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Constants

_ n -1

a (ZL3)
Operators

r®y for x,y € R" (T ®Y)ij == 2y,
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Abstract

Dynamic Information Aggregation in Asset Prices
Luca Bernardinelli

This thesis investigates how the information dispersed among market participants dyn-
amically aggregates in asset prices, the extent to which prices reflect available informa-
tion, and how such information affects investors’ decisions. The main model considers
a population of investors with different absolute risk aversions and time-varying, di-
verse signals on the growth rate of an asset’s dividends. Each investor bids the asset
based on the information in his private signal and in the asset price itself, which is
determined in equilibrium by the market-clearing condition and partially reflects the
signals of other market participants. The dividend stream is driven by a latent variable,
which investors strive to estimate based on their individual, private information, and
on the common knowledge revealed by prices. We find in closed form equilibrium prices
and the optimal behaviour of the agents. Price volatility depends on the volatility of
dividends and on the volatility of the estimate of the latent variable, which is revealed
to all agents through prices. Equilibrium prices do not reveal all the private signals of
market participants, but the same estimate of the state of the economy that an agent
with all private signals would be able to obtain. Put differently, prices reveal not all
information but all relevant information. The first chapter presents a baseline model,
where the only noise in the market is on the stochastic dividend process. In the second
chapter dividends become mean reverting to a state variable observed by all agents -
the state of the economy - which fluctuates over time. The state of the economy is
unobservable in the last chapter, but market participants have individual information,

which jointly with asset prices, helps them to estimate the latent variable.
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Introduction

Any version of the efficient market hypothesis [14], weak, semi-strong or strong, im-
plies that asset prices reveal part of the information available to market participants.
This thesis investigates how the investors’ heterogeneous information aggregates in as-
set prices and to which extent such knowledge spreads to the economy. How good is
the information revealed from asset prices? Our models are inspired from the work of
Hayek [17], who realises that agents are only aware of their surroundings and not of
every change in the economy, and that “knowledge never exists in concentrated or inte-
grated form, but solely as the dispersed bits of incomplete and frequently contradictory
knowledge which all the separate individuals possess”[17]. The presence of many dis-
cordant investors contrasts the classic concept of a central planner, the fully informed
rational authority analysing data and making decision on behalf of society.

The main model considers a population of investors with different absolute risk
aversions and time-varying, diverse signals on the growth rate of an asset’s dividends.
Each investor bids the asset based on his private signal and on the asset price itself,
which is determined in equilibrium by the market-clearing condition. The dividend
stream is driven by a latent variable, which investors strive to estimate based on their
individual, private information, and on the common knowledge revealed by prices. Asset
prices do not only broadcast the present value of future dividends as in the classic
theory, but they become a channel streaming not all the knowledge in the economy,
but an aggregate flow of what is important. We prove the existence of an equilibrium
and its uniqueness in the family of linear equilibria, we derive in closed form the unique
optimal behaviour of the agents and the price of the risky asset, assuming that each
investor has constant absolute risk aversion. Price volatility depends on the volatility of
dividends and on the volatility of the estimate of the latent variable, which is revealed

to all agents through prices.

Methods

While the market models of this thesis become more general and complex as the chapters
flow, the proofs of existence and uniqueness of the equilibrium follow a common pattern.
Assuming a parametric form of the linear price, we calculate the dynamics of a self-

financing portfolio and we find heuristically the Hamilton-Jacobi-Bellman equation.
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One of its solutions is our guess for the value function and we use it to conjecture optimal
behaviours of the agents and stochastic discount factors. Once we get heuristics for the
optimal policies, we verify admissibility and optimality of the consumption-investment
processes and we use the market clearing condition, stating the presence of only one
risky asset at each point in time, to conclude existence and uniqueness of the linear

equilibrium.

Literature

The theory of heterogeneous information, formulated by Hayek [17] in 1945, has been
extensively studied in one period models in which agents trade at time 0 and consume

4

at time 1. In 1976 Grossman [15] proposes a model with a “fully revealing equilibrium’
in which the price “reveals information to each trader which is of “higher quality”
than his own information”. Hellwig [19] shows the existence of an equilibrium price
dependent on the agents’ preferences claiming that the less risk averse investors are,
the more they act on new information. Diamond and Verrecchia [13] develop a non fully
revealing equilibrium and Admati [1] generalizes the findings to more than one risky
asset assuming a large number of investors. Vayanos and Wang [34] show heterogeneous
information to raise expected returns and to affect several measures of liquidity. All
these models analysing the cross-section reveal how prices aggregate knowledge on short
terms risks but they do not explain how prices combine information on expectation of
future cash flows.

As soon as agents are allowed to trade for more than one period, the price of risky
assets becomes a signal from which investors wish to extract information. Prices depend
on private and public information of market participants, which, in turn, depend on pri-
ces. Such endogenous information structure leads to an infinite regression described by
Keynes in [23] and called “Forecasting the forecasts of others” by Townsend [33]. “An
understanding of financial markets requires an understanding not just of market parti-
cipants’ beliefs about assets’ future payoffs, but also an understanding of market partici-
pants’ beliefs about other market participants’ beliefs, and higher-order beliefs”[3]. Many
authors have been tackling the issue of higher-order beliefs in multi-period discrete mo-
dels because such beliefs complicate the search for closed-form solutions. Higher-order
beliefs are linear functions of first order beliefs in [18] while Allen, Morris and Shin [3]
focus their interest on the failure of the law of iterated expectations when dealing with
second order beliefs. Bacchetta and Wincoop [6] show that the presence of higher-order
beliefs reduces price volatility and the impact of expected changes in future dividends,
thus moving the price away from present value of expected cash flow.

The models of our paper are inspired from those of Wang [36], who focuses on the
effects of noise trading on price volatility in continuous time. The presence of noise tra-

ders introduces asymmetry of information among two families of agents: those who see
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the process of noise traders and those who do not. Separating the agents in two classes
with homogeneous knowledge, avoids the infinite regression of information because the
uninformed traders are the only ones wishing to learn from the price. Veronesi [35]
studies a continuous time model with heterogeneous agents, where the dividends’ drift
is driven by a Markov chain with discrete state space. He shows that lower noise in
the private signals increases the risk premium and that the equity premium is boun-
ded from above by a constant not depending on the investors’ risk aversion. Market
participants, with heterogeneous information and thus endogenous filtrations, trade in
continuous time in Qiu and Wang [30]. They argue that “information heterogeneity
tends to lower the level of asset prices, increase price volatility and return variability,

and reduce trading volume”.

Outline of the dissertation

The first chapter presents the simplest model of the thesis, where the only noise in
the market is on the stochastic dividend process. We give sufficient conditions for the
agents’ optimal consumption-investment problem to be well-posed and ill-posed. In
case of a well-posed problem, we solve it showing the agents’ optimal strategies and the
unique linear equilibrium in closed form. For the ill-posed optimal consumption problem
we construct a maximizing sequence that yields in the limit zero expected utility, which
cannot be attained by any strategy as the utility function is strictly negative.

In the second chapter dividends become mean reverting to a state variable, called
state of the economy, stochastic but known by all agents. In the light of the findings in
Chapter 1, we show a region in which the investors’ optimization problem is well-posed
and we find in closed form the unique linear equilibrium for a small noise of the state
variable.

The full-blown model appears in Chapter 3, where the stochastic state of the eco-
nomy is not adapted to the filtrations of the agents. Investors filter such a latent variable
with public prices and private signals. We show the existence of an equilibrium and its
uniqueness in the family of linear equilibria.

All chapters share a common structure: the formulation of the problem appears in
the first section, the main result in the second one, while the third section contains
the heuristics for the consumption-investment problem of the agents. The verification
starts in the last section of each chapter and culminates with the results of existence of

the equilibrium and its uniqueness in the class of linear equilibria.
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Chapter 1

Baseline model

1.1 Model and main definitions

The economy has one risky asset in unit supply, which pays a dividend stream (D;);>¢

described as
dDy = (7 — kD,)dt + opdWp. (1.1.1)

There is a continuously compounded risk-free asset (P);>o with rate of return » > 0,
at which investors can both lend and borrow. There are n € N investors competing for
the risky asset, with price (P;);>0. The i—th investor has constant absolute risk aversion
a; > 1 and initial wealth zj € R. WP = (WP);5, is a Brownian motion and Dj is a
normal random variable, with mean pp and variance ¥2,, independent of the Brownian
motion previously defined. The probability space is (2, G, (Gi)i>0, P), where G, is the
augmented natural filtration of Dy, (W, )o<u<: and G is the augmented sigma algebra
generated by U0 G-

In such economy assume k,op > 0 and 7 € R. All equalities and inequalities between

random variables are understood P—almost surely.

Definition 1.1.1 (Admissibile strategies). (¢, 0;)i>0 is an admissible (consumption-investment)

strategy for the i—th investor if:

(i) (ct)i>0 and (0:)i>o are (Gi)i>o—progressively measurable processes;

(ii) for every s >0

t
lim supF [/ N,c,du

t—-+o00

gs:| S Nsxsa (112)
where (X});>0 is the self-financing wealth process

dX, = —cdt + 0,Ddt +r(X, — 0,P,)dt + 0,dP,, X, =z}, (1.1.3)

I'Note that all filtrations are augmented with the null sets of the sigma algebra G.
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1.1. MODEL AND MAIN DEFINITIONS

(N¢)i>o is the process

1 rt

¢
N; = exp (—rt +/ (ApD, + No)dWP — 5
0 0

(ApD, + A0)2du> (1.1.4)

and Ap and A are given in Definition 1.4.1 below.
The set of admissible strategies for the i—th investor is U*.

Definition 1.1.2 (Optimality). A (consumption-investment) strategy (c, 6?);>o is opti-

mal for the i—th investor if it is admissible and if

+00 . +00 o
/ e P U (¢, )du / e U () du
0 0

go} =F

Go

sup E : (1.1.5)

(c.0)eu’

where

U'c) == — , ie{l,...,n}.

The time impatience parameter § > 0 is common to all agents. The consumption-
investment problem of each agent is well-posed if an optimal strategy exists, otherwise

the problem is ill-posed.

Remark 1.1.1. The process (D;);>o starting with a random variable is not a fundamental
feature of the model in this chapter but it will be important in the third chapter, for a
stationary filter in Lemma 3.4.1. Dy being a random variable implies that the o —algebra

Go is different from the trivial c—algebra, so a conditional expectation appears in (1.1.5).

Definition 1.1.3. (¢}, 01);>0 is the unique optimal (consumption-investment) strategy for

the 1—th investor if it is optimal for the ¢—th investor and if
(¢ 020 = (€, 0)i20 Ao 4o @ P —as.

for every other optimal strategy (¢, 0;)i>0-

Definition 1.1.4. A linear equilibrium is an (n + 2)—tuple (ep,C, (S)'="="), where
ep € R\ {2/r},C € R and S' = (c},6});>0 is an optimal strategy for the i—th investor
for every i € {1,...,n} such that for every ¢t >0

(i) the price of the risky asset is

Py =C+epDy; (1.1.6)
(ii) the market clearing condition
d g =1 (1.1.7)

holds.

16



1.2. EXISTENCE AND UNIQUENESS OF THE EQUILIBRIUM

1.2 Existence and uniqueness of the equilibrium

Theorem 1.2.1. There exists a unique linear equilibrium (ep, C, (S)IS=") for which

the price is

o2
T ot 1

1
"1
P =C" *D h C* = — = d a= — )
! tepl,  where r(k+r) (k:—i—r)?’eD k+r e« (2%)

The unique optimal consumption-investment strateqy for the i—th agent is

B—r a* rod

ro; 20; (k +1)?’ t

o =rX;"+

. (1.2.1)

ST

For every ep < 0 or ep > 2/r the consumption-investment problem of the agents is

ill-posed and in particular no linear equilibrium exists.

Preliminaries and outline of the proof

Remark 1.2.1. If ep = 0, then (1.1.6) implies P, = C' for every ¢ > 0. If the assets are
two deterministic processes with different interest rates (0 for P, and r > 0 for PY),
then the model admits arbitrage, therefore the consumption-investment problem of the

agents is ill-posed and in particular no linear equilibrium exists.

Remark 1.2.2. Theorem 1.2.1 specifies that the consumption-investment problem of
the agents is ill-posed for every ep < 0 and ep > 2/r. Furthermore the consumption-
investment problem of the agents is well-posed for every ep € BT and a unique equili-
brium exists for ep € R\ {2/r}. If ep = 2/r the solution of the HJB equation (1.4.3)
is not exponential affine any more. We conjecture the consumption-investment pro-
blem of the agents to be ill-posed and the existence of a portfolio (X7, ciT 0iT),50 ren
satisfying (1.3.5).

Definition 1.2.1. A value function for the i—th investor is a function
Vi R? — [~00,0)
(,D) = V'(z, D)
such that for every (7, D) € R?

Vi(z,D)= sup E

400 .
/ e U (¢, )du
(c,0)eU’ 0

wy =T, Do = D] : (1.2.2)

It follows from this definition that if there exists a value function V*(-) and a strategy

(¢, 07*)>0 optimal for the i—th investor, then

L +o00 .
Vi(zi, Do) = E / e~ B U () ds
0

G

17



1.2. EXISTENCE AND UNIQUENESS OF THE EQUILIBRIUM

Definition 1.2.2. A stochastic discount factor (SDF) is a positive, continuous, (G;);>o—adapted
process (M;);>o such that for every 0 < s <t

M,P? = E[M,P)|G,] (1.2.3)
and

S t
M.P, + / M,Dydu = E [MtPt + / M, D, du
0 0

94. (1.2.4)

A stochastic discount factor is normalized if My = 1.

We find the (unique) equilibrium in the market in two steps: first we solve the
optimal consumption problem of the agents for a generic price with the form of (1.1.6)
or, when this is not possible, we show that such problem is ill-posed; then we clear
the market with condition (1.1.7) and we deduce that the price of the unique linear

equilibrium has parameters

T ao? 1
Cr = — D d ¥ = .
r(k+1)  (k+1)? o Ry

e Section 1.3 contains the formal derivation of the results, divided in two subsecti-

ons;

— for ep € B :=(0,2/r), Subsection 1.3.1 formulates the Hamilton Jacobi
Bellman (HJB) equation, which leads to a guess of the value function and

the optimal strategies.

— for ep < 0 and for ep > 2/r, Subsection 1.3.2 formulates the HJB equation
for the finite horizon, which leads to a sequence of admissible strategies whose

total utility tends to 0 as the horizon approaches +oc0.
e Section 1.4 formalizes the heuristics of the previous section.
— Subsection 1.4.1 proves the existence and uniqueness of the optimal port-

folio for a generic price function for ep € BT,

— Subsection 1.4.2 proves the consumption-investment problem of the agents
to be ill-posed for ep < 0 and for ep > 2/, finding a sequence of admissible

strategy whose total utility converges to 0 as the horizon approaches +oo.

— Subsection 1.4.3 finds the unique linear equilibrium in the market through

the market clearing condition.

e Appendixes A and B recall some well known results that are used along the

chapter.
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1.3. HEURISTICS

1.3 Heuristics

1.3.1 Well posed problem

Guess a value function V* which depends on the dividend rate and on the wealth;
because of the infinite time horizon we guess that V' does not depend on the initial

time t > 0, i.e.

VX! D)= sup E

/+oo e PEDU () ds
(@ oyeui Lt ’

G| .

Splitting the integral at time ¢ + h and using the tower property, the value function is

]

Multiplying both sides by e#* and since E [ 00 e Bls=(t+h)] Ui(ci)ds\gﬁh} = VU (X/., Diin)

we get
i)

o t+h o
V' (X};,Dy) = sup E [/ e PN ds + e E Gian
t

400 .o
/ g Pls=(t+h)] U'(c)ds
(ct,0%) t

+h

S o t+h o
b eiﬂ(Hh)VZ(XZer Diyn) — e VX, Dy) gt:| = —e¢ 7 sup E l/ 675(8%)(]1(02)(15
t

(c%,6%)

(1.3.1)

Applying Itd’s formula to the function e PV X}, D;) yields

o o t+h A A . A
e PNV XY, Digy) = e PVH(X], Dy) + (Sug)') t 6_58{ -V, [ —c+r X+

) . ) 1 . .
0 (ep7 — rC) + 6Dy (1 — repy — EDm] +Vh(T — kD) + 5 [V;w(eé)%%a,%—l—
) o t+h o )
Vi 0?4+ 2\/;[,9;@0%] }ds + [ e (Vibiepap + Viop) P
t
Assuming sufficient regularity for the value function V* and for the investment strategy

0, the Brownian term is a martingale and therefore taking expectation of both sides

and using (1.3.1), we get

t+h o
—e P sup E [/ e PO )ds
t

t+h . . . .
/ eﬁS{ BV Vi [—c;+rxg+
(c4,0%) t

Qtl = sup F
(ct,0%)

40 (epit —1C) + 0 Dy(1 — rep — eDk)} V(R — kDy)+

+, [v;xw;)?egag Vo 4+ 2v;De;eDo—§7} }ds

gt} .

19



1.3. HEURISTICS

Dividing both sides by h yields

0 = sup { _°
(ct,0%)

i

— BV + VI { —c+rz+0(epm —rC)+0'D(1 — rep — 6Dk)]"‘

Q;

+Vi(E— kD) + 5 [I/;‘x(Hz)Qe%a% Vol + 2\/;179@@0},] } (1.3.2)

Differentiating with respect to ¢ and €?, we find the candidate optimal consumption-

investment policy

. i = _ B B : )
_ ~log(Vy) g _ _Vz {(EDW rC)+ D(1—rep EDk)] + V. pepop

Q; Vi €203

%

(1.3.3)

The HJB equation for the :—th investor follows by substituting the candidate optimal
policies into (1.3.2)

i O og(Vi . ‘
0= _Kf — BV + V;{ Og(i‘ :) +re+ 0" (epm —rC) +60"D(1 —rep — GDk)]+

) 1 ) ) ) S
+Vi(r— kD) + 5 [v;$(el*)26ga% Vo + QV;DQHEDU%]. (1.3.4)
Using the Ansatz Vi(z, D) = _%«i exp(—ro;z + dppD? + dpD + dy), where dpp, dp, do
are in Theorem 1.4.1, (1.3.3) leads to the optimal consumption investment strategy

¢ —pxi_ 0o0 00 % gi — MpDi + Mo
¢ ¢ a; a; CYZ'7 t MO./Z‘ ’

where Mp and M, are in Definition 1.4.1.

1.3.2 Ill-posed problem

-----

+oo o
/ e PEIU (T ds
0

sup £ QU} =0 (1.3.5)

TeN
for every ep < 0 or ep > 2/r. Equality (1.3.5) shows the consumption-investment
problem of the agents to be ill-posed because utility 0 is not attainable since the utility

function is strictly negative.

Guess a value function V? = V¥(t, T, x, D) for the problem with finite horizon T' > 0,
i.e. suppose that
0]

) ) T o
Vi(t,T,X;,Dy))= sup FE l/ e PO () ds
(ct,0%)eut t

20



1.3. HEURISTICS

Splitting the integral at time ¢ + h and using the tower property, the value function is

. . t+h o T o
V'(t,T,X/,Dy) = sup E [/ e PO ds + e PE [/ e Pl (Y ds
(@) e th

gt+h‘|

i
Multiplying both sides by e#* and since F [ftzh e_ﬂ[s_(t+h)]Ui(Ci)dS’gtJrh}
= Vl(ta T7 Xti—l—h) Dt+h)7 we get

E e*ﬁ(Hh)Vi(t +h,T, XZJrh; Diyn) — eiﬁtvi(u T, X, D)

G,| -

t+h o
—e¢ P sup E [/ e PEIU () ds
(c',67) t

gt] . (1.3.6)

[to’s formula, applied to the function e #'Vi(t, T, X}, D), yields

‘ ' ' . t+h . .
e PNVt + b, T, X[, Deyr) = e PV, T, X], Dy) + sup e‘ﬁs{VZ — pV'+
(Ci,gi) t

LV —CQ—FTX;—I—@;(GDTT—TC)+9;D5(1—reD—eDk)} +V£)(7‘r—kDS)+{V; (672202 +

2

. 9 . . 9 t+h . . D

YV pod + QWDQ;GDUD] }ds + [ e (Viienon + Vi) dwP.
t

Assuming sufficient regularity for the value function V* and for the investment strategy
%, the Brownian term is a martingale and therefore taking expectations of both sides

and using (1.3.6), we get

t+h o
—e P sup E [/ e PEIU () ds
(c',0%) ¢

t+h _ N .
Qt] = sup E[/ e‘BS{W—BV’+V;{—c’8+rX;+
(c",07) t

| | | 1
+9;(GDW—TC)—i—@;DS(l—T‘GD—GDk‘)] HV(T—kD, )+ [v (09262 0%+ Vi o 42V g EDUD} }ds

G,|.

Dividing both sides by h yields

0= sup {—6 : —ﬁVi+V;i+in{—cé—i—rm—l—ﬁi(epfr—r(?)—i-@iD(l—reD—eDk)}L

(ci,6) i

. 1 .
+Vi(7— kD) + 5 {v ()02 + Vo2 + 2szezeDa§7] } (1.3.7)

Differentiating with respect to ¢ and 6° we find the candidate optimal consumption-

investment policy

. i — i 2
_ _1og(Vl?) gt — _Vx [(ED7T —rC)+D(1 —rep — GDk‘)] + Vipepop

o Viehoh

i

(1.3.8)

The HJB equation for the i—th investor follows substituting the candidate optimal
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1.3. HEURISTICS

policies into (1.3.7)

Vi  oe(Vi . ,
0=——"S-pV'+V/+ V;[Og(m) +rx+ 0" (epm —rC) +0"D(1 —rep — epk)}—l—

(2

(2

+ V(T — kD) + 5 [V;m(e”)%%a% V02 + 2V 7 e o ] (1.3.9)
Using the Ansatz

; (1 _ er(T—t)) er(T—t) )

(1.3.8) leads to the optimal consumption investment policies

, r(T—t) + Opp(T—t) 6p(T—t) 6&(T—t) (T—t)r
ir _ € 7 _ 9DD 9D _ 0o _

T — Mp (T —t)D; + Mo(T — t)
t MO[Z Y

where the constant M and the functions dpp, dp, do, Mp, Mg are those of Definition
B.0.1. We show (in Theorems 1.4.7 and 1.4.8 below) that an obvious extension of

.....

satisfying (1.3.5). As a consequence the optimal consumption problem is ill-posed

whenever ep < 0 or ep > 2/r.
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1.4 Verification

1.4.1 Well-posed problem

Theorem 1.2.1 identifies the unique linear equilibrium in the market. The first step of
the proof is to solve the consumption investment problem of the agents for a generic
price with form (1.1.6), when ep € B™ := (0,2/r).

Direct calculations show that the self-financing condition (1.1.3) for an investor with

consumption-investment strategy (c}, 61);>0 is equivalent to
dX! = | = +rX! + 0i(epm —rC) + 0D, (1 — ep(k +7)) |dt + OlepopdWP. (1.4.1)

The following theorem proves the existence of a solution of the HJB equation, and thus

a candidate value function.

Theorem 1.4.1. Fiz ep € BY and define

(=1 +ep(k+7))? (—1+(kz—|—r)eD)[ ) ]

oop 20hep(epr —2) o o%ep(rep — 2) ep(rep —2) + Cr(l+kep)|,
r—B (epi—rC)* C(=1+(k+r)en)r _

" r 2repod " 02e2 (rep — 2) {EDW(TGD )+ Cr(l+ kED)] +

(14 (k+r)ep)”

2rep(rep — 2)

Then for every i € {1,...,n} the function

Vi(z,D) = —

1
exp (—Tai:v +6ppD?+ 6pD + 5()) , (1.4.2)
rog

solves the Hamilton Jacobi Bellman equation

Vi : log (V! , .
0=—-———-pV'+ VTZ{ Og('x) +re+0"(epm —rC) +60"D(1 —rep — eDk:)]—l—

al (A
. 1 . . . .
+ Vih(m — kD) + 5 [V;x(ﬁl*)QezDa% + VBDU% + QWDQHEDO'%], (1.4.3)
where

Vi {(epfr —rC) + D(1 —rep — epk)| + Vipepo?

91’*:_

i 2 2
Vi€hoD

Proof. Inserting (1.4.2) into (1.4.3) and comparing coefficients reveals that V*(z, D)
indeed solves the HJB equation. O]
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The following are technical results for the solution of the consumption-investment

problem.

Lemma 1.4.1. There exist constants i,0 > 0 independent by ¢ such that, for every
t>0,

\E[D]| < i, Var[D;] < &°.

Proof. Apply Ito’s formula to e*' D, to get

o t
Dt — e—k(t—S)Ds + % (1 _ e—k(t—s)) + O.De—kt/ €kudWUD.

Since Dy is normal with mean pp and variance X%, then |E[D;]| < |up| + 2'—:' and
Var[D;] < Y% + % O

The value of the constants Ap, Ay will be set later in Definition 1.4.1

Lemma 1.4.2. For every Ap, Ag € R, the process

¢ 1 gt
Ht = exp (/0 (ADDu + Ao)de) — 5/0 (ADDu + AO)Qdu)

is a P—martingale.

Proof. Define Y; = ApD, + A and recall Novikov’s condition [22, Corollary 5.13],

which ensures that H; is a martingale:
(A) P [fg Yz2du < +oo} =1;

(B) there exists a sequence (t,,)men C R increasing to +oo, such that, for every m € N,

1,
E |exp / 3 du
tm—1

The process (Y;)i>0 is P—a.s. continuous, hence (A) is true. By Jensen’s inequality [28,

< +00.

Theorem 1.8.1], for every ¢,e > 0,

t+e ]_ 1 t+e
exp (/ deu) < f/ exp (EYUQ> du
t 2 € Jt 2
In addition, by Fubini’s Theorem [4, Theorem 1.1.7] it follows that
t+e | 1 [tte
FE {exp </ deu)] < —/ FE [exp (eYuQ)] du.
t 2 € Jt

If Ap # 0, define p, = E[Y,] and 02 = Var[Y,]. In view of Lemma 1.4.1, there exist

constants /i and &2 such that

SN
IN
QI

[N

il < 7, 02 <, (1.4.4)
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for every u > 0. For every u > 0, Y, is a normally distributed random variable, and in

particular

exp( “362 )
E[exp (er)] = e/ if 20%¢ < 1.

\/1—202€ 7

Since 02 < 52, then any € < 352 satisfies 202¢ < 1 because

202 < 207 < 1. (1.4.5)

Fix € < 1572 if we prove that E{exp (er)] is a continuous function, uniformly
bounded in ¢ on the interval [t,¢ + €], for the e chosen above, then its integral is finite
and it is enough to define the sequence t,, = me. Equation (1.4.5) implies 1 — 202 >
1 — 252, and both terms are between 0 and 1 because of the choice of e. Thus, defining

Ke = ﬁ&%, it follows that

1 1
and — <k

7§/€5 — Tvey
1 —20%¢ \/1—202¢

for every u > 0. As a consequence

o (2)

E[exp (erﬂ is a continuous and bounded function on the interval [t, ¢+ €] and so for

< Ke €XP (/ﬁﬁe/f) < +00.

every € > 0 and every t > 0

1 jtte 1 jtte
E {/ exp <€YuQ> du] = f/ E{exp (er)]du < +o00.
€ Ji € Ji

[
Definition 1.4.1. We introduce the following constants
M :=reho5,
1—(k ?
MD =1 - €D<k —+ 7") —+ 25DD6D0-2D =1- €D<k -+ T') + ( ’I"<€ i r2>6D) ,
D —
-1+ (k C(l1+k T -2
My :=epm —rC + 5D€D02D =epm —rC + (Z1+ (bt r)ep)(rCL + kep) + epTi(rep ))7
Trep — 2
and
1 —ep(k 1
Ay = LenlEtr) A= — 1 (rC — Fep). (1.4.6)
€EpOp €EpOp

Corollary 1.4.1. The process (E;)i>0 = (€™ Ni)i>0, in (1.1.4), is a P—martingale.
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Since (&)i>0 is a P—martingale, Girsanov’s Theorem [22, Theorem 5.1 | holds. In
particular, (&):>o defines a probability measure P := P2, such that £ = dI_P/ dP. Any
equality or inequality between random variables is understood P and P—almost su-
rely. We denote by E[-] and Var[-] the conditional expectation and variance under the

measure P. The process
_ t
WP —wP - / (ApDy + Ag)du (1.4.7)
0

is a P—Brownian motion and furthermore Bayes’ formula [22, Lemma 5.3 | applies:
for every G,—measurable random variable X satisfying E[|X|] < +oo and for every
0<s<t

_ 1
E[X|G] = S—E[X&|QS].

S

The next lemma describes the process (D;)i>o under the new measure P.

Lemma 1.4.3. For every ep # 0, the process (D;);>q satisfies the stochastic differential

equation
dD;, = (AD, + b)dt + opdW}; (1.4.8)

where

A:(r—1>:T€D_1 and bzg.

€D €D €D

The unique solution of (1.4.8) is

b t _
D, =9, + 1 (eA(t_s) — 1) + UDeAt/ e~ A dwp (ep # 1/r) (1.4.9)

Dy = Dy +b(t — 5) + op(WP — WP) (ep = 1/7).

For every 0 < s < t there exists a G;—measurable random variable n, > 0 and a positive

constant n such that

ep 1/r ep=1/r (1.4.10)
‘E [Dtlgs]‘ < el 4, ‘E [Dy|Gs]| < s + bt ()
Var [Di]G.] < ne 4, Var [Dy|G.] < nt, (i1
(EIDAG)" < e 4, (EIDAG)" < ne+nt? (iif)
E [ D?|G] < nee? 4, E[D}|G| < s+ nat> (i)
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ep# 1/r ep=1/r (1.4.11)
‘E [Dt]’ < ettt 4, ‘E [Dt]‘ <n+t, (1)
Var [D,] < ne? Al 4 g, Var [D;] < n+nt, (i1)
( _[Dt])2 < pe?l At 4, ( D [Dt])2 < n+nt?, (i)
E[Df| < ne? 4, E[D}] <n+nt. (iv)

For every s > 0, for every ng,n1,m2 € R and for every G;—measurable random variables

Ms,05 Ms,15 15,2

(a)

t _ t
B { / e~"E. D du gs] —&F [ / e D, du

Qs} ;

_ t
-0 < FE {/ no D2 +m D, + nodu} < +00;
() t
/ (m.Dy + 1o)dWP is P—martingale;

(d) for every ep € BT

_ t
lim e " E (02D} +na1 Dy + 000)|0s| = lim e "E { / (Ms,2D? + 151 Dy + 15.0)du

t—+o00 t——+o0

.| -

(e) for every ep € BT and for every s > 0

b—r

1 t
— lim E[/ e " (ApD, + Ag)’du
s r

gs] — —SppD? — 8pD, — by —

Proof. The following proofs are for e, # 1/r; the steps verifying the claims for ep = 1/r
are analogous. (1.4.8) is a direct consequence of (1.4.7). Apply the product rule to
f(Dy) = e D, to get (1.4.9).

Proof of inequalities (1.4.10) and (1.4.11).
Equation (1.4.9) and the triangle inequality imply that ‘E [D:|GJ]| < nsellt4n, ‘\_/ar [Dy|Gs]
nelAlt 4-n and that (E [Dt|g5])2 < nge? At 4. The definition of the conditional variance
yields £ [D?|G,] < n.e?4lt + 5. The unconditional inequalities follow similarly.

Proof of (a): E { [t e=rug, Dydu gs] _&.F [ Jt e~ Dyudu gs}
Since E[|D,|] < E[D?] + 1 and because of (1.4.11) (iv),

<

t _
/ e~ B]| Dy|Jdu < +oo. (1.4.12)
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(a) is true thanks to Bayes’ formula and to Fubini’s Theorem .
Proof of (b) and (c):
Since |z| < 22 + 1 for every x € R, then for every u € [s,t], |mDy| < n?D? + 1. Thus

t _ t _
| E[ImD2+mDy+nol] du < (fnsal + 1) [ E[D2Jdu+ (o] + 1)(t = s) < +00

thanks to (1.4.11) (iv). Fubini’s Theorem concludes the proof of (b) from which it
follows that [*(n, D, + no)dW,P is P—martingale.
Proof of (d)

The proof of (d) is made of several steps.

Claim: hm e E [/ D,du|G

] _ 0 lim e E[D,|G)] = 0
t—4o00

Write the explicit dynamics for (1.4.8) and multiply by e~ to get

t
/ D,du

Taking lim;_, o, of both sides, proves the claim.

e "E[Dy|G,] = e D, + Ae™"'E

gs} + e "h(t — ).

Claim: lim e E[D|G, =0
t—4o00
Applying the conditional expectation to (1.4.9) and multiplying by e~ it follows that

—rt —r —s b - —s —r
e " E[Dy|G] = e e D, + v <e tHAl=s) _ ¢ t) .

The result of taking the lim, ,, ., of both sides is 0 because —r + A = —1/ep < 0.

Claim: lim e ™E {/ D2du

t—+o00

] =0 < lim e"E [D§|gs} du =0
t—-+o0

Apply It&’s formula to the function f(D;) = D?, take the conditional expectation of
both sides and multiply by e~ to get

_ _ ot ot _
e "E[D?G = e ""D? +24eE {/ D2du QS] +ope "t —s)+e "E [/ D, dWP

(1.4.13)

]

Because of (c) it follows that E [fst DudV_Vf|gs} = 0, so taking lim,_, ; ., of both sides of
(1.4.13) proves the claim.

Claim: lim e ™FE [D§|gs] du =0
t——4o00
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Thanks to the definition of the conditional variance and to (1.4.9) it follows that
—rt 2 =Tty —rt [ 1 2
e " E [D2|G.| = e "Var [Du|G.] + e (E[Du|G.])
2 2 2
_ 9D ( 24(t-s)—rt _ _—rt —rt | 2A(t—s) 2 bf o zb A(t—s) E
_QA(G e )—i—e (e <DS—|—A +A2 Ae DS—}-A .

limy_, oo e " E [D?|G,] = 0 because 24 —r =7 —2/ep <0and A —r = —1/ep < 0.

Claim:

_ _ [ gt
Jim e E (D} +m Dy +m0)|G,] = lim e™'E [ | D2+ 0Dy 4 o) gs} = 0.
This is a consequence of

1tEerooe "E [D2|gs] = hm e " E [Dy|G]
= lim e‘”E[/ Didug] = hm e ’"tE[/ D, du|G } =
t——+oo s
Proof of (e):
1 . n t —r(u—s) 2 2 6 - r
= lim E[ [ e ApD, + A du gs} — SppD? =Dy — 6y — 2L
2 t—+oo s r
Let 0 < s < t; the function W : [0,¢] x R - R
2 g—r
W(S,D) = _5DDD - 5DD - 50 - )
r
is the solution of the Cauchy problem in [0, ]
1
O:W5+WD(AD+b)+§WDDUD TW"— (ADD+A0) ;
W(t,D) = —6ppD? — 6pD — &y — P ; "
In view of [22, Theorem 7.6],
ot
W (s, Dy) = EU e~ L S(ApDy + Ao du+
+ e?"(ts)(  SppD? — 6pDs — 6o — 2 . T) gs}.
Since W does not depend by ¢, it follows that for every ¢t > 0
ot
B [/ o= L ~(ApDy + ) du|g0}
+e TR [( SppD? — 6pDy — Gy — 5;7") gsl = —0ppD? —dpDy — Gy — B;T.
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Take lim;_, |, of both sides and apply (d) to conclude.

With the properties of (D;);>0 shown in Lemma 2.4.3, we prove that (N;)i>o of

(1.1.4) is a stochastic discount factor.

Theorem 1.4.2. The process (Ni)i>o of (1.1.4) is a normalized stochastic discount

factor. The dynamics of the process (log &;)i>o can be written as

1 rt t
log & = log &, — 5 / (ApD, + Ao)2du + / (ApD, + Ag)dWP,

o ° ) (1.4.14)
=log &, + 5/ (ApDy + Ag)*du + / (ApDy, + Ag)dWP.

For everyt >0

Elllog &l < (2 +1+1) (ep # 1/r) (1.4.15)
Elflog & < n(t +t°) (ep = 1/7).

Proof. The process (N;)i>o needs to satisfy conditions (1.2.3) and (1.2.4) of Definition
1.2.2 to be a stochastic discount factor. Property (1.2.3) is a direct calculation. The
definition of & = €™ N, implies that

E[NthL/ N,D,dulg

} / NyDodu + E[e™&(C + enDy)|G] + E [ / €, Dydu

]

Because of Lemma 1.4.3 (a)

E[NtPtJr/ N, D,dulG

] /NDdu+

NE[‘” INC + epDy) +/ =)D du

} . (1.4.16)
The function W (s, D) = C + epD solves the Cauchy problem on [0, ¢]

1
0:WS+WD'(AD—Fb)—FiUQDWDD—TW—FD;
W(t, D) = C+ EDD;

where A and b are in Lemma 1.4.3. By [22, Theorem 7.6 |, for every 0 < s <t

1ot
W(s,Ds) = E{/ e ") Dydu + e (C + epDy)

gs} — C+epD,.

Plugging W into (1.4.16) proves (1.2.4), hence (NV;);>¢ is a stochastic discount factor.
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The stochastic process (Ny)>o of (1.1.4) solves the initial value problem

dN,
Wt = —rdt + (ApDy + Ng)dWP, Ny =1,

t

thus the process (&;):>0 solves the initial value problem

d€
O (ApDet D)WY, & =1
t
Applying It6’s formula to f(&;) = log & we get the first equality of (1.4.14) and because
of (1.4.7) we get the second one. Thanks to (1.4.14) and to the triangle inequality it

follows that

Jo'(ApDy, + Ag)dW)P is a P—normal random variable with mean j, = 0 and variance

_ 1= u _ u _
Blllog . < 5B UO (ApDjy + Ao)%zh} VB H/O (ApDy + Ag)dIWP

o2 = /Ou E[(ApDy + Ag)?]dh < n <€2|A‘t +t+ 1) (ep #1/r) (1.4.17)

<n(t+t°) (ep =1/r)
where 7 is a positive constant. In view of Lemma A.0.1 (IX) we get

} < au\/z <n (eQ‘A't +t+ 1) (ep # 1/r)

< n(t+1%) (ep =1/r).

E H/o (ApDy, + Ag)dWP

Because of (1.4.17), the right side of the inequalities above bound also [; E[(ApDy +
A¢)?]dh, and (1.4.15) follows. O

The next theorem proves the admissibility of the candidate optimal policies.

Theorem 1.4.3 (Admissibility and utility). Define y™* = e X6 +0ppD5+pDotdo  the

processes (i, 01 )0 as

o0 290y 0 i — MpDe+ My,

ik %
¢ =rXy —
oy 1o% 1o% Moy

and the process X* as

i 1 ]' ¢ 2
Xi* = wh+ 37 { {M(SDD + Mp(1—ep(k + r))] /0 D2du+

t
+ {M&D + Mp(epm —rC) + Mp(1 — ep(k + 7’))] /0 Dy du+

t
[Mdo + My(epi — rC’)]t +epopMp [ D,dWP + eDaDMU(WtD)}. (1.4.18)
0
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For every ep € BT the following hold.

(A) (First order condition)

—auf” = log(y™*) + (8 — 1)t + log(&,): (1.4.19)

(B) (Budget equation) N, X/* + [i N,c*du is a P—martingale;
(C) (Saturation) for every s > 0, lim;_, ;o E[N;X*|G,] = 0;

(D) (Admissibility) for every i € {1,...,n}, (ci*,0 )0 is an admissible strategy with
wealth process (X[*);>o0. The utility of the strategy is

+o0 .
E {/ e U () du
0

g0:| — _iefraixé*“’&DDDg‘i’&DDO‘i’éO

)

Proof. We proceed in several steps.

Proof of (A): First order condition

The equality —a;cy = —razl + dppDi + dpDy + dp holds. Apply Itd’s formula to
both sides of (1.4.19) and check that they are equal.

Proof of the equality £,E U; e " du gs} =F [fst e E Crdu gs]
Due to (1.4.19) and to the triangle inequality, there exists 7 > 0 such that

|cfj‘| < n|—rai:vé + 5DDD3 + dp Dy + do| + nu + nllog &,|. (1.4.20)

Applying the conditional expectation to both sides of (1.4.20), the properties of normal
random variables and (1.4.15) imply that

Ellcr] < n(e® + 1 +1) en #1/r,
<n(t® +t+1) ep = 1/r.

Fubini’s Theorem [4, Theorem 1.1.7] yields to
t _ . _ t )
/ e ™E [ij] du=F [/ e_m|cz*|du] < 400
and by the conditional version of Fubini’s Theorem we get

_ t . t .
&.E [ [ ercizau gs} _ B { [ erencian

s

gs} . (1.4.21)

Proof of (B): N, X* + [5 N,c* is a martingale

Direct calculations show that (X;*);>¢ is the wealth process of the strategy (¢i*, 6*);>0
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and they satisfy equality (1.4.1), equivalent to the self-financing condition. As a conse-
quence applying Itd’s formula to the function f(¢, X*) = e " X/* we get
. . t , t ‘
e "X =X +/ —e " du + (epT — TC’)/ e "0 du+

t . t )
+ (1 —ep(k+ T))/ e "0 Dydu + GDO'D/ e AW P,

S

Since the equalities
epopAp = —1+ep(k+r), epoplg = rC — epT,
and (1.4.7) hold, it follows that

t t
—7rt yik —Trs Yk —ru % —rupnix J717D
e "X =e"X] —I—/ —e Cudu+6DUD/e A
s

s

Multiply both sides by &, add [j N,c*du, take the conditional expectation and use

Bayes’ formula to get
. t . . s ) _ t R
E [NtX§*+ [ Nuctzdu gs} = NXU+ [ Nucdu+ Esepop B { [ eraaw?
0 0 s
t )
/ —e ey du

The Brownian term is a martingale by virtue of Lemma 1.4.3 (¢) and since (1.4.21)
holds, then

QS] +

t o
EE gs] +FE [/ Noc*du

G, .

. t .
E [NtX,f* + [ Nucirdu
0

gs} _ / Nuc*du + N, X*. (1.4.22)
0

Proof of (C): limy_, 4 E[N;X/*|Gs] =0
For the process X;* of (1.4.18), there exist 7, ...,75 € R such that

. . t ¢
N X =e "EXY + me’”é’t/ D2du + ?72@’”&/ Dydu +nze " E(t — s)+

t
+ 7]46’”&/ (Dy + n5)dWP.

Taking the conditional expectation and using Bayes’ formula yields

. . _ t _ t
E[N,XP|G,] = ¢ & X" + mEe " E { | D2du gs] + pEeeE { | Dud

QS] +

_ t _
+m3e "E(t — 5) + e " EE [/ (Dy + 15)dW,”

G| .

JHDy + 15)dWP is a P— martingale because of Lemma 1.4.3 (c); thanks to Lemma
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Proof of (D): Admissibility and utility

Property (i) of Definition 1.1.1 is clear and proving that (X/*);>o is the wealth pro-
cess of the strategy (ci*,6i*),>0 is a direct calculation. Take lim; ., to both sides of
(1.4.22) and use (C) to prove property (1.1.2) and thus the admissibility of the strategy
(¢, 07 )i>0. (1.4.19) implies

1 T Bu_logyi* —rutlog s "
go} =——F {/ e Puelosy —rutlogcu dyy
0

Q;

E

+oo o
/ e U () du
0

o]

]

Theorem 1.4.4 (Duality Theorem). Let (¢, 0;)i>0 be an admissible strategy for the
i—th investor and let (N¢)i>o be the process of (1.1.4); then

t )
lim £ [/ e P U (¢, )du
0

go} =F /0+OO e PuU N ey )du

go] ’ (1.4.23)

t . “+o0 ..
lim E / e Pl (yeP N, ) du QO} =F / e U (yeP N, ) du QO} :
t——+o00 0 0
Furthermore
400 . +o0 . .
B[ [T eyl < wt (B[ om0 e Nl + oy}, (1420
0 y 0

where

(1.4.25)

~ Z(logy—1) y>0
U(y)z{ ) )
0 y=0.

If there exist y* > 0 and an admissible strategy (c},0;)>0 for which

+oo . +o0 -
E/ e U () du / e P U (y* e N, ) du
0 0

QO} =FE

+aby™, (1.4.26)

Go

then (¢, 0f )10 is optimal.

Proof. Define the random variables
m +oo
A" :/ e~ Pumaicudy, A :/ e~ Pumaicuqy,
0 0

on the probability space (2, G, (G¢)i>0,P). Then \™ > 0 for every m € N and (\"),en is
an increasing sequence of random variables such that lim,, ,, ., A™ = A. The Conditional

Monotone Convergence Theorem yields to

lim E[\"|Go] = E[\|Go],

m——+00

which implies the first equality in (1.4.23). The function U’ defined in (1.4.25) has a

global minimum at y = 1; apply the Conditional Monotone Convergence Theorem to
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the random variables

m - “+o00
A= / e Pu (Ul(yeﬂuNu) ) du, M= / (UZ (ye’™N,) + ) du,
0 (073

to conclude the second equality in (1.4.23). For the proof of (1.4.24) apply (A.0.1)
the random variables ¢, and Y, = ye’*N,; then for every y > 0 we get

U'c,) < Ui(yeB“Nu) + cuye?N,,.

Multiply both sides by e ?“, integrate in [0,¢] and take conditional expectations; it
follows that for every y > 0

t .
E [/ e U (e, du
0

t ~ .
go} <F {/ e PuU (yeP N, ) du
0

t
Qo] +yFE [/ cy Ny du
0

Take lim sup,_, , ., of both sides and use (1.4.23) and (1.1.2); for every y > 0

G

E

+oo .
/ e P U (¢, )du
0

+oo gy
go} <FE [/ e U (yeP" N, )du
0

go] + l’éy.

Take inf,~o to obtain (1.4.24). If there exist y™*
(¢}, 07)i>0 for which (1.4.26) holds, then

+oo .
E [/ e AU (et )du
0

<FE

> 0 and an admissible strategy

400 ~ .
go} < inf {E { / P (yeP N, ) du
Yy 0

+00 o
/ e AU (y™*eP N, ) du
0

Qo] + :vf)y}
+oo .
/ e U (e )du
0

Go| + 35691* =FK

G
]

Theorem 1.4.5 (Existence). For every ep € BT, the strategy (ci*,0:*);>0 in Theorem
1.4.3 is optimal for the i—th investor for every i € {1

.,n}. The function V' of
Theorem 1.4.1 is the value function of the i—th investor.

Proof. Fixing 0 < s <t,y > 0 and using the definition of U(-) in (1.4.25) we get

S} = i{(logy— HE [/:Nudu gs] +

t t
+ BE { / ulN, du gs} 4 E [ / N, log N, du

t ~
E [/ e U (ye® N, )du

The following integrability conditions hold:
+ t t (e—rs _ e—rt)
/ E[|N,|] du :/ E[N,]du :/ e Mduy = ————= < 400,
s s s r

t t . —rs(q R
/EH“NUHdUZ/UE[Nu]du:/ue—mdu:e (1+7rs)—e( +rt)<+oo

s 7’2
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The conditional version of Fubini’s Theorem [4, Theorem 1.1.8] applies and yields

t ~
E [/ e U (ye™ N, )du

t
Q’S] = i/{ (logy — 1) 53/ e "du+

t t
+ (B8 [Cuedu+ B[ [ e e, log Eudu

s

o]}

(1.4.15) implies that

/: e ™ E [|log &,|] du < n(t — s) (egwt +t+ 1) < 400 (ep # 1/7)

< n(t* + 1) < 4o0. (ep =1/r)

Fubini’s Theorem and Bayes’ formula yield to

t ~
E {/ e PUU (yeP* N, ) du

S

_ E _ t —ru
gs] = ai{(logy 1)88/ e "du+

S

t ¢ _
+ (B8 — 7")55/ ue "du + 55/5 e " FE [log £,]Gs] du}

S

and computing the integrals we get

3 ~
E [/ e U (ye™ N, )du

S

0. = Le{ logy = 1) (77" = e )+

e (1+rs) —e
T

+(B—r)

1 t _
+rt) + r/ e " E [log £,4|Gs] du}.

By virtue of (1.4.14) and Lemma 1.4.3 (c), £ [log&,|Gs] = log & + ;E{fsu(ADDu +

Ao)QdU/

gs} Defining ¥; = [*(Ap Dy + Ao)2du it follows that

. - t t _
r/ e " E [log £,|Gs] du = rloggs/ e_mdu—l—g/ e "E[Y,|Gs]du

and thanks to Lemma 1.4.3 (b) and to Fubini’s Theorem we get

t _ t _ t
r/ e " E [log £,|Gs] du = rlog 55/ e "du + gE [/ e "Y, du

gs] .
AS a Consequence,

t ~
E {/ e U (ye™ N, )du

S

gs] - is{ (logy — 1) (™™ — e™)+

e(1+rs)—e (141t
r

t _ t
+(B—r) ) + rlog 53/8 e "du + gE Us e "Y, du

0]}

Applying the It6 formula to the function e~"Y; and taking the conditional expectation
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yields

_ t _ t
rE [ [ ey gs} — oY, — e‘”E[ [ (BpDy+ Ao

Qs} +

_ t
—f- E|:/ G_TU(ADDu —f- AO)QCZU

G.|.

Fix s = 0 and take lim;_,, ., of both sides to get

t - . /8 —r
lim E / =BT (yePU N, )d ] Ly — y{ logy — 1)+ 2"
Jim [0 ¢ MU ye™ Nu)du\Go| + zoy = - = (logy — 1) + ——+
1 . —rt t 2 1 : n t —ru 2 )
5 dim e T'E UO (ApDy + Ag)2du go}+2 Jim B UO e " (Ap Dy + Ao)2du go} }—i—azoy.

Choosing y = y* = exp(—ra;xf + dpp D3 + dp Dy + dg) and using Lemma 1.4.3 (d) it
follows that

i%

t ~ . )
t£+m E [/ e_ﬁ“U(yeﬂuNu)du Qo] + zgy”t = Y {(—raixf)* + 8ppDE + 6pDy + do+
0o 0 i
p—r 1 . [0 e 2 i, i
—-1)+ " —|—2t££nooE{/oe (ApD, + Ay) dugo}}quoy :
Lemma 1.4.3 (e) and (1.4.23) imply that
+o0 B - yz*
E / e 71U (ye™ N, )du go] = —
0 i
The conclusion follows from Theorems 1.4.3 and 1.4.4. O

Uniqueness of the optimal strategy

Lemma 1.4.4. Let i € {1,...,n} and let (¢, 0;);>0 be an optimal strategy for the i—th

agent, then for every s > 0

t
limsup £ [/ N,c,du

t——+00

Proof. Suppose, for a contradiction, that there exist ¢ € {1,...,n}, s >0, S € G, with
P(S) > 0 and an optimal strategy such that

t
limsup £ [/ N, c.du

t—+o00

gs:| < NSXS on S.

Let ns be a G,—adapted random variable and define the new strategy (¢, 6;)i>0 as
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(€t)i>0 = (Ct)i>0 + Ns1e>s and its wealth process

_ t o
X = Xilics + 1t2s{Xs + / [ — & +rXy + 0, (epm —rC)+

. t
+6,Du(1 - en(k + r))} du+epop [ GidWD.

If limsup,_, F {f; Nucudu|gs} = —oo the claim follows because 1, = 1 makes (¢;):>0
a better strategy, still admissible. Otherwise, if limsup,_,,  F { IN Nucudulgs} > —00,
define e = X;N,—limsup,_, . F [fst N,c.du gs} > 0. Choose s = er(&,)~'e™ to obtain

a better strategy, which is still admissible because

¢
X N, —limsup E [/ Nu(cy +ns)du

t—+o00

Es
gs:| = €— 77376_7“8 = 0.
r

]

Theorem 1.4.6 (Uniqueness). For every ep € BT and for alli € {1,...,n}, (¢*,07) >0

in Theorem 1.4.3 is the unique optimal strategy for the i—th investor.

Proof. Claim: The consumption process is unique.

Suppose there exist optimal strategies for the i—th investor (¢, 01);>¢ and (c?,07)>¢
and suppose, for a contradiction, that there exists S € B ® F* such that (o oo @
P)(S) > 0 and ¢;'15 # ¢1s. The wealth process of the strategy (¢ + ¢f, 0 + 67 )10

is the process 5(X{* + X/)i>0, with dynamics
1 1
§d(X;“ +X7) =5 - et — P +r( XA+ XP)+ 03+ 02)(epr — rO)+
1
+ (07 + 95)Dt(1 —ep(k + r))}dt + 5(9;;‘ +0B)epopdWP .

The new strategy has initial wealth z{ and is admissible because (¢}, 07');>0 and (cZ, 05) ;>0

are. Since the utility function is strictly concave, ¢! # ¢ on S implies

A B 1 1
U(Ct ;Ct ) > UG +5U()  ons.

Define H := {w €0 Njogoo] {t 20 (t,w) € S})} € G, then P(H) > 0,
+o0 A B 1 400
/ eﬁtU<Ct—£Ct)dt > 5/ e U +U(cP)dt  as.
0 0

and

/ eﬁtU<q_;q>dt > [T et ueh)dt o
0 0
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By Lemma A.0.2 (II) it follows that

o A, B
E;L/* eﬁt(ct'+‘%>dt
0 2

on a positive probability set, thus contradicting the optimality of the consumption

> F

+o0 .
Go / =AU () dt
0

3

processes (c)i>o and (¢?);>o.
Claim: Investment and wealth processes are unique.
Thanks to (1.4.27), it follows that

. t )
X" = (N,) 'limsup E {/ Nycrdu

t—-+o0

G| .
which proves the uniqueness of the optimal wealth process. From (1.4.1) it follows that
dX[ + ¢ dt — rX[*dt = 6} [(ep7 — rC) + Dy(1 = ep(k +7))| dt + epoptidW,P.

If there exist two strategies with wealth process (X}*);>¢ and consumption (ci*);>o, then
drifts and volatilities must be the same. This implies the uniqueness of the optimal

investment strategy. [

1.4.2 1Ill-posed problem

Suppose €p < 0 or €p > 2/r; the next two theorems show that for such a choice
of the parameter ep the agents’ consumption-investment problem is ill-posed and it
is not possible to find an optimal strategy. If there does not exist a solution of the
optimal consumption-investment problem for the agents, no equilibrium is possible
when ep < 0 or ep > 2/r. The next theorem defines a sequence of strategies and proves

their admissibility.

Theorem 1.4.7 (Admissibility). For every T € N*, define the process (i, 07 )o<i<yoo

as
: n(T=1) +  opp(T —1) 5p(T —t) So(T —t) r(T —1t)
i € i DD D 0 r
@ =tosny <€T(Tt) — 1TX'5T a @ Di - o b= a o
(1.4.28)
: Mp(T —t)Dy + Mo(T — t
0," = 1yery ( o )J\/.;a' ol )> ; (1.4.29)

where the functions dpp, dp, do, Mp and Mg are given in Definition B.0.1 and the
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iT T _ i
process X' is defined as X' = xj, and

Xt = &€y L

erT - ert - 1 t erT o ert
i
el —ers™ % a; Js

) [5DD(T — W)D? + 60(T — u) Dt

eTT — eru

et —¢

t
+00(T —u) +r(T — u)}du +epop / <€TT_> 0 awP. (1.4.30)

For every i € {1,...,n}, (ci',0iT)>¢ is an admissible strategqy with wealth process
(X{)eo0-

Proof. Property (i) of Definition 1.1.1 is clear; plugging (c¢i%, 0i7) into the self-financing
condition (1.1.3), we realize the process (1.4.30) to be the wealth dynamic for the
strategy (c7,0i7). By dint of the definition of (¢i¥);>o and (X7 )0, XT = 0 and

AT =0 for every t > T. As a consequence also (1.1.2) is true and immediate for s > T.

If s <T, then
T )
gs:| =F [/ N du S] .

We prove F [fST N, T du, gs] to be equal to N, XT for every 0 < s < T in several steps.
Claim: for every s <t < T, Ele"|ciT|] < n(T)
Plug the wealth process (1.4.30) into (1.4.28) and multiply by e~ to get

t )
limsup £ {/ Nuc'Tdu

t—-+o0

1
CtT = 1{t§T}{ — E [6DD(T - t)D? + (5D(T — t)Dt + 50(T — t) + T(T — U)} +

(]

TXST t 1 (5 T D2 (5 - b
t ey 7, (e ) (Bon(T = 0D+ o(T — 0Dt

t
+00(T —u) + (T — U)>du + EDUDT/ ul()OZTdWD}
s — €

Apply the absolute value to both sides, the triangle inequality and Lemma B.0.1 (a)
and (b). There exists a constant 7(7") > 0 such that

671 < Very {n(T)D? + 0(T) + (T s+

+/ T)D? + n(T)du + |epopr|

Applying the conditional expectation to both sides, (1.4.11) (iv) and Lemma B.0.1 (e)

we get

K 1 iT 377D
|| ey

E [e_rt|ciT|} <FE “cﬁTu < n(T) for every T' > 0 and for every t < T, (1.4.31)
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from which follows that

¢ _ , t_
/ E [e_’"“|cZT|} dt < / E UCZTH dt < n(T) for every T' > 0 and for every t < T.
(1.4.32)

Claim: [j e "%cI'du + e X7 is a martingale for every 0 < ¢ < T.

Plugging (1.4.7) into (1.1.3) and using the equalities
epopAp = —1+ep(k+r), epoplg = rC — epT,
show that the wealth dynamics is
dXT = (=T +rX7T)dt + epopfTdWP.
Applying It&’s rule to Y; := [§ e ™l du + e " X1 we get
Y, =Yy +e€pop /Ot e””“QZTde.

Y, is a martingale because

/Ot e~ B[(0T)?du < Miaf /Ot E[(Mp(T — u)D,, + Mo(T — u))*|du
1

<2 /Otn(T)E[Dg + 1)du < n(T), (1.4.33)

where n(T') is a constant dependent only by 7. (1.4.29) implies the first inequality in
(1.4.33), Lemma A.0.1 (X) and Lemma B.0.1 (c¢) imply the second one while (1.4.11)
(iii) implies the third one. Because (Y;)o<i<r is a martingale, in particular

. _ T . .
X = B| [ el du s TG, .

s

(1.4.30) implies that X = 0 and thus for every 0 < s < T

, _ T A
X7 = E[/ e =T gy

s

QS} (1.4.34)

(¢, 0iT),5¢ is admissible since

) _ T ) T — .
NXT = 5SE[ | el gs} = [ & BTG du

T _ ) T .
:/ e " E[E,cT|Gy)du = E[/ N.cFdu

G.|.

Multiplying both sides of (1.4.34) by Ny gives the first equality, while the second one
follows from Fubini’s Theorem and (1.4.32). Fubini’s Theorem again and (1.4.31) imply
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the third equality, while the last one is true due to Bayes’ formula and (1.4.31). O

After proving (ciT, 0i7);>0 7en to be a sequence of admissible strategy, we show the

total utility converging to 0 as 1" approaches +oo.

Theorem 1.4.8. For every ep < 0 or ep > 2/r, the optimal consumption problem is
tll-posed. In particular for the strategy defined in Theorem 1.4.7,

sup E /0+OO e Py (cZT> du

TeN*

go} — 0. (1.4.35)

Proof. For every 0 <t < T, define the function

(1 o er(Tft))

rog

) r(T—t)
Vi(t,T,z,D) = exp (—erozix + 6pp(T — t)D* + dp(T — t)D + §o(T — t)) :
67'

(T-1) _ 1

where the functions dpp, dp, dg are given in Definition B.0.1 below. This function solves

the finite time HJB equation
Vi , , Tlog(V?
oz—%—5v2+v;+\/;[w

(2 7

+ra+ 0T (ept —rC) + 0T D(1 — rep — EDkZ)] +

+ Vi — kD) + 5 {v;w(eﬁ)?e%a% Vo + QWDGZTEDU%} (1.4.36)

for 0 <t < T, where

Mp (T — t)D, + Mo(T — t)

oir = 8

The definition of the consumption-investment strategy of Theorem 1.4.7 implies that

V' solves also the equivalent equation

0=U(") - BVi+Vi+V, [ — T vz + 07 (epm —rC) + 0T D(1 — rep — eDk)} -
1

+ V) (7 — kD) + 5

ViOIPeébod + Vipoh + 2Vipbeprh| (1.437)
for 0 <t < T. For every T € N* define the process (H] )o<i<r as
: . t o
HT = PV, T, X7, Dy) + / e=Bui (T du,
0

Since V' solves (1.4.37), the drift of the process H} is null and this implies H/] to
be a P—local martingale. Since V and U are both non-positive, then —H[ is a non-
negative local martingale, thus a supermartingale [22, Problem 1.5.19 (ii)]. Because of
22, Problem 1.3.16 (ii)] there exists a random variable —Hz such that (—H] )<< is
a continuous supermartingale and E[—H}'|Gy] < —H{ for every 0 < ¢t < T. Tt follows
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that

, T o
=l VLT X, D)~ [ e U e du
t—T 0

Go| < E

T o
E l—/ e AU (T du
0

:

< -V(0,T, X", Dy). (1.4.38)

The first inequality in (1.4.38) is true because Vi(t, T, X{T D;) < 0 for every 0 <t < T
and the second inequality is the supermartingale property. Thanks to (1.4.38) and since
Al =0 for every t > T we get

1
Oézﬂ

e PT,

E

+oo .
/ e U T du
0

go} > Vi(0,T, ), Dy) —

Apply suppcy to both sides

) ) 1
> sup V(0, T, z}, Do) — -

+o0 T
sup £ / e P U (T du|Gy e
Ten Lo TeN o
> : 7 i o —BT —
> Tl_l}I_il_looV (0,7, g, Do) azﬂe 0.

In the last equality limp_, o V (0, T, z{, Dy) = 0 because for every Dy, z} € R

rT

e )
— 7% + 9op(7) D5 + 0p(7) Do + 00(T) ~rspo

e'f’

_ 2 2 2 2.

_ r(=1+ep(k+r)) : (Do N rC ) L 0% e(r (D) .
2(rep —2)(—=1 +rep)op rep — 1 2(rep — 1)

For every ep < 0 and €p > %

r(—1+ep(k+r))? l(Do-i- rC >2+ (eDJIZD
2

2
<0and (r—=)>0.
2(T’€D—2)(—1+7”6D>0'% T’GD—l T’GD—l) an r

€D

It follows that (1.4.35) holds and it is not possible to reach total utility 0 since the

utility function is strictly negative. O

1.4.3 Market clearing and proof of Theorem 1.2.1

The economy has one risky asset, i.e. for every t > 0

Ly " MpD; + M,
E 0 = E — =1 1.4.39
i=1 ' Ma; ’ ( )

i=1

where Mp, My are given in Definition 1.4.1.

Proof of Theorem 1.2.1. The market clearing condition (1.4.39) implies Mp = 0 and
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My = Ma;. The unique solution of such system, with ep € B, is

— =2
1 T Qop

p— C: —
D k41’

r(tk+r) (k+7r)*
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Chapter 2

Perfect Information

2.1 Model and main definitions

The economy has one risky asset in unit supply, which pays a dividend stream (D;):>o

described as
dD; = (7, — kD,)dt + opdW}P, (2.1.1)
where the state of the economy (7);>¢ is an Ornstein—-Uhlenbeck process
dmy = a(m — m)dt + o dW[. (2.1.2)

There is a continuously compounded risk-free asset (P);>o with rate of return r > 0,
at which investors can both lend and borrow. There are n € N investors competing for
the risky asset, with price (P;);>0. The i—th investor has constant absolute risk aversion

«; > 1 and initial wealth z{ € R. W = (W[, WP);>¢ is a Brownian motion and (7, D)

2
™

is a normal vector, with mean (u,, up)? and variance , independent of the

S5
Brownian motion previously defined. The probability space is (€2, G, (Gt)i>0, P), where
G; is the augmented natural filtration of Dy, mo, (W, )o<u<: and G is the augmented sigma
algebra generated by U;so Gi'. In the light of Chapter 1, we focus for the whole chapter

on the following

Assumption 2.1.1. The parameters of the economy are a,k,o0p > 0,0, > 0 and 7 € R.

Furthermore assume

ep €B:=(0,2/r)\ {1/r}, €x 7 0, a# k.

All equalities and inequalities between random variables are understood P—almost

surely.

I'Note that all filtrations are augmented with the null sets of the sigma algebra G.
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2.1. MODEL AND MAIN DEFINITTIONS

Definition 2.1.1 (Admissibile strategies). (¢, 6;):>0 is an admissible (consumption-investment)

strategy for the ¢—th investor if:
(1) (¢t)i=0 and (0y)i>0 are (G;)i>o—progressively measurable processes;

(ii) for every s >0

t
limsupF [/ N,c,du

t——+o0

G.| < n.x.. (2.1.3)
where (X});>0 is the self-financing wealth process
dX, = —cidt + 0,Dydt + (X, — 0,P,)dt + 0,dP,, X, =, (2.1.4)

(N¢)i>0 is the process

N, = exp (—rt + /Ot(A v, ) AW + /Ot(a Uy ) AW — Lr {(A )+ (o vu)2] du) ,

2 Jo
(2.1.5)

vy = (Dy, m, 1)T and A, are given in Definition 2.4.1 below.

The set of admissible strategies for the i—th investor is U".

Definition 2.1.2 (Optimality). A (consumption-investment) strategy (ci, 6);>o is opti-

mal for the i—th investor if it is admissible and if

+o0 . +oo o
sup E/ e P U (c,)du / e U (e Y du| G| (2.1.6)
(c.H)eu’ 0 0

go} =F

where

U'c) == — , ie{l,...,n}.

The time impatience parameter § > 0 is common to all agents. The consumption-
investment problem of each agent is well-posed if an optimal strategy exists, otherwise

the problem is ill-posed.

Remark 2.1.1. The process (Dy, m;)i>o starting with a random variable is not a funda-
mental feature of the model in this chapter but it will be important in the third chapter,
for a stationary filter in Lemma 3.4.1. (Dy, 7o) being a random variable implies that
the o—algebra Gy is different from the trivial c—algebra, so a conditional expectation

appears in (2.1.6).

Definition 2.1.3. (ci,0%);>0 is the unique optimal (consumption-investment) strategy for

the i—th investor if it is optimal for the —th investor and if
(Ci, 92)@0 = (¢, ét)tzo AJ[0,400[ @ P — a.s.
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for every other optimal strategy (¢, 0;)¢>o-

Definition 2.1.4. A linear equilibrium is an (n+4)—tuple (o, €77, 77, O, (SL )1=/=n),

where 0, > 0,7 € B,e7" € R*,C°" € R and S!_ = (c},0;)i>0 is an optimal strategy
for the i—th investor for every ¢ € {1,...,n} such that for every ¢t > 0

(i) the price of the risky asset is

P, =C" + €[ Dy + e my; (2.1.7)

(ii) the market clearing condition
dg=1 (2.1.8)
i=1

holds.

2.2 Existence and uniqueness of the equilibrium

Theorem 2.2.1. Under Assumption 2.1.1 there exists o, > 0 such that for every
0 < or < 0, there exists a unique linear equilibrium (o, €75, €r, Co (SL_)='="), for

which the price is

1 1
P, =C"+¢€epD, + €1y, where €p = o € =
r

an o2 o2 no1\ !
Cr = —a P+ ul and &= =] .
r(a+7)(k+r) <(k:+7")2 (a+7)%(k+r)? ; a;
The unique optimal consumption-investment strateqy for the i—th agent is

- - B=r ra® o2 o -
ik Xz* s 91* —
@SRt T T (k1) * (a+r)2(k+r)?)’ !

(2.2.1)

]

Preliminaries and outline of the proof

Remark 2.2.1. If (ep,e;) = (0,0) then (2.1.7) implies P, = C for every t > 0. If the
assets are two deterministic processes with different interest rates (0 for P, and r > 0 for
PP), then the model admits arbitrage, therefore the consumption-investment problem

of the agents is ill-posed and in particular no linear equilibrium exists.

Definition 2.2.1. A value function for the i—th investor is a function

ViR — [—00,0]
(z, D, 1) — Vi(z, D, 1)
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such that for every (z, D,1I) € R?

Vi(z,D,1I)= sup E

+oo X
/ e P U (¢, )du
(c,0)eUd? 0

zh =1,Dy = D,m = H} : (2.2.2)

It follows from this definition that if there exists a value function V?(-) and a strategy

(¢, 0*);>0 which is optimal for the i—th investor, then

o oo o
Vi(zg, Do, mo) = E / e U () ds
0

G

Definition 2.2.2. A stochastic discount factor (SDF) is a positive, continuous, (G;):>o—adapted
process (M;);>o such that for every 0 < s <t

MSPSO - E[Mtpt0|gs] (223)
and

S t
M,P, + / M,D,du = E [MtPHL / M, D, du
0 0

gs} . (2.2.4)

A stochastic discount factor is normalized if My = 1.

We find the (unique) equilibrium in the market in two steps: first we solve the
optimal consumption problem of the agents for a generic price with the form of (2.1.7);
then we clear the market with condition (2.1.8) and we deduce that the price of the

unique linear equilibrium has parameters

1 1

* * - d
D= e (a+71)(k+r) o

= r(a+r)(k+r) _&<(k+r)2 * (a+r)22k:+r)2>'

e Section 2.3 formulates the Hamilton Jacobi Bellman (HJB) equation, which

leads to a guess of the value function and the optimal strategies.

e Section 2.4 formalizes the heuristics of the previous section proving existence

and uniqueness of the optimal portfolio for a generic price function for ep € B.

— Subsection 2.4.1 finds the unique linear equilibrium in the market through

the market clearing condition.

e Appendix C recalls some well known results that are used in this chapter.
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2.3 Heuristics

Guess a value function V* which depends on the dividend rate, on the state of the
economy and on the wealth; because of the infinite time horizon we guess that V* does

not depend on the initial time ¢ > 0, i.e.

VZ(XZ, Dt,ﬂ't) = Sup FE
(ch,0%)

+o00 .
/ e~ PO (Y ds|Gy)
t

A similar procedure as in Subsection 1.3.1 leads to

)

0 = sup {— c —ﬁVi—I—VZ{—ci+rx+0i(eﬂa7_r—TC)+9iD(1—eD(k‘+r))—|—
(c%,6%)

+0'm(ep — ex(a + 7’))] + Vi(r — kD) +aVi (7 —m) + 3 Vi (092 (507 + 202)+

V0?4 Vi 02 42V flepa? + zvgweieﬂazr] } (2.3.1)

Differentiating with respect to ¢ and €?, we find the candidate optimal consumption-

investment policy

==
' Vil(eqam —rC) + D(l —ep(k + 7")) + 7T<€D —er(a+ r))] + Visepod + Vi e 02
0 = — 3 .

Vi(epop + €2oZ)

(2.3.2)

The HJB equation for the i—th investor follows by substituting the candidate optimal
policies into (2.3.1)

log V

Oz—v"f—ﬁviﬂ/jK

[ (%)

—i—@“‘ﬂ(ep —ew(aJrr))} —i—Vf)(ﬂ—kD)vLaV;(ﬁ—ﬂ)—l—i [WI(QZ*)Q(E%U%—i-EiUi)+VBDU%+

+ mc) + 0" (ear — rC) + ei*D(1 —en(k+ r)>+

+ Vi o2 + 2V 0% epas, + QI/ZWQi*eﬂafr]. (2.3.3)

T~ T

Using the Ansatz

A 1
Vi(x,D,7) = — exp (—raix +6ppD? 4+ 0p DTt + bn> +0pD + 6, + 50) ,

(2
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where dpp, drr, Opr, 0D, Oy, dg are in Theorem 2.4.1, (2.3.2) leads to the optimal con-

sumption investment strategy

, . 0pp Op 0 op ) do
o =rX, — Df— "Dy — MW?—*Dt—th—*§
Q; (6% Q; a; QO Q;
gi* _ MpD,; + M7 M,
t May '

and Mp, M,, My are in Definition 2.4.1.
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2.4 Verification

Theorem 2.2.1 identifies the unique linear equilibrium in the market. The first step of
the proof is to solve the consumption-investment problem of the agents for a generic
price with form (2.1.7),

Direct calculations show that the self-financing condition (2.1.4) for an investor with

consumption-investment strategy (ci, 6!);>o is equivalent to

dX} = | —ci4+r X+ 0 (eratm —7C) +0:D; (1 — ep(k + 7)) +0im; (ep — ex(a + 1)) |dt+
+ OlepopdWP + Ol o dW. (2.4.1)
The following theorem proves the existence of a solution of the HJB equation, and thus

a candidate value function.

Theorem 2.4.1. Fir % € B, ¢® # 0,C° € R, define 6 = (6pp, drr> Opx, O, 0, 0p) and
let & be the function in Definition C.0.1; there exist

(i) U(€%, €2, C% C R x RS open neighbourhood of (0, 6%,62,00,5(6%,62,CO)> ;
(ii) W (€%, €2, C%) C R* open neighbourhood of (0, €%, €2, C);
such that

(I) for every (o4, €p,er, C) € W(e%, €2, C0), there exists a unique § such that (o, €p, ex, C,5) €
U(%, €Y, C° and the function

1
exp (—raix + 6ppD? + 6p Dt + 8, % + 5pD + 6.7 + 60)
rog

Vi(z,D,m) = —
(2.4.2)

solves the Hamilton Jacobi Bellman equation of the i—th investor

A log V! : :
0= — BV V! Koifc + rm) + 0" (ezam —1rC) + 0”D<1 —ep(k+ r)>+

e%)

. , , 1
+0" 1 <6D—eﬂ(a+7’)>} +V5(7r—k:D)+aV;(7_r—7r)+§ [Vx’ (0% (08 +E202)+ V] pon+

+ Vi o2 + 2V 0™ epod, + ZV;ﬂHi*e,rafr], (2.4.3)

T T

where

Vi {(e,rm_r —rC) + D<1 —ep(k+ T)) + 7r<eD —ex(a+ 7"))] + Vipepod + Vi e o2

Qi* — _
Vi (e40% + €202)

(II) If this 6 is defined to be (0, €p, €, C), then g € € (W,U) and g(0, €%, €2, C°) =
o(eh, €2, C).
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Proof. Inserting (2.4.2) into (2.4.3) makes the HJB equation an algebraic equation of
second order. For every i € {1,...,n}, the function V*(-) solves the HJB equation if
and only if

f(awa 5DD7 6D7T7 571'71'7 5D7 57” 50) = 07

where f is defined in (C.0.2). Lemma C.0.1 concludes the proof. O

The following are technical results for the solution of the consumption-investment

problem.

Lemma 2.4.1. For every ng,n1,m2 € R, there exist constants i, > 0 independent by ¢
such that, for every t > 0,

|E[ne Dy + mme +mol| < i, Var[n, Dy + mm, + 1] < 5°.
Proof. Apply 1td’s formula to e*m; to get

t
m=e S, 47 (1 — e_“(t_s)) + Uﬁe_“t/ e™dW. (2.4.4)

s

Apply Ito’s formula to e** D, and to e*'7, to get

D, = e—k(t—s)D8+k7i9 - (e—a(t—s) . 6—k(t—s)>+kja |:<1 . e—a(t—s)) . % (1 . e—k(t—s)):| +

¢ ¢
+0D/ e =Wl 4 %/ (e_“(t_“) —e_k(t_“)) dwr. (2.4.5)

Because of (2.4.4), |E[m]| < |px|+2|7| and because of (2.4.5), |E[D,]| < |up|-+2|#=|+

| (24 2]%|) ; the last two inequalities imply |E[nyD, + n1m, + no]| < 1. Thanks to
k—a k Ui n
(2.4.4) and to (2.4.5) we get

02

Var[m] < 32 + = |Cov (s, Dy)| <

)
a

2332

™

a—£k

L <1+ 2)
(k—a)?\a a+k/’

4 o2 o2 1 1 2
Var[D,] < %% + ——_x2  D ”( - )
e P R S S P Pl sy )

which imply Var[n.D,, + mm, + o] < 7% O

The value of the constants A, ¢ will be set later in Definition 2.4.1

Lemma 2.4.2. Define (v;)i>0 = (Dy, m, 1)5 and fix
A= (Ap,Ar, Ag)T €R?, v=(tp,tnt0)" € R’

The process

t 1/t
H, : = exp (/ A - UuquD + - UudWJ — 5 [(A . Uu)2 + (L . UU)Z} dU>
0 0

52



2.4. VERIFICATION

is a P—martingale.

Proof. Define Y; = A - v, Z; = ¢ - v, and recall Novikov’s condition [22, Corollary 5.13

and 5.14], which ensures that H; is a martingale:
(A) P [fé Y2du < —1—00} =P [fot Z2du < —1—00} =1

(B) there exists a sequence (t,,)men C R increasing to +oo, such that, for every m € N,

tm 1
E [exp </ i(Yu2 + ZZ)du)
tm—1

The processes (Y;)i>0 and (Z;)i>0 are P—a.s. continuous, hence (A) is true. By Jensen’s

< +00.

inequality [28, Theorem 1.8.1], for every ¢,e > 0,
t+e | 1 t+e
exp (/ i(Y“Z + ZS)du) < f/ exp (;(Yf + Zﬁ)) du.
t € Ji

In addition, by Fubini’s Theorem

t+e t+e
E [1/ exp (;(Yj + Zi))du} - 1/ E
t t

€ €

exp (;(Yj + Zﬁ))]du.
Young’s inequality [24, Lemma 7.17 | yields to
t+e ]_ 1 t+e 1 t+e
E {exp (/ SO+ Zg)duﬂ < [ Eew ()] dut - [ F [exp (e22)] du
t e Jt e Jt
(2.4.6)

Suppose (Ap, A,) # (0,0) and define p, = E[Y,] and 02 = Var[Y,,]. In view of Lemma
2.4.1, there exist constants i and 62 such that for every 0 < u <t

|l < By 0, <0 (2.4.7)

for every u > 0. For every u > 0, Y, is a normally distributed random variable, and in

particular

Il
eXp —407,€ .
E{exp <€Yu2>] = M it 20%¢ < 1.

\/1—202¢ ’

Since 02 < 52, then any € < 52 satisfies 202¢ < 1 because
20%¢ < 25% < 1. (2.4.8)

Fix € < %6*2; if we prove that E{exp <€Yu2)] is a continuous function, uniformly

bounded in ¢ on the interval [t,¢ + €], for the € chosen above, then its integral is finite
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and it is enough to define the sequence t,, := me. Equation (2.4.8) implies 1 — 202¢ >

1 —252%¢, and both terms are between 0 and 1 because of the choice of €. Thus, defining

Ke = ﬁ, it follows that
1 1
——— < ke and — < K.
1 —203¢ 1 — 202

u
As a consequence

E{exp <€Yu2)] < Ke€xXp (/{Ee[f) < +00.

E [ exp (EYUQH is a continuous and bounded function on the interval [t, ¢+ ¢] and so for

every € > 0 and every t > 0

1 t+e
E {/ exp <6Yu2>du
€t

The same reasoning shows also that

1 tte
E [/ exp (eZz)du] < +o00
€ Ji

and (B) follows from (2.4.6). O

1 t+e
:7/ E
€ Jt

exp (eYuz)]du < +00.

Definition 2.4.1. We introduce the following constants,
A = (Ap, Ar, Ag)Y, and vi=(tp,tr, o),
where

M M M,
AD =0p (25DD —T’GDD> s Aﬂ- = 0D (51)71- —T’ED) s AU =0Dp <(SD — T€D0> s

M M M
M M. M,
Lp ‘= Oy <5D7r - TETFJWD> , by = Oy (25M - reﬂM) . Ly i=0p (&r — reﬂ]\/lo) ,

and

M :=r(e5 o3 + 202),
MD =1 — ED(]{J —+ T‘) —+ 25DD€DUQD + 5D7r€7r0-72r7
Mﬂ = €p — Eﬂ(a —+ ’l") + 257r7r€7r0_3r + 5D7r6D0_2D7

My = (ame, — rC) + dpepoy, + Opero>.
The constants dpp, Oxr, Opr, Op, O, 0g are those of Theorem 2.4.1
Corollary 2.4.1. The process (E;)i>0 = (€™ Ni)i>0, in (2.1.5), is a P—martingale.

Since (&)i>0 is a P—martingale, Girsanov’s Theorem [22, Theorem 5.1 | holds. In
particular, (&);>o defines a probability measure P := P(**) such that & = dP/dP. We
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denote by E[-] and Var[-] the conditional expectation and variance under the measure
P. Any equality or inequality between random variables is understood P and P—almost

surely. The process

(WP W) g = (W,P -/ (A vy du, W — / t(L-Uu)du> (2.4.9)

t>0

is a P—Brownian motion and furthermore Bayes’ formula [22, Lemma 5.3 | applies:
for every G,—measurable random variable X satisfying E[|X|] < +oo and for every
0<s<t

_ 1
E[X|G,] = S—E[X&|gs].

The next lemma describes the processes (D;)i>o and (7;);>¢ under the new measure P.

Lemma 2.4.3 (Joint dynamics). Suppose that Assumption 2.1.1 holds. Then there exists
o.(€p, €z, C) > 0 such that for every 0 < o, < g.(€ep, €, C), all the following hold. The

process X; := (7, Dy)>0 satisfies the stochastic differential equation
dx; = (b+ Ax,)dt + SdWi; (2.4.10)

where

. Oply — Q@  Orlp Cb— Oxlg +am Cn- or 0 7 W, = V?tﬂ .
O'DAF—Fl O'DAD—]{? UDAO 0 Op WtD

The matrix A is invertible, and the unique solution of (2.4.10) is

t _
xe = Ay, + AT A — )b+ e / e ML AW,,. (2.4.11)

s

For every 0 < s < t there exists a G,—measurable random variable n, > 0 and a positive

constant 7 such that

1E [xel Gall < meel It 41, (i) (2.4.12)
||\7ar [Xt|gs]|| S ne(HA“""HATll)t7 (

IE[xt|Gs) ® Eilxe|Gsll| < noeMAIHIATINE 4 g (iid)
] (

1E [xt ® x¢|Gs]|| < neelIAIFIATDE |y
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1E [x]|| < nel Al 4, (4) (2.4.13)
| Var [x]|| < ne(HAHHlATII)t +, (i4)
1E[x:] © E[xe]|| < nellAIFIATIE oy (444)
I1E [x: @ xi]|| < ne(\\A\\+llATll)t +, (iv)
E|[x]l] < +o0. (v)

For every s > 0 and for every ng,...,n; € R
(a)

t
E|Ni(C + epDs + exme) + / N, Dydu

G.| -

_ t
N,E [e’"(ts)(C’ +epDy + €xm) + / e =) D du

gs} . (2.4.14)
_ t 9 9
—oco < E |:/ 775Du+7747Tu+n3Du7Tu+n2Du+7717ru+770du:| < +OO>

t _ _ _
/ (05 Do + a7+ 13)dW, + (112D + 1wy, + 10) AW is P—martingale;
S

(d) for every s >0

lim e " E |G| = tEHloo e ""Ex: ® xi|Gs] =

t—+o00
_ 7ot
= lim e "E {/ Xudu

t—-+o00

t
1 —rt I,
GS] = tnglooe E [ / Xu @ Xudu

G.| —o

(e) for every s >0

L lim E[/t e (=) ((A )+ (o %)2) du

2 t—+oo s

G.|
B-r

= _5DDD§ - 5D7TD87TS - 57r7r773 - 5DD5 - 57r7Ts - 50 -
r

Remark 2.4.1. All the above are local results for o, in a right neighbourhood of 0.

Proof. (2.4.10) is a direct consequence of (2.1.1), (2.1.2) and (2.4.9). For o, = 0, the

matrix A becomes
—a 0
)
enlatr) . 1
€D €D
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whose determinant is a(—r + 1/ep) # 0. Due to the continuity of the determinant,
there exists o, (ep, €,,C") > 0 such that for all 0 < o, < g,(€ep, €, C), A is invertible.
Because A is invertible, the unique solution of (2.4.10) is (2.4.11).

Proof of inequalities (2.4.12) and (2.4.13).

Equation (2.4.11), Lemma A.0.1 and the triangle inequality imply that ||E [x.|Gs]| <
el b, [[Var [xu|G[| < ne@AIFIATIN and that || E[xu|G.)@ ElxulGo]|| < neellAIHIATDL
1. The definition of the conditional variance yields ||E [xo ® xu|Gs]|| < neelAIFIATD Ly,
The unconditional inequalities follow similarly.

(a) is true thanks to (2.4.13) (v) and to Fubini’s Theorem. Likewise, Fubini’s Theorem
and (2.4.13), yield to equation (b) and hence (c).

Proof of (d)

We proceed in several steps.

Claim: There exists o, (ep, €, C) > 0 such that for every 0 < o, < g.(ep, €, C) and
for every s > 0,

lim e "teAlt—s) = ¢

t——+o00

—a 0
A=
(eﬁ(a—l—r) r— 1)
€D €D

is diagonalizable with two different eigenvalues —a and r — % By the continuity of the

If ep # - and o, = 0, then

eigenvalues [2, Remark 3.4 and 3.6] there exists o, (ep, €z, C') > 0 such that for every

0 <o, <o.(ep, €, C), A is diagonalizable with two different eigenvalues and

A1(t—s) 0
—rt A(t—s) _ -1t € -1
e e e "H ( 0 e’\Q(ts)) H™, (2.4.15)
with
max(Re{ A1, Az, 2A1, 20, A1 + Ao }) < 7. (2.4.16)

The real parts of all exponentials on every entry are negative, therefore

lim e et = . (2.4.17)

t—-+o0

If ep = a%rr and o, = 0, then A is similar to a Jordan block with eigenvalue —a. The

continuity of the eigenvalues [2, Remark 3.4] and Lemma A.0.4 imply the existence of
ox(€p, €x,C) > 0 such that for every 0 < o, < g, (ep, €, C) (2.4.16) and (2.4.17) hold.
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Claim: lim e " E [x|G] =0
t——+o0
Apply the conditional expectation to (2.4.11) and multiply by e~ to get
e—rtE_u [Xt‘gs] _ 6—rteA(t—s)Xs + A—1<€—TteA(t—s) . [2€—rt)b'
From (2.4.17) it follows that lim,_, o e ™ E [x;|G.] = 0.

0ot
Claim: lim e ™F {/ Xu @ Xu

t—400

Q,s} du = 0 and f]im e "E {\/1 ® Xt

+00

gﬁ} du =10

Integrating the definition of the conditional variance [5, Definition 11.23], and multi-

—rt

plying both sides by e™",

t _ t _ t _ _
e [ Ebwo gl du=e [ Vanlylgldu+ e [ Epald) ® Elldldu
(2.4.18)

By dint of (2.4.11) we get

_ t
Varllg,] = [ eXtInsT (eAt) " qu, (2.4.19)

S

A is triangularizable in C, therefore there exist an invertible matrix H and a nilpotent
matrix N ( cfr. [20, 3.2.7 and 3.2.8 page 181], [16, Proposition A.6]) such that

Al(t—u) 2 h
e
e !

h=0

T
6)\1(t7u) 0 . 2 N N

T
Due to (2.4.16), each entry of eAt=WxyT (eA(t_“)) is a linear combination of powers
of t smaller than 4, multiplied by exponentials with real part of the coefficients in ¢

smaller than 7. As a consequence, the same holds for [! Var[x.|Gs]du, and

t _
lim e’”/ Var[x,|Gs]du = 0.

t—+o00

In the same way lim;_, o ¢ [! E[xu|Gs] ® E[xu|Gs|du = 0.
Qs} du = 0 is the same as that of

The proof of lim;_, e "E {Xt X Xt

lim;_, 400 e "' E [f; Xu ® XU‘QS} du = 0, skipping the step of integration in (2.4.18). It
follows that (d) holds.
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Proof of (e):

; lim E{/: e "9 ((A )2+ (1 Uu)2) du

q.|
Gor

r

- _5DDD§ - 5D7rDs7rs - 57r7r7rz - 5DD5 - 57r7rs - 60 -

Let 0 < s <t and define v = (D, m)T. The function W : [0,¢] x R*? - R

b—r

Y

W(S,ﬂ',D) = _5DDD2 — 5D7TD7T — 571-”7'('2 — (SDD — 571-71' — (S() —

r

is the solution of the Cauchy problem in [0, ]

0= WS—F(V(W’D)W)(A(W, D))" + b)—i—;tr ((He(mD) W) EZT) —rW—i-; ((A )2+ (0 v)2) :
B—r

r

W(t,m,D) = —0ppD? — 6px DTy — dpn> — 6pDy — 6275 — 6o —

In view of [22, Theorem 7.6],

t
Wis,m, D) = B| | T (A )+ (1 w)?) dut

+ e_r(t_s)< — 6ppD} — 6pa Dyt — Spnmi — Op Dy — Sy — 8o — B_T>
.

G.|.
Since W does not depend by ¢, for every t > 0

¢ 1
E{ [ e (A0 4 (o v)?) duske 0 (—5DDD3—5DﬂDt7Tt—(5m7rt2—5DDt+
- 57r7rt - 60 - 5 ; r) gs] - _5DDD§ - 6D7TDs7Ts - 57r7r7T§ - 6DDS - 57r7Ts - 60 - 6 ; /r-
Take lim;_,, , of both and apply (d) to conclude. ]

Remark 2.4.2. If ep = 1/r the matrix A is not invertible for o, = 0 and (2.4.11) no
longer holds. In this case we conjecture the existence of a solution for (2.4.10) but we
would need a different way of proving the result since the direct calculations become

more difficult.

With the properties of (x:)i>o shown in Lemma 2.4.3, we prove that (NV;);>o of

(2.1.5) is a stochastic discount factor.

Theorem 2.4.2. Under Assumption 2.1.1 the process (Ni)i>o of (2.1.5) is a normalized
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stochastic discount factor. The dynamics of the process (log &)i>o can be written as

1 gt t t
log& =log & — 5/ [(A )%+ (- vu)ﬂ du +/ (A - v,)dWP +/ (0 vy)dW]T,

=log & + ;/St {(A c0y)? (e vu)z] du + /:(A -0, ) AW + /St(L v, ) AW,
(2.4.20)

For everyt >0

Elllog &) < n (elAIHIATDE 41 4 1) (2.4.21)

Proof. The process (IV;):>o needs to satisfy conditions (2.2.3) and (2.2.4) of Definition
2.2.2 to be a stochastic discount factor. Property (2.2.3) is a direct calculation. The
definition of & = €™ N; and Lemma 2.4.3 (a) imply that

} . (24.22)

E[NtPtJr/ N, D, dulG

} /NDdu+E[Nt(C+eDDt+7rt +/NDdu

_/ NDdquNE[ “=9)(C 4 ep Dy + €7 +/ ~r@=9 D du

The function W (s, D,m) = C' 4+ epD + €, solves the Cauchy problem on [0, ¢]

0=Ws+ (V(W,D)W> : (A(w, D) + b) + ;tr ((He(mp) W) ZET> —rW+D

W(t,D,7) =C+epD + e,

where A, b and ¥ are in Lemma 2.4.3. By [22, Theorem 7.6], for every 0 < s <t

ot
W (s, Dg,ms) = E[/ e ") DL du + e_r“_s)(C' +epDy + €,my)

gs:| =C+ EDDS + €5 Ts.

Plugging W into (2.4.22) proves (2.2.4), hence (IV;);>0 is a stochastic discount factor.

The stochastic process (Ny)i>o of (2.1.5) solves the initial value problem

N,
DUt 4 (A )W 4 (1 )W, No=1.
t

thus the process (£;)¢>o solves the initial value problem

d&,

7 = (A -v)dWP + (0 v)dWT, & =1,

by virtue of its definition & = €™ N,. Applying Itd’s formula to f(&;) = log&; we get
the first equality of (2.4.20) and because of (2.4.9) we get the second one. Thanks to
(2.4.20) and to the triangle inequality
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Elllog&.]] < ;E Uﬁ (A 0)* + (- v)?) dh] +E H/O”<A O

2|

0

S (A - vp)dWP is a P—normal random variable with mean i, = 0 and variance
o? = / [(A - vp)2]dh < (41T 4oy 4 1), (2.4.23)

(2.4.13) (iv) implies the last inequality, where 7 is a positive constant. In view of Lemma

A.0.1 (IX) and (X),

B H /O (A ) d WP

} < UU\F < o2+ 1 < (eI gy 47y, (2.4.24)
m

Because of (2.4.23), the right side of (2.4.24) is a bound also for F Hfg‘(L : vh)dW,’[H
and for E [ (A -vp)? + (v vp)?) dh], thus (2.4.21) follows. O

We are ready to prove the admissibility of the candidate optimal policies.

Theorem 2.4.3 (Admissibility and utility). Define

yi* — e—Tai$6+5DDD8 +6pr Domo+8ramd+6p Do+8xmo+00 7

the processes (¢, 0% )0 as

. 5 Spn Oren 5 Or 0
o =rX; — bb D? — BT Dy — 2 — LD, - Tm -2,
a; a; a; a; a; a;
92’* _ MDDt + M7r7Tt + MO
and the process (X[*);>o as
1
Q;
4+ 6p M + ( (k+r))M + (eD - eﬂ(a +7) MD] / Dy du+

+ |00 M + (ep — €xla+ r))Mw} / w2 du+
I 0
- t

+ |6pM + (ezam — rC)Mp + (1 —ep(k+ r))MO} / D, du+
I 0

- t
+ |0 M + (eyam — rC)M, + <€D —€x(a+ r))MO} /0 Tudu+

+ |0oM + (eram — TC)MO] t+
] t t
—f-EDO'DMD/ DuquD—I—EDUDMW/ WudW£+€DUDM0(WtD)+
0 0

t t
+ ewaﬂMD/ D, dW] + e,TUWMﬂ/ T dW + e,TUWMO(Wf)}.
0 0

Under Assumption 2.1.1 there exists o,(ep, €., C) > 0 such that for every 0 < o, <
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ox(€p, €z, C), the following hold.

(A) (First order condition)
el = Tog(y™) + (8 — 1)t + log(£2): (2.4.26)

(B) (Budget equation) N, Xi* + [t N,c*du is a P—martingale;
(C) (Saturation) for every s >0, lim; o E[N;X/*|G,] = 0;

(D) (Admissibility) for every i € {1,...,n}, (c*,0 )0 is an admissible strategy with
wealth process (X[*);>o0. The utility of the strategy is

+oo .
E U e U () du

g0:| — 1 6_7’041'$6+5DD D2+406pxDomo+6xnm2+38p Do+6xmo+60
0

)

Proof. Let d.(ep, €x,C) be the minimum between the constants (with the same name)
in Theorem 2.4.1 and Lemma 2.4.3. We proceed in several steps.

Proof of (A): First order condition

The equality —a;ci* = —ro;zh + dpp D32 + dprDomo + 0prme + dp Do + 0, + dg holds.
Apply It6’s formula to both sides of (2.4.26) and check that they are equal.

Proof of the equality & F Ust e e du QS] =F {f; e " E cdu Q’S]
Due to (2.4.26) and to the triangle inequality, there exists 17 > 0 such that

|| < nl=royal + dppDf + dpxDomo + 6rnmy + 6pDo + 6270 + Go| + nu + nflog E,].
(2.4.27)

Applying the conditional expectation to both sides of (2.4.27), the properties of normal
random variables and (2.4.21) imply that

Blley ) < n (A 44 1),
Fubini’s Theorem [4, Theorem 1.1.7] yields to
t _ . _ t )
/ e ™E {cﬂ du=F [/ e_m|cz*|du] < 400
and by the conditional version of Fubini’s Theorem we get

_ t . t .
&.E [ [ ercizau gs} — B { [ e e

s

gs} . (2.4.28)

Proof of (B): N, X/* + [5 N,c* is a martingale

Direct calculations show that (X;*);>o is the wealth process of the strategy (c¢i*, 6i*);>0
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and they satisfy equality (2.4.1), equivalent to the self-financing condition. The equa-

lities

epopAp + €,0.tp = =1+ ep(k +71),
€popAy + €:0,tr = —€p + €-(a+T1),

epoplg + €010 = rC — aTe,,
and (2.4.9) imply that
dX* = (—c* +rX*)dt + epopfdW P + ez 0 dWT.
Applying Itd’s formula to the function f(t, X/*) = e "' X* we get
) ) 3 ) t L t _—
X = TS X / —e MU du + epop / eTEAWD 4 6o, / TG,
S S S

Multiply both sides by &, add [j N,c*du, take the conditional expectation and use

Bayes’ formula to get

. t . . s ) _ i A
E [NtXf* + [ Nucirdu gs} = NXU+ [ Nuchdu+ EsepopE [ [ ereazawy gs] +
0 0 s
_ t . _ _ t . t )
v Eeror [ [ ereoraws gs} L EE [ | —ericizau gs] +E [ Je gs] .

The Brownian terms are martingales because of Lemma 2.4.3 (c¢) and since (2.4.28)
holds, then

. t .
E [NtXZ* + [ Nucizdu
0

gs} _ / Noc*du + N, X*. (2.4.29)
0

Proof of (C): limy_, 4 E[N;X/*|Gs] =0
Because of (2.4.9) for the process X;* of (2.4.25), there exist 7, ..., 712 € R such that
, . t t t
N X =e"EXY + 7716_”5,5/ D2 du + 7726_”5,5/ D,m,du + 7736_”5,5/ T2 du+
t t
+ ?74e’”8t/ D,du + 77567”&/ Tudu + nee " E(t — 8)+
t _ t _ t
+ e e, / DudWP + nge "8, / TudWP 4 o8, / AW+

t _ t _ t _
+oetEs / Dud W7 + puue &, / TudWT + mige"tE, / AW,
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Taking the conditional expectation and using Bayes’ formula yields

. . _ t _ t
E[N,X*|G)] = e " E,X* + e EE { | DR gs] e TEE { | Dumidu

QS] +

_ 1ot _ 1ot ot
+nze "EE {/ Widu QS] +me "EE {/ D, du QS} +nse "EE {/ Tudu

gs] +nee” " E(t—35)+

D

_ t _
4 e ELE [ / Dyd WP gs}

a)

All the Brownian terms are P—martingales by virtue of Lemma 2.4.3 (¢). Thanks to
Lemma 2.4.3 (d), lim;_,, o, E[N;X}*|G,] = 0.

Proof of (D): Admissibility and utility

Property (i) of Definition 3.1.1 is clear and proving that (X/*)s¢ is the wealth process of

1ot _
gs} +nse "EE [/ 7TuquD gs} + nge_rtESE

{ v
_ t _ _ t _
e ELE [ / Do diW™ gs] e MEE [ / rud VT gs} —|—77126”58E[ dW”

S

the strategy (ci*,01*);>¢ is a direct calculation. Take lim;_, ., to both sides of (2.4.29)
and use (C) to prove (2.1.3) and thus the admissibility of the strategy (ci*,6:*);>0.
(2.4.26) implies

Q%

E

g0:| - ___FR |:/0 elogy ru+10g$udu‘g0:| — Yy

i

+00 .
/ e AU () du
0

%

O

Theorem 2.4.4 (Duality Theorem). Let (¢, 60;)i>0 be an admissible strateqy and let
(N¢)i>0 be the process of (2.1.5); then

t . +oo .
tlim E [/ e U (¢, )du 0} =F / e U (¢, )du Qo] ,
T Mo " (2.4.30)
lim £ / e U (yeP" N, )du 0} =F / e U (yeP" N, )du QO} .
t—+o00 0 0

Furthermore

400 ~ .
go] < iI>1£ {E {/ e PU (yeP N, ) du
y 0

E Uom e P U (e, du go} + g;gy} . (2.4.31)

where

~ . Y (1 —1
U'y) = o (logy = 1) >0 (2.4.32)
0 y=0.

If there exist y* > 0 and an admissible strategy (c},0;)¢>0 for which

+00 . +oo ~. .
B[ e Ui du | ey N du 90}* oy, (24.33)
0 0

QO} =F

then (c;, 05 )0 is optimal.
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Proof. Define the random variables

m ‘ +o0o _
AT :/ e Puaicuqy, A :/ e~ Puaicuqy,
0 0

on the probability space (2, G, (G¢)i>0,P). Then \™ > 0 for every m € N and (A\"),en is
an increasing sequence of random variables such that lim,, , ;. A™ = \. The Conditional

Monotone Convergence Theorem yields to

lim E[\"|Go] = E[A|Go],

m—-+00

which implies the first equality in (2.4.30). The function U’ defined in (2.4.32) has a
global minimum at y = 1; apply the Conditional Monotone Convergence Theorem to

the random variables

m - “+o00
A= / e Pu (Uz(yeﬂ“N )+ )du A= / (UZ (ye’™N,) + > du,
0 (o7

to conclude the second equality in (2.4.30). For the proof of (2.4.31) apply (A.0.1) to

the random variables ¢, and Y, = ye®*N,; for every y > 0
U'(cy) < U'(ye’™N,) + cuye®™N,.

Multiply both sides by e~#“, integrate in [0,¢] and take conditional expectations; for
every y > 0

t . 3 ~ .
E [/ e U (¢,)du go} <F U e U (yeP N, ) du
0 0

t
go] +yE [/0 cu N du

go] :
Take lim sup,_, , ., of both sides and use (2.4.30) and (2.1.3); for every y > 0

+oo . +oo .y
E / e P U (¢, )du / e U (yeP" N, )du
0 0

go} <FE

go] + l’éy.

Take inf,~o to obtain (2.4.31). If there exist y™* > 0 and an admissible strategy
(¢}, 07)i>0 for which (2.4.33) holds, then

+oo . +oo ~ . )
B[ emvicang) < it {B| [T e T e NduGo + aiy )
0 v 0
+oo o +oo )
<E / e U (y™ e’ N, )du|Go | + xiy™ = E / e U (e )du QO] :
0 0
All the above are equalities therefore (¢}, 0;):>o is optimal. O

Theorem 2.4.5 (Existence). Under Assumption 2.1.1 there exists o,(ep, €., C) > 0
such that for every 0 < o, < dx(€p,€x, C), the strategy (ci*, 01 )10 in Theorem 2.4.3
is optimal for the i—th investor for every i € {1,...,n}. The function V' of Theorem
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2.4.1 is the value function of the i—th investor.

Proof. Fix 0 < s <t and y > 0; thanks to the definition of U(-) in (2.4.32)

i ~
E [/ e U (ye™ N, )du

S

gs] = O?i{ (logy — 1) E [/:Nudu

+ BE [/tuNudu

S

Qs] +

t
gs} 4 E [ / N, log N, du

0]}

The following integrability conditions hold:

¢ t t (e77s —e™™)
/ E[|N,|]du = / E[N,]du :/ e "du = — < +00,
t t t —rs(] _ -t 1 t
/ E“uNquu:/ uE[Nu]du:/ we M dy = (L+rs)—e({1+1t) < +o0.

r2

The conditional version of Fubini’s Theorem [4, Theorem 1.1.8] applies and yields

t ~
E [/ e PUU (ye™ N, )du

S

_E . t —ru
Qs] = a’{(logy 1)85/5 e "du+

)

t t
+ (8 — 7’)55/ ue "du+ E [/ e &, log £y du

S

0]}

(2.4.21) implies that

t _
/ e "B [[log &) du < gt — ) (IAHIAIN ¢ 4 1) < 4o,

S

Fubini’s Theorem and Bayes’ formula yield to

t ~
E {/ e PuU (yeP* N, ) du

S

v _ G
gs] = ai{(logy 1)85/ e "™du+

S

¢ t _
+ (B — 7“)55/5 ue "du + 55/5 e " E [log £,]Gs] du}

and computing the integrals we get

i ~
E [/ e U (ye™ N, )du

S

0. = Le.{ logy = 1) (77" = e )+

e (1+rs) —
,

n (B _ T) €_Tt(1 + Tt) + r/t e—ruE [10g gu|gs] dU}

By virtue of (2.4.20) and Lemma 2.4.3 (c),

Elog £,|Gs] = log & + ;E[/u ((A cvy)? 4 (e vu)2) du

G.|.

66



2.4. VERIFICATION

Defining Y; = [ [(A - v,)? + (¢ - v,)?] du it follows that

; - + t _
r / e " E [log £,|G,] du = rlog &, / e " du + %/ e " E[Y.|G;]du

and thanks to Lemma 2.4.3 (b) and to Fubini’s Theorem we get

t _ t _
7’/ e " E [log £,4|Gs] du = rlog 85/ e "du + gE [/ Y du

]

As a consequence,

t ~
E [/ e U (ye® N, )du 8} = yé's{ (logy — 1) (e —e ™)+
s rog

e (1+rs)—e (1 +rt)
r

t _
+ (B —r) + rlog ES/S e "du + gE Us Y, du

(2.4.34)

Applying It6’s formula to the function e "'Y; and taking the conditional expectation

yields

ot
rE [/ e Y, du

S} =e Y, — e_TtE[/St ((A 0%+ (e vu)2> du gs] +

+ E[/St e ™ ((A cvu)? 4 (e Uu)2) du

gs] (2.4.35)

Plug (2.4.35) into (2.4.34), fix s = 0, take lim;_, ., of both sides and add z{y to get

t . , 5 _
. —Bu Bu 1 _ _ -
tl}erooE [/0 e "U (ye”™ Ny)du QO] + xpy = ral{ (logy — 1) + Ty
1 T
-5 tEerooe ) [/0 ((A )2 (e Uu)2> du QO] +
L n ! —ru 2 i
+ 5 tl}erooE [/0 ((A V) + (- vy) ) du QO] } + zgy.

Choosing y = y™ = exp(—ra;z{, + dppD§ + 0pxDomo + dxxmg 4+ 0p Do + 6o + &) and
using Lemma 2.4.3 (d) it follows that

1%

Qg] —i—xf)y’* = ;ya {(—raix6+5DDDg+5D7FD07T0+5M7T5+

+5DD0+6ﬂ7r0+50 — 1)+ B;Jr

— lim E{/O e ((A )+ (o vu)2) du

2 t—+o00

t -
lim F [/ e U (ye’ N, )du
0

t—+o00

ol e

Lemma 2.4.3 (e) and (2.4.30) imply

%

E

+oo -
/ e U (yeP™ N, )du
0

Go| =2

rog
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The conclusion follows from Theorems 2.4.3 and 2.4.4. ]

Uniqueness of the optimal strategy

Lemma 2.4.4. Let i € {1,...,n} and let (¢, 0;);>0 be an optimal strategy for the i—th

agent, then for every s > 0

t
limsup £ [/ N,c,du

t—+o00

Proof. Suppose, for a contradiction, that there exist i € {1,...,n}, s >0, S € G, with
P(S) > 0 and an optimal strategy such that

to .
limsup £ [/ N, c.du

t—+o00

gs:| < NsXs on S

Let ns be a Gs—adapted random variable and define the new strategy (¢, 0:)i>0 as

(€1)i>0 = (Ct)i>0 + Ns1e>s and its wealth process

_ i _ . .
X=X lies + 1t23{Xs + / {— Cy + 17Xy + 0, (ezam —rC) + egDu(l —ep(k+ r))+

. t ¢
+0mu(ep = exla 1) |du+epop [ GAWE + o [ e;dwg}.

If limsup,_,,  F U; Nucudu|gs} = —oo the claim follows because 1, = 1 makes (¢;):>o
a better strategy, still admissible. Otherwise, if limsup, ,, F { IN Nucudu|gs} > —00,
define e = XN, —limsup,_, . F [fst Nycudu QS} > 0. Choose n, = er(&;)"1e™ to obtain

a better strategy, which is still admissible because

¢
X,N, — limsup F [/ Nu(cy +ns)du

t——+00

Es
gs:| =€— 7’]57677«8 = 0.
r

Theorem 2.4.6 (Uniqueness). Under Assumption 2.1.1 there exists o, (ep, €, C) > 0
such that for every 0 < o, < dx(€p, €x, C), the strategy (ci*, 01 )10 in Theorem 2.4.3 is
the unique optimal strategy for the i—th investor for alli € {1,...,n}.

Proof. Claim: The consumption process is unique.

Suppose there exist optimal strategies for the i—th investor (ci, 01);>0 and (cZ,605)>¢
and suppose, for a contradiction, that there exists S € B ® F* such that (oo @
P)(S) > 0 and ¢'15 # ¢1s. The wealth process of the strategy (¢ + ¢f, 0 + 67 )10
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is the process 1(X/* + X/);>0, with dynamics

1 1
§d(X;“ +XP) = 3 [ —ct — P (XA XP) + (01 + 08 (epar — rC)+
+ (6 + Qf)Dt<1 —ep(k+ r)) + (01 + Hf)m(e[) —e(a+ r))}dtjt

1 1
+ 5(9? + 0 )epopdWP + 5(9{‘ + 0P ero dWT.

The new strategy has initial wealth z and is admissible because (i, 02');50 and (cZ, 02) ;0

are. Since the utility function is strictly concave, ¢! # ¢? on S implies

A B 1 1
U(Ct ;Ct ) > §U<CtA) + §U(cf) on S.

Define H := {w € Q: \jp oo ({t > 0: (t,w) € S})} € G, then P(H) > 0,

+00 A B 1 +o00
/O e—ﬁtU<Ct_‘2_ct>dt > 5/0 e PHU (eM) 4+ U(cP))dt a.s.

and

+00 A B 1 pt+oo
/0 e—wU(Ct‘gCt)dt > 5/0 e PU(c) + U(cB)dt  on H.

By Lemma A.0.2 (II) it follows that

. A, B
E [/+ e—ﬁt(C?f_l_Ct)dt
0 2

on a positive probability set, thus contradicting the optimality of the consumption

400 .
S E [ [ e
0

Go

o

processes (ci)i>o and (¢P);>o.
Claim: Investment and wealth processes are unique.
Thanks to (2.4.36), it follows that

) L )
X" = (N,) 'limsup E [/ Nyctdu

t—4o00

G| .
which proves the uniqueness of the optimal wealth process. From (2.4.1) it follows that

dX[P i dt—r X} dt = 0} [(ezar — rC) + Dy(1 = ep(k+ 7)) + m(ep — exla+7))] di+
+ EDUDQithD + eﬂ.(jﬂeidwtﬂ-.

If there exist two strategies with wealth process (X;*);>o and consumption (ci*);>o, then
drifts and volatilities must be the same. This implies the uniqueness of the optimal

investment strategy. 0]
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2.4.1 Market clearing and proof of Theorem 2.2.1

The economy has one risky asset, i.e. for every ¢t > 0

n . n MDDt + Mﬂ-ﬂ't + MO
0" = =1 2.4.37
; r=2 Ma, ) (2.4.37)

=1

where Mp, M., My are given in Definition 2.4.1.

Proof of Theorem 2.2.1. The market clearing condition (2.4.37) implies Mp = 0, M, =
-1
0 and My = Ma, where a = ( n o1 ) . From Mp = 0 and M, = 0 it follows that

i=1 o

a+r— 20,02

D T S pr02(L+ 00pn) — (k + 7 — 20ppod)(atr — 26,,02)
1+ 5D7r0-%)
€Exr = — .
—(a+7r)(k+71—20ppc%) + 02(0pr + 2(k + 7)0rr + 0% (0%, — 40pp0rr))

(2.4.38)

Because of Theorem 2.4.1, dpp, dxr, Opx, 0D, O, 0p are the solution of the system

h=lh=h=h=k=f=0 (2.4.39)

where fi,..., fg are given in Lemma C.0.1. Plugging ep and €, of (2.4.38) into the
first 5 equation of (2.4.39) we get 4 solutions which may satisfy the market clearing

condition:
1 1
Tt k+r . (a—k)?(a+r)0d 4+ (a—2k)o2 . a(a+k+r)20% +(a+2k+r)o2
€D 1 1 k(a—i—r)((a—k)zJQD—l—a,%) ak((a—i—k—&-r)za%—i-ai)
(a+r)(k+r) a(k+r)
€x * *
0 *
5DD * X
0 *
5D7r € 0 ) 2a+r ) * ) *
2
Onm 2on * *
0 *
5D * *
0 *
O * *
0 *
Neither of the last two solution is an equilibrium because lim,__,¢€p(o,) = —% < 0 and

so €p ¢ B in a neighbourhood of ¢, = 0, which contradicts Definition 2.1.4. Exclude
also the second solution because lim,__,0.:(0;) = +00 # . contradicting Theorem

2.4.1. The only solution left is the first one which leads to the unique equilibrium.

The constant C* = m — ((kﬁ)Q + @ +T)‘;§k +7~)2> is the solution of the equation
My = Ma, while dg is the solution of fg = 0. O
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Chapter 3

Heterogeneous Information

3.1 Model and main definitions

The economy has one risky asset in unit supply, which pays a dividend stream (D;):>o

described as
dD; = (7, — kD,)dt + opdW}P, (3.1.1)
where the state of the economy (7)¢>¢ is an Ornstein—-Uhlenbeck process
dmy = a(m — m)dt + o dW[. (3.1.2)

There is a continuously compounded risk-free asset (P);>o with rate of return r > 0,
at which investors can both lend and borrow. There are n € N investors competing
for the risky asset: the i—th investor has constant absolute risk aversion «; > 1 and
initial wealth x{, € R. The price (P;);>o of the risky asset is public information and each
investor observes the private signals (});>0, which offers a noisy estimate of the state

of the economy;, i.e.,
d¢l = mdt + oy dW), & =0, (3.1.3)

where W = (WP, WF WL, ... ,W)>0 is a (n + 2)—dimensional Brownian motion and

(Do, mp) is an independent normally distributed random vector with mean and covari-

()= ()l

The probability space is (2, G, (G;)i>0, P), where G; is the augmented natural filtration of

ance

E =
UT\' U7T

a7 o2 1 1 2 o2
_ (2113 + (k—a)? (% o~ aTk) 2a(a+k)) _

2a(a+k) 2a

Dy, 7o, (Wy)o<u<t and G is the augmented sigma algebra generated by Uy>o G:. Likewise

F}, which represent the information of the i—th investor at time ¢ > 0, is the augmented

71



3.1. MODEL AND MAIN DEFINITIONS

natural filtration of (D, P,,&,)o<u<¢'- The i—th investor’s estimate of the state of the
economy is (#1)>0 = (E[m¢|F/])i>0. All equalities and inequalities between random

variables are understood P—almost surely.

Definition 3.1.1 (Admissibile strategies). (¢, 0;)i>0 is an admissible (consumption-investment)

strategy for the ¢—th investor if:
(i) (ct)i>0 and (6;)¢>0 are (F})i>o—progressively measurable processes;

(ii) for every s >0

t . .
limsupE [/ N;cudu’f;‘} < N X, (3.1.4)

t——+o00

where (X});>0 is the self-financing wealth process
dXt = —Ctdt + QtDtdt + T’(Xt - QtPt)dt + Qtd_Ph X() = J]é, (315)

(N})¢>o is the process

. t
Ng:exp<—rt+/( )dBlD+/ dB%L/ o v )dBi 4
0

— ; Ot {(A’ U (Pl (p e oh) } du), (3.1.6)

(V)0 = (D, 7, 7}, 1) and A7 7, p' are given in Definition 3.4.1 below.

The set of admissible strategies for the i—th investor is U°.

Definition 3.1.2 (Optimality). A (consumption-investment) strategy (ct, 6?);>o is opti-

mal for the i—th investor if it is admissible and if

+o00 . . +oo . .
sup F / e_ﬂuUZ(cu)du‘fé} =F / e U )du .7:5] : (3.1.7)
(c.O)eU? 0 0
where B
) p—wic
U'(c) :=— ' 1,... :
©=-S ie{ln)

The time impatience parameter 5 > 0 is common to all agents. The consumption-
investment problem of each agent is well-posed if an optimal strategy exists, otherwise

the problem is ill-posed.

Remark 3.1.1. (Dy,m) being a random variable with the distribution defined above is
fundamental for (Dy, m)¢>0 to be a stationary process and thus for the stationary filter
of Lemma 3.4.1 to make sense. As a consequence the o—algebra F¢ is different from

the trivial c—algebra and a conditional expectation appears in (3.1.7).

I'Note that all filtrations are augmented with the null sets of the sigma algebra G.
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3.1. MODEL AND MAIN DEFINITIONS

Definition 3.1.3. (ci, 0%);>0 is the unique optimal (consumption-investment) strategy for

the i—th investor if it is optimal for the ¢—th investor and if
(¢, 6))iz0 = (¢, 0)iz0 Aj[0,400[ @ P — a.s

for every other optimal strategy (¢, 0;)¢>o-

Definition 3.1.4. Fix €1,...,€, > 0. The (consensus) market estimate for the state of

Tt (Dua ZQ%) ] :
i=1 0<u<t

Remark 3.1.2. As the definition of (7M),>¢ is invariant with respect to a common scaling

2 2

factor of all €1, ..., €,, without loss of generality we suppose that >>" , ;o7 = > €.

the economy is

AM .
e

Lemma 3.1.1. The (consensus) market estimate for the state of the economy (#M);>o

has dynamics

diM = |a(7 — 7)) + onkop? Dy — our (% + Z ez> WZM} dt + on <052th +> eidﬁti) :

i=1 =1
=T,
(3.1.8)
— 2 2
where oy = aty/e +U+£D +Z’ 1€
7 1

Proof. Apply Theorem D.0.1 (cf. [25, Theorem 10.3]), with the processes (Dy, Y11 €€} )i>0

as signals. 0

Definition 3.1.5. A linear equilibrium is an (n+4)—tuple (o, €77, €77, C7, (S% )'=i=n),
where 0, > 0,77 € B,e7" € R*,C°" € R and S!,_ = (c},0;)i>0 is an optimal strategy
for the i—th investor for every i € {1,...,n} such that for every t > 0

(i) the price of the risky asset is

= C7" + €5 D, + e 7M (3.1.9)

(ii) the market clearing condition
Yo =1 (3.1.10)

holds.

In the light of Chapter 1, we focus for the whole chapter on the following
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3.2. EXISTENCE AND UNIQUENESS OF THE EQUILIBRIUM

Assumption 3.1.1. The parameters of the economy are a,k,o1,...0,,0p > 0,0, > 0

and 7, C' € R. Furthermore assume

ep €B:=(0,2/r)\ {1/r}, €x 7 0, a # k.

Definition 3.1.6. (Ey, )o<or<s, = (0, €75, €77, C7, (8L )!1S=")o<, < is a continuous
equilibrium if there exists g, > 0 such that (E,,)o<s.<s 1S a linear equilibrium for

every 0 < o, < g, and if

lim (ef,e7,C7) = (e, 62,C%) € B x R* x R, (3.1.11)

or—07F

Definition 3.1.7. The continuous equilibrium (E2 )i<, <5 4 is unique if E2 = EP for

every 0 < o, < min{c;*, 5,2}, for every (EZ )o<o, <5 continuous equilibrium.

Definition 3.1.8. We introduce the following constants,

_ no1\7! > i €5 620'2
o e (ED) VD
jF#i i—1 Qi 237’51 €j

n
-2 -2, -2 -2
v=op + Y 6, vi=op t0; "+ 0,
i=1
—a++/a? + o2v —a+/a? + o2y,
OMm = U ) 0; = U .
(2

3.2 Existence and uniqueness of the equilibrium

Theorem 3.2.1. Under Assumption 3.1.1 there exists a unique continuous equilibrium
(05, C*, €5, €5, (S™)ISE=m) - for which the price is

="+ D+ M, where M =F |x, <Du; 201;_2&) ] ;
i=1 0<u<t
1 1
€ = 7 € =—""+ and
k+r (a+71)(k+r)
_ o2

. ar . o2 2r
¢ Crla+r)(k+7) ((k+7’)2+(a+r)2(/€+7“)2 (1+a+\/a2+02( Py o )))
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3.2. EXISTENCE AND UNIQUENESS OF THE EQUILIBRIUM

The unique optimal consumption-investment strateqy for the i—th agent is

, . B-r ra? o o2 2r
CZ* — TX’L* + + + T 1 + ,
¢ ¢ ra; 20 \(k+71)2  (a+71)%(k+71)? a+ \/a2 + oo+, 072

(3.2.1)

0ir = (3.2.2)

S\Qw

Preliminaries and outline of the proof

Remark 3.2.1. If (ep,e;) = (0,0) then (3.1.9) implies P, = C for every t > 0. If the
assets are two deterministic processes with different interest rates (0 for P, and r > 0 for
PP), then the model admits arbitrage, therefore the consumption-investment problem

of the agents is ill-posed and in particular no linear equilibrium exists.

Definition 3.2.1. A value function for the ¢—th investor is a function

ViR — [—00,0]
(z,D, 7", &) — Vi(z, D, 7" 7"

such that for every (z, D, 7V, 7') € R

Viz,D, 7™ 7)) = sup FE

+o00 . . _ . .
| / e~ (e )dulth = 7, Dy = D, AM = 7M 78 — 7| |
(c,0)elt’ 0

It follows from this definition that if there exists a value function V(-) and a strategy

(¢, 07*);>0 optimal for the i—th investor, then

+oo L.
V(mO,DO,WO ,7T8) E/ e_'BSUZ(Ci,*)ds
0

7.

Definition 3.2.2. A stochastic discount factor (SDF) for the i—th agent is a positive,
continuous, (F});>o—adapted process (M,);>o such that for every 0 < s < ¢

M,P° = E[M,P?|Fi] (3.2.4)
and

S t
M.P, + / M,Dydu = E [MtPt + / M, D,du
0 0

s‘] . (3.2.5)

A stochastic discount factor is normalized if My = 1.

We find the (unique) equilibrium in the market in two steps: first we solve the

optimal consumption problem of the agents for a generic price with the form of (3.1.9);
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3.2. EXISTENCE AND UNIQUENESS OF THE EQUILIBRIUM

then we clear the market with condition (3.1.10) and we deduce that the price of the

unique continuous equilibrium has parameters

1 1
o * _ - d
R A r (a+r)k+r) o
o _ am e o2 . o2 14 2r
r(a+r)(k+r) (k+7)2 " (a+7)%k+1)? a+ \/a2+a727(052+2?:1 0:2)

e Section 3.3 formulates the Hamilton Jacobi Bellman (HJB) equation, which

leads to a guess of the value function and the optimal strategies.

e Section 3.4 formalizes the heuristics of the previous section proving existence

and uniqueness of the optimal portfolio for a generic price function for ep € B.

— Subsection 3.4.1 finds the unique linear equilibrium in the market through

the market clearing condition.

e Appendix D recalls some well known results that are used in this chapter.
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3.3. HEURISTICS

3.3 Heuristics

If the price of the risky asset is linear in D and # standard results in filtering theory
[25, Theorem 10.3] imply that the dynamics of the state of the economy for the i—th

investor is
di} = a(z — 7})dt + 0; (05" dBi” + 07 dB} + 07" dB}Y)

where (B;)i>0 = (B{P, B, Bi*);>0 is the P—Brownian motion defined in (3.4.1) below.
Guess a value function V* which depends on the dividend rate, on the opinions about
the state of the economy and on the wealth; because of the infinite time horizon we

guess that V' does not depend on the initial time ¢ > 0, i.e.

VZ(XZJDtaﬁ-zgwaﬁ-z) = sup E
(c,07)

+o0 . .
/ e PO () ds| Fi
t

A similar procedure as in Subsection 1.3.1 (replacing G; with F}) leads to

e%}

0= sup { Ty +V;[—c"+m+ei(eﬂaw—r0) +0'D(1 — ep(k + 7))+
)

(ct,0° ;
+0 M (—e, (a+r)—erop ) +07 (epteron ) | +VE (R —kD)+Viy (am—ai™M 4ot —opva™M)+
D s
. 1. . 1_. 1. .. 1.
+Vai(am—af')+5 (0)° Vo, (veroh+epop+2epenon)+5 Vhpopts Vanan 0y v+5 Viizio]vit

+ V0" (epos + exon) + Viwb on(ep + exopv) + Vi 0i(ep + exopv) + Vi anon+

VéﬁiOi + vﬁil\fﬁ—ioMOiV}- (3.3.1)

Differentiating with respect to ¢ and ¢°, we find the candidate optimal consumption-
investment policy

log(V7)

)

i

1

RV 2 2 2
Vi (vetoi, + €504 + 2€peqom

Qi* _

] {V; [(EFCH_T—TC)—{—D(1—€D(k+7”))+7/1\'M(—€ﬂ-<CL+T)—EFOMV)—}—

+ 7 (ep+exonv) | +Vip(epod +exons) +Viamon(ep +exopv) +Vieioi(ep —i—e,roMz/)}.

(3.3.2)
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3.3. HEURISTICS

The HJB equation for the i—th investor follows by substituting the candidate optimal
policies into (3.3.1)
vl
0=—= - v+ v|(

Q;

log V!

Q;

+rz) + 0% (epam —rC) + 0" D(1 — ep(k + 1))+

+ 0% 7M(—er(a+71) — exopv) + 057 (ep + eﬂoMl/)] + Vh(7 — kD) + Vix(aw — a?™ +
+0MI/7ATZ—OMI/7A1'M)+V;.Z~(G7_T—aﬁ'z>+§(9”) Vi (vetor, +ehos +2€eperon) + = VDD0D+
+ Vi a0y v + V#ﬁm?m + Vip0™* (epo} + exonr) + Viar 0™ opr(ep + exopv)+

V’L

Zisd

0™ 0i(ep + €roprv) + Viyarions + Viaiop + Virzionrow, (3.3.3)

Using the Ansatz

. ) 1 ) ) )
Vi(z, D, 7™ 7)) = ———exp < — 1w + 0 D? 4 0% (A2 4 55 (71

rog

+ 604, DM 4+ 55, D" + SppiMat + 65D + 64, 7M + 5,70 4 60 ),
DM D M 0

where 0%, 04 0ss 0iis Oars Oi, Oaris Oy, Og, 04y 0 are in Theorem 3.4.1, (3.3.2) leads to

the optimal consumption investment strategy

i i 5 i 5 5
i i N ~i ~ Di Mi A M ~
7 = rX{ = SPPD} - S (M) - SRR~ TRMDN — D — SR
Q; Q; Q; i i
(A (A 5 62
D M ~AM i A 0
_7Dt_77rt N N
Q; Q; Q; Q;
ei*_M},DtJrMZ aM + My + M
t MCYi 7

where M}y, M}, M;, M} are in Definition 3.4.1.
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3.4. VERIFICATION

3.4 Verification

Theorem 3.2.1 identifies a unique continuous equilibrium in the market. The first step
of the proof is to solve the consumption-investment problem of the agents for a generic
price with form (3.1.9). We start by finding the agents’ views about the state of the

economy.

Lemma 3.4.1 (Filtering). Define

. 1 . ¥ .
= Y&, & = Elml|F],
2t € S

(Bt)t>0 (BZDa BZ» B1L>t>0

¢ _ _
(WtD+/O T ”d W’+/ 7udu o ZEJO']W] —l—/ T “du) :
>0

Lo >
(3.4.1)
The following hold
(A) For every t > 0
F ZU{Duﬁfy,fZ}owqZU{Du,Zﬁjfi,SZ} :U{ fl}0<u<t
JF 0<u<t

(B) The i—th investor’s (stationary) filter for the state of the economy is
di} = a(7 — #})dt + 0 (05" dB” + 0, dB} + 0;'dB[Y),  #h =7, (342)

where B = (BiP, B, Bi*);>¢ is a P—Brownian motion.

(C) For every i € {1,...,n} the processes (7M);>o and (D;)s>o follow the dynamics

diM = [a(7 — M) + opv (7 — M) dt + opy (aDldBZD + €;0:d B! + eudB“) , wl =g,
(3.4.3)
dD, = (%! — kD,)dt + opdB®.

Proof. Proof of (A)
Define H! = o{D,,#M ¢ : 0 < u < t} and L = U{Du,zj#ej{’i,f; 0<u< t}.
Equation (3.1.9) implies (F});>0 = (H})i>0. Defining A = (a + opv) and applying 1td’s
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3.4. VERIFICATION

rule to eMaM M D, and eMEl it follows that

= t
ﬁi” = e_’\(t_s)fréw + an (1 — e_’\(t_s)) + oMk:UBQe_’\t/ e D, du + OMO'B26_M [eMDt—k

A s
t . . t . .
—e’\st—)\/ eA“Dudu} +opee” M [e”ﬂ — e i )\/ ekuﬁzdu} +ope N [e)‘t Z €&+
5 s J#i
4 t )
S SOCERY e s
i s j#i

which implies H! C L. In view of (3.1.8),

t t
AM — 2 M 4 it — (a+ opw) /0 My + oprkog? /0 Dudt + 0052 D — 0no 52 Do+

+ on€ill — onrei&l + onr (Z Ejfg) — oM (Z Ejfg) ;
J# J#
which implies £ C H! and thus £! = H!. The last equality of (A) is true because £+
is a multiple of the process >, ; ejﬁg.
Applying Theorem D.0.1 (cf. [25, Theorem 10.3]), with the process (Dy, &, £ )50 as
signal, (B) follows, while (C) is a direct consequence of the definition of (B{?, Bi, Bi*),>¢.
L

The market estimate of the state of the economy expresses a weighted average of the
private information available. The following theorem shows that each agent considers
(#M);>0 their best approximation for (m;);>0 if and only if the weight of their private
signal in the process (#}M);>o is the inverse of the square of their signal’s noise, i.e.
€ = 0; 2,
Lemma 3.4.2 (Properties of the filters). Let o, > 0 and i € {1,...,n}; the following

are equivalent

1. The (G;);>o—measurable processes (#M);>9 and (#});>0 are indistinguishable;

2. ¢ = 0{2;
3. v =V,
4. 0; = oy,

9. V;0; = opV;

A

If o, =0, then (AM);50 = (#))i>0 = (7¢)¢>0 for every i € {1,... n}.

Proof. (3) < (4)

We defined
—a+/a? + o2y —a+/a? + o2y,
oM = ) 0; = )
v Vi
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3.4. VERIFICATION

in Definition 3.1.8 so (3) implies (4). For the reverse implication observe that the

derivative of the function f(z) = S VA Vfw’%x is strictly negative for a, o, x > 0, then

such function is decreasing and thus injective.

(2) = (3)

Since 7, 6 = Y1, €202, v = v; if and only if Y0, ¢ = 0,2 +
2

%

% Multiplying

1

both sides by €, > 0 and using the equality €7, = YI'| ¢; — €207 we get an algebraic

equation of second order whose unique solution is ¢; = o; 2.
(1) = (2)

Thanks to (3.1.8) it follows that

daM = [a7 + opvm — (a + opv)ZM]dE + o (crf)lthD +> epﬂWf) (3.4.4)

=1

and (3.4.2) yields

dil = {aﬁ + o — la + o;v] frz} dt + o; 5
il /g
(3.4.5)

optdWP + o7 dW] + <Z#i & ) Zejajdwg] .

For the terms in dW/ of (3.4.4) and (3.4.5) to match we need o; = oy which we proved

to be equivalent to ¢; = o; 2.

(2) = (1)

Comparing (3.4.4) and (3.4.5), it is suffices to show that e,o;, = <Z§“EJ> enoy, for
il

every ¢ € {1,...,n} and h # i. This is equivalent to 1 = ZnL_U:? which is always

true. Observe that the denominator is always different from Oi:ﬁnlde; Assumption 3.1.1
because .7 | €; — 0{2 = > € > 0.

(1-4) = (5)

Multiply the equalities (3) and (4).

(5) = (1-4)

Since the derivative of the function f(rv) = —a + \/a®? + o2v is strictly positive for
a,o.,v > 0, then f(v) is increasing and thus injective. It follows that (5) implies

(4). O

The dynamics (3.4.3) and direct calculations imply that the self-financing condition

(3.1.5) for an investor with consumption-investment strategy (ct, 6%);>¢ is equivalent to

dX} = [—c§+7“XZ+9§(eﬂaﬁ—rC)—l—@iDt (1 —ep(k+7)+0iaM (—ep(a+7) — exoprv) +

dt +0(epop +exonop ) ABP 4 0ioyrere;o:d Bl +0loysene; B
(3.4.6)

+ 07} (€p + €xonV)
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3.4. VERIFICATION

The following theorem proves the existence of a solution of the HJB equation and thus

a candidate value function.

Theorem 3.4.1. Fiz ), € B, €2 £ 0,C° € R, define
5i = (6%)D7 5;\4M7 5@'@'7 5ZDM7 5Di7 5Mia 51Da 5}\/17 5i7 56)
and let § be the function in Definition D.0.1. For everyi € {1,...,n}, there exist
(i) U(€%, e, C%) C R* x R open neighbourhood of (O e, €2, 00 (€Y, 7r,C’O))
(ii) W (e}, 2, C%) C R* open neighbourhood of (0,€%, 2, C);
such that

(I) for every (ox,€p,€r, C) € W(e%, €2, C°), there exists a unique &' such that
(0, €D, €x, C,8Y) € U(e}, €2, CY) and the function
Vi(x, D, #M #") = ——exp ( —roux + 0 D? + 0% (R 4 85 (71

460, DAY 4 60 DAY+ Sagi M 4+ 60D + 8, AM+5Z-7%‘+53> (3.4.7)

solves the Hamilton Jacobi Bellman equation of the i—th investor

Vi ~ log V!
0=——"-pBV'+V, [( SAE x) 0™ (ezam — rC) + 0" D(1 — ep(k + 1))+
+0*7M (—ex(a+r) —ewoMu)+9i*7Ari(eD+e7roMu)} + VA (7 —kD)+Viy(art —ai™ +

. , 1 . 1.
—I—OMV7ATZ—0MV7%M)+V}1' (aﬁ—aﬁ’)+§(9”‘)2‘/;90(l/efro?\/[—i—ezDa%—l—QeDewoM)%—EV[@DU%—F

+ 7K A{W]VIOMV + V; WZO Vi + VZDQi*(EDU% + GWOM) + VzﬁMei*OM(ED + EﬂOMV)—I—

+ V0% 0i(ep + eropv) + Visarons + Viaiop + Virsionrow, (3.4.8)
where
o ! {Vi](esam = rC) + D(1 — e+ 1)+
= —— €xQT — T —€ r
Vi (ve2o%, + €ho%h + 2epegop) L © b
A M

+7 (—ew(aqtr)—ewoMu)+ﬁi(eD+eﬂoMy)] +Vip(epohtexon ) +Vimon (€pteronv)+

+ VZWOZ'(ED + EﬂOMI/)}.
(II) If this 6" is defined to be g'(0x, €p, €x, C), then g* € €1 (W, U) and g*(0, %, €2, C°) =
6<ED> waco)

Proof. Inserting (3.4.7) into (3.4.8) makes the HJB equation an algebraic equation of
second order. For every i € {1,...,n}, the function V*(-) solves the HJB equation if
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and only if

1 ) —

f(0-7r7 DD> MMa(Sii75DM75Dia6Mi7 D> M75i750)_0a

where f? is defined in (D.0.2). Lemma D.0.1 concludes the proof. O

The following are technical results for the solution of the consumption-investment

problem.

Lemma 3.4.3. For every ng,n1,1m2,m3 € R, there exist constants g, > 0 independent
by t such that, for every ¢t > 0,

|E[ns Dy + ot + mA; +mol| < iy Var[ns Dy + no#t) + my +mo] < 07

Proof. In view of the Cauchy-Swartz inequality, it is enough to prove that the mean
and the variance of the processes (D;)i>0, (A )i>0, (71)i>0 are bounded from above and

from below. Apply Itd’s formula to e¥#?, ek D, and to e¥4! to get

. . t .
iy = e_“(t_s)ﬁé +7(l— e_“(t_s)) + Oiagle_“t/ e™dBP +

s

t t
—1 _—at au 7 —1_—at au il
+ o0, € / e™dB, + o0, e / e™dB,

S S

and

e—a(t—s) _ e—k(t—s) T

e i {(1 — ) % (1- e_k(t_S))} *

1 t ,
+ ’ / [oiogle_“(t_“) — oiagle_k(t_") + (k — a)aDe_k(t_“)} dBP+
—a Js

D, = Dye klt=s) 4

1 1

/t {efa(tfu) . e—kz(tfu)} dB; n (]:;-au /t {efa(tfu) . efk(tfu)} dBiL-
s —alJs

0;0;

+k—a

Defining A = a + oy and using the product rule on eX4M it follows that

ﬁfw = e”\(t"s)ﬁéw + (e*“(tfs) — e”\(t’S)> Ty (1 - e’a(t*‘s)) + /t |:0MO'D1€/\(tu)+
+01'0—51 (e—a(t—u) o 6—)\(t—u)> :|dB;D+/t {OMEiOie—)\(t—u) + Oiai_l (e—a(t—u) o e—A(t—u))} dBL—F

N /t |:0M6’il6_)\(t_u> + OiUill (e—a(t—u) _ e—A(t—u)ﬂ quz}-

Mean and variance are a direct calculations and are uniformly bounded because all the

exponential functions in the processes above have negative exponent. O

The value of the constants A, /%, p* will be set later in Definition 3.4.1

Lemma 3.4.4. Define (v])i>0 = (Dy, 7}, 7}, 1)}5, and fix
Al = (AiD7 A?\/l? A, Aé)T € R47 V= (Lia Lé\/lu Li, Lé)T € R47 pi = (piDa péwapiapf))T eR"
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3.4. VERIFICATION

The process

H, := exp </ A"l dBP + v dBL + p' vl dBL
0
1 t

=5 I+ i 4 o i) )

is a P—martingale.

Proof. Define Y, = A" - v}, Z, = " - v}, K; = p' - v} and recall Novikov’s condition [22,
Corollary 5.13 and 5.14], which ensures that H, is a martingale:

(A) P[f3 Y2du < +oo| =P [fy Z2du < +o0] =P [J§ K2du < +o0 = 1;

(B) there exists a sequence (t,,)men C R increasing to +oo, such that, for every m € N,

tm 1
E lexp (/ i(Yuz + 72+ KS)du) < +o00.
tm—1

The processes (Y;)i>0, (Z¢)i>0 and (Ky)i>o are P—a.s. continuous, hence (A) is true. By

Jensen’s inequality [28, Theorem 1.8.1 |, for every ¢, e > 0,

te 1, ) N 1 ytte €9 2 2
exp (/ (V24 2 Ku)du> < [Tew (Q(Yu g Ku)> du.
t € Jt
In addition, by Fubini’s Theorem
1 ftte 1 ftte
E [/ exp (;(Yf + 72+ KZ))du} = 7/ E[eXp <;(Yu2 + 27+ Kﬁ))]du-
€ Jt €t

Young’s inequality [24, Lemma 7.15 | yields

E [eXp (/tt+e ;(Yf + 72+ Kg)duﬂ < 1/tt+e . {exp (2€Yu2>] dut
+ 1 /j“ E [exp (2625)} du + 1 /t”E B {exp <2€K5)] du. (3.4.9)

Suppose (A%, Al A;) # (0,0,0) and define p, = E[Y,] and 02 = Var[Y,]. In view of

Lemma 3.4.3, there exist constants i and o2 such that for every 0 < u <t
1| < i, o2 <57 (3.4.10)

for every u > 0. For every u > 0, Y, is a normally distributed random variable, and in

particular

eXp (liljl?:f;e)
E{exp <2€Yu2>:| = it 4ole < 1.

\/1—402e ,
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Since 02 < 52, then any € < 1572 satisfies 402¢ < 1 because

4ole < 4o%e < 1. (3.4.11)

Fix ¢ < ;072 if we prove that E{exp (er)] is a continuous function, uniformly
bounded in ¢ on the interval [t,¢ + €], for the € chosen above, then its integral is finite
and it is enough to define the sequence t,, := me. Equation (3.4.11) implies 1 — 402¢ >
1 —46%¢, and both terms are between 0 and 1 because of the choice of e. Thus, defining

Ke = ﬁ(}%, it follows that

1 1
and — < K.

- <
1—405€_I{6 \/1—740'36_

As a consequence
E{exp <2€Yu2)] < Keexp (2R€€ﬂ2) < +00.

E [exp (26Y3> is a continuous and bounded function on the interval [t,¢ 4 €] and so
for every € > 0 and every t > 0

r1 rtte 1 jtte
E —/ exp (26Yu2> du] = —/ E{exp (QeYuzﬂdu < +00.
t € Ji

LE

The same reasoning shows also that

]_ t+e 1 t+e
E [/ exp (2623) du} B [/ exp (26K3)du} < 400
t € Jt

€

and (B) follows from (3.4.9). O

Definition 3.4.1. We introduce the following constants,

Aunp = onop' Al + onreioitly + onéin plp, App = opAl}, — k,
AMM = 0M051A§\J -+ OMEZ'UZ‘LZ]'\/[ + OMEiJ_péW —a—opv, ADM = O’DAZ]'V[,
Anri = omop A + 001€i03L; + 0nr€iL pi + OnrY, Ap; = opA; + 1,
bM = OMO'BlAé + OMEiUibé + OMGiJ_p(iJ + aﬁ, bD = (TDA%,

—1 NG —1,i ~1 i
Aip = oo, A + 0,0, 1ty +0i0; ] pp,
—1 A —1,i —1
Aiy = 0iop Ay + 0i07 Ly + 01031 Py,
-1 -1 -1
Aii = 0,0p Ai—FOiUZ- Li—l—oiaupi—a,

i Y L
b; = 0;0 Ay + 0;0; 1y + 0i0;, py + aT,
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where
AL, Opi Mo, — Mbre, 205, M — Mirep
; AL, O |y om | 2M&4, — Miyrer | 1 | Mé%,, — Mirep
A' = S = o op + — op +
A; 25“ M ]\4(5]\/[Z — MZ‘TEﬂ— M M5Dz — MZ’TED
A} 5; Mé&4, — Mire, M6t — Mrep
b Opi Méh,, — Mhre,
i Uy S |y om | 2M&Y 0 — Miyren
L = = 0; g, —_— €04,
Li 25“ M Md]\/[l — Mﬂ'ﬁﬂ-
L i Mé&4, — Mire,
Pb Opi M6y — Mpres
i PM 5]\/[1 _1 i oM 2M5§\4M — M]inEﬂ
= = 0; 0; N €ils
’ pi 20, | T M| Mby; — Myre, .
£o 52 M(;}\/[ — MgTEW
and

M=r {ED(EDO'QD + €x0n) + €rop(€p + EWOMV)} ,

Mp =1—ep(k+71)+ 255 (epas + exon) + (0pioi + 0500 ) (€p + €ronrv),

M, = —ex(a+1+ oyv) + 05 (epos + €xonr) + (00015 + 2000407 ) (€D + €x0pr),
M; = Spi(epos + exonr) + (0ar6ari + 20365 + 1) (ep + €xopv),

M} = (aTex —170) + 0% (epo} + €xonr) + (04,00 + 6:01) (ep + €ropv).

The constants 65, 641s, 0iis O5as, 00i Oariy O, 84y, 0, 0 are those of Theorem 3.4.1 and

the process (vi)i>o = (Dy, #M, 7%, 1)th0~

Corollary 3.4.1. The process (E})i>0 = (€ N})¢>0, in (3.1.6), is a P—martingale.

As (&})i>0 is a P—martingale, Girsanov’s Theorem [22, Theorem 5.1 | holds. In
particular, (£);>o defines a probability measure P? := P(4"+'#") such that & = dP'/dP".
We denote by E[-] and Vari[-] the conditional expectation and variance under the
measure P. Any equality or inequality between random variables is understood P and

P! —almost surely. The process

. . . . t . X t . t
(BP, Bi, B ) no = (B;D— / A vydu, Bi — / i vudu, B — / p’-vudu)
0 0 0 t>0
(3.4.12)

is a P'—Brownian motion and furthermore Bayes’ formula [22, Lemma 5.3 | applies:

for every F!—measurable random variable X satisfying E*[|X|] < +oco and for every

86

0p,



3.4. VERIFICATION

E'[X|F] =

&

S

E[XEHF].

The next lemma describes the processes (D)i>0, (7M)i>0, and (#!)i>o under the new

measure P,

Lemma 3.4.5 (Joint dynamics). Suppose that Assumption 3.1.1 holds. Then there exists
o:(€p, €z, C) > 0 such that for every 0 < o, < g.(€ép, €, C), all the following hold. The

process x; := (Dy, M, 7)o satisfies the stochastic differential equation

where

A:

dx: = (b+ Ax,)dt + SdBy;
App Apm  Api bp 0D
Aup Aum A, b=|bu |, X = 0M<7151
Aip A Ay b; 005"

(3.4.13)
0 BiP
OMEiL | > Bt = | B!
010211 BZL

and the entries of matrix A and of the vector b are described in Definition 3.4.1. The

matrix A is invertible, and the unique solution of (3.4.13) is

t _
Xe = A=)y, 4 AT (Al _[3)b+€At/ e dB, .

(3.4.14)

For every 0 < s < t, there exists an F!—measurable random variable 7, > 0 and a

positive constant n such that

1B [xi| ]

IVar' [x.| 7]

1B Dl Fi @ B[l FiJII < moelAHIATIE 4y
|E [Xt ® Xt|}—§:

| < mse

| <ne

I

(lAI+1AT D
)

| < pyellAIHIATIE 4o

IE" [xd]|| < el 4,

HVar he
I1E'[x¢] ® Eilxe

|EY [Xt @ x|l < ne! (lAl+1ATIE 4 -

]
]
JII' <
]

| < nell

(IAN+IAT I

(AIHIATIE 4

+ 1,

For every s > 0 and for every 7y, ...

E [[Ixell] < +o0.

y T ER

87

i) (3.4.15)

i) (3.4.16)



3.4. VERIFICATION

. t .
E N;(C+6DDt+e,rﬁtM)+/ N{‘LDudu’]-“;} _

L. t
NiE [e"’(t‘s)((] +epDy+ ety + [ eI, du

P} o (3.4.17)

_. t . .
—o0 < E* |:/ UgDi + 7]8(7?'34)2 + 777(7%2)2 + UGDuﬁﬂ/] + 7]5DU7ATZ+

+ i my + M3 Dy + AN+ AL + modu| < 4o0;

t . _ . t X _ .
/ (M1 Dy + Mo + noitl + ng)dBLP + / (77 Dy + M6 + nsl + n4)d Bl +

¢ . . _
+ / (nsDy + o™ + ma' 4+ no)d B is P*—martingale;
(d) for every s >0

lim e " E" {Xt‘}";} = lim e "E {Xt @ Xt

t——+o0 t——+o00

7| =
_. t ) _. t .
= lim e "K' [/ Xudu'}“;] = lim e "E" [/ Xu ®Xudu’]:;} = 0;

t—+o00 t——+o00

(e) for every s >0

Lo il Y rums) ((Ai 02 P2 ;02 ;
5 lim F [/ e ((A cuy) (o) (p ) )du‘]—"é]

= 0% D2 — 8% (A2 — 555(71)2 — 6% DM — Spi D7t — SpptM i+
b—r

r

— 5D, — & &M s — 5l —

Remark 3.4.1. All the above are local results for o, in a right neighbourhood of 0.

Proof. (3.4.13) is a direct consequence of (3.4.2), (3.4.3) and (3.4.12). For o, = 0, the

matrix A becomes

r— 1 (a+r)en
€D €D
0 —a 0 )
0 0 —a

2
whose determinant is “(gﬂ

) # 0. Due to the continuity of the determinant, there
exists o (€ep, €x,C') > 0 such that for all 0 < o, < g, (€ep, €, C), A is invertible. Because
A is invertible, the unique solution of (3.4.13) is (3.4.14). Equation (3.4.14), Lemma
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A.0.1 and the triangle inequality imply that | E* [x.|Gs]|| < nselAlt 4+, ||\7ari [XulGs]|l <
neVAIATDE and that | E/[xa|Gs] ® Ei[xulGsl|l < nselAI+IATIE 4 5 The definition of

[AIHIATIDE 4y The unconditional

the conditional variance yields || E [x, ® Xu|Gs]|| < nsel
inequalities follow similarly.

(a) is true thanks to (3.4.16) (v) and to Fubini’s Theorem. Likewise, Fubini’s Theorem
and (3.4.16), yields to equation (b) and hence (c).

Proof of (d)

We proceed in several steps.

Claim: There exists o,(ep, €, C) > 0 such that for every 0 < o, < g.(ep, €, C) and
for every s > 0,

lim e "teAlt—s) —

t——+o00
If ep # a—ir and o, = 0, then
r— 1 ex(atr)
€p €D
A= 0 —a 0
0 0 —a

is diagonalizable with two different eigenvalues —a and r — % If A is diagonalizable
in a right neighbourhood of o, = 0, thanks to the continuity of the eigenvalues |2,
Remark 3.4] and Lemma A.0.4, there exists . (ep, €x,C) > 0 such that for every 0 <

Ox S OTW(EDu €, O)

A 0 0
et — et [ 0 et o [HTY (3.4.18)
0 0 M
with
maX(Re{)\l, )\2, )\3, 2)\1, 2)\2, 2)\3, )\1 + )\2, )\1 + )\37 )\2 + )\5}) <. (3419)

The real parts of all exponentials on every entry are negative, therefore

lim e A=) =, (3.4.20)

t—-+o0

Even if A is not diagonalizable in a right neighbourhood of o, = 0, Lemma A.0.4
implies that there exists o, (ep, €, C') > 0 such that for every 0 < o, < g.(€ép, €x, C)
(3.4.19) and (3.4.20) hold. If ¢p = - and o, = 0, then the only eigenvalue of A is
—a. Lemma A.0.4 implies implies that there exists o (ep, €, C') > 0 such that for every

0 <o, <x(ep, €, C) (3.4.19) and (3.4.20) hold.
Claim: limy_, o e " E" Df ;\/“(l'{/f_i} =0 <= limy 400 e " E 4| F] =0
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Writing the explicit dynamics for (3.4.13), reordering and multiplying by e~"* yields
_ . t ) _ . )
e K] [/ Xudu‘f;} =Ale "E] |:Xt|‘F;:| —e AT I — e TTATIL(t — 5).

Taking lim;_, , », of both sides, we get

_. t ) _ . )
tE+mm e K] [/S Xudu f;‘] =0 if and only if tEI—‘Eloo e "B} [Xt|-/—'ﬂ = 0.

X PRI : —rt 1 P ) .

Claim: /LIB:IXE E {\f\}:} =0

Apply the conditional expectation to (3.4.14) and multiply by e~ to get
e—rth’ [Xt|]:;} _ 6—rt6A(t—s)XS + A—l(e—’rteA(t—s) . Ige_”)b.

From (3.4.20) it follows that lim,_, ., e "™ E! x| F!] = 0.

. t
Claim: 111_117 e "L {/ Xu @ Xu

t—400

Q_S} du =0

Integrating the definition of the conditional variance [5, Definition 11.23], and multi-

—rt

plying both sides by e™",

t_ A t— ; b s ‘ g i
e / E' [\ @ xul Fi| du = ¢ / Var,[xu|Fldu + e / E'xul Fi] © E' [xul F{]du.
(3.4.21)

By dint of (3.4.14) we get
- : ¢ T
Var'ulF2] = [ eMImsT (eA00) du (3.4.22)

A is triangularizable in C, therefore there exist an invertible matrix H and a nilpotent
matrix N ( cfr. [20, 3.2.7 and 3.2.8 page 181], [16, Proposition A.6]) such that

et (=) 0 0
Alt—u) 5T (LA —u)\ L Ao (t—s) (=N h
e b)Y (e ) =H 0 e 0 H Zﬁ(t—u)
0 0 Ml =0
eMl=s) 0 0 !
3 Nh
T lH| 0 et o |H! (Z fu(t_u)h)
0 0 M) o

T
Due to (3.4.19), each entry of et~y (eA(t*“)) is a linear combination of powers of
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t smaller than 6, multiplied by exponentials with real part of the coefficient in ¢ smaller

than r. As a consequence, the same holds for [ Var' [Xu|F]du, and

t ,
lim e””t/ Var x| Fildu =

t—-+o0

In the same way lim;_, o e [F E*[xu|F!] @ E'[xu| Fildu = 0.
.7-";} du = 0 is the same as that of

The proof of lim;_, e "t El {Xt & Xt

limy_, o0 € "L E" {fst Xu ® Xu‘}_;} du = 0, skipping the step of integration in (3.4.21). It
follows that (d) holds.
Proof of (e):

Y
= lim z;zL/‘e-f@kﬂ>(@Az.zg>2+—<ﬁ-z@>2+—<pl-vz>?)du

4

9 t—+oo s
i 2 i A M2 A i M .
= —0ppD; — Oy (7 )" — 5@1(7 ) 5DM sy — 0pi DT 5Mz7T i, -
z % A]VI N i B -

Let 0 < s <t and define v' = (D, #M 29T, The function W : [0,#] x R® — R

Wi(s, D, 7™ &) = =64, D* — &0, (A1) — 655(70)? — 6%, DM — 6p; D7+

~ SaAMa — 5LD, — SN — gt — 5y~ DT
r

is the solution of the Cauchy problem in [0, ]

. !
0= Wyt (Vippor V) - (A(D, 2V, 4T ) + o ((He(DﬁM,ﬁi) W) ZET> Wt

((Ai . ,Ui)2 + (Li . Ui)Z + (pi . vi)2) ’

N | —

_l’_
(3.4.23)

W (t, D, &Y, &) = =0pp(Ds)? = O (Y1) = 65(70)? — 0pp  Dsft — dpi Do+
B—r

r

— 6Dy — &4 7M — SRl — 5 —
In view of [22, Theorem 7.6],

t 1,
Wis, Do A A1) = Bi| [ 7002 (AT 0l (70 + - 01)?) dut

+ e—’““—s)( — 0, D? — 880 (RM)? — 55 (7D)2 — 64, DM — Sps Deitid

 SaAMAT — LD, — 5 AM s — 53—5;T)

7.

s
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Since W does not depend by t, for every t > 0

_. t _ru—sl i (I i —r(t—s i ; .
EZ{/S e )5 ((A -Uu)2+(b 'Uu)2+(,0 ,Uu)z) dute )<_5DDD3—5MM(Wf4)2+

— Gul#1)? — Shay DA — SouDi + ~0uit i — 5D — 04,7 i~y — 21 )g)
= 05, D? — 8%, (AMYE = 55(71)2 — 6% DM — §pi Dot — SpptMat4
G D, — 5 M g g DT
r
Take lim;_,  », of both sides and apply (d) to conclude. O

Remark 3.4.2. If ep = 1/r the matrix A is not invertible for o, = 0 and (3.4.14) no
longer holds. In this case we conjecture the existence of a solution for (3.4.13) but we
would need a different way of proving the result since the direct calculations become

more difficult.

With the properties of (x¢);>o shown in Lemma 3.4.5, we prove that (N});>o of

(3.1.6) is a stochastic discount factor.

Theorem 3.4.2. Under Assumption 3.1.1 the process (N} )i>o of (3.1.6) is a normalized

stochastic discount factor. The dynamics of the process (log &} )10 can be written as
log & = log & — ;/: {(A’ O (P ul)2 (o U;)Q] du-+
+ / "AfyidBIP ¢ / i idB + / ") vidBi, (3.4.24)
or as
log & =log & + ; /: [(Az 0l (1 uh)? A+ (o vi)ﬂ du+
+ [ AT i dBIP 4 / i idB + / " idBI. (3.4.25)
For everyt > 0
E'Jlog &][] < n (eWAIHIATI 43 4 1) (3.4.26)

Proof. The process (N})i>o needs to satisfy conditions (3.2.4) and (3.2.5) of Definition
3.2.2 to be a stochastic discount factor. Property (3.2.4) is a direct calculation. The
definition of £ = €" N/ and Lemma 3.4.5 (a) imply that

;} . (3.4.27)

E{NlPtJr/ N Dydu

] /N’D dut B [NZ(C’—l—eDDt—i—Wt +/ Ni Dydu

_ / NiDydu + N'E' [e” =9)(C 4 epDy + i) + / e~"9) D du
0 s
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The function W (s, D, #M%%) = C' + epD + €,#™ solves the Cauchy problem on [0, ¢]
1
0=W,+ (V(D,ﬁ-]\/lﬁi)w> . (A(D, AM”) + b) + it’/‘ ((HG(DJ}M%@') W) EET) — W+ D
W(t,D,7#M#") = C + epD + e;7M,

where A, b and ¥ are in Lemma 3.4.5. By [22, Theorem 7.6], for every 0 < s <t

, ¢
W(s, D, #M#i) — E{ [ eI du+ T NC + epDy + i)

s

J'—"L} =C+epD; + e, 7Y

Plugging W into (3.4.27) proves (3.2.5), hence (N});>o is a stochastic discount factor.
The stochastic process (N})i>o of (3.1.6) solves the initial value problem
dN}

Nl.t:—rdtJr(A v))dBP 4+ (- v))dB + (p' - vh)dBi, Nj =1,
t

thus the process (£});>0 solves the initial value problem

d&;
&

= (A" 0))dB” + (i - v})dB; + (p' - v})dBy, & =1

by virtue of its definition & = ¢"N{. Applying I[t6’s formula to f(&f) = log & we get
(3.4.24) and because of (3.4.12) we get (3.4.25). Thanks to (3.4.25) and to the triangle
inequality

B[ (@7 o) o) (07 0d)?) ] +

/ -v})dBiP /u(ﬂ . v}b)dB” + E [ '
0 0

J(AY - v})dBjP is a P'—normal random variable with mean g, = 0 and variance

E'Jlog &Ll <

(p" - vh)dBL-

|—|l\3"—‘

o |

o2 _/ F(AT - 0 )2]dh < p(elAHIATIN 4oy 4 1), (3.4.28)

(3.4.16) (iv) implies the last inequality, where 7 is a positive constant. In view of Lemma

A.0.1 (IX) and (X),

_ 2
E' [ ] <oyl-<ol+1< n(eIAIIATIDe 4y 1), (3.4.29)
m

[ i)aBp
0

Because of (3.4.28), the right side of (3.4.29) is a bound also for

o 2 || - viamy

[ vz
0

and for 7 [f* (A7 vi)? + (11 - v})?2 4 (p' - vi)?) dh], thus (3.4.26) follows. O
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Theorem 3.4.3 (Admissibility and utility). Define

ix o —rosxd+6% (D)2 468 (R 24644 (78)246%, 1, Do +6 ps Doty +8 i wd 6% Do+68 70 46,75 +6% ’

y*=e
the processes (¢, 0% )0 as

S | Sisa s 0ii oive Ot oot Opi 1 o
¢ =rX{T = "PR(Dy)? — (M) - (3?2 — SPUD AN — D d

i i 7 i 7

Onri Y Je 8 . O
. Wiw W; ) D, M AM #i 0
i (%) Q; Q; (%)

M}yD, + My, aM + M7t + M
ozz-]\/[ ’

ix
0" =

and the process (X}*);>o as

X =+ Mlai { [Mé}'JD + Mg(1 —ep(k+ 7"))] /Ot D2 du+

+ :M(ﬁMM + M}M( —er(a+r1)— eﬂoMl/)] /Ot(friw)Qdu—I—

+ -M(Fz-z- + M;(ep + EWOMV)] /()t(ﬁZ)Qdu+

+ :M(ng + My (1= ep(k +7)) + M (— exla+7) - e,roMy)} /Ot DuiMdu+t
+ :M(SDi +M;(1— ep(k +7)) + Mp(ep + eﬂoMl/)] /0 t D, du+

+ :McSMZ- + Ml< —ex(a+r1)— e,roMu> + M, (ep + E,TOMI/)] Ot AMAL du+

+ :Méfj + M (epam —rC) + Mé(l —ep(k+ r))} /Ot D, du+

+ Méjw + M, (eram —rC) + Mg( —e(a+1)— eﬂoMVﬂ /Ot M -

- , o
+ | M6, + My(erar — rC) + Mi(ep + eﬂoMu)] |
L 0

+ | M6} + M{(ezam — rC’)]t+
) t . . o
+ (epop + €201 / (MLD, + MiaM 4 Mas + Mi)dBP+
0
t . . . . .
TP / (MLD, + MiaM 4+ Ml + Mi)dBi +
0

t . . . . .
+oneneis [ (MpD, + Mzl + M + Mg)dB;f}.
0
(3.4.30)

Under Assumption 3.1.1, there exists o.(€ep,€x, C) > 0 such that for every 0 < o, <
ox(€p, €z, C), the following holds.
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(A) (First order condition)
el = log(y™) + (8 — 1)t + log(&); (3.4.31)

(B) (Budget equation) N} X + [¢ Nic¥du is a P—martingale;
(C) (Saturation) for every s >0, limy_,, ., E[N;X/*|F!] = 0;

(D) (Admissibility) for every i € {1,...,n}, (c*,0i*)>0 is an admissible strategy with
wealth process (X[*);>o. The utility of the strategy is

1%

+oo . .
B[ erue 7| = -
0

rog

Proof. Let ,(ep, €, C) be the minimum between the constants (with the same name)
in Theorem 3.4.1 and Lemma 3.4.5. We proceed in several steps.

Proof of (A): First order condition

The equality —a;clt = —ra;zi+64 (Do) 4840, (012 +0i(78) 2+ 0 Doy +0pi Dot +
it TR+ 0% Do+ 0%, 70T + 0,7 + 0 holds. Apply 1t6’s formula to both sides of (3.4.31)
and check that they are equal.

Proof of the equality £ E’ [f; e_mcz*du‘}"ﬂ =F [f; e‘"“é’ic@*du‘}"ﬁ
Due to (3.4.31) and to the triangle inequality, there exists 7 > 0 such that

& | < nl=raizg+0pp(Do)* + 04 (R0 ) 46ii(70)* +0par Doty +0pi Dofto+0arity 75+
+ 65 Do 4 84 70T 4 Sty + 04| + nu + nllog £ (3.4.32)

Applying the conditional expectation to both sides of (3.4.32), the properties of normal
random variables and (3.4.26) imply that

ey < (D 4 1)
Fubini’s Theorem [4, Theorem 1.1.7] yields to
t — .. _. t .
/ e "E" {cﬂ du=FE' [/ e_m|c§j|du] < 400
and by Bayes’ formula and the conditional version of Fubini’s Theorem, we get

R t . . t o .
EE [ / e_mcz*du‘]:;} —E { / e_T“EZLcL*du‘]:;}. (3.4.33)

s

Proof of (B): Nf X + [i Nic™ is a martingale

Direct calculations show that (X;*)i>o is the wealth process of the strategy (c/*, 0i*);>0
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and they satisfy equality (3.4.6), equivalent to the self-financing condition. The equa-
lities
(eDaD + e,roMaD1>AiD + (qeioMai) L+ (e,requ)p =—1+eplk+r),
(GDO'D + eﬂoMUDl)AM + (eweloMm) ly <eﬂeiL0M>le =e(a+71)+ €eonr,
(eDaD + €:000p ) <eﬂe oMo L + (eﬁequ) Pi = —€p — €x00V,

<6D0'D + ewoMa[)l)A (eﬂeloMa,> th + (eﬂequ)pg = —eam +rC,
and (3.4.12) imply that
dX[* = (—c* +rX/)dt + (EDUD + eﬂoMaf)l) 0 dBP + ;00007 dB! + ere;y 000 dBIF.

Applying It6’s formula to the function f(t, X*) = e " X* we get

. . 3 . 3 o
e "X =X+ / —e e du + (eDaD + eﬂoMUBI) / e "0 d B+
S

S

t R t R
+ eweioMai/ e "0rdB; + eﬁeiLoM/ e_mt%*dB;‘f.
S

s

Multiply both sides by &, add fo Nic*du, take the conditional expectation and use

Bayes’” formula to get

o vt : o s
ENX 4 [ NicdulFi] = NIXT+ [ Niclzdu+
0 0

. _. t R . . _. t R
+ &, (EDO'D + EWOMO'BI) E [/ e "9 dBP .7:4 + E.ex€iop o B {/ e "0 dB;

f;’]

. _ . t . _ . .
+ Elerei o B {/ e’T“HL*dBfLl F.

L t . . t .
L ER [ / —e"“c;*du’f;}JrE[ / N;c;*du‘f;].

The Brownian terms are martingales because of Lemma 3.4.5 (c¢) and since (3.4.33)
holds, then

L t . s .
E {Ngxgu / N;cz*du‘f;} = [ Nicidu+ NiXZ (3.4.34)
0 0

Proof of (C): limy_, 1o B[N/ X*|F!] =
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Because of (3.4.12), for the process X/* of (3.4.30), there exist 71, . ..,m2 € R such that
NiXP*=e "EXF 4 e & /t D2du + nye "t E! /t(ﬁfy)Qdu +n3eE] /t(ﬁi)Qdqu

e e / " DM du+nge ] / " Dot dutnge " E] / AM A dy e El / " Dudu+t

+ e "E; /st waldu + noe " E] /St 7l du + e " EN(t — 5)+

FreE] / " DudBP e E] / CMABID e E / 4 dBID e ] / o

+ e "E] / "DudB 4 e E] / CMAB 4 e el / CRABL 4 e ] / "B+

o €] [ DudBitmoe 6] [ AYABL e el [ ALdB e €] [ dBiL

Taking the conditional expectation and using Bayes’ formula yields

L t N
f;] +me "ELE [/ (friw)zdu Fil+

L . L L t
E[N!XP|F] = e EXT + e EE [ | DR

Tt , Tt . Tt o
Ve EE [ / (ﬁ;)Qdu‘F§}+U46_”¢€;EZ { / Duﬁydu’fz}jtng)e_”(f;b?z [ | Duidu F;F

R t N
Fi| +merteind | [ witaulFi| +

s

L t . . R t
Fe TEE [ [ #tsidu F‘] Fpe TR [ | Dudu

L. t . . L. t .
+ e TENE [ / 4 du P] +moe TENE — 5) + e TEE { / DodB”

f;}+

[ rt _ . . L o ) L o
e EE | [ #MaBP |\l vnse EE | [ #idBP | e EE | [ B

fﬁ:}+

[ rt _ | o t _. ) R to
s "EE | [ DdBF tmoe EE| [ #MaBYFi 4mee B | [ 7B

S

f;}+

— t _ .
Filtme B | [ 7MaB

S

Fil+

U Y . L t _.
e B / dB f-”‘} tge IR [ / D.dBit

F. Fil.

. to
+mieEE | [ AldB:

s

L to_
+ 77226_”5;El {/ dB;J'

All the Brownian terms are P'—martingales by virtue of Lemma 3.4.5 (c). Thanks to
Lemma 3.4.5 (d), lim;_,, o E[N;X*|Fi] = 0.

Proof of (D): Admissibility and utility

Property (i) of Definition 3.1.1 is clear and proving that (X/*);>0 is the wealth process of
the strategy (ci*, 0i*),>0 is a direct calculation. Take lim; , ., to both sides of (3.4.34)
and use (C) to prove (3.1.4) and thus the admissibility of the strategy (ci*,6*);>o.
(3.4.31) implies

+oo S ) 1 +o0 e i ) %
/ 6_5UUZ(CZ*)CZU‘JT"8:| - F |:/ 6logy —ru—l—logé‘udu“/—_g} _ Yy
0 i 0

A raog

E

Theorem 3.4.4 (Duality Theorem). Let (ct,0:)i>0 be an admissible strategqy for the
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i—th investor and let (N})i>o be the process of (3.1.6); then

]

t .
lim F [/ e U (¢,)du

+o0 .
=F / e PU ey du
0

i)

.0 . (3.4.35)
i / —Pulr (yeP  NE ) du } =F / e AU (yeP N1 du }
tlg-nooE 0 € Yy u 0 0 Yy u of -
Furthermore
+o0 . +00
B[ e e, ] < H;%{E | e e N du fg} iy } (3.4.36)
0 y 0
where
Ny (1 -1 >0
U'y) = o (logy = 1) v (3.4.37)
0 y=0.

If there exist y™* > 0 and an admissible strategy (c}, 0} )i>0 for which

+o0 . 400 ~ )
E [/ e AU () du / e U (y™ e N ) du
0 0

| ==

} + zhy™, (3.4.38)
then (¢}, 05 )0 is optimal.

Proof. Define the random variables
m +oo
AT :/ e Pumaicuqy, A :/ e Puaicuqy,
0 0

on the probability space (Q, F*, (F})i>0, P). Then \™ > 0 for every m € N and (A\"),,en
is an increasing sequence of random variables such that lim,, .., A™ = \. The Condi-

tional Monotone Convergence Theorem yields to

lim E[Am|FZ]— [)\|.7-'3],

m——+00

which implies the first equality in (3.4.35). The function U’ defined in (3.4.37) has a
global minimum at y = 1; apply the Conditional Monotone Convergence Theorem to

the random variables
= [T (Ui(yeBUNg) ) du, A= / (U’ (yeP N7) + ) du,
0 %

to conclude the second equality in (3.4.35). For the proof of (3.4.36) apply (A.0.1) to
the random variables ¢, and Y, = ye®“N’; for every y > 0

U'(cy) < U'(ye’ NI + coye®™ N

Multiply both sides by e~#“, integrate in [0,¢] and take conditional expectations; for
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every y > 0

E {/t e U (¢, )du

) t g .
.7:8} <K [/ e U (yeP" N )du
0

0

. t )
fé} +ykE {/ ey N, du
0

7.
Take limsup,_, , . of both sides and use (3.4.35) and (3.1.4); for every y > 0

400 i . .
E/ e U (¢y)du Fol| + zoy.
0

+oo Ny .
/ e U (yeP" N ) du
0

fﬂgE

Take inf,~o to obtain (3.4.36). If there exist y"™* > 0 and an admissible strategy
(¢}, 67)i>0 for which (3.4.38) holds, then

+oo X +oo . .
E [/ e P U () du / e U (yeP" N )du
0 0

]:é} < inf {E
y>0

]:8} + x%y}
+

+00 ~ ) o0 :
<FE {/ e U (y™ e N ) du e U (et )du
0

fé} +agy” =E UO

7).
All the above are equalities therefore (¢}, 0;)>0 is optimal. O

Theorem 3.4.5 (Existence). Under Assumption 3.1.1, there exists o,(ep,€r, C) > 0
such that for every 0 < o, < dx(€p,er, C) the strategy (¢, 0:*);>0 in Theorem 3.4.3
is optimal for the i—th investor for every i € {1,...,n}. The function V' of Theorem

3.4.1 is the value function of the i—th investor.

Proof. Fix 0 < s <t and y > 0; thanks to the definition of U(-) in (3.4.37)

t - ) . t
E [/ e_B“U(yeﬁuN;)du‘}";] = j{ (logy — 1) E [/ N, du

)

]—“;} +

t )
+ BE [/ ulN, du

t . .
Qs} +E [/ Nilog N;du‘f;] }

The following integrability conditions hold:

/tE[\NM du:/tE[N;} du:/temdu:(em_e”) < 400,

r

t ) t ) t —Ts(1 _ =1t 1 t
/E[|uN5|}du:/uE[N;}du:/ue_mdu:e (1+rs) = e jL7n)<+oo.

r2

The conditional version of Fubini’s Theorem [4, Theorem 1.1.8] applies and yields
t - . . Y .t
E [/ e_B“U(yeﬂ“N;)du‘]:"s‘] = { (logy — 1) 5;/ e "du+
s (073 s

oot t . . .
(B —r)E / we"du + E [ / eTUEl Nog 5;du‘]-";] }
(3.4.26) implies that
t . .
/ e "E" “ log S;” du <n(t—s) (e(HAHJ“HAT”)t +t+ 1) < 400.
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Fubini’s Theorem and Bayes’ formula yield to
t - . . y . t
E U e_ﬂ“U(yefB“N;)du‘}";] = { (logy — 1) 5;/ e "du+
s o, s
t

(=gl [Cwerdu el [ e B log €l du)

and computing the integrals we get

t ~ ; . .
E {/ e‘ﬂ“U(yeﬁuN;)du‘f-;‘] =Y 5;{ (logy — 1) (e — e ™)+

rog
e (1+rs) —e
r

+(B-71)

1+t t _ o
£, r [l E [log €l ] du}.
By virtue of (3.4.25) and Lemma 3.4.5 (c),
E' [log 5;].7:;‘} =log &, + §E’ {/ ((A’ 0l (P ul)? (o v;)Q) du‘]-";]

Defining Y; = [I[(A*-v))? + (¢ - v))? + (p' - v)?] du it follows that
t _ o ot rot _ A
r / ¢ "B [log €1 Fl] du = rlog € / e rdu+ / e~ EIY, | Fildu
and thanks to Lemma 3.4.5 (b) and to Fubini’s Theorem we get
¢ _ o ot r_ [t .
r [ e B [log | F] du = rlog € [ e du+ LE [ / e‘T“Yudu‘I;‘] .

As a consequence,

e (1+rs) —e (1 +rt)
r

t ~ )
E [/ e U (yeP N )du

S

7 Y ) —rs —rt
= logy — 1 -
7il = Leif togy - 1) (77 — )+

+(B—r1)

.ot _. i )
+ rlog 53’/ e "du+ gEZ {/ e_’"“Yudu‘fs’] }
(3.4.39)

Applying Itd’s formula to the function e~"*Y; and taking the conditional expectation

yields

_. t . . t . . . . . . .
rEt [/ e—quudu .F;:| — e—rsy;_e—rth[/ ((Al . U;)Q + (LZ . U;)Q + (pl . U;)2> du‘fé]—l—

s

LB [ / T (AT L) 4 () (o 0)?) du‘f;}. (3.4.40)
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Plug (3.4.40) into (3.4.39), fix s = 0, take lim;_, ., of both sides and add z{y to get

i Y p—r
—HUOy:ra {(logy—l)—i-r—l—

)
t— JrO
“+o00

(2

t ~ .
lim F [/ e U (ye® N du
0

1 ot o o
-5 lim e "E? {/ ((A’ (o) (p UZ)Q) du
0

t——+o0

fé}+

1 ot o o o
5 dim B[ (A7) () + (o 0l)?) da

t—+o00 0

.7:3] } + :L’éy.
Choosing y = y™* and using Lemma 3.4.5 (d) it follows that

ik

t ~ . . oo . . . .
Jdim B | [ e 0 (ye Nl F |y = | (<rasai (Do) (5! 40+
. . . . . . . —7r
+ 050 Dofto! 4 6pi Doty + Oppifty Ty + 8 Do + 04, 70" + 0its + 65 — 1) + b —+

1 _ ot o o o
+ = lim Et[/ e (AT 02+ (7 vl)? + (o - vl)?) du
0

2 t—+oo

fé} } + gy’

Lemma 3.4.5 (e) and (3.4.35) imply

400 5 ) ) 1%
E / e U (yeP N du|Fi| = — Y
0 ro;
The conclusion follows from Theorem 3.4.3 (D) and from Theorem 3.4.4. O

Uniqueness of the optimal strategy

Lemma 3.4.6. Let i € {1,...,n} and let (¢, 0;);>0 be an optimal strategy for the i—th

agent with wealth process (X;);>0, then for every s > 0

t .
limsup & [/ N, c,du

t——+00

f"‘} = N.X,. (3.4.41)

Proof. Suppose, for a contradiction, that there exist i € {1,...,n}, s >0, S € F! with
P(S) > 0 and an optimal strategy such that

to . .
limsup E {/ Nzcudu‘fg] < N:X; onS.

t——+o0
Let ns be a F'—adapted random variable and define the new strategy (¢, 0;)i>0 as
(€1)i>0 = (c1)i>0 + ns1i>s and its wealth process
_ t _ . .
X=X lics + 1t>s{Xs + / {— Gy + Xy + 0, (ezam — rC) + QZDu(l —ep(k + 7"))+

. o t o .
+ 627%5”( —er(a+1)— eﬂoMV) + 0,7 (ep + €zopv) |[du + / 0. (epop + exopopt)dBEP+

t . t )
+ [ Gouecoani+ [ GZOMeﬂeudBif}.
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If limsup, ,, . E [fst Nzcudu]}"si] = —oo the claim follows because 7, = 1 makes (¢)>0
a better strategy, still admissible. Otherwise, if limsup, ,,  E {fst Nicudu|}"§} > —o00,
define e = X,N!—limsup,_,, F {f; Nécudu‘fg} > (0. Choose 1, = er(E!) e to obtain
a better strategy, which is still admissible because

)

: t
XN —limsup E [/ Ny (e + ns)du —e—n—2e " =0.
5 T

t—+00

7

[]

Theorem 3.4.6 (Uniqueness). Under Assumption 3.1.1, there exists o,(ep,€r,C) > 0
such that for every 0 < o < d,(ep, €, C) the strategy (ci*,0*) >0 in Theorem 3.4.3 is
the unique optimal strategy for the i—th investor for alli € {1,...,n}.

Proof. Claim: The consumption process is unique.

Suppose there exist optimal strategies for the i—th investor (¢, 010 and (cZ,07) >0
and suppose, for a contradiction, that there exists S € B ® F* such that (N[0, 400] ®
P)(S) > 0 and ¢{'15 # ¢ 1g. The wealth process of the strategy (¢ + ¢f, 0 + 607 )i>0
is the process (X + X/)i>0, with dynamics

fd(XA—l—XB) — =P (XA 4 XP) 4 (08 + 0P) (exam — rO)+

1
|
(9A+GB)Dt(1 ep(k+ ))+(9;4+9,5B)ﬁi\4(—Eﬂ(a—i-r)—EﬂOMV) (9A+93)7rt(eD+eﬂoMy>}dt+

. 1 1 A
+§(9;‘+95) (epop + exonop') AB;"+ 3 (6,467 Jenecionraid B+ 3 (6] +67 )eneiLoard B

The new strategy has initial wealth 2§ and is admissible because (¢!, 0/);50 and (cZ, 07);>0

are. Since the utility function is strictly concave, ¢! # ¢? on S implies

A B 1 1
U(ct ;‘Ct ) > EU(c;A) + iU(cf) on S.

Define H := {w €Q: N 4oo] {t 2 0: (t,w) € S})} € G, then P(H) > 0,

+00 A B 1 +o0
/0 e—BtU<Q_ng)dt > 5/0 e PHU (M) + U(cP))dt a.s.

and

+00 A B 1 +o00
/D e—mU(Ct;Ct)dt > 5/0 e P U(c) +U(cB)dt  on H.

By Lemma A.0.2 (II) it follows that

o A B
B[ (L
0 2

7

+
—pBt
E [/0 U(c dt‘P]
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on a positive probability set, thus contradicting the optimality of the consumption
processes (c)i>o and (¢?);>o.

Claim: Investment and wealth processes are unique.

Thanks to (3.4.41), it follows that

X* = (NH™ limsupE{ N’ Z*alu‘ ]

t——+o0

which proves the uniqueness of the optimal wealth process. From (3.4.6) it follows that

dX*+clrdt—r X dt = 0! [(ewaﬂ—TC') + Dy (1 —eD(k—H“)) +aM (—eﬂ(a%—?") —e,roMu)+

Ai( i -1 iD | pix iy pix il
+7; eD—I—ewoMu)]dHQt (eDo*D + €000 )dBt +0, €r€ion0,dB;+0, €€ 0pd By
If there exist two strategies with wealth process (X;*);>o and consumption (c{*);>g, then

drifts and volatilities must be the same. This implies the uniqueness of the optimal

investment strategy. O]

3.4.1 Market clearing and proof of Theorem 3.2.1

The economy has one risky asset, i.e. for every t > 0

n . n Mz Dt —i—MZ AM +M —Q—Mi
Yo=Y =L Ma' 0 =1, (3.4.42)
=1 7

=1

where M}y, M}, M;, M are given in Definition 3.4.1.

Definition 3.4.2. We introduce the following constants

- 1 . 1 - am ac?,
€Ep = , €r = ——, c* = _ 7
k+r (a+r)(k+r) rla+r)k+r) (k+7r)?
, _ 1 , 1
pp =0, MM 2(2a +1)o%’ v 2(2a +1)o%’
7 , , 1
55— 05, =0 O = 753
DM 9 Di ) M3 (2&—|— T)O_QDv
= = rQ = rQ
85 =0, oyy=——+—"—, 0 =—F——,
b M (a+r)(k+r) (a+7r)k+r)
-~ Tr—=0 ralo?,
50 ==
r (k+1)

and & = §(ep*,&*,C%) = (6bp, Oorar 05 Obnr 05 Oasis Oy O5p, 05, 05). Consider the
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following functions [0, +oo[— R

1 1

. éwﬁ:(a+ﬂ%+¢f

ep” (o) =

. B arm & 0123 Ufr 2r
Clom) = r(a+r)(k+r) ((k +r)? * (a+7)2(k +7)2 (1 " a+/a? +o2(op? + Y, o—ﬁ)))

(a+71+ oyv*)?
2(2a +r + 20%,v*) ((a + r)20% + o4, (2(a + 1) + o}v*))’
5 (0n) = (a+ 1+ oyv*)?
ner (2a + 7 + 20%5,v*) ((a +7)20% + 0% (2(a + 1) + oy 1))’

5?\/[M(07T) = 5;(0,,) = -

(5BD(UW) =0, 5*DM(U7T) =0, 5Ei(0ﬂ) =0,
" . ra . ra
o) =0 Sl = ey YO ey

L 1
%00 = S T R T 2
+2k2(r — B) +4kr(r — B) — (0%, *v — r* (28 + 5(20%)) +2ar(2k*(r — ) + 4kr(r — B)+

a?(2(k +1r)*(r — B) — a*r*o?) + r2< —2a20%,r + 23+

+ 7“(—6420}‘\4 +7r(2r—20— 6420%))) ,

— Iz —2
* (5% * * Ok * * * * x ox\T' _ _a+\/a2+072r(UD +ZZ‘: o, ")
(5 (o-ﬂ—) — (5DD75MM’61175DM75DZ’5MZ’5D76M752750) 7Where 07\4 — 052+Zn 0_.72 1

=1 "t

* =2 n —2
and v* =op" + >0 0,7,

Proof of Theorem 3.2.1. We proceed in several steps.

Claim: If there exists J C {1,...,n}, such that J # 0 and ¢; # o; 2 for every i € J,
then there is no linear equilibrium.

Because of (3.1.1),(3.4.4),(3.4.5) and using It&’s rule on elatomntzM clatomitzi and

ek D, respectively, we get

ﬁM _ 67(a+oMl/)(tfs)7¢(M + am (1 _ e*(a+oMV)(tfs)) + OMV/t e*(aJroMV)(tfu)ﬂ_udu_'_
t s a -+ oy s

+ OMUBI /t 6_(a+OMV)(t_u)quD T oy Z €0 /t 6_(Q+OMV)(t_u)dW,LiL,

i=1 s

104



3.4. VERIFICATION

am

ﬁ'é _ e—(a-i—oil/i)(t—s),ﬁi + (1 _ 6—(a+oiui)(t—s)) ¥ o /t 6_(a+oiui)(t_u)ﬂ'udu—|—
a + o;v; s

+ 00! /t e~(aron)t=w) gD | o 51 /t e~ (arown)(t=w gyyri

s

+ 0;(€i1051)” ZEJUJ/ ~(atom){t=u) quys
J#i

and

t
D, = e =D, 4 / K= du + op, / M= gD,

S

For the market clearing condition (3.4.42) to be satisfied, in particular, the sum of the
terms in (W/2);> has to be identically 0. It follows that for every 0 < u <t

op (Z D) e—k(t—u) + Ul_)lOM (Z M) e—(a—i—oMu)(t—u) + Ul_)l <Z O e—(a—i—oiui)(t—u)) —0.

i—1 Qi i—1 Qi i—1 Qi

(3.4.43)

Since k # a, there exists g, > 0 such that for every 0 < o, < 0., a+ oy and a + o;v;
are different from k for every i € {1,...,n}. By Lemma 3.4.2 and since J # (), we can
write (3.4.43) as

oD <Z D) e—ks(t—u) + UBIOM (Z M) 6—(a+oMV)(t—u)+
i=1 Q& i=1 a;
M; Mo,
-1 e (atopnv)(t—u) 1 3% —(a+tojv;)(t—u)

—|—0D0M<Z a‘)e +o0op (Z o€ i ) 0.

J¢J 7 jeJ J
It follows that there exist m € N, m > 0 and a partition Hy, ..., H,, of J such that

" M M;

> D — and — =0.

=1 % e, Qi

By Definition 3.4.1, it follows that

> — (1= enk +7) + 285 p(eph + exonr) + (9p:0i + Sparon)(ep + €xoprv)) =0,
i—1 Yi

1
Z — (5Di(€D012j) + ezon) + (onOmi + 20,054 + 1) (ep + eﬂ.oMy)) =0.

i€Hy

(3.4.44)

(€%,€2,C%) := lim,,__,o+ (75, €77, C77) exists and it is finite because of (3.1.11); thanks
to Lemma D.0.1, the solution of the system f%(0, €%, €2, C° (51) is (%), €2, 00, given in
Definition D.0.1 for every ¢ € {1,...,n}. It follows that (e}, €2, C?) identifies uniquely

105



3.4. VERIFICATION

85 ps 05 ars Opis Oaris 0z and taking lim,__o of both sides of (3.4.44) we get

1-— e%(k +7r)+ 25DD(€0D, 69” CO)GDO'QD =0,

S (0 0 A0 2
dpi(€p, €2, C")epor, + ep = 0.

Solving both equation for €% shows that no solution exists.

Claim: The equilibrium is unique for o, = 0.

For o, = 0 and for every ¢ € {1,...,n} there exists only one solution of the system
Fi(0,€%,¢%,C0 %) given in Lemma D.0.2. Such solution is €}, = €p*, ) = &.*,C° = C*
and 0" = 6(e%), €2, CO) = §* (cf. Definition 3.4.2 and Definition D.0.1).

Claim: If ¢; = o; 2 for every i € {1,...,n}, then a continuous equilibrium exists.

¢; = 0; 2 implies 0; = oy, v = vand (7)o = (M) forevery i € {1,...,n} thanks to
Lemma 3.4.2. The choice (¢75, €77, C7) = (5 (04), €:(0,), C*(0,)) and 6*(0;) = 6*(0x)
(cf. Definition 3.4.2) implies that the system F'(o,, €7, e, Co7 6%, (cf. (D.0.3)), is
equal to 0 for every i € {1,...,n}. Because of Theorem 3.4.5, there exists o, > 0
such that the choice of (e}, (o), €-(0x), C*(0)) and of §*(0,) identifies also the optimal
strategy for all the investors for every 0 < o, < g, and thus a continuous equilibrium.
Claim: If ¢; = ;2 for every i € {1,...,n}, then the continuous equilibrium is unique.
Due to Lemma D.0.2, for every i € {1,...,n}, there exists a unique solution of the
system F'(oy, €p, €r, C,6") = 0 in U neighbourhood of (0,€p*, &, C*,6*). Since we
found a solution (o, €}, €5, C*, §*(0,)) such that
llmo(aﬂ,e*D(Uﬂ),e;';(U,r),C*(Uﬂ),d*(aﬂ)) = (0,ep*, &%, C*, 6%,

On—>

then such solution has to be unique. [
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Appendix A
Auxiliary results

Lemma A.0.1. If A,B € M,(R),z,y € R", A\ >0,z € R and f is a Riemann integrable
function, then the following hold:

(@O [|AB[ < Al B];
(1D [[Az]l < [|A[l[]=(];
(II1) [le?] < ellAl;
(IV) [[ede]| < ellAlliel,
(V) [l(eM)T]| < el
(VD) |1f; f(w)dul| < [ f(w)]|du;
(VIT) [feMtwdu < <
(VIID) [lz @ y|| < [[=/[llyll;
(IX) if X ~ N (p,0?), then E[|X|] < 3|u| + o
(X) |z <2®+ 1

(XI) suppose J C Nwith |J| < +oo, Fsis a c—algebra, n/ are positive F,—measurable
random variables and «; are positive constants for every j € J. For every 0 <
s <t < 400 there exists a positive F,—measurable random variable ng such that

j ot 0 ,max; o}t
Yjes et < mlemsestat,

Proof. (I), and (II) are true because of [12, Lemma 1.7 | while (III),(IV),(VI),(VII),(VIII),(X)
and (XI) are direct calculations. (IX) is a property of folded normal random variables
and (V) follows from [16, Proposition 2.3 | O

Lemma A.0.2. (Q, F,P) is a probability space, Fy C F,H € F such that P(H) > 0
and X, Y are real valued random variables. If X > Y a.s. and X > Y on H, then
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() E[X] > E[Y];
(II) E[X|Fo] > E[Y|Fo) on a positive probability set.

Lemma A.0.3. For every x € R,y > 0,7 € {1,...,n} and for every a; > 0
Ul(z) < U'(y) + zy; (A.0.1)

where U(-) = —e~®"/ay is the utility function of the i—th agent and U(-) is

Fi(y) { Siaogy ~1) y - 8 (402)

Proof. Use the definition of Fenchel conjugate in [21, Subsection 4.4.1]. Table 4.1 and
4.2 show that the conjugate of the function f(x) = ieo‘im is the function

Llogy—1) y>0
g<y):{al( )
0 y=0.

Thanks to Fenchel-Young Inequality [21, Proposition 4.4.1] for every x € R,y > 0

1
— et > Y (logy — 1) + ay.
a; a;

Since U(x) is defined in R, the same inequality is true substituting  for —z. Conclude

multiplying both sides by —1. O

Lemma A.0.4. If a real squared matrix A has all (complex) eigenvalues with strictly

negative real part then

lim e =0 (A.0.3)

t——4o00

Proof. 1f A is diagonalizable, then there exist an invertible matrix H and A\q,..., A\, € C

with negative real part such that

and (A.0.3) follows. If A is similar to a Jordan block, then there exist an invertible

matrix H, a nilpotent matrix U with only 1 on the upper diagonal and A € C with

110



negative real part such that

R " "
6At — eH(/\Id-i-U)H_lt — He(kld)tH—leNt —H . H—l (Z ]]\’;th> ’ (A04)
0 ... eM =

where N := HUH ™' and H(AId)H™' commute [20, 3.2.7 and 3.2.8 page 181], [16,
Proposition A.6]. (A.0.3) is true because, in view of (A.0.4), every entry of e/ is a
linear combination of powers of ¢ and exponentials with exponent A with negative real
part. Every matrix is triangularizable in C and the above reasoning can be done for
every Jordan block.

O
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Appendix B

Appendix to Baseline Model

Definition B.0.1. Fix T > 0, define M = re%o% and the following function [0,7] — R.

MD(T> _ (1 . €7r7-> <1 _ €D<k + r) + QEDO'%(SDD(T)) ,
My(7) = (1 — e’”) <6D7_r —rC + EDO'QD(SD(T)) ,

where
“tep(k+1)?  [2—rep(l+2TH)T
foofr) = LBl 2orep )
20%€ep(epr — 2) (e — 1) 2(rep — 1)
5 1 Qe(r_%)TreD( —1+ep(k+ ?")) (er + 7(rep — 1))
p(7) = 20%(1 — e"T){ (rep —1)2 i

2(7«7%)%2 — €n T 2 e — €D ) ) (epm(rep — T €D

K C(—1+ep(k+7)) 2 (= 1+ep(k+m))(epn( 2) +rC(1+ k ))+
(rep — 2)(rep — 1)? ep(rep — 2)

( —1+ep(k+ r)) ( —27ep(rep — 1) +rC(—1 — kep + reD)) }

ED(TED — 1)2

+
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1 {62(7“_6}3)77"( —1+ep(k+ r))2(2r202 +epoh(rep — 1))

do(7) = 802 (1 — e rep — 2)(rep — 1)3 i
D
8€(T_5)T7’2CED( —1 + €D(k + T))(TC% + 7_T(T6D B 1)
+ (—1 -+ TED)3 "
4€TT

- |:7T2€D(2 —rep) + 2rCrep(k + 1) (rep — 2) + r*C? (7‘ + 2kep(k + r))+
rep(rep — 2)

+ 0%7(1 + kze% + 2kep(rep — 1) + ep(rep — 2)(—208 + 3r — 27’27))]—1—
2
6D(TED — 1)2

+o%(rep—1) (T(—1—|—2€D(/{;+r—25)_6%((/€+r>2_4r6))+

{QCQKQTZGDT + 4Ckrrep(rep — 1)7 + 27%ep(rep — 1)* 7+

1
8meprC
2rod (rep — 1)2 ( reprCOirept

—1)(r(reD—1)+k(2reD—1))—27"202(21{26,3—1—7‘36%—27‘2617(k:eD+1)+r(1+2k:eD—5k:26%)+

+ (rep — 1)(47?2617(7"617 —1)? + 05 (k*5(2 — 3rep) — (rep — 1)*(—2 + 11rep — 8Bep)+
— 2kep(2 — brep + 37“%%)))))] }

Lemma B.0.1. Fix T' > 0, for every 0 <t < T, there exists a constant n(7") such that

(a) [0pp(T" = 1)], [0 (T = 1), |60(T — )| < n(T);

(b) ’ﬁéDD(T — 1)

— L —p(T —t)

l—e— "

) Y

(¢) IMp(T" 1), [Mo(T —t)| < n(T);

(d) '?MMD(T — 1)

Y

T

(e) for everyi € {1,...,n}, E HeDoDr I %dﬁf
Theorem 1.4.7.

2 } < n(T), where (6'1'),>¢ is in

u

Proof. Since |opp(T)| < +o00 and lim;_,7|dpp (T —1)| < +00, then the function dpp (7T —
-) € €°[0, T[. The function dpp (7T — -) has finite extremal points and, because of Wei-
erstrass’ Extreme Value Theorem, its absolute value is bounded by a positive constant.

The same proof holds for all the inequalities in (a) and (b). Since

‘MD(T — t)‘ S |1 — eiT(Tit)Hl — ED(k + T) + QEDO'%)(SDD(T — t)‘,
IMo(T —t)| < |1 — e "I D||epm — rC + eposdp(T — t)],

and all the terms are bounded by a constant, then (c) follows. Equation (d) follows
from (a) and (c). Lemma A.0.1 (X) leads to

_ t 9T _
E [ / % P
0

1 — e r(T—u) U

t QiT - b 2
( /0 Y] ) +1

os
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and applying [t6’s isometry it follows that

2l O dwP ‘B O 2d
S S < _u ]
[/D Wu —= 1 +/0 (1 _ er(Tu)) u

1 — e r(T—w)
Thanks to the definition of (#1'),~¢ in Theorem 1.4.7 we get

oir 1 MD(T ) D[ + 1 (T — u)
1—eT=w| = |May| |1 —e"( IMag| |1 —er(T-w
which implies
B t 97,T
E / <1+/ E[D? + 1)du < n(T)
01— e rTw “)

because of (1.4.11) (idi).
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Appendix C

Appendix to Perfect Information

Definition C.0.1. Define the function

0:BxR* xR —s R

S (C.0.1)
(€D7€7rac) — (6DD757r7r76D7r75D767r750)
where
- (1—en(k 1) _ (L —eplk+n)(enlren —2) + exla+r)(1+ kep))
PP ep(rep — 2)02 " 0T T epos (1 + aep)(rep — 2)
5= — ! { (1+ aep)(rep — 2)+
T 2epod(2a+1)(1 + aep)(rep — 2) D 4eDJATED

—2epex(a+r)(a+k+71)(rep —2) +e2(a+7r)(alrep —2) — 1 — 2k(k + 7«))},

—(1=ep(k +1)) (rC(1+ aep)(1 + kep) + am(eh(rep — 2) + ex(1+ kep)(rep — 1))

epoh(1+ aep)(rep — 2)

op =

_ 1 2 20 =

O = epoh(rep — 2)(1 + aep)(a +r)(2a + 1) {_GD(_2+EDT)(_CT (ktr)+a(epm—2Cr)+
+a(7—Cr(2k+37r))) + e (Cr3(r + 2epk(k+7)) +2a* (epm (=2 +epr) (=1 +ep(k+7))+
+Cr(1+ebk(k+r)))+ar (epm(—24epr) (k+epr(k+r))+Cr(4r+6epk(k+r)+ebkr(k+r)))+

+a?r(epT(—24epr)(—2+3ep (k+1))+C (5r+depk(k+r)+3eh kr(k+1))))+ae2 7 (a+r)(a*(—2+epr)+

+7*(=1+ep(r +epk(k+71))) + a(—2epk® + r(=3 + 2ep(—k + 1 + epk(k + 7")))))},
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N 1
5 = 4 2-2 2_ 02 4 2 k k
= Srepelren ~Ba I T e\ o O k(b))

+a®(2C%epr? (r+2epk(k+7))+4C7r (€5, (k+7)(—2+epr) e (14+epk)r(—1+ep(k+7)))+
+ 72(—2€5 (=2 4 epr) + 2eperr(—2 + epr) + Er(2epk? +7(3 + 2epk — epr)))+
+2epoh (1+ep(epk* +2k(—1+epr)+(—24epr) (3r—253))))+ar (Cr(Cr(3+epr) (r+2epk(k+r))+
427 (e (1+epk)r? (= 1+ep (k+7))+ep(—2+epr) (k+epr(k+1))))+(3+epr) ot (1+ep(epk*+
+2k(=1+ epr) + (=2 + epr)(3r — 28)))) + a*(C*1*(2 + 3epr)(r + 2epk(k + 7))+
+ 2077 (3ex(1+ epk)r*(—1+ep(k+7)) +ep(—2+epr)(2k + 3epr(k +71))) + T2(E2r3+
+2e51 (= 146,71 (k+1))+2ep (24 (k+7) (= 2+€.kr)))+(2+3epr) ot (1+ep (epk*+2k(—1+epr)+

4+ (=24€epr)(3r—28)))) + 1205 (14 ep(epk® + 2k(— 1+6D7")+(—2+6D7“)(37’—25)))}.
Lemma C.0.1. Let 6 = (6pp, Oxry Opr, 0D, O, 0g) and define the function

f:RTxBxR*xR xR — RE
fi(or, €p,€r, C,6)
(0, €D, €x, O, 0") — : ,
fe(or,€p, €r,C,6)

(C.0.2)

where fi(ox,€p, €x,C,0), ..., f6(0n, €D, €x, C,§) are stated at the end of the lemma.
For every ¢}, € B,e? # 0 and C° € R fixed, §(e%, €2, C°) (cf. Definition C.0.1) is the
0) =

unique solution of the system f(0,¢%, €2, C% d) = 0 and there exist
o U(Y, €2, C% C R* x RS open neighbourhood of (O e, €2, 00 (€Y, W,CO))
o W(e%, e, C% C R* open neighbourhood of (0, €%, €2, C0);

such that

e for every (0., €p, e, C) € W(eh, 2, C?), there exists a unique ¢ such that

(O €, €x, C,0) € U(e)), €2, C°) and f(or €p,€r, C,6) = 0.

e If this § is defined to be g(ox, €p, €, C), then g € €1 (W, U) and ¢(0, €%, €2, C%) =
0(eh, e, C°).

f1 = —0'72r <O‘% (€D5D7r — QEF(SDD)Q + 267r (ED(]{? + T)(SDTI' — 671—(2]{3 + T)(SDD)) — 202D€D5DD (’T‘ED — 2) +

+ 26,020py + ep(k +7) (ep(k +7) — 2) + 1,
fo= €2D (2(5m0% (2& - 257T,r(7,2r + 7’) + 1) — 2¢.€p (U%ép,r + 1) (a - 2(5,,7TU72r + T‘) +
+é ((a+1)? = 02 (0px (0h0pr +2) +2r0:r ) )
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f3 = 2(ep(ex(a+1)(—2056pp + k +71) + €x02(05(40,0pp + 07) + 6pr — 20, (k + 1))+
4+ 0%50ps + 1) + €5 (— (05 (=6pr)(a — 20,702) + k+ 7)) — ex(a + 1)+
+ €02 (ex(kdpr — 2(656pp0ps + 6pp)) + 2057)),

fi= 4a7_reﬂaDeD5DD — 2a7_ra%e%6p7r — 2amkerep — 2aTreep + 2ame, — 407‘0‘%6D5DD+
+ 2Ckrep + 2Cr?ep — 207"6,1-02(5D7r —2C7r — 4é> (5D0%02(5DD + 4e, 0, 0’%6D02(SDD‘|’
+ 26,0702 — 20,05€H020pr + 26x0p0hHepT20py + 20p0ohep + 2ke2dpo? — 2ke b epa+
+ 27’6727(5,30,% — 27’e7r57reDa,r,

fs= —2a27?63r + 2aCre, + 2a57r0%62D — 2a€7r(5D0'%6D + 2a7fr(—:7r0§)(—:D(SD7r - 4a7?5wﬁa%6%+
+ 2a7e ep — 2amre: — 2CT0hepdpy — 20Tep + 2071% €, — 40T€,07702 — 40,050 H DT+
+ 4€W5W7T5DU%EDO'2 — 2¢2 5D02 — QEF(;DUDUW(SDW + 2€7r57r<7DeDcr7r5D7r + 267T57T€D0'7T~|>
+ 270 aDeD 2reﬂ5DaDeD,

fo = a*7%e2 — 2Cr (afreﬂ + 20,02 + 5D0,236D) + 2amahep (€x0p — Orep) + 2Be202 + C*r?+

2 2 2

—2620%,020pp — 205€10pD — 2620708 4 2805 €%, — 205x0 1 EH02 — 020hE102 — 2010 H02+

+ 26,00 pOHEPTE + 200701 e — 2rohes, 4 20gre2ol — 2reé2o?.

2

Proof. f(0,9pp,0pr, Onrs 0D, 0x,00) = 0 is a linear system with 6 unknown and 6 equa-
tion which admits as unique solution (5 DD ) Drs SM, ) D, S,r, 50). Direct calculations lead

to

det (v((sDD,5%,5,”“%,5#,50)]0(0, 5+ Sms s 810, O, 5o>)

= 64r(a +7)(2a + 7)) (1 + aep)(—2 + rep)og.

The Implicit Function Theorem [32, Theorem 9.28] concludes the proof. [
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Appendix D

Appendix to Heterogeneous

information

Since Theorem 10.3 in [25] is fundamental for the solution of the filtering problem of

Lemma 3.4.1, we write it here with a more convenient notation.

Theorem D.0.1. (W7, WP WA WET is a 4— dimensional Brownian motion, ag, a,b €
R, A; € R? and Ay, B € M3(R). The real process (I;)>0 and the process (Uy)i>q, with

values in R3, have dynamics

dll; = (ag + a1 I1;)dt + bdW[
A, = (Al + ApW,)dt + B(AWP, dW},dW/F)T.

The stationary Kalman-Bucy filter for the process (Il;);>0, with signal (V¢)i>o, is the

process (ﬂt)tzo, solution of the stochastic differential equation
i1, = (ag + ayIL)dt + 0AT(BBT) 1 dW, — (ALIL, + Ay W,)dt],
where o € R is the only positive solution of the quadratic equation
0 = 2a,0 + b* — 0*(AT B*A))

and (BBT)=Y2[dV, — (A11, + AyW,)dt] is a Brownian motion, adapted to the filtration
generated by (W¢)i>o.

Definition D.0.1. Define the function

d:BxR* xR —s R
(D.0.1)

(€D, €x, C) — (SDDngMagiingMa SDthiagDagMagiaéo)
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where

(=14 ep(k+7))?

e(a+r1)*(—r — 2epk(k + 1)+ a(—2+ €pr))

Sarnt = — Spp =
M 2ep(1 +aep)(2a+1)(—2+ €pr)or, PP oep(rep — 2)0%,
- 1 - ex(a+r)a+k+r)
0ii = — 575 2 Omi = 5
2(2a + r)o? (1+aep)(2a+r)op
- e&x(L+epk)(a+7r)(—1+ep(k+71)) - —1+4+ep(k+r)
6DM = 2 ) 5Di = 2
ep(l+aep)(—2 +epr)op (14 aep)oy,

5 (=1 +ep(k+7)(C(1+aep)(1 + epk)r + an(eh(—2 + epr) + (1 + epk)(—1 + €pr)))
b= ep(1+ aep) (=2 + epr)od

= 1
5. = (e F(—2 Cr2(r + 2epk(k
M ep(1+ aep)(2a + 1) (=2 + epr)od, ex(@exm(=2 4 epr) + Cr(r + 2epk(k + 1))+

+ alex(1+ epk)7r* (=1 + ep(k + 7)) + epa(—2 + epr)(k + epr(k + 7)) + Cr(3r+
+ depk(k +71) + enkr(k +1))) + a*(epm(—2 + epr) (=1 4 2ep(k + 7)) + 207 (1+

Y

+enk(k+ 1)) + exm(—2epk® +17(=3 + 2ep(—k +r + epk(k +7))))|,

—ade,m+ Or*(k + 1) + a(—7 + Cr(2k + 3r)) + a*(2Cr — 7w(ep + e (k +1)))
(14 aep)(a+1)(2a +1r)o?

- 1
50— 1272 (2 — C*r(r + 2epk(k
0= 2ep( T acn)rla T 1)@t =2+ eprjod, [© 7 12— eor) + Cr(r - Zepk(k + 1))+

+ a*(2C%epr?(r + 2epk(k + 1)) +4Car (e, (k + 1) (=2 + epr) + ex(1 + epk)r(—1 +ep(k + 1))+
)+

Y

+ 72(—=26% (=2 + epr) + 2epepr(—2 + epr) + Er(2epk® 4+ 1(3 + 2epk — epr)
+2epot (1 + ep(epk? + 2k(—1 4 epr) + (=2 + epr)(3r — 2B)))) + ar(Cr(Cr(3 + epr)(r+

+ 2epk(k 4+ 7)) 4+ 27 (e (1 + epk)r*(—=1 + ep(k + 7)) + ep(—2 + epr)(k + epr(k + 7))+

+ 3+ epr)op (1 + ep(epk® + 2k(—1+ epr) + (=2 + epr)(3r — 28)))) + a*(C*r*(2 + 3epr) (r+
+ 2epk(k + 7)) + 20771 (3ex(1 + epk)r* (=1 + ep(k + 7)) + ep(=2 + epr) (2k + 3epr(k + 1))+
+ 72(21% + 2ehr(—1 + exr(k + 7)) + 2ep(2 + €xr(k + 1) (=2 + €:k7))) + (2 + 3epr)op (1+

+ ep(epk® 4+ 2k(—1+epr) + (=2 + epr)(3r — 2B)))) + r*oh (1 + ep(epk”® + 2k(—1 + epr)+

+ (=2+€epr)(3r —20)))|.

Lemma D.0.1. Let 6° = (6%, 4sars Oiis 05 ars ODis Onti, 0, 04y, 02, 05) € R and for every
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i€ {l,...,n}, define the function

fORT X B xR* xR x RY — RY
fi(or, €, €x, C, 07
(0, €D, €x, O, 0") — : :
fio(Ons €D, €, C, 0%)

(D.0.2)

where fi(0x, €p,€x, C,0%),. .., fio(or, €p, €x, C, ") are stated at the end of the lemma.
For every €}, € B, e # 0 and C° € R fixed and for every i € {1,...,n}, 6(¢%, €2, C0)
(cf. Definition D.0.1) is the unique solution of the system f*(0, €%, ¢ 2, C°,6") = 0 and

there exist
o U(%, €2, C% C R* x R open neighbourhood of (0 e, €2, C0 5(eY,, W,CO))
o W(e%,€2, C% C R* open neighbourhood of (0, €%, €2, C9);

such that

o for every (0., €p, €, C) € W(eh, 2, C?), there exists a unique ¢° such that

(0r, €D, €x, C, 5i) € U(e%,e?r,CO) and fi(aw,eD,eW,C, 5’) =0.

e If this ¢’ is defined to be ¢g* (0, €p, €, C), then g* € €1 (W, U) and ¢*(0, €%, €2, C°) =
5(e%, €2, CY) for every i € {1,...,n}.

fi = —2kvoyer (—20p€:0pp + €p0idpi + €porrdpar) — 2kep(—20n€x0pp + €p0idpi+
+ €D0M5DM —Te€p + 1) — 4€D0i0M67r5DD5Di — O'2D <2€D5DD( — 21/0]\467T (OiéDi —+ oMéDM>+
+ rep — 2) + 4vor, €267, + €3, (V0M5DM (20i5DZ~ + 0M5DM> + Vioft%l-)) + 403,205 )+

— 4€DO?\/[€7T(SDD5DM + dopre-dpp + 21/7“0?\462 Spp + V202 oMe 5Dl — V0] oMeic%ﬁ—

+ 200,00 €:0D; + 2V6D020M67F5D2 26DV1020M67|-5 + 26D0i0M(5Di5DM—|—
— 2rep (1/01\467r (oiém + 0M5DM) + 1) + eDo 5 ;+ 2€p0;dp; — 27“62D01-5Di + k2e2D+

+ 21/0?\467F5DM + 62D0?\45f)M + 2epordpar — 27’6%0M5DM + 7’26% +1,
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fi=—200ns (oM (26%5]\41\/] (1/0% — 1) + €x (V((CL +7r)er + GD) +d0pm (eD — 1/0,2361)) )—i—

fs

fi

fs

fs

S

+ (a+r)eper + VQO?wefr) + 201 <€7r <2a€D§MM —ae0py +v(a+r)e, — reﬂéDM>+

+ vohep <2€D5MM — €7r5DM)> +20%€p ((2& +r)epdum — (a+ r)eﬂcSDM)jL

+ 0203 (26,3 (1/ - I/i) OMEr + €5 (1 — O'ZDVZ) + y(z/ - I/i) 0%63)4—

+ 0?\4( — 4e%0% 01 (1/0}23 — 1) - 267F6MM< — 2uohepdpn + 2epdpar — 2vep + I/reﬂ>—|—
+é ((5DM —v)? - 1/0%5%]\4)) + (a + 7)€,

= 2€pOprén <25n‘ (20; (10;04 — 1;0;04 + V) + 2a + 1) + Op; (ya% — 1) (0O + 2004+

+1)+ 1/) + oﬁé,efr (1/ (204 (20; (v0;6si — V0,04 + V) +2a+ 1)+ V) + (52Di (1 — 1/0%)) +

+ EQD( (0arOnsi + 2005 + 1) — o3, (—4a5ii + vonrOri (0n0ari + 40i6; + 2) + 4v;030% — 27’57;7;) >,
= —0;(6pi(0ar (265000 (vt — 1) + ex(v((a +1)er + €p) + Oparlep — vonep)))+

+ (a4 7)eper + v20%,€2) + Sari(ep(onrex(6pp(2 — 2v0%) + vk + 1)) — 1)+

+ e (on(vod, — D)opar + k + 1) — vonrer)) + onr(ex(—=2(a +1r)exdpp + (a + k)epdpa+
+v(ep(k+71) = 1) 4+ 6par) — 2epdnrnr(ep(k +7) — 1) +vohep(epdpar — 26,:0pp))+
+o%ep(—2(a+1)exdpp + aepdpar + Opar) + 056 pidari(2ep (v — vi)oner + €5, (1 — ohv)+
+v(v —1v)0%,€2) + 03, (0pa (2620 pp + ver(ex(k — 2050pp) + €p) — 265 6pm (vas, — 1))+
— 26, (Vo (ep(k 4+ 1) — 1) + 0pp(—2va5epdarns + 2epdpar + ver)) + epex(vos, — 1)67,,,)+
+ (a+7r)e(ep(k+1)—1),

= ep(onm(€x(0pi(2a — oprépyr + k+ 1) — 20pp) — 200€:0ppInsi — V(k + 7)er(0prOpri+

+ 1) + Sasi) + 05 (001€x0pi (O pi(vos, — 1) 4 2v) — 26;:(onrex(0pp (2 — 2v0%) + v(k + 1))+
— 1)) + 0} (vorrex(26pp(0a6ari + 1) 4 0016 pidpar) + Opi) + 4(v — 1) 0Fonrexdiidp; + 1)+
+ onrex(Opi(onrex (V05 (20005 — 213004 +v) +a+k + 1) + 0pp(2 — 2v0%)) + 1)+

+ vonOrs + 2000 + V) + €h(0h (—vonr (20:6:0 par + 006 pardass + 0i0pidars + Opar)+

— 2003050 pi + adpi) — (0pr0nri + 2005 + 1)(—0;0p; — ondpar + k + 1)),

= 0%, (0ari(ex(v(aer + €p) + ep(vor, — 1)dpur) — 2¢50n(vor, — 1))+

— e (6pi(vad (ex0par — 2€pOarar) + 2€p0nar + €x(V — Spar)) + Vier))+

+ 0(—204(ep(ex(a+ oprpar + 1) — 2€ponsdarar) + vorrer((a+7)ex + €p) + v20%,e2)+

+ Oari(eponiex (Vo dpi — Opi + 2v) + €5 + v203,€2) + 2voneponsi(exdpar — 2€pOnrn )+
+ €500 (1 — vop)o3,,) + onr(—ex(—3aepdar — Tepdari + aexdp; +v((a+7)ex + €p)+
+1€x0pi + €pbpar) + vonep(epdar + €x(Opar — Opi)) — 26500 (vod, — 1))+

+0%ep((2a + r)epduri — (a4 1)ex0p;) — 2056:0n1:(2ep (Vs — v)onrexr + €5 (ohy; — 1)+

+v(v; — v)ored) — (a4 1)eper,
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fi=0;(0;(ep(onex(20pp(vosy — 1) —v(k + 1)) + 1) + eh(—(onm(vo}, — 1)dpar + k + 7))+
+ voyex) + 0pi(onr(avie2 — Speper + vohep(Oper — €plar) + €50n) + amepes))+
+ 0% (ep(am(2ex6pp — €p(6pi + par)) + 0p) + 03, (6per — €pdar)(€pdpar — 2€x:0pD))+
+ 2a7_r0M63r5DD + Cr(—20%€epdpp — 2001€:0pD — V0i00€x0pi — €p0idp; + kep+
— V0% €x0par — €pOpOpar +T€p — 1) + 20p0%,€26pp — 26p0a10%1€x0pD — AVTON ;€20 it
— 2amepoyerdp; — akTepey — aTepOrerdpy — ATTEPEr + afer + 6;070pi(2ep (v+
—v)oner + en(1 — opv;) + v(v — 13)03,€2) + kvdporse — kvepdpoi ex + kdpeponseqn+
— ke3,00001 + Oponséx — Op€p0r €xdpar + €10010%,0par + €pdpron + vrdpos e+
— Urepdr0i € + TODEDONEx — TE€DONON + VO 0% Ex,
fg = COr(—o0;0ni(ep + voyer) — onr(2epdnrns + ver (20000 — 1) + €x0par) + (a + 7)ex+
+ 0%ep(—0par)) — 2aTeporrendari + 0i(—vopren(0;((a + 1)ex + €p) — aTexdari)+
+ ep(eponr(OnOnr + 20;001) — €x(Oari(dporr — am) + 0i(a + opdpar + 7)) )+
+ vonepon (0pexdari + €p(—0nr)0nri — 2€p0inrns + Sierdpnr) — V20;05,€2)+
+ o (aep(—7ep(ari + 20mn) — Opex + €pdar + Terdpar) + (€pdar+
— Spéex)(vorr(—2€ponOnrar + on€xbpar + €p) +1rep)) — 2aTepOnExOrrns — AVTOL €201+
+ 0020015 (2ep (v — vy)onrer + €5 (1 — 051;) + v(v — 14)05,62) — 20pepOi exdnrnr+
+ 262D5M0?\45MM - a27_T€3r — aéDoMefr + aepdponren + aﬁoMefr(SDM - am‘roMei — aﬁrefr+
— VD032 + VepSar0t €x + 0p0s €20 par — €pOrr0a €xdpnr — TODOMES + T€DIrrONEn,
fo=0i(26;(on(avme2 — Speper +vohep(Oper — e€plar) + €10n) + amepes )+
+ 8i(eh (—vohorbasi + o + 1) + eporrer(Vohdps — 6ps + 2v) + v205,€2))+
— 4amepoprerdi — aTeponexdn + op(eplaep(6; — (205 + Oari)) + aTexdp; + repd;)+
— von(epdnr — Spex)(€poniOari — Orrexdpi + €p)) — 2avTos, €205 — Cr(onex(VorOari+
+2v0;6;; + 6pi + V) + ep(0nOari + 2005 + 05H0pi + 1)) + 26,0204 (2ep (v — v3)oprent
+ 651 — %) +v(v — 1:)03,€2) — Spep0iendari + €n0rr03;0nri + 2a€p8;0nr€x+
+ a?roMei(SDi + amepe, + auéio?wefr + am‘roMei + (SDO?\/IEiCSDi — ED(SMO?WQ.-éDZ’ + 2rep0;on€nt

2 2 2
- 5D€D0M€7r -+ €D5M0M -+ V?"(SiOMEﬂ.,
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' 2 2 4 2 3 3 2 2 2 2 2 2 2 2
fio = —2v°0 M€, 0y — 2V0ppr€ 0y — AV pm€ep€eROy + O3 €00 + 0p€R0N — 2TVE 00+

+ 2Bvet 03, + 2rvdoeion; — 2aTvdieton, — 20pdaep€er0s; — 40parepex0ty + 20T peon+

— Adreperon + 4Beperon + 4rdpeperon — 4aTdieperon — 2aTOpEDERON — 25DD6%0}43+

+ C%*r% + a®72E2 + (2ep((B+1(8 — 1) — a7 (6; + 6ar) — oardpar)ep + (aTop+
— 20M5DD)‘571-) — 1/0?\4«(5]2\/[ + 25MM)€2D — 25D5M67T6D + (52D + 2(5DD)672r))0%+

— 207“(51)61)0'% + CM_TEﬂ- + Oidi(GD + VOMGﬂ-) + OM(dMED + (SDEﬂ— + Z/OM5M€7|-))+

+20i(—v*0ui€500 — ver(20nrien + Opiex)0ty + (3idarep — v(8idarep + darien — dpdiex)open+

— 6pdierep — 20pienep + amvdiet)on + ep(andier — Opicpop)) + 03 (62((1 — vioh) )enh+

+ 2006, (v — vi)ep + v 2 (v — 1)) — 20515 (€5,0% + onren(2ep + vonser))).

Proof. For every i € {1,...,n}, f{(0,€%,€e%, C° §") = 0 is a linear system whose unique

solution is 0(€%), €2, C?). Direct calculations lead to

det (Vgifi (O, e, €2, C0 5(eY), €2, CO)> ) -
— 10247 (a + 7)*(2a + 7))’ (1 + aep)* (=2 + rep)opy # 0

and the Implicit Function Theorem [32, Theorem 9.28] concludes the proof. O

Lemma D.0.2. Let 6" = (6%, 8%ars 0iis Oars Obis Onris 05y, 04y, 0, 05) € R and for every
i€ {l,...,n}, define the function

F'URTxBxR*xRxRY — RY
Fi(ox, €p,€xr, C,5Y)
(Ox, €D, €x, C,0") — : ;
Fis(ox,€p, €q,C, ")

(D.0.3)

where F} = fi of Lemma D.0.1 (with o; = oy and v; = v) for every i € {1,...,n},j €
{1,...,10} and F},, F},, Fi; are stated at the end of this lemma.
Under Assumption 3.1.1, for every i € {1,...,n}, (ép*, &%, C*,6*) (cf. Definition 3.4.2)

is the unique solution of the system F*(0,ep, e;,C, ") = 0 and there exist
e U C R* x R™ open neighbourhood of (0, €p*, &%, C*, §*);
o g, > 0;
such that
e for every 0 < o, < d,, there exists a unique (ep, €;, C, §%) such that
(Ox €, €x, C,0Y) €U and F'(0r, €p,ex, C,6) = 0.
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e If this (ep, €, C, &) is defined to be G'(0,), then G* € ([0, 5], U) and G*(0) =
(65*76}*76*,5*) for every i € {1,...,n}.

Fi, =1—ep(k+71)+ 26, (epos + exon) + (6pio; + 600 )(€p + €r0oprV);

Fly = (aex — 1C) + 0p(ep0h + €xonr) + (83,0m + 8:0i) (€p + exonrv)+
—r [ED(EDO'QD + €rop) + €rop(ep + EWOMV)} Q;

Fly = —ex(a+71+opv) + 05, (epod + €xonr) + (0i00rs + 20065 0,) (€D + €xonrv)+
+ 5D,~(EDU,23 + €:00) + (0pOnri + 206 + 1) (ep + €xonv).

Proof. For every i € {1,...,n}, direct calculations show (0, €p*, &*,C*,6*) (cf. Defini-

tion 3.4.2) to be the unique acceptable (ep € B ) solution of the system F(0, ep, €, C, §%) =

0. Direct calculations lead to

2a+r)PQ2a+1)3(a+k+1)22k +1)0k

i — % — % vk oK _ r
det <V(€D7€W7C,6i)F (07 €D ;€x 7C 75 )) = —1024 (k+r>18

and the Implicit Function Theorem [32, Theorem 9.28] concludes the proof.

0
Lemma D.0.3. The process (Dy, m;) is stationary if and only if
_ o2 o2 1 1 2 oz
B (DO)] _ (ﬂ-/k/) Var (‘DO) _ (2113 + (k—a)? (7(21 + 2k @) 2a(a2+k)) .
o & o 2a(717—r|-k) %
(D.0.4)

Proof. Define m = E[(Dy, m)"] and V = Var[(Dy, my)"]; because of (3.1.1), (3.1.2) and

[22, Problem 5.6.1], m and V' are solutions of the equations

(—k 1)m+(0_):0 and (—k 1)V+V<_k O):o. (D.0.5)
0 —a ar 0 —a 1 —a

Direct calculations show that V and m of (D.0.4) solve (D.0.5); by Sylvester Theorem
[20, Theorem 2.4.4.1] the solution of (D.0.5) is unique. O
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