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Abstract. This study investigates the use of query expansion (QE)
methods in sentence retrieval for non-factoid queries to address
the query-document term mismatch problem. Two alternative QE
approaches: i) pseudo relevance feedback (PRF), using Robertson term
selection, and ii) word embeddings (WE) of query words, are explored.
Experiments are carried out on the WebAP data set developed using the
TREC GOV2 collection. Experimental results using P@10, NDCG@10
and MRR show that QE using PRF achieves a statistically significant
improvement over baseline retrieval models, but that while WE also
improves over the baseline, this is not statistically significant. A method
combining PRF and WE expansion performs consistently better than
using only the PRF method.
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1 Introduction

Sentence retrieval is a challenging information retrieval (IR) task which is useful
in question answering and summarization systems. Retrieval of sentences rel-
evant to an answer is a difficult task due to short length of the target items
which are more likely to suffer from vocabulary mismatch with respect to the
query. We focus on the new task of answer passage retrieval for non-factoid
queries [3,8]. In this paper we investigate two unsupervised query expansion
(QE) methods which seek to address the query-document term mismatch issue.
First, we use Robertson’s standard Okapi QE relevance feedback method [7].
Second, we propose a word embedding (WE) method [6] to expand the query
using words similar to the query based on vector similarity. Finally, we explore
the combination of these alternative sources of evidence for QE. We investigate
the following research questions:

1. How do unsupervised approaches using traditional retrieval techniques with
QE perform for the task of sentence retrieval from a target corpus?

2. Can we leverage word embeddings to improve retrieval effectiveness in a sen-
tence retrieval task?
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2 Related Work

Finding relevant sentences from a given document for a given query is a common
task in applications which involve generating summaries and abstracts from
individual documents [5]. Our work differs from this since we are focused on
retrieval of relevant sentences from a complete target document collection for a
given query to find answer sentences for non-factoid queries, similar to the work
reported in [8].

A related study [1] explored different retrieval models and QE techniques
to find novel information from a document collection. Our work is focused
on relevancy rather than novelty but we also explore QE models. Supervised
approaches such as Learning-to-Rank (L2R) have been used for answer sentence
retrieval [3,5,8]. Our work investigates whether we can achieve similar perfor-
mance using QE techniques as compared to L2R techniques.

Word embedding is a method for forming low-dimensional vector represen-
tations of words based on co-occurrence in a reference corpus, thereby providing
a means of semantic comparison between words. WE is of increasing interest
among the IR community, and there are a number of examples of recent work
exploring the use of WE for document-based QE [2,4,9]. [4] investigated differ-
ent methods for document retrieval, [2] compared different types of embeddings,
and [9] explored effective ways of combining embeddings and co-occurrence based
statistics for document retrieval. Our work is similar but we focus on the task
of sentence retrieval.

3 Experimental Methodology

As our baseline models, we perform sentence retrieval using: (i) a language mod-
eling (LM) method that uses Jelinek-Mercer smoothing [10], and (ii) the BM25
model [11]. We then perform QE using the following methods:

1. Pseudo Relevance Feedback (PRF): We use a standard PRF method in
which an initial retrieval run is carried out using the selected baseline retrieval
system. A number of the top ranked documents are assumed to be relevant,
and potential QE terms from within these documents are ranked using the
Robertson Offer Weight [7]. A fixed number of these terms are then added to
the original query.

2. Semantic expansion, using word embeddings (WE): We explore two
novel approaches to using WE for QE. The embedding of each word is com-
puted using the Word2Vec [6] method, which learns vector representation
using a feed-forward neural network by predicting a word given its context
(the cbow model).
For a given query Q consisting of n terms q1, . . . , qn, for each term qi we
generate a pool of potential candidate expansion terms ci, such that ci =
the top z most similar terms t1, . . . , tz for each term qi. Thus the complete
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set of potential expansion candidates for query Q is Cj
i = c1, . . . , cn, where i

varies from 1 to n and j varies from 1 to z. The most similar terms for each
term qi are obtained by calculating the cosine similarity between its vector
representation and the terms in the document corpus. We then select the
top k expansion terms for Q from the potential candidates, using one of two
methods:
(a) QueryWord approach : We sort all the terms in Cj

i , based on the cosine
similarity score between each term tji and the corresponding query term
qi. We select the top k terms from this sorted list as the expansion
terms. The use of the cosine similarity in this way biases this list towards
expansion terms which are closely related to terms in Q, these terms
may be synonyms or words with a close semantic relationship to terms
appearing in Q.

(b) Centroid approach : We form a centroid vector (CV ) of the query, by
summing the vectors of all the query terms qi in Q. We then sort all the
terms in Cj

i , based on the cosine similarity score between each term tji
and CV . We select the top k ranked terms as the expansion terms which
are most similar to CV . The main goal is to retrieve terms which are
related to all the terms in Q as a unit.

3. Combining WE and PRF: PRF seeks expansion terms in the top ranked
documents following an actual search which is hoped will have retrieved rel-
evant items, while WE seeks to identify words that are similar in meaning to
the query words independent of their use in the query. PRF and WE thus pro-
vide different sources of information which may be exploited in combination
in the QE process. To explore the potential for this combination, we examine
an approach which linearly combines terms expanded using PRF and WE
calculated as follows,

COW = (wt) ∗ WEEQT + (1 − wt) ∗ PRFEQT (1)

where EQT stands for expanded query terms.

4 Experimental Setup

We use the WebAP dataset [8], which was developed using the TREC Gov2
collection, and has 82 queries with a total of 6,399 documents consisting of
991,233 sentences which are marked at the sentence level on a 5 level scale of
topical relevance: 4: perfect, 3: excellent, 2: good, 1: fair, 0: none. Following [8],
we used precision (P@10), normalized discounted cumulative gain (NDCG@10)
and mean reciprocal rank (MRR) to compare the performance of our methods.

The Lucene toolkit1 was used to perform sentence retrieval. We performed
stemming and stopword removal using the Lucene EnglishAnalyzer. Sentence
retrieval used lucene’s implementation of LM or BM25. We implemented our own
1 https://lucene.apache.org/core/4 4 0/core/overview-summary.html.

https://lucene.apache.org/core/4_4_0/core/overview-summary.html
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version of Robertson QE. The Gensim tookit was used to learn and incorporate
word embeddings for use in QE as described above. We used two different types
of embeddings:

1. Global embeddings: Embeddings trained on Google news, consisting of about 3
million 300 dimension English word vectors which are released for research. 2

2. Local embeddings: Embeddings learnt using subcollection of the WebAP
dataset consisting of 6,399 documents, with parameter settings as follows–
method: continuous bag-of-words (cbow), embedding size=200, window for
training = 10, iterations set for learning = 20, the rest of the parameters
were kept as default. 3

5 Results and Analysis

Baselines: We explored optimization of parameters by varying λ in the LM
retrieval model in the range of [0.05, 1.0], and performed grid search in the
range of [0.1, 1.5] with an increment of 0.1 for the b and k parameters for the
BM25 model. Our best results were obtained for λ = 0.45 for LM and b = 0.4
and k = 0.4 for BM25, as shown in Table 2, these values were then fixed for
subsequent experiments. Table 1 also presents the best result reported in [8] for
their L2R model. Our baseline results are comparable to their results using LM.
However, note that they used Dirchlet smoothing techniques whereas our model
uses Jelinek-Mercer smoothing, which might be the reason for small variation in
the results.

Table 1. Our baseline results and previous results as reported in [8].

P@10 Ndcg@10 MRR P@10 Ndcg@10 MRR

LM retrieval model

Results from [8] 0.145 0.134 0.339

Best model from [8] LearningToRank (only LearningToRank (features

sentence level features) from neighboring sentences)

Best results from [8] 0.174 0.159 0.344 0.194 0.180 0.403

Our implementation LM retrieval model BM25 model

Baseline 0.149 0.127 0.293 0.158 0.142 0.330

2 https://github.com/mmihaltz/word2vec-GoogleNews-vectors.
3 We learnt different embeddings by varying the training method, dimension size,

window size, no. of iterations in internal development experiments, but the results
obtained showed little variation in performance.

https://github.com/mmihaltz/word2vec-GoogleNews-vectors
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Table 2. PRF based expansion results, the best scores are in boldface. + and ∗ indicate
statistically significant improvement over the baseline with p < 0.05 and p < 0.1
respectively, using student’s t-test

P@10 Ndcg@10 MRR P@10 Ndcg@10 MRR

LM retrieval model BM25 model

Baseline 0.149 0.127 0.293 0.158 0.142 0.330

Weight, wt, 0.6 0.153 0.140 0.319 0.170 0.160 0.352

Weight, wt, 0.7 0.153 0.140 0.328 0.173 0.162∗ 0.352

Weight, wt, 0.8 0.150 0.137 0.322 0.174∗ 0.162+ 0.347

Weight, wt, 0.9 0.149 0.133 0.317 0.164 0.153∗ 0.346

Pseudo Relevance Feedback (PRF): We varied the number of assumed relevant
documents R, and expansion query terms (EQT ) in the range of {5, 10, 15, 20}.
We linearly varied the weight of initial query terms Q and expansion terms
EQT .

Expanded Query = wt ∗ Q + (1 − wt) ∗ EQT (2)

where wt varies in range [0.5, 1], with an increment of 0.1.
For both LM and BM25, the best PRF results were obtained using R = 10

and EQT = 10, as shown in Table 2, with varying weights between initial and
expanded query terms. Based on these results, we fixed values R = 10 and EQT
= 10 for further experiments using PRF. PRF shows significant improvement
over both baselines, similar effects were reported in earlier work on sentence
retrieval by Allan et al. [1]. The BM25 model performed consistently better
than LM, thus we report further results using only BM25.

Word Embeddings (WE): We used the value z = 10 for all the experiments, where
z determines the number of terms entered into the pool of potential candidate
expansion terms for each individual query term as described earlier in Sect. 3.
The overall number of expansion terms k selected from the pool was varied as
{5, 10, 15}. We linearly varied the weight of query terms and expansion terms
as shown in Eq. 2. For each combination of embedding (Global and Local) and
the expansion technique (QueryWord and Centroid) the best results (based on
P@10) are shown for BM25 in Table 3.

Combining WE and PRF: Table 3 shows results using the combined expan-
sion approach. The number of expanded terms k for expansion using WE was
varied as {5, 10, 15} while R=10 and EQT=5 was used for performing PRF.
As described in Eq. 1, wt varies in range [0.1, 1] with an increment of 0.1. For
each combination of embedding (Global and Local) and the expansion technique
(QueryWord and Centroid) the best results (based on P@10) are presented for
BM25. The combined expansion approach WEPRF, performs consistently better
than using either the WE and PRF approaches.
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Table 3. Embedding based WE and WEPRF approach for sentence retrieval, best
scores are in boldface. ∗ indicates that the difference in the results compared to the
baseline is statistically significant with p < 0.1, using student’s t-test. NDCG scores
are calculated at rank 10.

Word embedding (WE) Combined approach (WEPRF)

BM25 model BM25 model

P@10 NDCG MRR P@10 NDCG MRR

Baseline 0.158 0.142 0.330 0.158 0.142 0.330

Best PRF result 0.174∗ 0.162+ 0.347 0.174∗ 0.162+ 0.347

QueryWord approach for semantic expansion: using global embeddings

Best result 0.158 0.144 0.340 0.179∗ 0.166∗ 0.357

QueryWord approach for semantic expansion: using local embeddings

Best result 0.168 0.151 0.350 0.165 0.157 0.352

Centroid approach for semantic expansion: using global embeddings

Best result 0.165 0.144 0.320 0.173 0.162 0.354

Centroid approach for semantic expansion: using local embeddings

Best result 0.159 0.142 0.316 0.168 0.160 0.361

Analysis: We explored sentence retrieval with QE, best results obtained using
WEPRF approach are better than Learning-to-Rank results reported in [8] using
only sentence level features, but are slightly lower than the best results using
information from neighbourhood sentences. However, the simpler unsupervised
technique WEPRF is still quite good and can be used for retrieval problems
where data is not sufficient to train effective Learning-to-Rank models.

Using only WE techniques shows that the QueryWord approach trained
on Local embeddings performs relatively better for QE than using Global
embeddings or the Centroid approach. Local embeddings tend to generate bet-
ter expanded terms which are more related to the query terms and the corpus.
In the combined approach (WEPRF), where the PRF method provides poten-
tially in-context expanded terms using top potential relevant sentences, the best
results are obtained using QueryWord approach with Global embeddings, which
generates more diverse expanded terms (number of expanded terms = 5) to
improve the retrieval effectiveness.

We performed manual analysis to analyze QE using WE. For TopicId: 704
goals green party political views, both Global and Local embeddings were
able to expand and identify most of the common terms such as (“democratic,
republic, caucus, candidacy, viewpoints, opinions, ideology, politicians”), and
are thus able to capture context which improve the task of sentence retrieval.
Further, for TopicId: 741 (“artificial intelligence”), Global embeddings learnt
using Google ngrams drifted towards “intelligence in security, intelligence agen-
cies and counter-terrorism” aspects, whereas Local embeddings were able to
capture aspects related to the main query more effectively (“neural, bayesian,
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combinatorial, acm, aaai, icml etc”). Further analysis indicates that WE tech-
niques are complementary to PRF techniques, and the combination approach
performs better as shown in Table 3.

6 Conclusions and Further Investigation

We explored query expansion techniques for sentence retrieval from a corpus
of documents, achieving our best performance for an approach that combines
the use of word embeddings and pseudo-relevance feedback. We plan to perform
further analysis to learn more about how to exploit semantic representations for
this task.
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