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Abstract. Facebook Inc., Apple Inc., Amazon.com Inc., Netflix Inc. and
Alphabet Inc., known collectively as FAANG, are a group of the best
performing tech stocks in recent years. In this study, we present linear
and non-linear methods for predicting the closing price of each stock
on the following day. We decompose each time series into component
series using wavelet methods and develop an novel ensemble approach to
improve forecast accuracy.
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1 Introduction

Facebook Inc. (FB), Apple Inc. (AAPL), Amazon.com Inc (AMZN), Netflix Inc.
(NFLX) and Alphabet Inc. (GOOG), are a group of multinational companies
traded publicly on the NASDAQ. As of 9th August 2018 they had a combined
market capitalisation of $3.48 Trillion [3]. They make 1.5% of the total market
capitalisation the S&P 500 and are known collectively as FAANG, a term coined
by Jim Cramer, a former fund manager at Goldman Sachs.

In this paper we forecast multiple univariate time series of the daily closing
prices of FAANG stocks. We fit the linear Autoregressive Integrated Moving Av-
erage (ARIMA) model and the non-linear Long Short Term Memory (LSTM)
network to each series to produce next day predictions. Wavelet methods de-
compose a series into approximation and detail components to better explain
behaviour over time. We combine these techniques in a novel ensemble model in
an attempt to increase forecast accuracy.

In Section 2 we review the foundation literature of the methods used and
discuss related research. In 3 we provide the background theory behind the
models. Section 4 details the implementation of our models, while 5 and 6 explain
the experiments and how the forecast accuracy is measured, followed with results
and discussion in Sections 7 and 8.

2 Related Research

Linear modelling methods such as the Autoregressive model (AR) and Moving
Average (MA) models have been prominent in time series forecasting for decades,
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particularly due to their intuitive nature and robustness in producing short-term
forecasts over a wide range of subject matters.

In their seminal textbook [9], Box and Jenkins, described their method for
applying an ARIMA model and finding a best fit for a time series. Since then
ARIMA models have been employed in modelling diverse series such as inflation
in the Irish economy [17] and failures in repairable systems [23].

LSTM Networks date from 1997 [13] as an improvement the previous RNN
algorithms, which took a prohibitive amount of time to learn long term time
lags. They are widely used in natural language processing (NLP) [22] and speech
recognition tasks [12].

Wavelet decomposition, the theory of using small wave like functions or
wavelets to deconstruct a time series into its approximation and detail com-
ponents, is described in [18]. Wavelet methods are prominent in signal process-
ing [19] and time series analysis [6] and have been used effectively in multi-
resolution image processing [14].

Ensemble approaches combining wavelet decomposition with forecasting meth-
ods have been extensively researched with two notable examples:

Yousefi et al [24] use wavelets to forecast crude oil prices over different time
horizons using monthly WTI1 spot prices. These forecasts were compared with
NYMEX2 oil futures prices and are shown to better predict the future spot
prices, challenging the perception the futures market is efficiently priced. The
authors decompose the series into wavelet component series and extend them
using a sinusoidal model, before reconstructing. They suggest expanding the
research to other time series methods for extending the component series such
as ARIMA or GARCH.

Liu et al [16] combine wavelet decomposition and principal components anal-
ysis (PCA) to create input features for multiple models. The performance of
these models is compared when training and testing on two classical datasets:
the artificial Mackey-Glass equation and the real-world, mean daily flow of the
Oldman River near Brocket.

The five implemented models were as follows: Cascade correlation and back
propagation neural networks (CCNN and BPNN) on the underlying the differ-
enced, stationary time-series. CCNN’s on the wavelet decomposed time series,
in one instance with all the decomposed series fed into one network, the another
with each sub-series as an input to it’s own individual network (WCCNN and
WCCNN multi-models). The final network introduces PCA as a preprocessing
step on the decomposed series and the first k principal components that account
for 85% of the information are selected as inputs (PCA-WCCNN).

As a result of this work, the researchers suggest PCA-WCCNN as more
accurate than WCCNN and quicker to train than WCCNN multi-models.

1 West Texas Intermediate
2 New York Metal Exchange



3 Methodology

In this section we describe the techniques utilised in our proposed models by
describing the mathematical concepts behind ARIMA models and LSTM net-
works, used in forecasting future values of our selected time series. Finally, we
discuss wavelet methods for transforming our series into component sub-series,
which we can consider individually or use as a multivariate input to our models.

We define a univariate time series X as a time ordered finite set of t obser-
vations X = {x1, x2, x3, . . . , xt} commonly recorded at evenly spaced intervals,
with each xi ∈ X representing the value of the series at that time.

3.1 Autoregressive Integrated Moving Average (ARIMA) Model

An ARIMA process is a linear combination of p Autoregressive (AR) terms and
q Moving Average (MA) terms, modelling a d order differencing of a time series
X [9]: (

1−
p∑

i=1

αiL
i

)
(1− L)dxt =

(
1 +

q∑
i=1

βiL
i

)
εt + c

where c is a constant and L is a lag operator, such Lxt = xt−1, L2xt = xt−2 etc.
The selection of appropriate values for the parameters p, d and q is crucial

to fitting the most accurate model to the time series. The Auto-Correlation
Function (ACF) and Partial Auto-Correlation Function (PACF) can be used to
provide a reasonable estimate for p [9].

The Akaike Information Criterion (AIC) is useful for determining the relative
performance of a model to another with different parameters [20].

3.2 Long Short-Term Memory (LSTM) Networks

LSTM Networks are a subclass of Recurrent Neural Network (RNN) that are
capable of learning long term dependencies or “long term memory” in time series
data [10] as opposed to RNNs which place more emphasis on recent inputs or
“short term memory”. We provide a brief description of each but start with a
general definition of an artificial neural network.

At its core, an artificial neural network (ANN) is a collection of nodes or neu-
rons, connected by weighted edges or synapses, mimicking the biological neurons
in the human brain.Each neuron can receive multiple inputs, update it’s current
state and emit an output based on an internal activation function, for exam-
ple a sigmoid or tanh function [10]. The weights of each synapse determine the
influence the output of neuron, with a low weighted synapse meaning that the
output of the preceding node is effectively ignored.

One limitation of ANN’s is that due to their acyclic nature, all inputs and
outputs are independent of each other, that is, the predicted value, x̂t does not
depend on x̂t−1 or x̂t−2 etc. This is not ideal for time series modelling with a
high level of autocorrelation between previous terms.



RNNs address this issue by allowing feedback loops within the hidden layers,
where a neuron can store information from current step to make predictions in
the following steps. In practice, however, RNN’s are only suitable for storing
a few previous steps and cannot remember long sequences of data which may
better inform the prediction. [21]

Long term memory is improved in LSTM’s with the introduction of gate
functions within the neurons [13] for transforming the state of current step, to
be used in the following steps. Three types of gate exist within each node:

– Filter Gate: A sigmoid function which determines how much of the previous
state should persist in the current state, a value of 1 implies everything
should be remembered, while 0 completely disregards the previous state.

– Memory Gate: Determines how much of the new data should be added to
the current state of the neuron.

– Output Gate: Combines the the new data and the current state of the
node to produce an output.

As the LSTM is trained it should learn which values in the series to remember
or disregard over a longer term than the RNN alone.

3.3 Maximal Overlap Discrete Wavelet Transform (MODWT)

A wavelet transform breaks a time series into components of different frequen-
cies [7] and is better than other decomposition methods as it provides information
on the different frequencies present in a series while preserving the positions of
these frequencies in the time domain. In this section we discuss the fundamentals
of wavelet transformation theory and the application of Discrete Wavelet Trans-
form (DWT) and Maximal Overlap Discrete Wavelet Transform (MODWT) to
a time series.

There are two main functions involved in wavelet analysis, the wavelet func-
tion (mother wavelet ψ) and the scaling function (father wavelet φ). In this paper
we consider the Haar and Daubechies of order 4 (db4 ) [7] wavelet functions, with
the Haar father and mother wavelets as follows:

φ(t) =

{
1, if 0 ≤ t < 1
0, otherwise

and ψ(t) =


1, 0 ≤ t < 1

2

−1,
1

2
≤ t < 1

0, otherwise

In general, the mother and father wavelets have the property∫
φ(t)dt = 1 and

∫
ψ(t)dt = 0

In a discrete wavelet transform (DWT) the time series is decomposed using the
father and mother wavelet functions:

φj,k(t) = 2
j
2φ(2jt− k) and ψj,k(t) = 2

j
2ψ(2jt− k)



Where j ∈ [1, J ] in a J-level decomposition is the scale and k is the shift pa-
rameter [7]. The set of these functions provide an orthonormal basis [7] and as
such we can represent our original time series x(t) as

x(t) =
∑
k

AJ,kφJ,k(t) +
∑
k

DJ,kψJ,k(t) + . . .+
∑
k

D1,kψ1,k(t)

The set of coefficients of the wavelet functions in the decomposition, {AJ , DJ ,
DJ−1, . . . , D1}, is known is a decomposition crystal, with each element Dj =
{dj,1, dj,2, . . . , dj,k} a series in its own right.

The AJ series reflect the approximation component or trend of the series,
the Di components represent the detail or deviation from this trend.

The Maximal Overlap Discrete Wavelet Transform (MODWT) is a non or-
thogonal redundant transform which repeats information in neighbouring coef-
ficients by overlapping time series values [7]. This allows the decomposed co-
efficient sets to have the same cardinality as the original series. Similarly, the
Inverse Maximal Overlap Discrete Wavelet Transform (IMODWT) takes the
decomposition crystal from the MODWT and reconstructs the original series.

4 Proposed Models

In this section we discuss the implementation of the models used in our exper-
iments and the data acquired for training them. The implementation logic for
ARIMA and LSTM have been adapted from [4] and [5] respectively.

4.1 Data Model

The time series we focus on the daily closing prices of the shares in FB, AAPL,
AMZN, NFLX and GOOG over the period 1st January 2010 to 1st January
2017. The number of observations vary between each stock due a number of
corporate actions that occurred during the interval: Facebook Inc. was not listed
on the NASDAQ for the entire window, meaning there are only closing prices
subsequent to their IPO in May 2012. Alphabet Inc. (aka Google) undertook
a corporate restructure in March 2014 and issued a new class of share. It is
this new class that is the subject of our analysis. All of these time series were
obtained from Alpha Vantage Inc. [1] and are made available for replication.

These series have been adjusted to account for stock-splits and buybacks [2]
so the transformation required is for the target feature. We are predicting log
returns based on the assumption the prices are log normally distributed [8].
For each stock we have a time series of the form X = {x1, . . . , xt} where xi =

log

(
pi
pi−1

)
and pi, pi−1 are the current and previous closing prices respectfully.

The models described in the following sections will be used to produce 100 one-
day forecasts for the final 100 terms in each series.



Fig. 1. LSTM topologies: (a) 1 LSTM hidden layer, (a) 4 LSTM hidden layer

4.2 PREVCLOSE

This is our base line model for measuring the relative prediction improvements
in subsequence models. Here, the predicted value for xt is the previous day’s
closing price, denoted x̂t = xt−1.

4.3 ARIMA

We use following steps to produce day ahead forecasts using ARIMA:

– Step 1: The training set X, for the model is extracted from the series X,
X = {x1, . . . , xt−100}.

– Step 2: For all possible combinations of (p, d, q) with p, q ∈ {1, 2, 3} and d ∈
{0, 1} an ARIMA(p, d, q) is fitted on X using maximum likelihood estimation
to determine the model coefficients [11].

– Step 3: The model with the least AIC is selected and forecast x̂t−99 is
generated.

– Step 4: The observed value xt−99 is added to the training set X and Steps
2-3 are repeated to produce a forecast for xt−98.

The iterative forecasting process continues until we have a complete set of fore-
cast values {x̂t−99, . . . , x̂t}.

4.4 LSTM

Two different LSTM network topologies were implemented, a 1 node and a 4
node LSTM hidden layer with both having an input layer of 3 nodes. Both are
shown in Figure 1.

In order to fit the network, the time series X, needs to be transformed into
feature and target spaces X̃ and Y respectively. In the 3 node input layer, the
previous 3 observations are used to predict the current:

X̃ = {(x1, x2, x3), (x2, x3, x4), . . . , (xt−3, xt−2, xt−1)} Y = {x4, x5, . . . , xt}

Forecasts were produced with the following steps.

– Step 1: The training feature and target sets are defined as X = {x̃1, . . . , x̃t−100}
and Y = {y1, . . . , yt−100}.



– Step 2: The elements of X and Y are standardised such that all values lie in
the interval [−1, 1]. This is to improve convergence performance and avoid
local minima [15].

– Step 3: The network is trained over 1,000 epochs using the standardised
training set X′. The internal memory of the network is reset after each pass
to ensure that future observations do not inform the parameter fitting.

– Step 4: The set X′ is input to the fitted network so that the internal memory
reflects the time t− 100. This memory will be available for use in forecasts

– Step 5: The standardisation function for X is applied to the test tuples
{x̃t−99, . . . , x̃t} which are sequently input into the model to output the fore-
casts {ŷt−99, . . . , ŷt}.

– Step 6: The inverse standardisation function for Y is applied to {ŷt−99, . . . , ŷt}
to produce a complete set of forecast values {x̂t−99, . . . , x̂t}.

4.5 WAV-ARIMA

An extension to the ARIMA model, this method applies the MODWT to the
series before applying the ARIMA model as above. The steps are as follows:

– Step 1: The training set X, for the model is extracted from the series X.
– Step 2: The J-level MODWT is applied to X to produce the component

series AJ , DJ , DJ−1, . . . , D1

– Step 3: The ARIMA process above is applied to each component series
Dj = {dj,1, . . . , dj,t−100} to produce the forecast d̂j,t−99

– Step 3: The forecasts are appended to each component series, the IMODWT
is applied and the final term in the constructed series is the forecast x̂t−99.

– Step 4: The observed value xt−99 is added to the training set X and Steps
2-3 are repeated to produce a forecast for xt−98.

The iterative forecasting process continues until we have a complete set of fore-
cast values {x̂t−99, . . . , x̂t}.

4.6 WAV-LSTM

The network topologies implemented were the same as those in LSTM, as are
most of the steps for producing forecasts. The main difference lies in the trans-
formation of the series into the feature and target spaces, where the real values
xi ∈ R, are replaced with vectors 〈aJ,i, dJ,i, . . . , d1,i〉 ∈ RJ+1. Out target and
feature sets are now:

X̃ =


(〈aJ,1, . . . , d1,1〉, 〈aJ,2, . . . , d1,2〉, 〈aJ,3, . . . , d1,3〉),
(〈aJ,2, . . . , d1,2〉, 〈aJ,3, . . . , d1,3〉, 〈aJ,4, . . . , d1,4〉),

...
(〈aJ,t−3, . . . , d1,t−3〉, . . . , 〈aJ,t−1, . . . , d1,t−1〉)

 Y = {x4, x5, . . . , xt}

The Steps 1-6 are repeated from the LSTM process to produce a complete
set of forecast values {x̂t−99, . . . , x̂t}.



Fig. 2. Day ahead forecast of AAPL with 4-Level Haar MODWT in a four node LSTM

5 Experiments

The model implementations from the previous section were used to perform
several pieces of analysis. By way of determining a baseline accuracy of forecast-
ing, we applied PREVCLOSE to the five series FB, AAPL, AMZN, NFLX and
GOOG. These baseline forecasts were used to calculate a comparative uplift in
accuracy between the models for each series.

Primarily, we were interested in assessing the impact of the MODWT on fore-
cast accuracy by comparing performance the wavelet and non-wavelet models.
We first applied the ARIMA and the two LSTM network topologies in Figure 1
to each series. For WAV-ARIMA we applied 4-level and 7-level Haar MODWTs
and for the WAV-LSTM, both Haar and db4 4-level and 7-level MODWT’s. In
total this was 13 models for each of the 5 series.

6 Evaluating Performance

With each of the 100-step log return forecasts {x̂t−99, . . . , x̂t}, we were able to
produce a set of predicted closing prices {p̂t−99, . . . , p̂t} with p̂i = p̂i−1e

x̂i and
p̂t−100 = pt−100. Figure 2 displays the day ahead forecast of AAPL using WAV-
LSTM 4haar 4nodes. With these forecasts we calculated the root mean squared
error (RMSE) as a measure of a model’s accuracy. The RMSE metric has the
benefit of having the same units as the closing prices we are predicting.

7 Results

In this section we display the model forecast accuracies for the each stock, a
results summary can be seen in Table 1. For each stock, we present PREVCLOSE



Table 1. Summary of RMSE’s of Each Model. Best Performing MODWT displayed.

Model
PREVCLOSE RMSE % Uplift Wavelet MODWT % MODWT Difference

RMSE RMSE Uplift

FB ARIMA 2.07053 1.53865 25.69% 7haar 1.54491 25.39% -0.30%
FB LSTM 1nodes 2.07053 1.54293 25.48% 7db4 1.53856 25.69% 0.21%
FB LSTM 4nodes 2.07053 1.55138 25.07% 4db4 1.60988 22.25% -2.83%

AAPL ARIMA 1.52926 1.20641 21.11% 7haar 1.22980 19.58% -1.53%
AAPL LSTM 1nodes 1.52926 1.18124 22.76% 4db4 1.17908 22.90% 0.14%
AAPL LSTM 4nodes 1.52926 1.18096 22.78% 4haar 1.13724 25.63% 2.86%

AMZN ARIMA 15.01143 10.67527 28.89% 4haar 10.81004 27.99% -0.90%
AMZN LSTM 1nodes 15.01143 10.91169 27.31% 4db4 10.77066 28.25% 0.94%
AMZN LSTM 4nodes 15.01143 10.96300 26.97% 7haar 11.59515 22.76% -4.21%

NFLX ARIMA 3.81128 2.59786 31.84% 4haar 2.66228 30.15% -1.69%
NFLX LSTM 1nodes 3.81128 2.58489 32.18% 4haar 2.59204 31.99% -0.19%
NFLX LSTM 4nodes 3.81128 2.60693 31.60% 4db4 2.60830 31.56% -0.04%

GOOG ARIMA 10.44286 7.53559 27.84% 7haar 7.67317 26.52% -1.32%
GOOG LSTM 1nodes 10.44286 7.64011 26.84% 7haar 7.52944 27.90% 1.06%
GOOG LSTM 4nodes 10.44286 8.21606 21.32% 4db4 8.39511 19.61% -1.71%

Table 2. Complete result set for all models, topologies and MODWT’s

Stock PREVCLOSE

FB 2.070532462

AAPL 1.529257509

AMZN 15.01142692

NFLX 3.811278731

GOOG 10.44286479

Stock ARIMA
WAV-ARIMA

Level 4 Haar Level 7 Haar

FB 1.53865366 1.54520178 1.544907855

AAPL 1.206405729 1.230079949 1.229804921

AMZN 10.67527361 10.81561318 10.8100369

NFLX 2.597855905 2.662275598 2.664253074

GOOG 7.535593313 7.682333036 7.673170282

Stock
No.
Nodes

LSTM
WAV-LSTM

Level 4 Haar Level 4 d4 Level 7 Haar Level 7 db4

FB
1 node 1.54292574 1.54683345 1.55667579 1.56150331 1.53856127
4 node 1.55137747 1.71497296 1.60988027 1.76003729 1.69619960

AAPL
1 node 1.18123917 1.19427418 1.17908097 1.19860824 1.20337696
4 node 1.18095573 1.13724068 1.25800922 1.26328940 1.29806305

AMZN
1 node 10.91168764 10.93125569 10.77066223 11.00314703 11.58069993
4 node 10.96300010 11.72580050 12.13373019 11.59514859 11.83471550

NFLX
1 node 2.58489304 2.59204445 2.60772126 2.78392026 4.87489893
4 node 2.60692975 2.64937129 2.60829730 2.99247356 2.71020707

GOOG
1 node 7.64010799 7.53330948 7.59589637 7.52944289 7.57958487
4 node 8.21605979 8.93254555 8.39510627 10.56156750 10.74900998

RMSE as a baseline to compare with the model RMSE. The accuracy uplift is
the percentage improvement in RMSE.

The best performing MODWT is selected with the MODWT RMSE and
MODWT Uplifts displayed. The difference between the two uplifts is a measure
of the improvement in accuracy resulting from the MODWT. The full set of
results for all MODWT can be seen in Table 2.

8 Discussion

Both the ARIMA and LSTM significantly outperform the PREVCLOSE fore-
casts in all implementations, providing around a 20 - 30% lift in forecast accuracy.
ARIMA outperforms both the LSTM topologies across the majority for stocks,
with AAPL the only instance where there is a notable improvement (> 1%
increase in uplift) when using the LSTM.

We suspect this is because of the difference in forecasting methods between
the two approaches. With ARIMA, a new model is trained with each step of the
100 day forecast to incorporate each new current day observation. With LSTM,
the model is fit on the initial training data only and while the node states will



update as the test data is played through the network, the synapse weights are
fixed. We suggest there may an increase in LSTM accuracy if the network is
retrained after each forecast to include the observed value for the current day.

The 1 node LSTM hidden layer continually outperformed the 4 node layer
in both RMSE and MODWT RMSE, with AAPL the only exception, demon-
strating that an increase in model complexity does not always translate to an
improvement in model performance.

All of the ARIMA models outperformed their WAV-ARIMA counterparts,
suggesting that the component series are less suitable to this type of modelling
than the original series. The majority of the differences in uplifts between the
LSTM and WAV-LSTM models were negligible (< 1% difference in uplifts), with
the exception of the APPL 4 node WAV-LSTM with a 4-level Haar decompo-
sition which had a 2.86% increase in accuracy uplift and the AMZN 4 node
WAV-LSTM 7-level Haar with a 4.21% decrease.

In summary, the results show no significant gains in forecast accuracy result-
ing from the MODWT in either the ARIMA or LSTM models. This contrary to
the research in [24] and [16] and would suggest there are further refinements to
be made to our approach.

Our selection of the 4-level and 7-level decomposition were arbitrary and
further work in our method could make this a more informed decision by incor-
porating the PCA as seen in [16]. Similarly our choice of the number of input
nodes in LSTM, in this instance a 3-lag input, could better inferred by making
using of the Partial Autocorrelation Function (PACF) in the ARIMA model.

A major assumption of the ARIMA model is constant variance or volatility.
This seems unlikely in a real world scenario given the trading volumes that sur-
round company specific or geo-political events like earnings reports or the USA
Presidential election. An ARIMA with addition explanatory variables (ARI-
MAX) or the General Autoregressive Conditional Heteroskedasticity (GARCH)
model as suggested in [24] could better describe this behaviour.

9 Conclusion

In this paper we deployed the ARIMA and LSTM models for forecasting future
values in a univariate time series. We demonstrated the MOWDT, a technique
for decomposing a time series into approximation and detail components, while
preserving the temporal information of the original series. We combined these
techniques and developed an ensemble approach in order to produce 100 1-day
ahead forecasts of the daily closing price of FAANG stocks on the NASDAQ
exchange. We presented our results and offered possible suggestions for the out-
comes. Finally we recommended further avenues of investigation in order to
expanded and improve upon our work.
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