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Discourse-Aware Neural Machine Translation

Longyue Wang

Abstract

Machine translation (MT) models usually translate a text by considering isolated sentences

based on a strict assumption that the sentences in a text are independent of one another.

However, it is a truism that texts have properties of connectedness that go beyond those of

their individual sentences. Disregarding dependencies across sentences will harm trans-

lation quality especially in terms of coherence, cohesion, and consistency. Previously,

some discourse-aware approaches have been investigated for conventional statistical ma-

chine translation (SMT). However, this is a serious obstacle for the state-of-the-art neural

machine translation (NMT), which recently has surpassed the performance of SMT.

In this thesis, we try to incorporate useful discourse information for enhancing NMT

models. More specifically, we conduct research on two main parts: 1) exploiting novel

document-level NMT architecture; and 2) dealing with a specific discourse phenomenon

for translation models.

Firstly, we investigate the influence of historical contextual information on the perfor-

mance of NMT models. A cross-sentence context-aware NMT model is proposed to con-

sider the influence of previous sentences in the same document. Specifically, this history

is summarized using an additional hierarchical encoder. The historical representations are

then integrated into the standard NMT model in different strategies. Experimental results

on a Chinese–English document-level translation task show that the approach significantly

improves upon a strong attention-based NMT system by up to +2.1 BLEU points. In ad-

dition, analysis and comparison also give insightful discussions and conclusions for this

research direction.

Secondly, we explore the impact of discourse phenomena on the performance of MT.

In this thesis, we focus on the phenomenon of pronoun-dropping (pro-drop), where, in pro-

xxi



drop languages, pronouns can be omitted when it is possible to infer the referent from the

context. As the data for training a dropped pronoun (DP) generator is scarce, we propose to

automatically annotate DPs using alignment information from a large parallel corpus. We

then introduce a hybrid approach: building a neural-based DP generator and integrating it

into the SMT model. Experimental results on both Chinese–English and Japanese–English

translation tasks demonstrate that our approach achieves a significant improvement of up to

+1.58 BLEU points with 66% F-score for DP generation accuracy.

Motivated by this promising result, we further exploit the DP translation approach for

advanced NMT models. A novel reconstruction-based model is proposed to reconstruct the

DP-annotated source sentence from the hidden states of either encoder or decoder, or both

components. Experimental results on the same translation tasks show that the proposed ap-

proach significantly and consistently improves translation performance over a strong NMT

baseline, which is trained on DP-annotated parallel data.

To avoid the errors propagated from an external DP prediction model, we finally investi-

gate an end-to-end DP translation model. Specifically, we improve the reconstruction-based

model from three perspectives. We first employ a shared reconstructor to better exploit en-

coder and decoder representations. Secondly, we propose to jointly learn to translate and

predict DPs. In order to capture discourse information for DP prediction, we finally com-

bine the hierarchical encoder with the DP translation model. Experimental results on the

same translation tasks show that our approach significantly improves both translation per-

formance and DP prediction accuracy.
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Chapter 1

Introduction

As an active research field in Natural Language Processing (NLP), the task of Machine

Translation (MT) is to translate texts from one language to another language. It is a chal-

lenging task for MT to generate high-quality translation, because computers need to not

only thoroughly understand the text in the source language, but also have good knowl-

edge of the target language (Hardmeier 2014). In the last several decades, the scientific

research in the field of MT has experienced three main historical periods including Rule-

based Machine Translation (RBMT) (Nirenburg et al. 1986), Statistical Machine Trans-

lation (SMT) (Koehn 2009) and Neural Machine Translation (NMT) (Kalchbrenner and

Blunsom 2013, Sutskever et al. 2014), and each of these models has significantly improved

the performance of MT systems.

Despite the success in both research and practical scenarios, MT systems (either RBMT,

SMT or NMT) usually translate a text sentence-by-sentence based on an assumption that

the sentences in a text are independent of one another. However, it is a truism that docu-

ments have the property of connectedness that goes beyond those of their individual sen-

tences (Webber 2014). Disregarding these dependencies across sentences will negatively

affect the translation quality of MT when translating a text.

Natural languages, from bottom to top, are composed of several linguistic units includ-

ing word, phrase, clause, sentence, paragraph, and discourse (Asher and Lascarides 2003,
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Longacre 2013). A discourse is an instance of language use whose type can be classified on

the basis of such factors as grammatical and lexical choices and their distribution in main

versus supportive materials, theme, style, and the framework of knowledge and expecta-

tions within which the addressee interprets the discourse (Elson and Pickett 1983, Crystal

1985, Hanks 1987, Longacre 1990). Like words in a sentence, sentences in a text are closely

related to one another. In general, considering discourse information enables the building

MT models which not only better understand the semantics on the source side, but also

generate more coherent and consistent translations in the target langauge.

During the history of MT, researchers have integrated various discourse-aware ap-

proaches to address problems caused by the loss of extra-sentential context. The 1990s

saw an intensification of research efforts aimed at endowing RBMT-translated texts with

the same document and discourse properties as their source texts (Webber 2014). This

included work on stylistics for MT (DiMarco and Mah 1994), target language realization

of source-language discourse relations (Mitkov 1993) and of referring forms (Wada 1990,

Bond and Ogura 1998) as well as anaphora resolution for generating appropriate target-

language pronouns (Chan and T’sou 1999, Ferrández et al. 1999, Nakaiwa 1999). In the

era of SMT, discourse was widely investigated in different aspects such as language mod-

elling (Foster et al. 2010), discourse connectives (Meyer and Poláková 2013, Meyer and

Webber 2013), lexical cohesion (Xiong et al. 2013), anaphora resolution (Le Nagard and

Koehn 2010, Taira et al. 2012) and topic adaption (Su et al. 2012, Hasler et al. 2014). This

research demonstrated promising results and motivated us to continue to explore discourse-

aware approaches to improve the performance of MT systems in this thesis.

In recent years, NMT (Kalchbrenner and Blunsom 2013, Sutskever et al. 2014, Bah-

danau et al. 2015) has made significant progress towards to constructing and utilizing a

single large neural network to handle the entire translation task. Subsequently the encoder-

decoder architecture was proposed by Cho et al. (2014) and Sutskever et al. (2014), in which

the encoder summarizes the source sentence into a vector representation, and the decoder

generates the target sentence word-by-word from the vector representation. Due to these
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Figure 1.1: Google Research: human raters compare the quality of translations. Scores range from
0 to 6, with 0 meaning “completely nonsense translation”, and 6 meaning “perfect translation”.

advances in NMT, the performance of NMT has surpassed the performance of traditional

SMT in various language pairs (Luong et al. 2015a). More recently, Google Research an-

nounced that they overcame many challenges to make NMT work on very large data sets

and built a system that is sufficiently fast and accurate enough to provide better transla-

tions for users. They also conducted quantitative analysis on machine-translated outputs

using human-rated side-by-side comparison as a metric. As shown in Figure 1.1, NMT sys-

tem produces translations that are vastly improved compared to the previous Phrase-based

Statistical Machine Translation (PBSMT) system (i.e., the best model in SMT) in various

language pairs, but especially for English–Chinese.

Motivated by the power of Neural Networks (NNs), in this thesis we integrate discourse

information into state-of-the-art NMT models. However, discourse-aware approaches to

NMT have received relatively little attention from the research community.1 Through our

studies in this thesis, we demonstrate that discourse-aware NMT models can improve trans-

lation quality.
1Most of our work was conducted from the end of 2014 to the beginning of 2018. Early in our research

period, there was almost no related work in NMT.
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1.1 Why does Discourse Matter to Machine Translation?

Although deep learning has significantly improved translation quality in terms of BLEU

score (Papineni et al. 2002), NMT still models a text by considering isolated sentences,

disregarding discourse properties (Webber 2014) including:

• document-wide properties, such as topic mix, style, register, reading level, and genre,

all of which are apparent in the frequency and distribution of words, word senses,

referential forms and syntactic structures;

• patterns of topical or functional sub-structure that show up in localized differences in

the frequency and distribution of these elements within documents;

• patterns of discourse coherence, manifest in explicit and implicit relations between

sentences (clauses), or between sentences (clauses) and referring forms, or between

referring forms themselves;

• common use of reduced expressions that rely on context to convey a lot of information

in very few words.

We are interested in the extent to which discourse affects the performance of MT systems

when translating a text. In order to answer this question, we use an example to analyze

discourse-related problems in the outputs translated by NMT and SMT models, respec-

tively. We employed two strong NMT (Wu et al. 2016) and SMT (Koehn 2009) models to

respectively translate the story The Farmer and the Snake in the book Aesop’s Fables from

Chinese into English.

The translation outputs are shown in Table 1.1. Overall, NMT translations are more

fluent than that of SMT. For instance, “When the farmer dies, he said ...” is much better

than “Farmer before his death, said ...” and the connective phrase “so that” can clearly show

a causal relation between preceding and following clauses. In addition, the lexical choice

of NMT model is better than the SMT model. For example, the verb “pity” is better than

the adjective “poor” and the clause ‘I will die‘” is better than “I damn”. Qualitatively, this
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I/O Text

Input

冬天1，农夫2发现一条蛇冻僵了，3他很可怜它，便6把蛇放在自
己怀里。蛇温暖后，[DP]4 苏醒了过来，恢复了它的本性，咬5 了
它的恩人一口，使他受到了致命的伤害。农夫2 临死前说：“我该
死，我怜悯恶人，应该受恶报。”

Reference

One winter a farmer found a snake stiff and frozen with cold. He had
compassion on it, and taking it up, placed it in his bosom. The snake was
quickly revived by the warmth, and resuming to its natural instincts, bit
its benefactor, inflicting on him a mortal wound. “Oh,” cried the farmer
with his last breath, “I am rightly served for pitying a scoundrel.”

SMT

In winter, the farmer found a snake frozen, he was very poor it, put
the snake in his arms. After the snake warm, waking, [DP] resumed its
nature, bite its benefactor, that he received fatal injuries. Farmer before
his death, said: “I damn, I pity the wicked, should be subject to roost.”

NMT

In the winter, the farmer found a snake frozen, he was very pity it, put
the snake in his arms. After the snake warm, [DP] wake up, restore its
nature, bite it benefactor, so that he suffered a fatal injury. When the
farmer dies, he said, ”I will die, and I will have mercy on the wicked.

Table 1.1: Example of a text translated by SMT and NMT systems.

illustrates why NMT is better than SMT in a quite general sense. However, we found more

interesting cases from the perspective of discourse, and we summarize them as follows:

1. The Chinese word “冬天” (winter) has different translations according to its context.

In general usage, it can be translated into “in winter”. For more specific instances,

we need to further consider whether it means “an uncertain winter” or “a known win-

ter”. If “uncertain”, it should be translated into “once in a winter” or “one winter”,

otherwise, “in the winter”. Obviously, at the beginning of the story, it means “one un-

known winter”. However, neither the SMT system nor the NMT system can correctly

translate this word.

2. The Chinese word “农夫” (farmer) should be translated into “a farmer” when appear-

ing for the first time. If the noun occurs again in the following sentences and refers

to the same person, it should be translated into “the farmer” instead. However, the

two words “农夫” are all translated incorrectly by the SMT model. Although NMT
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generates the correct translation for the second one, it seems to achieve success by

chance because NMT always translate the word in the same way.

3. As the first sentence in the source text, it is common to write Chinese sentences in

chronicle style.2 However, this usually makes one sentence rather long, which should

be translated into multiple sentences in English. However, NMT and SMT models

both translate the Chinese chronicle sentence into a long English sentence with two

complete parts with incorrect connections (commas).

4. Chinese is a pro-drop language, in which certain classes of words can be omitted to

make the sentence compact yet comprehensible when the identity of the pronouns

can be inferred from the context. Taking the second sentence in the source text, for

example, the subject “蛇” (snake) has already occurred in the subordinate clause (“蛇

温暖后” (after the snake is warm)). Thus, in Chinese, the corresponding pronoun

is usually dropped in the main clause (“[DP] 苏醒了过来” (the snake woke up)).

However, on the English side, NMT and SMT fail to recover them and translate

the missing pronouns. Note that, this an example of intra-sentential context, while

Table 5.1 shows an example of inter-sentential context.

5. As seen, NMT and SMT also have tense inconsistency problem. The story happened

in the past, so it should be described in the past tense. However, the words “restore”

and “bite” in translation outputs are generated in the infinitive form. NMT performs

even worse than SMT in terms of consistency.

6. The Chinese word “便” (and) is a discourse connective, which shows a continuation

or causality relation between its preceding and following parts. Without considering

the discourse structure and relation, NMT and SMT systems generate grammatically

incorrect translations in terms of coherence.

In general, problems [1], [2] and [4] severely harm the translations in terms of cohesion,

while problems [3] and [6] negatively affect the coherence of translations. Besides, problem
2In Chinese, a sentence is usually very long with multiple clauses.
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[5] shows a tense inconsistency problem. Note that, discourse information exists in different

kinds of contexts: 1) either the source- or target-side history sentences, or both; 2) either

the preceding or following sentences, or both. For instance, to address the problem [2], we

need to consider the number of “农夫” in the source-side context. However, about tense

inconsistency in problem [5], target-side history information is more useful due to the lack

of tense information in the source language. Besides, useful discourse information not only

exists in preceding sentences such as problems [2] and [4], but also may subsist in following

sentences such as problem [1]. At the beginning of the story, the first word “冬天” has no

history context. It is impossible to disambiguate “uncertain” and “known” situations unless

we read the following sentences or the whole document.

Via qualitative analysis, we can see that discourse is a big challenge for both NMT and

SMT, although the output of NMT is more fluent than that of SMT. From the perspective

of discourse, the translation quality is quite far away from a human-acceptable level. That

is why we exploit effective approaches to alleviate the discourse-related problems for NMT

in terms of coherence, cohesion, and consistency.

1.2 Research Questions

As discourse exists beyond sentence boundaries, some important information may be lost

in a sentence-level MT system (i.e., translating each sentence in a document in isolation).

Previous work in SMT has shown that considering the document as a whole is helpful

to resolve certain ambiguities and inconsistencies (Sammer et al. 2006, Xiao et al. 2011).

Therefore, we would like to know whether we can improve translation quality by modelling

cross-sentence context for NMT models. This leads to our first research question:

RQ 1 What is the influence of historical contextual information on the per-

formance of neural machine translation? Can a document-level NMT archi-

tecture alleviate inconsistency and ambiguity problems?

However, at the beginning of studying RQ1, there were almost no document-level ap-
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proaches for NMT models. We review temporal tasks from other research communities

such as video modelling (Fakoor et al. 2016), query suggestion (Sordoni et al. 2015) as

well as dialogue generation (Serban et al. 2016). Inspired by their success, we investigate a

Hierarchical Recurrent Encoder-Decoder (HRED) model that can be used to model previ-

ous source sentences in order to generate each target word in the current sentence. Another

aspect which motivates us to adopt this architecture for NMT is that sentence-level and

document-level Recurrent Neural Network (RNN) layers can respectively model lexical

dependencies and discourse relations across sentences. Another issue is how to integrate

this across sentence boundaries with the standard NMT model. We explore different strate-

gies to enhance the understanding of source sentence, aiding generating target words or

controlling the historical information. Finally, we can observe that the translation quality

of NMT can generally improve by considering a larger context.

After investigating a document-level architecture, we move our focus to the specific

discourse phenomena. We observed that Pronoun Dropping (pro-drop) poses difficulties for

MT: missing translations of pronouns, harming sentence structure and even destroying the

semantics of output. Therefore, we focus on Dropped Pronoun (DP) translation problems.

A number of related works investigated the use of a pipeline strategy, in which they first

recover zero pronouns or empty categories in a source sentence, and then feed the pre-

processed input into SMT models (Le Nagard and Koehn 2010, Taira et al. 2012, Xiang

et al. 2013). However, their results were not stable, which motivates us to form our second

research question:

RQ 2 How do dropped pronouns affect the performance of machine transla-

tion? Is it possible to build a robust drop pronoun recovery model for statistical

machine translation?

We found that the primary challenge here is that the training data for DP recovery is

small-scale. Some researchers apply manual annotation methods, which are very expen-

sive (Yang et al. 2015). Others employ existing corpora such as empty categories in the Penn
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Treebank (Chung and Gildea 2010, Xiang et al. 2013) and dropped subjects in OntoNotes

(Chen and Ng 2013). However, performance is not reliable when using recovery systems

trained on these small-scale or closed-domain corpora for open-domain translation tasks.

Our first concern is how to automatically build a large-scale training data set for our DP re-

covery model. We are inspired by a point of the view “two languages are more informative

than one” (Dagan et al. 1991). Considering that there exists a large amount of parallel data,

we can automatically annotated DPs using alignment information.

Due to the powerful capacity of Neural Network (NN), we model DP position (DPP)

detection as a sequential labelling task using RNN, and DP word (DPW) prediction as a

classification task using a Multi-Layer Perceptron (MLP) model. Similarly, we regard the

task of DP recovery as a pre-processing stage for MT. Although their parameters are tuned

independently, this direct idea is still worth investigating. Thus, we aim to integrate the DP

recovery results into SMT with different strategies.

Modeling DP for NMT has received substantially less attention, resulting in low per-

formance in this respect even for state-of-the-art approaches. Following RQ2, we need to

consider how to integrate our DP recovery model into the NMT framework. This leads to

our third research question:

RQ 3 Does neural machine translation still suffer from dropped pronoun

problems? If so, how should we embed DP information into neural network

models?

In RQ3, we try to integrate DPs into the training phase, instead of simply using them

only in the decoding step in RQ2. Recently, Tu et al. (2017b) proposed a novel encoder-

decoder-reconstructor model to alleviate the adequacy problem, where NMT tends to re-

peatedly translate some source words while mistakenly ignoring other words. For example,

given a Chinese sentence, the standard encoder-decoder model translates it into an English

sentence and assigns a likelihood score. Then, the newly added component reconstructs

the translation back to the source sentence and calculates the corresponding reconstruction
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score. Linear interpolation of the two scores produces an overall score for the translation.

As seen, the added reconstructor imposes a constraint that an NMT model should be able to

reconstruct the input source sentence from the target-side hidden layers, which encourages

the decoder to embed complete information from the source side.

Reconstruction is a standard concept in auto-encoder model, that guides the system

towards learning representations that capture the underlying explanatory factors for the ob-

served input. Therefore, we can adapt this “auto-encoder” concept to the DP translation task

by embedding DP information into NMT. The built training corpus in RQ2 can be used to

construct a new triple corpus (x, y, x̂), where x and y are source and target sentences, and

x̂ is the annotated source sentence. Then we can apply a standard encoder-decoder NMT

model to translate x, and obtain two sequences of hidden states from both the encoder and

decoder. This is followed by introducing an additional reconstructor (Tu et al. 2017b) to

reconstruct the annotated source sentence x̂ with hidden states from either the encoder or

decoder, or both components.

Although we demonstrate that the model in RQ3 can achieve significant improvements,

there is still a severe drawback behind. The testing phase is still a pipeline method, where

the DP annotation is automatically done by an external DP prediction model. However, the

DP predictor only has a low accuracy, which propagates numerous errors to the translation

model. Accordingly, our final research question is:

RQ 4 Can we build a fully end-to-end neural model for dropped pronoun

translation? Is cross-sentence context useful for dropped pronoun prediction?

To answer this question, we need to not only consider multi-task learning approaches,

but also take a new look at our document-level architecture in RQ1. Inspired by recent

success in multi-task learning (Dong et al. 2015, Luong et al. 2016), we explore jointly

learning to translate and predict DPs. We expect that the auxiliary objectives can guide the

related part of the parameter matrix to learn better latent representations for both translation

and DP prediction.
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Another concern is that the standard NMT model is just a sentence-level model, while

the DP prediction model needs document-wide information. Thus, the idea in RQ1 inspires

us to focus on discourse phenomena under a novel document-level NMT architecture. Fi-

nally, these two approaches make it possible to build a fully end-to-end DP translation

model.

1.3 Thesis Structure

In this thesis, we investigate discourse-aware MT in three parts: document-level architec-

ture, specific discourse phenomena and combination. Overall, the goal is to improve MT

quality by considering/modelling the knowledge of discourse. This thesis comprises seven

chapters including the current introductory chapter. We now introduce the topics discussed

in each chapter.

In Chapter 2, we will review the background about MT models and algorithms, includ-

ing both the state-of-the-art NMT and the conventional SMT. Without loss of generality, we

will also provide the fundamental information on discourse and its linguistic phenomena.

Finally, we will present related work on discourse-aware approaches for MT.

Part I: Document-Level Architecture

In Chapter 3, we will describe our early attempt at investigating the potential for implic-

itly incorporating discourse information into NMT. In our work, we propose a hierarchical

RNN architecture to model cross-sentence context for NMT models. We show that our

approach can significantly improve translation quality over the NMT and SMT baseline

models. We also analyze the effect of global context and provide examples generated by

our model. Furthermore, we compare our approach with other recent Document-level Neu-

ral Machine Translation (DNMT) models using various domains of data.

Part II: Targeting Specific Discourse Phenomena

In Chapter 4, we will move our attention to one specific discourse phenomenon: pro-
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drop, which significantly affects the cohesion of MT output. First of all, we study the

DP problem in pro-drop languages. Secondly, we explore an unsupervised approach to

automatically build a large-scale, high-quality DP training corpus. Then we investigate NN-

based approaches to recall missing pronouns for SMT. We present our experimental results

on Chinese–English to show the efficiency of the proposed approach. Case studies illustrate

how our approach alleviates DP problems for translation models. To validate the effect of

the proposed approach, we also adopt our approach to Japanese–English translation.

In Chapter 5, we investigate alleviating DP translation problems for NMT models. We

present how our reconstruction-based approach guides the hidden states (either encoder-side

or decoder-side) of NMT to embed the missing DP information. Experiments on Chinese–

English and Japanese–English show that the proposed approach significantly outperforms a

strong NMT baseline system. In our analysis, we demonstrate that our models can produce

better translations by addressing the DP translation problem.

Part III: Combination

In Chapter 6, we explore DP translation under our proposed document-level NMT ar-

chitecture. We propose an end-to-end model to jointly learn translate and predict DPs with

document-level context. Experimental results on the Chinese–English corpus show that

our approach can accumulatively improve translation performance. In addition, the jointly

learned DP prediction model significantly outperforms its external counterpart by 9% in

terms of F1 score.

Chapter 7 concludes the thesis with general conclusions we draw from our experiments.

We also provide some future avenues for research.

In summary, all of our proposed discourse-aware approaches and experiments are pre-

sented in Chapter 3, 4, 5 and 6, which are related to RQ1, RQ2, RQ3 and RQ4, respec-

tively. RQ1 is studied in document-level architecture and RQ2–RQ3 in specific discourse

phenomena scenario. RQ4 is studied in combining these two scenarios into a new one.
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1.4 Publications

The published papers which are related to this thesis are as follows:

1. Longyue Wang, Zhaopeng Tu, Andy Way, Qun Liu. (2018). Learning to Jointly

Translate and Predict Dropped Pronouns with a Shared Reconstruction Mechanism.

In Proceedings of the 2018 Conference on Empirical Methods in Natural Language

Processing, pages 1–5, Brussels, Belgium.

2. Longyue Wang, Zhaopeng Tu, Shuming Shi, Tong Zhang, Yvette Graham, Qun Liu.

(2018). Translating Pro-Drop Languages with Reconstruction Models. In Proceed-

ings of the Thirty-Second AAAI Conference on Artificial Intelligence, pages 4937–

4945, New Orleans, Louisiana, USA.

3. Longyue Wang, Zhaopeng Tu, Andy Way, Qun Liu. (2017). Exploiting Cross-

Sentence Context for Neural Machine Translation. In Proceedings of the 2017 Con-

ference on Empirical Methods in Natural Language Processing, pages 2816–2821,

Copenhagen, Denmark.

4. Longyue Wang, Zhaopeng Tu, Xiaojun Zhang, Siyou Liu, Hang Li, Andy Way and

Qun Liu. (2017). A Novel and Robust Approach for Pro-Drop Language Translation.

In Machine Translation, 31(1-2), 65-87, Springer.

5. Longyue Wang, Zhaopeng Tu, Xiaojun Zhang, Hang Li, Andy Way and Qun Liu.

(2016). A Novel Approach for Dropped Pronoun Translation. In Proceedings of

the 2016 Conference of the North American Chapter of the Association for Com-

putational Linguistics: Human Language Technologies, pages 983–993, San Diego,

California, USA.

6. Longyue Wang, Xiaojun Zhang, Zhaopeng Tu, Hang Li, Qun Liu. (2016). Dropped

Pronoun Generation for Dialogue Machine Translation. In Proceedings of the IEEE

International Conference of Acoustics, Speech and Signal Processing, pages 6110–

6114, Shanghai, China.
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7. Longyue Wang, Chris Hokamp, Tsuyoshi Okita, Xiaojun Zhang, Qun Liu. (2015).

The DCU Discourse Parser for Connective, Argument Identification and Explicit

Sense Classification. In Proceedings of the 19th Conference on Computational Nat-

ural Language Learning (Shared Task), pages 89–94, Beijing, China.

8. Tsuyoshi Okita, Longyue Wang, Qun Liu. (2015). The DCU Discourse Parser: A

Sense Classification Task. In Proceedings of the 19th Conference on Computational

Natural Language Learning (Shared Task), pages 71–77, Beijing, China.

Other publications I have published during my PhD are:

1. Siyou Liu, Longyue Wang, Chao-Hong Liu. (2018). Chinese–Portuguese Machine

Translation: A Study on Building Parallel Corpora from Comparable Texts. In Pro-

ceedings of the 11th Language Resources and Evaluation Conference, pages 1–8,

Miyazaki, Japan.

2. Longyue Wang, Jinhua Du, Liangyou Li, Zhaopeng Tu, Andy Way, Qun Liu. (2017).

Semantics-Enhanced Task-Oriented Dialogue Translation: A Case Study on Hotel

Booking. In Proceedings of the 8th International Joint Conference on Natural Lan-

guage Processing (System Demonstrations), pages 33–36, Taiwan, China.

3. Longyue Wang, Xiaojun Zhang, Zhaopeng Tu, Andy Way, Qun Liu. (2016). The Au-

tomatic Construction of Discourse Corpus for Dialogue Translation. In Proceedings

of the 10th Language Resources and Evaluation Conference, pages 33–36, Portorož,

Slovenia.

1.5 Open Source

We released a number of corpora and code repositories on our work, which are summarized

as follows:

1. Chinese-English Dialogue Corpus
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Tvsub3: More than two million sentence pairs extracted from the subtitles of

television episodes.

MVsub4: About one million sentence pairs extracted from the movie subtitles.

2. Document-Level NMT Codes

LC-NMT5: our proposed cross-sentence context-aware NMT model built on the

top of Nematus.6

CSNMT7: our proposed cross-sentence context-aware NMT model re-implemented

on the top of ZPTU-NMT.8

3. Reconstruction NMT Codes (Joint Work)

NMT-Coverage9: the reconstruction model re-implemented on the top of ZPTU-

NMT.

3Available at: https://github.com/longyuewangdcu/tvsub.
4Available at: https://www.computing.dcu.ie/˜lwang/corpora/resource.html.
5Available at: https://github.com/tuzhaopeng/LC-NMT.
6Available at: https://github.com/longyuewangdcu/nematus.
7Available at: https://github.com/longyuewangdcu/Cross-Sentence-NMT.
8Available at: https://github.com/tuzhaopeng/NMT.
9Available at: https://github.com/tuzhaopeng/NMT-Coverage.
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Chapter 2

Machine Translation and Discourse

MT is an active research field in NLP and many models and algorithms have been inten-

sively studied in the literature. Since 1954, MT has been developed through RBMT (Niren-

burg et al. 1986), SMT (Koehn 2009) and NMT (Kalchbrenner and Blunsom 2013, Sutskever

et al. 2014) models. In this chapter, we review the background on both traditional SMT as

well as the state-of-the-art NMT for two main reasons:

• Discourse for SMT has been previously discussed while discourse-aware NMT re-

ceived relatively little attention from the research community. Following prior stud-

ies, we first explored a hybrid approach i.e., neural component for SMT model (as

discussed in Chapter 4). For better understanding related work and our proposed

approach, we thus provide basic information on SMT;

• Recently, it is reported that the performance of NMT has surpassed the performance

of SMT on various language pairs (Luong et al. 2015a). In the thesis, we mainly

investigate discourse-aware approaches for NMT models (as discussed in Chapter 3,

5 and 6). Thus, we also introduce related models of NMT.

Furthermore, discourse is a concept from linguistics while our work is related to Com-

putational Linguistics (CL). We do not try to exhaustively cover all aspects, but mainly

introduce “discourse” from the respective of CL. In other words, we focus on discourse
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architecture and phenomena which are related to NLP and MT.

This chapter is organized as follows: we first introduce the MT (NMT and SMT) in-

cluding the models, frameworks, and evaluation metrics in Section 2.1. We then provide the

basic information on discourse in Section 2.2, including related theory, structures, linguis-

tic phenomena. In Section 2.3, we present related work on discourse-aware MT including

document-level MT and pronominal anaphora in MT. Finally, we summarize the content of

this chapter in Section 2.4.

2.1 Machine Translation

MT is a sequence-to-sequence prediction task, which aims to find for a source language

sentence the most probable target language sentence that shares the most similar meaning.

In following sections, we first introduce the framework of SMT and its components such as

translation model and language model. We then describe basic knowledge on word vector

models, RNN and neural language models for NMT. Finally, we review the framework of

NMT and its related mechanisms.

2.1.1 Statistical Machine Translation

SMT is a data-driven approach towards MT that aims to frame translation as a statistical

optimization problem (Koehn 2009, Koehn et al. 2007). The training of an SMT system

is a data-driven process, where large amounts of training data are required in order to suf-

ficiently cover the linguistic phenomena for the desired language pair. The training data

requires to be parallel, where each sentence in the target language is the translation of the

corresponding sentence in the source language.

Assume that a sentence pair x = {x1, ..., xi, ..., xI} and y = {y1, ..., yj , ..., yJ} are in

source and target side, respectively. xi is the i-th word of x and yj is the j-th word of y. I

and J are lengths of x and y, which can be different. Based on Bayes decision theory, we
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can formulate SMT as in Equation (2.1) (Brown et al. 1993):

ŷ = arg max
y

p(y|x)

= arg max
y

p(x|y)p(y)

p(x)

∝ arg max
y

p(x|y)p(y)

(2.1)

where ŷ denotes the translation output with the highest translation probability. The trans-

lation problem is factored into p(x|y) and p(y), which respectively represent the inverse

translation probability and language model probability. The denominator p(x) is ignored

since it remains constant for a given source sentence x. The advantage of this decomposi-

tion is that we can learn separate probabilities in order to compute ŷ.

One important theoretical development was the log-linear model proposed by Och and

Ney (2002), which incorporated different features containing information from the source

and target sentences in the model, in addition to the language and translation models of the

original noisy channel (Weaver 1949) approach. Thus, p(y|x) can be decomposed using

the log-linear model as presented in Equation (2.2):

p(y|x) =
I∑
i=1

expλi · hi(x,y) (2.2)

where hi(·) indicates a translation feature and λi is its corresponding optimal weight, which

is learned by maximizing the translation probability of a development set. I indicates the

total feature number, which can be increased with the advantages of the log-linear frame-

work.

Framework A refinement of word-based models (Brown et al. 1993) is the influential

PBSMT model (Koehn et al. 2003), in which a model learns to translate not word-by-

word but on the basis of contiguous sets of words, i.e., phrases, which are not necessarily

linguistically motivated.

18



Figure 2.1: Architectures of phrase-based statistical machine translation. Training, tuning and test-
ing phases are illustrated in one framework.

Figure 2.1 describes the architectures of PBSMT, which of several components: 1)

words within the parallel corpus are aligned and phrase pairs are then extracted based on

word-alignment results; 2) the translation model and the lexicalized reordering model can

be learned using aligned phrases; 3) an N -gram language model can be built using a large

amount of monolingual sentences in the target language; 4) These models are optimized

under the log-linear framework in order to maximize the performance using a development

set; 5) with the optimized weight parameters of the features in the models, we can finally

translate the test set and the evaluation score indicates the performance of the whole system.

Translation Model A translation model is used to translate text from a source language

to a target language. It provides translation segments for input sentences and consists of a

direct/inverse phrase translation probability and a direct/inverse lexical weight. The bilin-
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gual phrase pairs are extracted based on word alignments (Och and Ney 2003, 2004). Given

a collection of phrase pairs, the direct phrase translation probability can be estimated as in

Equation (2.3):

p(x̄|ȳ) =
count(x̄, ȳ)∑
x̄′ count(x̄

′, ȳ)
(2.3)

where x̄ and ȳ are the source and target phrase pairs, respectively. count(·) is relative fre-

quency. To overcome problems of unreliable probability estimations due to low-frequency

phrase pairs, the lexical translation probability is introduced and is computed as in Equa-

tion (2.4) (Koehn et al. 2003):

p(x̄|ȳ, a) =
M ′∏
m=0

1{
n|(m,n) ∈ a

} ∑
∀(m,n)∈a

w(xm|yn) (2.4)

where a is the word alignment; M ′ is the length of x̄. m and n indicate a word position

in x̄ and ȳ, respectively. w(xm|yn) is the lexical weights. The inverse phrase translation

probability and lexical translation probability can also be computed accordingly.

Reordering Model A reordering model learns a distribution of location changes for each

word of translation from alignment. Taking the lexicalized reordering model (Koehn et al.

2005, Galley and Manning 2008) for example, it estimates three types of orientations (o)

– monotone, swap and discontinuous – of a phrase pair based on previous adjacent target

phrase. The monotone (m) predicts if the current source phrase is located immediately to

the right of the previous source; the swap (s) predicts if the current source phrase is located

immediately to the left of the previous source and the discontinuous (d) predicts if the

current source phrase is located anywhere else. The reordering probabilities are computed

as shown in Equation (2.5):

p(o|x̄, ȳ) =
count(o, x̄, ȳ)∑
o′ count(o

′, x̄, ȳ)
(2.5)
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where we count how often each extracted phrase pair (x̄ and ȳ) is found with each of the

three orientation types o ∈ {m, s, d}.

N-gram Language Model A language model is used to evaluate the fluency for the trans-

lations with respect to target language. It estimates the likelihood of a word appearing next

in a sequence of target words. The probability of y can be computed according to the chain

rule as in Equation (2.6):

p(y) = p(y1, y2, . . . , yN−1, yN )

= p(y1)× p(y2|y1)× · · · × p(yN |y1, y2, ..., yN−1)

(2.6)

Due to high computation costs and sparsity for longer sentences, we only consider a limited

number of historical words according to the Markov assumption (Stolcke 2002). For exam-

ple, a bigram LM can be computed as p(y1)×p(y2|y1)×...×p(yn|yn−1)×...×p(yN |yN−1),

where p(yn|yn−1) is bigram relative frequency as in Equation (2.7):

p(yn|yn−1) =
count(yn−1, yn)∑
y′ count(yn−1, y′)

(2.7)

Decoding Finding the best translation for a sentence which corresponds to a search prob-

lem is called decoding and is an NP-complete problem, possibly exponential in the length

of the sentence to be translated (Knight 1999). Normally, one or more heuristics are used

in order to make decoding computationally feasible, such as beam-search (Och and Ney

2004). The decoder generates hypotheses (translation segments) from left to right using

the beam search algorithm. Each hypothesis maintains a coverage vector to indicate which

source words have been translated so far. The translation process ends when all source

words have been translated.
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2.1.2 Neural Machine Translation

As presented in Section 2.1.1, PBSMT consists of a translation model, a reordering model

and an Language Model (LM), which are linearly integrated using the log-linear framework.

NMT, being a new paradigm for MT, employs an individual large NN to model the entire

translation process. The advantages of NMT over SMT can be summarized as follows:

1. Distributed word representations can facilitate the computation of semantic distance

(Bengio et al. 2003);

2. Different from SMT, there is no need to explicitly design features to capture transla-

tion regularities (Tu et al. 2016);

3. RNN are better at capturing long-distance reordering, which is a significant challenge

for SMT (Zhang et al. 2015).

In the following parts, we review the knowledge related to NMT, including word em-

bedding, RNN, RNN LM, encoder-decoder framework, attention mechanism, and bidirec-

tional RNN mechanism.

Word Vector Model It is distributed representations of words, which are important build-

ing blocks in NN. In NLP tasks, words are treated as discrete atomic symbols. For instance,

“cat” may be represented as “id0537” and “dog” as “id0143”, which are arbitrary, and pro-

vide no useful information to the system regarding the relationships that may exist between

the individual symbols. Representing words as unique, discrete IDs furthermore leads to

data sparsity. Mikolov et al. (2013b) shows that distributed word representations can capture

the linguistic regularities and similarities in the training corpus. In NLP, distributed word

representations have the advantage that similar words are represented closely in the vector

space. For example, given the word vectors of words “king”, “man” and “woman”, we can

apply vector operations on them: vec(king)− vec(man) + vec(woman) = vec(queen).

There are different ways to represent words and one prominent approach uses vectors

as their representations. A word vector model is a V ×E matrix which can map a word in a
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Figure 2.2: A simple unfold RNN which maintains a context vector covering previous sequential
information. For example, h1 is computed using x1 and h0. Later, h1 is involved in the computation
of h2. h0 is the initial state (a vector of zeros or random numbers) of the network. The context
vector is also referred as the hidden state of an RNN and xt is the input at time step t.

vocabulary to a real-value word vector, where V is the size of vocabulary and E is the size

of word vectors. Besides, word vector models can be trained together with the other tasks

(e.g., RNN language modeling) and word embeddings can be updated during the training

process.

Recurrent Neural Networks RNN are neural networks on sequential inputs and assume

that the hidden states within the network are dependent, which is true in many sequence

prediction tasks. The hidden states can be thought of a “memory” to maintain the previous

history.

A simple RNN, as seen in Figure 2.2, consists of two layers: an input layer and a recur-

rent layer. The recurrent layer maintains a context vector (hidden state) covering previous

sequential information. Each ht in an RNN is computed by the input xt at time step t and

previous hidden state ht−1. Formally, given the history representation ht−1 encoding all the

preceding words and the input xt at time step t, each hidden state ht in a RNN is computed

as in Equation (2.8):

ht = f(Wxt + Uht−1 + b) (2.8)

where f(·) is an active function such as sigmoid, tanh etc. b is a bias value. W is the weight

matrix between the input and the hidden state. U is the weight matrix between the context

and the hidden state. W and U can be obtained using Back Propagation Through Time

(Rumelhart et al. 1995).

However, simple RNNs suffer from the vanishing gradient problem (Bengio et al. 1994),
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where for long sequence inputs, the early contexts are often forgotten and overwritten by

the later contexts. The Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber

1997) or the more recent Gated Recurrent Unit (GRU) (Chung et al. 2014) use gates to

control the information flow from previous words, which are better at capturing long-term

dependencies. GRU is a simplified variation of LSTM with fewer gates but comparable

performance. As illustrated in Figure 2.3, GRU consists of an update gate and a reset gate,

as in Equation (2.9):

ut = f(Wuxt + Uuht−1 + bu)

rt = f(Wrxr + Urht−1 + br)

h̃t = g(Wxt + U(rt � ht−1) + b)

ht = ut � ht−1 + (1− ut)� h̃t

(2.9)

where f(·) is a sigmoid function and g(·) is a tanh function. ut is the update gate and rt

is the reset gate. h̃t is the candidate activation and � is the element-wise multiplication

operation. ht is the linear-interpolated output between the previous hidden state ht−1 and

the candidate activation. Intuitively, the update gate determines the interpolation weights

between the previous hidden state ht−1 and the candidate activation, and the reset gate

determines the information flow from previous hidden states. If the reset gate is set to 1 and

the update gate is set to 0, the GRU is equivalent to the simple RNN. Wu, Uu, Wr, Ur, W

and U are the weight parameters, and bu, br and b are the bias values of the corresponding

gates.

RNN Language Model Recurrent Neural Network Language Model (RNNLM) models

the probability of the next word given the previous words. It is known to be better at

generalization as word embeddings are used in training. The simplest RNNLM has an input

layer, a recurrent layer, and an output layer, as seen in Figure 2.4. Compared with RNN (as

in Figure 2.2), RNNLM additionally has an output layer, which operates a softmax function

to compute probability distributions over all words in the vocabulary. If the recurrent layer
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Figure 2.3: Illustration of a GRU network, which consists of an update gate u and a reset gate r.
Dashed lines indicate the computations for u and r and h0 is the initial state (a vector of zeros) of
the network.

is a GRU, we can formally define the RNNLM based on Equation (2.9) (Chung et al. 2014):

p(t) = softmax(S(ht)) (2.10)

where S(·) is a transform function which can convert ht into a vector with dimensions equal

to the size of vocabulary. Words are sequentially fed to the model and each word is assigned

a probability to indicate the likelihood of being the next word. At each training step, we

use cross-entropy to compute the error vectors, model weights are updated with BPTT. For

example, we can define the cross-entropy error function as in Equation (2.11):

C(y, ŷ) = −
∑
i

yi log(ŷi) (2.11)

where y is the predicted probability distribution and ŷ is the true distribution. The RNN

is unfolded into a flat architecture through time for a certain amount of time-steps and the

errors are summed up for all unfolded time-steps. Then gradients of the error are computed

and model parameters are updated.

Encoder-Decoder Framework The encoder-decoder architecture is widely employed,

in which the encoder summarizes the source sentence into a vector representation, and the

decoder generates the target sentence word by word from the vector representation. The

encoder can be implemented using an RNN model and the decoder can be implemented
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Figure 2.4: Illustration of RNNLM, which has an input layer, a recurrent layer, and an output layer.
The recurrent layer uses a GRU network. h0 is the initial state (a vector of zeros) of the network.
For example, if the current input word is w1, we first learn the word vector x1 in the input layer,
then compute the context vector h1 in recurrent layer using the GRU network. In the output layer,
we compute the probability of the current output o1 using a softmax function..

using an RNNLM model, thus the framework can be regarded as being composed of an

RNN and an RNNLM. Formally, the NMT directly models the probability of translation

from the source sentence to the target sentence word by word as in Equation (2.12):

P (y|x) =
N∏
j=0

P (yj |y<j ,x) (2.12)

in which given source sentence x and previous target translations y<j (y1, ..., yj−1), we need

to compute the probability of the next word yj (j ∈ {1, ..., N}). This can be interpreted as

the translation probability of a target sentence y given a source sentence x is computed by

multiplying the translation probabilities of each target word; and the translation probability

of each target word, e.g., yj , is computed as the conditional probability of given source

sentence x and previous target translations y<j .

Firstly, xi is represented as a 1-of-K vector wi ∈ R|V |, where the dimension of the

vector |V | equals the size of the vocabulary. The vector consists of 0s in all cells with the

exception of a single 1 in a cell used uniquely to identify the word. We then map each wi to

a low dimension semantic space using word embedding si. The source sentence is encoded

into a sequence of hidden states h = h1, ..., hN , in which hj is the hidden state of the i-th

source word vector si and the last hidden state hN (c ≡ hN ) is the representation of the

whole sentence. The decoder internal hidden state zj is computed based on source sentence
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c, previously generated word uj−1 and previous hidden state zj−1 as in Equation (2.13):

zj = f(uj−1, zj−1, c) (2.13)

where f(·) is a function to compute the current decoding state given all the related inputs.

It can be either a vanilla RNN unite using tanh function, or a sophisticated gated RNN unit

such as GRU or LSTM. Given the source context c, current decoder hidden state zj and

previously generated words yj−1, the probability of generating next word yj is computed

as in Equation 2.1:

p(yj |y<j ,x) = softmax(g(uj−1, zj , c)) (2.14)

where g(·) is a non-linear function that can transform the inputs into a vector. The decoder

uses the softmax function to output the probability distribution over the target words, which

can be used to select a word uj by sampling the distribution.

All the network parameters are trained to maximize the probability in the bilingual

training data. The NMT model can be trained with the mini-batch Stochastic Gradient

Descent algorithm (Robbins and Monro 1985) together with Adadelta (Zeiler 2012) and is

validated based on cross-entropy error.

Bidirectional RNN In the encoder, words can also be fed into RNNs in both directions,

using a bidirectional RNN (Schuster and Paliwal 1997). As RNNs can represent recent

inputs better, the hidden states of a bidirectional RNN are representing the context word in

both sides. A bidirectional RNN used in NMT “contains the summaries of both the preced-

ing words and the following words” (Bahdanau et al. 2015) for source inputs. Sutskever

et al. (2014) also claim that it is “extremely valuable” and can “greatly boost the perfor-

mance” by using the reversed source sentences information NMT.

Figure 2.5 is a graphical illustration of the bidirectional RNN, which consists of a for-

ward (
−→
h1, ...,

−→
hM ) and a backward (

←−
h1, ...,

←−
hM ) RNNs, where (f1, . . . .fM ) are the input
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Figure 2.5: The graphical illustration of the bidirectional RNN, which consists of forward a forward
(
−→
h1, ...,

−→
hM ) and a backward (

←−
h1, ...,

←−
hM ) RNNs, where (f1, . . . .fM ) are the input sequences. The

outputs are the concatenations of the annotation vector at a corresponding time step, i.e. hi =

[
−→
hi ,
←−
hi ].

sequences. The outputs are the concatenations of the annotation vector at a corresponding

time step, i.e. hi = [
−→
hi ,
←−
hi ].

Attention Mechanism The original encoder-decoder framework uses a fixed-size vector

to represent the whole source input. The attention mechanism is proposed by Bahdanau

et al. (2015) to learn dynamic soft-alignment during network training. Although an RNN is

known to be better at capturing long-range dependencies, Bahdanau et al. (2015) reported

that translation quality decreases for long input sentences. With the attention model, source

information can be spread across the source context vector, and the decoder can selectively

pay attention to different parts of the source context during decoding.

Figure 2.6 illustrates this mechanism. The attention model computes weights (α1,j , α2,j

, . . . , αM,j) for each source context hi and outputs a weighted sum of hi – a distinct source

context vector, cj . Note that the original encoder-decoder NMT regards the source context

vector c as a static vector that summarizes the whole sentence (i.e., c ≡ hN as shown in

Equation 2.14), while an attention-based NMT regards context as a dynamic vector that

selectively summarizes certain parts of the source sentence at each decoding step. The

alignment model that scores the alignment at position i and j in x and y respectively, is

28



h
f
1 h

f
2 h

f
3 h

f
4

f1 f2 f3 f4

c4

he
1 he2 he

3 he
4

e1 e2 e3 e4

α1,4 α2,4α3,4α4,4

+

E
nc

od
er

D
ec

od
er

Figure 2.6: The graphical illustration of the attention-based NMT, where hf indicates the source
context vectors and he indicates the target context vectors. Suppose there are 4 source input words
{f1, . . . , f4} and the current predicting word is e4 in the target. The encoder reads the source input
words and produces the source context vectors for each source input word. Next, the attention model
⊕ computes weights (α1,4, α2,4, α3,4 and α4,4) for each hf and outputs a weighted sum of hf – a
distinct source context vector c4. Then, the distinct source context vector c4, previous translation
e3 and previous target context vector he3 are used to obtaining the current target context vector he4,
which is used to output translation probability for all target words.

computed as in Equation (2.15):

eij = vTa(zj−1, hi) (2.15)

where zj−1 is the target hidden state and hi is the source hidden state at time i, and a is a

non-linear function, such as the tanh function. v ∈ Rn is a weight matrix. Thus, a distinct

source context vector cj can be computed for each word in the target side, and the source

context vector c is rewritten as in Equation (2.16):

cj =

M∑
i=1

αijhj (2.16)
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Figure 2.7: Architectures of NMT equipped with bidirectional RNN and attention mechanism.

where αi,j is normalized weight for each context vector of source input in {0, . . . , i}, com-

puted as in Equation (2.17):

αij =
exp(eij)∑M
k=1 exp(eij)

(2.17)

Thus, the c in Equation (2.13) and (2.14) is updated accordingly.

Finally, Figure 2.7 shows the overall framework of NMT equipped with bidirectional

RNN and attention mechanism. We employ this model as a strong baseline in our thesis.
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2.1.3 Machine Translation Evaluation

To evaluate MT translation quality, we use automatic evaluation metrics. Compared to

human evaluation, automatic evaluation metrics are faster and more consistent. Many auto-

matic evaluation metrics have been proposed in the field, e.g. Sentence Error Rate (SER),

Word Error Rate (WER) (Stolcke et al. 1997), Bilingual Evaluation Understudy (BLEU)

(Papineni et al. 2002), METEOR (Banerjee and Lavie 2005) and Translation Edit Rate

(TER) (Snover et al. 2006). In this thesis, we choose to use BLEU to estimate the machine

translation quality as it is the most commonly used one in MT.

BLEU is a reference-based MT evaluation metric, so reference translations are essential

when computing the evaluation scores. It is language-independent. The output of BLEU

is a score between 0 and 100% indicating the similarity between the MT outputs and the

reference translations. BLEU is computed over the entire test set. The higher the scores

are, the better the translations are. BLEU scores are computed based on a modified n-gram

precision, as in Equation (2.18):

BLEU = BP ∗ exp

N∑
n=1

1

N
log(
|mn ∩mr|
|mn|

) (2.18)

where n represents the order of the n-grams compared between the translations and refer-

ences. Typically, n is from 1 to 4. mn and mr indicate the n-grams occurring in the MT

outputs and the corresponding references, respectively. |mn∩mr| is the number of n-grams

occurring in both translations and references. In the case of multiple occurrences n-grams,

we clip |mn∩mr| to the maximum number of times that an n-gram occurs in the reference.

The motivation is that MT systems can overgenerate improbable translations and “a refer-

ence word should be considered exhausted after a matching candidate word is identified”

(Papineni et al. 2002). A high BLEU score candidate translation should also match the

reference translations in length, therefore, BP is introduced. BP is the brevity penalty to
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penalize shorter translations than the references, which is computed as in Equation (2.19):

BP = exp
max(1− length(r)

length(n)
,0) (2.19)

where n and r indicate the translation output and reference translation, respectively.

2.2 Discourse

Natural languages, from bottom to top, can be divided into several linguistic units includ-

ing word, phrase, clause, sentence, paragraph, and discourse (Longacre 2013). A discourse

is an instance of language use whose type can be classified on the basis of such factors

as grammatical and lexical choices and their distribution in main versus supportive ma-

terials, theme, style, and the framework of knowledge and expectations within which the

addressee interprets the discourse (Elson and Pickett 1983, Crystal 1985, Hanks 1987, Lon-

gacre 1990). In this subsection, we mainly introduce the knowledge of discourse from the

perspective of NLP instead of linguistic theory.

As shown in Table 2.1, we use examples to illustrate “what is discourse”. Example 1 is

a paragraph, which consists of four complete sentences. Although the text is grammatically

correct, it is not a discourse. Because each sentence is independent and they bear no relation

to each other. In contrast, the dialogue in Example 2 is a discourse. First, Speaker A makes

a request for Speaker B to perform an action (i.e., answering the phone). Speaker B then

states a reason why he/she cannot comply with the request. Finally, Speaker A undertakes

to perform the action. Although some information is implicit, these utterances are closely

related to each other under a clear topic: who can answer the phone. From the example,

we can make a summary on discourse and its properties: 1) it is a continuous stretch of

language longer than a sentence; 2) it involves conversation (e.g., dialogue) or text (e.g.,

document); 3) it is meaningful, coherent, unified and purposive.

A discourse contains seven fundamental properties including cohesion, coherence, in-

tentionality, acceptability, informatively, situationality and intertextuality (De Beaugrande
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No. Example

1
It is very hot today. Cohen comes from Germany. HK launches first sightseeing
restaurant bus to promote tourism. Natural language processing has been rapidly
developed in recent years.

2
A: That’s the telephone.

B: I’m in the bath.

A: O.K.

Table 2.1: An examples of discourse.

and Dressler 1981). Among them, cohesion and coherence have often been studied together

in discourse analysis (Sanders and Maat 2006, Xiong et al. 2013). Besides, translation con-

sistency is an important issue in document-level translation (Xiao et al. 2011). Therefore,

in the following contents, we mainly introduce these three properties from the perspectives

of MT and NLP.

2.2.1 Cohesion

From a linguistic perspective, cohesion is a well-known means to establish such inter-

sentential links within a text. Widdowson (1979) defines cohesion as “the overt structural

link between sentences as formal items”. Cohesion is a surface property of the text that is

realized by explicit clues. It occurs whenever “the interpretation of some element in the

discourse is dependent on that of another” (Halliday and Hasan 1976). In other words, co-

hesion refers to various manifest linguistic links (e.g., references, word repetitions) between

sentences within a text that holds the text together.

Halliday and Hasan (1976) identify five general categories of cohesive devices: refer-

ence, ellipsis, substitution, lexical cohesion, and conjunction. We mainly introduce referen-

tial cohesion and lexical cohesion in the following contents. Besides, referential cohesion

is mainly realized by the way of pronominal reference including anaphora and coreference,

as shown in Figure 2.8.

To derive the correct interpretation of a text, or even to estimate the relative importance

of various mentioned subjects, pronouns and other referring expressions must be connected
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Figure 2.8: An example of referential cohesion.

to the right individuals. In NLP community, researchers investigated various referential co-

hesion tasks such as anaphora resolution (Yang et al. 2006), coreference resolution (Kong

and Zhou 2012, Chen and Ng 2012) and dropped pronoun recovering (Chen and Ng 2013,

Xue and Yang 2013) are all well-studied problems of referential cohesion. Furthermore,

lexical cohesion knowledge are explored for text summarization (Barzilay and Elhadad

1997), word sense disambiguation (Galley and McKeown 2003), question answering (No-

vischi and Moldovan 2006) etc.

Anaphora Anaphora is the use of an expression whose interpretation depends specif-

ically upon antecedent expression. The anaphoric (referring) term is called an anaphor.

Sometimes anaphor may rely on the postcedent expression, and this phenomenon is called

cataphora. Taking Figure 2.9 for example, the pronoun “It” is an anaphor, which points to

the left toward its antecedent “Audi”. When translating the English sentence into French,

the pronoun “it” could be translated into three equivalents according to the properties of

its antecedent: 1) “il” (masculine singular subject pronoun); 2) “elle” (feminine singular

subject pronoun); 3) “cela” (demonstrative pronoun). It is easy for the human to choose the

correct translation, however, sentence-level MT models always make mistakes.
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Figure 2.9: An example of anaphora and translation problem. When translating the English sentence
into French, the pronoun “it” could be translated into three equivalents according to the properties
of its antecedent.

Zero Anaphora (pronoun-dropping) is a more complex case of anaphora. In pro-drop

languages such as Chinese, pronouns can be omitted to make the sentence compact yet

comprehensible when the identity of the pronouns can be inferred from the context. These

omissions may not be problems for our humans since we can easily recall the missing pro-

nouns from the context. However, this poses difficulties for MT from pro-drop languages

to non-pro-drop languages (e.g., English), since the translation of such missing pronouns

cannot be normally reproduced. Taking Figure 2.10 as an example, all the pronouns (in pur-

ple blocks) are omitted in the conversation between Speaker A and B, however, speakers

can still recall the missing pronouns from the context. As seen, the omitted object pronouns

“它” (it) refers to the noun “工作” (job) while the others pronouns refer to the speaker them-

selves. When translating the Chinese sentence into English, humans can easily recover these

DPs and then translate the “complete” sentence. However, the sentence-level MT models

make two severe mistakes: 1) harming the syntax structure (e.g., interrogative sentence);

and 2) missing translations of corresponding elements (e.g., subject-verb-object).

Coreference Two or more expressions (e.g., nouns) in a text refer to the same referent.

As the referents point to persons or things in the real world, the coreference relation can

exist independently of the context. As shown in Figure 2.11, the noun phrases “HK Chief

Executive” and “Mr. Tung Chee-hwa” point to the same person, although their surfaces are

totally different. It may not result in severe problems for MT. As seen, even though MT is

not aware of the coreference relation, it still can translate them well.
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Figure 2.10: An example of zero anaphora and translation problem. The sentence-level MT models
make two severe mistakes: 1) harming the syntax structure (e.g., interrogative sentence); and 2)
missing translations of corresponding elements (e.g., subject-verb-object).

Figure 2.11: An example of coreference.

Lexical Cohesion Lexical cohesion refers to the way related words are chosen to link el-

ements of a text. I can divided into two forms: repetition and collocation. The “repetition”

indicates the linking between the same word, or synonyms, antonyms, etc. As shown in

Figure 2.12 (a), the synonyms “dress” and “frock” across two sentences are the repetition

case. In the “collocation” form, related words are typically put together or tend to repeat

the same meaning. For example, the phrase “once upon a time” in Figure 2.12 (b) is a col-

location case. As seen, MT outputs are insufficiently perfect without considering repetition

while there are no effects on collocation translation.

2.2.2 Coherence

To make a text semantically meaningful, coherence is related to the connectedness of the

“mental representation of the text rather than of the text itself” (Sanders and Maat 2006).

Coherence is created referentially, when different parts of a text refer to the same entities,

and relationally, by means of coherence relations such as “Cause–Consequence” between

different discourse segments. Therefore, discourse structure (sequencing subparts of the
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Figure 2.12: An example of lexical cohesion.

discourse as well as relations between them) can be used to analyze the coherence of a text.

The commonly-used discourse structures are Rhetorical Structure Theory (RST) (Mann and

Thompson 1988) and Penn Discourse Tree Bank (PDTB) (Marcu 2000).

In NLP, discourse parsing is one of the fundamental tasks, which automatically parses

a text into the relational structure like RST and PDTB trees. Researchers have explored

various approaches for discourse parsing (Soricut and Marcu 2003, Feng and Hirst 2012,

Xue et al. 2015, 2016). For instance, Lin et al. (2014) introduce a pipeline framework

including several sub-tasks (connective classifier, argument labeler, explicit classifier, and

non-explicit classifier) to handle both explicit and non-explicit relations based on the PDTB

using maximum entropy.

Rhetorical Structure Theory RST relations are applied recursively in a text until all

units in that text are constituents in a predefined relation. As shown in Figure 2.13, the

result of such analysis is that RST structure is typically represented as a tree, with one

top-level relation that encompasses other relations at lower levels. There are a number

of predefined relations such as “ATTRIBUTION” (causality) and “Contrast” (adversative

relation), and the leaves are presented as segments/parts of the text.
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Figure 2.13: An example of RST Tree.

Penn Discourse Tree Bank The PDTB annotation methodology is proposed based on

RST, but highlights the role of the connectives. According to whether containing a con-

nective or not, discourse relations can be divided into two categories: explicit and implicit.

In Table 2.2, Example 1 shows an explicit discourse, which uses a coordinating conjunc-

tion “But” to bridge two text spans (i.e., arguments), and the relationship between them

is “Comparison.Concession” (two-level relation category). However, Example 2 omitted

discourse connective “however”, and the implicit relation between the two arguments is

“Comparison.Contrast”. The CoNLL Shared Task has organized a series of tasks on dis-

course parsing based on PDTB, focusing on identifying individual discourse relations that

are present in a natural language text.1

Cohesion is related to the surface structure link while coherence concerns the under-

lying connectedness in a text (Vasconcellos 1989). Compared with cohesion, coherence is

not easy to be detected. The Chinese sentence in Figure 2.14 is in a “Cause–Consequence”

order, in which “他没有上过学 (he did not go to school)” is the “cause” and “只能写

成到这种水平 (he can only write to this level)” is the “Consequence” with a connective
1The CoNLL-2015 Shared Task: http://www.cs.brandeis.edu/˜clp/conll15st/ and the

CoNLL-2016 Shared Task: http://www.cs.brandeis.edu/˜clp/conll16st/
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No. Example (Argument 1 – Connective – Argument 2)

1

According to Lawrence Eckenfelder, “Kemper is the first firm to make a major
statement with program trading.” He added that “having just one firm do this isn’t
going to mean a hill of beans. But if this prompts others to consider the same
thing, then it may become much more important.”

2

According to Lawrence Eckenfelder, “Kemper is the first firm to make a major
statement with program trading.” He added that “having just one firm do this is
not going to mean a hill of beans. However, if this prompts others to consider the
same thing, then it may become much more important.”

Table 2.2: An examples of explicit and implicit relations in PDTB.

Figure 2.14: An example of coherence and translation problem.

“所以 (so)”. In contrast, native English speakers usually express the same meaning in a

“Consequence–Cause” order, i.e., “He can only write to this level because he did not go to

school.”. The MT system is not aware of the coherence property, and literally translate the

input into “He did no go to school, so can only write to this level”.

2.2.3 Consistency

Apart from cohesion and coherence, consistency is another critical issue in document-level

translation, where a repeated term should keep the same translation throughout the whole

document (Xiao et al. 2011). The underlying assumption is that the same concepts should

be consistently referred to with the same words in a translation. However, the consistency

in MT output is generally overlooked in most MT systems due to the lack of the use of

document contexts.

As shown in Figure 2.15, the Chinese phrase “大都会警察” is a proper noun be-

ing equivalent to “metropolitan police”. In the document, this term in the first sentence
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Figure 2.15: An example of consistency and translation problem.

is translated correctly. However, when the term occur again in the second sentence, it is

translated into a wrong phrase “city police”, leading to inconsistency. To alleviate the in-

consistency problems, some researchers investigated different approaches for MT and MT

evaluation (Xiao et al. 2011, Guillou 2013, Chen and Zhu 2014).

2.3 Discourse in Machine Translation

There are different strands of research in the literature. One attempts to exploit the macro-

scopic structure of the input texts to infer better translations. Some work concerns different

discourse properties including cohesion, coherence, and consistency. Other work deals with

specific linguistic phenomena that are governed by discourse-level processes such as gen-

eration of anaphoric pronouns and translation of discourse connectives (Hardmeier 2014).

These three strands are not isolated but closely related to each other. For instance, cross-

sentence information can not only improve the overall performance of MT but also allevi-

ate inconsistency problems at the same time. In the thesis, we mainly focus on two parts:

document-level MT and discourse phenomena for MT. Thus, in this section, we discuss

important related work of discourse-aware MT, including document structure as well as

discourse phenomena.

As stated at the beginning of this chapter, discourse-aware NMT received relatively

little attention from the research community while various discourse-aware approaches have
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been investigated for SMT. Thus, we review related work on both conventional SMT and

state-of-the-art NMT.

2.3.1 Discourse Structure and Document Structure in Machine Translation

As discussed in Section 2.2.2, coherence is mainly related to discourse or document struc-

ture. One attempts to exploit the discourse trees of the input texts to infer better translations.

The other strand is to consider the document as a whole to resolve certain ambiguities and

inconsistencies.

Discourse Structure Foster et al. (2010) try the first attempt to incorporate structural

information into SMT. They tagged each sentence with features such as kind of session,

identity of the speaker, time period, and then used domain adaptation methods to balance

between an LM trained from similar data and a background LM. Marcu et al. (2000) found

that there are significant differences in discourse structure of between Japanese and En-

glish. Thus, they propose an “analysis–transfer–translate” pipeline: firstly, Japanese text is

parsed into RST tree; and then it is transferred into English style RST tree; finally process

translation based on the RST tree. Although all the training data are manually annotated

(high cost), the method really improves the translation in term of coherence. Besides, Tu

et al. (2013) propose a novel translation framework, which mainly includes three steps: 1)

Source RST tree acquisition: a source sentence is parsed into an RST tree; 2) Rule extrac-

tion: translation rules are extracted from the source tree and the target string via bilingual

word alignment; 3) RST-based translation: the source RST-tree is translated with transla-

tion rules. Experiments show that their approach achieves improvements of about +2 BLEU

points than the baseline system on Chinese–English.

Because of the superior ability to preserve sequence information over time, LSTM has

obtained strong results on a variety of sequence modeling tasks. Sequence models con-

struct sentence representations as an order-sensitive function of the sequence of tokens.

In contrast, tree-structured models compose each phrase and sentence representation from

41



its constituent sub-phrases according to a given syntactic structure over the sentence. Tai

et al. (2015) introduce a Tree-LSTM, a generalization of LSTMs to tree-structured network

topologies. The difference between Tree-LSTM and LSTM is that the Tree-LSTM com-

poses its state from an input vector and the hidden states of arbitrarily many child units.

Thus, the standard LSTM can then be considered a special case of the Tree-LSTM where

each internal node has exactly one child. They show its superiority for representing sen-

tence meaning over a sequential LSTM in two tasks: predicting the semantic relatedness of

two sentences and sentiment classification.

Although their work show promising improvements, there are several underlying draw-

backs: 1) some models are trained on small-scale or manually-created data sets, it is not

reliable when adopting these approaches to large-scale MT task; 2) the performance of dis-

course parser is still not reliable2, thus incorporating the structure information into NMT

will result in error propagation problems.

Document Structure One direction is cache-based methods, which employ cache to re-

tain bilingual phrase pairs from the best hypothesis of previously translated sentences and

then use it as an additional feature in log-linear model of SMT. Tiedemann (2010) inte-

grated cache-based language and translation models within a PBSMT decoder and used

an exponential decay factor to carry over word preferences from one sentence to the next.

When a source phrase is considered for translation, its cache translation score is computed

using the phrase probabilities of matching phrases found in the cache and the decay factor.

Their examples illustrate better translation especially in repetition and consistency, how-

ever, the experimental score show modest improvements. Gong et al. (2011) extended this

work by using three caches: dynamic cache, static cache, and topic cache. They show a

better improvement when all three caches are used in combination.

Other efforts are in document-level decoding. Focusing on translation consistency, Xiao

et al. (2011) employed a forced-decoding method: identify ambiguous words in the output
2As shown in the recent share task (CoNLL-2016), the precision of the state-of-the-art discourse parser is

only about 40%.
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of baseline system, and then obtain a set of consistent translations based on frequencies and

finally re-decode input using the filtered set of translation options. Hardmeier et al. (2012)

approach translation as an optimization task. He proposed a stochastic local search decod-

ing method for PBSMT, which permits free document-wide dependencies in the models.

Their work on decoding try to reduce the searching space but it is difficult to incorporate

new knowledge.

Recently, researchers began to explore NN-based document-level approaches for se-

quence modeling. Conversational models need to predict the next sentence by consider-

ing the historical utterances in a conversation. Vinyals and Le (2015) built an end-to-end

conversational system using a sequence-to-sequence framework. In order to capture the

lager-context information, they simply concatenate previous utterances together as the in-

put. Their preliminary results show that the method is able to converse well and extract

knowledge from lager-context. Li et al. (2016) argue that simply incorporating context

information into context independent message will increase the workload of a generation

system and has the risk of bringing in noise to the generation process. To better preserve

the original search intent, Sordoni et al. (2015) proposed a novel HRED to summarize these

historical queries. Besides, Serban et al. (2016) adopt the framework to the task of dialogue

response generation. They use HRED to summarize a single representation from both the

current and previous sentences. Experiments demonstrated that availing of the historical

representation helps to maintain the dialogue context.

The continuous vector representation of a symbol encodes multiple dimensions of simi-

larity, equivalent to encoding more than one meaning of a word. Consequently, NMT needs

to spend a substantial amount of its capacity in disambiguating source and target words

based on the context defined by a source sentence (Choi et al. 2017). Without additional in-

formation, standard NMT models are facing inconsistency and ambiguity problems. Calixto

and Liu (2017) utilize global image features extracted using a pre-trained convolutional neu-

ral network and incorporate them in NMT. Our work is also related to multi-source (Zoph

and Knight 2016a) and multi-target NMT (Dong et al. 2015), which incorporate additional
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source or target languages. They investigate one-to-many or many-to-one languages trans-

lation tasks by integrating additional encoders or decoders into encoder-decoder framework,

and their experiments show promising results. More recently, some researchers propose to

use an additional set of an encoder and attention to model more information. For exam-

ple, Jean et al. (2017) use it to encode and select part of the previous source sentence for

generating each target word.

Their work encourages us to explore document-level NN models such as HRED for

translation task. It can be expected that the powerful structural representations will help to

improve the performance of NMT in terms of coherence and consistency.

More recently, there are some new work on document-level NMT. In order to evalu-

ate discourse phenomena in NMT, Bawden et al. (2018) conducted experiments from three

aspects: 1) comparing multi-encoder models Zoph and Knight (2016b), Jean et al. (2017)

with different strategies; 2) investigating the impacts of source- and target-side history in-

formation on NMT; 3) presenting a novel evaluation through the use of two discourse test

sets targeted at coreference and lexical coherence/cohesion. Voita et al. (2018) introduced

a context-aware model and demonstrated its usefulness for anaphora resolution as well as

translation. Besides, Xiong et al. (2018) proposed to use discourse context and reward to

refine the translation quality from the perspective of coherence. Some researchers proposed

to extend the Transformer model to take advantage of document-level context (Miculicich

et al. 2018, Zhang et al. 2018). Following Tu et al. (2017a)’s work, Kuang et al. (2017)

and Maruf and Haffari (2017) continue to exploit cache memory for improving the perfor-

mance of document-level NMT. Through human evaluation, Läubli et al. (2018) found that

document-level evaluation for MT can improve to discriminate the errors which are hard or

impossible to spot at the sentence level.

2.3.2 Discourse Phenomenon in Machine Translation

As discussed in Section 2.2.1, the main phenomena of cohesion is pronominal anaphora.

Targeting cohesion phenomena, some researchers investigated approaches of incorporating
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anaphora information to improve the performance of MT. For instance, Le Nagard and

Koehn (2010) presented a method to aid English pronoun translation into French for SMT

by integrating an anaphora resolution system. In the thesis, we mainly focus on the more

complicated phenomenon: DP, which can be regarded as a special case of pronominal

anaphora. Thus, in the following contents, we mainly review related work on DP.

Dropped Pronoun Recovery There are two research strands related to DP recovery. One

is called Zero Pronoun (ZP) resolution. ZP resolution contains three steps: ZP detection,

anaphoricity determination and reference linking. Zhao and Ng (2007), Kong and Zhou

(2010), Chen and Ng (2013) proposed rich features using different machine learning mod-

els. For example, Chen and Ng (2013) propose a Support Vector Machine (SVM) classifier

using 32 features including lexical, syntax and grammatical roles and show significant im-

provement on this task. Another research direction is related to a wider range of Empty

Category (EC) phenomena (Yang and Xue 2010, Cai et al. 2011, Xue and Yang 2013),

which aims to recover long-distance dependencies, discontinuous constituents and certain

dropped elements (e.g., trace markers, DPs, big PRO3 etc., while we only focus on DPs.)

in phrase structure treebanks (Xue et al. 2005). However, their work mainly focuses on

intra-sentential characteristics as opposed to the discourse level. More recently, Yang et al.

(2015) explored DP recovery for Chinese text messages based on both ZP and EC.

Most of their work either applies manual annotation (Yang et al. 2015) or uses existing

but small-scale resources (e.g., OntoNotes corpus contains 144K coreference instances, but

only 15% of them are dropped subjects). There are two drawbacks on current work: 1)

performance is not reliable when directly using the results of these systems in translation

process; 2) the data is not big enough to drive a large neural model. Therefore, the primary

challenge of this work is how to automatically build a large-scale high-quality DP training

corpus.
3A pronominal determiner phrase without phonological content.
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Dropped Pronoun Translation Some work has been done on DP translation for SMT

models (Chung and Gildea 2010, Le Nagard and Koehn 2010, Taira et al. 2012, Xiang et al.

2013). Le Nagard and Koehn (2010) presented a method to aid English pronoun translation

into French by using the results of a Coreference Resolution (CR) system, Unfortunately,

their results are not convincing due to the poor performance of the CR system (Pradhan

et al. 2012). Chung and Gildea (2010) systematically examine the effects of EC on MT

with three methods: pattern, Conditional Random Field (CRF) (which achieves best re-

sults) and parsing. The results show that this work can really improve the end translation,

even though the automatic prediction of EC is not highly accurate. Furthermore, Taira et al.

(2012) propose both simple rule-based and manual methods to add DPs on the source side

for Japanese–English translation. However, the BLEU scores of both methods are nearly

identical, which indicates that only considering the single source sentence and forcing the

insertion of pronouns may be less principled than tackling the problem head on by integrat-

ing them into the SMT model itself.

Their work regards the task of DP/EC recovering as a pre-processing stage for MT.

Although these parameters are tuned independently, this direct idea is still worth trying. DP

neural translation received relatively little attention from the MT community, thus we are

encouraged to explore DP translation for NMT models.

2.4 Summary

In this chapter, we provided detailed background information related to this thesis. We first

reviewed the frameworks, models and evaluation metrics of MT, including SMT and NMT.

We also gave basic information about discourse and its key properties. We then studied the

related work on discourse-aware MT, including discourse/document structure and discourse

phenomena.

In the next chapter, we will address our first research question:

RQ 1 What is the influence of historical contextual information on the per-
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formance of neural machine translation? Can a document-level NMT archi-

tecture alleviate inconsistency and ambiguity problems?

We present a novel document-level NMT architecture to capture dependencies across sen-

tences, and improve the translation performance.
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Chapter 3

Document-Level Neural Machine

Translation

In the previous chapter, we review the background of machine translation and discourse.

In this chapter, we introduce a novel DNMT architecture. We describe our first attempt

at investigating the potential for implicitly incorporating discourse information into NMT.

This chapter directly addresses our first research question as described as RQ1, regarding

the influence of global context on NMT performance.

RQ 1 What is the influence of historical contextual information on the per-

formance of neural machine translation? Can a document-level NMT archi-

tecture alleviate inconsistency and ambiguity problems?

This chapter is organized as follows. Without loss of generality, we first introduce

the motivation of our work on DNMT in Section 3.1. In Section 3.2, we describe our

proposed approaches to model cross-sentence context for boosting sentence-level NMT.

For further comparison with related work, in Section 3.3, we also review two other DNMT

models recently proposed by Jean et al. (2017) and Tu et al. (2018), respectively. The

experiments for verifying our proposed approaches are reported in Section 3.4. Quantitative

and qualitative analysis is presented in Section 3.5. Finally, we systematically compare our
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approaches with these two related models in Section 3.6, which is followed by the summary

in Section 3.7.

3.1 Why Global Context?

MT usually models a text by considering isolated sentences based on a strict assumption

that the sentences in a text are independent of one another. As we demostrate in this chapter,

disregarding dependencies across sentences will negatively affect translation outputs of a

text especially in terms of consistency. Although document-aware approaches have been

investigated for SMT (Tiedemann 2010, Gong et al. 2011, Xiao et al. 2011, Hardmeier

et al. 2012), leveraging global context for NMT has received relatively little attention from

the research community. With the advantages of neural networks described in Chapter 2,

the performance of NMT has surpassed the performance of conventional SMT on various

language pairs (Luong et al. 2015a). Therefore, exploring document-aware approaches

for NMT has the potential to further improve translation quality over state-of-the-art MT

models.

The continuous vector representation of a symbol (namely hj , the encoder hidden state

of the j-th source word) encodes multiple dimensions of similarity, equivalent to encod-

ing more than one meaning of a word. Consequently, NMT needs to spend a substantial

amount of its capacity in disambiguating source and target words based on the context de-

fined by a source sentence (Choi et al. 2017). In Table 3.1, we show an example of the

problem of ambiguity in MT. The translation of “机遇” (i.e., “opportunity”) suffers from

an ambiguity problem, and it is incorrectly translated into “challenge”. Figure 3.1 further

indicates that the problem is not caused by attending to the wrong source words but the

lack of larger context. Consistency is another critical issue in document-level translation,

where a repeated term should keep the same translation throughout the whole document

(Xiao et al. 2011, Carpuat and Simard 2012). As shown in Table 3.2, the Chinese word “问

题” has multiple English translations such as “problem”, “question” and “issue”. However,
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I/O Sentences

Input ... 开始都觉得 ... 大家觉得这也是一次 机机机遇遇遇 ,一次 挑战。

Reference ... initially they all felt that ... everyone felt that this was also an
opportunity and a challenge .

NMT Output ... felt that ... we feel that it is also a challenge and a challenge .

Table 3.1: An example of the problem of ambiguity in NMT.

Figure 3.1: Attention matrix of the example in Table 3.1.

the Chinese word should be always translated into “issue” according to the larger context in

the document. Nevertheless, current NMT models still process a document by translating

each sentence alone, suffering from ambiguity and inconsistency problems arising from a

single source sentence as demonstrated. These problems are difficult to alleviate using only

limited intra-sentence context.

Cross-sentence context, or global context, has proven helpful to better capture the mean-

ing or intention in sequential tasks such as query suggestion (Sordoni et al. 2015) and dia-

logue modeling (Vinyals and Le 2015, Serban et al. 2016). Therefore, we propose a cross-

sentence context-aware NMT model, which considers the influence of previous sentences

in the same document. First, this history is summarized in a hierarchical way. We then

integrate the historical representation into NMT in different strategies.
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Document I/O Sentences

Past

Input 那么在这个问问问题题题上 ,伊朗的 ...

Output well, on this question , iran has a relatively ...

Input 在任内解决伊朗核问问问题题题 ,不管是用和平 ...

Output to resolve the iranian nuclear problem in his term , ...

Current
Input 那刚刚提到这个 ... 谈判的问问问题题题。

Output that just mentioned the issue of the talks ...

Table 3.2: An example of the problem of consistency in NMT.

In different use-cases, DNMT can consider: 1) either the source or target sentences,

or both; 2) either the preceding or following sentences, or both. Actually, in our prelimi-

nary experiments, considering target-side history inversely harms translation performance,

since it suffers from serious error propagation problems. Furthermore, we set the use-case

as pipeline translation. Therefore, our models mainly consider the source-side previous

sentences in the same document.

As shown in Section 3.4, experimental results on a large Chinese-English translation

task show that our approach significantly improves upon a strong attention-based NMT

system by up to +2.1 BLEU points.

3.2 Cross-Sentence Neural Machine Translation Models

In this section, we introduce our proposed approach in detail, which contains two parts:

summarizing global context and integrating global summary into NMT.

3.2.1 Summarizing Global Context

We propose to use a hierarchy of RNN to summarize the cross-sentence context from pre-

vious sentences, which deploys an additional document-level RNN on top of the sentence-

level RNN encoder (Sordoni et al. 2015). Note that we employ left-to-right RNN, which

put more emphasis on the end of the sentence. We hypothesis that the closest a sentence to

the current one, the more relevant the first is expected to be for the translation of the latter.

51



Figure 3.2: Summarizing global context with a hierarchical RNN (xm is the m-th source sentence).

Formally, given a source sentence xm (i.e., the m-th source sentence in a document) to

be translated, we consider itsK previous sentences in the same document as cross-sentence

context, which can be described as C = {xm−K , ...,xm−1}. As shown in Figure 3.1, we

summarize the representation of C in a hierarchical way as described below.

Sentence-Level RNN For a sentence xk in cross-sentence context C, the sentence-level

RNN reads the corresponding words {x1,k, ..., xn,k, . . . , xN,k} sequentially and updates its

hidden state as in Equation (3.1):

hn,k = f(hn−1,k, xn,k) (3.1)

where f(·) is an activation function, and hn,k is the hidden state at time step n. The length

of xk is N . The last state hN,k stores order-sensitive information about all the words in

xk, which is used to represent the summary of the whole sentence, i.e., Sk ≡ hN,k. After

processing each sentence in C, we can obtain all K sentence-level representations, which

will be fed into document-level RNN.
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Figure 3.3: The Initialization integration strategy.

Document-Level RNN It takes as input the sequence of the above K sentence-level rep-

resentations {S1, ..., Sk, ..., SK} and computes the hidden state according to Equation (3.2):

zk = g(zk−1, Sk) (3.2)

where g(·) is an activation function, and zk is the recurrent state at time step k, which

summarizes the previous sentences that have been processed to the position k. Similarly,

we use the last hidden state to represent the summary of the global context, i.e., D ≡ zK .

After the above two-level encoding, we hypothesize that the global context D has con-

tained rich information from the previous K sentences. It not only captures the dependen-

cies between words, but also considers the discourse relations between sentences. Next, we

will integrate D into a standard NMT.

3.2.2 Integrating Global Context into Neural Machine Translation

After obtaining the global context, we design four strategies to integrate history represen-

tation D into NMT to translate the current sentence xm: Initialization, Auxiliary Context,

Gating Auxiliary Context and Combination.

Initialization Global context can be used as a warm-start to encoder and decoder states

during NMT training. As described in Section 2.1.2, the encoder is used to summarize the
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source sentence into a vector representation. However, the standard NMT model usually

uses all-zero states to initialize its encoder (Bahdanau et al. 2015), without considering any

history context. When a human translator translates a sentence, he/she usually retains the

knowledge from previous sentences as a background. Therefore, we propose to use the

global context D as the initialization state of NMT encoder.

The decoder is employed to generate the target sentence word by word based on the

source-side vector representation. For the standard decoder, the initial hidden state is com-

puted as in Equation (3.3):

s0 = tanh(WshN ) (3.3)

which uses the last hidden state of the encoder for initialization. This method only uses the

information from current source sentence without considering the useful history contexts.

Therefore, we rewrite the calculation of the initial hidden state as in Equation (3.4):

s0 = tanh(WshN +WDD) (3.4)

where hN is the last hidden state in the encoder and {Ws,WD} are the corresponding

weight matrices. As shown in Figure 3.3, we use the history representation D to initialize

either the NMT encoder, NMT decoder, or both.

Auxiliary Context As shown in Figure 3.4, the history representation D is used as static

cross-sentence context, which works together with the dynamic intra-sentence context pro-

duced by an attention model.

In standard NMT, as shown in Figure 3.5 (a), the decoder hidden state at time step i is

computed by Equation (3.5):

si = f(si−1, yi−1, ci) (3.5)

where yi−1 is the most recently generated target word, and ci is the intra-sentence context

summarized by the NMT encoder at time step i. Our Auxiliary Context strategy, as shown

in Figure 3.5 (b), adds the representation of cross-sentence context D to jointly update the

54



Figure 3.4: The Auxiliary Context integration strategy.

decoding state si, as in Equation (3.6):

si = f(si−1, yi−1, ci, D) (3.6)

Now the proposed NMT decoder has four inputs rather than the three original ones. The

concatenation [ci, D], which embeds both intra- and cross-sentence contexts, can be fed to

the decoder as a single representation. From an implementational point of view, all we need

to do is modifying the size of the corresponding parameter matrix. In this strategy,D serves

as an auxiliary information source to better capture the meaning of the source sentence.

Gating Auxiliary Context We add a gate to Auxiliary Context, which decides the amount

of global context to be used in generating the next target word at each step of the decoding

process.

The starting point for this strategy is an observation: the need for information from

the global context differs from step to step during generation of the target words. For

example, global context is more in demand when generating target words for ambiguous

source words, and less for more straightforward words. To this end, we extend our auxiliary

context strategy by introducing a context gate (Tu et al. 2017a) to dynamically control the
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Figure 3.5: Architectures of NMT with auxiliary context integrations. act. is the decoder activation
function, and σ is a sigmoid function.

amount of information flowing from the auxiliary global context at each decoding step, as

shown in Figure 3.5 (c).

Intuitively, at each decoding step i, the context gate looks at the decoding environment

(i.e., si, yi−1, and ci), and outputs a number between 0 and 1 for each element in D, where

1 denotes “completely transferring this” while 0 denotes “completely ignoring this”. The

global context vector D is then processed with an element-wise multiplication before being

fed to the decoder activation layer.

Formally, the context gate consists of a sigmoid neural network layer and an element-

wise multiplication operation. It assigns an element-wise weight to D, computed by Equa-

tion (3.7):

zi = σ(Uzsi−1 +Wzyi−1 + Czci) (3.7)

where yt−1 is the previously generated word, st is the t-th decoding hidden state, and ct is

the t-th source representation. Here σ(·) is a logistic sigmoid function, and {Wz, Uz, Cz}

are the weight matrices, which are trained to learn when to exploit global context to max-

imize the overall translation performance. Note that zi has the same dimensionality as D,

and thus each element in the global context vector has its own weight. Accordingly, the
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Figure 3.6: Architectures of NMT with initialization + (Gating) Auxiliary Context integration strat-
egy.

decoder hidden state is updated by Equation (3.8):

si = f(si−1, yi−1, ci, zi ⊗D) (3.8)

Combination The global context D applied with different strategies may transfer differ-

ent patterns of history information (e.g., word-level dependencies and sentence-level rela-

tions) to NMT. Thus, combining multiple strategies together can encourage NMT to better

learn history information from larger context.

Finally, we propose to combine initialization and (Gating) Auxiliary Context integration

strategies for NMT, as shown in Figure 3.6.

3.3 Related Document-Level Neural Machine Translation Work

Our work and that of Jean et al. (2017) are two independently early attempts to model

cross-sentence context for NMT. To model previous sentences, we employed an hierarchical

RNN encoder while Jean et al. (2017) used an additional attention-encoder model. Tu et al.

(2018) continue to explore document-level translation using cache-based approaches. In
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this section, we mainly focused on these three representative models and introduce their

architectures in detail.

More recently, there are some new document-level NMT models were proposed follow-

ing the above work (as discussed in Section 2.3.1). Bawden et al. (2018) presented a novel

evaluation to investigate discourse phenomena in different multi-encoder models (Zoph and

Knight 2016b, Jean et al. 2017). They presented a novel evaluation through the use of two

discourse test sets targeted at coreference and lexical coherence/cohesion. Furthermore,

some researchers extended our cross-sentence models on the top of the state-of-the-art

Transformer architecture (Miculicich et al. 2018, Zhang et al. 2018, Voita et al. 2018).

Following Tu et al. (2017a)’s work, Kuang et al. (2017) and Maruf and Haffari (2017) con-

tinued to exploit cache memory for improving the performance of document-level NMT. In

addition to this, some researchers started new strands of document-level NMT. For example,

Xiong et al. (2018) proposed to use discourse context and reward to refine the translation

quality from the perspective of coherence while our work mainly focus on consistency and

disambiguity.

3.3.1 Multi-Encoder

Originally, multi-source (Zoph and Knight 2016a) and multi-target NMT (Dong et al. 2015)

were proposed to incorporate additional source or target languages. They investigate one-

to-many or many-to-one language translation tasks by integrating additional encoders or

decoders into the standard encoder-decoder framework, with promising results.

Recently, some researchers have proposed using an additional encoder-attention set to

model more information (e.g., history context or multimodal features). Jean et al. (2017)

proposed a multi-encoder approach to encode and select part of the previous source sentence

for generating each target word. Calixto and Liu (2017) utilized global image features ex-

tracted using a pre-trained convolutional neural network and incorporated them into NMT.

Taking Jean et al. (2017)’s model for example, as shown in Figure 3.7, xm is the current

source sentence to be translated and xm−1 is its previous sentence in the document. There
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Figure 3.7: Architecture of Multi-Encoder NMT.

are two context vectors from both the current source sentence ci and its previous sentence

c′i. Accordingly, the NMT decoder hidden state si at time i is updated to Equation (3.9):

si = f(si−1, yi−1, ci, c
′
i) (3.9)

where f(·) is an activation function, and yi−1 is the most recently generated target word.

As additional attention leads to more computational cost, Jean et al. (2017) only incor-

porate limited information such as the single preceding sentence in experiments. However,

our architecture is free of this limitation, so we investigated more preceding sentences (e.g.

K = 3) in our model.

3.3.2 Cache Memory

Neural Turing Machines (Graves et al. 2014) and Memory Networks (Weston et al. 2014,

Sukhbaatar et al. 2015) are early models that augment neural networks with a possibly

large external memory. Specifically, the Key-Value Memory Network (Miller et al. 2016)

is a simplified version of Memory Networks with better interpretability and has yielded
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Figure 3.8: Architecture of NMT with a continues cache.

encouraging results in document reading (Miller et al. 2016), question answering (Pritzel

et al. 2017) as well as machine translation (Gu et al. 2017, Kaiser et al. 2017). Kaiser et al.

(2017) use an external key-value memory to remember rare training events at test time, and

Gu et al. (2017) use a memory to store a set of sentence pairs retrieved from the training

corpus given the source sentence.

More recently, Tu et al. (2018) adopted memory networks for the task of document-level

MT. As shown in Figure 3.8, they proposed to augment NMT models with a cache-like

memory network, which stores the translation history in terms of bilingual hidden rep-

resentations at decoding steps of previous sentences. The cache component is an external

key-value memory structure with the keys being attention vectors, and values being decoder

states collected from translation history. At each decoding step, the probability distribution

over generated words is updated online depending on the history information retrieved from

the cache with a query of the current attention vector. Using simply a dot-product for key

matching, this history information is quite cheap to store and can be accessed efficiently.
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3.3.3 Comparison

Apart from the architecture, there are also two main differences among these three mod-

els. First, ours and multi-attention model only exploit source-side history contexts, while

cache-based model is able to take advantage of bilingual contexts. The main reason is that

multi-attention and our models still store the history context in the form of surface word.

This leads to the problem of error propagation when considering the auto-translated history

contexts. However, this problem can be alleviated by directly leveraging continuous vectors

to represent translation history in the cache-based model. Second, the sizes of history con-

text are different among them. As reported in their papers, multi-attention model considers

N = 1 history sentence while our model uses N = 3. Besides, the cache-based model

uses 500 history words (equivalent to N = 15 sentences), which is much larger than that

of other two models. In comparison experiments (in Section 3.6), we keep their different

settings to achieve the best performances.

3.4 Experiments

In this section, we describe the experiment setup and then show the results of our proposed

models, against the baselines mentioned.

3.4.1 Data

The Linguistic Data Consortium (LDC)1 is an open consortium of universities, companies

and government research laboratories. It creates, collects and distributes speech and text

databases, lexicons, and other resources for linguistics research and development purposes.

In recent years, most MT experiments are conducted on LDC corpora. For example, the

famous shared task, Open Machine Translation Evaluation 2001-2015,2 requires to compare

different MT systems trained on LDC data.
1Available at: https://www.ldc.upenn.edu.
2https://www.nist.gov/itl/iad/mig/open-machine-translation-evaluation.
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Data |S|
|W | |V | |L|

Zh En Zh En Zh En

LDC 1.25M 27.93M 34.51M 223.25K 114.83K 22.29 27.54

MT05 1,083 29.90K 34.79K 5.64K 1.97K 27.61 32.12

MT06 1,665 38.35K 47.33K 6.72K 2.45K 23.03 32.12

MT08 1,358 32.31K 41.10K 6.74K 2.50K 23.79 30.27

Table 3.3: Number of sentences (|S|), words (|W |), vocabulary (|V |), and averaged sentence length
(|L|) comprising the training, tuning and test corpora.

We carried out experiments on Chinese–English translation tasks. The data were ex-

tracted from the LDC. As the document information is necessary when selecting the pre-

vious sentences, we collect all LDC corpora that contain document boundaries and com-

bine them together as our training data.3 For validation and testing, we use the data sets

from NIST Open Machine Translation Evaluation4 (OpenMT), which also contain docu-

ment boundaries. We chose the NIST05 (MT05) as our tuning set, and NIST06 (MT06)

and NIST08 (MT08) as test sets.5

We apply standard MT corpus preparation methods6 to pre-process all the data. In

particular, we employ the Jieba toolkit7 for Chinese word segmentation, and Moses (Koehn

et al. 2007) toolkit8 for English word tokenization. We also clean the training data by

filtering sentences with more than 80 tokens. The statistics of the corpora used for the

experiment are listed in Table 3.3. As seen, the training corpus contains more than 1.25

million sentence pairs and the tuning/test sets contain around 1,500 sentence pairs. The

average lengths of sentences in these corpora are similar. We used case-insensitive BLEU

score (Papineni et al. 2002) as our evaluation metric, and sign-test (Collins et al. 2005) for

calculating statistical significance.
3The indexes of selected LDC corpora are: 2003E07, 2003E14, 2004T07, 2005E83, 2005T06, 2006E24,

2006E34, 2006E85, 2006E92, 2007E87, 2007E101, 2007T09, 2008E40, 2008E56, 2009E16, 2009E95.
4https://www.nist.gov/itl/iad/mig/open-machine-translation-evaluation.
5The LDC indexes of these corpora are LDC2010T14, LDC2010T17 and LDC2010T21, respectively.
6Available at http://www.statmt.org/moses/?n=Moses.Baseline.
7Available at https://github.com/fxsjy/jieba.
8Available at http://www.statmt.org/moses.
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3.4.2 Models Setup

The Workshop on Machine Translation (WMT) is one of popular annual share task on

MT. The best model in WMT is usually regarded as the recent state-of-the-art benchmark.

Therefore, we reuses the best settings Wang et al. (2014), Sennrich et al. (2016, 2017) to

setup SMT and NMT models in our experiments.

For training the SMT models, we employ the phrase-based model in Moses9. Further-

more, we train a 5-gram language model using the SRI Language Modelling Toolkit10 (Stol-

cke 2002). To obtain word alignment, we run GIZA++11 (Och and Ney 2003) on the training

data. We use minimum error rate training (Och 2003) to optimize the feature weights.

For training the NMT models, we extended the open source attention-based NMT

model, Nematus12 (Sennrich et al. 2017), with our cross-sentence modelling code. We

limited the source and target vocabularies to the most frequent 35K words in Chinese and

English, covering approximately 97.1% and 99.4% of the data in the two languages, respec-

tively. Each model was trained on sentences of length up to 80 words in the training data

with early stopping. The word-embedding dimension was 600, the hidden layer size was

1000, and the batch size was 80. All our models considered the previous three sentences

(i.e., K = 3) as cross-sentence context.13 We trained for 20 epochs using Adadelta (Zeiler

2012), and selected the model that yielded the best performance on the tuning set. It should

be emphasized that we did not use the pre-train strategy, since we found training from

scratch achieved a better performance.

3.4.3 Results

Table 3.4 shows the translation performance in terms of BLEU score. We investigate two

baselines and six proposed variation models including:
9Available at: http://www.statmt.org/moses.

10Available at: http://www.speech.sri.com/projects/srilm/.
11Available at: http://web.archive.org/web/20100221051856/http://code.google.

com:80/p/giza-pp.
12Available at https://github.com/EdinburghNLP/nematus.
13In our preliminary experiments, we have tested different history length (i.e., K = 1, K = 3 and K = 5),

and found that models with K = 3 can achieve the best translation performance.
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# System
MT05 MT06 MT08 Average

BLEU BLEU 4 BLEU 4 BLEU 4

1 SMT BASE 33.08 32.69 – 23.78 – 28.24 –

2 NMT BASE 34.35 35.75 – 25.39 – 30.57 –

3 +Initenc 36.05 36.44† +0.69 26.65† +1.26 31.55 +0.98

4 +Initdec 36.27 36.69† +0.94 27.11† +1.72 31.90 +1.33

5 +Initenc+dec 36.34 36.82† +1.07 27.18† +1.79 32.00 +1.43

6 +Auxi 35.26 36.47† +0.72 26.12† +0.73 31.30 +0.73

7 +Gating Auxi 36.64 37.63† +1.88 26.85† +1.46 32.24 +1.67

8 COMBINA. 36.89 37.76† +2.01 27.57† +2.18 32.67 +2.10

Table 3.4: Evaluation of translation quality. “Init” denotes Initialization of encoder (“enc”), decoder
(“dec”), or both (“enc+dec”), and “Auxi” denotes Auxiliary Context. “†” indicates statistically
significant difference (P < 0.01) from the baseline NMT. Average is calculated on test sets (i.e.,
MT06 and MT08).

SMT BASE: SMT baseline trained using Moses;

NMT BASE: NMT baseline trained using Nematus;

+Initienc: NMT encoder is initialized by global context;

+Initidec: NMT decoder is initialized by global context;

+Initienc+dec: both NMT encoder and decoder are initialized by global context;

+Auxi: global context is used as auxiliary to jointly update each decoding state;

+Gating Auxi: a gate is added to +Auxi model;

COMBINATION: combining +Gating Auxi model with +Initienc+dec model.

Baselines (Rows 1-2)

As can be seen from the table, SMT BASE – the state-of-the-art SMT system, achieves

28.24 BLEU points on average, and NMT BASE – a traditional phrase-based NMT system,

achieves 30.57 BLEU points on average. NMT BASE significantly outperforms SMT BASE

by 2.3 BLEU points on average, indicating that it is a strong NMT baseline system. The
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difference between NMT and SMT is consistent with the results in Tu et al. (2017b) (i.e.,

26.93 vs. 29.41) on training corpora of a similar scale.

We use NMT BASE (Row 2) as our strong baseline for further comparison. Clearly the

proposed models (Rows 3-8) significantly outperform the baseline in all cases, although

there are considerable differences among different variations.

Initialization (Rows 3-5)

Initenc and Initdec improve translation performance by around +1.0 and +1.3 BLEU points

(on average) individually, proving the effectiveness of warm-start with cross-sentence con-

text. Furthermore, it also demonstrated that both NMT encoder and decoder need history

information for source-side summarization and target-side generation. Combining these

two individual initialization approaches achieves a weak further improvement (+0.1 BLEU

point on average), which indicates that the NMT encoder and decoder may share global

context knowledge to a large extent.

Auxiliary Context (Rows 6-7)

The auxiliary context strategy can achieve +0.73 BLEU points on average, indicating that

global context is helpful in generating target words. Furthermore, the gating auxiliary con-

text strategy achieves a significant improvement of around +1.0 BLEU point over its non-

gating counterpart. This shows that the introduced context gate learns to distinguish the

different needs of the global context for generating target words.

Combination (Row 8)

Finally, we combine the best variants from the initialization and auxiliary context strategies,

i.e., +Initenc+dec+Gating Auxi. The combination model achieves the best performance over-

all, improving upon NMT by +2.1 BLEU points on average. This verifies our hypothesis in

Section 3.2 that different strategies may capture different patterns of history information,

and the two types of strategy are complementary to one another.

As described in Section 3.2.2, the “Initialization” methods can provide NMT models
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more useful information in larger contexts. In particularly, it makes NMT more sensitive

to repeated words in a text, and learn to generate consistent translations. Furthermore, the

“Auxiliary Context” method acts on target word generation, which enhances the capability

of disambuiting for NMT models. The gating mechanism can further improve the perfor-

mance by filtering useless or noisy history contexts. Finally, combining these approaches

together can accumulatively improve translation performance.

3.5 Analysis

In this section, we conducted extensive analysis to better understand our model in terms

of alleviating ambiguity and inconsistency problems. As the combination model achieves

the best performance, we analyze sentences from outputs generated by COMBINATION and

NMT BASE models, respectively.

3.5.1 Effect of Global Context

We investigate to what extent the mistranslated errors are fixed by the proposed system.

We randomly select 15 documents (i.e., about 60 sentences) from the test sets (i.e., outputs

generated by COMBINATION and NMT BASE models). Actually, the size of sampled data

is small, and we plan to label more data for human and automatic evaluation in future work.

As shown in Table 3.5, we count how many related errors: 1) are made by NMT BASE

(Total), and 2) fixed by our COMBINATION model (Fixed); as well as 3) newly generated

(New). Regarding the Ambiguity problem, while we found that 38 checkpoints (i.e., words

or phrases) were translated into incorrect equivalents, 76% of them are corrected by our

model. Similarly, there are 32 Inconsistency errors made by the baseline system. Our

model solved 75% of them including lexical, tense and definiteness (definite or indefinite

articles) cases. However, we also observe that our system brings relative 21% new errors.

According to the analysis, we confirm that the improvements of our models come from

alleviating ambiguity and inconsistency problems.
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Errors
Ambiguity Inconsistency All

Count 4 Count 4 Count 4

Total errors 38 – 32 – 70 –

Fixed errors 29 -76.32% 24 -75.00% 53 -75.71%

New errors 7 +18.42% 8 +25.00% 15 +21.43%

Table 3.5: Statistics of translation error analyzed on COMBINATION and NMT BASE outputs.

Length MT05 MT06 MT08 Average

K = 0 34.35 35.75 25.38 30.57

K = 1 36.11 36.14 26.87 31.51 (+0.94)

K = 3 36.27 36.69 27.11 31.90 (+1.33)

K = 5 35.23 36.01 25.94 30.98 (+0.41)

Table 3.6: Evaluation of the “+Initdec” model with different history lengths.

3.5.2 Effect of History Length

By analyzing the training corpus, we found that a document contains around 5 sentences

in average. Thus, we mainly tested our models with three settings on history length (i.e.,

K = 1, K = 3 and K = 5). In our preliminary experiments, we evaluated the “+Initdec”

model due to the fast training speed. As shown in Table 3.6, K = 0 represents the “NMT

BASE” model, which can achieve 30.57 BLEU points. Our model improves the baseline

by +0.94 BLEU point when K = 1 while +1.33 BLEU points when K = 3. However, the

translation performance declines (only 30.98 BLEU points) when considering more history

sentences (K = 5). In general, our model with K = 3 can achieve the best translation

performance, and we finally choose K = 3 in our main experiments (in Section 3.4.3).

3.5.3 Case Study

As shown in Table 3.7, we also list two examples (selected from test sets) to explain how

our approach alleviates translation problems.

The translation of the word “腐官” (corrupt officials) suffers from an ambiguity prob-
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I/O Sentences

History 这不等于明着提前告诉贪贪贪官官官们赶紧转移罪证吗 ?

Input 能否遏制和震慑腐腐腐官官官 ?

Reference Can it inhibit and deter corrupt officials?

NMT BASE Can we contain and deter the enemy?

OUR Can it contain and deter the corrupt officials?

History 中中中国国国队队队经常是在形势大好的情况下不会踢球 , ...

Input 这确实是中中中国国国队队队不能 “善终 ”的一个原因。

Reference This is indeed a reason why the Chinese team could not have a
“good ending.”

NMT BASE This is indeed the reason why China can not be “hospice.”

OUR
This is indeed one of the reasons why the Chinese team can not
have a “good ending.”

Table 3.7: Example translations. We italicize some mistranslated errors and highlight the correct
ones in bold.

lem. Its word embedding vector encodes more than one notion of similarity. The intra-

sentence context is insufficient to predict the correct translation. Thus, the word “腐官” is

mistranslated as “enemy” by the baseline system. With the help of the similar word “贪官”

in the previous sentence, our approach successfully correct this mistake. This demonstrates

that cross-sentence context indeed helps resolve certain ambiguities.

The phrase “中国队” (the Chinese team) has already arisen in previous sentence, and

it is translated into the correct English phrase. However, when the phrase appears again in

the current source sentence, it is mistranslated as “China” by the baseline system with a

local intra-sentence context. By considering global context, our model successfully fixes

this inconsistency error.

3.6 Comparison with Related Work

In this section, we conduct experiments to compare our approach with other DNMT models

(i.e.,Multi-Encoder and Cache Memory) as discussed in Section 3.3.
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3.6.1 Data

We carried out experiments on Chinese–English translation tasks on multiple domains, each

of which differs from the others in terms of topic, genre and style.

LDC The training corpus is the same as that used in the main experiment described in

Section 3.4.1. Most sentences in this corpus come from the news domain. They are formal

articles with syntactic structures such as complicated conjoined phrases, which make textual

translation very difficult. We choose the NIST 2002 (MT02) dataset as our tuning set, and

the NIST 2003-2008 (MT03-MT08) datasets as test sets.

Subtitle The subtitles are extracted from TV episodes, which are usually simple and

short.14 Most of the translations of subtitles do not preserve the syntactic structures of

their original sentences at all. We randomly select two episodes as the tuning set, and as

other two episodes as the test set.

TED The corpora are from the MT track on TED Talks of IWSLT2015 (Cettolo et al.

2012).15 Koehn and Knowles (2017) point out that NMT systems have a steeper learning

curve with respect to the amount of training data, resulting in worse quality in low-resource

settings. The TED talks are difficult to translate given the variety of topics in quite small-

scale training data. We choose the “dev2010” dataset as the tuning set, and the combination

of “tst2010-2013” datasets as the test set.

We pre-process the data using the same methods as in Section 3.4.1. The statistics

of the corpora are listed in Table 3.8. As can be seen, the average lengths of the source

sentences in LDC, TVsub, and TED corpora are 22.3, 5.6, and 19.5 words, respectively.

We again used case-insensitive BLEU score (Papineni et al. 2002) as our evaluation metric,

and sign-test (Collins et al. 2005) for calculating statistical significance.
14Available at: https://github.com/longyuewangdcu/tvsub.
15Available at: https://wit3.fbk.eu/mt.php?release=2015-01.
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Corpus Set |S|
|W | |V | |L|

Zh En Zh En Zh En

LDC
Train 1.25M 27.93M 34.51M 223.25K 114.83K 22.29 27.54

Tune 1.08K 29.90K 34.79K 5.64K 1.97K 27.61 32.12

Test 3.02K 70.66K 88.43K 12.40K 8.61K 23.40 29.28

TVsub
Train 2.15M 12.10M 16.60M 151.00K 90.80K 5.63 7.71

Tune 1.09K 6.67K 9.25K 1.74K 1.35K 6.14 8.52

Test 1.15K 6.71K 9.49K 1.79K 1.39K 5.82 8.23

TED
Train 0.21M 4.1M 4.4M 85.66K 54.24K 19.52 20.95

Tune 0.89K 21.3K 17.5K 3.87K 4.33K 23.93 17.86

Test 5.5K 104.1K 92.2K 10.83K 13.36K 18.93 16.76

Table 3.8: Number of sentences (|S|), words (|W |), vocabulary (|V |), and average sentence length
(|L|) comprising the training, tuning and test corpora.

3.6.2 Building the Models

For fair comparison, we re-implemented three models (i.e.,Our best model, Multi-Encoder

and Cache Memory) based on our own attention-based NMT system,16 which incorporates

dropout (Hinton et al. 2012) on the output layer and improves the attention model by feeding

the most recently generated word.

For training the baseline model, we limited the source and target vocabularies to the

most frequent 35K words in Chinese and English, and employ an unknown replacement

post-processing technique (Jean et al. 2014, Luong et al. 2015b). We trained each model

with sentences of length up to 80 words in the training data. We shuffled mini-batches as

we proceed and the mini-batch size is 80. The word-embedding dimension is 620 and the

hidden layer dimension is 1000. We trained for 20 epochs using (Zeiler 2012), and selected

the model that yields the best performance on the validation set.

For our DNMT models, we used the same setting as baseline if applicable. The parame-

ters of our model that are related to the standard encoder and decoder were initialized by the

baseline model and were fixed in the following step. We further trained the new parameters
16Code repository: https://github.com/tuzhaopeng/nmt.
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related to the cache for another 5 epochs. Again, the model that performs best on the tuning

set was selected as the final model.

3.6.3 Results

Table 3.9 shows the translation performance on multiple domains with different textual

styles. As seen, all DNMT models outperform the baseline system (i.e., BASE) in all cases,

demonstrating the effectiveness of incorporating global context into NMT in different ways.

First of all, our proposed best model (i.e., OURS) consistently outperforms the baseline

system in all domains, which confirms the robustness of our approach. Especially in the

news domain (i.e., LDC), OURS achieves 36.52 BLEU points, and it performs best com-

pared with other two comparable DNMT models (i.e., CACHE and MULTI). CACHE and

MULTI can also achieve +1.09 and +0.72 BLEU point improvements than the baseline,

respectively.

Surprisingly, the CACHE approach performs the best in dialogue and speech domains

(i.e., TVsub and TED). We attribute the superior translation quality of this approach in the

dialogue domain to the exploitation of target-side information, since most of the translations

of dialogues in this domain do not preserve the syntactic structure of their original sentences

at all. They are completely paraphrased in the target language and seem very hard to be im-

proved with only source-side cross-sentence contexts. On the other hand, MULTI achieves

marginal or no improvement in the dialogue domain.

Table 3.10 shows the model complexity. The CACHE model only introduces 4M ad-

ditional parameters, which is small compared to both the numbers of parameters in the

existing model (i.e., 84.2M) and OURS (i.e., 18.8M) and MULTI (i.e., 20M). CACHE is

more efficient in training, which benefits from training cache-related parameters only. To

minimize a waste in computation, the other models sort 20 mini-batches by their lengths

before parameter updating (Bahdanau et al. 2015), while the CACHE model cannot enjoy

this benefit since it depends on the hidden states of preceding sentences. Concerning de-

coding with additional attention models, OURS and CACHE approach do not slow down the
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System
LDC TVsub TED Average

BLEU 4 BLEU 4 BLEU 4 BLEU 4

BASE 35.39 – 32.92 – 11.69 – 26.70 –

MULTI 36.11* +0.72 33.00 +0.08 12.46* +0.77 27.19 +0.49

CACHE 36.48* +1.09 34.30* +1.38 12.68* +0.99 27.82 +1.12

OURS 36.52* +1.13 33.34* +0.42 12.43* +0.74 27.43 +0.73

Table 3.9: Translation qualities on multiple domains. “*” indicates statistically significant differ-
ence (P < 0.01) from “BASE” , and “4” denotes relative improvement over “BASE”.

System Parameter
Speed

Train Test

BASE 84.2M 1469.1 21.1

MULTI 104.2M 933.8 19.4

CACHE 88.2M 1163.9 21.1

OURS 103.0M 300.2 20.8

Table 3.10: Model complexity. “Speed” is measured in words/second for both training and testing.
We employ a beam search with beam being 10 for testing.

decoding speed, while MULTI decreases decoding speed by 8.1%.

3.7 Summary

In this section, we proposed a novel approach to DNMT with complementary strategies to

integrating cross-sentence context: 1) a warm-start of the encoder and decoder with global

context representation, and 2) cross-sentence context serves as an auxiliary information

source for updating decoder states, in which an introduced context gate plays an important

role. We quantitatively and qualitatively demonstrated that the presented model signifi-

cantly outperforms a strong attention-based NMT baseline system. We release the code for

these experiments at https://www.github.com/tuzhaopeng/LC-NMT. We also

systematically compare our model with two other DNMT models.
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Our models benefit from larger contexts, and would be possibly further enhanced by

other document-level information, such as discourse relations. We propose to study such

models for full-length documents with more linguistic features in future work. We re-

lease the code for these experiments at: https://github.com/longyuewangdcu/

Cross-Sentence-NMT.

In our future work, we expect several developments that will shed more light on uti-

lizing long-range contexts, i.e., designing novel architectures, such as employing discourse

relations instead of directly using decoder states as cache values.

In the next chapter, we will improve cohesion in MT by exploring a specific discourse

phenomena, dropped pronoun.
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Chapter 4

Neural Dropped Pronoun Recovery

and Its Application to Statistical

Machine Translation

Pro-Drop is a discourse phenomenon, where certain classes of pronouns can be omitted

when they are pragmatically or grammatically inferable from the context. However, it is

challenging for MT models to explicitly realize DPs in the source language to the target

language. In this chapter, we investigate the impact of DP recovery on translation quality

especially in terms of cohesion. Aiming at SMT, we propose a NN-based DP recovery

approach to alleviate the problems caused by missing pronouns. This chapter directly ad-

dresses our second research question as described below:

RQ 2 How do dropped pronouns affect the performance of machine transla-

tion? Is it possible to build a robust drop pronoun recovery model for statistical

machine translation?

This chapter is organized as follows. Without loss of generality, we first introduce the

motivation and background on DP translation in Section 4.1 and Section 4.2, respectively.

In Section 4.3, we describe our proposed approach of recovering DPs to boost SMT. To
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verifying the proposed approach, we conduct experiments on Chinese–English data in Sec-

tion 4.4. Quantitative and qualitative analyses are presented in Section 4.5. To demonstrate

the generality of our model, we adapt our approach to Japanese–English translation in Sec-

tion 4.6, which is followed by a summary of the chapter in Section 4.7.

4.1 Introduction to Dropped Pronoun Translation

In pro-drop languages such as Chinese, pronouns can be omitted to make the sentence

compact yet comprehensible when the identity of the pronouns can be inferred from the

context. These omissions are not problem for humans since we can easily recall the missing

pronouns from the context, but this poses difficulties for MT when translating from pro-

drop languages to non-pro-drop languages (e.g., English), since translation of such missing

pronouns cannot normally be reproduced.

As pronouns are crucial for the syntactic structures of sentences and discourse informa-

tion such as anaphora, pro-drop may not only result in missing translations of corresponding

elements, but also harm the syntactic structure and even the semantic meaning of the out-

put. As shown in Table 4.1, the SMT model fails to be aware of implicit pronouns (i.e., “你

们 (you)” and “它 (it)”) in inputs, which resulting in poor translation outputs. Therefore,

recovering DP is very significant to MT.1

In response to this problem, some researchers have investigated approaches for DP

translation (Chung and Gildea 2010, Le Nagard and Koehn 2010, Taira et al. 2012, Xiang

et al. 2013). Taira et al. (2012) explore simple rule-based and manual methods to add DP on

the source side for Japanese–English translation. However, the BLEU scores of both meth-

ods are nearly identical, which indicates that only considering the single source-side inputs

and forced insertion of pronouns may be less principled than tackling the problem head on

by integrating them into the SMT system itself. Le Nagard and Koehn (2010) present a

method to aid English pronoun translation into French by integrating an additional coref-
1Note that, zero/null anaphora resolution (Welo 2013) is to determine the antecedent of an implicit anaphor,

which contains three steps: zero pronoun detection, anaphoricity determination and co-reference link. Whereas,
DP recovery is to detect the zero pronoun position and then generate corresponding pronoun surface.
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I/O Sentences

Input (你你你们们们)要不要去看电影好啊

Reference Do you want to go to the cinema ? okay !

Output you want to see a movie . okay . yeah .

Input (它它它)根本没那么严重

Reference it is not that bad .

Output wasn ’t that bad .

Table 4.1: Examples of translating DPs where words in brackets are invisible in SMT decoding.

erence system. Unfortunately, the results are not convincing due to the poor performance

of the coreference system in open domain (Pradhan et al. 2012). Chung and Gildea (2010)

systematically examine the effects of recovering empty categories2 in different recovery

models: pattern based, conditional random fields based and parsing based models. Results

show that this pipeline method can really improve the translation quality even though the

automatic prediction of empty categories is not highly accurate.

We propose a novel and robust approach to recall missing pronouns and integrate them

with SMT. The first challenge is that the data for training DP recovery models are very

scarce. Previous work either applies manual annotation (Yang et al. 2015) or uses existing

but small-scale resources such as the Penn Treebank (Chung and Gildea 2010, Xiang et al.

2013). However, it is difficult to train a robust DP recovery model using such small data

for open-domain translation task. In contrast, we explore an unsupervised approach to

automatically build a large-scale DP training corpus. Inspired by an initial idea that two

languages are more informative than one (Dagan et al. 1991, Burkett et al. 2010), we found

that parallel corpus can be used to map explicit pronouns in the target side (i.e., non-pro-

drop language) to the implicit pronouns in the source side (i.e., pro-drop language) with

the help of alignment information. To this end, we propose a simple but effective method:

bidirectional search algorithm with LM scoring.
2This task aims to recover long-distance dependencies, discontinuous constituents and certain dropped ele-

ments (Yang and Xue 2010, Cai et al. 2011, Xue and Yang 2013). It includes trace markers, dropped pronoun,
big PRO etc, while we mainly focus on dropped pronoun in our study.
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After building the DP training data, we can apply various supervised approaches to build

DP recovery models. We divide the task into two phases: DP Detection (from which posi-

tion a pronoun is dropped), and DP Prediction (which pronoun surface/word is dropped).

Due to the powerful capacity of NN, we model DP detection as sequential labelling task

using RNN, and DP prediction as classification task using MLP.

Finally, we improve the translation quality by integrating the recalled DPs into SMT

system in different strategies. More specifically, we extract an additional phrase table from

the DP-inserted parallel corpus to produce a “pronoun-complete” translation model. In ad-

dition, we pre-process the input sentences by recalling missing pronouns via the DP gener-

ator. This makes the input sentences more consistent with the additional pronoun-complete

phrase table. To alleviate the error propagation of DP generator, we feed the translation

system N -best DP candidates via confusion network decoding (Rosti et al. 2007).

To validate the effect of the proposed approach, we carried out experiments on Chinese–

English translation task. Experimental results on a large-scale subtitle corpus show that our

approach significantly improves the baseline system by up to +1.58 BLEU points. To verify

the robustness, we also adapt our approach to Japanese–English translation task.

4.2 Dropped Pronoun

Among major languages, for example, Chinese and Japanese are pro-drop languages (Huang

1984, Nakamura 1987), while English is not (Haspelmath 2001). In this section, we first

review the characteristics of pronouns in English, Chinese and Japanese, respectively. We

then discuss the DP phenomena in Chinese–English and Japanese–English language pairs

from a bilingual point of view.

4.2.1 Pronouns in Different Languages

In English, Quirk et al. (1985) classifies the principal pronouns into three groups: personal

pronouns, possessive pronouns and reflexive pronouns, defining them as central pronouns.
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Category Subject Object Possessive
Adjective Possessive Reflexive

1st SG I me my mine myself

2nd SG you you your yours yourself

3rd SGM he him his his himself

3rd SGF she her her hers herself

3rd SGN it it its its itself

1st PL we us our ours ourselves

2nd PL you you your yours yourselves

3rd PL they them their theirs themselves

Table 4.2: Central pronouns in English. Abbreviations of categories: Person Type = {1st, 2nd, 3rd},
Number = {SG (singular), PL (plural)}, Gender = {M (male), F (female), N (neutral)}.

As shown in Table 4.2, all of the central pronouns have diverse forms to demonstrate or

indicate different person, number, gender and function. For example, the pronoun “we”

represents the first person in plural form and functions as subject in a sentence, while the

pronoun “him” indicates the masculine third person in singular form and functions as a

object of a verb.

Generally, Chinese pronouns correspond to the personal pronouns in English, and the

Chinese pronominal system is relatively simple as there is no inflection, conjugation, or case

makers (Li and Thompson 1989). Thus, there is no surface difference between subjective

and objective pronouns, which are called basic pronouns. Besides, possessive and reflexive

pronouns can be generated by adding some particle or modifier (e.g., “的” and “们”) based

on the basic pronouns.

As shown in Table 4.3, the Chinese pronouns are not strictly consistent to the English

pronouns. In other words, one Chinese pronoun can be mapped to several English pronouns

(i.e., “one-to-many” mapping). For instance, the Chinese pronoun “我” can be translated

into either the subjective personal pronoun “I” or the objective personal pronoun “me”,

according to different contexts. Furthermore, there are also some “many-to-one” cases. For

example, the pronouns “他们”, “她们”, “它们” can be translated into the same English
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Category Subject/Object Possessive (+ particle
“的的的”)

Reflexive （（（+ word “自自自
己己己”）））

1st SG 我 (I/me) 我的 (my/mine) 我自己 (myself )

2nd SG 你 (you) 你的 (your/yours) 你自己 (yourself )

3rd SGM 他 (he/him) 他的 (his) 他自己 (himself )

3rd SGF 她 (she/her) 她的 (her/hers) 她自己 (herself )

3rd SGN 它 (it) 它的 (its) 它自己 (itself )

1st PL 我们 (we/us) 我们的 (our/ours) 我们自己 (ourselves)

2nd PL 你们 (you) 你们的 (your/yours) 你们自己 (yourselves)

3rd PLM 他们 (they/them) 他们的 (their/theirs) 他们自己 (themselves)

3rd PLF 她们 (they/them) 她们的 (their/theirs) 她们自己 (themselves)

3rd PLN 它们 (they/them) 它们的 (their/theirs) 它们自己 (themselves)

Table 4.3: Chinese pronouns and correspondences in English. Abbreviations of categories: Person
Type = {1st, 2nd, 3rd}, Number = {SG (singular), PL (plural)}, Gender = {M (male), F (female), N
(neutral)}.

pronoun “they”, because the Chinese pronominal system considers gender for third person

plural pronouns while English does not. “你们/你 - you” is another many-to-one example,

because the English pronominal system does not differentiate between the singular and

plural forms for second person pronoun while the Chinese system does.

Similar to Chinese, the Japanese pronouns can be altered to possessive and reflexive

through adding the particle (e.g., “の”) or modifier (e.g., “自分”) to the basic pronouns,

respectively. Besides, the same form of pronouns in Japanese can be used to function as

subject or object with different particles. For example, the particle “は” comes after the

subjective pronouns, while the particle “を” occurs after the objective pronouns.

In Table 4.4, we only list the most commonly used forms of subjective and objective

pronouns, because possessive and reflexive pronouns can be generated by adding corre-

sponding particles. Different from English and Chinese, Japanese has a large number of

pronoun variations, which are borrowed in archaism. The Japanese pronominal system

considers more factors such as gender, age, and relative social status of the speaker and

audience. For instance, the first person singular pronoun “私” is used in formal situations,
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Category Subject/Object

1st SG 私,我,俺,僕,儂,家, etc. (I/me)

2nd SG お前,おまえ,なん,君,貴方,あなた,あんた,貴様, etc. (you)

3rd SGM そいつ,あいつ,あの人,あの方,彼, etc. (he/him)

3rd SGF そいつ,あいつ,あの人,あの方,彼女, etc. (she/her)

3rd SGN そいつ. (it)

1st PL 我々,我等, etc. (we/us)

2nd PL お前,おまえ,なん,君,貴方,あなた,あんた,貴様, etc. (you)

3rd PL 彼等 (they/them)

Table 4.4: Commonly-used Japanese pronouns and correspondences in English. Abbreviations of
categories: Person Type = {1st, 2nd, 3rd}, Number = {SG (singular), PL (plural)}, Gender = {M
(male), F (female), N (neutral)}.

while “僕” and “俺” refer to male pronouns and are normally used in informal contexts.

Besides, “儂” is mostly used in old Japanese society or to indicate old male characters,

while “家” is frequently used by young girls.

4.2.2 Dropped Pronoun in Translation

When translating from pro-drop to non-pro-drop languages, pronouns are frequently dropped

on the source side but should be retained on the target side. Figure 4.1 illustrates the DP phe-

nomenon in between pro-drop and non-pro-drop languages. As shown in Chinese–English

sentence pairs (i.e.,Sentence 1–2), the subject pronouns “你 (you)”, “我 (I)” and the object

pronouns “它 (it)”, “你 (you)” are all omitted on the Chinese side. In Japanese–English ex-

amples (i.e.,Sentences 3–4), the subject pronouns “あなた (you)”, “私 (I)” and the object

pronouns “それ (it)” with their corresponding particles (e.g., “を”, “は”) are also omitted

on the Japanese side.

We validate this finding by analyzing large Chinese–English parallel corpus, which

consist of sentence pairs extracted from movie and TV episode subtitles. As shown in

Figure 4.2, in around one million Chinese–English sentence pairs, there are 6.5 million

Chinese pronouns while there are 9.4 million English pronouns, which shows that more
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Figure 4.1: Examples of dropped pronouns in Chinese–English (i.e.,Sentence 1–2) and Japanese–
English (i.e.,Sentence 3–4) parallel corpora. The pronouns in the brackets are omitted.

than 2.9 million Chinese pronouns are relatively omitted.

Besides, the extent of pro-drop in different domains or genres are different (Yang et al.

2015). We analyzed two large Chinese–English corpora in newswire and dialogue domains,

respectively.3 As shown in Table 4.5, around 26.55% of English pronouns are dropped in

the dialogue domain, while only 7.35% of pronouns are dropped in the newswire domain. It

shows that the pro-drop phenomenon is more prevalent in informal genres such as dialogues

than formal genres. And the most frequently DPs in newswire are the dummy pronoun “它

(it)” (Baran et al. 2012), which can be recovered by baseline MT model and may not be

crucial to translation performance in terms of BLEU score. This high proportion within

informal genres shows the importance of addressing the challenge of translation of dropped

pronouns, thus we verify our approaches with respect to the dialogue domain.
3The Dialogue corpus consists of subtitles extracted from movie subtitle websites; The Newswire corpus is

available at China Workshop on Machine Translation (CWMT).
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Figure 4.2: Statistics of dropped pronouns in Chinese–English (left) and Japanese–English (right)
parallel corpora in movie subtitle domain.

Genres # Sentences # Chinese Pronouns # English Pronouns # DPs

Dialogue 2.15M 1.66M 2.26M 26.55%

Newswire 3.29M 2.27M 2.45M 7.35%

Table 4.5: Statistics of pronouns in different genres.

4.3 Dropped Pronoun Generation and Translation

The framework of our proposed approach is shown in Figure 4.3, which contains three main

components: DP training data annotation, DP generation, and SMT integration. Given a

parallel corpus, we first automatically annotate with DPs the source side by mapping aligned

pronouns from the target side. With the auto-annotated DP training corpus, we then build a

model to recover DPs for source side sentences. Finally, we integrate the DP generator into

SMT with different strategies. In the following sub-sections, we introduce each component

in detail.

4.3.1 Dropped Pronoun Training Corpus Construction

Given a parallel corpus, we employ an unsupervised word alignment method (Och and

Ney 2003) to produce word alignment matrix for each sentence pair. From observing the

alignment matrix, as shown in Figure 4.4, we found that there exists a diagonal line based on
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Figure 4.3: Architecture of our proposed approach (taking Chinese-to-English translation for exam-
ple).

aligned blocks and it is possible to predict Dropped Pronoun Position (DPP) on the source

side according to the heuristic rule.

Figure 4.4: Example of DP annotation using word alignment matrix. Blue blocks represent already
aligned words between source side and target side, while Red block represents predicted alignment.

Accordingly, we propose a bidirectional search algorithm as shown in Algorithm 1.

Given the alignment matrix Matrix and the misaligned pronoun position Misalign, the al-

gorithm searches from Misalign to the beginning and the end of the target sentence, respec-

tively. If one word in the target language is aligned with one word in the source language,

we call them aligned words (the value is set as 1), otherwise they are considered to be mis-

aligned words (the value is set as 0). The algorithm tries to find the nearest preceding and
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following aligned words around Misalign, and then to project them to the DPPs (start or

end) on the source side.

Algorithm 1: Bidirectional search algorithm in MATLABTM

function [DP_start, DP_end] = Bi-Search(Matrix, Misalign)

row = sum(Matrix, 1);

row_true = find(row == 1);

left_side = row_true(row_true < Misalign);

DP_start = find(Matrix(:, left_side(end)) == 1);

right_side = row_true(row_true > Misalign);

DP_end = find(Matrix(:, right_side(1)) == 1);

end

We use the Chinese–English example (in Figure 4.4) to further illustrate how to annotate

the DP “我的” in Chinese sentence. We consider the alignments as a binary I×J matrix

with the cell block at position (i, j), to decide whether an alignment exists between a Chinese

word at position i and an English word at position j. For each pronoun on the English side

(i.e., “I”, “my”), we check whether it has an aligned pronoun on the Chinese side. Once

there is a pronoun such as “my” (i.e., i = 7) has no alignment, we hypothesize this English

pronoun possibly corresponds to a DP (marked as DPMY ). We then determine the possible

positions of DPMY on the Chinese side (an approximate area, i.e., red block) by considering

the preceding and following alignment blocks (i.e., “preparing-准备” (i = 4, j = 3) and

“life-一辈子” (i = 9, j = 5)) along the diagonal line. After that, there are still two possible

positions to insert DPMY (i.e., the two gaps before or after the Chinese word “了”). To

further determine the exact DPP, we generate possible candidate sentences by inserting the

Chinese translation of DPMY into all possible positions (i.e., “我已经准备我我我的的的了一辈

子了” and “我已经准备了我我我的的的一辈子了”). We employ an n-gram LM to score these

candidates and select the one with the lowest perplexity as the final result. Finally, a large

DP training corpus is automatically built by utilizing parallel data.

Note that, the Chinese equivalent of DPMY can be directly translated according to
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Table 4.3. Some English pronouns may correspond to more than one Chinese pronouns,

such as “they - 他们 / 她们 / 它们”. In this case, we consider all the possible Chinese

pronouns as the candidates. As the amount and type of DPs vary in different genres (as

shown in Table 4.5), we train the LM on a large monolingual data in newswire domain

(detailed in Section 4.4). In order to reduce the problem of incorrect DP insertion caused

by incorrect alignments, we use a large amount of additional parallel corpus to improve the

quality of word alignment.

4.3.2 Dropped Pronoun Generation

After building the DP training data, we can apply various supervised approaches to build

DP recovery models. In light of the recent success of applying deep neural network tech-

nologies in natural language modelling (Raymond and Riccardi 2007, Mesnil et al. 2013),

we propose a NN based DP generation approach in two phases: 1) we first employ an RNN

model to predict the DPP; and 2) then train a classifier with MLP to predict the Dropped

Pronoun Surface (DPS).

Dropped Pronoun Position Detection This task is to label each word if there is a pro-

noun dropped before this word, which can intuitively be regarded as a sequence labelling

problem. We expect the output to be a sequence of labels y(1:n) = (y(1), y(2), · · · , y(t), · · · ,

y(n)) given a sentence consisting of words w(1:n) = (w(1), w(2), · · · , w(t), · · · , w(n)),

where y(t) is the label of word w(t). In our task, there are binary labels L = {NA, DP}

(corresponding to non-pro-drop or pro-drop pronouns), thus y(t) ∈ L.

Given an input word w(t), we produce an embedding representation (Mikolov et al.

2013a) v(t) ∈ Rd where d is the dimension of the representation vectors. In order to capture

short-term temporal dependencies, we employ a context window to ordered concatenation

of word embedding vectors (Mesnil et al. 2013), as in Equation 4.1:

xd
(t) = v(t−k) ⊕ · · · ⊕ v(t) ⊕ · · · ⊕ v(t+k) (4.1)
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where k is the context window size.

We feed RNN unit with the concatenated word embeddings vector xd
(t) to learn the

dependency of sentences, which can be formulated as Equation 4.2:

h(t) = f(Uxd
(t) + Vh(t−1)) (4.2)

where f(x) is a sigmoid function at the hidden layer. U is the weight matrix between the

input and the hidden nodes, and V is the weight matrix between the context nodes and

the hidden nodes. At the output layer, a softmax function is adopted for labelling, as in

Equation 4.3:

y(t) = g(Wdh
(t)) (4.3)

where g(zm) = ezm∑
k e

zk
, and Wd is the output weight matrix.

Dropped Pronoun Surface Prediction Once the DP position is detected, the next step

is to determine the exact pronoun surface. Accordingly, we train an m-class classifier (i.e.,

m = 20 in our experiments), where each class refers to a distinct pronoun as described in

Section 4.2.1.

We employ a number of features based on previous work (Xiang et al. 2013, Yang

et al. 2015). As shown in Table 4.6, we extract lexical, contextual and syntax feature sets.

For lexical features (i.e., Row 1–4), we extract words, Part-Of-Speech (POS) tags and pro-

nouns around the DPP. About the larger-context feature set (i.e., Row 5–8), we consider

the pronouns and nouns in N preceding or following sentences. In order to model the syn-

tax features (i.e., Row 9–10), we retrive the syntax tree, and combined tags of the sub-tree

nodes from DPP / DPP−1 to the root. Note that we only extract the non-pro-drop pronouns

in Row 3–6. Each unique feature is treated as a word, and assigned a “word embedding”.

The embeddings of the features are then fed into an MLP. We fix the number of features

for the variable-length features, where missing ones are tagged as None. Accordingly, all

training instances share the same feature length. To pre-process the training data, we select
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all instances that contain DP from the original DP corpus. During testing time, DPP is

given by our DPP detection model.

# Feature Set Description

1

Lexical

M surrounding words around DPP

2 M surrounding POS tags around DPP

3 pronouns before DPP in the current sentence

4 pronouns after DPP in the current sentence

5

Larger Context

pronouns in preceding N sentences

6 pronouns in following N sentences

7 nouns in preceding N sentences

8 nouns in following N sentences

9
Syntax

path from DPP to the root in the syntax tree

10 path from DPP−1 to the root in the syntax tree

Table 4.6: List of features. DPP is the DP position, M is the word-level window size surrounding
DPP, and N as the sentence-level window size surrounding current sentence (i.e., the one contains
DPP).

We employ a feed-forward neural network with four layers. The input xp comprises the

embeddings of the set of all possible feature indicator names. The middle two layers a(1),

a(2) use Rectified Linear function R as the activation function, as in Equation 4.4 and 4.5:

a(1) = R(Wp
(1)xp + b(1)) (4.4)

a(2) = R(Wp
(2)a(1) + b(2)) (4.5)

where Wp
(1) and b(1) are the weights and bias connecting the first hidden layer to sec-

ond hidden layer; and so on. The last layer yp adopts the softmax function g(·), as in

Equation 4.6:

yp = g(Wp
(3)a(2)) (4.6)

87



4.3.3 Integration into Machine Translation

The integration into SMT is three folds: 1) using DP-inserted parallel corpus to train an

additional translation model; 2) generating DP for input sentences at decoding time; and 3)

generating N -best DP lattice for input at decoding time.

DP-Enhanced Translation Model We train an additional translation model (i.e.,TM+DP)

on the new parallel corpus, whose source side is inserted with DPs derived from the target

side via the alignment matrix (as described in Section 4.3.1). We hypothesize that inserting

DPs in training data can help to obtain a better alignment, which can benefit translation. The

whole translation process is based on the boosted translation model, i.e., with DPs inserted.

As far as translation model combination is concerned, we directly feed SMT the multiple

phrase tables. The gain from the additional translation model is mainly from complemen-

tary information about the recalled DPs from the annotated data.

DP-Generated Input Another integration strategy is to pre-process the input sentence by

inserting possible DPs with the generator (detailed in Section 4.3.2) so that the DP-inserted

input (i.e.,Input+DP) is translated. The recovered DPs would be explicitly translated into

the target language, so that the possibly missing pronouns in the translation might be re-

called. This makes the input sentences and DP-enhanced translation model more consistent

in terms of recalling DPs.

N-best DP-Generated Input The DP-Generated Input method suffers from a major draw-

back: it transfers the 1-best DP generation result to decoding, which potentially introduces

translation mistakes due to the propagation of generation errors. To alleviate this problem,

an obvious solution is to offer more DP alternatives. Related studies have shown that SMT

systems can benefit from widening the annotation pipeline (Liu et al. 2009, Tu et al. 2010,

2011, Liu et al. 2013). In the same direction, we propose to feed the decoder N -best DP

candidates, which allow the SMT to arbitrate between multiple ambiguous hypotheses from

upstream processing so that the best translation can be produced. The general method is to
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make the input with N -best DPs into a confusion network. In our experiment, we use the

Moses confusion network decoding (Rosti et al. 2007) and each prediction result in the

N-best list is assigned a weight of 1/N .

4.4 Experiments

In this section, we describe the data, model setup and results on experiments of our proposed

models.

4.4.1 Data

Experiments evaluate the method for translation of Chinese–English subtitles. About train-

ing data, more than one million sentence pairs were extracted from movie and TV episode

subtitles.4 We randomly select two complete television episodes as the tuning set, and

another two episodes as the test set. Note that all sentences maintain their contextual infor-

mation at the discourse level, which can be used for feature extraction in Section 4.3.2.

We pre-processed the extracted subtitles using our in-house scripts (Wang et al. 2016),

including sentence boundary detection and bilingual sentence alignment etc. In particular,

we employ Jieba toolkit5 for Chinese word segmentation, and Moses toolkit6 for English

word tokenization. The statistics of our data are listed in Table 4.7. As seen, sentences

in subtitle domain are generally short and the Chinese side, as expected, contains many

examples of DP.

To obtain high-quality DP annotations (detailed in Section 4.3.1) from parallel corpus,

we first enlarge the original parallel data with 9 million OpenSubtitles2016 (Lison and

Tiedemann 2016)7 for building word alignments. Secondly, we also use a large monolingual

corpus8 in formal genre (as discussed in 4.2.2) for LM scoring (detailed in Section 4.3.3).
4Subtitle websites: http://www.opensubtitles.org and http://weisheshou.com.
5Available at https://github.com/fxsjy/jieba.
6Available at http://www.statmt.org/moses.
7Available at http://opus.nlpl.eu/OpenSubtitles2016.php.
8Sogou Chinese News Collection Corpus: http://www.sogou.com/labs/dl/ca.html.
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Data |S|
|W | |P | |V | |L|

Zh En Zh En Zh En Zh En

Train 1.04M 6.15M 8.18M 0.60M 0.82M 0.10M 76.64K 5.91 7.87

Tune 1,086 6.66K 9.19K 0.76K 1.03K 1.74K 1.41K 6.13 8.46

Test 1,154 6.71K 9.43K 0.76K 0.96K 1.79K 1.42K 5.81 8.17

Table 4.7: Number of sentences (|S|), words (|W |), pronouns (|P |), vocabulary (|V |), and averaged
sentence length (|L|) comprising the training, tuning and test corpora. K stands for thousands and
M for millions.

Besides, in translation task, we only use the target side of original parallel subtitle corpus

for LM.

4.4.2 Model Setup

We carry out our experiments using the PBSMT model in Moses (Koehn et al. 2007). Fur-

thermore, we train 5-gram language models using the SRI Language Toolkit (Stolcke 2002).

We run GIZA++ (Och and Ney 2003) on parallel to obtain word alignment. As the DP an-

notation method relies on the quality of alignment, we employ “intersection” alignment

strategy, which has higher precision, but lower recall. We use Minimum Error Rate Train-

ing (MERT) (Och 2003) to optimize the feature weights.

The NN models are implemented using the neural network library, Theano (Bergstra

et al. 2010). We build DP position detector using RNN with the following settings: context

window = 5, the size of hidden layer = 200, embedding size = 200, iterations = 10. We

train the model in 10 epochs. The DP classifier is built on MLP with the following settings:

hidden layer size = 200, embedding size = 100, iterations = 200. Both models are trained

with randomly initialized embeddings.

4.4.3 Results

We report the results of DP annotation, DP generation and DP translation. For MT evalu-

ation, we used case-insensitive 4-gram BLEU (Papineni et al. 2002) and sign-test (Collins
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Data Detection Prediction

Tune 0.94 0.92

Test 0.95 0.92

Table 4.8: Evaluation of DP annotation method on tuning and test sets.

et al. 2005) to test for statistical significance. We also used micro-averaged F-score (Powers

2011) to measure DP generation quality.

Dropped Pronoun Annotation We follow the annotation method (detailed in Section

4.3.1) to automatically label DPs in training/tuning/test set. In order to check whether the

annotation method is reasonable, we also manually label DP on the source side of tun-

ing/test set according to the pronouns on the target side. To this end, the results are shown

in Table 4.8. The agreement between automatic labels and manual labels on DP detection

are 94% and 95% on tuning and test sets and 92% and 92% on DP prediction, respectively.

Since sentence structures in Chinese and English are mainly consistent (i.e., Subject-Verb-

Object (SVO)), our method can easily achieve above 90% accuracy indicate that it is trust-

worthy for further steps.

Dropped Pronoun Generation We then built the DP generator according to Section 4.3.2

and measure the accuracy (in terms of words) of the proposed models in two phases: 1) DPP

Detection shows the performance of our RNN based DP position detection. We consider

the tags for each word (i.e., pro-drop or non-pro-drop before the each word), without con-

sidering the exact pronoun word; 2) DPS Prediction shows the performance of the MLP

based classifier in determining the exact DP surface based on detection. Thus, we measure

accuracies of both detected positions and predicted pronouns.

Table 4.9 lists the results of the DP generator. The F-score of DP Detection achieves

88% and 86% on the Tuning and Test sets, respectively. However, it has lower F-scores

of 66% and 65% for the DP Prediction on the Tuning and Test sets, respectively. This

indicates that generating the exact DP words is really a difficult task. Considering that the
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Task Data Precision Recall F-score

DPP Detection
Tune 0.88 0.84 0.86

Test 0.88 0.87 0.88

DPS Prediction
Tune 0.67 0.63 0.65

Test 0.67 0.65 0.66

Table 4.9: Evaluation of DP generation approach on tuning and test sets.

DP generation is not highly accurate, we propose to recallN -best DP candidates to alleviate

error propagation problem.

Dropped Pronoun Translation According to Section 4.3.3, we integrate DP generation

into SMT and evaluate translation quality. Table 4.10 summaries the results of translation

performance with different integration strategies. Clearly all the proposed models (Rows

2-8) significantly outperform the baseline in all cases, although there are considerable dif-

ferences among different variations. “Baseline” (Row 1) uses the original input to feed the

SMT system. “+DP-ins. TM” (Row 2) denotes using an additional translation model trained

on the DP-inserted training corpus, while “+DP-gen. Input N” (Rows 4-8) denotes further

completing the input sentences with the N -best pronouns generated from the DP genera-

tor. “Oracle” (Rows 9-10) uses the input with manual (“Manual”) or automatic (“Auto”)

insertion of DPs by considering the target set. Taking “Auto Oracle” for example, we an-

notate the DPs via alignment information (supposing the reference is available) using the

technique described in Section 4.3.1.

The baseline system uses the parallel corpus and input sentences without inserting/gen-

erating DPs. It achieves 20.06 and 18.76 in BLEU score on the development and test data,

respectively. The BLEU scores are relatively low because 1) we have only one reference,

and 2) dialogue machine translation is still a challenge for the current SMT approaches. By

using DP-enhanced translation model, we improve the performance consistently on both

development (i.e., +0.26) and test data (i.e., +0.61). This indicates that the inserted DPs are

really helpful for SMT. Thus, the gain in the “+DP-ins TM” is mainly from the improved
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# Systems Dev Set Test set

1 Baseline 20.06 18.76

2 +DP-ins. TM 20.32 (+0.26) 19.37 (+0.61)

3 +DP-gen. Input

4 1-best 20.49 (+0.43) 19.50 (+0.74)

5 2-best 20.15 (+0.09) 18.89 (+0.13)

6 4-best 20.64 (+0.58) 19.68 (+0.92)

7 6-best 21.61 (+1.55) 20.34 (+1.58)

8 8-best 20.94 (+0.88) 19.83 (+1.07)

9 Manual Oracle 24.27 (+4.21) 22.98 (+4.22)

10 Auto Oracle 23.10 (+3.04) 21.93 (+3.17)

Table 4.10: Evaluation of DP translation quality.

alignment quality. We can further improve translation performance by completing the in-

put sentences with our DP generation model. We test N -best DP insertion to examine the

performance, where N ={1, 2, 4, 6, 8}. Working together with “DP-ins. TM”, 1-best gen-

erated input already achieves +0.43 and +0.74 BLEU score improvements on development

and test set, respectively. The consistency between the input sentences and the DP-inserted

parallel corpus contributes most to these further improvements. As N increases, the BLEU

score grows, peaking at 21.61 and 20.34 BLEU points when N=6. Thus, we achieve a final

improvement of +1.55 and +1.58 BLEU points on the development and test data, respec-

tively. However, when adding more DP candidates, the BLEU score decreases by 0.97 and

0.51. The reason for this may be that more DP candidates add more noise, which harms

the translation quality. The oracle system uses the input sentences with manually annotated

DPs rather than “DP-gen. Input”. The performance gap between “Oracle” and “+DP-gen.

Input” shows that there is still a large space for further improvement for the DP generation

model.
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4.5 Analysis

In this section, we first select sample sentences to further investigate the effect of DP gen-

eration on translation.

In the following sentences, we show a positive case (Case A), a negative case (Case

B) and a neutral case (Case C) of translation by using DP insertion (i.e. “+DP-gen. Input

1-best”) as well as N -best case (Case D) (i.e. “+DP-gen. Input N-best”). In Cases A-C, we

give (a) the original Chinese sentence and its translation generated by the baseline system,

(b) the DP-inserted Chinese sentence and its translation generated by “+DP-gen. Input 1-

best” system, and (c) the reference English sentence. In Case D, (a) is the original Chinese

sentence and its translation, and (b)-(d) are N -best DP-generated Chinese sentences and

their MT outputs, and (e) is the reference.

In Case A (in Figure 4.5), the output of (a) (generated by the original Chinese sentence)

is incomplete because it is missing a subject on the English side. However, by adding a

DP “你 (you)” via our DP generator, “Do you” is produced in the output of (b). It not only

gives a better translation than (a), but also makes the output a formal general question sen-

tence. We found that inserting DPs into interrogative sentences helps both reordering and

grammar. Generally, Case A shows that 1-best DP generation can really help translation.

Case A

(a) 想不想 听 一件 奇怪的 事 ？

Wanna hear something weird ?

(b)
〈
你你你
〉
想不想 听 一件 奇怪的 事 ？

Do 〈you〉 want to hear something weird ?

(c) Do you want to hear something weird ?

Figure 4.5: Positive effect of DP generation on translation.

In Case B in Figure 4.6, however, our DP generator mistakenly regards the simple

sentence as a compound sentence and inserts the wrong pronoun “我 (I)” in (b), which

causes an incorrect translation output (worse than (a)). This indicates that we need a highly

94



accurate source-sentence parse tree for more correct detection of the antecedent of DPs.

Besides, some errors are caused by pre-processing such as Chinese segmentation and part-

of-speech (POS) tagging. For instance, a well-tagged sentence should be “他/PN 好/VA

有/VE 魅力/NN (He has a good charm)”. However, in our experiments, the sentence is

incorrectly tagged as “他/PN 好/VA 有魅力/VE” and the DP generator inserts a DP “我

(I)” between “好” and “有魅力”. Therefore, our features should be extracted based on a

natural language processing toolkit with good performance.

Case B

(a) 你 肯定 看过 那 电视剧 。

You must have seen that show .

(b) 你 肯定
〈
我我我
〉
看过 那 电视剧 。

You are sure 〈I〉 ’ve seen that show .

(c) You must have seen that show .

Figure 4.6: Negative effect of DP generation on translation.

In Case C (in Figure 4.7), the translation results are the same in (a) and (b). Such

unchanged cases often occur in “fixed” linguistic chunks such as preposition phrases (“on

my way”), greetings (“see you later” , “thank you”) and interjections (“my God”). However,

the alignment of (b) is better than that of (a) in this case. It also shows that even though the

DP is inserted in a wrong place, it can still be reordered into the correct translation due to

the powerful target LM. This explains why end-to-end performance can be improved even

with a sub-optimal DP generator.

In Case D (in Figure 4.7), (a) is the original Chinese sentence and its translation; (b) is

the 1-best DP-generated Chinese sentence and its MT output; (c) stands for 2-best, 4-best

and 6-best DP-generated Chinese sentences and their MT outputs (which are all the same);

(d) is the 8-best DP-generated Chinese sentence and its MT output; (e) is the reference. The

N -best DP candidate list is “我 (I)”, “你 (You)”, “他 (He)”, “我们 (We)”, “他们 (They)”,

“你们 (You)”, “它 (It)” and “她 (She)”. In (b), when integrating an incorrect 1-best DP
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Case C

(a) 不要 告诉 瑞秋 ， 待会 见 。

Do not tell Rachel . see you later .

(b) 不要 告诉 瑞秋 ，
〈
你你你
〉
待会 见 。

Do not tell Rachel . see 〈you〉 later .

(c) Do not tell Rachel . see you later .

Figure 4.7: Neutral effect of DP generation on translation.

into MT, we obtain the wrong translation. When considering more DPs (2-/4-/6-best) in

(c), the SMT system generates a correct translation by weighting the DP candidates during

decoding. When further increasing N (8-best), (d) shows a wrong translation again due to

increased noise.

Case D

(a) 都 不会 想 我 吗 ？

Won ’t even miss me ?

(b)
〈
我我我
〉
都 不会 想 我 吗 ？

〈I〉 won ’t even miss me ?

(c)
〈
我我我/你你你 ...

〉
都 不会 想 我 吗 ？

〈You〉 won ’t even miss me ?

(d)
〈
我我我/你你你/他他他 ...

〉
都 不会 想 我 吗 ？

〈He〉 won ’t even miss me ?

(e) You won ’t even miss me ?

Figure 4.8: Effects of N -best DP generation on translation.

4.6 Adaption to Japanese–English Translation

In this section, we adapt our approach for Japanese–English translation task.
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# Systems Dev Set Test set

1 Baseline 18.24 16.54

2 +DP-ins. TM 18.58 (+0.34) 16.86 (+0.32)

3 +DP-gen. Input

4 1-best 18.54 (+0.30) 16.79 (+0.25)

5 2-best 18.79 (+0.55) 17.08 (+0.54)

6 4-best 19.32 (+1.08) 17.50 (+0.96)

7 6-best 19.11 (+0.87) 17.41 (+0.87)

8 8-best 18.84 (+0.60) 17.11 (+0.57)

9 Manual Oracle 20.78 (+2.54) 18.84 (+2.30)

10 Auto Oracle 20.06 (+1.82) 18.31 (+1.77)

Table 4.11: Evaluation of Japanese–English DP translation quality.

4.6.1 Experiment Setup

For Japanese–English training data, we extract 0.5 million sentence pairs from OpenSubti-

tles20169. The LM for DP annotation is trained on combined data10. All models are same

as ones used for Chinese–English translation task.

4.6.2 Results

The agreements between automatic labels and manual labels on DP prediction are around

80%, which relatively lower than Chinese–English corpus. The main reason is that Japanese

is a Subject-Object-Verb (SOV) language while English is in SVO order. It is difficult for

bidirectional search algorithm on distinct language pairs. About Japanese DP generation,

“DPP Detection” achieves 81% and 80% F1 scores on the Tuning and Test sets, respectively,

while “DPS Predition” just obtains 59% and 58%, respectively.

Table 4.11 shows the DP translation performance. As the training data are smaller, the

“Baseline” system achieves 18.24 and 16.54 in BLEU score on the tuning and test sets,
9We use part of OpenSubtitles2016 corpus, which is available at http://opus.lingfil.uu.se/

OpenSubtitles2016.php.
10We collect a number of monolingual corpora: KFTT (http://www.phontron.com/kftt), NTCIR

(http://warehouse.ntcir.nii.ac.jp/openaccess/rite/10RITE-Japanese-wiki.
html) and Wikipedia XML Corpus (http://www-connex.lip6.fr/˜denoyer/wikipediaXML).
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respectively. The best BLEU scores are 19.32 (+1.08) and 17.50 (+0.96) on tuning and test

set when N=4. The improvement is relatively lower because it is more difficult to recover

DPs in Japnese.

4.7 Summary

In this section, we have presented a novel approach to recall missing pronouns for machine

translation from a pro-drop language to a non-pro-drop language. We first propose an au-

tomatic approach to DP annotation, which utilizes alignment matrix from parallel data and

shows high consistency compared with the manual annotation method. We then applied

neural networks to DP detection and prediction tasks with rich features. About integra-

tion into translation, we employ confusion networks decoding with N -best DP prediction

results instead of ponderously inserting only 1-best DP into input sentences. Finally we

implemented above models into a well designed DP translation architecture.

Experiments on both Chinese–English and Japanese-English translation tasks show that

it is crucial to identify DPs to improve the overall translation performance. Our analysis

shows that insertion of DPs affects the translation to a large extent.

Our main findings in this section are fourfold:

• Bilingual information can help to build monolingual models without any manually

annotated training data for DP recovery task;

• Benefiting from representation learning, neural network-based models work well

without complex feature engineering work for DP recovery task;

• N -best DP integration works better than 1-best DP insertion;

• Our approach is robust and can be applied on pro-drop languages especially for Chi-

nese.
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Chapter 5

Dropped Pronoun Reconstruction for

Neural Machine Translation

As discussed in the last chapter, pro-drop leads to significant problems in conventional MT.

Previous research has investigated DP translation for SMT and obtained promising results

(Chung and Gildea 2010, Taira et al. 2012). Inspired by these previous successes, in this

chapter, we investigate DP translation for the state-of-the-art NMT. It is an early attempt

to learn to tackle DP translation for NMT models. This chapter directly answers our third

research question as described below:

RQ 3 Does neural machine translation still suffer from dropped pronoun

problems? If so, how should we embed DP information into neural network

models?

This chapter is organized as follows. We first introduce the motivation of DP transla-

tion on NMT in Section 5.1. In Section 5.2, we describe our novel reconstruction-based

approach to alleviating DP translation problems for NMT models. We conduct experiments

on Chinese–English dialogue translation and show the results in Section 5.3. We quanti-

tatively and qualitatively demonstrated that the presented model significantly outperforms

a strong NMT baseline system in Section 5.4. We demostrate the the reliability and ro-
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I/O Sentences

Input (它它它)根本没那么严重
Ref It is not that bad

SMT Wasn ’t that bad

NMT It ’s not that bad

Input 这块面包很美味 ! 你你你烤的 (它它它)吗 ?

Ref The bread is very tasty ! Did you bake it ?

SMT This bread , delicious ! Did you bake ?

NMT The bread is delicious ! Are you baked ?

Table 5.1: Examples of when our strong baseline NMT system fails to accurately translate DPs.
Words in brackets are DPs that are invisible in decoding.

bustness of our model compared to others, and adapt the approach to Japanese–English

translation task in Section 5.5, which is followed by the chapter summary in Section 5.6.

5.1 Why Dropped Pronoun Neural Translation?

As discussed in Section 4.1, pronouns are frequently omitted in pro-drop languages, gen-

erally leading to significant challenges with respect to the production of complete transla-

tions. Furthermore, this problem is especially severe in informal genres such as dialogues

and conversation, where pronouns are more frequently omitted to make utterances more

compact (Yang et al. 2015).

Researchers have investigated methods of alleviating the DP problem for conventional

SMT models showing promising results (Le Nagard and Koehn 2010, Xiang et al. 2013). In

addition to their papers, we proposed NN-based DP recovery model to boost SMT models

in Chapter 4. Modeling DP translation for the more advanced NMT models, however, has

received no attention, resulting in low performance in this respect even for state-of-the-art

approaches.

Due to the ability to capture semantic information with distributed representations, ide-

ally, the hidden states (either encoder-side or decoder-side) of NMT should embed the
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System Baseline Oracle 4

SMT 30.16 35.26 +5.10

NMT 31.80 36.73 +4.93

Table 5.2: Translation performance improvement (“4”) with manually annotated DPs (“Oracle”).
“Oracle” uses the input with manual annotation of DPs by considering the reference.

missing DP information by learning the alignments between bilingual pronouns from the

training corpus. In practice, however, NMT models only manage to successfully translate

some simple DPs, but still fail when translating anything more complex. As shown in Ta-

ble 5.1, the NMT model succeeds in translating the simple dummy pronoun (upper panel),

while it fails on a more complicated one (bottom panel); SMT fails on both cases. We also

conducted a preliminary experiment to exploit the upper bound and lower bound of perfor-

mance on DP translation. About “Oracle” (upper bound) setting, we manually annotated

DPs in input source sentences by considering the reference. For “Baseline” (lower bound)

setting, there is no pre-processing for input. We show empirical results in Table 5.2 with the

following two observations: 1) NMT indeed outperforms SMT when translating pro-drop

languages; and 2) the performance of the NMT model can increase further by improving

the translation of DPs. Finally, we narrow the gap between correct DP translation for NMT

models to improve translation quality for pro-drop languages with advanced models.

More specifically, we propose a novel reconstruction-based approach to alleviate DP

problems for NMT. Firstly, we explicitly and automatically annotate DPs for each source

sentence in the training corpus using alignment information from the parallel corpus. Ac-

cordingly, each training instance is represented as a triple (x, y, x̂), where x and y are

source and target sentences, and x̂ is the annotated source sentence. Next, we apply a stan-

dard encoder-decoder NMT model to translate x, and obtain two sequences of hidden states

from both the encoder and decoder. This is followed by introducing an additional recon-

structor (Tu et al. 2017b) to reconstruct the annotated source sentence x̂ with hidden states

from either the encoder or decoder, or both components. With auxiliary training objec-
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tives, in terms of reconstruction scores, the parameters associated with the NMT model are

guided to produce enhanced hidden representations that are encouraged as much as possible

to embed annotated DP information.

Reconstruction is a standard concept in auto-encoder models, that guide them towards

learning representations that capture the underlying explanatory factors for the observed

input (Bourlard and Kamp 1988, Vincent et al. 2010). An auto-encoder model consists of

an encoding function to compute a representation from an input, and a decoding function to

reconstruct the input from the representation. The parameters involved in the two functions

are trained to maximize the reconstruction score, which measures the similarity between the

original input and reconstructed input. Inspired by the concept of reconstruction, Tu et al.

(2017b) proposed guiding decoder hidden states to embed complete source information by

reconstructing the hidden states back to the original source sentence. Our approach differs

as follows: 1) we introduce not only a decoder-side reconstructor but also an encoder-side

reconstructor to learn enhanced hidden states of both the encoder and decoder; and 2) we

guide the hidden states to embed complete source information as well as the labelled DP

information.

Experiments on a large-scale Chinese–English corpus show that the proposed approach

significantly improves performance by addressing the DP translation problem. Further-

more, when reconstruction is applied only in training, it improves parameter training by

producing better hidden representations that embed the DP information. Results show im-

provement over a strong NMT baseline system of +1.35 BLEU points without any increase

in decoding speed. When additionally applying reconstruction during testing, we obtain a

further +1.06 BLEU point improvement with only a slight decrease in decoding speed of

approximately 18%.
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v1 v2 … vT

ŝ1 ŝ2 ŝ3 … ŝJ’

ĉ1 ĉ2 ĉ3 … ĉJ’
⨁
attention
…

…x̂1 x̂2 x̂3 x̂J0

Figure 5.1: Architecture of the reconstructor.

5.2 Reconstruction-based Neural Machine Translation

In this section, we discuss methods of extending NMT models with a reconstructor to

improve DP translation, which is inspired by “reconstruction”, a standard concept in auto-

encoder models (Bourlard and Kamp 1988, Vincent et al. 2010, Socher et al. 2011), and

while has successfully been applied to NMT models (Tu et al. 2017b) recently.

5.2.1 Reconstructor

The basic idea of our approach is to reconstruct the annotated source sentence from the

latent representations of the NMT model and use the reconstruction score to measure how

well the DPs can be recalled from the latent representations. With the reconstruction score

as an auxiliary training objective, we aim to encourage the latent representations to embed

DP information, and thus recall the DP translation with enhanced representations.

The reconstructor reads a sequence of hidden states and the annotated source sentence,

and outputs a reconstruction score. It employs an attention model (Bahdanau et al. 2015,

Luong et al. 2015a) to reconstruct the annotated source sentence x̂ = {x̂1, x̂2, . . . , x̂J ′}

word by word, which is conditioned on the input latent representations v = {v1,v2, . . . ,vT },

as shown in Figure (5.1). The reconstruction score is computed by Equation (5.1):

R(x̂|v) =

J ′∏
j=1

R(x̂j |x̂<j ,v) =

J ′∏
j=1

gr(x̂j−1, ŝj , ĉj) (5.1)
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encoder reconstructor

Did you bake it ?

decoder

� � � � �  ?

reconstructor

x

y

x̂

x̂

Figure 5.2: Architecture of reconstructor-augmented NMT. The two independent reconstructors re-
construct the annotated source sentence from hidden states in the encoder and decoder, respectively.

where ŝj is the hidden state in the reconstructor, and computed by Equation 5.2:

ŝj = fr(x̂j−1, ŝj−1, ĉj) (5.2)

Here gr(·) and fr(·) are respectively softmax and activation functions for the reconstruc-

tor. The context vector ĉj is computed as a weighted sum of hidden states v, as in Equa-

tion (5.3):

ĉj =
T∑
t=1

α̂j,t · vt (5.3)

where the weight α̂j,t is calculated by an additional attention model. The parameters related

to the attention model, gr(·), and fr(·), are independent of the standard NMT model. The

labeled source words x̂ share the same word embeddings with the NMT encoder.

5.2.2 Reconstructor Augmentation

We augment the standard encoder-decoder-based NMT model with the introduced recon-

structor, as shown in Figure 5.2. The standard encoder-decoder reads the source sentence x

and outputs its translation y along with the likelihood score. We introduce two independent

reconstructors with their own parameters, each of which reconstructs the annotated source

sentence x̂ from the encoder and decoder hidden states, respectively.
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Encoder-Reconstructor-Decoder When adding a reconstructor to the encoder side only,

we replace the standard encoder with an enhanced auto-encoder. In the case of auto-

encoding, the encoder hidden states are not only used to summarize the original source

sentence, but also to embed the recalled DP information from the annotated source sen-

tence.

Encoder-Decoder-Reconstructor This is analogous to the framework proposed by Tu

et al. (2017b), except that we reconstruct the annotated source sentence rather than the orig-

inal sentence itself. It encourages the decoder hidden states to embed complete information

from the source side, including the recalled DPs.

Combination As seen, reconstructors applied on different sides of the corpus may cap-

ture different patterns of DP information, and using them together can encourage both the

encoder and decoder to learn recalled DP information. Our approach is very much inspired

by recent success within question-answering, where a single information source is fed to

multiple memory layers so that new evidence is captured in each layer and combined into

subsequent layers (Sukhbaatar et al. 2015, Miller et al. 2016).

5.2.3 Learning and Inference

Learning We train both the encoder-decoder and the introduced reconstructors together

in a single end-to-end process. The two-reconstructor model (as shown in Figure 5.2) is

described below (the other two individual models correspond to each part). The training

objective can be revised as in Equation (5.4):

J(θ, γ, ψ) = arg max
θ,γ,ψ

N∑
n=1

{
logP (yn|xn; θ)︸ ︷︷ ︸

likelihood

+ λ logRenc(x̂
n|hn; θ, γ)︸ ︷︷ ︸

enc-rec

+ η logRdec(x̂
n|sn; θ, ψ)︸ ︷︷ ︸

dec-rec

} (5.4)
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where θ is the parameter matrix in the encoder-decoder, and γ and ψ are model parame-

ters related to the encoder-side reconstructor (“enc-dec”) and decoder-side reconstructor

(“dec-rec”), respectively. λ and η are hyper-parameters that balance the preference be-

tween likelihood and reconstruction scores; h and s are encoder and decoder hidden states.

The original training objective P (·) guides the standard NMT counterpart to provide bet-

ter translations. Furthermore, the auxiliary reconstruction objectives (Renc(·) and Rdec(·))

guide the related part of the parameter matrix θ to learn better latent representations, which

are used to reconstruct the annotated source sentence. The parameters of the model are

trained to maximize the likelihood and reconstruction scores of a set of training examples

{[xn,yn]}Nn=1.

Inference Once a model is trained, we can use a beam search to find a translation that

approximately maximizes the corresponding scores (e.g., likelihood and reconstruction

scores) in two strategies: 1) decoding with reconstruction, and 2) decoding without re-

construction. Note that, as the hidden states of the encoder are static, we only use the

decoder-side reconstructor at decoding time.

In testing, reconstruction can serve as a reranking technique to select a better translation

from the k-best candidates generated by the decoder. Each translation candidate is assigned

a likelihood score from the standard encoder-decoder, as well as reconstruction score(s)

from the newly added reconstructor(s). As shown in Figure 5.3, given an input sentence, a

two-phase scheme is used:

1. The standard encoder-decoder produces a set of translation candidates, each of which

is a triple consisting of a translation candidate, its corresponding decoder-side hidden

layers s, and its likelihood score P .

2. For each translation candidate, the reconstructor reads its corresponding hidden layer

on the target side and outputs an auxiliary reconstruction score R. Linear interpola-

tion of the likelihood P and reconstruction score R produces an overall score, which
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Figure 5.3: Illustration of decoding with reconstruction.

is used to select the final translation.1

When using reconstruction in testing, it requires external resource (i.e., monolingual

DP label tool) and more computations (i.e., calculation of reconstruction scores). To reduce

the dependency and cost, we can also perform decoding without the reconstructor. We

only employ a standard encoder-decoder model with better trained parameters so that the

parameters can produce enhanced latent representations that embed DP information. Such

information is invisible in the original input sentence but can be learned from the training

data with similar context.

DP Annotation and Generation Accordingly, there are two different methods to recover

DPs at training and testing phases, respectively. In the training phase when the target sen-

tence is available, we automatically annotate DPs for the source sentence using alignment

information. During the testing phase, since the target sentence is invisible, we employ an

external prediction model, which is trained on annotated source sentences in the training

corpus. The details are described in Section 5.3.2.
1The interpolation weight λ in testing is the same as in training.
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Data |S|
|W | |P | |V | |L|

Zh En Zh En Zh En Zh En

Train 2.15M 12.1M 16.6M 1.66M 2.26M 151K 90.8K 5.63 7.71

Tune 1.09K 6.67K 9.25K 0.76K 1.03K 1.74K 1.35K 6.14 8.52

Test 1.15K 6.71K 9.49K 0.77K 0.96K 1.79K 1.39K 5.82 8.23

Table 5.3: Number of sentences (|S|), words (|W |), pronouns (|P |), vocabulary (|V |), and averaged
sentence length (|L|) comprising the training, tuning and test corpora.

5.3 Experiments

In this section, we describe the data, model setup and results on the performance of our

proposed models.

5.3.1 Data

Experiments evaluate the method for translation of Chinese–English subtitles. We ex-

tract more than two million sentence pairs from the subtitles of television episodes.2 We

pre-processed the extracted data using our in-house scripts (Wang et al. 2016), including

sentence-boundary detection and bilingual sentence alignment. Finally, we obtained a high-

quality corpus which includes the discourse information.

Table 5.3 shows the statistics of the corpus. Within the subtitle corpus, sentences are

generally short and the Chinese side, as expected, contains many examples of DPs. We ran-

domly select two complete television episodes as the tuning set, and another two episodes

as the test set.3

5.3.2 DP Annotation and Generation

Similar to Chapter 4, we automatically annotate DPs for training and test data. In the train-

ing phase, where the target sentence is available, we annotate DPs for the source sentence

using alignment information. These annotated source sentences can be used to build a
2The data were crawled from the subtitle website http://www.zimuzu.tv.
3Our released corpus is available at https://github.com/longyuewangdcu/tvsub.
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Figure 5.4: Illustration of DP Annotation and Generation.

monolingual DP generator using NN, which is used to annotate test sentences since the tar-

get sentence is not available during the testing phase. The F-scores of the two approaches

on our data are 92.99% and 65.21%, respectively. After automatic annotation and gen-

eration, the number of pronouns on the Chinese side in training, tuning and test data are

2.09M, 0.98K, 0.96K, respectively, which is roughly consistent with pronoun frequency on

the English side.

As shown in Figure 5.4, the usage of the annotated source sentences is two-fold:

1. Baseline (+DPs): a stronger baseline system trained on the new parallel corpus (i.e.,

annotated source sentence, target sentence), which is evaluated on the new test sen-

tences annotated by the monolingual DP generator.

2. Our models: the proposed models use the hidden states to reconstruct the annotated

source sentences.

Note that for the source sentences that have no DPs, we use the original ones as annotated

source sentences; otherwise we use the DP-annotated sentences.
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5.3.3 Model Setup

The baseline is our re-implemented attention-based NMT system, which incorporates dropout

(Hinton et al. 2012) on the output layer and improves the attention model by feeding in the

most recently generated word. For training the baseline models, we limited the source and

target vocabularies to the most frequent 30K words in Chinese and English, covering ap-

proximately 97.2% and 99.3% of the words in the two languages, respectively. Each model

was trained on sentences of length up to a maximum of 20 words with early stopping. Mini-

batches were shuffled during processing with a mini-batch size of 80. The word-embedding

dimension was 620 and the hidden layer size was 1,000. We trained for 20 epochs using

Adadelta (Zeiler 2012), and selected the model that yielded the best performance on the

tuning set.

The proposed model was implemented on top of the baseline model with the same set-

tings where applicable. The hidden layer size in the reconstructor was 1,000. Following Tu

et al. (2017b), we initialized the parameters of our models (i.e., encoder and decoder, ex-

cept those related to reconstructors) with the baseline model. We further trained all the

parameters of our model for another 15 epochs.

5.3.4 Results

We investigate two baselines and three proposed variation models including:

Baseline: standard NMT model trained on original parallel corpus;

Baseline (+DP): standard NMT model trained on new parallel corpus whose source-

side sentences are annotated with DPs;

+ enc-rec: NMT augmented with encoder-side reconstructor trained on triple corpus;

+ dec-rec: NMT augmented with decoder-side reconstructor trained on triple corpus;

+ enc-rec + dec-rec: NMT augmented with two-side reconstructors trained on triple

corpus.
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Model #Params
Speed BLEU

Training Decoding Test 4
Baseline 86.7M 1.60K 2.61 31.80 – / –

Baseline (+DPs) 86.7M 1.59K 2.63 32.67† +0.87 / –

+ enc-rec +39.7M 0.71K 2.63 33.67†‡ +1.87 / +1.00

+ dec-rec +34.1M 0.84K 2.18 33.48†‡ +1.68 / +0.81

+ enc-rec + dec-rec +73.8M 0.57K 2.16 35.08†‡ +3.28 / +2.41

Table 5.4: Evaluation of translation performance for Chinese–English. Training speed is measured
in words/second and decoding speed is measured in sentences/second with beam size being 10. The
two numbers in the “4” column denote performance improvements over “Baseline” and “Baseline
(+DPs)”, respectively. “†” and “‡” indicate statistically significant difference (p < 0.01) from
“Baseline” and “Baseline (+DPs)”, respectively. All listed models except “Baseline” exploit the
annotated source sentences.

We used the case-insensitive 4-gram NIST BLEU metric (Papineni et al. 2002) for eval-

uation, and sign-test (Collins et al. 2005) to test for statistical significance. Table 5.4 shows

translation performance for Chinese–English in terms of BLEU score.

Baselines There are two baseline NMT models: one trained and evaluated on the original

parallel data without any explicitly annotated DPs (i.e., “Baseline”), and the other trained

and evaluated on the annotated data (i.e., “Baseline (+DPs)”). As can be seen from the

BLEU scores, the latter significantly outperforms the former, indicating that explicitly re-

calling translation of DPs helps produce better translations. Benefiting from the explicitly

annotated DPs, the stronger baseline system is able to improve performance over the stan-

dard baseline system built on the original data where the pronouns are missing. Note that,

the performance of our baseline is close to that of the state-of-the-art system, Nematus,

using the same training corpus.

Parameters In terms of additional parameters introduced by the reconstruction models,

both reconstructors introduce a large number of parameters. Beginning with the baseline

model’s 86.7M parameters, the encoder-side reconstructor adds 39.7M new parameters,

while the decoder-side reconstructor adds a further 34.1M new parameters. Furthermore,
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adding reconstructors to both sides leads to additional 73.8M parameters. More parameters

may capture more information, at the cost of added complexity in training.

Speed Although gains are made in terms of translation quality by introducing reconstruc-

tion, we need to consider the potential trade-off with respect to a possible increase in train-

ing and decoding time, due to the large number of newly introduced parameters resulting

from the incorporation of reconstructors into the NMT model. When running on a sin-

gle GPU device Tesla K80, the training speed of the baseline model is 1600 target words

per second, and this reduces to 570 words per second when reconstructors are added to

both sides. In terms of decoding time trade-off, our most complex model only increases

decoding speed by 18%. We attribute this to the fact that no beam search is required for

calculating reconstruction scores, which avoids the very costly data swap between GPU and

CPU memories.

Translation Quality Clearly the proposed approach significantly improves translation

quality in all cases, although there are still considerable differences among the proposed

variants. Introducing encoder-side and decoder-side reconstructors individually improves

translation performance over “Baseline (+DPs)” by +1.0 and +0.8 BLEU points, respec-

tively. Combining them together achieves the best performance overall, which is +2.4

BLEU points better than the strong baseline model. This confirms our assumption that

reconstructors applied to the source and target sides indeed capture different patterns for

translating DPs.

5.4 Analysis

We conducted extensive analysis on Chinese–English translation to better understand our

model in terms of the contributions of reconstruction from training and testing, the effect

of reconstructed input, the effect of DP labelling accuracy, and the ability to handle long

sentences.
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Model Test 4

Baseline 31.80 – / –

Baseline (+DPs) 32.67 +0.87 / –

+ enc-rec 33.67 +1.87 / +1.00

+ dec-rec 33.15 +1.35 / +0.48

+ enc-rec + dec-rec 34.02 +2.22 / +1.35

Table 5.5: Translation results when reconstruction is used in training only while not used in testing.

5.4.1 Contribution Analysis

As mentioned in Section 5.3.2, the effect of reconstruction is two-fold: 1) it improves the

training of baseline parameters, which leads to better hidden representations that embed

labelled DP information learned from the training data; and 2) it serves as a reranking met-

ric in testing to measure the quality of DP translation.4 Table 5.5 lists translation results

when the reconstruction model is used in training only. Results show that all variants out-

perform the baseline models, and applying reconstructors to both sides achieves the best

performance overall. This is encouraging, since no extra resources nor computation are

introduced to online decoding, making the approach highly practical, e.g., for translation in

industrial applications.

5.4.2 Effect of Reconstruction

Some researchers may argue that the proposed method acts much like dual learning (He

et al. 2016a) and reconstruction (Tu et al. 2017b), especially when sentences have no DPs,

which can benefit the overall translation, not just with respect to DPs only. To investigate to

what extent the improvements are indeed made by explicitly modeling DP translation, we

examine the performance of variants which reconstruct hidden states to the original input

sentence instead of the source sentence annotated with DPs, as shown in Table 5.6. Note

that the variant “+ dec-rec” in this setting is exactly the model proposed by Tu et al. (2017b).
4In testing, the encoder-side reconstructor reconstructs the same labelled source sentence with the same en-

coder hidden states, so all translation candidates share the same encoder-side reconstruction score. Accordingly,
in such cases, reconstruction cannot be used as a reranking metric.
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Model Test 4

Baseline 31.80 – / –

Baseline (+DPs) 32.67 +0.87 / –

+ enc-rec 33.21 +1.41 / +0.54

+ dec-rec 33.08 +1.28 / +0.41

+ enc-rec + dec-rec 33.25 +1.45 / +0.58

Table 5.6: Translation results when hidden states are reconstructed into the original source sentence
instead of the source sentence labelled with DPs.

As seen, although the variants significantly outperform the “Baseline” model without using

any DP information, the absolute improvements are still worse than our proposed model

that explicitly exploits DP information (i.e., 1.45 BLEU vs. 3.28 BLEU). This validates our

hypothesis that explicitly modeling DP translation contributes most to the improvement.

5.4.3 Effect of DP Generation Accuracy

For each sentence in testing, the DPs are labelled automatically by a DP generator model,

the accuracy of which is 65.21% measured in F-score. The annotation errors may propagate

to the NMT models, and have the potential to negatively affect translation performance. We

investigate this using manual annotation and automatic annotation, as shown in Table 5.7.

The analysis firstly shows that there still exists a significant gap in performance, and this

could be improved by improving the accuracy of DP generator. Secondly, our models show

a relatively smaller distance in performance from the oracle performance (“Manual”), indi-

cating that the proposed approach is more robust to annotation errors.

Model Automatic Manual 4

Baseline (+DPs) 32.67 36.73 +4.06

+ enc-rec 33.67 37.58 +3.91

+ dec-rec 33.48 37.23 +3.75

+ enc-rec + dec-rec 35.08 38.38 +3.30

Table 5.7: Translation performance gap (“4”) between manually (“Manual”) and automatically
(“Automatic”) annotated DPs for input sentences in testing.
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Figure 5.5: Performance of the generated translations with respect to the lengths of the source
sentences.

5.4.4 Length Analysis

Following Bahdanau et al. (2015), Tu et al. (2016) and Tu et al. (2017a), we group sen-

tences of similar lengths together and compute the BLEU score for each group, as shown in

Figure 5.5. The proposed models outperform the baseline for most span lengths, although

there are still some notable differences. The improvement achieved by the source-side re-

constructor is mainly for translation of short (< 5) sentences, while that of the target-side

reconstructor is mainly for translation of long (> 15) sentences. The reasons for this are

1) reconstruction can make encoder-side hidden states contain complete source information

including DP information and subsequently achieve good performance on short sentences,

while at the same time, they cannot guarantee that all the information will be transferred

to the decoder side (i.e., relatively bad performance on long sentences); 2) similar to the

findings of Tu et al. (2017b), the decoder-side reconstructor can make translation more ad-

equate, which significantly alleviates inadequate translation problems for longer sentences.

Combining them together can take advantage of both models, and thus the improvements

are more substantial for all span lengths.
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Model Error Sub. Obj. Dum. All

Baseline (+DP) Total 112 41 45 198

+ enc-rec
Fixed 51 22 28 101

New 25 8 4 37

+ dec-rec
Fixed 57 21 17 95

New 19 10 6 36

+ enc-rec + dec-rec
Fixed 50 34 33 117

New 11 14 7 32

Table 5.8: Translation error statistics on different types of pronouns: subject (“Sub.”), object
(“Obj.”) and dummy (“Dum.”) pronouns.

5.4.5 Error Analysis

We investigate to what extent DP-related errors are fixed by the proposed models. We ran-

domly select 500 sentences from the test set and count errors produced by the strong base-

line model (“Total”), and what proportion of these are fixed (“Fixed”) or newly introduced

(“New”) by our approach, as shown in Table 5.8. All the proposed models can fix different

kinds of DP problems, and the “+ enc + dec” variant achieves the best performance, which

is consistent with the translation results reported above. The “+ enc + dec” model fixed

59.1% of the DP-related errors, while only introducing 16.2% new errors. This confirms

that our improvement in terms of automatic metric scores indeed comes from alleviating

DP translation errors.

Among all types of pronouns, translation errors object and dummy pronouns,5 which

can be usually inferred with intra-sentence context, are easy to alleviate. In contrast, errors

related to the subject of a given sentence are more difficult, since annotating DPs in such

cases generally requires cross-sentence context. Table 5.9 shows three typical examples of

successfully fixed, failed to fix, and newly introduced subject-case pronouns.
5A dummy pronoun (i.e., “it”) is a pronoun used in syntax without explicit meaning. It is used in Germanic

languages such as English but not in Pro-drop languages such as Chinese.
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Fixed Error

Input 等我搬进来 (我我我)可以买一台泡泡机 吗 ?

Ref. When I move in, can I get a bubble machine?

NMT When I move in to buy a bubble machine.

Our When I move in, can I buy a bubble machine?

Non-Fixed Error

Input (他他他)是个训练营 ?

Ref. It is a camp?

NMT He was a camp?

Our He’s a camp?

Newly Introduced Error

Input (我我我)要把这戒指还给你
Ref. I need to give this ring back to you.

NMT I’m gonna give you the ring back.

Our To give it back to you.

Table 5.9: Example translations where subject-case pronouns in brackets are dropped in the original
input but labeled by the DP generator. We italicize some mis-translated errors and highlight the
correct ones in bold.

5.5 Comparison and Adaptation

In this section, we first conduct experiments to compare our approach with other models to

see whether they can also help DP translation or not. Secondly, we adapt our approach to

Japanese–English to show the robustness of our models.

5.5.1 Comparison to Other Work

Recently, it was shown that NMT can be improved by feeding auxiliary information sources

beyond the original input sentence. The additional sources can be in various forms, such

as parallel sentences in other languages (Dong et al. 2015, Zoph and Knight 2016a), cross-

sentence contexts (Jean et al. 2017, Tu et al. 2018), generation recommendations from other

translation models (He et al. 2016b, Wang et al. 2017, Gu et al. 2017, Wang et al. 2017),

or syntax information (Li et al. 2017, Zhou et al. 2017). In the same direction, we provide

117



complementary information in terms of source sentences labelled with DPs.

For the purpose of comparison, we reimplemented the multi-source model of Zoph and

Knight (2016a), which introduces an alternate encoder (shared parameters) and attention

model (independent parameters) that take annotated sentences as an additional input source.

Furthermore, some may argue that the improvements in BLEU are mainly due to the in-

crease in model parameters (e.g., +73.8M) or deeper layers (e.g., two reconstruction layers).

To answer these concerns, we compared the following two models:

• Multi-Layer (Wu et al. 2016): a system with a three-layer encoder and three-layer

decoder. The additional layers introduce 75.1M parameters, which is of a similar

scale to the proposed model (i.e., 73.8M).

• Baseline (+DPs) + Enlarged Hidden Layer: a system with the same setting as “Base-

line (+DPs)” except that layer size is 2100 instead of 1000. This variant introduces

86.6M parameters, which is even more than the most complicated variant of our pro-

posed models.

Table 5.10 shows the comparison results. This multi-source model significantly out-

performs our “Baseline” model without annotated DP information, but only marginally

outperforms the “Baseline (+DPs)” that uses annotated DPs. One possible reason is that

the two sources (i.e., original input and labelled input sentences) are too similar to one

another, making it difficult to distinguish them from annotated DPs. We found that the

multi-layer model significantly outperforms its single-layer counterpart “Baseline (+DPs)”,

while significantly underperforms our best model (i.e., 33.46 BLEU vs. 35.08 BLEU). The

“Baseline (+DPs)” system with the enlarged hidden layer, however, does not achieve any

improvement. This indicates that explicitly modeling DP translation is the key factor to the

performance improvements we have seen.
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Model #Params
Speed BLEU

Training Decoding Test 4

Baseline 86.7M 1.60K 2.61 31.80 – / –

Baseline (+DPs) 86.7M 1.59K 2.63 32.67† +0.87 / –

Multi-Source (Zoph and
Knight 2016a)

+20.7M 1.17K 1.27 32.81† +1.01 / +0.14

Multi-Layer (Wu et al.
2016)

+75.1M 0.61K 2.42 33.36† +1.56 / +0.69

Baseline (+DPs) +
Enlarged Hidden Layer

+86.6M 0.68K 2.51 32.00† +0.20 / -0.67

Table 5.10: Evaluation of translation performance for Chinese–English. Training speed is measured
in words/second and decoding speed is measured in sentences/second with beam size being 10. The
two numbers in the “4” column denote performance improvements over “Baseline” and “Baseline
(+DPs)”, respectively. “†” and “‡” indicate statistically significant difference (p < 0.01) from
“Baseline” and “Baseline (+DPs)”, respectively. All listed models except “Baseline” exploit the
annotated source sentences.

5.5.2 Japanese–English Translation

To validate the robustness of our approach on other pro-drop languages, we conducted ex-

periments on Opensubtitle20166 data for Japanese–English translation. We also randomly

select around 1000 tuning and testing sets, respectively.

We used the same settings as in our Chinese–English experiments, except that the vo-

cabulary size is 20,001. As shown in Table 5.11, our model also significantly improves

translation performance on the Japanese–English task, demonstrating the efficiency and po-

tential universality of the proposed approach.

Model Test 4

Baseline (+DPs) 20.55 –

+ enc-rec + dec-rec 21.84 + 1.29

Table 5.11: Evaluation of translation performance for Japanese–English.

6Available at: http://opus.nlpl.eu/OpenSubtitles2016.php

119

http://opus.nlpl.eu/OpenSubtitles2016.php


5.6 Summary

We have proposed an early attempt to model DP translation for NMT systems. Hidden states

are guided in both the encoder and decoder to embed the DP information by reconstructing

them back to the source sentence labelled with DPs. The effect of the reconstruction model

is two-fold: 1) it improves parameter training for producing better latent representations;

and 2) it measures the quality of DP translation, which is combined with likelihood to

better measure the overall quality of translations. We quantitatively and qualitatively show

that the proposed approach significantly improves translation performance across different

language pairs, and can be further improved by developing better DP labelling models. Our

main contributions can be summarized as follows:

1. We show that although NMT models advance SMT models on translating pro-drop

languages, there is still large room for improvement;

2. We introduce a reconstruction-based approach to improve dropped pronoun transla-

tion;

3. We release a large-scale bilingual dialogue corpus, which consists of 2.2M Chinese–

English sentence pairs.7

In future work we plan to validate the effectiveness of our approach on other text genres

with different prevalence of DPs. For example, in formal text genres (e.g., newswire), DPs

are not as common as in the informal text genres, and the most frequently dropped pronouns

in Chinese newswire is the third person singular “它” (“it”) (Baran et al. 2012), which may

not be crucial to translation performance.

In the next chapter, we will explore how to improve DP translation using cross-sentence

information in an end-to-end manner.

7Our released corpus is available at https://github.com/longyuewangdcu/tvsub.
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Chapter 6

An End-to-End Dropped Pronoun

Translation Model by Exploiting

Cross-Sentence Context

In Chapter 3, we demonstrated that the NMT model can improve translation quality by

considering document-level information. As discussed in Chapters 4 and 5, pro-drop is a

particular discourse phenomenon which needs cross-sentence context for DP recovery and

translation. In this chapter, we propose a novel approach to jointly learn to translate and

predict DPs with cross-sentence context. This chapter directly addresses our fourth research

question as described below:

RQ 4 Can we build a fully end-to-end neural model for dropped pronoun

translation? Is cross-sentence context useful for dropped pronoun prediction?

This chapter is organized as follows. We first introduce the motivation of end-to-end

modelling and cross-sentence context for DP translation in Section 6.1. In Section 6.2,

we describe our advanced approaches based on the original reconstruction-based NMT

model 5. We conduct experiments on the Chinese–English translation and provide the

promising results in Section 6.3. We also quantitatively and qualitatively demonstrate that
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the presented model significantly outperforms the best reconstruction-based NMT model in

Section 6.4, which is followed by the chapter summary in Section 6.5.

6.1 Why End-to-End Modelling and Cross-Sentence Context?

As discussed in Chapter 5, we introduced two independent reconstructors with their own

parameters, which reconstruct the DP-annotated source sentence from the encoder and de-

coder hidden states, respectively. The central idea underpinning the approach is to guide the

corresponding hidden states to embed the recalled source-side DP information and subse-

quently to help the NMT model generate the missing pronouns with these enhanced hidden

representations. The DPs can be automatically annotated for training and test data using

two different strategies. In the training phase, where the target sentence is available, we

annotate DPs for the source sentence using alignment information. These annotated source

sentences can be used to build a neural DP predictor, which can be used to annotate test

sentences since the target sentence is not available during the testing phase. Although

this previous model achieved significant improvements, there nonetheless exist three draw-

backs:

1. Recent work shows that NMT models can benefit from sharing a component across

different tasks and languages (Dong et al. 2015, Firat et al. 2016, Zoph and Knight

2016a, Anastasopoulos and Chiang 2018). However, there is no interaction between

our two separate reconstructors, which misses the opportunity to exploit potentially

useful relations between encoder and decoder representations.

2. The testing phase is still a pipeline method, where the DP annotation is automatically

performed by an external DP prediction model. However, the DP predictor only has

an accuracy of 66% F1-score (as shown in Section 4.4.3), which propagates numerous

errors to the translation model.

3. The DNMT model has shown promising results by modelling document-level infor-

mation. Although the DP prediction model considers the document-level features,
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we just simply integrate the prediction results into sentence-level NMT models.

In response to these problems, we propose to improve our original model from three

perspectives. First, in order to better exploit representations, we use a shared reconstructor

to read hidden states from both encoder and decoder. Second, to avoid the error propaga-

tion problem, we integrate a DP predictor into NMT to jointly learn to translate and predict

DPs. Incorporating these as two auxiliary loss terms can guide both the encoder and decoder

states to learn critical information relevant to DPs. Third, we further improve DP translation

using cross-sentence representations, which are summarized by hierarchical RNN. Experi-

mental results on a Chinese–English subtitle corpus show that the three modifications can

accumulatively improve translation performance, and the best result is +1.5 BLEU points

better than that reported in Chapter 5. In addition, the jointly learned DP prediction model

significantly outperforms its external counterpart by 9% in F1-score.

6.2 An End-to-End Dropped Pronoun Translation Model with

Cross-Sentence Context

In this section, we discuss approaches of 1) shared reconstruction mechanism, 2) learning

to jointly translate and predict DPs, and 3) incorporating cross-sentence context into NMT.

6.2.1 Shared Reconstructor

Recent work shows that NMT models can benefit from sharing a component across different

tasks and languages. Taking multi-language translation as an example, Firat et al. (2016)

share an attention model across languages while Dong et al. (2015) share an encoder. Our

work is most similar to the work of Zoph and Knight (2016a) and Anastasopoulos and

Chiang (2018), which share a decoder and two separate attention models to read from two

different sources. In contrast, we share information at the level of reconstruction frame.

The architectures of our proposed shared reconstruction model are shown in Figure 6.1.

Formally, the shared reconstructor reads from both the encoder and decoder hidden states,
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Figure 6.1: Architecture of the shared reconstructor, in which the words in red are automatically
annotated DPs.

as well as the DP-annotated source sentence, and outputs a reconstruction score. It uses two

separate attention models to reconstruct the annotated source sentence x̂ = {x̂1, x̂2, . . . , x̂T }

word by word, and the reconstruction score is computed by Equation (6.1):

R(x̂|henc,hdec) =

T∏
t=1

gr(x̂t−1,h
rec
t , ĉenct , ĉdect ) (6.1)

where hrect is the hidden state in the reconstructor, and computed by Equation (6.2):

hrect = fr(x̂t−1,h
rec
t−1, ĉ

enc
t , ĉdect ) (6.2)

Here gr(·) and fr(·) are, respectively, softmax and activation functions for the reconstructor.

The context vectors ĉenct and ĉdect are the weighted sum of henc and hdec, respectively, as

in Equations (6.3) and (6.4):

ĉenct =
∑J

j=1 α̂
enc
t,j · hencj (6.3)

ĉdect =
∑I

i=1 α̂
dec
t,i · hdeci (6.4)

Note that the weights α̂enc and α̂dec are calculated by two separate attention models. We

propose two attention strategies which differ as to whether the two attention models have

interactions or not.
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Independent Attention It calculates the two weight matrices independently, as in Equa-

tions (6.5) and (6.6):

α̂enc = ATTenc(x̂t−1,h
rec
t−1,h

enc) (6.5)

α̂dec = ATTdec(x̂t−1,h
rec
t−1,h

dec) (6.6)

where ATTenc(·) and ATTdec(·) are two separate attention models with their own parame-

ters.

Interactive Attention It feeds the context vector produced by one attention model to an-

other attention model. The intuition behind this is that the interaction between two attention

models can lead to a better exploitation of the encoder and decoder representations. As the

interactive attention is directional, we have two options (Equation (6.7) and (6.8)) which

modify either ATTenc(·) or ATTdec(·) while leaving the other one unchanged:

• enc→dec:

α̂dec = ATTdec(x̂t−1,h
rec
t−1,h

dec, ĉenct ) (6.7)

• dec→enc:

α̂enc = ATTenc(x̂t−1,h
rec
t−1,h

enc, ĉdect ) (6.8)

6.2.2 Joint Prediction of Dropped Pronouns

Inspired by recent successes of multi-task learning (Dong et al. 2015, Luong et al. 2016), we

propose to jointly learn to translate and predict DPs. As shown in Table 6.1, we explored to

predict the exact DP words,1 the accuracy of which is only 66% in F1-score. By analyzing

the translation outputs, we found that 16.2% of errors are newly introduced and caused
1Unless otherwise indicated, in this chapter, the terms “DP” and “DP word” are identical.
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Prediction F1-score Example

DP Words 66% 你你你烤的它它它吗 ?

DP Position 88% 你你你烤的 #DP#吗 ?

Table 6.1: Evaluation of external models on predicting the positions of DPs (“DP Position”) and the
exact words of DPs (“DP Words”).

Figure 6.2: Architecture of the DPP-augmented NMT model, in which the words in red are auto-
matically annotated DPs and DPPs.

by errors from the DP predictor. Fortunately, the accuracy of predicting the DPP is much

higher, which provides the chance to alleviate the error propagation problem. Thus, our

first method is similar to our model introduced in Section 6.5, but the difference is that

we learn to generate DPs at the predicted positions using a jointly trained DP predictor,

which is fed with informative representations in the reconstructor. Although the strategy

improves performance by alleviating the error propagation problem, it still relies on an

external toolkit to detect DPPs. Thus, in our second method, we move one step further by

proposing an end-to-end DP translation model, which does not rely on any external toolkit.

DPP-Augmented NMT Model We integrate the DPP Predictor into the NMT model,

as shown in Figure 6.2. We leverage the information of DPPs predicted by an external

model, which can achieve an accuracy of 88% in F1-score. Accordingly, we transform the

original DP prediction problem to DP word generation given the pre-predicted DP positions.

Since the DPP-annotated source sentence serves as the reconstructed input, we introduce

an additional DP-generation loss function, which measures how well the DP is generated
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from the corresponding hidden state in the reconstructor.

Let dp = {dp1, dp2, . . . , dpD} be the list of DPs in the annotated source sentence, and

hrec = {hrec1 ,hrec2 , . . . ,hrecD } be the corresponding hidden states in the reconstructor. The

generation probability is computed by Equation (6.9):

P (dp|hrec) =

D∏
d=1

P (dpd|hrecd )

=
D∏
d=1

gp(dpd|hrecd )

(6.9)

where gp(·) is softmax for the DP predictor.

We train both the encoder-decoder and the shared reconstructors together in a single

end-to-end process, and the training objective is Equation (6.10):

J(θ, γ, ψ) = arg max
θ,γ,ψ

{
logL(y|x; θ)︸ ︷︷ ︸

likelihood

+ logR(x̂|henc,hdec; θ, γ)︸ ︷︷ ︸
reconstruction

+ logP (dp|ĥrec; θ, γ, ψ)︸ ︷︷ ︸
prediction

} (6.10)

where {θ, γ, ψ} are, respectively, the parameters associated with the encoder-decoder, shared

reconstructor and the DP prediction model. The auxiliary reconstruction objective R(·)

guides the related part of the parameter matrix θ to learn better latent representations, which

are used to reconstruct the DPP-annotated source sentence. The auxiliary prediction loss

P (·) guides the related part of both the encoder-decoder and the reconstructor to learn better

latent representations, which are used to predict the DPs in the source sentence.

End-to-End DP Translation Model We cast DP prediction as a sequence labelling task,

where each word is labelled if there is a pronoun missing before it. Given the recon-

structed input x = {x1, x2, . . . , xT } with the last word xT being the end-of-sentence tag “
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Figure 6.3: Architecture of the end-to-end DP translation model, in which the words in red are
automatically annotated DPPs.

〈eos〉”,2 the output to be labelled is a sequence of labels dp = {dp1, dp2, . . . , dpT } with

dpt ∈ {N} ∪ Vdp. Among the label set, “N” denotes no DP, and Vdp is the vocabulary of

pronouns3. Taking Figure 6.3 as an example, the label sequence “N N N它 N N” indicates

that the pronoun “它” is missing before the fourth word “吗”. More specifically, we model

the probability of generating the label sequence dp as in Equation (6.11):

P (dp|hrec) =

T∏
t=1

P (dpt|hrect )

=

T∏
t=1

gl(dpt,h
rec
t )

(6.11)

where gl(·) is softmax for the DP labeler. As can be seen, there is no reliance on external

DP/DPP prediction models.

The newly introduced components are trained together with the standard encoder-decoder
2We introduce “ 〈eos〉” to cover the case where a pronoun is missing at the end of a sentence.
3We employ the pronoun vocabulary used in Table 4.3, which contains 25 distinct Chinese pronouns.

128



in an end-to-end manner:

J(θ, γ, ψ) = arg max
θ,γ,ψ

{
logL(y|x; θ)︸ ︷︷ ︸

likelihood
+ logR(x|henc,hdec; θ, γ)︸ ︷︷ ︸

reconstruction

(6.12)

+ logP (dp|hrec; θ, γ, ψ)︸ ︷︷ ︸
labeling

}

where {θ, γ, ψ} are, respectively, the parameters associated with the encoder-decoder, shared

reconstructor and the DP labeling model. The usage of the auxiliary reconstruction objec-

tive R(·) is two-fold: 1) it guides the reconstructor states to embed necessary source-side

information, which is then used to predict the DP labels; and 2) it serves as a reranking tech-

nique to select a better translation from the k-best candidates in testing (Tu et al. 2017b).

The auxiliary labeling loss P (·) guides the hidden states of both the encoder-decoder and

the reconstructor to embed the DPs in the source sentence. Although the calculation of

labeling loss relies on explicitly annotated labels, it is only used in training to guide the

parameters to learn DP-enhanced representations. Benefiting from the implicit integration

of DP information, we remove the reliance on external DP prediction model in testing.

6.2.3 Cross-Sentence Context Augmentation

The DP labelling model in Section 6.2.2 only considers each single sentence, which misses

potentially useful discourse information from surrounding sentences. Thus, as shown in

Figure 6.4, we exploit information from previous sentences, which have proven useful for

pronoun prediction (Voita et al. 2018).

Cross-Sentence Context Summarization As described in Chapter 4, we consider the

previous K source sentences X = {x−K , . . . ,x−1}, which is summarized in a hierarchical

way as shown in the left panel of Figure 6.4. For each sentence x−k, we employ a word-
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Figure 6.4: Architecture of the end-to-end DP translation model with cross-sentence context, in
which the words in red are automatically annotated DPPs.

level encoder to summarize the representation of the whole sentence as in Equation (6.13):

h−k = ENCODERword(x
−k) (6.13)

After we can obtain all sentence-level representations HX = {h−K , . . . ,h−1}, we feed

them into a sentence-level encoder to produce a vector that represents the summary of the

cross-sentence context, as in Equation (6.14):

C = ENCODERsentence(H
X) (6.14)

Following Voita et al. (2018), we share the parameters of word-level context encoder with

the source encoder.

Integration into DP Prediction Intuitively, we can follow the method in Chapter 4 to

transform the contextual representation to decoder states as an auxiliary input, which are

subsequently propagated to reconstructor states as in Equation (6.15):

hdec = DECODER(henc,C) (6.15)

In this way, the cross-sentence context can benefit both the generation of the translation and

DP prediction. However, one potential problem with this strategy is that the propagation

path is long: C→ hdec → hrec → dp, which may suffer from the vanishing effect.
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To shorten the propagation path, we directly feed the cross-sentence context to the cal-

culation of labeling loss, as in Equation (6.16):

P (dp|hrec,C) =
T∏
t=1

gl(dpt,h
rec
t ,C) (6.16)

where the path becomes C→ dp.

6.3 Experiments

In this section, we describe the experimental setup and results on the performance of our

proposed models.

6.3.1 Setup

To compare our work with the results reported in previous work (in Chapter 5), we con-

ducted experiments on the same Chinese–English TV Subtitle corpus. As described in Sec-

tion 5.3.1, the training, validation, and test sets contain 2.15M, 1.09K, and 1.15K sentence

pairs, respectively. We used case-insensitive 4-gram NIST BLEU metrics (Papineni et al.

2002) for evaluation, and sign-test (Collins et al. 2005) to test for statistical significance.

We implemented our models on the same code repository4 and used the same configu-

rations (e.g., vocabulary size = 30K, hidden size = 1000). It should be emphasized that we

did not use the pre-train strategy as in the previous chapter, since we found training from

scratch achieved a better performance in the shared reconstructor setting.

6.3.2 Results

We totally investigate four baselines and four proposed models including:

Baseline: standard NMT model trained on original parallel corpus;
4https://github.com/tuzhaopeng/nmt
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Baseline (+DPs): standard NMT model trained on new parallel corpus whose source-

side sentences are annotated with DPs. At decoding time, we employ an external

model to recover DPs for input sentences;

Baseline (+DPPs): standard NMT model trained on new parallel corpus whose source-

side sentences are annotated with DPPs. At decoding time, we employ an external

model to recover DPPs for input sentences;

Separate-Recs⇒(+DPs): the best reconstruction model proposed in Chapter 5, which

use two independent reconstructors reconstruct the DP-annotated source sentence

from the encoder and decoder hidden states;

Shared-Rec⇒(+DPPs): the proposed shared-recontruction model trained on new par-

allel corpus whose source-side sentences are annotated with DPPs;

+ Joint (+DP Predictor): we integrate DP prediction model into Shared-Rec⇒(+DPPs)

model to jointly learn to translate and predict DPs;

+ Joint (+DP Labeler): we integrate DP labelling model into Shared-Rec⇒(+DPPs)

model to jointly learn to translate DP and label tags for each token;

+ Cross-Sentence Context: we integrate cross-sentence model into Shared-Rec⇒(+DPPs)

+ Joint (+DP Labeler) model.

Table 6.2 shows the translation results. It is clear that the proposed models significantly

outperform the baselines in all cases, although there are considerable differences among

different variations.

Baselines (Rows 1-4): The three baselines (Rows 1, 2, and 4) are all trained on the stan-

dard NMT model, but differ with respect to the training data used: 1) Baseline: original

parallel corpus; 2) Baseline (+DPs): new parallel corpus whose source-side sentences are

annotated with DPs; 3) Baseline (+DPPs): new parallel corpus whose source-side sen-

tences are annotated with DPPs. The baseline trained on the DPP-annotated data (“Base-

line (+DPPs)”, Row 4) outperforms the other two counterparts (i.e., +1.38 and +0.51 BLEU
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# Model #Params
Speed

BLEU
Train Decode

Previous Work in Chapter 5

1 Baseline 86.7M 1.60K 15.23 31.80

2 Baseline (+DPs) 86.7M 1.59K 15.20 32.67

3 Separate-Recs⇒(+DPs) +73.8M 0.57K 12.00 35.08

Our Models

4 Baseline (+DPPs) 86.7M 1.54K 15.19 33.18

5 Shared-Rec⇒(+DPPs) +86.6M 0.52K 11.87 35.27†‡

6 + Joint (+DP Predictor) +91.9M 0.48K 11.84 36.53†‡

7 + Joint (+DP Labeler) +86.7M 0.54K 11.96 36.04†‡

8 + Cross-Sentence Context +121.2M 0.40K 11.71 36.77†‡

Table 6.2: Evaluation of translation performance. “Baseline” is trained and evaluated on the original
data, while “Baseline (+DPs)” and “Baseline (+DPPs)” are trained on the data annotated with DPs
and DPPs, respectively. Training and decoding (beam size is 10) speeds are measured in words/sec-
ond. “†” and “‡” indicate statistically significant difference (p < 0.01) from “Baseline (+DDPs)”
and “Separate-Recs⇒(+DPs)”, respectively.

point), indicating that the error propagation problem does affect the performance of trans-

lating DPs. It suggests the necessity of jointly learning to translate and predict DPs. Fur-

thermore, “Separate-Recs⇒(+DPs)” (Row 3) is the best model reported in Chapter 5, which

we employed as another strong baseline (i.e., 35.08 BLEU points).

Our Models (Rows 5-8): As described in Section 6.2.1, using our shared reconstructor

(Row 5) on DPPs can achieve 35.27 BLEU points. This method not only outperforms the

corresponding baseline (Row 4), but also surpasses its separate reconstructor counterpart

(Row 3). It indicates that the DP reconstructor can really benefit from sharing the knowl-

edge between the encoder and decoder. Here we only show the performance of the best

attention strategy (i.e., interactive enc→dec). We will further analyze different strategies in

Section 6.4.

Based on the shared reconstruction model, we explore two joint learning methods: “+

DP Predictor” and “+ DP Labeler” (as discussed in Section 6.2.2). First, introducing a joint
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DP prediction objective (Row 6) can achieve a further improvement of +1.26 BLEU points.

These results verify that the shared reconstructor and jointly predicting DPs can accumula-

tively improve translation performance. Second, our end-to-end DP translation model (Row

7) achieves a relatively small improvement of +0.77 BLEU point. The main reason is that

the “+ DP Labeler” model just label DPs based on the current sentence without considering

any cross-sentence information. In contrast, the “+ DP Predictor” approach employs an

external DPP prediction model which models a number of larger context features (as shown

in Table 4.6).

As introduced in Section 6.2.3, we add hierarchical RNN to the “+ DP Labeler” model

to model cross-sentence context. The “+ Cross-Sentence Context” approach (Row 8) achieves

the best performance of 36.77 BLEU points, which is +1.69 better than the strong baseline

(Row 3) and further +0.24 BLEU point than the best joint model (Row 6). We attribute the

superior performance to the fact that the cross-sentence context over encoder representa-

tions embeds useful DP information, which can help to better label and translate DPs.

Speed Similar to the results of previous work in Section 5.3.4, the proposed approach

improves BLEU scores at the cost of decreased training speed, which is due to the large

number of newly introduced parameters resulting from the incorporation of shared recon-

structor (or joint components or hierarchical RNN) into the NMT model. In terms of de-

coding time trade-off, our most complex model (Row 8) only increases decoding speed by

2.5% comparing with the original reconstruction model (Row 3). We attribute this to the

fact that no beam search is required for calculating reconstruction scores, which avoids the

very costly data swap between GPU and CPU memories.

6.4 Analysis

We conducted extensive analysis to better understand our model in terms of the effect of

shared reconstruction from training and testing, the effect of different attention strategies,

and the effect of DP prediction accuracy.
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Model Test 4
Baseline (+DPPs) 33.18 –

Separate-Recs (+DPs) 34.02 +0.84

Shared-Rec (+DPPs) 34.80 +1.62

Table 6.3: Translation results when reconstruction is used in training only while not used in testing.

Model Test 4
Baseline (+DPs) 32.67 –

Baseline (+DPPs) 33.18 –

Separate-Recs⇒(+DPs) 34.02 +0.84

Separate-Recs⇒(+DPPs) 32.87 -0.31

Shared-Rec⇒(+DPs) 33.05 -0.13

Shared-Rec⇒(+DPPs) 34.80 +1.62

Table 6.4: Translation results using different types of DP.

Effect of Shared Reconstruction As mentioned previously, the effect of reconstruction

is two-fold: 1) it improves the training of baseline parameters, which leads to better hidden

representations that embed labelled DP information learned from the training data; and 2)

it serves as a reranking metric in testing to measure the quality of DP translation. Table 6.3

lists translation results when the reconstruction model is used in training only. We can

see that the proposed “Shared-Rec” model still outperforms both the strong baseline and

the best “Separate-Rec” model reported in Chapter 5. This is encouraging since no extra

resources and computation are introduced to online decoding, which makes the approach

highly practical, e.g., for translation in industrial applications.

Effect of DP and DPP As shown in Table 6.1, DP and DPP contain two different types

of DP-related information: DP word and DP position. Here we compare translation per-

formance using DP and DPP on various models and the results are shown in Table 6.4.

For baseline models, inserting DP placeholders (i.e., “<DP>”) into training/testing data

performs better than adding exact DP words (e.g., “我”). The interesting finding is that

the separate reconstruction models prefer the DP word while the proposed shared recon-
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Model Test 4
Baseline (+DPPs) 33.18 –

Separate-Recs⇒(+DPs) 35.08 +1.90

Shared-Recindependent⇒(+DPPs) 35.88 +2.70

Shared-Recenc→dec⇒(+DPPs) 36.53 +3.35

Shared-Recdec→enc⇒(+DPPs) 35.99 +2.81

Table 6.5: Translation results using different attention strategies in the shared reconstructor (+Joint
DP Predictor).

Models Precision Recall F1-score

External 0.67 0.65 0.66

Joint 0.74 0.76 0.75

Table 6.6: Evaluation of DP prediction accuracy. “External” model is separately trained on DP-
annotated data with external neural methods (Chapter 4), while “Joint” model is jointly trained with
the NMT model (Section 6.2.2).

structors perform better when incorporating DP position information. This indicates that 1)

different types of DPs represent soft or hard information, and 2) as the encoder and decoder

share the same reconstruction component, position information is more generalized than

word (surface) for shared representations.

Effect of Interactive Attention Among the variations of shared reconstructors in Ta-

ble 6.5, we found that an interaction attention from encoder to decoder achieves the best

performance, which is +3.35 BLEU points better than our baseline and +1.45 BLEU points

better than the best separate reconstruction model. We attribute the superior performance

of “Shared-Recenc→dec” to the fact that the attention context over encoder representations

embeds useful DP information, which can help to better attend to the representations of the

corresponding pronouns in the decoder side.

DP Prediction Accuracy As shown in Table 6.6, the jointly learned model significantly

outperforms the external one by 9% in F1-score. We attribute this to the useful contextual

information embedded in the reconstructor representations, which are used to generate the
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Model Type
Errors

Com. Cor. All

BASE Total 72 105 177

+ Joint (+DP Labeler)

Fixed 56 68 124

New 21 17 38

Total 37 54 91

+ Cross-Sentence Context

Fixed 62 84 146

New 25 10 35

Total 35 31 66

Table 6.7: Translation error statistics. “Com.” denotes completeness errors, and “Cor.” for correct-
ness errors.

exact DP words.

Error Analysis We finally investigate how the proposed approaches improve the transla-

tion by human evaluation. We randomly select 550 sentences from the test set. As shown

in Table 6.7, we count how many completeness errors (e.g., under-translation) and correct-

ness errors (e.g., mistaken-translation) are fixed (Fixed) and newly generated (New) by our

models.

About completeness, we found that 72 sentences were incompletely translated due to

DPs, while 78% and 86% of these errors are fixed by the our end-to-end (“+ Joint (+DP

Labeler)”) and discourse-aware (“+ Cross-Sentence Context”) models, respectively. We

observe that most corrected translations become longer and well-structured by generating

DPs. About correctness, we found that 105 words/phrases were translated into incorrect

equivalents, resulting in quite different meanings in translations. Among them, 65% and

80% errors are solved by giving correct DPs provided by our models. However, we also

observe that our systems brings relative 20% new errors. According to the anaylysis, we

confirm that the improvement of our models come from alleviating completeness and cor-

rectness problems.
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Model Sub. Obj. Dum. Total
Source 430 151 189 770
Human 541 199 232 972
Baseline 425 159 209 793
+ Joint (+DP Predictor) 483 177 214 874
+ Joint (+DP Labeler) 506 177 210 893
+ Cross-Sentence Context 515 181 207 903

Table 6.8: Number of pronouns in source sentence and generated translations.

Statistics of DP Generation In this experiment, we investigate how many DPs are re-

covered in the translation output. Table 6.8 lists the statistics on the test set that consists of

1,500 sentences. The source sentence contains 770 pronouns and human translation con-

tains 972 pronouns, which indicate that 21% (i.e., (972 − 770)/972) of pronouns in the

source sentences are dropped. The translation generated by the baseline model contains

793 pronouns, which is nearly the same with the source sentence. This confirms the claim

that translation of implicit pronouns cannot normally be reproduced. Explicitly modeling

DP translation consistently improves the generation of pronouns, which indicates that the

improved DP translation indeed contributes most to the performance improvement. Be-

sides, it is relatively easier for most proposed models to recover dropped dummy pronouns.

Because dummy pronoun usually depends on intra-sentential discourse information. Sub-

ject pronouns are more challenging due to their dependencies to inter-sentential discourse

knowledge.

6.5 Summary

In this chapter, we proposed three effective approaches of translating DPs with NMT mod-

els: shared reconstructor, jointly learning and cross-sentence context to translate and pre-

dict DPs. Through experiments we verified that 1) shared reconstruction is helpful to share

knowledge between the encoder and decoder; 2) joint learning of the DP prediction model

indeed alleviates the error propagation problem by improving prediction accuracy; and 3)

cross-sentence context is helpful to capture discourse information for DP prediction model.
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Experiments show that the three approaches accumulatively improve translation perfor-

mance. This chapter directly answers our third research question as described below:

RQ 4 Can we build a fully end-to-end neural model for dropped pronoun

translation? Is cross-sentence context useful for dropped pronoun prediction?

Furthermore, the method is not restricted to the DP translation task and could potentially

be applied to other sequence generation problems where additional source-side information

could be incorporated. In the next chapter, we will conclude and present avenues for future

research.
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Chapter 7

Conclusion

In this chapter, we provide conclusions for the previous chapters and revisit the research

questions with the answers we have provided to them. We then summarise the contributions

of our work in this thesis. Later in this chapter, we explore various possibilities for further

research.

7.1 Conclusion and Research Questions

In Chapter 1, we provided the motivations underpinning our study of discourse-aware NMT.

By analyzing a discourse-level example, we discussed the errors in translation outputs

caused by overlooking discourse information in MT models. We then presented our specific

research questions, which can be divided into two parts: document-level NMT architecture

and dealing with discourse phenomena for MT, as follows:

Part I: Building a Document-Level Architecture

RQ 1 What is the influence of historical contextual information on the per-

formance of neural machine translation? Can a document-level NMT archi-

tecture alleviate inconsistency and ambiguity problems?
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Part II: Targeting a Specific Discourse Phenomenon

RQ 2 How do dropped pronouns affect the performance of machine transla-

tion? Is it possible to build a robust drop pronoun recovery model for statistical

machine translation?

RQ 3 Does neural machine translation still suffer from dropped pronoun

problems? If so, how should we embed DP information into neural network

models?

RQ 4 Can we build a fully end-to-end neural model for dropped pronoun

translation? Is cross-sentence context useful for dropped pronoun prediction?

In Chapter 2, we first provided an overview of the MT models including SMT and

NMT. Regarding SMT, we briefly introduced how the model is defined and translates sen-

tences. For NMT, we reviewed word vector models, RNN models, neural LMs as well as

the encoder-decoder architecture. Secondly, we provided basic information on discourse,

including related theories, structures, and linguistic phenomena. Thirdly, we highlighted

previous discourse-aware approaches along two lines: document-level NMT architecture

and dealing with discourse phenomena for MT.

In Chapter 3, we addressed RQ1 by presenting a novel document-level architecture for

NMT models. As far as we know, this was the first attempt at investigating the potential for

implicitly incorporating discourse information into NMT. More specifically, we employed

a hierarchical RNN encoder to model cross-sentence context, and then integrated the histor-

ical summary into the standard NMT model. Through experiments on Chinese–English, we

showed that our approach can significantly improve translation quality over the sentence-

level NMT and SMT baseline models, especially in terms of consistency and disambiguity.

We also analyzed the effect of global context, and provided examples generated by our

model. Furthermore, we also compared our approach with other recently proposed DNMT

models on various domains.
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From Chapter 4, we began to move our attention to a specific discourse phenomenon:

pro-drop, which significantly affects the performance of MT systems, especially in informal

use-cases. In a Comparison with English pronouns, we first studied DPs in Chinese and

Japanese languages. We then proposed an unsupervised approach to automatically build

a large-scale and high-quality DP training corpus. Using this corpus, we trained neural-

based DP generation models and integrated the recalled DPs into the SMT models. The

experimental results on a Chinese–English subtitle corpus showed the effectiveness of our

proposed approach. Case studies illustrated how our approach alleviates DP problems for

translation models. To further validate the effectiveness of our model, we also adapt it to

Japanese–English. Finally, we addressed RQ2 in this chapter.

In Chapter 5, in order to address RQ3, we investigated DP translation for NMT models.

First of all, we still explicitly and automatically annotated DPs for each source sentence in

the training corpus using the method in Chapter 4. We then presented a reconstruction-based

approach to guide the hidden states (either encoder-side or decoder-side) of NMT to embed

the missing DP information. Experiments on the same corpora show that the proposed

approach significantly outperforms a strong NMT baseline system. In our analysis, we

also demonstrated that our models can produce better translations by addressing the DP

translation problem.

Although the reconstruction-based models achieve improvements, there still exit some

drawbacks such as the error propagation problem. Accordingly, we further discussed the

fourth research question, RQ4, in Chapter 6. We exploited a fully end-to-end approach

for DP translation in NMT models. Specifically, we employed a shared reconstructor to

better exploit encoder and decoder representations. Secondly, we proposed to jointly learn

to translate and predict DPs. To capture discourse information for DP prediction, we finally

combined the hierarchical encoder with the DP translation model. Experimental results on

a Chinese–English dialogue corpus show that our approach can accumulatively improve

translation performance. In addition, the jointly learned DP prediction model significantly

outperforms its external counterpart by 9% in terms of F1-score.
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Chapter 7 concludes the thesis with general observations drawed from our experiments.

We also provide some future avenues for research.

7.2 Contributions

In this thesis, we have investigated different discourse-aware approaches for MT models.

We studied this research topic from two perspectives: document-level NMT architecture

and dealing with discourse phenomena for MT. The contributions of our work can be sum-

marized as follows:

• Document-level NMT architecture. Before our work, document-level NMT had

received substantially less attention from the research community. In an early at-

tempt, we investigated a novel document-level architecture for NMT models. We

quantitatively and qualitatively demonstrated that the modeling of cross-sentence

context can significantly outperform sentence-level NMT systems. We also sys-

tematically compared our model with other recently proposed DNMT models on

various domains. We found that different document-level architectures perform un-

evenly on a distinct genre of texts. Finally, we released two versions of code for

these experiments: https://www.github.com/tuzhaopeng/LC-NMT and

https://github.com/longyuewangdcu/Cross-Sentence-NMT.

• Dropped pronoun training data. The first challenge for DP translation is that the

existing data for training a robust DP generation model is very scarce. Thus, we

proposed an automatic approach to DP annotation, which utilizes an alignment matrix

from parallel data. Finally, we built a large DP training corpus with high consistency

(over 90%) compared with the manual annotation method. We released the corpus in

https://github.com/longyuewangdcu/tvsub. We believe the data can

be also useful for other research fields such as discourse processing.

• Neural dropped pronoun generation for SMT models. Before our work, the re-

lated task such as empty categories and coreference resolution are trained on tradi-
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tional models. Using our large DP training data, we built a robust DP generator using

neural network models. We then integrated it into SMT models using various strate-

gies. Experiments on both Chinese–English and Japanese-English translation tasks

showed that 1) it is crucial to identify DPs to improve the overall translation perfor-

mance; 2) although containing some noise (66% generation accuracy), the external

DP generation model is still helpful to translation; and 3) the N -best DP integration

strategy is able to alleviate the error propagation problem to a certain extent.

• Dropped pronoun reconstructor for NMT models. We exploit the first approach

on DP translation for NMT models. We proposed a reconstruction-based model

to guide hidden states in both the encoder and decoder to embed the DP informa-

tion. Experiments and analysis show that the proposed approach significantly im-

proves translation performance across different language pairs, and can be further

improved by developing better DP generation models. We also enlarge the DP train-

ing corpus from 1M to 2M, and released the data in https://github.com/

longyuewangdcu/tvsub.

• A fully end-to-end DP translation model. Although the reconstruction-based mod-

els achieve improvements, there still exit some drawbacks. To further improve the

reconstruction-based model, we proposed three advanced approaches: shared recon-

structor, joint learning, and cross-sentence context. Through experiments we verified

that 1) shared reconstruction is helpful to share knowledge between the encoder and

decoder; 2) joint learning of the DP prediction model indeed alleviates the error prop-

agation problem; and 3) the cross-sentence model is able to capture useful discourse

information for our DP prediction counterpart. Finally, the three approaches accu-

mulatively improve translation performance. Note that the method is not restricted to

the DP translation task and could potentially be applied to other sequence generation

problems where additional source-side information could be incorporated.
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7.3 Future Work

There are several possible extensions to the models presented in this thesis, and we summa-

rize them as follows:

Document-level NMT Currently, our proposed document-level NMT architecture has

two drawbacks: 1) the range of historical context is fixed once the model is built; and

2) it needs a lot of additional parameters when reading the more historical context. How-

ever, cache-based NMT (Tu et al. 2018) inspired us to improve DNMT in a different way.

Tu et al. (2018) proposed to augment NMT models with a cache-like memory network,

which stores the translation history in terms of bilingual hidden representations at decod-

ing steps of previous sentences. Using simply a dot-product for key matching, this history

information is quite cheap to store and can be accessed efficiently.

Based on cache-based NMT, we expect several developments that will shed more light

on utilizing long-range contexts, i.e., designing novel architectures, such as employing dis-

course relations instead of directly using decoder states as cache values.

Dropped Pronoun Translation To validate the robustness of our approach, we will ex-

tend our work to different genres and all kinds of dropped words. For example, in formal

text genres (e.g., newswire), DPs are not as common as in the informal text genres, and

the most frequently dropped pronoun is the third person singular “它” (“it”) (Baran et al.

2012), while this may not be crucial to translation performance in terms of BLEU score, it

will harm cohesion in translated text.

Furthermore, we will investigate a new research strand that adapts our model in an

inverse translation direction by learning to drop pronouns instead of recovering DPs.

Discourse-aware evaluation for MT The existing evaluation metrics operate only at the

level of the sentence, which may not be precise enough to evaluate the performance of

MT models when translating a complete text. In addition, BLEU score seems too simple
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to reflect complicated discourse properties such coherence. As discussed by Läubli et al.

(2018), there is a need to shift towards document-level evaluation as MT improves to the

degree that errors which are hard or impossible to spot at the sentence-level become decisive

in discriminating quality of different translation outputs.

It will be interesting to explore to what extent existing and future techniques for document-

level MT can narrow this gap. We expect that this will require further efforts in creating

document-level training data, designing appropriate models, and supporting research with

discourse-aware automatic metrics.
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