example, POS tagging, language modeling and chunking (Godwin et al.,

2016; Søgaard and Goldberg, 2016), joint training on multiple treebanks (Guo et al.,

2016), learning multiple semantic dependency graphs, (Peng et al., 2017; Fan et al.,

2017), learning syntactic and discourse parsing together (Zhao and Huang, 2017).

An important study of deep learning based MTL is proposed by Collobert and We-

ston (2008) where a common representation for input words were shared to solve

different traditional NLP tasks such as POS tagging, chunking, name entity recog-

nition, language modelling and semantic role labeling using convolutional neural

network-based model. Hatori et al. (2012) investigated the joint training of word

segmentation, POS tagging and dependency parsing. Similar studies can be found

in Chinese dependency parsing (Li et al., 2014). Dong et al. (2015) performed mul-

tiple language translations from a single source language. The share one recurrent

layer across multiple output layers. Søgaard and Goldberg (2016) used deep bi-

directional RNNs to perform POS tagging, chunking and CCG supertagging. They

used multiple RNNs layers to model multiple tasks and find that using different

layers for different tasks is more effective than using the same layer in jointly learn-

ing closely-related tasks. Also successively growing a neural network (Hashimoto

et al., 2016) for multiple tasks is another MTL approach can be found in literature,

where multiple lower-level tasks (e.g. POS tagging, parsing) have been done through

the augmentation of recurrent layers and finally to perform the higher-level task of

textual entailment.

Among multilingual works, Ammar et al. (2016) investigated the dependency

parsing in a multilingual environment, which also involves a multitasking scenario.

Their model performs multilingual parsing by using (i) multilingual word clusters

and embeddings, (ii) word-level LID information and (iii) language specific POS

tags. A similar study has also been carried out by Bhat et al. (2017) where different

84

strategies for code-mixed parsing were evaluated using monolingual annotated data.

Later, they proposed a neural stacking method to perform parsing in Hindi-English

code-mixed tweets (Bhat et al., 2018). In their method again, multiple LSTM

layers are used to perform multiple tasks (e.g. POS tagging, parsing). Chen et al.

(2016), on the other hand, performs MTL with Mandarin-English code-switch data

for speech recognition as a primary task and LID as an auxiliary task. They shared

a common hidden layer to the output layers of the two task. They concluded that

in this setting the primary task (speech recognition) is benefited from the second

task. The work of Winata et al. (2018a) is close to our work where the authors have

performed language modelling and POS tagging with Chinese-English code-mixed

data using two LSTM layers. They use word-vectors and POS annotation from

Penn Treebank as an input to their model. The output from the POS LSTM goes

to the POS output layer and the outputs of the two LSTMs are summed up and go

through a softmax layer which is designed for language modelling.

Before going to the next section let us discuss some important aspects of neural

MTL. These aspects are mainly architecture related. Based on these concepts we

formulate our research questions in the next section.

• Sharing Common Representation: Sharing a common representation across

multiple tasks is often known as hard parameter sharing (Caruna, 1993; Bax-

ter, 1997). In this settings the model is forced to learn a common set of

features that are useful for all the tasks and mitigates the risk of over-fitting

for a particular task. This approach is adapted by many researchers (Søgaard

and Goldberg, 2016; Hashimoto et al., 2016). Figure 6.1 is a high level diagram

of this architecture:

• Multiple Layers for Multiple Tasks: In this architecture, each task has

its own recurrent layer with its own parameters. Sometimes the distance be-

tween the parameters of different task models is regularized to have similar

parameters (Ruder et al., 2017). This model is investigated by Hashimoto

85

Figure 6.1: Sharing a common representation across multiple tasks. This approach
is also known as hard parameter sharing.

et al. (2016) and Bhat et al. (2018). Figure 6.2 is a high level diagram of this

architecture. Figure 6.3 depicts the architecture of Hashimoto et al. (2016)

where multiple tasks have been performed using multiple LSTM layers. Fig-

ure 6.4 depicts the architecture of Bhat et al. (2018) POS tagging and parsing

have been performed using multiple LSTM layers.

• Output Propagation: In the previous architecture (Figure 6.2), it can be

observed that the output of the first task has been used as feature to the second

task. This is known as output propagation. This allows back-propagation from

one task into another task’s model. Weight updates to a lower level task act as

regularization on the model of a higher level task (Zhang and Weiss, 2016). It

can be organized in many ways. For example, Hashimoto et al. (2016) use the

the outputs of the lower-level task to be appended with the inputs of higher-

level task (Figure 6.3). On the other hand, Bhat et al. (2018) use the word

representation obtained from POS LSTM layers as input to the parsing LSTM

layer.

86

Figure 6.2: Multiple Layers for Multiple Tasks: A high-level architecture.

Figure 6.3: Neural architecture of Hashimoto et al. (2016). This performs multiple
lower-level tasks to complete a higher-level task where POS = POS tagging DEP =
dependency parsing and CHUNK = chunking. These tasks are accomplished by the
use of task-specific separate LSTMs. Picture credit (Hashimoto et al., 2016).

87

Figure 6.4: Neural architecture of Bhat et al. (2018). This performs POS tagging
and parsing. This tasks are accomplished by the use of task-specific separate LSTMs.
Picture credit (Bhat et al., 2018).

88

6.3 Research Questions

Multitask learning for code-mixed social media content is relatively less explored

area. In our work, we focus mainly on neural MTL methods but we also implement

a FCRF based baseline to perform LID and POS tagging. When more than one

word-level task can be performed (e.g. LID and POS tagging) for code-mixed social

media data, it is interesting to investigate the following questions:

• How well does a graphical model (baseline), Factorial CRF (FCRF), with

handcrafted features and information from monolingual taggers handle the

joint modelling of LID and POS with code-mixed data?

• Can a neural MTL outperform the FCRF with handcrafted features?

• Does joint learning of LID and POS leads to better system i.e. Can a MTL-

based neural network outperform individual neural tagging accuracy (e.g. neu-

ral LID and neural POS)?

• In the recent literature, multiple recurrent layers have been assigned to per-

form multiple tasks (Hashimoto et al., 2016; Bhat et al., 2018). Eventually,

increasing the number of recurrent layers increases the number of model pa-

rameters and training time. On the other hand, when dealing with closely

related tasks, output propagation and sharing a common representation leads

to good performance (Godwin et al., 2016). In this context we want to in-

vestigate - can we use output propagation and shared representation without

using multiple recurrent layers to perform MTL?

6.4 Experiments

We divide the experiments into two parts. We implement a baseline system for

LID and POS tagging using FCRF in Section 6.4.1. In Section 6.4.2 we implement

89

Systems
LID

Features
TreeTagger

Features
LID
Acc.

POS
Acc.

F1 Y N 89.37 81.77

F2 N Y 90.60 85.28

F3 Y Y 92.49 85.64

Table 6.1: Performance of FCRF in LID and POS tagging with different features
sets. Reported results are average cross-validation accuracy.

three neural MTL systems to perform the same tasks. We perform five fold cross-

validation with the data and report average cross-validation accuracy.

6.4.1 Factorial Conditional Random Fields (FCRF)

We jointly model the two tasks (e.g. language identification and POS tagging) using

a 2-level factorial CRF (FCRF) (Sutton et al., 2007). We use romanised code-mixed

training data to train the model. In linear-chain CRF, there is only one input

level (x = x1:T) and one output level (y = y1:T). The conditional probability in a

linear-chain CRF is expressed by the following equation:

p(y|x) =
1

z(x)

T∏
t=1

ψt(yt, yt−1, xt) (6.1)

where, ψt represents clique1 potential functions and is expressed by the following:

ψt(yt, yt−1, xt) = exp
K∑
k=1

λkfk(yt, yt−1, xt). (6.2)

Here, K is the number of feature functions (fk). The denominator z(x) is the

partition function, which is the sum over all ‘y’s and it is expressed by the following

equation:

z(x) =
∑
y

T∏
t=1

ψt(yt,l, yt−1,l, xt) (6.3)

A factorial CRF combines multiple linear-chain CRFs, one for each output level.

Unlike linear-chain CRFs, an FCRF deals with a vector of labels. In our case, the

1 A clique in an undirected graph is formed with two vertices if there exists an edge connection
between them.

90

vector contains two labels, a language label (y1 = y11:T) and a POS label (y2 = y21:T).

The inputs (x = x1:T) are shared among these output labels (e.g. y11:T and y21:T) and

the output labels also have interconnections (e.g. y1i and y2i ∀i = 1, 2, ..., T). The

conditional probability is expressed by the following equation:

p(y|x) =
1

z(x)

T∏
t=1

L∏
l=1

ψt(yt,l, yt−1,l, xt)ϕt(yt,l, yt,l+1, xt) (6.4)

where L is the number of levels (in our case L = 2), ψt represents transitions

in each level (e.g. y11 to y12) and ϕt represents contemporal connections between

two levels (e.g. y11 to y21). The denominator z(x) is the partition function. We

implement this FCRF using the GRMM toolkit We use three different feature sets

in our experiments.

Feature Name Features Examples (with value = 1)
G (char-n-gram) a, m, a, r, am, ma, ar, ama, mar, amar
D (Dictionary) <dict-train-bn>
L (Length ranges) <4-6>
C (Capitalization) -
P1N1 (Context) <p1-je>,<n1-prothom>

Table 6.2: LID features generated for a word ‘amar ’ which is a part of a text
fragment: ‘je amar prothom’.

1. LID Feature Set (F1): We keep most of the features (e.g. character n-

grams, capitalisation information, length, presence in dictionaries, previous

and next word) the same as for the LID experiments. Table 6.2 describes

these features.

2. TreeTagger Feature Set (F2): The features obtained from the TreeTagger

boost the accuracy of stacked systems, so we decided to include these features

in this experiment. We use romanised and transliterated words, prediction

from three TreeTaggers, confidence scores and the lemmas as features. This

feature set is the exact feature set which is used by system S1.

3. Combined Feature Set (F3): This feature set is the combination of F1 and

91

F2. F3 can be obtained when both types of data (i.e. romanised code-mixed

and non-romanised monolingual) are available.

In cross-validation we find that average language tagging accuracy is 89.37%

and average POS tagging accuracy of the F1 feature set is 81.77%. After adding

TreeTagger features, system F2 outperforms system F1, with 90.60% LID accuracy

and 85.28% POS tagging accuracy. Finally, the combination of the previous two

feature sets (F3) achieves 92.49% accuracy in LID and 85.64% in POS tagging (last

row of Table 6.1).

6.4.2 Long Short Term Memory (LSTM)

We build our model on top of the word + character level LSTM network that has

been used in LID and POS tagging and achieved the highest word-level accuracy.

We employ three approaches: (1) joint labelling approach, (2) cascaded labelling

approach and (3) multi-level labelling approach. We perform two tasks jointly, LID

and POS tagging. This model considers words and the characters of a words as

input to the network. The details of the model can be found in Chapter 4. In

this experiment we either modified the output layers or added extra task-specific

LSTM layers to achieve an MTL settings. As loss function we used categorical cross

entropy for each task. The total loss is calculated by summing over all the individual

losses. As features to the LSTM network, we use word embeddings and character

embeddings from fasttext skip-gram (Joulin et al., 2016; Bojanowski et al., 2016)

that have been used in our LID experiments (described in in Chapter 4). Dropout

(drop out rate 0.5) is used in different parts of our architectures. Dropout is applied

after each embedding layer, after the bi-LSTM and before each output layer of the

network. As prepossessing steps, maximum word length is set to 30 characters, the

maximum sentence length (i.e. the temporal dimension of LSTM) is set to 78 words.

All words having less than 30 characters are padded with a special token to achieve

the same length for all words, a similar thing is done with sentences to achieve same

92

Figure 6.5: Joint Labelling Approach: Model architecture unrolled across three time
steps.

sentence length over the data.

˜hword
1:T = BiLSTM(x1:T , c

x1
1:M , c

x2
1:M , ..., c

xT
1:M) (6.5)

For simplicity, let us define a function BiLSTM(.), which is in fact, the word +

character-level LSTM that has been used in LID and POS tagging. This model

takes an input sequences of words (w = w1, ..., wT) and the characters of each

word wt, c
wt
1:M = {cwt

1 , c
wt
2 , ..., c

wt
m , ..., c

wt
M}, where M is maximum word length in our

training data. This generates a representation, ˜hword
1:T for the whole sequence of words

(Equation 6.5). For MTL we use this representation (˜hword
1:T) in following three ways:

6.4.2.1 Joint Labelling Approach

In this approach we use the output of the word + char-level LSTM to predict multiple

tasks jointly. This method follows the hard-parameter sharing technique of Caruna

(1993). This is a well studied method in NLP (Søgaard and Goldberg, 2016) and

is used to reduce the risk of over-fitting. The architecture of this model is shown

93

Models LID POS
FCRF 92.49 85.64
Word+ Chracter-level LSTM 97.98 -
Word+ Chracter-level LSTM + Language Ferature - 92.71
Joint Labelling Approach 96.88 91.87
Cascaded Approach 99.51 97.82
Multi-level Approach 99.53 97.99

Table 6.3: Performance of MTL approaches and individual taggers.

in Figure 6.5. In this method, a single hidden representation of a sequence is used

to predict multiple tasks at a time, i.e. a common representation is shared across

multiple output layers. For a number of tasks, the model is forced to learn features

that are useful for all tasks. Thus the representation is more generalized and avoids

the risk of over-fitting to a particular task. In our model we use the output of the

BiLSTM(.) (see Equation 6.5) to be connected to all output layers. Following are

the equations for the multiple output layers:

y11:T = softmax(Wy1
˜hword
1:T + by1)

y21:T = softmax(Wy2
˜hword
1:T + by2)

...

yK1:T = softmax(WyK
˜hword
1:T + byK)

(6.6)

where, y11:T , y
2
1:T , ...y

K
1:T are the labels forK number of word-level tasks and by1 , by2 , ..., byK

are task-specific bias vectors. Applying this approach we achieve 96.88% in LID and

91.87% in POS Tagging (Table 6.3).

94

Figure 6.6: Multi-level Approach: Model architecture unrolled across three time
steps.

95

6.4.2.2 Multi-level Approach

In this method of multitasking, task-specific layers are built like stacking for a num-

ber of related task. Hashimoto et al. (2016) proposed a hierarchical model where

low level tasks, like POS tagging, chunking, dependency parsing are used to com-

pute textual entailment of two sentences. The layers share a common representation

along with the outputs of the previous layers as input to a layer. They used mul-

tiple RNN layers to perform multiple tasks, e.g. POS tagging, chunking and CCG

super tagging, where three different RNN layers have been used to perform three

different tasks. In this approach, stacking a recurrent model on top of another in-

creases the number of parameters and the computational resources drastically. In

our experiment we use this approach in the following way:

y11:T = softmax1:T (Wy1
˜hword
1:T + by1)

˜
hy

2

1:T = BiLSTMy2(
˜hword
1:T ⊕ y

1
1:T)

y21:T = softmax1:T (Wy2
˜
hy

2

1:T + by2)

...

˜
hy

K

1:T = BiLSTMyK (˜hword
1:T ⊕ y

1
1:T ⊕ y21:T ⊕ ...⊕ yK−1

1:T)

yK1:T = softmax1:T (WyK
˜
hy

k

1:T + byK)

(6.7)

Where, y1t , y
2
t , ...y

K
t are the labels forK number of word-level tasks and by1 , by2 , ..., byK

are task-specific bias vectors. ˜hword
1:T is the common representation, shared across all

output layers. Further, the output of the first task (y11:T) is concatenated with

common representation (˜hword
1:T) and treated as an input to a second level LSTM

which is designed for the next task. The output from the second level (y21:T) LSTM

gets concatenated with the first output (y11:T) and the shared hidden representation

96

Figure 6.7: Cascaded Approach: Model architecture unrolled across three time steps.

(˜hword
1:T) and treated as input to the third task. In this way, we keep the original

representation learned by LSTM (˜hword
1:T) as a common factor and pass the low-level

task outputs to the high-level task through a separate LSTM layers. This method

resulted in highest word-level accuracy in LID (99.53%) and POS tagging (97.82%)

(Table 6.3). The architecture of this model is shown in Figure 6.6.

6.4.2.3 Cascaded Approach

Sharing a common representation (Caruna, 1993; Baxter, 1997; Hashimoto et al.,

2016; Søgaard and Goldberg, 2016) across layers has shown its effectiveness in many

NLP tasks. On the other hand, the information passing across related task is also

necessary (Hashimoto et al., 2016) when dealing with closely related task. However,

the stacking approach of multiple LSTMs for multiple tasks increases the number

of parameters and requires computational resources to train. To mitigate this, we

propose a cascaded approach. In this approach we do not use multiple LSTMs

to model multiple tasks, rather at each output layer, the original representation is

concatenated with the previous layer outputs. In this way we maintain the output

97

propagation across layers and hard-parameter sharing. Formally, any label yit ∈

{y1t , y2t , ..., yKt } at time step t, where K is the number of total tasks we define yit as

following:

y1t = softmax(Wy1
˜hword
t + by1)

y2t = softmax(Wy2 [
˜hword
t ⊕ y1t] + by2)

...

yKt = softmax(WyK [˜hword
t ⊕ y1t ⊕ y2t ...⊕ yK−1

t] + byK)

where ⊕ is the concatenation operation and ˜hword
t is the common representation

shared by all layers. Here, no recurrent layers are applied to model multiple task.

The original representation (˜hword
t), which is obtained from word + character-level

LSTM is shared across output layers (yi), further, each output layer (yi) shares

its output to all higher-level output layers (yj, j > i). At each output layer, all

previous task outputs are concatenated with the original representation (˜hword
t) and

pass through a fully connected layer, which have a softmax(.) activation function.

We achieve 99.51% in LID and 97.82% in POS tagging using this approach. The

architecture of this model is shown in Figure 6.7.

6.5 Analysis and Discussion

We observe that each neural joint modelling approach outperforms the baseline

FCRF results. Moreover, two of the neural joint modelling approaches, (i) cascaded

and (ii) multi-level, perform better than the joint labelling approach. We perform

manual analysis of the three joint labelling approaches:

98

Figure 6.8: Performance of different systems for ambiguous and non-ambiguous
tokens in LID. approach.

6.5.1 Statistical Significance Testing

For statistical significance testing we use two-sided bootstrap re-sampling (Efron,

1979) by implementing the pseudo-code of Graham et al. (2014). We find that

among all three approaches, cascaded and multi-level approaches outperform joint

labelling approach in LID and POS tagging. We find no statistical significance

between the difference of the performance of the cascaded and multi-level approach.

Using cascaded and multi-level approach we achieve a near perfect (99.50+%) word-

level accuracy for LID in our data set. For POS tagging, it can be observed that

cascaded and multi-level approach outperforms the joint approach significantly, in

our data set we achieve more than 5% boost for POS tagging.

6.5.2 Ambiguous vs Non-ambiguous Words

We perform analysis for LID and POS tagging for the ambiguous and the non-

ambiguous tokens. We find that all joint-modelling approaches perform relatively

less well for ambiguous tokens in LID and POS tagging. Figure 6.8 shows the perfor-

mance of different systems in LID for these two categories. It can be also observed

that for non-ambiguous words, the performance of the three systems is over 98%.

However, for cascaded and multi-level approaches the difference in performance of

99

Figure 6.9: Performance of different systems for ambiguous and non-ambiguous
tokens in POS tagging.

these two categories is very small, for cascaded it is (0.59%) and for multi-level it

is (0.45%). We also evaluate the performance of these approaches for POS tagging.

We observe a similar pattern as for LID, see Figure 6.9. Cascaded and muti-level

approach outperform the joint labelling approach in POS tagging, both for am-

biguous and non-ambiguous words. Further, the performance difference between

cascaded and multi-level approach is much less for ambiguous and non-ambiguous

words. These two approaches even outperform individual LID and individual POS

tagging systems according to this metric. This indicates that the cascaded and the

multi-level approach have learned to predict the correct tag for such ambiguous

words.

6.5.3 Code-Mixing Points

A code-mixed point in a sentence refers to a token where language changes occurs

(e.g. English to Bengali, Hindi to English). We consider a token as a code-mixed

point (token-0) if the language of the token has been changed compared to the

language of the previous token. Labels such as ‘ne’, ‘acro’, ‘univ’ and ‘mixed’ are not

considered as changes of language. Figure 6.11 shows the performance of different

systems for POS tagging. We observe the performance of the joint labelling approach

100

Figure 6.10: Performance of different systems at code-mixed points in LID where
joint = joint approach, cascaded = cascaded approach, multi-level = multi-level
approach.

Figure 6.11: Performance of different systems at code-mixed points in POS tagging.

suffers at code-mixed point and one token after the code-mixed point. Figure 6.10

shows the result of our analysis for LID, where +1 means one token to right of a

code-mixed point and -1 means one token to the left. It can be observed that the

LID accuracy suffers at the code-mixed points (96%) for joint labelling approach

but for cascaded and multi-level approach LID accuracy is high (over 99%). Both

of these methods, cascaded and multi-level achieves similar accuracy at code-mixed

point and neighbouring.

101

Label Joint Cascaded Multi-level
en 0.96 0.99 0.99
bn 0.98 1.00 1.00
hi 0.93 1.00 1.00
mixed 0.56 0.99 0.99
univ 0.99 1.00 1.00
ne 0.79 0.98 0.98
acro 0.66 0.93 0.93

Table 6.4: Label wise F1 score for LID: Performance of three MTL approaches.

Label Joint Cascaded Multi-level
PUNCT 1.00 1.00 1.00
ADJ 0.85 0.97 0.97
ADP 0.85 0.96 0.97
ADV 0.86 0.96 0.96
CONJ 0.87 0.96 0.96
DET 0.89 0.96 0.96
NOUN 0.92 0.98 0.98
NUM 0.95 0.99 0.99
PRON 0.91 0.97 0.97
PRT 0.92 0.97 0.97
VERB 0.91 0.98 0.99
X 0.94 0.97 0.97

Table 6.5: Label wise F1 score for POS: Performance of three MTL approaches.

102

6.5.4 Model Comparisons

In our experiments, the baseline system (FCRF) is always outperformed by the

MTL approaches and the individual neural taggers. This indicates that the neural

approaches (individual and MTL) are better than a feature-based graphical model.

The joint labelling approach is outperformed by the individual neural LID and

POS tagging systems and the other multi-tasking methods (Table 6.3). Which

indicates that learning common features through hard parameter sharing for two

different tasks (i.e. LID, POS tagging) might not always be helpful. This forces

the model to learn from a common set of features that are helpful for all tasks,

the common features might not be sufficient for the individual tasks. On the other

land, the cascaded and multi-level approaches overcome this problem by sharing the

outputs of one task to the next task. In this way, the second task always gets some

extra information which can be beneficial. Moreover, through output propagation,

changes in the weights of a lower level model affects the tagging decisions of a

higher level model. The Multi-level approach considers multiple recurrent layers

for multiple tasks, it also propagates the output of one task to the the next level

recurrent layer. However, when the number of tasks is large, using multiple recurrent

layers can require greater computational resources. This approach also increases the

number of model parameters. The cascaded approach, on the other hand, uses a

single recurrent layer with multiple output layers, each output layer propagates

the output to the next output layer. The number of parameters does not increase

drastically, as there are no task-specific recurrent layers in this model. Using only

different output layers with output propagation and hard parameter sharing (e.g.

a common representation from the recurrent layer), it is possible to achieve similar

performance to a multi-level approach. It can be observed from Table 6.6 that the

cascaded approach is the most efficient among all three MTL approaches, if (1)

the number of parameters and (2) training time and (3) performance is considered.

The difference between the performance of cascaded and multi-level approach is not

significant. Using one million fewer parameters and almost three and half hours less

103

Data Set Models No. of Parameters Training Time LID POS

A
Joint 2,396,709 8:51:03 96.88 91.87
Cascaded 2,396,813 8:56:38 99.51 97.82
Multi-Level 3,988,005 12:30:38 99.53 97.99

B
Joint 2,391,699 3:44:56 97.60 86.84
Cascaded 2,392,217 3:45:52 99.56 97.36
Multi-Level 3,995,283 4:50:01 99.60 97.58

Table 6.6: Performance of three different MTL approaches in two code-mixed data
sets, where A: code-mixed data set of Barman et al. (2016) and B: code-mixed data
set of Jamatia et al. (2015). Reported results are average of five-fold cross-validation
accuracy.

training time, the cascaded model can perform as well as the multi-level approach.

Table 6.4 and 6.5 shows the label wise F1 scores for LID and POS tagging for

these three approaches. We find that for LID the joint labelling approach is always

outperformed by the other two MTL approaches for each language label. For POS

tagging, we observe a similar pattern, except punctuation’s the cascaded and the

multi-level approaches achieves better performance for each label than that of the

joint labelling approach.

We also test these approaches in a second data set which is obtained from Jamatia

et al. (2015). Like our data set, this data set is annotated with language and POS

tags. We find similar results, i.e. the joint labelling approach is always outperformed

by the cascaded and multi-level approaches and the difference in the performance

of cascaded and multi-level approaches is not statistically significant. These results

are shown in Table 6.6.

6.6 Conclusion

We have performed joint labelling of LID and POS tagging for code-mixed data

in this chapter. We compare a baseline approach (FRCF) and three neural MTL

approaches and found that all of MTL approaches performs better than the FCRF

with handcrafted features.

We also find that in MTL settings it is not always guaranteed that it will perform

104

better than the individual neural tagging approach. The joint labelling approach

lags behind in LID and POS tagging by 1.10% and 1.16% than individual tagging

approaches. This depends on the architectural decisions, cascaded and multi-level

models on the other hand always outperform individual tagging accuracy.

The cascaded and multi-level approach both use hard parameter sharing and

output propagation. The multi-level approach uses two different RNN layers for

the two tasks. However, the cascaded approach does not use multiple task-specific

recurrent layers and still it can achieve a similar accuracy to the multi-level ap-

proach. Further, it uses much fewer parameters and much less training time than

the multi-level approach. Hence, it is possible to use output propagation and shared

representation without using multiple task-specific recurrent layers in MTL settings.

In the next chapter we revisit the research questions of this thesis and try to

answer them. Also, we discuss our observation of different systems and propose the

future direction of this research in the next Chapter.

105

Chapter 7

Conclusions

In this thesis we explored LID and POS tagging with code-mixed data: as indi-

vidual tagging systems and as joint tagging systems. We have used standard ML

techniques, e.g. SVM, CRF, and FCRF with handcrafted features and explored

neural methods, e.g. LSTM with fasttext Skip-Gram word embeddings. We now,

revisit the research questions of Chapter 1 to summarise our findings.

1. Is it possible to achieve better performance than feature based ML

(SVM and CRF) by using a neural approach for LID and POS tagging

of code-mixed social media content?

It is possible to outperform feature based learners (e.g. SVM and CRF) with an

LSTM based system that uses fasttext Skip-Gram word and character embeddings.

For LID we have used two neural systems: (1) the first one uses only word embed-

dings (2) and the second one is a novel LSTM based architecture that takes account

of words and characters simultaneously. The second model is a combination of two

LSTM-based systems. The first LSTM takes a sequence of characters (e.g. word is

converted to a sequence of character) to obtain a representation for a word. This

model is shared across each time step of a sentence to generate word representations

on the fly. The generated word representations are concatenated with pre-trained

word embeddings and used as inputs to the second level LSTM. The word represen-

tation from the second level LSTM is used to classify the words into relevant LID

106

tags. For LID, we find that the use of the word + character-level LSTM performs

better than word-level LSTM and that significantly improves the tagging accuracy

for named entities (ne), acronyms (acro) and word-level code-mixing (mixed). It is

worth mentioning that despite having low frequencies, (mixed 0.26%, ne 2.59% and

acro 0.84%), it is possible to achieve reasonable performance for these categories.

Using the word + character-level LSTM model we achieve is 71% for mixed, 86%

for ne and 82% for acro in terms of F1 scores.

2. How well can we exploit monolingual taggers to perform POS tagging

for code-mixed data? Further, can a neural approach be effective?

When monolingual taggers are arranged in a pipeline and the data flow is con-

trolled by a language identifier, the chances of error propagation are high. Further,

language specific chunking might result in a chunk that is inappropriate for a mono-

lingual tagger. On the other hand, when monolingual taggers act as feature gen-

erators in a stacking system, it is possible to outperform tagger combination-based

systems. The stacking approach performs better than a graphical model (FCRF)

with a similar feature set. For POS tagging, we find that the word + character-

level LSTM outperforms the feature-based learners (SVM, CRF, FCRF and stacking

approaches) and monolingual tagging combinations. Further, adding language infor-

mation into the word + character-level LSTM improves the POS tagging accuracy

for the neural method.

3. How well does a neural MTL approach perform for code-mixed con-

tent? Does MTL achieve better accuracy than individual taggers for code-

mixed data?

In our experiments, the cascaded and the multi-level approach outperforms the

individual neural taggers and joint labelling MTL approaches for LID and POS

tagging. We find that it is not always guaranteed that an MTL system (e.g. joint

labelling approach) will perform better than the individual neural tagging approach.

107

The joint labelling approach lags behind in LID and POS tagging by 1.10% and

1.16% than individual neural tagging approaches. In joint labelling approach the

network is forced to learn some features that are common to the two tasks, it fails

to learn those features which individually contribute to each task. On the other

hand, the cascaded and multi-level approaches pass the output of one task to the

input of another task, which leads to better representation. It should be noted that

the cascaded MTL architecture is able to achieve similar performance to a multi-

level MTL architecture, by using fewer parameters and less training time. Our

experiments show that when dealing with code-mixed content and with multiple

tasks, it is beneficial if a MTL approach (appart from a joint labelling approach)

is taken. Using a cascaded MTL architecture we achieve a near perfect word-level

accuracy for LID (99+%) and POS tagging (97+%). We also find that language

and POS tagging performance suffers at code-mixed points for the joint labelling

approach and feature-based learners. The word ambiguity caused by code-mixing

affects the feature-based learners but neural MTL approaches are not so adversely

affected by the ambiguities.

7.1 Use Cases

LID and POS tagging is prerequisite for many NLP applications. For example,

transliteration of social media code-mixed content is highly dependent on the LID

information. NLP tools that deals with social media romanised transliteration re-

quires word-level LID. Other NLP modules, for example, sentiment analysis, is ben-

efited by the POS information. When dealing with social media romanised content

and performing such tasks (e.g. sentiment analysis), it is always good to have a

multi-tasking model that can perform low-level (e.g. LID and POS) tasks efficiently

than several small models in a pipeline.

108

7.2 Future Work

The research presented in the thesis can be made in multiple directions. Three ideas

are described in the following sections that we consider as a future extension of this

research:

7.2.1 Improving Performance at Code-mixed Points

During analysis we observed that the performance of the NLP tasks (e.g. LID and

POS Tagging) is relatively lower at code-mixed points than the other positions. In

our future work we plan to investigate and improve the approaches to mitigate this

issue.

7.2.2 Unified LID and POS Tagging for Indian Languages

An approach can be taken for a unified LID and POS tagging system for code-mixed

social media content in Indian languages. In future, we plan to include a number

of Indian languages (language and POS annotated) to extend our work in LID and

POS tagging. It will be an interesting matter to see how well individual and MTL

approaches perform for LID and POS tagging when (1) the number of languages is

increased (2) different POS tag sets for different languages are used and (3) same

POS tag set (Petrov et al., 2011) for all languages are used.

7.2.3 LID for Similar Languages

Many of the Indian languages originated from Indo-European and Dravidian lan-

guage families. Therefore, there exists similarity among languages that belong to

the same language family (e.g. Hindi and Marathi). Moreover, due to the short

geographical distances, some languages share similar scripts, share a lot of vocab-

ulary and also have similar grammatical structure (e.g. Bengali, Assamese). In

social media content, classifying such languages can be challenging because Roman-

isation is involved. When languages are very similar due to their origin, it will be

109

an interesting to see that how well our methods performs.

7.2.4 Word-Level MTL: Inclusion of Multiple Tasks

The effectiveness of a cascaded MTL architecture can be tested in many environ-

ments. For example, inclusion of multiple word-level tasks for code-mixed data (on

top of LID and POS tagging). These may include chunking, shallow parsing, NER

and word-level sentiment analysis. Also, these tasks can be arranged for multiple

language pairs, for example, multiple Indian languages. We also plan to extend the

framework to perform multiple sentence level tasks. For example, the outputs of

multiple tasks can be concatenated to form a single representation, this representa-

tion can be used in another LSTM as input that operates on the sentence level and

has multiple output layers to perform multiple tasks (e.g. sentiment analysis).

110

Bibliography

Alex, B. (2008). Automatic detection of English inclusions in mixed-lingual data

with an application to parsing. PhD thesis, School of Informatics, The University

of Edinburgh, Edinburgh, UK.

AlGhamdi, F., Molina, G., Diab, M., Solorio, T., Hawwari, A., Soto, V., and

Hirschberg, J. (2016). Part of speech tagging for code switched data. In Proceed-

ings of the Second Workshop on Computational Approaches to Code Switching,

pages 98–107.

Ammar, W., Mulcaire, G., Ballesteros, M., Dyer, C., and Smith, N. A. (2016). Many

languages, one parser. arXiv preprint arXiv:1602.01595.

Auer, P. (1984). Bilingual conversation. John Benjamins Publishing.

Auer, P. (2013). Code-Switching in Conversation: Language, Interaction and Iden-

tity. Routledge.

Baldwin, T. and Lui, M. (2010a). Language identification: The long and the short

of the matter. In Human Language Technologies: The 2010 Annual Conference

of the North American Chapter of the Association for Computational Linguistics,

pages 229–237. Association for Computational Linguistics.

Baldwin, T. and Lui, M. (2010b). Language identification: The long and the short

of the matter. In Human Language Technologies: The 2010 Annual Conference

of the North American Chapter of the Association for Computational Linguistics,

pages 229–237. Association for Computational Linguistics.

Banerjee, S., Chakma, K., Naskar, S. K., Das, A., Rosso, P., Bandyopadhyay, S.,

and Choudhury, M. (2016). Overview of the mixed script information retrieval

(msir) at fire-2016. Organization (ORG), 67:24.

Bar, K. and Dershowitz, N. (2014). The tel aviv university system for the code-

switching workshop shared task. In Proceedings of the First Workshop on Com-

putational Approaches to Code Switching, pages 139–143.

111

Barman, U., Das, A., Wagner, J., and Foster, J. (2014a). Code mixing: A challenge

for language identification in the language of social media. In Proceedings of the

First Workshop on Computational Approaches to Code Switching. EMNLP 2014,

Conference on Empirical Methods in Natural Language Processing, pages 13–23,

Doha, Qatar. Association for Computational Linguistics.

Barman, U., Wagner, J., Chrupa la, G., and Foster, J. (2014b). Dcu-uvt: Word-

level language classification with code-mixed data. In Proceedings of the First

Workshop on Computational Approaches to Code Switching, pages 127–132.

Barman, U., Wagner, J., and Foster, J. (2016). Part-of-speech tagging of code-mixed

social media content: Pipeline, stacking and joint modelling. In Proceedings of the

Second Workshop on Computational Approaches to Code Switching, pages 30–39.

Baxter, J. (1997). A bayesian/information theoretic model of learning to learn via

multiple task sampling. Machine learning, 28(1):7–39.

Baykan, E., Henzinger, M., and Weber, I. (2008). Web page language identification

based on urls. Proceedings of the VLDB Endowment, 1(1):176–187.

Belazi, H. M., Rubin, E. J., and Toribio, A. J. (1994). Code switching and x-bar

theory: The functional head constraint. Linguistic inquiry, pages 221–237.

Bergsma, S., McNamee, P., Bagdouri, M., Fink, C., and Wilson, T. (2012). Language

identification for creating language-specific twitter collections. In Proceedings of

the second workshop on language in social media, pages 65–74. Association for

Computational Linguistics.

Bhat, G., Choudhury, M., and Bali, K. (2016). Grammatical constraints on intra-

sentential code-switching: From theories to working models. arXiv preprint

arXiv:1612.04538.

Bhat, I. A., Bhat, R. A., Shrivastava, M., and Sharma, D. M. (2017). Joining hands:

Exploiting monolingual treebanks for parsing of code-mixing data. arXiv preprint

arXiv:1703.10772.

Bhat, I. A., Bhat, R. A., Shrivastava, M., and Sharma, D. M. (2018). Uni-

versal dependency parsing for hindi-english code-switching. arXiv preprint

arXiv:1804.05868.

Black, E., Jelinek, F., Lafferty, J., Mercer, R., and Roukos, S. (1992). Decision tree

models applied to the labeling of text with parts-of-speech. In Speech and Natural

Language: Proceedings of a Workshop Held at Harriman, New York, the Fifth

112

DARPA Workshop on Speech and Natural Language, pages 117–121, San Mateo,

CA, USA. Morgan Kaufmann Publishers, Inc.

Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T. (2016). Enriching word

vectors with subword information. CoRR, abs/1607.04606.

Brants, T. (2000). TnT: A statistical part-of-speech tagger. In Proceedings of the

Sixth Conference on Applied Natural Language Processing, pages 224–231. Asso-

ciation for Computational Linguistics.

Cárdenas-Claros, M. and Isharyanti, N. (2009). Code-switching and code-mixing in

internet chatting: Between’yes,”ya,’and’si’-a case study. The Jalt Call Journal,

5(3):67–78.

Carter, S., Weerkamp, W., and Tsagkias, M. (2013). Microblog language identifica-

tion: Overcoming the limitations of short, unedited and idiomatic text. Language

Resources and Evaluation, 47(1):195–215.

Caruna, R. (1993). Multitask learning: A knowledge-based source of inductive bias.

In Machine Learning: Proceedings of the Tenth International Conference, pages

41–48.

Cavnar, W. B. and Trenkle, J. M. (1994). N-gram-based text categorization. In

Pavlidis, T., editor, Proceedings of SDAIR-94, Third Annual Symposium on Doc-

ument Analysis and Information Retrieval, pages 161–175.

Çetinoğlu, Ö., Schulz, S., and Vu, N. T. (2016). Challenges of computational pro-

cessing of code-switching. arXiv preprint arXiv:1610.02213.

Chang, J. C. and Lin, C. (2014). Recurrent-neural-network for language detection

on twitter code-switching corpus. CoRR, abs/1412.4314.

Chen, M., Pan, J., Zhao, Q., and Yan, Y. (2016). Multi-task learning in deep neural

networks for mandarin-english code-mixing speech recognition. IEICE TRANS-

ACTIONS on Information and Systems, 99(10):2554–2557.

Chen, X., Xu, L., Liu, Z., Sun, M., and Luan, H.-B. (2015). Joint learning of

character and word embeddings. In IJCAI, pages 1236–1242.

Chittaranjan, G., Vyas, Y., Bali, K., and Choudhury, M. (2014). Word-level lan-

guage identification using crf: Code-switching shared task report of msr india

system. In Proceedings of The First Workshop on Computational Approaches to

Code Switching, pages 73–79.

113

Collobert, R. and Weston, J. (2008). A unified architecture for natural language

processing: Deep neural networks with multitask learning. In Proceedings of the

25th international conference on Machine learning, pages 160–167. ACM.

Cutting, D., Kupiec, J., Pedersen, J., and Sibun, P. (1992). A practical part-of-

speech tagger. In Proceedings of the Third Conference on Applied Natural Lan-

guage Processing, pages 133–140. Association for Computational Linguistics.

Damashek, M. (1995). Gauging similarity with n-grams: Language-independent

categorization of text. Science, 267(5199):843.

Dandapat, S., Sarkar, S., and Basu, A. (2004). A hybrid model for part-of-speech

tagging and its application to Bengali. In International Conference on Computa-

tional Intelligence, pages 169–172.

Dandapat, S., Sarkar, S., and Basu, A. (2007). Automatic part-of-speech tagging

for Bengali: An approach for morphologically rich languages in a poor resource

scenario. In Proceedings of the 45th Annual Meeting of the Association for Com-

putational Linguistics Companion Volume Proceedings of the Demo and Poster

Sessions, pages 221–224, Prague, Czech Republic. Association for Computational

Linguistics.

Das, A. and Gambäck, B. (2014). Identifying languages at the word level in code-

mixed indian social media text. In 11th International Conference on Natural

Language Processing, page 378.

Das, A. and Gambäck, B. (2015). Code-mixing in social media text: the last lan-

guage identification frontier?

Das, D. and Petrov, S. (2011). Unsupervised part-of-speech tagging with bilingual

graph-based projections. In Proceedings of the 49th Annual Meeting of the Asso-

ciation for Computational Linguistics: Human Language Technologies-Volume 1,

pages 600–609. Association for Computational Linguistics.

Dewaele, J.-M. (2010). Emotions in Multiple Languages. Palgrave Macmillan.

Dey, A. and Fung, P. (2014). A Hindi-English code-switching corpus. In Proceed-

ings of the Ninth International Conference on Language Resources and Evaluation

(LREC’14), pages 2410–2413, Reykjavik, Iceland. European Language Resources

Association (ELRA).

Diab, M., Fung, P., Ghoneim, M., Hirschberg, J., and Solorio, T. (2016). Pro-

ceedings of the second workshop on computational approaches to code switching.

114

In Proceedings of the Second Workshop on Computational Approaches to Code

Switching.

Dong, D., Wu, H., He, W., Yu, D., and Wang, H. (2015). Multi-task learning

for multiple language translation. In Proceedings of the 53rd Annual Meeting

of the Association for Computational Linguistics and the 7th International Joint

Conference on Natural Language Processing (Volume 1: Long Papers), volume 1,

pages 1723–1732.

Duh, K. (2005). Jointly labeling multiple sequences: A factorial hmm approach. In

Proceedings of the ACL Student Research Workshop, pages 19–24. Association for

Computational Linguistics.

Dunning, T. (1994). Statistical identification of language. Computing Research

Laboratory, New Mexico State University.

Duong, L., Cook, P., Bird, S., and Pecina, P. (2013). Simpler unsupervised pos tag-

ging with bilingual projections. In Proceedings of the 51st Annual Meeting of the

Association for Computational Linguistics (Volume 2: Short Papers), volume 2,

pages 634–639.

Efron, B. (1979). Bootstrap Methods: Another Look at the Jackknife. The Annals

of Statistics, 7(1):1–26.

Ekbal, A. and Bandyopadhyay, S. (2008). Web-based Bengali news corpus for lexicon

development and POS tagging. POLIBITS, ISSN 1870, 9044(37):20–29.

Elworthy, D. (1999). Language identification with confidence limits. arXiv preprint

cs/9907010.

Fan, X., Monti, E., Mathias, L., and Dreyer, M. (2017). Transfer learning for neural

semantic parsing. arXiv preprint arXiv:1706.04326.

Foster, J., Çetinoglu, Ö., Wagner, J., Le Roux, J., Hogan, S., Nivre, J., Hogan,

D., Van Genabith, J., et al. (2011). #hardtoparse: POS tagging and parsing

the twitterverse. In Proceedings of the Workshop On Analyzing Microtext (AAAI

2011), pages 20–25.

Gambäck, B. and Das, A. (2014). On measuring the complexity of code-mixing. In

Proceedings of the 11th International Conference on Natural Language Processing,

Goa, India, pages 1–7.

Gardner-Chloros, P. (1991). Language selection and switching in strasbourg.

115

Ghosh, S., Ghosh, S., and Das, D. (2016). Part-of-speech tagging of code-mixed

social media text. In Proceedings of the Second Workshop on Computational

Approaches to Code Switching, pages 90–97.

Gimpel, K., Schneider, N., O’Connor, B., Das, D., Mills, D., Eisenstein, J., Heil-

man, M., Yogatama, D., Flanigan, J., and Smith, N. A. (2011). Part-of-speech

tagging for Twitter: Annotation, features, and experiments. In Proceedings of

the 49th Annual Meeting of the Association for Computational Linguistics: Hu-

man Language Technologies: short papers-Volume 2, pages 42–47. Association for

Computational Linguistics.

Giménez, J. and Màrquez, L. (2004). SVMTool: A general POS tagger generator

based on support vector machines. In In Proceedings of the 4th International

Conference on Language Resources and Evaluation, pages 43–46.

Godwin, J., Stenetorp, P., and Riedel, S. (2016). Deep semi-supervised learning

with linguistically motivated sequence labeling task hierarchies. arXiv preprint

arXiv:1612.09113.

Goldszmidt, M., Najork, M., and Paparizos, S. (2013). Boot-strapping language

identifiers for short colloquial postings. In Joint European Conference on Machine

Learning and Knowledge Discovery in Databases, pages 95–111. Springer.

Gottron, T. and Lipka, N. (2010). A comparison of language identification ap-

proaches on short, query-style texts. In In Advances in Information Retrieval,

32nd European Conference on IR Research (ECIR 2010), pages 611–614. Springer.

Graham, Y., Mathur, N., and Baldwin, T. (2014). Randomized significance tests

in machine translation. In Proceedings of the ACL 2014 Ninth Workshop on

Statistical Machine Translation, pages 266–274.

Grefenstette, G. (1995). Comparing two language identification schem es.

Grothe, L., De Luca, E. W., and Nürnberger, A. (2008). A comparative study on

language identification methods. In LREC. Citeseer.

Guo, J., Che, W., Wang, H., and Liu, T. (2016). Exploiting multi-typed treebanks

for parsing with deep multi-task learning. arXiv preprint arXiv:1606.01161.

Gupta, D., Tripathi, S., Ekbal, A., and Bhattacharyya, P. (2017). Smpost:

Parts of speech tagger for code-mixed indic social media text. arXiv preprint

arXiv:1702.00167.

116

Han, B., Cook, P., and Baldwin, T. (2012). Automatically constructing a normali-

sation dictionary for microblogs. In Proceedings of the 2012 Joint Conference on

Empirical Methods in Natural Language Processing and Computational Natural

Language Learning, pages 421–432. Association for Computational Linguistics.

Hashimoto, K., Xiong, C., Tsuruoka, Y., and Socher, R. (2016). A joint many-

task model: Growing a neural network for multiple nlp tasks. arXiv preprint

arXiv:1611.01587.

Hatori, J., Matsuzaki, T., Miyao, Y., and Tsujii, J. (2012). Incremental joint ap-

proach to word segmentation, pos tagging, and dependency parsing in chinese. In

Proceedings of the 50th Annual Meeting of the Association for Computational Lin-

guistics: Long Papers-Volume 1, pages 1045–1053. Association for Computational

Linguistics.

Hidayat, T. (2012). An analysis of code switching used by facebookers: a

case study in a social network site. Student essay for the study programme

“Pendidikan Bahasa Inggris” (English Education) at STKIP Siliwangi Ban-

dung, Indonesia, http://publikasi.stkipsiliwangi.ac.id/files/2012/10/

08220227-taofik-hidayat.pdf.

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., and Salakhutdinov,

R. R. (2012). Improving neural networks by preventing co-adaptation of feature

detectors. arXiv preprint arXiv:1207.0580.

Hong, L., Convertino, G., and Chi, E. H. (2011). Language matters in twitter: A

large scale study. In ICWSM.

Hsu, C.-W., Chang, C.-C., and Lin, C.-J. (2010). A practical guide to support vector

classification. Technical report. Department of Computer Science, National Tai-

wan University, Taiwan, https://www.cs.sfu.ca/people/Faculty/teaching/

726/spring11/svmguide.pdf.

Hughes, B., Baldwin, T., Bird, S., Nicholson, J., and MacKinlay, A. (2006). Recon-

sidering language identification for written language resources.

Jaech, A., Mulcaire, G., Ostendorf, M., and Smith, N. A. (2016). A neural model

for language identification in code-switched tweets. In Proceedings of The Second

Workshop on Computational Approaches to Code Switching, pages 60–64.

Jain, N. and Bhat, R. A. (2014). Language identification in code-switching sce-

nario. In Proceedings of the First Workshop on Computational Approaches to

Code Switching, pages 87–93.

117

http://publikasi.stkipsiliwangi.ac.id/files/2012/10/08220227-taofik-hidayat.pdf
http://publikasi.stkipsiliwangi.ac.id/files/2012/10/08220227-taofik-hidayat.pdf
https://www.cs.sfu.ca/people/Faculty/teaching/726/spring11/svmguide.pdf
https://www.cs.sfu.ca/people/Faculty/teaching/726/spring11/svmguide.pdf

Jamatia, A. and Das, A. (2014). Part-of-speech tagging system for Indian social

media text on Twitter. In Social-India 2014, First Workshop on Language Tech-

nologies for Indian Social Media Text, at the Eleventh International Conference

on Natural Language Processing (ICON-2014), volume 2014, pages 21–28.

Jamatia, A. and Das, A. (2016). Task report: Tool contest on pos tagging for

codemixed indian social media (facebook, twitter, and whatsapp) text@ icon 2016.

the proceeding of ICON 2016.

Jamatia, A., Gambäck, B., and Das, A. (2015). Part-of-speech tagging for code-

mixed english-hindi twitter and facebook chat messages. In Proceedings of the

International Conference Recent Advances in Natural Language Processing, pages

239–248.

Johnson, S. (1993). Solving the problem of language recognition. In Technical

Report. School of Computer Studies, University of Leeds.

Joshi, A. K. (1982). Processing of sentences with intra-sentential code-switching. In

Proceedings of the 9th conference on Computational linguistics-Volume 1, pages

145–150. Academia Praha.

Joulin, A., Grave, E., Bojanowski, P., and Mikolov, T. (2016). Bag of tricks for

efficient text classification. arXiv preprint arXiv:1607.01759.

Kachru, B. B. (1976). Toward structuring code-mixing: An indian perspective.

Kachru, B. B. (1978). Code-mixing as a communicative strategy in india. Interna-

tional dimensions of bilingual education, pages 107–124.

Kachru, B. B. (1983). The indianization of English: the English language in India.

Oxford University Press.

Kachru, B. B. (1986). The alchemy of English: The spread, functions, and models

of non-native Englishes. University of Illinois Press.

King, B. and Abney, S. (2013). Labeling the languages of words in mixed-language

documents using weakly supervised methods. In Proceedings of the 2013 Con-

ference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies, pages 1110–1119, Atlanta, Georgia.

Association for Computational Linguistics.

Kralisch, A. and Mandl, T. (2006). Barriers to information access across lan-

guages on the internet: Network and language effects. In System Sciences, 2006.

118

HICSS’06. Proceedings of the 39th Annual Hawaii International Conference on,

volume 3, pages 54b–54b. IEEE.

Laboreiro, G., Bošnjak, M., Sarmento, L., Rodrigues, E. M., and Oliveira, E. (2013).

Determining language variant in microblog messages. In Proceedings of the 28th

Annual ACM Symposium on Applied Computing, pages 902–907. ACM.

Lafferty, J., McCallum, A., and Pereira, F. C. (2001). Conditional random fields:

Probabilistic models for segmenting and labeling sequence data. pages 282–289.

Li, D. (2000). Cantonese-English code-switching research in Hong Kong: a Y2K

review. World Englishes, 19(3):305–322.

Li, X., Wang, X., and Yao, L. (2011). Joint decoding for chinese word segmentation

and pos tagging using character-based and word-based discriminative models. In

Asian Language Processing (IALP), 2011 International Conference on, pages 11–

14. IEEE.

Li, Z., Zhang, M., Che, W., Liu, T., and Chen, W. (2014). Joint optimization for

chinese pos tagging and dependency parsing. IEEE/ACM Transactions on Audio,

Speech, and Language Processing, 22(1):274–286.

Lignos, C. and Marcus, M. (2013). Toward web-scale analysis of codeswitching. In

87th Annual Meeting of the Linguistic Society of America.

Lui, M. and Baldwin, T. (2011). Cross-domain feature selection for language identi-

fication. In Proceedings of 5th international joint conference on natural language

processing, pages 553–561.

Lui, M. and Baldwin, T. (2012). langid. py: An off-the-shelf language identifica-

tion tool. In Proceedings of the ACL 2012 system demonstrations, pages 25–30.

Association for Computational Linguistics.

Lui, M. and Baldwin, T. (2014). Accurate language identification of twitter mes-

sages. In Proceedings of the 5th workshop on language analysis for social media

(LASM), pages 17–25.

Mandal, S., Das, S. D., and Das, D. (2018). Language identification of bengali-

english code-mixed data using character & phonetic based lstm models. arXiv

preprint arXiv:1803.03859.

Mann, G. S. and McCallum, A. (2008). Generalized expectation criteria for semi-

supervised learning of conditional random fields. In Proceedings of ACL-08: HLT,

pages 870–878, Columbus, Ohio. Association for Computational Linguistics.

119

Mann, G. S. and McCallum, A. (2010). Generalized expectation criteria for semi-

supervised learning with weakly labeled data. The Journal of Machine Learning

Research, 11:955–984.

Marcus, M. P., Marcinkiewicz, M. A., and Santorini, B. (1993). Building a large

annotated corpus of english: The penn treebank. Computational linguistics,

19(2):313–330.

McCallum, A., Rohanimanesh, K., and Sutton, C. (2003). Dynamic conditional

random fields for jointly labeling multiple sequences. In NIPS-2003 Workshop on

Syntax, Semantics and Statistics.

McNamee, P. (2005). Language identification: a solved problem suitable for under-

graduate instruction. Journal of Computing Sciences in Colleges, 20(3):94–101.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013). Dis-

tributed representations of words and phrases and their compositionality. In Ad-

vances in neural information processing systems, pages 3111–3119.

Milroy, L. and Muysken, P., editors (1995). One speaker, two languages: Cross-

disciplinary perspectives on code-switching. Cambridge University Press.

Murthy, K. N. and Kumar, G. B. (2006). Language identification from small text

samples. Journal of Quantitative Linguistics, 13(01):57–80.

Muysken, P., Dı́az, C. P., Muysken, P. C., et al. (2000). Bilingual speech: A typology

of code-mixing, volume 11. Cambridge University Press.

Myers-Scotton, C. (1995). A lexically based model of code-switching. One speaker,

two languages: Cross-disciplinary perspectives on code-switching, pages 233–256.

Myers-Scotton, C. (1997). Duelling languages: Grammatical structure in codeswitch-

ing. Oxford University Press.

Myers-Scotton, C. and Jake, J. L. (1995). Matching lemmas in a bilingual language

competence and production model: Evidence from intrasentential code switching.

Nakagawa, T., Kudo, T., and Matsumoto, Y. (2001). Unknown word guessing and

part-of-speech tagging using support vector machines. In NLPRS, pages 325–331.

Citeseer.

Nguyen, D. and Doğruöz, A. S. (2013). Word level language identification in online

multilingual communication. In Proceedings of the 2013 Conference on Empirical

Methods in Natural Language Processing (EMNLP 2013), pages 857–862, Seattle,

Washington, USA. Association for Computational Linguistics.

120

Owoputi, O., O’Connor, B., Dyer, C., Gimpel, K., Schneider, N., and Smith, N. A.

(2013). Improved part-of-speech tagging for online conversational text with word

clusters. In Proceedings of the 2013 Conference of the North American Chapter

of the Association for Computational Linguistics: Human Language Technologies

(NAACL-HLT 2013), pages 380–390, Atlanta, Georgia. Association for Compu-

tational Linguistics.

Padró, M. and Padró, L. (2004). Comparing methods for language identification.

Procesamiento del lenguaje natural, 33.

Palanisamy, A. and Devi, S. L. (2006). HMM based POS tagger for a relatively free

word order language. Research in Computing Science, 18:37–48.

Patel, R. N., Pimpale, P. B., and Sasikumar, M. (2016). Recurrent neural network

based part-of-speech tagger for code-mixed social media text. arXiv preprint

arXiv:1611.04989.

Patra, B. G., Das, D., and Das, A. (2018). Sentiment analysis of code-mixed indian

languages: An overview of sail code-mixed shared task@ icon-2017. arXiv preprint

arXiv:1803.06745.

Peng, H., Thomson, S., and Smith, N. A. (2017). Deep multitask learning for

semantic dependency parsing. arXiv preprint arXiv:1704.06855.

Petrov, S., Das, D., and McDonald, R. (2011). A universal part-of-speech tagset.

arXiv preprint arXiv:1104.2086.

Pimpale, P. B. and Patel, R. N. (2016). Experiments with pos tagging code-mixed

indian social media text. arXiv preprint arXiv:1610.09799.

Poplack, S. (1980). Sometimes i’ll start a sentence in spanish y termino en espanol:

toward a typology of code-switching1. Linguistics, 18(7-8):581–618.

Prager, J. M. (1999). Linguini: Language identification for multilingual documents.

Journal of Management Information Systems, 16(3):71–101.

Pratapa, A., Bhat, G., Choudhury, M., Sitaram, S., Dandapat, S., and Bali, K.

(2018). Language modeling for code-mixing: The role of linguistic theory based

synthetic data. In Proceedings of the 56th Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long Papers), volume 1, pages 1543–1553.

PVS, A. and Karthik, G. (2007). Part-of-speech tagging and chunking using con-

ditional random fields and transformation based learning. In Proceedings of the

121

IJCAI-2007 Workshop on Shallow Parsing for South Asian Languages (SPSAL-

2007), pages 21–24.

Ramesh, S. H. and Kumar, R. R. (2016). A pos tagger for code mixed indian

social media text-icon-2016 nlp tools contest entry from surukam. arXiv preprint

arXiv:1701.00066.

Ray, P. R., Harish, V., Sarkar, S., and Basu, A. (2003). Part of speech tagging

and local word grouping techniques for natural language parsing in Hindi. In

Proceedings of the 1st International Conference on Natural Language Processing

(ICON 2003).

Rijhwani, S., Sequiera, R., Choudhury, M., Bali, K., and Maddila, C. S. (2017).

Estimating code-switching on twitter with a novel generalized word-level language

detection technique. In Proceedings of the 55th Annual Meeting of the Association

for Computational Linguistics (Volume 1: Long Papers), volume 1, pages 1971–

1982.

Ruder, S., Bingel, J., Augenstein, I., and Søgaard, A. (2017). Learning what to

share between loosely related tasks. arXiv preprint arXiv:1705.08142.

Samih, Y., Maharjan, S., Attia, M., Kallmeyer, L., and Solorio, T. (2016). Multilin-

gual code-switching identification via lstm recurrent neural networks. In Proceed-

ings of the Second Workshop on Computational Approaches to Code Switching,

pages 50–59.

San, H. K. (2009). Chinese-English code-switching in blogs by Macao young people.

Master’s thesis, The University of Edinburgh, Edinburgh, UK. http://hdl.

handle.net/1842/3626.

Sankoff, D. and Poplack, S. (1981). A formal grammar for code-switching. Papers

in Linguistics - International Journal of Human Communication, 14:3–46.

Scannell, K. P. (2007). The crúbadán project: Corpus building for under-resourced

languages. In Building and Exploring Web Corpora: Proceedings of the 3rd Web

as Corpus Workshop, volume 4, pages 5–15.

Schmid, H. (1994a). Part-of-speech tagging with neural networks. In Proceedings of

the 15th Conference on Computational Linguistics - Volume 1, COLING ’94, pages

172–176, Stroudsburg, PA, USA. Association for Computational Linguistics.

Schmid, H. (1994b). Probabilistic part-of-speech tagging using decision trees. In

Proceedings of the International Conference on New Methods in Language Pro-

cessing (NeMLaP-1), pages 44–49, Manchester, UK.

122

http://hdl.handle.net/1842/3626
http://hdl.handle.net/1842/3626

Schulz, S. and Keller, M. (2016). Code-switching ubique est-language identifica-

tion and part-of-speech tagging for historical mixed text. In Proceedings of the

10th SIGHUM Workshop on Language Technology for Cultural Heritage, Social

Sciences, and Humanities, pages 43–51.

Sequiera, R., Choudhury, M., and Bali, K. (2015a). Pos tagging of hindi-english code

mixed text from social media: Some machine learning experiments. In Proceedings

of the 12th International Conference on Natural Language Processing, pages 237–

246.

Sequiera, R., Choudhury, M., Gupta, P., Rosso, P., Kumar, S., Banerjee, S., Naskar,

S. K., Bandyopadhyay, S., Chittaranjan, G., Das, A., et al. (2015b). Overview of

fire-2015 shared task on mixed script information retrieval. In FIRE Workshops,

volume 1587, pages 19–25.

Shafie, L. A. and Nayan, S. (2013). Languages, code-switching practice and pri-

mary functions of facebook among university students. Study in English Language

Teaching, 1(1):187–199. http://www.scholink.org/ojs/index.php/selt.

Sharma, A. and Motlani, R. (2015). Pos tagging for code-mixed indian social media

text: Systems from iiit-h for icon nlp tools contest.

Shirvani, R., Piergallini, M., Gautam, G. S., and Chouikha, M. (2016). The howard

university system submission for the shared task in language identification in

spanish-english codeswitching. In Proceedings of The Second Workshop on Com-

putational Approaches to Code Switching, pages 116–120.

Shrivastava, M., Melz, R., Singh, S., Gupta, K., and Bhattacharyya, P. (2006).

Conditional random field based POS tagger for Hindi. Presentation slides of

the First National Symposium on Modeling and Shallow Parsing of Indian Lan-

guages (MSPIL), http://www.cfilt.iitb.ac.in/~mspil-06/mspilpresn.zip

accessed 2015-04-09.

Sibun, P. and Reynar, J. C. (1996). Language identification: Examining the issues.

Singh, S., Gupta, K., Shrivastava, M., and Bhattacharyya, P. (2006). Morphological

richness offsets resource demand-experiences in constructing a pos tagger for hindi.

In Proceedings of the COLING/ACL on Main conference poster sessions, pages

779–786. Association for Computational Linguistics.

Søgaard, A. and Goldberg, Y. (2016). Deep multi-task learning with low level tasks

supervised at lower layers. In Proceedings of the 54th Annual Meeting of the

123

http://www.scholink.org/ojs/index.php/selt
http://www.cfilt.iitb.ac.in/~mspil-06/mspilpresn.zip

Association for Computational Linguistics (Volume 2: Short Papers), volume 2,

pages 231–235.

Solorio, T., Blair, E., Maharjan, S., Bethard, S., Diab, M., Ghoneim, M., Hawwari,

A., AlGhamdi, F., Hirschberg, J., Chang, A., et al. (2014a). Overview for the

first shared task on language identification in code-switched data. In Proceedings

of the First Workshop on Computational Approaches to Code Switching, pages

62–72.

Solorio, T., Blair, E., Maharjan, S., Bethard, S., Diab, M., Gonheim, M., Hawwari,

A., AlGhamdi, F., Hirshberg, J., Chang, A., and Fung, P. (2014b). Overview for

the first shared task on language identification in code-switched data. In Pro-

ceedings of the First Workshop on Computational Approaches to Code-Switching.

EMNLP 2014, Conference on Empirical Methods in Natural Language Processing,

Doha, Qatar. Association for Computational Linguistics.

Solorio, T. and Liu, Y. (2008a). Learning to predict code-switching points. In Pro-

ceedings of the Conference on Empirical Methods in Natural Language Processing,

pages 973–981. Association for Computational Linguistics.

Solorio, T. and Liu, Y. (2008b). Part-of-speech tagging for English-Spanish code-

switched text. In Proceedings of the Conference on Empirical Methods in Natural

Language Processing, pages 1051–1060. Association for Computational Linguis-

tics.

Sowmya, V., Choudhury, M., Bali, K., Dasgupta, T., and Basu, A. (2010). Resource

creation for training and testing of transliteration systems for Indian languages. In

Proceedings of the Language Resource and Evaluation Conference (LREC) 2010,

pages 2902–2907. European Language Resources Association.

Sutton, C., McCallum, A., and Rohanimanesh, K. (2007). Dynamic conditional ran-

dom fields: Factorized probabilistic models for labeling and segmenting sequence

data. Journal of Machine Learning Research, 8(Mar):693–723.

Toutanova, K. and Manning, C. D. (2000). Enriching the knowledge sources used in

a maximum entropy part-of-speech tagger. In Proceedings of the 2000 Joint SIG-

DAT conference on Empirical methods in natural language processing and very

large corpora: held in conjunction with the 38th Annual Meeting of the Asso-

ciation for Computational Linguistics-Volume 13, pages 63–70. Association for

Computational Linguistics.

124

Tromp, E. and Pechenizkiy, M. (2011). Graph-based n-gram language identification

on short texts. In Proc. 20th Machine Learning conference of Belgium and The

Netherlands, pages 27–34.

Vogel, J. and Tresner-Kirsch, D. (2012). Robust language identification in short,

noisy texts: Improvements to liga. In Proceedings of the 3rd International Work-

shop on Mining Ubiquitous and Social Environments, pages 1–9.

Voss, C. R., Tratz, S., Laoudi, J., and Briesch, D. M. (2014). Finding romanized

arabic dialect in code-mixed tweets. In LREC, pages 2249–2253.

Voutilainen, A. (1995). A syntax-based part-of-speech analyser. In Proceedings of

the Seventh Conference on European Chapter of the Association for Computa-

tional Linguistics, EACL ’95, pages 157–164, San Francisco, CA, USA. Morgan

Kaufmann Publishers Inc.

Vyas, Y., Gella, S., Sharma, J., Bali, K., and Choudhury, M. (2014). POS tagging of

English-Hindi code-mixed social media content. In Proceedings of the 2014 Con-

ference on Empirical Methods in Natural Language Processing (EMNLP), pages

974–979, Doha, Qatar. Association for Computational Linguistics.

Wang, A. and Kan, M.-Y. (2013). Mining informal language from chinese microtext:

Joint word recognition and segmentation. In Proceedings of the 51st Annual Meet-

ing of the Association for Computational Linguistics (Volume 1: Long Papers),

volume 1, pages 731–741.

Wang, P., Qian, Y., Soong, F. K., He, L., and Zhao, H. (2015). Part-of-speech tag-

ging with bidirectional long short-term memory recurrent neural network. arXiv

preprint arXiv:1510.06168.

Winata, G. I., Madotto, A., Wu, C.-S., and Fung, P. (2018a). Code-switching

language modeling using syntax-aware multi-task learning. arXiv preprint

arXiv:1805.12070.

Winata, G. I., Wu, C.-S., Madotto, A., and Fung, P. (2018b). Bilingual character

representation for efficiently addressing out-of-vocabulary words in code-switching

named entity recognition. arXiv preprint arXiv:1805.12061.

Winkelmolen, F. and Mascardi, V. (2011). Statistical language identification of short

texts. In ICAART (1), pages 498–503. Citeseer.

Xafopoulos, A., Kotropoulos, C., Almpanidis, G., and Pitas, I. (2004). Lan-

guage identification in web documents using discrete hmms. Pattern recognition,

37(3):583–594.

125

Xia, M. X. (2016). Codeswitching language identification using subword information

enriched word vectors. In Proceedings of The Second Workshop on Computational

Approaches to Code Switching, pages 132–136.

Yamaguchi, H. and Tanaka-Ishii, K. (2012). Text segmentation by language using

minimum description length. In Proceedings of the 50th Annual Meeting of the

Association for Computational Linguistics: Long Papers-Volume 1, pages 969–

978. Association for Computational Linguistics.

Yu, X. and Lam, W. (2010). Jointly identifying entities and extracting relations in

encyclopedia text via a graphical model approach. In Proceedings of the 23rd In-

ternational Conference on Computational Linguistics: Posters, pages 1399–1407.

Association for Computational Linguistics.

Zaidan, O. F. and Callison-Burch, C. (2011). The arabic online commentary dataset:

an annotated dataset of informal arabic with high dialectal content. In Proceedings

of the 49th Annual Meeting of the Association for Computational Linguistics:

Human Language Technologies: short papers-Volume 2, pages 37–41. Association

for Computational Linguistics.

Zennaki, O., Semmar, N., and Besacier, L. (2015). Unsupervised and lightly su-

pervised part-of-speech tagging using recurrent neural networks. In Proceedings

of the 29th Pacific Asia Conference on Language, Information and Computation,

pages 133–142.

Zhang, Y. and Clark, S. (2008). Joint word segmentation and pos tagging using a

single perceptron. Proceedings of ACL-08: HLT, pages 888–896.

Zhang, Y. and Weiss, D. (2016). Stack-propagation: Improved representation learn-

ing for syntax. CoRR, abs/1603.06598.

Zhao, K. and Huang, L. (2017). Joint syntacto-discourse parsing and the syntacto-

discourse treebank. arXiv preprint arXiv:1708.08484.

126

Appendix A

SVM-based LID Results for

Nepali-English Data.

Following are the results of our SVM-based LID systems for Nepali-English data.

In the First Workshop of Computational Approaches to Code-Switching, EMNLP,

2014 (Solorio et al., 2014a), our SVM-based LID system achieved the highest token-

level accuracy in the word-level language identification task of Nepali-English. The

goal of the task is to generate word-level language predictions (six labels - lang1,

lang2, ne, mixed, ambiguous and other) for mixed lingual user generated content.

Features Accuracy Features Accuracy

G 96.02 GD 96.27

GL 96.11 GDL 96.32

GC 96.15 GDC 96.20

GLC 96.21 GDLC 96.40

Table A.1: Average Cross-Validation Accuracy for SVM-6-Way based Prediction for
Nepali-English Training, Data Set, G = Char-N-Gram, L = Binary Length Features,
D = Dict.-Based Labels and C = Capitalization features. For more detail, please
visit the Language Identification Chapter.

Tweets

Token Level Tweet Level

Nepali-English 0.963 0.958

Surprise Genre

Token Level Post/Comment Level

Nepali-English 0.856 0.775

Table A.2: Test set results (overall accuracy) for Nepali-English and Spanish-English
Tweet Data and Surprise Genre

1

	Acknowledgements
	Abstract
	Introduction
	Challenges of Code-Mixed NLP
	Research Questions
	Contributions
	Structure of Thesis

	Code-mixing: Linguistic Aspects
	Types of Code-mixing
	Motivations for Code-mixing
	Linguistic Theories of Code-mixing
	Grammatical Constraints of poplack1980sometimes
	Matrix Language Frame (MLF)

	Indian Languages and Code-mixing
	Conclusion

	Data
	English-Hindi-Bengali Facebook Corpus
	Annotation
	Inter Annotator Agreement
	Data Characteristics

	Unlabelled Monolingual Data
	Conclusion

	Language Identification
	Chapter Organization
	Background
	Research Questions
	Experiments
	Resource
	Dictionaries
	Support Vector Machine (SVM)
	Conditional random field (CRF)
	Long Short Term Memory (LSTM)

	Analysis and Discussion
	Statistical Significance Test
	Ambiguous vs Non-ambiguous Words
	Code-Mixing Points
	Monolingual vs Code-Mixed Sentences
	Word-based Vs. Word+Character-based LSTM
	Error Categories

	Conclusion

	Part-of-Speech Tagging
	Chapter Organization
	Background
	Research Questions
	Experiments
	Baseline
	Exploiting Monolingual Taggers
	Long Short Term Memory (LSTM)

	Analysis and Discussion
	Statistical Significance Testing
	Effect of LID as Pre-processing module
	Stacked vs Pipeline Systems
	Monolingual vs Code-mixed Sentences
	Code-mixing Points
	Error Categories

	Conclusion

	Multitask Learning
	Chapter Organization
	Background
	Research Questions
	Experiments
	Factorial Conditional Random Fields (FCRF)
	Long Short Term Memory (LSTM)

	Analysis and Discussion
	Statistical Significance Testing
	Ambiguous vs Non-ambiguous Words
	Code-Mixing Points
	Model Comparisons

	Conclusion

	Conclusions
	Use Cases
	Future Work
	Improving Performance at Code-mixed Points
	Unified LID and POS Tagging for Indian Languages
	LID for Similar Languages
	Word-Level MTL: Inclusion of Multiple Tasks

	Bibliography
	Appendix SVM-based LID Results for Nepali-English Data.

