

A Configuration-based Domain-specific

Rule Generation Framework for

Process Model Customization

Neel Mani, B.Sc., M.Sc., M.Tech.

A dissertation submitted in fulfilment of the requirements for the award of

Doctor of Philosophy (Ph.D.)

Dublin City University

School of Computing

Supervisors: Dr. Markus Helfert

and

 External Supervisor: Dr. Claus Pahl

Faculty of Computer Science

Free University of Bozen, Bolzano,

Italy

September 2018

DECLARATION

I hereby certify that this material, which I now submit for assessment on the programme of

study leading to the award of Doctor of Philosophy is entirely my own work, that I have

exercised reasonable care to ensure that the work is original, and does not to the best of my

knowledge breach any law of copyright, and has not been taken from the work of others save

and to the extent that such work has been cited and acknowledged within the text of my work.

Signed: (Candidate) ID No.: 13211190 Date: 03/09/2018

iii

TABLE OF CONTENT

CHAPTER 1 INTRODUCTION ... 1

1.1 Motivation .. 1

1.2 Problem Statement ... 2

1.3 Research Questions and Objectives ... 3

1.4 Research Contributions .. 7

1.5 Thesis Outline .. 9

CHAPTER 2 BACKGROUND AND LITERATURE REVIEW 11

2.1 Software Product Line Engineering ... 11

2.1.1 Domain Engineering ... 13

2.1.1.1 Domain Analysis ... 14

2.1.1.2 Domain Implementation .. 15

2.1.2 Application Engineering ... 15

2.1.3 Problem Space and Solution Space .. 16

2.2 Variability Management ... 17

2.2.1 Variability Modeling ... 19

2.3 Feature Model .. 20

2.3.1 Feature Description ... 22

2.3.1.1 Feature Description for Content Processing 23

2.3.2 Core Asset Development .. 24

2.3.3 Product Development ... 24

2.3.4 Feature Model Variability ... 25

2.4 Rules Language .. 25

2.5 Process Model Customization and Configuration 27

2.5.1 Process Model Customization .. 28

2.5.2 Process Modeling Languages and Challenges 29

2.5.3 Configuration of Process Model and Rule Template 31

2.5.4 Business Process Modeling and Configuration 32

2.5.4.1 Business Process Variability Modeling and

Configuration ... 32

2.5.4.2 Process Model Configuration in SPL 33

iv

2.5.4.3 Business Process Model Product Line 33

2.6 Critical Discussion on Process Model Customization Literature 34

2.6.1 Research Gap .. 36

2.7 Summary .. 37

CHAPTER 3 RESEARCH METHODOLOGY ... 38

3.1 Methodological Requirements ... 38

3.2 Methodology Selection .. 39

3.2.1 Action Research .. 39

3.2.2 Grounded Theory .. 40

3.2.3 Case Study Research ... 41

3.2.4 Design Science Research .. 43

3.3 Design Science as Research Methodology ... 45

3.3.1 Problem Identification and Motivation 45

3.3.2 Objective of the Solution .. 47

3.3.3 Design and Development .. 49

3.3.4 Evaluation ... 49

3.3.5 Communication ... 50

3.3.6 Contribution .. 50

3.4 Summary .. 51

CHAPTER 4 FRAMEWORK AND OVERALL APPROACH 52

4.1 Introduction .. 53

4.2 Conceptual Approach of Framework Under SPLE 55

4.3 Case Study .. 58

4.4 Main Components of the Framework ... 60

4.4.1 Model-Driven Design Approach (Domain Engineering) 61

4.4.2 Adaptation of Process Model (Application Engineering) 62

4.5 A Framework for DSR Generation and Configuration 65

4.5.1 Dynamic Process Model Adaptation .. 68

4.5.2 Core Asset ... 68

4.6 Summary .. 68

CHAPTER 5 MODEL-DRIVEN DESIGN APPROACH AT DESIGN

TIME .. 69

v

5.1 Overview .. 69

5.2 Introduction .. 70

5.3 Variability and Software Product Line Engineering 71

5.4 Model-driven Software Product Line for Rule Generation 73

5.5 Process for Design Dynamic Rule Generation 76

5.5.1 Creation of the Initial Domain Template 76

5.5.1.1 Feature Model .. 77

5.5.1.2 Domain Model ... 78

5.5.1.3 Static Weaving model ... 80

5.6 Definition of Domain Model Language ... 82

5.6.1 Language Description ... 83

5.6.2 Semantic Checks ... 84

5.7 Summary .. 85

CHAPTER 6 RULE LANGUAGE DEFINITION 86

6.1 Overview .. 86

6.2 Introduction .. 87

6.3 The Structure of Rule Languages ... 88

6.3.1 Rule Syntax ... 88

6.3.1.1 Abstract Syntax ... 89

6.3.1.2 Concrete Syntax .. 90

6.3.2 Rule Language Description .. 91

6.4 Domain-specific Rule Language Definition and Description 94

6.4.1 Definition of Domain-specific Rule Language 95

6.4.2 ECA Language Description .. 95

6.4.2.1 ECA Model for DSRL ... 96

6.4.2.2 ECA Rules express in XML .. 97

6.5 Summary .. 98

CHAPTER 7 DOMAIN-SPECIFIC RULE GENERATION 99

7.1 Overview .. 99

7.2 Introduction .. 99

7.3 Model Translation .. 102

7.4 A Conceptual Model for Domain-specific Rule Generation 103

vi

7.5 Model-to-Text Translations .. 104

7.5.1 Model Driven Architecture (MDA) .. 105

7.5.2 Metalevels ... 107

7.6 Implementing DSR Generation by MDA ... 109

7.6.1 Technical Space .. 110

7.6.2 Solution Space .. 111

7.7 Summary .. 113

CHAPTER 8 PROCESS MODEL CUSTOMIZATION AT RUN-TIME114

8.1 Overview .. 114

8.2 Dynamic Adaptation Process ... 115

8.3 Feature Monitoring ... 118

8.4 Analyzing the Feature Validation .. 119

8.5 Planning the Model Customization .. 120

8.5.1 Model Process Customization Plan .. 120

8.5.2 Adapt the Domain template .. 122

8.6 Executing the Customization Adaptation ... 124

8.6.1 Adapt the Process Model Customization 124

8.7 Summary .. 125

CHAPTER 9 EVALUATION AND VALIDATION OF THE ARTIFACT

 ... 127

9.1 Overview .. 127

9.2 Introduction .. 127

9.3 Evaluation Process and Planning ... 129

9.4 Evaluation Strategy .. 132

9.4.1 Evaluation Criteria .. 133

9.5 Case Study – Process for Data Extraction Digital Content 135

9.6 Experimental Design .. 136

9.6.1 Definition and Planning .. 137

9.6.2 Experimental Procedure .. 138

9.6.3 Group and User Selection ... 139

9.6.4 Participants and Tasks .. 139

9.7 Evaluation of DSR Configuration: Efficiency 141

vii

9.7.1 Result and Analysis .. 142

9.7.2 Discussion ... 145

9.8 Evaluation of DSR Configuration: Effectiveness 146

9.8.1 Result and Analysis .. 147

9.9 Evaluation of Overall Framework by System Usability Score (SUS)148

9.9.1 System Usability Score Process .. 148

9.9.2 SUS Calculation and Measurement .. 149

9.9.3 Experimental Results .. 150

9.10 Summary .. 152

CHAPTER 10 CONCLUSIONS AND FUTURE WORKS 154

10.1 Overview .. 154

10.2 Summary of Solution Approach and Thesis Contribution 154

10.2.1 Contribution of the Research .. 155

10.2.2 A DSRG Framework Solution .. 156

10.2.3 Domain-specific Rule Language Definition 156

10.2.4 Domain-specific Rule Generation .. 157

10.2.5 Framework Implementation .. 157

10.3 Limitation ... 157

10.4 Future Work ... 159

10.5 Conclusion .. 160

REFERENCE .. 162

APPENDIX A INDUSTRIAL SURVEY FOR PROCESS CUSTOMIZATION

RESEARCH .. 172

A 1. BPM Survey Questions ... 172

A 2. DCU Research Ethics Committee Approval 173

A 3. Research Work on Process Model Customization 174

APPENDIX B RULE LANGUAGE AND SYNTAX 177

B1. Rule Language Concrete Syntax ... 177

APPENDIX C USER EXPERIENCE EVALUATION 180

C 1. Tasks Assigned on Dashboard .. 180

C 2. Tasks Finished on Dashboard ... 180

C 3. Feature Model Selection Interface 181

viii

C 4. Interface of Generated Rule for Manual Configuration 182

C 5. Interface of End-user for Semi-Automatic Configuration .. 182

C 6. Semi-automatic Configuration of Multimedia 183

C 7. Semi-automatic Configuration of Text Input 184

C 8. Semi-automatic Configuration of Document 184

C 9. Tasks Distribution Matrix ... 185

APPENDIX D SYSTEM USABLITY SCORE .. 186

D 1. SUS Form .. 186

D 2. SUS Web User Interface of SUS Form 187

D 3. SUS Form Analysis ... 188

ix

LIST OF FIGURES

Figure 1.1: An Overview of the Thesis Organization ... 8

Figure 2.1: Framework for SPLE: Problem and Solution Space [36] 12

Figure 3.1: DSRM Process Model (adapted from [114]). ... 45

Figure 4.1: Overview of Proposed Approach .. 54

Figure 4.2:The Stages and Phases of the Proposed Method...................................... 56

Figure 4.3: A BPMN Model for Digital Content Technology 59

Figure 4.4: Main Components of the Framework. .. 61

Figure 5.1: Scope of Chapter 5 .. 69

Figure 5.2: Basic SPL Concepts .. 72

Figure 5.3: Models-driven Support to the SPL for Rule Generation 73

Figure 5.4: Feature Model of gic:Extraction .. 78

Figure 5.5: Domain Model of gic:Extraction ... 79

Figure 5.6: Syntax definition for Domain Model Language 83

Figure 6.1: Abstract Syntax Definition for Domain-specific Rule Language 92

Figure 7.1: Domain Model to DSR Translations .. 101

Figure 7.2:Domain Model based DSL Concept Formalization 104

Figure 7.3: MDA Organization View of the Model Approach and DSR Artifact .. 109

Figure 7.4: DSR Generation and Process Model Configuration in SPLE Aspect .. 110

Figure 7.5: DSR Generation and Signature ... 112

Figure 8.1: Scope of Chapter 8 .. 114

Figure 8.2: Dynamic Adaptation of Process Model Customization 117

Figure 8.3: Customization of Domain Template Plan ... 121

Figure 8.4: Overview of Process Model Customization ... 123

Figure 8.5: Adaptation of Customized Process Model.. 125

Figure 9.1: Evaluation Process and Planning .. 130

Figure 9.2: Usability Criteria... 133

Figure 9.3: Extraction Sub-Process of the Digital Content Process. 136

Figure 9.4: Assigned Tasks on Dashboard of Participants 139

Figure 9.5: Comparison between Semi-automatic and Manual Configuration Time

 ... 144

x

Figure 9.6: Average Time Taken in Manual and Semi-Automatic Configuration . 145

Figure 9.7: Error Prevention based on Numbers of Parameters 147

Figure 9.8: SUS Score Individual Questions .. 151

Figure 9.9: SUS Normal Scale .. 151

xi

LIST OF TABLES

Table 2.1: Literature Comparison of Process Modeling Languages 30

Table 2.2: Literature Comparison of Primary Research Work of Approaches and

Techniques Applied for Process Model Customization from 2009 to 2014 35

Table 3.1: Overview of Research Methodologies [132] ... 44

Table 4.1: The Proposed Method in Sequence Process ... 57

Table 5.1: Types of Feature Models .. 77

Table 5.2: Example of Weaving Model .. 81

Table 7.1: gic:Extraction of MDA Metalevel .. 107

Table 9.1: Summary of Challenges, Proposed Solutions, and Evaluation Methods132

Table 9.2: User Experience Evaluation Methods .. 137

Table 9.3 : Tasks Details of DCT Case Study ... 140

Table 9.4 : Example of Web URL Task .. 140

Table 9.5: Tasks Distributions of DCT Case Study .. 141

Table 9.6: Paired t-Test Sample Statistics of Manual and Semi-automatic 142

Table 9.7: Paired Samples Correlations of Manual and Semi-automatic 143

Table 9.8: Paired t-Test Samples of Manual and Semi-automatic 143

Table 9.9: Number of Error Prevented in Semi-Automatic Configuration 148

xii

LIST OF PUBLICATIONS

 Publication Details Chapters

Journal

J1 Mani, Neel, Helfert, Markus and Pahl, Claus (2016), Business Process Model

Customisation using Domain-driven Controlled Variability Management and

Rule Generation, International Journal on Advances in Software, vol. 9, pp.

179 - 190, 2016.

Chapters-6, 8

Book Chapter

B1 Mani, Neel, Helfert, Markus, Pahl, Claus, Nimmagadda, Shastri and Vasant,

Pandian (2017), Domain Models Definition for Rule Generation Using

Controlled Variability Management, Computational Intelligence, Innovative

Computing, Optimization and Its Applications.

Chapters-5, 6,

7, 9

Conferences

C1 Mani, Neel, Helfert, Markus, and Pahl, Claus (2017), A Framework for

Generating Domain-specific Rule for Process Model Customisation, In,

International Conference on Computer-Human Interaction Research and

Applications (CHIRA), 31 Oct, 1-2 Nov 2017, Funchal, Maderia- Portugal.

Chapters-4,5

C2 Mani, Neel, Helfert, Markus and Pahl, Claus (2017), Domain-specific

Generation Using Variability for Business Process Model Constraint, In, 21st

International Conference on Knowledge-Based and Intelligent Information &

Engineering Systems, 06-08 Sep 2017, Marseille, France.

Chapters-7

C3 Mani, Neel, and Helfert, Markus Domain Model Definition for

Transformation of Rule Language, In, International Conference on

Communication, Management and Information Technology ICCMIT 2017, 3-

5 April 2017, Warsaw, Poland.

Chapters-5,7

C4 Mani, Neel and Pahl, Claus (2015) Controlled variability management for

business process model constraints. In, International Conference on Software

Engineering Advances ICSEA'2015, 15-20 Nov 2015, Barcelona, Spain.

ISBN 978-1-61208-438-1

Chapters-4,5

C5 Pahl, Claus and Mani, Neel (2014) Managing Quality Constraints in

Technology-managed Learning Content Processes. In, EdMedia'2014 World

Conference on Educational Media and Technology 2014 (pp. 985-990). Jun

23, 2014 in Tampere, Finland.

Chapters-4

C6 Pahl, Claus and Mani, Neel and Wang, Ming-Xue (2013) A Domain-Specific

Model for Data Quality Constraints in Service Process Adaptations. In, 3rd

International Workshop on Adaptive Services for the Future Internet (WAS4FI

2013), 11 Sept 2013, Malaga, Spain.

Chapters-2, 4

https://thinkmind.org/download.php?articleid=soft_v9_n34_2016_3
https://thinkmind.org/download.php?articleid=soft_v9_n34_2016_3
https://thinkmind.org/download.php?articleid=soft_v9_n34_2016_3

xiii

LIST OF ABBREVIATIONS

AI Artificial Intelligence

API Application Programming Interface

BNF Backus-Naur form

BP Business Process

BPM Business Process Management

BPMN Business Process Model and Notation

CIM Computation Independent Models

DCT Digital Content Technology

DSC Domain-specific Constraint

DSPL Dynamic Software Product Line

DSPLE Dynamic Software Product Line Engineering

DSR Domain-specific Rule

DSRG Domain-specific Rule Generation

DSRL Domain-specific Rule Language

EBNF Extended Backus-Naur form

ECA Event Condition Action

GPL General Programming Language

DSRG Domain-specific rule generation

HTTP Hypertext Transfer Protocol

IBM International Business Machines Corporation

IEEE Institute of Electrical and Electronics Engineers

ISO International Organization for Standardisation

IT Information Technology

IS Information Systems

MDA Model-driven Architecture

OMG Object Management Group

OWL Web Ontology Language

PC Presence Conditions

PIM Platform Independent Models

PLE Product Line Engineering

PM Platform Models

PSM Platform Specific Models

QoS Quality of Service

xiv

SDF Syntax Definition Formalism

SLR Systematic Literature Review

SOA Service-Oriented Architecture

SPL Software Product Line

SPLE Software Product Line Engineering

UML Unified Modeling Language

V&V Validation and Verification

W3C World Wide Web consortium

WS-BPEL Web Services Business Process Execution Language

WSDL Web Services Description Language

XMI XML Metadata Interchange

XML eXtensible Markup Language

XPATH XML Path Language

xv

ACKNOWLEDGEMENTS

These four years of journey has enriched my life in many ways. Intellectually, it

has added a volume to my knowledge and emotionally, I have met some amazing

persons and have gathered beautiful moments that I would cherish for life. This has

been an opportunity for me, not only to explore a new field of knowledge, but also a

wonderful country with distinguishing cultures.

When it comes to acknowledging the contributions of others in my thesis, I think

the most valuable lesson a researcher learns in the process of research is how kind and

helpful the people are around him. My deepest gratitude goes to my supervisors,

Markus Helfert and Claus Pahl for being the constant source of motivation, support,

knowledge and encouragement from the very beginning till date. Also, I would like

to take this opportunity to thank all my colleagues at Centre for Next Generation

Localization and ADAPT Centre, for supporting me throughout this study.

I was also very lucky to have received valuable input from accomplished

individuals, like, Piyush, Shastri, Eva, and Dimi. Piyush has rendered help from the

very first day and has enriched my understanding of the subject with his valuable

comments, guidance, and encouragement at each phase of this research. Gopal

supported at the initial phase, when I probably needed it most. Shastri, Eva and Dimi

have done a great job by proofreading this thesis. Here goes a BIG thanks to the

members of the Business Informatics Group (BIG).

I consider myself to be a blessed person. Destiny has bestowed upon me a life full

of challenges and has eventually given me the power to conquer each of them,

obtaining valuable lessons and immense knowledge in the process. I cannot thank

enough my family, especially my wife Pallavi and my daughter Visalakhshi. They

have been a constant source of inspiration and encouragement, making it possible for

me to focus on my work, when it also meant defocusing my attention from them. I

consider this accomplishment to be theirs as well. I hope to stand up to their sacrifices

and fill their lives with joy as much as possible. I would also thank my parents for

their unconditional love and support throughout my life.

xvi

ABSTRACT

“A Configuration-based Domain-specific Rule Generation Framework for Process

Model Customization”

Neel Mani

In today’s changing world, there is an ever-increasing demand and need for

software reuse in applications, where the process model needs to be reused in different

applications in a domain-specific environment. The process model is required to adapt

and implement changes promptly at run-time, in response of the end-user

configuration requirements. Furthermore, reusability is emerging strongly as a

necessary underlying capability, particularly for customization of business in a

dynamic environment where end-users can select their requirements to achieve a

specific goal. Such adaptations are in general, performed by non-technical end-users

which can lead to losing a significant number of person-days and which can also open

up possibilities to introduce errors into the system. These scenarios call for - indeed

cry out for - a system with a configurable and customizable business process, operable

by users with limited technical expertise.

Research aims to provide a framework for generating the rule language and

configuring domain constraints. This framework builds upon the core idea of Software

Product Lines Engineering (SPLE) and Model-Driven Architecture (MDA). The

SPLE provides a platform that includes the variability model. Variability models offer

features where end-users can select features and customize possible changes in the

domain template, which is the container for domain and process models. The user

selects their requirements as a feature from feature models and generates rules from

domain models using MDA. Then, the generated rules are translated from a high-level

domain model, based on the requirements of the end-user. On the other hand, the

weaving model is responsible for reflecting activation and de-activation of features of

variabilities in the domain template.

The usability of the proposed framework is evaluated with a user study in the area

of Digital Content Technology. The results demonstrate that usability improvements

can be achieved by using the proposed techniques. The framework can be used to

support semi-automatic configuration that is efficient, effective and satisfactory.

 1

CHAPTER 1

INTRODUCTION

1.1 Motivation

In today’s dynamic and competitive business environment, organizations must

respond rapidly to changes in the way their businesses operate [1, 2]. The competitive

edge of an organization will only remain intact if it can adapt quickly to new

environments and any challenges they present. Such challenges and changes may be

triggered through external entities or internal stakeholders. For example, changes in

customer demands and preferences, or amendments to various laws, require

modification of business strategies. In addition, enterprises face the challenge of the

existence of extensive collections of process schemas [3, 4] (i.e., control flow

description of a process) of the process model. One of the main challenges of the

process model is that have the schema variants have only minor differences between

them. For instance, language-based technologies have a different type of processes, to

translate from one language (source) into another language (target). A new process

model is required for a new language application system that can use a fixed source

language, e.g. English, and can produce output in multiple languages (e.g., German,

French, Mandarin etc.). However, for the type of process model1 used, the process

schema remains the same, only the process model activities may have minor changes

in terms of update actions (move, replace or delete) or insert actions. Nevertheless,

the multi-variants2 approach such as single model and the multi-model create a

variant, by duplicating a process model, and adjusting it to fulfill specific needs. The

single model makes the process difficult to complex to understand.

1 Process model refers to a structural representation, description or diagram, which defines a
specified (data, control, process) flow of activities for a particular organizational and business unit
2 The multi variants scenarios are handled with two approaches, i.e., single-model and multi-model.
The single model captures multiple variants into single approach through conditional branch (IF-
ELSE) and multi-model combined with all variants in multiple processes.

2

Another set of examples is from the Digital Content Technology (DCT) domain

and relates to process customization. For instance, the domain experts may need to

introduce a new data extraction source model, such as document, multimedia or both,

which will be used as an input for a multilingual “machine translation process”

without interrupting an old process model. Since there are certain activities in the

process that are mandatory, and cannot be excluded from the overall process model,

such as the data extraction source (i.e., upload the document or the input text) and its

sub-processes which are working simultaneously without interruption, even if the new

data source is significantly different from old service. Another example of domain

process customization is when a user selects the wrong source for a language, i.e., one

which is not compatible with source text. In this case, they may want to add a language

identifier process before the source data selection.

Nowadays, researchers are focusing on process model customization [3, 5-10].

They provide solutions to customize process models in order to address the problem

of an increasing number of changes in the business requirements. These changes force

the organization to adapt these changes promptly [11-13]. However, the domain

experts are only able to design high-level, functional parts of the process model. The

major limitation of current research is the dependency on General-purpose Languages

(GPL) (e.g., Java, C#, C, C++) because the domain experts often do not possess

sufficient knowledge of high-level GPLs. Therefore, they become dependent on

existing solutions which do not allow them to work independently.

Motivated by the aforementioned problems, this thesis proposes a framework for

non-technical users to generate low-level rules from high-level domain models for

process customization.

1.2 Problem Statement

Process model languages [14-18] provide expressive as well as multiple verification

techniques, (e.g., Petri nets (PNs)) which ensure that processes [19] are reliable in

terms of schema designs. However, the languages can restrict domain experts in the

3

changes they can make, such as task control flow, data flow and work/process

allocation schema. These are the pre-defined execution plans in process model

language. The changes are made at the modeling stage or the design phase, which

results in a rigid process model [19-21]. Due to process model rigidity, it becomes

challenging to customize, adapt and maintain the process. The process model

languages limit flexibility of enterprises [22-24] as they may not be suitable in a

dynamic environment; the nature of organizations is often volatile and processes are

excessively rigid [19-21, 24, 25].

Therefore, enterprises are looking for new configurable solutions. Such solutions

should be domain-specific in order to make the process model dynamically adaptable

in terms of the process execution plan. The configuration solution would also

simultaneously reduce dependency on programming, and consequently software

developers.

As discussed above, the research challenge lies in the rigidity of the process

language and its dependency on GPLs, which limit their usage to technical users. The

purpose of this research is to develop an extended version of rule language and

Domain-specific language (DSL) to overcome GPL limitations [26-29]. The DSLs are

tailored language for a particular domain or application [28].

1.3 Research Questions and Objectives

The critical problems discussed in the motivation and problem statement section lead

to addressing the following research question:

How to develop an end-user usable framework to generate and configure a domain-

specific rule (DSR) to customize process model dynamically?

The primary research question can be further subdivided into three sub-questions:

RQ 1. How to develop a rule generation and configuration framework to customize

the process model dynamically?

4

The aim of this research question is to develop a framework in a dynamic

environment, where the process model can be adapted by the end-users, with the

dynamic generation of the rules and configuration of the domain. The design time

customizations, required by single (multiple conditions applied- IF-ELSE) and multi-

model (multiple time use) variant [3] are complex, difficult to understand and time-

consuming for technical people. This compels a research goal, of a framework for

handling the configuration and customization challenges of process models at run-

time.

RQ 2. How to implement a framework to support a domain-specific rule language that

is usable by non-technical domain experts?

The main goal of this research question is to define a rule language, which can help a

non-technical user3 configure the values of domain constraint parameters. However,

it should be noted that the definition of rule language and configuration of domain

constraint parameters, as discussed above, is complex and time consuming; even for

technical experts at design time. As already discussed in RQ1, this is a challenge for

the end-users, as they require technical expertise to configure domain constraints and

customize the process model. This question allows us to develop a framework for

implementing configuration and customization which can be used conveniently by

non-technical end-users.

RQ 3. How can a framework be implemented that meets end-users usability

requirements?

The primary aim of this research question is to develop a validating strategy for a

framework that meets the usability criteria. Manual configuration and customization

are complex and error-prone, as well as time consuming at run-time. This question

prompts us to evaluate the usability of a prototype framework in terms of efficiency,

effectiveness, and satisfaction.

3 The user does not have software development skill, but they have expertise of process model and
domain knowledge.

5

Consequently, a solution is developed for evaluating the usability of the

framework and this usability evaluation can be defined by three main hypotheses.

• Evaluation Hypothesis 1- Measuring Run-time configuration efficiency: The

approach of generating rule configurations can be compared with manual and

semi-automatic configuration at the time of configuring the domain parametric

constraints. The end-user must configure the generated rule in a time efficient

way. Therefore, to ensure this approach, manual configuration must be

compared to semi-automatic configuration with respect to the time taken for

the end-user to complete the tasks. A semi-automatic approach is more

efficient than manual rule configuration.

• Evaluation Hypothesis 2- Measuring Run-time configuration effectiveness:

Semi-automatic approach is more effective in terms of preventing errors and

improving qualities of rule configuration; the application of this approach

includes customization and configuration.

• Evaluation Hypothesis 3- Satisfaction evaluation: The framework promotes

a high-level of satisfaction to the end-user, as subjective scores show. Such

scores are computed to incorporate different scales of end-user satisfaction.

This is achieved with the inclusion of varying levels of questions to

comprehend the satisfaction in terms of these scores, evaluated under the

System Usability Score (SUS) [30].

These hypotheses fulfill usability criteria in general and specifically for the

problems considered in this thesis. However, they do not explicitly encompass the

entire spectrum of such criteria and therefore may take marginally different forms,

depending on the problem under consideration. Fulfillment of these hypotheses is a

challenging yet key task for validation of the solution, and therefore the research

methodology itself.

A framework is proposed that allows a non-technical domain expert to customize

the process model without knowledge of a technical (development and deployment)

6

language. The framework addresses two challenges. The first consists of high-level,

domain model knowledge transfer from a domain concept to a low-level rule

language. The second challenge faced is the configuration of DSR in the process

model languages. A domain-specific approach offers a dedicated solution for a

defined set of problems. To address these challenges in relation to the three sub-

research questions, the specific objectives of this research are formulated:

• To develop a framework which allows non-technical domain users to

customize and configure the process model.

• To develop a Domain-specific Rule Generation (DSRG) prototype by using

variability management.

• To define a domain-specific rule language based on the principle of DSL.

• To perform automated rule generation, configuration, and process model

customization.

• To validate the framework based on scientifically established hypotheses.

This thesis facilitates the end-user to generate rules from a domain model to

customize and configure the process model in a dynamic environment. It proposes a

framework for rule generation which supports the domain-specific process model and

its scope and implementation in the Digital Content Technology (DCT) area. The aim

is to automatically generate the domain-specific rules (DSR) after the end-user selects

the features, and configures and customizes the process model. The framework is

expected to support the domain-specific process constraint management.

Furthermore, we define a Domain-specific Rule Language (DSRL) for the domain-

specific environment.

7

1.4 Research Contributions

The main contributions of this research are to propose a viable framework prototype,

where (1) a non-technical domain expert can generate low-level rules from a high-

level domain model, and (2) a DSR is generated to customize and configure the

process model in a domain-specific environment. The DSR generation enhances the

efficiency of development and customization of the business process applications.

This opens an avenue to minimize the work of the domain experts so that they can

focus on high-level design problems, while simultaneously meeting goals of the

desired domain application. This can be achieved by selecting features from a feature

model which bridges the gap between a domain model (ontology) and DSR. The

feature model streamlines the end-user requirements to achieve the desired target

process model. It acts as a bridge, capturing the requirements of the target process

model (i.e. customizing the process model and generating the DSR) based on these

requirements. Following are the major contributions of the thesis:

1. A domain-specific rule generation (DSRG) framework for translating a set of

rules from high-level models (domain models) on an ad-hoc basis.

2. Defining a Domain-specific Rule Language (DSRL) to translate a high-level

graphical domain model into a low-level text model.

3. Implementing the model-driven approach for generating or translating a set of

domain-specific rules.

4. Applying controlled variability management to process model customization.

This framework structures the components of the feature model to enable end-

users in selecting their requirements, and customizing the domain template.

5. Finally, a comprehensive empirical study of efficient, effective, and

satisfactory usability criteria has been completed for evaluating and validating

the framework by the end-user experience.

We develop a framework in which a non-technical user can generate rules to

customize and configure the process model. The rule generation helps to configure

the constraint to solve a domain-specific problem. We intend to minimize the

development efforts by avoiding the need to: (i) write programming syntax, (ii)

8

compile, (iii) customize, and (iv) redeploy, by introducing automated rule generation,

and configuration-based processes for non-technical domain experts. The research is

aimed at increasing the efficiency and effectiveness of a configured rule. The

generated rule, intended for enterprise software applications, can drastically reduce

the development, testing and debugging time.

This research develops a systematic DSR generation framework, which could

assist domain users focus on high-level modeling and understanding of the more

abstract domain problems rather than focusing on low-level rules, executable

programs, and programming code. This research is a feature based solution and

additionally borrows a customization solution from product line engineering [31-33]

and, has generated a new rule language as a DSRL coming from a model-driven

approach.

Figure 1.1: An Overview of the Thesis Organization

9

1.5 Thesis Outline

The structure of the thesis is illustrated in Figure 1.1. An overview of the contribution

of each chapter is provided, followed by a summary of the objectives and the

envisaged outcome for each chapter:

Chapter 2 - Background and Literature Review: This chapter covers the main

concepts and various features of the approaches, providing a basic background and

understanding of the overall thesis. Specifically, the chapter discusses Model-driven

Development and Software Product Lines. State of the art analysis is presented,

providing the most recent and relevant approaches that have been proposed to achieve

process model customization.

Chapter 3 - Research Methodology: This chapter covers the design science research

methodology on which the research objectives have been defined and validated.

Various approaches and processes are investigated based on the DSR generation

artifact and their development. As a follow-up, the design science approach and its

components are explained. Furthermore, this chapter also describes how the artifact

is designed and built; based on the literature review of Chapter 2 and in in tandem to

select the appropriate research methodology.

Chapter 4 - Framework and Overall Approach: This chapter introduces the proposed

approach to development of software reuse systems with variability models at run-

time. This overview covers the key components of the framework and briefly

describes each process and how to apply it in our research. This chapter also clarifies

how the approach has been evaluated using the case study of a Digital Content

Technology.

Chapter 5 - Model-Driven Design Approach at Design Time: This chapter discusses

how the knowledge captured in variability models is used to provide autonomic

behavior during rule generation. The chapter also outlines the efficiency of the MDD

approach and conducts a thorough analysis of variability models.

10

Chapter 6 - Rule Language Definition: This chapter illustrates the structure of rule

language in terms of abstract and concrete syntax with language descriptions of the

DSR. It also describes the DSR and its depiction in Event Condition Action (ECA)

Language. Additionally, we present the ECA model and rules in XML format.

Chapter 7 - Domain-specific Rule Generation: This chapter describes a Model-driven

Architecture (MDA) approach to prepare conceptualization of DSR generation. An

overview that covers all the meta-levels of MDA with a model of text translations is

also presented. In addition, the implementation of rule generation from a high-level

model is explained.

Chapter 8 - Process Model Customization at Run-time: This chapter presents the

mechanisms for customization of a process model in the DCT domain. The domain

templates created at domain engineering in SPLE (design time) are used to manage

the domain template components to activate and de-activate on feature events

triggered by the end-user (run-time).

Chapter 9 - Evaluation and Validation of the Artifact: Experimental work is

evaluated to test and validate the domain-specific rules. This chapter evaluates and

demonstrates the proposed research and its usability at run-time configurations. The

framework is evaluated in terms of effectiveness, efficiency, and satisfaction based on

both the statistical and the system usability score evaluation.

Chapter 10 - Conclusions and Future Works: This chapter presents the main

contributions, results, limitations and future work.

11

CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

This chapter presents definitions of key terms and concepts, and a discussion of related

research. Section 2.1 discusses software product line engineering (SPLE), Section 2.2

focuses on variability management, Section 2.3 describes feature models and their

components and Section 2.4 presents rule language. In Section 2.5, current approach

and limitations of the customization and configuration business process model are

discussed. Furthermore, Section 2.6 is a critical discussion of the literature review of

process model customization and where gaps in research are identified. Finally,

Section 2.7 summarizes the chapter.

2.1 Software Product Line Engineering

In the highly competitive business environment, it is important to understand the

domain knowledge, rapidly adapt changes and systematic implement of reuse [34].

The systematic reuse uses to build a new system from old single-family system. The

systematic reuse is core assets of mass-production environments that use the SPL. The

SPL is easy to use a variable development of software paradigms. The SPLE support

mass customization with improvements in time to the market quality of production,

productivity, the satisfaction of the customer, cost schedule [35].

“A SPL is a set of software-intensive systems sharing a

common, managed set of features that satisfy the specific

needs of a particular market segment or mission and that

are developed from a common set of core assets in a

prescribed way” [35].

The SPLE is the foundation for this proposed research that provides a platform (in

Figure 2.1) for customizing the models and configuring of the rule generation of

process model customization, in the current approach. The SPLE helps to adapt the

product and fulfill the customer needs as well as enormous reductions in time-to-

market, the production costs and engineering overhead. The principal objective of

12

SPLE is to design and develop inherent features with in variety of systems. This

section also discusses three SPLE basic components: Domain Engineering, Core

Asset, and Application Engineering. It consists of two components: system input and

system process.

The system input defines who is using the framework. There are two different

type of users: Domain Expert and Domain User (end-user). Domain Expert provides

domain and process model as a template, and Domain User selects features of the

process model as system input based on his needs.

This section explains the conceptual view of the research. We discuss the

background and existing platform of the proposed approach. This section covers the

relevant area such as, the SPLE, how the SPLE outlines the problem solution in the

framework including the rule language and how it works in the framework.

Figure 2.1: Framework for SPLE: Problem and Solution Space [36]

The goal of Software Product Lines Engineering (SPLE) is developing a set of

software components and systems with similar characteristics and catering to the

requirement of the domain through the management of specific features [37]. SPLE

effectively turns down the development cost and market time of the software,

13

enhances and overall quality of the engineering by reusing assets strategically within

the domain. It uses adopted techniques to manage reusability with commonality and

variability model that effectively categorizes the common assets and their

variabilities.

The software product line (SPL) framework has two spaces and phase (see Figure

2.1): (i) the Problem Space describes the problem description, the type of

applications, or an individual application in the category; (ii) Solution Space for

providing the software components to solve that problem; iii) Domain engineering

phase may be defined as a formally represented platform in which the development

and the implementation of products take place. In SPLE, the variability modeling

technique is known as “Feature Models” which are used to show the variability in

hierarchical manner that differentiates or simplifies the features in the hierarchy of

products belonging to the software family. A feature may be conceived as a logical

unit, having requirements; both functional (what the system should do) and non-

functional (how the system works, should behave and quality attributes) [36, 38]. iv)

Application engineering phase derives the requirements of the target application by

analyzing the needs of the consumer. Through the use of the variability model in the

configuration process, a concrete product is derived and served it up to the consumers.

2.1.1 Domain Engineering

Domain engineering is described as a process of SPLE, which establishes reusability

platform and defines the commonality and variability of a product line [39]. The

Domain engineering phase accumulates all the data available related to a specific

domain to develop reusable software assets. In this phase, a domain expert is deployed

to find out the commonalities and the variabilities existing between the members of a

product family SPL, utilized to design reference architecture of SPL [40]. All those

family components, which are common and reusable artifacts, are thus encompassed

in the reference architecture (components, test cases, requirements, etc.). The product

variability (such as mandatory, optional, alternative, etc.) and the configuration

14

process is included in the architecture. The configuration step of the different process

is formally contained in the production plan. The assets which would be used for

making software products are kept in the baseline. The baseline refers to a specialized

database which contains software assets and enables their recovery and maintenance.

The important purpose of a baseline is to make the core assets available whenever

they are required for creating all software artifact requirements such as design, test,

realization, etc. and track-able links between these artifacts, thus making systematic

and consistent reuse possible [41].

2.1.1.1 Domain Analysis

The method analyzes, identifies and represents commonalities between related

domains, which may be reused in other software systems of the same domain [42].

The method aims at categorizing the thought processes employed in designing and

developing a software system in a specific domain through capturing the wisdom and

experiences of experts. Along with software reuse elements, domain analysis also

facilitates communication, training, tool development, the software specifications and

design through utilization of domain expertise. The outcome of domain analysis is the

domain model. However, inconsistencies exist in the literature regarding the process

and artifacts of the domain model. Domain analysis aims at identifying the common

elements of a product family so that the main component or ingredients of domain

models can be expressed as follows [37]:

• Domain scope (domain definition, context analysis) – find the boundary

of domain

• Commonality analysis – identifies the application’s commonalities and

variabilities

• Domain dictionary (domain lexicon) - defines the terms, vocabulary, and

keyword of the domain

15

• Notations (concept modeling, concept representation)- express a uniform

way to represent the concepts used in domain modelling (object diagrams,

state-transition diagrams, entity-relationship diagrams, and data-flow

diagrams)

• Requirements engineering (feature modeling) – consists of defining,

gathering, documenting, verifying, and managing the need of applications

that are stated in the particular domain

2.1.1.2 Domain Implementation

This includes the implementing tools, components and architecture designed in earlier

phase. It may include the document preparation and implementing generators and

languages that are typical of a particular domain. Domain engineering aims at

producing assets which can be reused and implemented in this phase. Hence, the

outcome of domain engineering phase consists of components, feature models,

analysis and design models, frameworks, production plans, architecture, domain

specific language and generators [42].

Core asset development - The core assets refer to the reusable building blocks that

are designed and implemented in this phase. Along with functionality of the domain,

it also defines the process of extension of the core assets [40].

Production Plan- As mentioned earlier, production plan describes how the individual

products are to be assembled through the use of core assets.

2.1.2 Application Engineering

This phrase refers to a specific SPLE process that tries to reuse domain assets and

explore variabilities and commonalities to define and creating a product line

application [43]. In order to develop SPL products, reference architecture acts as a

reference model. The baseline meets the need for assets in a new product. There are

16

two core activities in: (i) configuration of particular products within limits of valid

variation points (referred ad product) (ii) Developing product line members through

the use of existing domain assets (product derivation).

Product Configuration- This is the process of selection and deselection of the

variability of valid combination that was established in the process of domain

engineering. This selection is referred to as “binding time of variability” [41].

Product Derivation- This is a concrete process of building the SPL application,

which may either be done automatically or manually. Product configuration acts as a

primary input and the artifacts involved can be traced through the domain engineering

process.

Product characterization- The characteristic feature of the product selected.

Product synthesis- Query is made to the baseline, and required core assets are

retrieved therein from developing desired products.

Product construction- Following the production plan, the required core assets are

processed as per the proper specification mentioned in the product plans regarding the

particular task to be carried out (compilation, code generation, program execution,

etc.).

2.1.3 Problem Space and Solution Space

The contrasting term problem and solution highlights the sharp distinction between

the systems and their application domain [44]. Several terms are in used to reference

these: “problem model” and “solution model”; “problem domain” and “solution

domain”; “problem space” and “solution space”; “problem analysis”; and “solution

design”.

17

The distinction between problem and solution spaces are illustrated below with

respect to a number of paradigms, and the two spaces are separated at the time of

software development (for instance SPL) (see Figure 2.1).

The abstraction specific to a particular domain is primarily contained in the

problem space which illustrates the software requirement and with their intended

behavior. For example, problem space is involved in domain analysis, and its

outcomes are recorded as features. The solution space, on the other hand, contains

abstractions that are implementation-related, like code artifacts. Abstractions in

solution space, are employed in numerous programming languages, spanning from

assembly language to object-oriented language which facilitates the programmer in

organizing structural as well as behavioral information making up the software.

There exists a mapping among problem space elements with the solution space

elements, which identify the feature to which a particular implementation artifact

belongs. Mapping may come with different levels of complexities, ranging from

simple implicit one to complex rules of generators. The form and complexity depend

on the level of automation and implementation approach [45].

A simplified prototype of a framework has been depicted in Figure 2.1. There

exists a chain in the mapping between the problem space and solution space. Two or

more could be mapped down to one (or more) solution space (a common phenomenon

where representations of different aspects of a system are made). A problem space

may be implemented into multiple solution spaces through mapping [45].

2.2 Variability Management

The variations between products in SPL is called variability. It sets off as a proper

variability management where many items can be distributed from a set of reusable

assets. Pohl et al. [39] explains the concept of variability subjects and objects for

describing the variability. Variability subjects are variability features or practical

world items which do vary. In software product line engineering, variation points and

18

variants are mostly used to denote variability subjects and objects. A variability point

defines a variability subject like application usually gives a particular kind of user

interface. A variant expresses a single option for a variation point. As an example, for

“Machine Translation”: Data Extraction Source is a variability subject and the ways

of the source like file, text, multimedia and web URL as a variant.

Variability in software product line can be divided in two dimensions: space (e.g.,

software artifacts) and time (i.e., software artifacts changing over time) [39].

Variability may be of different types: functional variability which refers to a certain

function appears in certain products but not in others; non-functional variability that

takes place when products have same kind of functionality, differing only in quality;

and data and control flow variability that occurs when certain patterns of interaction

or data vary between products.

As per the domain problem, product line variability and commonality may be

adopted for problem space as well as solution space in many ways depending on

perspectives [45, 46]. Domain concepts defining the proposed software requirements

can be found at problem space along with stakeholders’ focus, quality parameters, the

objectives of application programmers and so on. High level of functional and

operational abstraction and product line quality requirements are used for expressing

the objectives or goals. Depending on context, the functionalities and qualities vary

among themselves.

Variability abstractions derived from variability model are called features, which

are realized at the time of creating the artifact, where mapping exists between features

and artifacts. Since variability occurs in multiple artifacts involving several levels of

abstractions as well as variation point can get released through multiple variation

points spread at multiple elements. Therefore, problem space (features, requirements

etc.) and solution space (through artifact space) elements are mapped with information

on implementation artifact and their core requirements. Plausible relationships that

the mapping can have vary from one-to-one to many-to-many, including one-to-many.

According to the level of automation as well as the method of implementation,

19

mapping may take several forms or it may be a simple implicit one, depending on

naming conventions or complex rules [45, 47]. Therefore, tractability between

requirement and implementation, feature configuration, and product derivation [47-

50] is possible in mapping models.

Kang et al. [20] explains three important dimensions of variability modeling: (i)

usage in multiple context, by different market segments as well as by stakeholders

with different objectives (ii) multiple objectives or usage contexts might require

several quality features or functionalities (iii) same functionalities can vary in method

of implementation that explains quality properties. The focus of Variability modeling

lies with managing and modeling variability space through such dimensions.

2.2.1 Variability Modeling

Multiple modeling and domain analysis approaches exist (as mentioned in Section

2.1.1.1) among which Feature-Oriented Domain Analysis (FODA) [37] is considered

to be the baseline for variability modeling. FODA emphasizes identifying the unique

features of software systems. Here, “feature” is considered to be a distinctive or

prominent user-visible aspect, quality or characteristic of a software system or

systems for the purpose of abstracting away functionalities and concepts effectively

in different levels, support communications between multiple stakeholders of a

product line, as well as achieving maximum reusability. The feature model analysis

process involves the following activities: (1) collecting and identifying features

source; (2) abstracting and classifying the identified features in a feature model; (3)

defining the features; and (4) validating the model [37]. Being a component of domain

analysis, FODA brings up feature modeling, a conceptual modeling technique, for

identifying as well as representing common and variant features, expressing relations

among features and properties of features, and providing expression of the permissible

configurations of features in a given domain.

FODA serves as the basis for development and extension of several

methodologies like ODM [51], FORM [52], FeatuRSEB [53], PLUSS [54],

20

Generative Programming [45] and GP-Extended [55]. Much effort has been directed

towards presenting the diverse viewpoints as well as extending feature modeling.

Example of these extensions are structure, binding, configuration, operational

dependency, and traceability perspectives [46].

 Several variability modeling approaches have been proposed and developed to

support the variability management and product derivation [56, 57], e.g., cardinality-

based feature modeling [58, 59], Orthogonal Variability Modeling (OVM) [39],

COVAMOF [60], CONSUL / Pure:: Variants [61]. General Variability Modeling

techniques are discussed in [57, 62].

2.3 Feature Model

Feature models can be defined as a graphical representation of commonalities and

variabilities between products of SPL. This is a hierarchical organization of features

within the framework of models. They illustrate a set of relationships among parent

features and child features. A feature may have one of these relationships with its

children: - mandatory (representing shared design), OR optional relationships with

different kinds of groups. Another common form is a cross-tree relationship which

illustrates inclusion or exclusion constraints.

Variable points are associated with a number of different feature models. Hence

families of the domain model and process model may be described as compositions

of feature models. A compositional technique gives provision for reasoning about

compatibility among connected models to ensure congruency of the whole model

template, as well as facilitating automatic propagation of variability choices whereas

feature model selects the feature.

Notwithstanding, there are several other extensions and variants available in the

different literature, we now choose to move on to the most important proposals

relevant to this study.

21

FORM Feature Model [52] brings up a different analysis viewpoint of

commonality among applications in a particular domain with respect to services,

operating environments, domain technologies and implementation techniques.

FeatuRSEB Feature Model [53] is domain analysis process, an extended part of

RSEB process. RSEB models include variability and aspects of domain engineering.

A combination of RSEB and standard FODA process models, the FeatureRSED is

simpler than FODA, with its focus lying on feature orientation of domain engineering.

These feature models serve as a convenient index for commonality and variability

present in use case and object models, simplifying the task for the reuse: (i) Using

notational change: alternative features variation point feature and variant features; (ii)

Introducing constraint (e.g., require) notation; (iii) Introducing binding time notation:

reuse-time and use-time binding.

Van Gurp et al. Feature Model [63] is an external features framework that comes

up with notions related to variability. The framework of terminology provides three

recurring patterns of variability tools for detailing variability with respect to

variability point and variants in a software system. This feature model is refining the

relationship of generalization/specialization to OR-specialization and XOR-

specialization relationships of variability in recurring patterns and this generalizes

binding time notation: compile-time, link-time, and run-time binding.

PLUSS Feature Model (Product Line Use case modeling for Systems and

Software engineering) [54] is an industrial case study to be applied and evaluated in

the specific target domain which is based on data of case study that helps to determine

the performs of PLUS with other models. The whole process is following the

guidelines given by IBM - Rational Unified Process (RUP). The RUP provides: (i)

Using rational changes with alternative features in a group in single and multiple

adaptors; (ii) Providing constraint notation.

Hein et al. Feature Model [64] may be considered from the initial experimental

results run by Bosch. The experiment has been applied on car periphery supervision

(CPS) domain with its vision on the practicality of variability modeling with feature

22

oriented domain analysis (FODA). The experiment also enlightens us on FODA

model not facilitating with required expressiveness for different kinds of cross links

in a specific domain. This provides UML-based modeling language and introducing

secondary structure for constraint (e.g., require) dependencies.

Generative Programming (GP) Feature Model [45] - Redefining the alternative

relationship to XOR and OR relationships

Riebisch et al. Feature Model [65] – The existing feature models fall short of

providing support to a complete description of the semantics of relationships and

dependencies between features. They come up with new concepts of feature diagrams

enabling a multiplicity of features sets. The annotation of the multiplicity of feature

subsets is realized in BNF, which is accepted by developers, who are aware of the

UML.

GP-Extended Feature Model [55] – Bringing up the notion of feature modeling

notation, detailing a domain-independent system configuration editor, describing tool

support for feature modeling and taking out the applications of a static configuration

in the field of embedded systems.

2.3.1 Feature Description

A language feature model includes both the aspects of software family members like

commonalities and variabilities and along with it, it also identifies and showcases the

dependencies between variable features. The feature diagram is a core element of the

language feature model, which graphically represents dependencies between a

variable feature and its components.

The presence of mandatory features in a concept instance may be inferred from

its presence at the core. Optional features may be present if their parent is present.

Alternative features is a set of features from which one is present if their parent is

present. Groups of features and a set of features are a subset which are present in their

23

parent. Mutex and Requires are relationships that can only exist between features.

Requires means that when we select a feature, the required featured must be selected

too. The mutex operator means that once we choose a feature, the other feature must

be excluded (mutual exclusion).

A DSL feature model can cover languages, transformation, tooling, and process

aspects of DSLs. The feature model diagram specification starts with a method like

the Feature Oriented Domain Analysis (FODA) [37] method. All configurations

(called instances) of a software system are represented by them, focusing on the

features that may differ in each of the configurations [66]. The notation of model

features diagrams is now described. The FDL (Feature Diagram Language) is a feature

definition notation for DSLs.

2.3.1.1 Feature Description for Content Processing

The Feature Description Language (FDL) [67] may be described as a textual language

to define features of a particular domain. It supports automated normalization of

feature descriptions, variability computation, expansion to disjunctive normal form,

and constraint satisfaction. Here, it has been applied to digital content processing. The

foundation is a domain ontology called GLOBIC4 (global intelligent content).

GLOBIC elements are prefixed by ‘gic’. Feature diagrams are a graphical notation of

the FODA method. They are used for capturing structuring, communicating,

documenting and annotating the features of applications in specific domains as well

as a tool for describing the properties of applications from an end-user perspective.

This is the first step in a systematic development of a Domain-Specific Rule Language

(DSRL) for GLOBIC-based DCT processing use case (Figure 4.3).

4 GLOBIC having been developed for the ADAPT centre and used here as a real-world use case

24

2.3.2 Core Asset Development

Core assets (also called platform) include many aspects of software development

including reusable software components, requirements analysis, architecture,

performance and analysis, testing (test case, test plans, test suits, etc.) and

documentation. The development process of core assets follows an iterative process

or waterfall model. Core asset development makes use of product constraints,

architecture style, pattern and framework, production constraints, production strategy,

and pre-existing assets which are discussed in the following sections. The results of

core development are the product line scope, the core assets, and the production plan.

Product constraints describe the commonalities and variabilities among the

products in the product line regarding the action of features, standards observed,

performance limit, interface and environment constraints, quality, and security

constraints. Architecture style, pattern, and framework that influence the development

of core assets are described. The architecture may have a design constraint as to the

way its components interact. Patterns and framework force the development paradigm

on developing the core assets. Production constraints specify what commercial,

military, or company standards apply to the products, its infrastructure on which the

products must be built if any, from which legacy and off-the-shell components could

be reused. Production constraints may adversely impact the core asset development.

2.3.3 Product Development

The second activity in SPL is product development (also called application

engineering) which is the process, from which the products are created using the

developed core assets. This process may affect the core asset development, for

example, a product may require or introduce new core assets. Producing a new product

that has an unexpected commonality with another product may lead to creating a core

asset that can be shared with future products. Product development makes use of the

output from core asset development: product line scope, requirements, core assets and

production plan. The product line scope determines whether the product under

25

consideration can be included in the product line or not. This is also referred to as

product space. The production plan describes how the product needs to be built from

the core assets. The ultimate goal of product development is generating product spaces

that accommodate the core assets.

2.3.4 Feature Model Variability

Recently, researchers have started applying product line concepts in service-oriented

computing [5, 6, 68, 69]. We focus on approaches that used the SPL technique for

process model configuration. There are several approaches for process based

variability services, which enable reuse and management of variability and also

support the Business Processes [70, 71]. Chang-ai Sun [71] has proposed an extended

version of a COVAMOF framework, based on UML profile for variability modeling

and management in a web service based system of software product families. PESOA

[72] is a unique variability mechanism, which is represented in UML (activity diagram

and state machines) and BPMN for a basic process model with non-functional

characteristics, like maintenance of the correctness of syntactical process. Mietzner et

al. [73] propose a variability descriptor that can be used to mark variability in the

process layer and related artifacts of a SaaS application. The SaaS application

template provides to customize processes. In this approach, the customization

processes are significantly and less robustly in their applications.

2.4 Rules Language

Rules can be classified into three types: deductive or derivation rules, reactive rules

or active rules, and normative rules or integrity rules [74]. Deductive rules allow

deriving knowledge for rule engines in both directions, allowing forward and

backward reasoning. Normative rules check constraints and any obligations in data or

business logic to maintain consistency in databases or knowledge bases. Reactive

26

rules are used for rule-based programming applications, which are responsible for

updating the databases or knowledge systems.

Reaction RuleML is a standardized rule markup/serialization language. It has

semantic interchange format for reaction rules and rule-based event processing [75].

It has been developed for reaction rules where most parts evolve separately and define

their domain and platform specific language. Reactive rules are further subdivided

into five sub-rule types: Derivation Rule (if-then), KR Rule (if-then or on-if-do),

Production Rule (if-do), ECA Rule (on-if-do) and CEP Rule (arbitrary combination

of on, if, do).

• ECA Rule (ON-IF-DO) - Event, Condition, Action, - (event or action algebra

operators)

• Derivation Rule (IF-THEN) - Spatial, Time, Situation, Interval (plus algebra

operators)

• Production Rule (IF-DO) - Assert, Retract, Update, Action

• KR Rule (IF-THEN or ON-IF-DO) - Initiates, Fluent, Happens, Holds,

Terminates

• CEP Rule (arbitrary combination of ON, IF, DO) - Message, Send, Receive

As the nature of the business is volatile, we require a rule language, which is more

than or extended ECA rule to improve the process model in terms of flexibility and

verification. For XML, there exist a some more ECA rule languages. However,

research studies do not focus on analyzing the behavior of the rule. It may be noted

that based on the SQL3 triggers standard [76], Active XQuery [77] is one of the ECA

rule languages for XML. This language allows full XPath in parts of the rules, and

full XQuery in the condition and action parts and hence may be considered as

somewhat more complicated than our ECA rules. However, in the present study, it is

excluded from careful analysis as described next. It differs from our language in terms

of rule execution model. In our language, inserting, or updating, or deleting XML

27

fragments is treated as atomic updates with the corresponding process model

activities.

In order to share rules among ECA rule processing systems of different types,

ARML [78] came up with an XML-based rule description. It differs from an Active

XQuery as well as the language descriptions that are made in the current research. The

definitions of actions and conditions are abstract like XML-RPC method. Similar

functionality is provided by Active XML [79] like XML ECA rules by embedding

calls to web services via special tags, striving to integrate distributed data and

distributed computations done in P2P architectures.

Most of the prominent relational DBMS and limited XML repository vendors now

support triggers on XML data. However, it confirms within document-level trigger

with insert, deletes or update of an XML document. Moreover, XML documents may

be decomposed in relational DBMS as sets of relational tables, which allows

developers to exploit existing relational triggering functionality for defining fine-grain

triggers over XML data structures.

2.5 Process Model Customization and Configuration

This section covered a literature review which examines the studies of the current

approach and limitations to allow to consider proposed approaches through design

science and applied systematic literature review (SLR) in Section 3.3.1 regarding

customization process mode including process model customization and

configuration in SPL contexts. The primary research areas are described in the

following sections. The research subareas described are: process model customization

(Section 2.5.1), process modeling languages and adaptation (Section 2.5.2),

configuration of process model, and rule template (Section 2.5.3) and Business

Process Modeling and Configuration (Section 2.5.4).

28

2.5.1 Process Model Customization

The concept of variability descriptor for modeling variation points in the process layer

of a service-oriented application was proposed by Mietzner and Leymann [73] The

process models are represented through BPEL in this approach. Also, here process

model configuration is done based on inputs from a customer for variation points.

Further, the customization is validated in terms of variability constraints defined in

the feature models. For the purpose of modeling variability and transferring feature

model into BPEL process models, an eclipse plug-in is created.

In business processes, requirements of centralized design protocol with

decentralized execution plan may occur, keeping the design part intact. RosettaNet

PIPs [80] for this purpose developed a BPEL solution. It consists of a three-level

approach to describe the protocols of templating in case of high-level patterns,

specialization, in case of certain protocols, and implementation in case of certain

protocol realizations.

The model families of business process models as a variant-rich business process

model. The family is configured through direct selection of business process elements

of variant-rich processes. To support this, the extension of BPMN has been created

by Schnieders et al. [81] with concepts for modeling variation. Consumer knowledge

of business process modeling is essential for this.

Boffoli et al.[82] and La Rosa et al. [83] [84] is used different techniques for

explaining differentiate between business process models and variability models.

While La Rosa et al. provide variability by questionnaires, Boffoli et al. model use

variability table for problem space. While these researchers aim at obtaining valid

configuration, we strive to establish that every valid feature configuration has a valid

process model which ensures well-formed constraints.

During the literature review process, primary research in the field of

customization of the process model are discussed. Table A1 (Appendix A) shows the

research that has been studied in recent years. It compares processes and outcomes

29

from a number of studies regarding different techniques in the field of process model

customizations.

2.5.2 Process Modeling Languages and Challenges

In this section, we present the process modeling language and adaptation through

language level. Process modeling languages [14-16, 18, 85], providing expressively

various verification techniques (e.g., Petri nets, PNs) thus ensuring processes [19] that

are reliable in terms of schemas. However, the languages restrict domain experts to

make changes such as defining the process execution plan explicitly as pre-defined:

task control flow, data flow, and work/process allocation schema. The changes reflect

at the modeling stage or design phase, which make the process model rigid [19-21].

Due to process model rigidness, it becomes challenging to customize, adapt and

maintain the process. These languages limit the flexibility of enterprises [22-24] and

suitability for the dynamic environment. As the nature of organizations is volatile

(policies of business) and processes are often excessively rigid [19-21, 24, 25],

enterprises are looking for a new configurable language solution. They can enable

domain-specific solutions to make process model more dynamically adaptable in

terms of the process execution plan, reducing the dependency on programming, and

software developers. Table 2.1 gives a comparison overview of these processes and

modeling languages in different criteria or features.

A process modeling language has its own syntax and semantics for defining and

specifying business process needs and its service composition correctly. Several graph

and rule-based languages have emerged for business process modeling and

development, which rely on these formal backgrounds, for example, Business Process

Modeling Notation (BPMN) [86], Yet Another Work flow Language (YAWL) [87],

Business Process Execution Language (BPEL)/WS-BPEL, UML Activity Diagram

Extensions [88], Event-Driven Process Chains (EPC) [89], WebSphere FlowMark

Definition Language (FDL) [90], XML Process Definition Language (XPDL) [91],

Java BPM Process Definition Language (jPDL) [92], and Integration Definition for

30

Table 2.1: Literature Comparison of Process Modeling Languages

Language

Feature Descriptions

S
y
n

ta
ct

ic
 C

o
rr

ec
ti

o
n

S
em

a
n

ti
c

C
o
rr

ec
ti

o
n

L
a
n

g
u

a
g
e

In
d

ep
en

d
en

t

C
o
n

tr
o
l

F
lo

w

O
b

je
ct

 F
lo

w

Event-Driven

Process Chains

(EPC) [89]

 + - - + -

UML Activity

Diagram

Extensions [88]

• Control-flow

• Action nodes and control nodes.

• Object-flow

• Activities to denote inputs and

outputs

• Signal sending and receiving at

the conceptual level

• Waiting states and processing

states

• Handling activity interruption by

decomposition

- - - + +

BPMN [86] control-flow of a BPMN process

means of tasks, representing

activities, and gateways, representing

splits and joins (like EPCs- OR, XOR

and AND)

Associations of

data objects with tasks to denote input

and output artifacts (UML AD)

- - + + -

BPEL/ WS-BPEL

[97]

Extends imperative programming

languages (e.g. C) with constructs for

the implementation of Web Services.

 + -

Yet Another Work

Language (YAWL)

[87]

• Hierarchical structure of tasks

corresponding to atomic or

composite work items, and

conditions, to explicitly

• Represent the notion of state

• Multiple instance tasks, control-

flow semantics and advance

features.

• Global variables to capture the

data-flow

+ + + -

XML Process

Definition

Language (XPDL)

[91]

Structural

representation of a process and the

semantics of its execution

31

Function Modeling (IDEF3) [93]. These languages focus on the different level of

abstraction, ranging from business to technical levels and have their own weaknesses

and strengths for business process modeling and execution. Mili et al. [94] survey the

significant business process modeling languages and provide a brief comparison of

the languages, as well as the guidelines to select such a language. Recker et al. [48]

present an overview of different business-process modeling techniques. Among the

existing languages, BPMN and BPEL are widely accepted as de facto standards for

business process design and execution respectively.

Analyzing and combining literature on the dynamic adaptation of process model

customisation and configuration facilitated in implementing variability constructs at

the language levels. For instance, VxBPEL [95] an extended version of BPEL

language, identifies variation points and configurations for defining processes in a

service-centric system. SCENE [96], a further extension of WS-BPEL describes the

primary business logic and Event Condition Action (ECA) rules to guide the

execution of binding and to rebind self-configuration operations. Rules are applied for

associating a WS-BPEL with the declaration of the policies or business rules to be

reused at time of (re)configuration.

2.5.3 Configuration of Process Model and Rule Template

The present era witnesses a growing interest on incorporating flexibility in process

model activities. A large number of process design techniques results in strict

processes in which “hard coded” business policies are embedded in process schema

thereby compromising on flexibility. Flexible process configuration is done through

the use of rules to a generic process template. It results in a division among business

policy and control flow. The artifact may help to configure or retrieve process variant

[3] efficiently.

Mohsen et al. [5] discuss identifying inconsistencies automatically which leads to

customize the business process model and configuration procedure [6] helps features

become activated or deactivated in a variability model. The composite models and

32

their services become updated by the altered variability model, which leads to addition

or removal of WS-BPEL code fragments at runtime. Though the tool uses services

instead of direct code, the dependency on programming and code is always associated

with it. Lazovik et al. [9] has come up with a language, which relies on service rather

than process, and represents customization options for reference business processes.

The CAptLang [98] is an extension of traditional workflow languages (e.g.,

BPEL) in which adaptation and execution are parts of a dynamic environment with

classical workflow language. It uses the java-based business process engine within

the ASTRO-CAptEvo [99] adaptation framework.

2.5.4 Business Process Modeling and Configuration

The proposed approach can be related to the research on: (1) Business Process

Variability Modeling and Configuration; (2) Process Model Configuration in SPL;

and (3) Business Process Model Product Line with respect to a source model. Process

configuration and customization have been of interest to researchers in Information

Systems (IS) and Software Products.

2.5.4.1 Business Process Variability Modeling and Configuration

As discussed in Section 2.5.3, a promising approach to rule-based configuration is to

support the integration of functionality and operationality (including the

interoperability) of application systems in terms of loosely-coupled configurable rules

across organizations and computing platforms. The development of process-driven

rule-based configuration is an emerging business software development method that

supports the business logic from the domain-specific technologies and

implementation rule languages. The process models are the key element in the

complex composited applications because they allow the relationship between high-

level abstraction and logical, implementation-independent designs the concrete

implementation of a system.

33

Business processes can express the structure of composite applications, where a

process includes a set of activities realized and implemented by services. Business

process models (process models for short) specify the workflow (control flow)

execution order of the activities to achieve a specific business goal. Processes are

deployed and executed by a process engine, where a process can also be exposed as a

service with a standard interface, and therefore, can be invoked by end-users or other

services in enterprise scenarios, such as business-to-business processes to name one.

Business processes have been one of the active research areas in the field of business

process management including the concepts, methods, and techniques to support

analysis design, development, management, and configuration (or customization) of

business processes [100, 101]. In the following sections, we focus on providing an

overview of approaches for business process variability modeling and configuration.

2.5.4.2 Process Model Configuration in SPL

In the present era, application of product line concepts in service-oriented computing

[69, 102-104] may be noted in many research studies. Our focus lies on approaches

that apply SPL techniques for process model configuration.

PESOA: The Process Family Engineering in Service-Oriented Application

(PESOA) project [81] describes a variability mechanism in order to model variability

and define the apparently variant-rich process models. Stereotype annotations are

employed for extending such models to incorporate variability and provide

configuration options. At the time of configuration, variation points are bound with

one or more variant as per its type. PESOA fails to present a concrete guidance on

configuring feature models as per target application’s needs.

2.5.4.3 Business Process Model Product Line

Software product line development employs several approaches that make a

distinction between domain engineering and application engineering. Domain

34

engineering is concerned with the creation of product line itself while application

engineering strives to produce new products from a common base of core assets.

Manual programming efforts are usually needed in both [35, 39]. As is the case with

tools like pure:: variants [105] or Big Lever Software Gears [106], this research

approach also has cut back application engineering to an automatic configuration step.

A valid configuration in FeaturePlugin is all that is to be created in this approach.

Then this configuration is utilized by tool MODPL Feature Plugin for automatically

generating to the configuration of the required product.

The V-BPMI framework [107] address up variability with respect to process lines

and process variability. The framework creates a “by composition” approach of

variability where process models are designed through the assembly of process

fragments and reuse of process variants. Goal fulfilment and contextualization guide

process model design throughout adaptation of process lines and reuse of process

variants.

Herzog et al. 2013 [108] developed a product line simulator model for an aircraft

to analyze and define in a Product Variant Master. A configurator system is

implemented for creation, integration, and customization of stringent simulator model

configurations. Its goal is accelerating reusability while combining models for usage

in a range of development and training simulators. Though Design Automation and

Knowledge-Based Engineering solutions do exist, their use in SPLE and reuse of

simulation models have serious limitations.

2.6 Critical Discussion on Process Model Customization Literature

Research relating to process model customization, with specific attention to SLR has

been systematically identified. The results of the comparative analysis are

summarized in Table 2.2.

35

Table 2.2: Literature Comparison of Primary Research Work of Approaches and

Techniques Applied for Process Model Customization from 2009 to 2014

Notations are as follows: “+” indicates a fulfilled criterion, “-” indicates the

criteria are not fulfilled, “°” indicates partial fulfillment, and blank spaces indicate

that is not applicable or undiscussed.

The first column identifies the year of publication and the second column lists the

research reference. The third column specifies the solution approaches or techniques

adopted by each researcher to customized and configured process models. This

configuration is a process which is intentionally narrated with continuous change to

accommodate during a BPM application. The remaining columns indicate the feature

or principle for each criterion. For the first feature criterion, the rules are processed as

a set of instructions or command/protocol from abstract and detailed representation

language for general and domain-specific perspectives. For the second feature

Year Authors Solution

Approaches/

Techniques

R
u

le

R
u

le
 G

en
er

a
ti

o
n

V
a
ri

a
b

il
it

y
 M

o
d

el

S
O

A

C
o
n

fi
g

u
ra

ti
o
n

K
n

o
w

le
d

g
e

T
ra

n
sf

er

S
P

L

U
M

L

S
a

a
S

2011 Liang et al. [109] Ontology - - - -

2012 Kumar and

Kanagaraj [110]

Ontology - - - -

2013 Huang et al. [111] Ontology ° -

2009 La Rosa and van

der Aalst [84]

Questionnaire

driven

- - + - + - +

2012 Kumar and Yao

[3]

Rule templates + - + - -

2014 Asadi et al. [5] Feature model - - + - + - +

2014 Alférez et al. [6] Feature model - + ° + - + °

2014 Wang et al. [8] Service-Oriented/

Feature model

- - + + + - + + +

2009 Schleicher et al.

[112]

Business Process

Template

- - + - + - - -

2017 Our Work Configurable

Rule

+ + + + + + +

36

criterion, rule generation is considered as transferring knowledge from the domain

model to a configurable set of domain-specific rules.

The core technique is rule generation by model translation, i.e. the generation of

a structured representation (model) of the target program (compiling or code building)

instead of a configurable XML rule on which the application running should support

such continuous changes. This technique can also be applied to the high-level of a

domain model for translation of high-level extensions of the metamodel to lower-level

constructs of DSRL using model-to-text translation (details in Chapter 7). In the third

feature criterion, variability models enable us to describe the variants in which a

system can evolve.

2.6.1 Research Gap

As summarized in Table 2.2, the customization of the process model has been

discussed in a different context, which was defined in Section 2.6 such as Rule, Rule

Generation, Variability, SOA, Configuration, Knowledge Transfer (High-level to

Low-level), SPL, UML, and SaaS. A research gap can be highlighted from a careful

analysis of the process model customization literature in this chapter.

The table demonstrates the results of the systematic comparison of solution

approaches and studies, which enables us to analyze which approaches and topics

were pursued in each process customization. None of the features address all criteria.

Rule, and rule generation approaches in particular are largely neglected. Indeed, there

are no such mechanisms where customizable and configurable process models are

adapted to the requirements of end-users capturing the product line variabilities in a

specific domain. For example, in approaches [109], [110] and [113], ontologies are

used without fulfilling the list of criteria or the feature which is mentioned in the table.

The only approach which gets closer to rule criteria is a rule template [3]; where

customization issues are resolved through a rule-based approach. This thesis is the

only research referred to in the table which covers the configuration rule by using the

feature model, includes rule generation and knowledge transfer from high-level model

37

to low-level rule, and computes the process model customization and configuration.

The research objective is to capture features from the feature model, based on the

feature activate, and de-active, corresponding domain model and process model,

which in turn is based on that rule generation, rule configuration, and process model

customization. The solution approaches considered in the heterogeneous set of models

are associated with the overall approach.

2.7 Summary

This chapter presents the foundations of the thesis with a conceptual view of the

research, foundations and definitions. It includes a literature review which discusses

current approaches and limitations, in which we describe the solution platform of the

approach: SPLE, the framework for SPLE, Variability Management, Feature Model

and Rule Language. This discusses adapting of process model customization and

configuration in terms of different research, this includes the customization of the

process, the process modeling languages and adaptations, the configuration the

process model and rule template, and business process modeling and configuration. A

more detailed focus and analysis of customization and configuration of the process

model allows the formalization of the research gap and highlight addressing the main

research question of this thesis. The next chapter is dedicated to a selection of research

methodologies, their suitability, and how this research is validated in terms of

philosophy, reasoning, approach, methodology, analysis and evaluation methods.

CHAPTER 3

RESEARCH METHODOLOGY

In Chapter 2, a review of the literature, in particular current approaches and limitation

of process model customization was discussed. This chapter describes the

methodology that has been chosen to help answer the questions posed by the research.

The discussion includes justification for the chosen methodology, a brief description

of other methodologies at, and their possible limitations and drawbacks, along with a

description of endeavors to overcome limitations with our chosen methodology. In

order to efficiently address research challenges which are formulated by literature.

This chapter starts with the selection of methodology which will fulfill the

requirements of this research. Then, the analysis of the selected research methodology

is carried out, so most appropriate methodology is chosen for this research. This

chapter is presented the most suitable research methodology to be employed in this

study.

3.1 Methodological Requirements

The goal of any research is to travel from the unknown to the known, in relation to a

specific question. The question may emerge from any field, like, the natural, artificial,

or the behavioral world as long as it is scientifically answerable and aims to fill a gap

in our existing knowledge. This research revolves around seeking an answer in a

scientifically rigorous manner. Hence, research is a problem-solving approach,

wherein the knowledge-gap or the question is the problem, and the researcher seeks

to solve this problem in a scientific way. From a philosophical viewpoint, life can be

seen as problem solving [114]. Therefore, the research interest cannot be separated

from the problem solving or seeking out solutions to a specific problem at hand,

though there may be different vested interests in the outcome of a particular challenge

solving. For instance, academics and researchers, may not find a practitioner- driven

software development project to be specifically of interest, as they might be more

39

interested in the theoretical work rather than a fully practical or operational work

[115].

As stated earlier, the output of this research is a prototype framework, which is

realized as a software tool that solves a reusability requirement in the volatile

environment of business strategies, by the process model customization in the

domain-specific environment. However, during the process of building such a

framework in a scientific and rigorous way, it is important to proceed methodically.

In the Information System (IS) field, there exists a wide range of methods. This

research is expected to have a direct impact on business by adapting the regular

changes in their existing or new strategies and policies in the day to day life. The non-

technical domain user can handle the changes in terms of customization and

configuration. This research aims to contribute in both the academic and the industrial

context. A participative way of exploring and solving complex socio-technical

problems with key stakeholders is Engaged Scholarship (ES) [116]. Action Research

(AR) and Design Science (DS Research) are two variants of ES that have caught much

attention and there is even a combination of two methods (AR and DR) which have

recently been devised as Practice Research (PR) [117].

3.2 Methodology Selection

The identification of a methodology that is appropriate for solving the problem at hand

is a crucial phase of the current research. Instead of devising a new methodology, it

was decided to utilize an existing technique provided by some of the IS methodology.

Consequently, a literature survey revealed four plausible research methodologies that

seem to be suitable for conducting this research. These are Action Research [118],

Grounded Theory [119], Case Study [120] and Design Science [114, 121, 122].

3.2.1 Action Research

Action Research (AR) [118], as it appears in IS strategy literature, is a unique

methodology that allows a blending of the academic and the industrial knowledge.

40

Hence this methodology was appealing to the present research since validating the

rule generation and configuring processes for the process model customization in the

DCT case was one of the major requirements of this research.

AR was first used by Kurt Lewin [123] during the 1940s and is often described as

an approach that “combines theory and practice (and researchers and practitioners)

through change and reflection in an immediate problematic situation within a mutually

acceptable ethical framework” [124]. Therefore, AR may be taken as a methodology

that aims at contributing to both knowledge and practice by providing a solution to a

specific entity (usually represented by an organizational setting). Therefore, Action

Research “is highly contextually dependent, while attempting to address the specific

client’s concerns” [125]. AR focuses on solving a socio-technical problem by

developing a new solution and evaluating it in an organizational context. However,

due to its flexible and innovative nature, it becomes liable to biases and influences of

the hosting organization.

The current research does not only aim at providing solutions to an immediate

organizational problem, but also towards instantiation of the artifact. This suggests

that it may be suitable as a part of the overall methodology, i.e., evaluating the

outcome of this research through experiments. However, though AR seems to fit from

a holistic point of view, it fails to meet the rigorousness required to undertake this

research. Moreover, this study is designed to contribute towards both theoretical

knowledge in academia and to its practical application in industry. AR might limit the

findings to the targeted organization, making it difficult to achieve generic results

[126].

3.2.2 Grounded Theory

When the objective of rigorous theoretical development comes into question,

Grounded Theory (GT) [118] presents itself as an efficient approach. GT has been

defined as “a systematic methodology involving the discovery of theory through the

analysis of data” [119]. This theory appears as ‘grounded’ in the analysis of actual

settings and processes [127]. Therefore, the process of theory development begins

41

from selecting participants who have experienced the phenomenon under

investigation. Hence GT is essentially qualitative research, which provides for a

detailed entailment (i.e., theory) of a process, action, or interaction, occurring among

a large number of participants. The research questions that would suit GT, involve

understanding individual experiences on the process of interest, and identifying the

steps in the process (i.e., what was the process? How did it unfold?).

However, this approach might not be the most suitable because it aims at

understanding a phenomenon, and not at developing a prototype oriented framework.

And hence, it is discarded as the primary methodology for this research. However,

certain techniques of GT might be adopted for a better understanding of the

phenomenon involved in the current study. For example, one of the features that can

be taken from GT is to refer to the theory in order to establish a common vocabulary

of an area and define it with different levels of formality, as well as the meaning of

the terms and the relationships among them. As a consequence, an examination of the

existing theories would contribute (to some extent) towards developing the artifact,

which in this case, is a framework for the process model customization through the

rule generation and configuration.

3.2.3 Case Study Research

One of the most popular research methods in the field of qualitative/quantitative

research is the Case Study (CS) [120] method. CS has been used and adopted in

various socio and socio-technical fields like psychology, political science, education,

clinical science, social work, and administrative science information systems [128].

There is a wide range of literature available for this methodology. Yin et al.

[120] suggest that “a case study is an empirical inquiry that investigates a

contemporary phenomenon within its real-life context, especially when the

boundaries between phenomenon and context are not clearly evident”. A case refers

to a subject of inquiry, and the subject may comprise of people, organizations, events,

places, institutions, or Information Systems (IS) that are studied by one or more

methods. IS include people and computer applications that process or interpret

42

information. Furthermore, CS may refer to either single or multiple case studies. It

may consist of either qualitative or quantitative approach or a mixed approach for data

collection. The key aspects of case study research include exploring, generating and

finally testing the hypothesis.

The goal of CS is developing an understanding of the concerned issue, problem,

or phenomenon using the case as a specific illustration [129]. Hence, the researcher

with CS approach explores a bounded system or multiple bounded systems (cases in

specific settings/contexts) over time, through detailed, in-depth data collection,

involving multiple sources of information and reports.

The Case Study methodology, therefore, is seemingly the best suited

methodology, keeping in mind the goal of the project that allows for an empirical

evaluation of the problem at hand in a practical scenario. Furthermore, through this

approach, an artifact (theory, concept framework or process) may either be proved or

disproved. In the present study, the artifact is a framework for process model

customization through rule generation and configuration. At the beginning, a case is

selected that suits the business process model (BPM). This may be a requirement for

proper framework evaluation. Once, the correct case is selected, the framework should

be implemented. Since, in this phase, we would deal with an abstract or general

artifact, it is required to gather some details regarding the specific case (i.e. digital

content technology, a case of BPM). In the next step, implementation of the

instantiated process as a framework prototype application can measure and analyze

the framework usability in configuring the generated rule for process model

customization. This usability is evaluated in terms of efficiency, effectiveness, and

satisfaction. At the end, the framework is used (through generation, configuration, and

customization) by end-users such as a domain expert, domain engineer, customer, or

stakeholder.

However, the case study research methodology cannot be compared to testing and

evaluating of the artifacts in a practical situation, as this methodology does not allow

a method for building these artifacts. Therefore, this methodology alone would not

43

fully suffice for the present study, though it could be employed for the purpose of

assessment of the artifact.

3.2.4 Design Science Research

Design Science (DS) methodology is increasingly popular in Computing and

Information Systems research in the current study [114, 122]. This methodology

allows knowledge generation– descriptive and prescriptive strategies for providing a

solution to problems arising from both literature and practice, and makes provision

for assessment through the collaboration of academia and industries. As a result, the

imparted knowledge can be used as IS artifacts. Thereby, artifacts can be either (or

combination of) constructs, models, methods, or instantiations [122]. The literature

varies when it comes to opinions and recommendation of DS [130, 131]. A major

challenge in DS is that guidelines provided from the precursors are seldom ‘applied’

[131] indicating lack of clarity or inadequate operationality of the existing

methodologies due to the level of abstraction being too high [114]. The activities

(procedures, tools, techniques) pertinent to the study are briefly described here. DS

may appear similar to the Action Research (already described), though there are subtle

differences among the two [125].

If a paradigmatic comparison is made, the DS allows greater variability.

Moreover, AR may be considered as a special case of DS though as opposed to AR,

the focus of DS research lies especially on building new IT artifacts. However, these

two approaches may be combined, as AR method may be incorporated in DS to

evaluate the research. The practical relevance appears to be the focal point in both AR

and DS research approaches [131] which makes the two approaches suitable for the

present study.

Table 3.1 presents a summary of findings on the suitable research methodologies

in the present research. The parameters that have been used for comparing the

different research methodologies are research output, main activities, problem solving

and framework building. The taxonomy forms the criteria in the research methodology

which was identified in the literature. The research output plays a critical role in the

44

choice of the methodology. Our approach is problem-driven, meaning that we are

solving a research problem, and fulfilling the business needs – e.g., domain experts

need a technology free tool that would allow them to change quickly their business

processes. The reason for selecting DS research over other approaches lies in the fact

that the design of IT artifacts, is more focused on the artificial creation of solutions to

problems encountered and to fulfil industrial business requirements. In this regard,

DS research provides defined research outputs in the form of IT artifacts.

Table 3.1: Overview of Research Methodologies [132]

Research

Approach

Main Activities

(Phases)
Research Output

P
ro

b
le

m

S
o

lv
in

g

F
ra

m
ew

o
rk

B
u

il
d

in
g

Action

Research

• Diagnosing

• Action Planning

• Action Taking

• Evaluating

Specific

Organizational

solution

Yes No

Ground

Theory

• Theory Generating

• Theory Evaluation

Abstract Knowledge

Theories
No No

Case Study

• Environment

• Analysis

• Observation

• Evaluation

Phenomenon

investigation

Generalization

Tests

No No

Design

Science

• Analysis

• Design

• Evaluation

• Communication

Construct

Models

Methods(processes)

Instantiations

Yes Yes

The DS research seems to offer a coherent approach in building constructs (e.g.,

rule generation and customization). As mentioned, the primary objective of the

present study is to provide a rule generation and configuration for the process model

customization. The DS research is found to be the most suitable methodology due to

its ability to support building and evaluation of such constructs.

45

3.3 Design Science as Research Methodology

The processes outlined in Figure 3.1 show the Design Science process used in this

research. Moreover, it expresses appropriate techniques and methods to the DS

process. Additionally, an overview of the research outcome at each step is presented.

Figure 3.1: DSRM Process Model (adapted from [114]).

3.3.1 Problem Identification and Motivation

At this phase of research, we identify the motivation and develop the problem

statement. It can be considered as a process for preparing, accumulating knowledge,

or developing a foundation on which the construction of an artifact is possible. This

requires gathering sufficient knowledge through the available literature. Systematic

Literature Review (SLR) [133] has been employed for extracting context specific

results.

The SLR aims at identifying topics from reliable and high-quality sources. The

topics must come with a precise description as well as the rationale for selection. The

search material should be kept as transparent and replicable as possible [134]. At this

stage, the aim is to identify all concepts that are someway related to the variability

46

model and process model, and might act as enabling factors. Also, it attempts to

identify the only plausible ways for configuring the generated DSR from domain

model by using the variability model, and it helps to customize the process model.

However, since manual DSR configuration is a complicated and challenging

assignment job, and chances of committing mistakes is very high (error prone), a few

parameters were set for selection of literature: like the relevance in the present study,

the year of publication and the reputation of the journal or the conference where the

article has been published. All the available literature was scored by these parameters.

Essentially, a review of literature attempts to frame and solve the research

question selected while finalizing the scope (scoping). There are two types of tasks

performed during Systematic Literature Review – broad, and advanced, literature

search. In the beginning of scoping, a vast study of literature was performed, where a

wide array of abstracts, conclusions, prefaces, and references were considered, which

were found suitable for the present study. The SLR may be differentiated from other

approaches by the kind of rigor it involves, which, in turn, definitely provides an edge

while gathering the reviews, evaluating the amount of plausible relevant materials and

identifying the numerous search themes in all their combinations.

In the context of the present study, the motive behind this broad SLR was to collect

every kind of information regarding process model rigidity and hardcoded processes

and data flow. Afterwards, the findings were related to the domain variability. The

sources of literature were primarily journals, periodicals, reports and a few reliable

forums and professional blogs available on the Internet. The search was directed by

the following keywords - “process model customization”, “business process model

customization”, “process model in SPLE”, and “process model using variability”.

Then, the common articles from various search terms were chosen for containing

information about the appropriate solutions. This resulted in an exhaustive list of

literature that might be worth reviewing. Afterwards, on the basis of the abstracts, the

number of relevant articles was whittled down to about 40, which required careful

study of all the papers. These papers were checked for their customization and

configuration consistency with the defined research questions available in Chapter 1.

47

In order to check the customization and configuration of the business process

model application, a questionnaire survey was also independently carried out along

with the literature findings. The questionnaire that was employed for this purpose is

available in Appendix A (Section A1 BPM Survey Questions and A2 Approval from

DCU Research Ethics Committee). The survey included participants who design

solutions in the process model customization. The total number of participants was

22, which included: 3 project managers, 4 process model engineers, 4 BPM experts,

5 domain experts and 6 software developers. The survey questions were framed on

the basis of issues that had emerged during the review of the literature. Process model

customization and its adaptation at run-time is challenging and error-prone due to

the rigidity of the process model. It was found that the results were in accordance with

the literature. Particularly, 76% of participants and their organizations encountered

challenges of rapid changes due to external and internal sources, and the dynamic

adaptation was also difficult for domain experts who lacked the technical skills.

Therefore, the survey outcomes above, and the literature analyzed, unanimously

indicated, that due to the complexity of the process model (discussed in Chapter 1),

there exist issues with the customization and adaptation of process model in a dynamic

environment. The functional and operational parts are difficult to handle, at the time

of process model customization, if end-users are lacking the technical skills. Hence,

the research objective was to develop a framework, which would enable the end-user

to generate DSR and configure the domain constraint value for process model

customization. Moreover, the framework would be evaluated on usability parameters

like efficiency, effectiveness, and satisfaction in a dynamic environment.

3.3.2 Objective of the Solution

This objective is to develop a framework for rule generation which supports the

domain-specific process model and its scope and implementation in the Digital

Content Technology (DCT). The aim is to generate the domain-specific rules (DSR)

from a domain model to customize and configure the process model in a dynamic

48

environment based on the end-user requirements. Moreover, we define a Domain-

specific Rule Language (DSRL) for the domain-specific environment.

a) For objectives, I and II: SPLE use for mass customization and a model-driven

approach to translation of low-level rule from high-level domain model as the

core of the framework. The customization of the process model and the rule

generation development uses the SPLE lifecycle. The customization process

model development lifecycle and domain engineering deal with analyzing the

domain and customizable process model, as well as variabilities and

configuration options. Here, a domain expert can design and develop the high-

level abstract domain template (process model and domain model) which

contain all possible features (to be covered in Chapter 5). We also implement

the core assets of the customizable models. This lifecycle provides

customization models and the DSR generation using the MDA model as well

as the implementation of the core models in terms of the activation and the

deactivation features (to be further discussed in Chapter 7 and 8). The

development lifecycle and application engineering deal with capturing the

requirement of the target application and deriving target models based on these

requirements. The lifecycle is delivered to the customized BPM with a

corresponding set of the generated DSR, based on a target feature selection by

non-technical domain user or stakeholders (also discussed further in Chapter

8).

b) For objectives III and IV: We define a rule language with the abstract syntax,

the concrete syntax, and definition with ECA language model. Subsequently,

the high-level conceptual model of DSRL is defined in the form of high-level

BNF5 grammar. Additionally, the abstract grammar of DSRL as well as each

component/activity of the DCT process model is expressed in BNF. Both the

abstract and concrete syntax follow the literature consolidation and industrial

observations (discussed in Chapter 6, Section 6.3).

5 Backus-Naur Form

49

c) For objective V: The scenarios of the case study involve processes in the DCT

domains, that include user studies with a prototype. The rules are

automatically generated based on feature selection by the end-user. In this case

study, we evaluate the usability evaluation of the main artifact, as the

configuration of the generated rule in terms of efficiency, effectiveness, and

satisfaction (discussed in Chapter 9).

3.3.3 Design and Development

As discussed in Chapter 1, the objective of this research is to investigate how to

generate and configure the DSR from a high-level domain model based on end-user

requirements (variability model) to customize the process models. In order to achieve

this goal, the prototype of a framework for generating and configuring the rule is

designed and developed. More specifically, the end-users get the flexibility to

customize and configure the process model as per their requirements. The final output

is a generated low-level DSR, from a high-level domain model for configuring and

customizing the process model, which is ultimately implemented as a prototype

framework. The component of the artifact of this research has been defined in Chapter

4 and each component and its process are discussed in Chapter 5, Chapter 6, Chapter

7 and Chapter 8 of this thesis, as well as in other research works [135-140].

The design and development of the artifact are performed during the

information/process synthesis stage. This is the phase where the knowledge obtained

from the systematic literature review and discussions with practitioners in the form of

methodologies, principles, and concepts (e.g., Software Reuse [141]) is fused.

3.3.4 Evaluation

In the subsequent case study, the measurement is used to configure the DSR in terms

of usability criteria used in the DCT domain case study. In Chapter 9, we evaluate the

usability of the framework in terms of efficiency, effectiveness, and satisfaction. The

efficiency is measured by the comparison between manual and semi-automatic

50

generated rules. The effectiveness is measured by the quality of the rule configuration

by error prevention and accuracy with error correction. The SUS use for achieving the

score from the end-user and calculating the satisfaction of the prototype framework,

as well as the cross-validating of the efficiency and effectiveness of the framework by

a set of questionnaires in a controlled environment (discussed in Chapter 9), makes

the satisfaction more subjective. In this research, we have used a number of evaluation

methods: a case study, controlled experimental design, and user feedback as

questionnaires (SUS). Each evaluation has some benefits and drawbacks, due to the

fact that we use the combination of evaluation methods that gives a proper validation

of the research contribution in terms of rule generation and configuration prototype to

DS research.

3.3.5 Communication

The outcome of the evaluation may be disseminated with proper allocation of

resources like time, human resources, and monetary resources. For community

members with time resource limitations, it may appear difficult to produce and present

academic papers. Therefore, the key outcomes of the study should be made available

in a way that can be applied in technical and managerial fields. For the purpose of

technical implementation, descriptiveness might be necessary, while from a

managerial viewpoint, a brief description of its utility is essential. The goal of the

present research is to lay out a concise methodology for both design and description,

that would be relevant in a technical as well as a managerial context. Our work has

been presented to the research community [135-140].

3.3.6 Contribution

The study results in artifacts that consist of the design and the evaluation of the rule

generation from a high-level model in a systematic approach of variability

management to allow the end-user to customize their process model (already

discussed in Section 1.4). These artifacts provide a measure for use in the development

51

practice at the organizational and project level for the evaluation, the assessment of

the effectiveness and the performance of software reuse and the process model. The

proposed artifacts would be a valuable measurement in the area of software reuse.

3.4 Summary

This chapter described the methodologies used in this research and gave an overview

of a number of research methodologies in the context of current research. The design

science philosophy was deconstructed, and arguments put forward as to why it was

selected as the primary research approach. Consequently, an illustration of adapted

research framework, as well as an introduction of the research process in the form of

an IT artifact ‘build’ cycle was presented. Furthermore, an elaboration was provided

on the applicability of DS research to examine the context of various ways industry

practitioners, and academic researchers, can best collaborate. Finally, the importance

of DS research in clarifying the answers to research questions was discussed.

52

CHAPTER 4

FRAMEWORK AND OVERALL APPROACH

A conceptual foundation to address the research questions is provided by the literature

review in Chapter 2 and from the research methodology employed in this study

described in Chapter 3. The aim of this Chapter 4 is to describe a framework for the

DSR generation and configuration for process model customization; which aims at

enhancing rule generation and configuration at the functional and the operational level

of process models. Introducing the components of this framework; the design science

methodology presented in Chapter 3 (see Figure 3.1) is followed, and the core design

science activities (i.e., background and literature review, involvement of domain

participants and framework design and development) is identified. This chapter aims

to answer the following research question:

RQ 1. How to develop a rule generation and configuration framework to customize

the process model dynamically?

First, the main components and architecture of this framework in terms of

conceptual construction are defined. The components address the challenges

identified in Chapter 1. To allow non-technical users to generate and configure rules,

the next step is to prototype the framework. In order to achieve the customization of

a process model, we argue that the models that are produced as artifacts from SPLE

and MDA methodologies can be used during the DSR generation and configuration,

to drive the process automatically.

In SPLE, the use of the common variability of the product’s family provides a

platform for mass customization of products. MDA is used for abstraction or reduction

of the level of participation in a system; it allows the translation of the high-level

model to a set of low-level rules or text (i.e., programming code) and vice versa.

53

4.1 Introduction

The main contribution of this research is an approach for generating rules and

evaluating rule configuration for process model customization. The proposed

approach covers design and an application phase, and utilizes three modeling

paradigms, namely, (i) domain modeling; (ii) process modeling; and (iii) feature

modeling. A domain model represents the domain requirements in terms of the main

actors, their intentions and tasks, and their dependencies in reform of class ontologies.

A process model represents the control-flow of activities within a process-aware

information system. And a feature model depicts the variability options in both

requirements (i.e., adapted process model) and design models (i.e. domain template).

As shown in Figure 4.1, all three models are related via traceability links (i.e.,

mappings) with the weaving model [142]. The weaving model represents the relations

between the other models. We present the weaving model in detail in Chapter 5.

The proposed approach consists of a domain and an application engineering

lifecycle (as shown in Figure 4.2). The domain engineering lifecycle concentrates on

developing and implementing customizable process models. In order to implement

rule generation and configuration of the process model customization, SPLE and

MDA paradigms can be employed where models realize activities. In the application

engineering lifecycle, a new application system is built by adapting the customizable

process model and by tailoring implementations to fit the customers’ requirements.

In the domain engineering (domain template development) lifecycle, the overall

possible process requirements of a domain are captured in a domain template that

covers all variability points. The domain model template combines a domain model

and a process model. It is an extension of the standard goal model that combines

software variability and product line variability in a single space. A single space is a

particular domain that meets the objectives and requirements of different end-users.

The feature model and domain template communicate via the weaving model that

contains commonality and variability relations. Weaving models take care of software

and product line variability tasks. Such a model creates a virtual table of relations

between different object models. In addition to connecting the feature model and the

54

domain template, a weaving model helps to activate and deactivate features in the

domain template, which were selected in the feature model, based on the end-user

requirements.

In the application engineering, - the rule generation process development-

lifecycle, and its configuration are adapted based on the requirements of customers.

First, objectives and preferences of customers are captured and the product line

variabilities in the family goal model, are resolved. Next, according to the objectives,

the feature model is preconfigured by deselecting the features, which are mapped to

undesirable goals. Afterwards, the customer preferences and constraints are used to

reach a fully configured feature model and based on the mapping between feature

model and the customizable process model, activities corresponding to deselected

features, are removed from the customizable process model.

Figure 4.1: Overview of Proposed Approach

Finally, the process model is further adapted to satisfy any requirements that are

not covered in the customizable process model. In the remaining parts of this section,

55

we explain the phases and artifacts of this approach to develop and customize process

models.

The present research can be understood from two viewpoints. First, a conceptual

viewpoint where we describe the essential components of the framework (see Figure

4.4). Second, an architectural viewpoint where the framework to carry out the

dynamic rule generation and configuration is explained (see Figure 4.5). The

remainder of this chapter is structured as follows. Since this approach is developed in

the context of the ADAPT Centre for the Digital Content Technology (DCT) at Dublin

City University, we use DCT as the main use-case to study the implications and

applicability of this framework which is detailed in Section 4.3. The DCT case study

is used throughout this thesis to demonstrate several key aspects of this approach.

Section 4.4 presents the main conceptual components of the thesis. Section 4.5

introduces this framework for achieving rule generation and configuration for process

model customization. The conclusion of this chapter is presented in Section 4.6.

4.2 Conceptual Approach of Framework Under SPLE

Figure 4.2. illustrates process sequence of our proposed approach method. This

approach consists with domain engineering and application engineering lifecycle of

SPLE. Here, DE and AE are domain engineering and application engineering

respectively. Every life cycle consists with three different software phases like

Analysis, Design and Implementation. These phases are standard phases of SPLE that

allows domain and end user to work in different phases based on their need and

expertize. Every phase has sequential flow with different stages which express as E1,

E2, E3, …etc.

The proposed approach method is illustrated in Table 4.1. The table is expressed

the proposed method lifecycle, every phase, stage, stage name and outcomes of every

stages in terms of artifacts. We explain first row of table, the DE1 is associated with

Domain Analysis that are focused on Domain Requirement Analysis and the artifacts

of this stage is Domain-specific Model.

56

Figure 4.2:The Stages and Phases of the Proposed Method

In the application engineering lifecycle, the end-user selects all the features, and

consequently, the rules are generated and configured. The application engineering

lifecycle takes place during run-time. This allows for dynamic rule generation and

configuration.6

6 This feature is in correspondence with the requirements set by RQ1.

57

The decision to use the domain template at run-time to achieve DSR stems from

two reasons: (i) if the domain template deactivation or activation reflects into both the

domain models and process models, then customizations can be made at the domain

engineering level on the domain template; (ii) since generation and configuration of

the rules work on the operational and the functional context, any changes in these

rules will affect the process model and drive the business application at application

level.

Table 4.1: The Proposed Method in Sequence Process

Lifecycle Phases Stage Stages Name Artifacts

D
o
m

ain
 E

n
g
in

eerin
g

A
n
a
lysis

DE1 Domain Requirement

Analysis

Domain-specific

Model

DE2 Design Feature Model Feature Model

D
esig

n

DE3 Domain Template

Design

Source Domain and

Process Model

DE4 Weaving (Mapping)

Model Design

Mapping Schema and

Relational Table
Im

p
lem

en
ta

tio
n

DE5 Customization of

Domain Template

(De)-Activations of

Domain Template

DE6 Knowledge Transfer

(Rule Generation)

Rule Generation

DE7 Process Model

Implementation

Configuration of

Parameter

A
p
p
licatio

n
 E

n
g
in

eerin
g

A
n
a
lysis

AE1 Application Requirement

Analysis

End User Desire Model

(Target Model)

AE2 Feature Selection and

Validation

Feature Analysis and

Validation

D
esig

n

AE3 Weaving Model

Communication

Customize Domain

Template

AE4 Knowledge Transferred

(Rule Generation)

Rule Generation

Im
p
lem

en
ta

tio
n

AE5 Generated DSRL Configuration of

Generated DSRL

AE6 Customized/Adapted

Process Model

Customized Process

Model (Target

Application)

58

Our thesis provides a product line and model-driven approach framework to allow

a non-technical domain user to dynamically generate and customize the processes.

According to the proposed framework, a domain template that contains both the

domain and process models is developed at design time. This domain template is

created by the domain expert or engineer, who has knowledge of the domain as well

as an understanding of high-level modeling tools. The proposed product line, together

with the model-driven framework forms an operational platform. This operational

platform uses SPLE features to express the variability models and dynamic

adaptations. These dynamic adaptations employ the rule generation and configuration

for the process model customizations at run-time.

At run-time, in order to address problematic feature selection events, the

variability model provides for decision-making and validation of the features selected

by the user. The activation and deactivation of features in the variability model result

in changes to the domain template. The change in the domain template is reflected at

every level (e.g., activities, classes, etc.) in each of its components (the process model

and the domain model). The translation of models from high-level to low-level rules

takes place at run-time, i.e., based on the requirement model defined by the end-user

according to their feature selection, the framework covers the dynamic rule

generation, and the configuration of the process model.

4.3 Case Study

To illustrate the need for automatic rule generation and configuration, we introduce a

rule generation and configuration process for process model customization that

supports a digital content machine translation (MT) process7. The example is specified

according to Business Process Model Notation (BPMN) in Figure 4.3. BPMN task

expresses the functional and the operational activities such as data extraction for

machine translation; the sub-activities or sub-processes express source to target data

7 This process reflects the MT process conducted at the ADAPT centre.

59

translation. Every sub-activities have transition phase which is expressed like

Transition between Login and Extraction sub-activities as a T-LG-EX.

Figure 4.3: A BPMN Model for Digital Content Technology

The process model starts when an end-user is looking for an MT system. First, the

end-user selects the source text and target language for an MT system. The source

input operation, like text input or upload, is provided by the gic:Extraction (see

definition of gic in Chapter 2, Section 2.3.1.1) sub-process (or step) of the digital

content system. Once the source is validated by a validation constraint, then the next

process can take place. This process is described by a process model that defines

possible behaviors based on a number of references form the corresponding system.

The set of behaviors constitute a process referred to as the extension (of that process)

while the individual behaviors in the extension are referred to as instances. The

constraints can be applied at states of the process to continuously determine its

behavior depending on the current situation. The rules combine a condition (a

constraint) on a resulting action. The target of this rule language (DSRL) is a standard

business process notation (as in Figure 4.3) where the rules are applied at the

processing states of the process.

This case study is of intelligent content processing. Intelligent content is digital

content that allows users to create, curate and consume content in a way that satisfies

dynamic and individual requirements relating to task design, context, language, and

information discovery. The content is stored, exchanged and processed by a web

60

architecture while the data is exchanged and annotated with meta-data via web

resources. As the content is delivered from creators to consumers, it follows a

particular path. This path consists of different stages such as extraction and

segmentation, name entity recognition, machine translation, quality estimation, and

post-editing. Each stage in the process has its own challenges and complexities.

The content process workflow is given in Figure 4.3, as an example for the rule-

based instrumentation of processes. This process is governed by constraints. For

instance, the quality of an MT system dictates whether further post-editing is required

or not. Generally, these constraints are domain-specific, e.g., referring to domain

objects.

4.4 Main Components of the Framework

In this section, we present a conceptual view of the proposed framework and

approach, all components of the approach are illustrated in Figure 4.4 as features. This

approach follows the basic principles of SPLE and has consists of two essential and

elemental components such as Domain Engineering at design time and Application

Engineering at run-time. At domain engineering level, we propose a domain template

that has carried all possible and practicable a set of features in a domain and process

model. Adding on to this, at Application Engineering, we base the foundation of all

the possible set of selected features on the requirements and provisions of the end-

user. In fact, During Design Time, we suggest and advocate projecting a set of models

as a domain template. Hence, Domain experts and/or domain engineers design these

models and at run-time, the featured model assembles the characteristics and attributes

of the projected models provided by the end-user.

61

Figure 4.4: Main Components of the Framework.

4.4.1 Model-Driven Design Approach (Domain Engineering)

The Domain Engineering component supports the high-level design of models at

design time (discussed in Chapter 5).

• Domain template: The domain template is the combination of a process and

domain model. Domain experts and/or engineers design and develop the domain

template at design time during domain engineering. It covers all the possible

components and combinations of a particular domain. Now, we discuss various

models involved in domain template at the domain engineering (design time):

o Domain Model: Semantic models have been widely used in process

management [67]. This ranges from normal class models for capturing

structural properties of a domain to full ontologies to represent and reason

about the knowledge regarding the application domain or the technical

process domain [143]. Domain-specific class diagrams are the next step of

a feature model towards a DSL definition. A class is defined as a descriptor

of a set of objects with common properties in terms of structure, behavior,

62

and relations. A class diagram is based on a feature diagram model and

helps in stabilizing relation and behavior definitions. Note that we use the

class aspects (subsumption hierarchy only) despite having an underlying

domain ontology here. The domain model is described in detail in Section

5.5.1.2 of Chapter 5.

• Variability Model: Variability models are known for managing variability

information space from the recognized features and identified constraints in

product line engineering and can control this customization.

o Validation: Validation is the task of demonstrating that the model is a

reasonable representation of the expected objectives and performance of

the system. There are three different aspects of validation: (i) assumption,

(ii) input parameter values and distributions, and (iii) output values and

conclusions. They are detailed in Chapter 8 (Section 8.4 Analyzing the

Validation).

o Verification: Verification is the task of ensuring that the model is a

reasonable representation of the intended outcomes. This is usually a set

of programs, rules or conditions which are predefined for different tasks,

as detailed in Chapter 8 (Section 8.4 Analyzing the Validation).

• Weaving Model: Weaving models are models which capture various kind of

relationships among models [142]. They work by finding a similar type of patterns

between model elements. These patterns are then integrated into a tabular form.

We discuss them in detail in Section 5.5.1.3.

4.4.2 Adaptation of Process Model (Application Engineering)

The Application Engineering component supports the feature selection from feature

model, rule generation and configuration for adaptation of the process model at run-

time (discussed in Chapter 8).

63

• Feature Model: The feature model is the most important result of domain

analysis. A feature model covers the aspects of software family members, like

commonalities and variabilities, and also reflects the dependencies between

variable features. The dependencies between the variable features are depicted by

a graphical representation known as a feature diagram. In a feature diagram, the

mandatory features are present in a concept instance if their parent is present while

the optional features may be present as well. A feature diagram also consists of

alternative features which have a set of features of where only one is present.

Whole groups of features are a set of features from which a subset is present, only

if their parent is present. Between two features there may exist a Mutex or a

Requires relation. If two features are in a Requires relation, that means that when

one feature is selected, the other feature must also be selected. In contrast, Mutex

means that once one feature is selected, the other feature must be excluded (mutual

exclusion). We discuss the details in Section 5.5.1.1.

o Feature Selection: The system elements, their functionalities and their

dependencies on each other are contained in the feature model. Further, it

contains mappings between the stakeholders’ goal and the pertinent SPL

feature that achieves such goals.

• DSR Generation

o DSRL: The DSRL is a combination of rules and BPMN. A DSRL process,

based on BPMN and ECA rules is the main focus of the operational part

of the DSRL system (i.e., to check conditions and to perform actions based

on an event of a BPMN process). There is no need for a general-purpose

language in a DSLR, though aspects are present in the process language to

discuss business process variability, which primarily forms a structural

customization perspective. However, it also uses an ontology-based

support infrastructure. This is further detailed in Chapter 6. The DSR

generation has the following components:

▪ Abstract Syntax In the context of rule language, abstract syntax

refers to the data structure (possibly an abstract data type), which

64

is free of any specific representation or encoding. The texts are

mostly represented in this way and typically stored as abstract

syntax trees. Abstract syntax, which concerns itself only with the

structure of data, differs from concrete syntax, since it also contains

information about its representation. We define and discuss the

abstract syntax in Section 6.3.1.1.

▪ Concrete Syntax: Concrete syntax contains concrete syntactic

features like parentheses (for grouping) or commas (for lists),

which are not part of the structure and hence never appear in the

abstract syntax. We define and discuss the concrete syntax in

Section 6.3.1.2.

• Rule Configuration

o Domain Constraint: Domain constraints are considered as the most

basic level of integrity constraints. Once the data is given, domain

constraints may easily be verified as the attributes possess specific values

under practical conditions.

o Parameter Configuration: The set of the domain constraints are

configured in the generated DSR with some specific value based on the

end-user requirement.

• Configuration Evaluations

o Usability ISO 9241-11: In this overall framework, the usability criteria is

defined as effectiveness, efficiency, and satisfaction. It specifies that end-

users achieve specified goals in domain-specific environments. We define

each of these goals below:

▪ Efficiency: The comparison between the time taken to configure

domain constraints in the manual and semi-automatic process,

based on that identifying and using which process is more efficient

(Section 9.7).

65

▪ Effectiveness: The generated rule configuration in terms of

accuracy to prevent or protect errors to achieve the configuration

of domain constraints goal (Section 9.8).

▪ Satisfaction: The measure of end-user comfort and acceptability

of the overall framework (Section 9.9).

The configuration evaluation criteria define present experiments and discusses results

in Chapter 9.

4.5 A Framework for DSR Generation and Configuration

This research proposes the following strategy for the dynamic activation and

deactivation of features in the domain template, based on the end-user requirement.

After, the domain template is modeled, and the weaving model has connected to the

feature model and the domain template (via a virtual relational table) at design time,

the customization and adaptation may take place at run-time.

Customization and adaptation process begin when the feature selection is initiated

in the feature model. The process is highly abstract, which should make it easy to

understand and apply to end-user. At run-time, we provide a web-based infrastructure

that detects the feature selection in the context and enables dynamic activation or

deactivation of features at the domain engineering level, with the help of core assets8.

An overview of this approach is shown in Figure 4.5. As illustrated, the approach

covers both dynamic process model adaptation and core assets. The aim is to design

an appropriate architecture that models the feature selection based on end-user

requirements and generates the configurable rule for the process model customization.

8 Core assets are defined in Section 4.5.2.

66

Figure 4.5: A Framework for Dynamic Customization of Process Model

At run-time, users select their requirements via the feature model and configure

the rules. The framework facilitates the quality configuration in terms of effectiveness,

efficiency and user satisfaction.

Every selected target feature in the feature model is continually analyzed and

validated by the target feature validator, in accordance with the basic criteria of the

feature model. The selected feature immediately gets reflected in the domain template

environment as activation or deactivation of components via the weaving model. In

case of violation of feature selection, the target feature validator prompts a proper

error message to the end-user. For example, if the user removes a mandatory feature

of the system, the target feature validator prompts the user with an error message.

Next, we briefly discuss each phase and describe their activities.

The framework examines the following approach to offer a dynamic solution for

rule generation and process model customization, consisting of two sections:

67

Development Composition and Dynamic Process Adaptation. The development

composition encapsulates elements such as Weaving Model, Process model,

metamodel and a DSR configuration generator. This method comprises of two

building blocks that utilize the domain model variability and commonality at run-time:

(i) a domain model customizer using a weaving model (see Table 5.2.); and (ii) the

feature model and feature selection (Section 5.5.1.1). The weaving helps in execution

of the customization process based on valid features. The valid features are analyzed

and verified features that are captured from the end-user requirements. In the Rule

Generator (see Figure 4.5), the models and metamodels, created in the domain model

customizer are used in MDA at the different level, i.e., M0, M1, M2, and M3 as

illustrated in Figure 5.5 (described in section 7.5.2 Meta levels and implemented in

Section 7.6). The generated rule configuration has two different types: pre-configured

which is defined at the design time and post-configurable metamodel which has a

dynamic definition.

We propose the following approach for dynamic adaptation of rule generation and

configuration for process model customization. The processing of mandatory and

optional features (see Chapter 5, Table 5.1 for more details) of the process model and

metamodel are carried out by the variability model. While the features of a process

can be activated or deactivated at any moment (at design or run-time), we propose to

perform activation/deactivation at run-time (i.e., at the application level). In this

research, we consider two different groups of users: (i) experts in the domain with

modeling knowledge, and (ii) users that have a functional domain knowledge, but who

are non-technical. Therefore, we select a Software Product Line Engineering (SPLE)

platform where users from both these groups can perform their tasks efficiently and

independently. The SPLE is a standard model to develop software applications using

the platform and mass customization [41]. In our framework, a domain expert can

design high-level solutions for a domain. Based on that solution, the end-user can

modify and customize model elements (activities) in any process over time where the

activation and deactivation of model elements depend upon the variability model and

the end-user requirements.

68

4.5.1 Dynamic Process Model Adaptation

In the Dynamic Process Model Adaptation, the proposed structure carries out the

following steps. First, the model-based configurator collects the information from

various models. If the captured requirements of target features have violated the

feature selection or customization activities such as rename, move, update and delete

without selecting the parent feature, then the activation and deactivation are not

processed. After this, the customization model passes the captured requirements to the

weaving model for further processing. Finally, the generated and configured set of

rules are obtained from the Development Composition (Figure 4.5).

4.5.2 Core Asset

A core asset allows connecting, providing resources, coordinating, and supervising

the domain and application engineering activities. To obtain the final product, the

selected core assets are processed by following the production plan. The production

plan specifies several tasks such as code generation, compilation, and execution of

programs.

4.6 Summary

This chapter has answered the RQ1, defined in beginning of the chapter. The chapter

has introduced the main components of our approach and presented an overview of

our framework and generate the DSR and configure it for customizing process model

adaptation. SPLE platform and its levels introduced. A DCT business process

presented as a case study. The main components of the framework were brief

introduced, and the domain engineering and application engineering lifecycles

explained. Finally, this framework for domain-specific rule generation and

configuration over design and run-time was defined and discussed in Section 4.5.

CHAPTER 5

MODEL-DRIVEN DESIGN APPROACH AT DESIGN

TIME

5.1 Overview

The previous chapter outlined the research approach and framework components

overview. This chapter will introduce the design-time modeling of the proposed

approach during domain-engineering (as per Figure 4.4 in Chapter 4). The

contribution of this chapter is functional view of model-drive approach at design time

and to define the definition of domain model language. In this chapter, the variability

model, domain template, and artifacts are designed and developed at design time i.e.

Figure 5.1: Scope of Chapter 5

during the domain-engineering phase, to support the DSR generation and

configuration for process model customization in a dynamic environment (Figure

5.1). This chapter aims to illustrate a conceptual view of the prototype, including

domain adaptations, the definition of domain model language and its syntax. This

70

syntax is used in model to text translation and it is discussed the DSRL automatic

generation in Chapter 7.

5.2 Introduction

The implementation of this approach facilities, the design of models is organized in a

domain and process model that associations a variability model and a domain template

at design time. Due to the variation points in a domain-specific environment being

fixed, a traditional SPLE will be used instead of a DSPLE (Dynamic Software Product

Line Engineering). Following the principles of traditional SPLE, the software

products are developed by selecting features and configuring a set of rules the shared

core assets at design time. The domain templates are defined, designed, and developed

by domain experts at design time though adapted at run-time.

With this approach, the end-users select features based on requirements, resulting

in a customized process application. It is therefore proposed that the software process

model is based on the domain template and features models allowing us to map a

relationship between models at run-time.

Among the set of models, the variability model describes the variants which are

essentially the representations of variability objects within the model artifacts [39].

The first step is the customization of the domain template, which is followed by

generation of configurable rules at run-time. This allows the variability model in

representing the features and makes it easier to understand the possible features within

the domain under consideration. In addition to the above, we propose the

customization of the process model carrying at run-time, a variation point similar to

the domain and feature models.

At run-time, the DSR is a configurable rule and is used to support critical

applications such as stock exchange, banking or transportation, etc. The main

advantage of using such a rule is that it eliminates the requirement to compile or build

the rules. It is automatically generated at specific locations (changed by the end-user)

71

and does not require republishing, redeployment or rebooting of the application server

(changes reflect on the server).

The chapter is structured as follows. Section 5.2 introduces variability and

software product line engineering relating to the implementation of customization of

models. Section 5.3 defines the basic component of variability and SPLE principles.

The model-driven approach applies into SPLE in Section 5.4. In Section 5.5, the

processes involved in designing dynamic customization of models describe. Section

5.6 defines the abstract syntax of the domain model and its syntax definition. Section

5.7 presents the summary of this chapter.

5.3 Variability and Software Product Line Engineering

The SPLE supports the systematic reuse of similar software products that create and

maintain software assets with the help of various tools and techniques. In software

product lines (or systems families), the products are derived by selecting the features

that are needed while rejecting those which need not be part of the product. Therefore,

SPLE exploits commonalities among a set of systems in a particular domain, while

managing the variabilities among them. This results in improvement in time and

quality when the product reaches the market while achieving the goal of systematic

reuse. Commonalities are the elements with the highest reuse potential and

variabilities represent capabilities to change or customize a system [144].

The SPLE consists of three core components such as Domain Engineering (known

as reference model development), Application Engineering (known as Product

Development) and Core Asset (discussed in Section 4.5). At Domain Engineering, the

variability of an SPL is defined with common and variable domain artifacts. At

Application Engineering, the development of software products is carried out by

selection and configuration of shared artifacts [145]. Core Asset provides for

connecting, allocating resources, coordinating and supervising the domain and

application engineering activities.

72

The SPLE supports systematic reuse of the set of similar software products which

offered to share a collection of by software companies. The SPL share the method,

technique, and tools for developing and maintaining a common software collection to

for software systems to share the common resource or set of software assets. This can

be expressed in four concepts, as shown in Figure 5.2

• Software asset (Feature Model) shows ways to compose and configure the

software input assets with test cases using source code components, including

requirements, documentation and architecture for creating any product in

Software Product Line (SPL) product. In order to bring up some product

variation, a few assets can contain internal variation points which is

configurable in multiple ways for producing the difference in behavior.

Figure 5.2: Basic SPL Concepts

• Decision model refers to the optional and variable features of SPL products.

Each SPL product (variable model and domain model) is defined in a unique

way through product decisions (i.e., choosing the variable and optional

features for a particular domain).

• Production mechanism and process refers to describing the means of

composing and configuring products from feature model as software asset

inputs. With the help of product mechanisms, the decision is taken on

determining the particular software asset input as well as well as variation

point configuration in assets.

73

• Software output products (DSRs) is the collection of all DSR set of products

which might be used in SPLE platform and translation of the graphical models

into text used in the MDA technique. The SPLE scope may be assessed

through a set of software product outputs which may be produced by the

feature model as software assets or domain model as a process artifact.

5.4 Model-driven Software Product Line for Rule Generation

It is proposed to abstractly support the different SPLE aspects from MDA. The MDA

aims to capture all the relevant aspects of the framework through appropriate models.

The stakeholders’ motives are more prominently captured by models than the

implementation codes. Models capture the requirements, or the intentions of the end

users more effectively. This assists in avoiding accidental implementation details and

is also more suitable for results and analysis. Models in MDA context have a greater

value than just being supportive artifacts; rather, they are actually source artifacts

which can be utilized for automated analysis and/or rule generation.

Figure 5.3: Models-driven Support to the SPL for Rule Generation

The model-driven approach aims to provide expressive and easy-to-understand

adaptation. Therefore, the domain model is implemented as a variability model which

describes the variants in which the domain expert designs the domain template

composition. As the domain model is the primary source of the rule generation, the

74

definition of a bridge between the elements in the variability and domain models could

be used to support the dynamic rule generation in the underlying domain-specific

environment.

To this end, a weaving model is used as an extra software asset input to the domain

template changes in the features of the variability model. The weaving model in effect

works as a bridge or object relational table between the elements in domain template

models.

The domain template customization is depended on activation or deactivation of

features in the feature model (Figure 5.3) to manage the requirements of a domain

user at feature selection level. Therefore, DSRs generation depend upon the features

of the feature model. The rule generation on the variability model produces an

adaptation space with 1) all the possible domain constraint configurations of the

process model specifically in terms of active and inactive features in the feature model

with parametric values, and 2) customization of the process model in terms of

functional and operational tactics. To avoid problems or interruptions (e.g. error,

system halt, and malfunctioning, wrong interpretation) during rule generation and

configuration in critical service application, the feature model is therefore used.

Relevant feature configurations should be validated and verified at runtime (Figure

4.5, second flow “Analyzer Feature Validation” at core assets). For these reasons,

model adjustment is properly performed in the domain template. The customized

domain template further uses MDA at domain engineering level of SPLE.

The SPLE and MDA are not only complementary, but their integration may lead

to significant benefits in various applications. MDA provides for abstractly

representing various aspects of a product line, whereas SPLE provides for a well-

defined application scope. This provides a sound basis for development and selection

of appropriate modeling languages. Furthermore, the automated generation of system

configurations is made possible by accurate models as a result of automated analysis

and rule. MDA provides effective techniques to convey the results of specifying

variability as follows:

75

• Metamodeling refers to type of systems with specific domains, having the

constraints that are associated with a product line, with key abstract syntax

characteristics and static semantic constraints

• Domain-specific languages (DSLs): In order to formalize the specifics of

structure of the product line, its behavior and requirements with respect to

domain, the DSLs provide notations governed by extendable metamodels.

• Model transformations and rule generators refers to ensuring the consistency

of implementations of the product line along with the corresponding analysis.

The analysis may be retrospect to functional and QoS requirements.

The advantages of using together, the MDA and variability of SPLs are: (i)

Ability to capture the similarities and variabilities in a set of systems and (ii)

automation of repetitive tasks.

Figure 5.4 shows how to combine modeling and model transformations to develop

a framework for rule generation and configuration for Digital Content Technology.

First, the assets of the Domain template are considered as model elements, describing

a family of DCT. These model elements conform to the metamodel of the domain

model, which is a DSL for the DCT. Second, characteristics of a DCT are specified

by a decision model. Third, the scoping of the domain model is performed by

projecting features on DSL by using the weaving model. Ultimately, the translation

of model provides output of the system as a text.

Given such Domain Engineering of SPLE, we argue that the modeling effort put

in to define the SPLE is useful for two reasons: (i) It is responsible for realizing the

system, and, (ii) provides autonomic behavior during execution. Describing variants

using the knowledge captured from earlier variability models helps evolve a system.

Additionally, the necessary steps in order to reconfigure software system can be

assisted by variability models. Next, the models that conform approach are described

(see Figure 5.5), while also discussing systems that can be enabled using these models.

76

5.5 Process for Design Dynamic Rule Generation

We describe the Design Time (Domain Engineering) components of our approach as

per Section 4.4.1 (Chapter 4) while the rest (at Run-time- Application Engineering) is

discussed in subsequent chapters. The active events are described in the following

sections.

5.5.1 Creation of the Initial Domain Template

In our approach, the initial domain template is a generic template for a domain; it

covers all the possible combinations carried out with commonality and variability in

terms of variability points. It is designed during domain engineering lifecycle in the

domain-specific environment by the domain experts. The domain template represents

the following: (i) the variability operations, which are involved in the adjustment of

domain template for generating the rules and process model customizations; and (ii)

the sequence flow of a model among the design models and their operations that state

the order in which operations are performed. The domain engineering lifecycle is

accessed by a domain expert or stakeholder to define, design and develop the generic

domain template. This template consists of two different models: domain and process

models with variability model and its points (the variability notations). Both models

are tightly coupled to each other so that if a domain expert changes one model, then

the other model should be changed as well.

The model notations can be used to illustrate the sequences of the models with

their dependencies in both models. In Figure 5.3, the links among feature model and

an activity diagram of UML (domain model) is represented with different color doted

lines. In this work, a domain model is represented as a UML class diagram in a domain

template. The UML express the hierarchical relation of child-parent classes of models

in terms of sequential and dependable components.

77

5.5.1.1 Feature Model

A feature model refers to a set of features arranged hierarchically and is most

commonly used in software product line engineering to represent the variability and

commonality in a variety of development artifacts. This includes requirements,

design, and test [146]. The main idea behind feature models is the set of features in

hierarchical structure. The feature models, over features of the product line, define

variability relations, constraints, and dependencies while also formally and

graphically representing features. The feature is defined by Bosch et al. [31] as “a

logical unit of behavior specified by a set of functional and non-functional

requirements.” This work corroborates with this definition by basing the DSR

generation on both functional and non-functional requirements. The hierarchical set

of features in a feature model are composed.

Table 5.1: Types of Feature Models

Mandatory

Optional

Alternative

OR

In Table 5.1, types of features are summarized which are represented as a tree-like

structure [147]. These features are described below:

• Mandatory feature: In case of selection of a parent feature, the corresponding

child feature, if mandatory, must be selected along with it.

• Optional feature: In case of selection of a parent feature, the corresponding

child feature, if optional, may or may not be selected.

78

• Alternative feature group: In the alternative (XOR) feature group, only one

feature must be selected exclusively in the feature model.

• OR feature group: More than one features in the OR feature group must be

selected in the feature model.

Example: gic:Extraction Feature Model

Figure 5.4 illustrates the feature model for gic:Extraction(F0 represents as

a Feature Model) activity of DCT domain We use as our case study. For instance, the

Document File (F4), Multimedia (F5), Web URL (F6) and Text Input(F7) features are

variants that can be used during execution to accomplish the data extraction

functionality in the variability model point. The features model contains two different

features as express in OR (Document File and Multimedia) and alternate features (Web

URL and Text Input) of the gic:Extraction.

Figure 5.4: Feature Model of gic:Extraction

5.5.1.2 Domain Model

The similarity of a domain model to UML class paradigms may be noted in a modeling

standpoint. This visual formalism is widely known in the data-modeling community

and is language independent [148]. A few of the elements of UML class diagrams can

be separated although domain model is not a visual language, which is briefly

described in a later section. Leveraging known mechanisms or formalisms for a

domain in a relevant DSL is generally a good practice. Thus, intuitive knowledge of

79

Figure 5.5: Domain Model of gic:Extraction

80

users of a domain can be leveraged while using or learning the DSL with the help of

UML class diagrams, which are frequently used as formal input for Database Schema

design from a functional point of view.

It extents or spans from the level of rule language to the level of the configurable

process model. For describing its structure and inspecting a concrete example of a

domain model, the domain-specific rule language is introduced. Subsequently, the

implementation of the DSL in digital content technology is analyzed, where the

translated rule of the configurable parameterized rule language is provided,

solidifying the semantics of the language.

In the content use case, class diagrams of gic:Extraction (C0 represents as

a Class of gic:Extraction) and its components based on common properties,

are shown in Figure 5.5. The class diagram focuses on gic:Extraction. The two

major classes are Upload (Document or multimedia file) and Input Text (Web URL

or Text Input), consisting of a different type of attribute like content: string, format:

string, or frame rate: int.

5.5.1.3 Static Weaving model

A product line feature model represents variabilities and commonalities. These are

represented in a concise taxonomic form. Additionally, it must also be noted that

simply put the features are symbols in a feature model. Further, the semantics are

obtained by feature mapping of other models (feature model with F, domain model

with Class, and process model with Activity) (see Table 5.2). Next, with the weaving

model [144], we show how to perform the mapping. We use static weaving model for

managing the variability relationships among all models. The principle argument for

using the static weaving model is domain-specific environment. When the domain

experts have significant knowledge of domain and its features, they design and

develop the domain template at design (static) time. This weaving approach enables

us for scoping and configuring the domain models from a set of given features.

81

Table 5.2: Example of Weaving Model

 Feature Model Process Model Domain Model

 Fgure 5.4 Figure 8.4 Fgure 5.5

1. Document File (F3) Document File (T4) Document File (C3)

2. Multimedia (F4) Multimedia (T5) Multimedia (C4)

3. Web URL (F5) Web URL (T6) Web URL (C5)

4. Text File (F6) Text File (T7) Text File (C6)

The weaving models are used during definition and capture of relationships

among model elements. The relationships between model elements are present in

many different application scenarios [142]. The relationships among model elements

and features are defined by using the weaving models. Let us consider a weaving

model with the following specifications:

• It is defined among a feature and domain models.

• The model is represented by <WM, FM, DM> where WM, FM and DM

are weaving model, Feature Model and Domain Model respectively.

• It consists of elements linking set of elements in FM and DM.

The link management is supported by elements of WM as follows:

• WElement: All elements inherit from this, i.e., it is the base element.

• WModel: It is the root element. It comprises of elements of weaving model

and the references to the corresponding woven models.

• WLink refers to the link that is present among the model elements.

• WLinkEnd: It refers to link endpoint types, which denotes a linked model

element allowing creation of N-ary links.

• WElementRef elements are related to a dereferencing function. This input to

this function is ref attribute value, while in retrospect the function returns the

linked element.

82

The string element (WElementRef) discussed above allows creating N-ary links.

Here, the links amongst elements of feature and domain models are specified. The

features in the feature model are obtained from the K set (active or deactivate features)

while DM comprises of domain model elements. In the present scenario, a WLink ∈

WM signifies inclusion of an element d1 ∈ Domain Model to the resultant Domain

Model configuration, if f1 ∈ FM is active. Consequently, the configuration of the

domain model can be instantiated by deactivating or activating features in the feature

model, through the weaving model. Finally, the weaving model is able to access the

concrete elements through a reference, which is contained in feature and domain

models.

5.6 Definition of Domain Model Language

Domain model serves as the very basis of all types of business applications that run

on a Domain, both individual as well as enterprise applications. The objective is to

define the language for domain model in order to determine the internal data structures

or when a schema is used. It is easy to transform or translate the graphical domain

model into textual rule language for a particular domain. In this scenario, the objective

of data structure refers to the representation of a domain model in a changing

environment, as in the case with a rule language. This is because the target of a

language is to map the translated domain model knowledge into XML schema of

DSRL following the rule paradigm.

The main objective is to come up with a flexible rule language translation from a

domain model in order to overcome the domain constraints and also to configure and

customize the process model activities in a volatile environment.

The general language definition is a mapping between a collection of models

along with the models themselves. Usually, concrete and abstract syntaxes along with

the semantic domain constitute a language. Mappings are nothing but the association

of model elements. The correlations among various syntaxes, such as abstract and

concrete, abstract semantic domain are inherent characteristics of a language.

83

5.6.1 Language Description

Metamodeling is used to accomplish specifications for an abstract syntax. We

introduce the Domain Model language by analyzing its syntax definition (Figure 5.6

shows in EBNF notation). The language with its basic notions and their relations are

defined with structural constraints, multiplicities, precise mathematical definition and

relationships which are implicit. The visual appearance of the domain-specific

language is accomplished by syntax specifications, which is done by assigning visual

symbols to the language elements that are to be represented on diagrams.

1 Domain ::= <Domain Model> Domain definition

2 Concept ::= <Concept> Concept definition

3 Class ::= <Attributes>,

<Operation>,

<Receptions>,

<TemplateParameters>,

<Component>,

<Constraints>,

<Tagged Values>

Class Definition

4 <Relations> ::= <Association>|

<DirectedAssociation>|

<ReflexiveAssociation>|

<Multiplicity>|

<Aggregation>|

<Composition>|

<Inheritance/

Generalisation>|

<Realisation>

Class relationships

5 <Association> ::= ‘→’

| ‘✸’

| ‘::’

Structural

relationship between

objects (classes)

of different type

6 <Type> ::= <BuiltinType>|

<UCaseIdent >|

<EnumType>

Domain Model type

concept type or

extended type

enumeration type

list type

7 <PrimitiveTypes> <String>,<Integer>,<Bool

ean>, ...,<Date>

Domain Model

primitive (

built-in) types

Figure 5.6: Syntax definition for Domain Model Language

84

The process of defining or expressing a language in general, or specifically, a rule

language encompasses a variety of activities which primarily involve using the

concepts of abstract and concrete syntax. This is achieved by designing semantics and

grammar. These activities are performed through conceptualization, delineation and

evolving a systematic domain specific rule language system, elucidating the functions

and its frameworks, priorities of operators and its values, naming convention

procedures for internal, and external, etc. A set of rules, conforming to BNF or EBNF

grammars which are processed by rules or process engines to produce the set as an

output is used to express syntaxes. Since, abstract syntax and grammar are manifested

in concrete syntax, the rules, so generated, obey them to define the domain models

and concepts.

Propositions for the operationalization of the association between concrete and

abstract syntax definitions are elaborated in [149-151], which suggest that concrete

syntax definitions are adapted into abstract syntax definitions. Actually, the idea is

based on the concept that concrete and abstract syntax definitions might be incomplete

but by themselves complete each other based on certain heuristics and mapping name

[149]. However, the concrete syntax [150] claims that it is mapped operationally to

the abstract syntax which is based on grammar transformation. The abstract and

concrete syntax definitions are linked through annotations, (An exemplary MDA

approach is the one of TCS for KM3 [152].) However, these propositions do not offer

potential automatic solution for change propagation.

An attribute grammar is used to map concrete syntax to abstract syntax which is

the traditional approach. There are several viewpoints to combine grammar and

attribution variations [153], but they are not appropriate in integrating abstract and

concrete syntaxes. We think that coordinated editor model collection problems are

greater than the challenge faced in concrete or abstract syntax integration.

5.6.2 Semantic Checks

The input model is assumed to be well-formed in the presented transformations, and

this is the basis of the information provided earlier. Hence a separate phase is assigned

85

in order to check the formation of the input included before the actual compilation.

The following constraints are checked in this phase:

• These standardized checks bear some resemblance with the traditional

semantic checking phase of a GPL compiler. Besides, more domain specific

issues continue to exist for reporting to the user domain model. The primary

reason of these issues is the usage of annotation on concept members.

• Moreover, we avoid the usage of the name annotation on a concept member

having list type. Also, as the library used for implementation is not capable of

supporting such behavior, using a unique constraint on such a member is not

allowed (it can be checked only at run-time by the .net library). Adding more

domain-specific checks at compile time is not possible as the checks

enumerated earlier have no cost in the .net compiler [154]. Therefore,

according to us, this makes a strong feature for DSL.

5.7 Summary

This chapter introduced a set of models (template model) are created in the Design

Time of this framework to support the rule generation and configuration in the process

model. An approach to achieve an automatic rule generation and configuration by

combing SPLE and MDA is introduced then the variability and the software product

line engineering principle is applied for customizing the domain template. The model-

driven approach is applied in the software product line to customize the models for

generating DSRs. A process approach is then presented to engineer the dynamic rule

generation at run-time and define the domain template to provide and define models

systematically. The domain model definition and language description were defined

with semantic check.

CHAPTER 6

RULE LANGUAGE DEFINITION

6.1 Overview

In this chapter, the abstract and concrete syntax definitions are formalized along with

rule language formulation. In other words, the aim of this chapter is to define the DSR

syntax to help the translation of a domain model. Further, we utilize this rule language

to represent the syntactic and semantic properties of the domain model, as a set of

generated rules, by using a model-driven architecture (MDA). Here, the syntactical

properties consist of the name, while the semantic properties are defined as a data type

of attributes and functions. In simple terms, it is a knowledge transfer from a high-

level domain model, and the transferred knowledge is then in the form of a set of

DSRs that are expressed as a domain-specific rule language.

The technical contribution of this chapter is to define the domain-specific rule

language. The abstract and concrete syntaxes are defined for generating DSRL, which

help in translating low-level text as a DSR, from the high-level graphical domain. In

chapter 9, the configuration of generated DSR is validated and evaluated on a usability

criteria. In this chapter, A Domain-Specific Rule Language (DSRL) is defined and

discussed the DSRL automatic generation in the next chapter (Chapter 7). This chapter

partially answers the following research question (RQ2) in terms of What is a rule

language? what is the structure of a rule language and how it able uses by non-

technical domain experts.

RQ2. How to implement a framework to support a rule language that is usable by

non-technical domain experts?

While solving this problem, we focus on a domain-specific language, i.e., a rule

language providing the schema to represent the translated graphical model of a domain

87

model into text form in a domain-specific environment where the domain is ‘digital

content technology’. The main contribution is to define the foundation of DSRL in

terms of syntax (abstract syntax and concrete syntax), structure and grammar of the

rule language.

6.2 Introduction

Rules are standard statements that express execution plans, procedures, and policies

while defining terms and governing the overall operations and functions of a business

stand-alone units, in a declarative manner [137, 155-157]. A rule approach is a

methodology—and possibly special technology—by which you highlight challenges

and change policies, from strategic functions and operational perspective of the

system. Therefore, this chapter focuses on a rule language, the structure of language,

and the language definition (as discussed in Chapter 3, Section 3.2.2 (b)). We now

endeavor to provide a formal definition of the rule language solution.

In this context, a defined rule language model includes the information about the

structure of rule formulation. The definition of the model is used for defining the

abstract and concrete syntax, which are essential for model translation from a high-

level domain model to a low-level rule design and generation process. These syntaxes

capture and represent the structure of graphical model elements into the domain-

specific language in form of a set of rules. The definition of a graphical domain model

is defined and presented in Section 5.3.

The rest of the chapter is structured as follows: the structure of the rule language

is defined in Section 6.3 in terms of syntax and language description; The abstract and

concrete syntax are introduced in technical spaces in Section 6.3.1.1 and 6.3.1.2

respectively. In Section 6.4, the DSRL definition and description in ECA models is

discussed. The definition of DSR is detailed in Section 6.4.1 is the definition of DSR

as an event condition action rule language. This section defines the ECA rules and

general expressions. The ECA description and its model definition are described in

Section 6.4.2. It details upon the ECA Model and rule express in XML format. The

88

chapter closes with a summary of the ECA rule approach and fulfillment of the

research objective.

6.3 The Structure of Rule Languages

For defining the structure of a language in general, or a rule language, containing

several kinds of activities such as need to specify the concept of the syntax (concrete

and abstract), develop the grammar and then design the semantics for delineating the

meaning of the language. These activities require one to conceptualize, design and

develop a systematic domain – specific rule language systems, defining the functions

and parameters, precedence or priorities of operators and its values, naming

convention systems for internal and external uses. Certain rules are used to express

these syntaxes. These rules conform to BNF or EBNF grammars and can be processed

by process engines to generate or transform the set of rules as an output. These

generated rules are in accordance with the abstract syntax and grammar, defined by

the domain models since both (abstract syntax and grammar) are reflected in the

concrete syntax.

6.3.1 Rule Syntax

To define or express a language in general or a rule language, that contains various

kinds activities.

“When describing or implementing a language, it is

customary to distinguish between its abstract syntax, i.e.

the hierarchical structure of the language, and its concrete

syntax, i.e. what the language looks like as it is read and

written” [158].

The first activity, or the primary requirement, is to specify the concept of the

syntax (i.e. abstract and concrete syntax), develop the grammar and then the semantics

to suit the meaning of the language. The activities are completed by conceptualizing,

designing and developing a systematic domain-specific rule language. The functions

and its parameters, priorities or precedence of operators and their values, the naming

89

convention for internal and external uses are defined. The syntaxes are expressed with

certain rules, conforming to BNF or EBNF grammars that can be processed by rules

or process engine to transform or generate the set of rules as an output.

The generated rules follow the abstract syntax and grammar to define the domain

concepts and domain models because both the artifacts (abstract syntax and grammar)

are reflected in a concrete syntax. For a definition of the syntax, we use the syntax

definition formularization (SDF) [159, 160]. The SDF integrates the definition of the

lexical and context-free syntax (Figure 7.1 at Meta-metamodel and 7.3 at M3 part of

CIM).

6.3.1.1 Abstract Syntax

The abstract syntax refers to a data structure, which contains only the core values of

data in a rule language, with the semantically relevant data contained therein. It

excludes all the notation details like keywords, symbols, sizes, white space or

positions, comments and colours of graphical notations. The abstract syntax may be

considered as more structurally defined by the grammar and meta model which

signifies the structure of the domain. The grammar of the rule language can be

expressed using BNF grammar. The grammars define the syntax of the language when

analysis and downstream processing of rule language are the main usages of abstract

syntax. The stream of characters are derived the abstract syntax by grammar and

mapping rules.

The resemblance between abstract syntax and meta model is that both of these

refer to the data structure, while ignoring the notation. However, they differ in the

sense that a meta model is generally defined first, disregarding any kind of notation

while the abstract syntax typically derives itself automatically from the grammar.

Hence, it may be concluded that although the abstract syntax is structurally affected

by the grammar, a meta model can be considered as clean because it purely represents

the structure of the domain. However, in practice, the meta model is affected by

editing standard tool considerations.

90

The BNF definition of a language (rule or programming) facilitates in recognizing

the physical text of a program and hence can be considered as the concrete syntax of

the language. A rule-based program/engine is taken as a file of characters, by the

application or software utilities, since the context-free syntax for the language is

satisfied by it, and it also produces a derivation tree exhibiting its structure (parsing

in tree form). This software may generally be decomposed into two parts: The first

part is a syntactic analyzer or parser which is based on the definition provided by BNF

derivation tree from the token list, and the second part can be described as a lexical

analyzer or scanner which can read as text and create a list of tokens.

6.3.1.2 Concrete Syntax

Rule languages generally use textual concrete syntax, which implies that a stream of

characters expresses the program. Modeling languages have traditionally used

graphical notations that have primarily been used in modeling languages. Though

textual domain-specific languages (and mostly failed graphical general-purpose

languages) have been in use for a long time until recently, and the textual syntax has

found a prominent use in domain-specific modeling. The textual and concrete syntax

is traditionally used to represent programs, and this character stream is transformed

through the use of scanners and parsers into an abstract syntax tree for further

processing by programming languages. In the modeling languages, the editors are able

to ascertain a major usage, as it directly manipulates the abstract syntax and uses

projection to express the concrete syntax in the form of diagrams.

The concrete syntax of DSL is expected to be textual by default. In the scenario

where a tool support is available, textual support has long been found to be adequate

for large and complex software systems. The programs (code) are shorter in a DSL as

compared to a GPL for expressing the same functionality because the available

abstractions are generally quite similar to the domain keywords and functionality. An

additional language module suitable for a domain can always be defined easily by the

domain or technical expert. The DSRL is the extended version of the DSL because it

91

is translated from the high-level model and no need to recompile or rebuilt, it is easier

to adapt by a non-technical domain expert.

The graphical model is usually abstract, it hides the functionality and certain cases,

graphical editing may seem appropriate. Editing the program in graphical form is not

necessary in order to see graphical notations in the structures. To knowing and

exploring the detailed overview of complex structures, visualizations signifies an

important role as well.

In order to find an acceptance in the target user community, a DSL has to make a

wise choice of concrete syntax. This holds even for the business domains. In order to

be successful, the DSL has to use notations that specifically fit the domain and may

even have to reuse the existing established notations. The expression of common

concerns become simple and concise with the use of a good notation and the latter

also provides sensible defaults. In case of the less common concerns, a little more

verbosity in the notations is acceptable. In particular, the following language

descriptions are focused while designing a concrete syntax.

6.3.2 Rule Language Description

We introduce the rule language by analyzing its abstract syntax. Figure 6.1 shows a

condensed version of the abstract syntax, implemented to translate a domain model

into ECA type rule language for configuration and customization process model as

well as handle the domain-specific process constraint. The syntax is expressed in

EBNF notation. The descriptions and skeletons of DSRL contain list of processes, the

list of events, events in terms of transition of process model, list of rules, list of actions,

and postcondition and event list. The events can be internal (raised by rules as an

action) or external (raised by process translation handler) or be generated if the

described expression becomes true (condition IF is used). In the case of the process

model, many types of transitions are available during the transition states including:

• [TRANSITION_ (SEQUENTIAL (DISCARD│DELAY))],

• [TRANSITION_PARALLEL (DISCARD│DELAY)],

• [TRANSITION_ CHOICE (DISCARD│DELAY))],

92

• [TRANSITION_LOOP (DISCARD│DELAY)],

Every process model has at least two states where each transition works between

the two states. The flow moves from one state to other state, when multiple transitions

1
<DSRL Rules> ::= <ProcessModelList>

<EventsList><RulesList>

Skeletons

2
<ProcessModelList> ::= <ProcessModel> |

<ProcessModel>,

<ProcessModelList><ProcessModel

>

Activities and

its list

3
 ::= PROCESSMODEL<ProcessModelName> Process Name

4
<EventLists> ::= <Event> | <Event><EventLists> Array of Event

List

5
<Event> ::= EVENT<EventName>IF<Expression>|

EVENT<EventName> IS INTERNAL OR

EXTENAL

 [TRANSITION_ (SEQUENTIAL

(DISCARD│DELAY))],

[TRANSITION_PARALLEL

(DISCARD│DELAY)],

[TRANSITION_ CHOICE

(DISCARD│DELAY))],

[TRANSITION_LOOP

(DISCARD│DELAY)],

 [INPUTS (<InputList>)][OUTPUTS

(<OutputsList>)]

Transition of

BPM

6
<RulesList> ::= <Rule> | <Rule><RuleList> Array of Rules

7
<Rule>

 ::= ON<EventName>IF<Condition> DO

<ActionList> CHECK

<PostCondition>RAISE<PostEvent>

Rule syntax

8
<ActionList> ::= <ActionName><ActionName>,

<ActionList>

Array of

Actions

9
<Acknowledgement> ::= <Error>|<Message>|<Next

Activity>|<Process>| etc

Array of

acknowledgement

Figure 6.1: Abstract Syntax Definition for Domain-specific Rule Language

are taking place in terms of policies and conditions, for validating the starting (initial)

and ending (target) states. In the above, we define the transition as a condition, for

example, if a transition is SEQUENTIAL and it is invalidated (conditions do not apply

or fulfill) during the state change, either DISCARD or DELAY is automatically

processed. A DISCARD is used when system functionalities do not work properly in

for deadlock and live lock situation. And, DELAY is used for getting information

from different source or waiting for input. In the absence of any such condition, the

entire process might be left hanging or crash due to transitions. Therefore, we applied

93

the transition with a basic pattern of process model: Sequence; Parallel; Choice; and

Loop; in our rule language to avoid and prevent the deadlock situation. We assume

that during configuration of the DSR, if the end-user commits any mistake, it will help

in preventing a deadlock. Hence, we validate the effectiveness of the configured rule

in terms of accuracy and quality in Chapter 9 (Table 9.1 and Figure 9.2).

Further, the DSRs contain more than one process name

<ProcessModelList> where each process has multiple sub-processes or

activities. Every activity performs a specified task. The event name should activate

(in terms of ON/OFF or True/False) a Boolean expression to determine if a certain

condition applies or condition fulfills (preceded by term IF), and the list of actions

that have to be performed when event and condition are true (proceeded by terms

DO).

The rule language definition contains the <Acknowledgement> as a process

which delivers a message to the initial state. This is defined at the end of the abstract

rule (Sequence number 9 in Figure 6.1). It can be handled or managed by the message

notification services: like an error, alert, prompt; during the transition of the process.

If multiple functions are executing at the same time or another rule is used by a

different system or application; and deadlock situation or livelock situation is

probable, reset or prompt signals are communicated to the particular system which

wants to configure the rule. The rule language definition is designed to manage the

critical conditions and contains key parameters for handling any unforeseen

circumstances during the transitions.

As an example, we consider processing activities from the case domain - Digital

Content Technology: Extraction; and Machine Translation (MT). The list of

processes, events, and conditions are expressed as:

List of Process

<ProcessModelList>:: =<gic:Extraction>

List of Event

EventList::={gic:File→FileUpload, gic:Text→TextEnd, gic:Text→Parsing ,

gic:Text→MTStart, gic:Text→MTEnd, gic:Text→ QARating, … }

94

List of conditions

 <ConditionList> : =<gic:Extraction.Condition>

 |<gic:MachineTranslation.Condition>

 <gic:Extraction.Condition> ::=IF (<gic:File.FileType(X)::==FileList>

)

 |IF (<gic: File.FileSize::=<Y)

 | IF (<gic: Text.Length::=<L)

 | IF (<Source.Language::==Language_List>)

 | IF (<Target.Language::==Language_List>)

 | IF (<MultiLanguageText(gic:Text)::== True|

False>)

 | IF (<SingleLangugeDetection(gic:Text)::== True|

False>)

Where X is file type, Y is size of file (in MB) and L is length of text.

Source and Target languages are the elements of Language_List.

Language_List(L)={L1,L2,L3,…Ln} ,Source.Language (Ls)∈
Language_List and Target.Language(Lt) ∈ Language_List

For an example, the list of condition is considered gic:Extraction activities

or sub-process of DCT domain. The gic:Extraction focus on data extraction

from different data sources. The core condition of data extraction is source validation.

Thus, the main condition is associated with file validation in terms of FileType

(X) from FileList. The FileType is validated then Other validation

conditions is checked such as FileSize should less than and equal to Y;

TextLenth should less than equal to L; and SourceLanguage and

TargetLanguage always as sub set of Language_List.

6.4 Domain-specific Rule Language Definition and Description

The DSRLs subscribe to the definition of rules which handle the domain-specific

constraint through the configuration of the parametrical value of the constraint. The

domain constraints are configured in the DCT domain. This achieves the required

action dynamically and automatically. It must be noted that the definition is valid in

case the mentioned events occur in the presence of the specified conditions.

95

6.4.1 Definition of Domain-specific Rule Language

A DSRL is formalized as an extended ECA language. It is represented in the DSRL

as a 6-tuple <P, E, R, C, A, Ak>, where P is process model activities, E is an event

identifier, R is a set of rules, C is validation of conditions, A is executing action, and

Ak is an acknowledgement (error, message, next process, etc.).

Event Condition Action Rule Language

These rules are called Event-Condition-Action (ECA) rules and have three parts: the

event, the condition, and the action, specified by the general expression:

ON event IF conditions DO actions

In an ECA rule, the event part describes a rule response on a specific event. It

indicates when and where the response of the rule occurs, and accordingly the rule is

raised. The condition part describes a certain condition, which either holds rules to

triggers or fires. The action part deals with the specific actions which rule performs

in case the event is triggered as well as the condition has fulfilled. In this way, the

actions are followed by further events, which in turn, trigger more ECA rules, thus

making a cycle of event, condition and action of rules until the process ends.

6.4.2 ECA Language Description

The DSRL is now being introduced by which all the subsequent rule languages

(expressions, formulas, etc.) are defined. The symbols in this signature of ECA model

will be described in next section. Moreover, we proposed a constancy of theory

approach and a system that depicts domain-specific aspects of rule programs inherited

from the process model-based applications.

96

6.4.2.1 ECA Model for DSRL

The active ECA language rule has become a major research interest in the present era.

ECA rule is found in a wide variety of applications, from enterprise applications to

electronic applications. In order to organize the applications, the ECA uses event

trigger and event condition mechanisms. For a traditional ECA System, events are

captured by event detectors, and the latter then decides which condition is satisfied

according to ECA and takes appropriate action. However, such research finds limited

attention in applications [161]. Thus, we present a new general model for ECA system.

Once the event happens, the event identifier or the event detector first identifies the

event. Based on the identified event, it selects a rule from the rule list that fulfill the

process activities and further validates the condition list. Based on the condition,

appropriate action is selected, and the rule program is executed.

Event, Condition, and Action

1. Definition (Event) An event is a meaningful entity that happened at a

particular time or space. Event definition indicates that an event can be

triggered by an object state and a status change, triggering a particular

condition at a particular time while maintaining the same communication

between objects and invocation.

2. Definition (Condition) The condition is Boolean in nature. When an event

occurs, condition validates an object attribute in terms of true/false (0/1) and

is thus marked as evaluated. If the value is true (condition satisfied), then the

corresponding action is activated; otherwise action is not valid, and the event

is lost.

3. Definition (Action) Action is an executable program or set of computation

decision. Action provides methods or function invocation, creating,

modifying, updating, communicating or destroying an object, etc.

97

6.4.2.2 ECA Rules express in XML

A language is introduced in order to define ECA rules based on XPath and XQuery

on XML data [162, 163]. XPath fragment is used within the event and condition parts

of ECA rules for selecting and matching XML’s nodes in sub-documents. When

construction of new XML sub-documents come up for processing, a fragment of

XQuery is used. Moreover, we develop techniques for studying the relation of trigger

and activation among rules that can be ‘plugged into’ existing generic frameworks for

ECA rule analysis.

A number of issues evolve due to the semi-structured nature of XML in ECA rule

context:

• Event semantics: The data manipulation in events semantics is simple for

relational data as update, insertion or deletion of events occur when a relation

witnesses a particular event. It is more complex to specify in case of XML

document for insertion or deletion of data. For this, path expressions become

crucial to identify locations within the document.

• Action semantics: Data manipulation actions for relational data are simpler,

because, update, insertion or deletion have only a single relationship impact

upon tuples. However, in XML, it becomes more complex since the whole

sub-document is manipulated by actions and a set of events is triggered by the

insertion or deletion of subdocuments.

• Rule analysis: For relational data, determining trigger and activation of

relationships between ECA rules is simpler as compared to XML. The actions

and events are more implicitly associated to XML and the semantic

comparisons between sets of paths and expressions require more

sophistication in the latter.

The DSR execution semantics and syntax of the XML are described in detail in

[163]. A prototype implementation of the language is described in [162] where the

new ECA rules are parsed and checked by the parser component for semantic validity.

98

Furthermore, the set of valid rules are processed to rule processor for a functional and

operational aspect of the application. The rule processing functionality is encapsulated

by an execution engine, comprising of an Event Dispatcher, a Condition Evaluator

and an Action Scheduler [164]. A Wrapper is used to interface with these three

components. The wrapper either transmits or receives data from the ECA rules. The

updates resulting from rules that have been fired at the head of an Execution Schedule

are listed one by one by the Action Scheduler. In case more than one rule is fired, then

the resulting updates are prefixed to the schedule in accordance with the priorities

attached to the rules.

6.5 Summary

In this chapter, we introduced a DSRL and its artifacts (abstract syntax, grammar and

concrete syntax) . The description of rules introduced and how they worked as well

as the structure of a rule language and are importance. In the structure of rule language,

we define the syntax of the DSRL. Furthermore, we describe the basic components of

rule syntax: abstract syntax; and concrete syntax, in terms of syntax and language

description. The syntax section describes the abstract and concrete syntax. We

presented a DSRL definition and description and defined the conceptual model of

DSRL as well as defined DSRL in terms of ECA language, model. We discuss

expressing it in XML format as an implementable rule. In summary, we define a rule

language whose primary goal is to represent the knowledge translated from a high-

level domain model into a low-level rule language. This helps non-technical end-users

to configure the domain constraints and to run their customized business or enterprise

application promptly based on their business needs and strategies without any

technical knowledge. This was also the main objective of this research. In the next

chapter, we implement the rule language and its syntax to represent the extracted or

translated text model from the high-level domain model with process model activities.

CHAPTER 7

DOMAIN-SPECIFIC RULE GENERATION

7.1 Overview

This chapter focuses on issues relating to generating low-level rules from the high-

level domain model by using a model-driven approach. A conceptual model based on

model approach for DSRL generation is chosen as the most appropriate approach for

the anticipated challenges. The aim of this chapter is to implement a model-driven

architecture (MDA) as the platform of relative metamodel, and the translation of the

graphical model into the text model (rule) at application level. The technical

contribution of this chapter is implementation of an automatic systematic domain-

specific rule generation which uses variability management (discussed in Chapter 5).

Finally, the translation, or serialization of the platform specific implementation

models (metameta model), into a set of DSR is discussed.

7.2 Introduction

The rule generation is an automatic approach that accesses customized domain models

as per Figures 4.5 and 5.3 (de-activation of feature based on the end-user). The domain

models are input for translation process to put output in a specific rule syntax and

introducing concrete syntax (discussed in Section 6.3.1.2). This translation process is

dependent on and guided by the metamodel with the modeling language with its

concepts, semantics and rules, and the input syntax required by the domain framework

for a target environment. In this chapter, we implement the process of domain model

translation in a target rule environment. The abstract view of the implementation is

illustrated in Figure 7.1.

100

The model-driven approach is used in different settings, e.g. Web engineering

uses methodologies such as [165], WebML [166] and WebDSL [167] ; web

application on MVC architecture using a JSF framework Ribarić et al. (2007) [168];

UML models and ontologies for business rule Dioufet al. (2007) [52]. In the context

of Rule language, Rule Markup Initiative (RuleML) [169], the REWERSE Rule

Markup Language (R2ML) [170], and the Semantic Web Rule Language (SWRL)

[171] are the important measures in standardization and exchanging of rules. In this

approach, the principle of MDA is used for extracting the knowledge of high level

domain model into low-level domain-specific rules.

The most important factor whilst generating a rule concerns: the source model is

the domain model and its syntax definition discussed in Section 5.6.1; and target

model is DSR which syntax definition is already described in Chapter 6. Both of these

are artifacts of the model translation [172]. If target artifacts are non-executable but

configurable programs (i.e., rules, source code, byte code, or machine code), one uses

the term translation [173]. In this research, as the source artifacts are high-level

models, we use the one-ways or unidirectional model-to-text translation.

“Unidirectional transformations can be executed in one direction only, in which case

a target model is computed (or updated) based on a source model” [174]. If the artifacts

have different models (graphical to text) in terms of structure, syntax, semantic and,

grammar, the term model translation is used. The former can range from abstract

analysis representations of the system to very concrete models of rule. Subsequently,

model translations also include translations from more abstract to more concrete

models (e.g., from design to rule) and vice versa (e.g., in a reverse engineering

context). Model translations are clearly required in common framework components,

such as rule generating, rule interchanging and parsing.

All translations or transformations (including DSR) perform as model

translations, the source and target models of translation are related to their own

structure9. Explicitly, the representation of model can be represented in tree and graph

9 The child-parent class relationship (generalization association is relationship between base class
and super class or parent class) as well as syntactic and semantic containing

101

(ontology). Every graph contains a class with specific nodes to connect with other

nodes which differ from their child nodes (class hierarchy). However, when traveling

a graph as a class, it is more complex or difficult to visit each and every node

specifically with joint operations. Defining a graph in a relational data structure

(schema or grammar) leads to further joint operations as the relations between nodes

of class and their linked (child) node require being represented using references of a

parent as well. Therefore, class should select from the domain model that matches the

Figure 7.1: Domain Model to DSR Translations

schema of all properties, such as attributes and its association, functions and its

parameters, as closely as possible without losing (semantic and syntactical) too many

identities during translation of the domain model.

These models express in a modeling language (e.g., domain model as a design

model and DSRL as a target model language,) to translate domain models. The

modeling language syntax and semantics is expressed by a metamodel. For example,

the Domain Model (expressed as language description in Section 5.6.1) syntax

metamodel is expressed using class diagrams, whereas its semantic abstractions [172]

is described by a mixture of well-formed rules (expressed as OCL constraints [175]),

OWL language [176] and natural language [177, 178].

102

7.3 Model Translation

In the model translation, the translations of source and target models are distinguished

on the basis of language. The target model is the customized domain template. The

translations among the same language are called endogenous, while exogenous refers

to translation between models using different languages. In the model translation

context, endogenous translation is referred to as rephrasing and exogenous translation

is referred to as translation [185].

Some common instances of translations (exogenous transformation) are:

• An abstract (higher level, such as a design model) to concrete (lower level,

such as a model of a rule language) synthesis rule generation may serve as an

instance, in which translation is made from source model to text (rule, code)

or configurable file or executable code.

• The opposite of synthesis is reverse engineering where low-to-high level

conversion is made.

• Migration where the abstraction level remains the same, but the language of

the program gets altered.

It is proposed that a better approach would be to pass through an intermediate

model (MOF at M3 in Figure 7.2). The intermediate models are carried out at every

level of model-driven approach like in M0, M1, M2 and M3 Level (Figure 7.3). In the

example of a rule generation from a domain model, the proposed approach begins by

translating a domain model into DSRL model using a model translation. It is followed

by model synthesis into text by model-to-text approach means of a rule generator

ontology-based concept model (in Figure 7.2). The advantage of this approach is that

the semantic domain translation is achievable by a model translation, which is a

dedicated conceptual model, while the rule generators need to be in alignment with

the concrete syntax of the target language. The process separates two distinct tasks

(translation and synthesis) that are performed using appropriate tools.

103

Model Type Translations In this type of translation, the source metamodel (stating

abstract syntax, types, grammars, etc.) instances are mapped and related to targets

(types). The connections among metamodels, models and translation is shown in

Figure 7.1. Among the translations, the model to text transformation is crucial and

occurs in translations metamodel. It involves DSR generation and thereby higher

order translation. The meta-metamodel (MOF) is commonly shared by each of the

models. Though it allows multi-directional translations, in practice mostly only

unidirectional translations are supported.

7.4 A Conceptual Model for Domain-specific Rule Generation

A metamodel should be used to explain the relationships and important notions while

the domain model has to be adapted for a domain. The concrete syntax, abstract syntax

and static semantics of the derived notation are included in definitions of the meta

model, as depicted in Figure 7.2, which is an extended version [179]. While the

domain model or any graphical notations such as box, arrows etc. are contained in

concrete syntax, constructs such as classes (nodes), attributes, associations (relations)

and between elements [180, 181] are included in abstract syntax. Sometimes multiple

diagrams or views are used to represent a model and each of the views again consists

of many diagrams. Permissible modeling element type instances (model elements)

generally form a diagram and a set of different model elements are used to refine them.

The modeling element types are categorized primarily into two groups: concepts, and

relations. Relations can be further subdivided into generalization or association. To

form a conceptual model which operates according to rules described in a static

semantic or abstract syntax, the modeling element types are often employed. All are

defined for the purpose of framework design; which can identify features of UML

based notations.

Now, we discuss the fundamentals of conceptual domain modeling, DSL context

along with application in the intelligent content context. In system development

analysis stage, domain conceptual models (DCM) establish as a crucial component,

allowing views and relating certain domains. It facilitates in understanding the needs

104

of the problem domain while forming an important the foundation stone of ontology.

Many tools, terminologies, techniques and methodologies are employed for DCM as

they facilitate in conceptualizing, representing and communicating a problem

situation in certain domains. In the present study, DCM is used to obtain domain-

specific rule language (Appendix B).

Figure 7.2:Domain Model based DSL Concept Formalization

DCM defines constructs based on UML for a DSL, as depicted in Figure 7.2. In

the case of a specific domain, a UML-based language is used for describing important

notions and connections (intra or inter-model) with a metamodel. An abstract syntax

(defined in Section 6.3.1.1), concrete syntax (defined in Section 6.3.1.2), and static

semantics of the DSL form the metamodel. The modeling elements; nodes, classes,

aggregation, association and generalization, and relationships between the modeling

elements [179] are described in abstract syntax.

7.5 Model-to-Text Translations

A generator is able to create or alter a model instead of aiming to produce only textual

output. Thus, we are still left with a model, which requires another generator for

105

production of textual output needed by compilers as well as other tools. Recognizing

the challenges of editing generated rule, it is impractical to create model

transformations for producing models which are required to be edited by the domain

expert at domain engineering level in SPLE platform. In the context of MDA their

exist a few concerns about the generated rule language and grammar as covered in

Section 6.3.

Hence, when model-to-text translations form one part of a chain of translations, it

eventually results in textual output, and the intermediate stages are invisible to the

modeller indicating the importance of model-to-text translations. The metamodels are

in best position to take a decision on whether to generate from models to text in a

single step or in several steps with intermediate transient models, based on the

available tools. For example, in case the generation tools do not possess enough power

to support the mapping from models to the required text in one step, the intermediate

phases become useful. Similarly, it may be useful to translate Domain Model to a

certain DSRL model format if it is tested from that model format to the rule

translations.

7.5.1 Model Driven Architecture (MDA)

Model Driven engineering is the key focus area of Model Driven Architecture (MDA).

The starting point can be assumed as the Object Management Architecture (OMA),

that allowed a schema for distributed systems [182]. The major priorities of MDA is

found in interoperability, portability and re-usability [183]. Therefore, specification is

exclusively required for the system, without taking the supporting platform into

consideration. The transformation of the system specifications to a certain platform

depends on platform selection. In a common pattern of MDA, translation occurs to

platform specific model (PSM) from platform independent model (PIM), potentially

with SPLE approach, as shown Figure 7.4. Each model can potentially be transformed

to the same type (e.g., PIM to PIM) or to any other rule or model. Moreover, abstract

platform serves as the basis of PIM [184], e.g. virtual machines, which also require

transformation, along with the PIM, to the platform.

106

Model Types - In the field of MDA, examples of commonly used models are the

computation independent model (CIM), platform independent model (PIM), platform

specific model (PSM) and platform model (PM). Among these, CIM, PIM and PSM

represent diverse viewpoints and abstraction levels, with respect to analysis, design

and implementation views when compared to traditional software engineering.

Computation Independent Models (CIM) - CIM provides a “computation

independent viewpoint” to the system according to MDA Guide [185]. This refers to

details of system structure instead of computation abstraction. The structure details

are called Analysis model, domain model or business model, based on the selected

MDA approach. In order to fulfill the needs of the domain, the domain experts and

the design experts must work in alignment and this alignment is achieved through the

independent computed model [185].

Platform Independent Models (PIM) – PIM implies that no particular platform

properties are inherent to these types of models, indicating that this model is extremely

general. Examples of PIM targets are technology-neutral virtual machines, a general

kind of platform or abstract platforms [186].

Platform Specific Models (PSM) – PSMs are designed keeping a certain

platform in view. Since they are derived from PIMs, they contain both platform

independent specification as well as platform specific details. Depending on its goal,

PSM can give more or less details. When PSM is loaded with the required information,

which would allow automatic generation and implementation, it may be regarded as

representative of a platform specific model. Hence, it is possible to derive the DSR by

serializing this model. In case, the PSM requires additional automatic or manual

alterations for deriving the platform specific implementation model, it is

representative of the implementation model.

Platform Models (PM) PM is a concept which is not defined with detailed clarity

in the MDA guide [185]. It may be broadly described as a combination of concepts

containing various parts and forming a platform and its intended services. Therefore,

it may be regarded as a model, in a general platform metamodel, though at the same

time, it also disseminates concepts regarding parts of a platform, to be utilized in

107

platform specific model, therefore, providing metamodel for that platform specific

model. A platform model concept [187] is described as per descriptive logistics. It can

be used for automatic selection as well as configuration of some reusable model

translations for a concrete platform.

Table 7.1: gic:Extraction of MDA Metalevel

METALEVEL DESCRIPTION ELEMENTS

M3 MOF, i.e., Meta-metamodels

to define metamodels, the set

of constructs used to

describe metamodels

MOF Class, MOF Attribute,

MOF Association, etc.

M2 Metamodels, consists of

instances of MOF constructs

Class, Association, Attribute,

State, Activity, etc.

M1 Models, consisting of

instances of M2 metamodel

constructs

Class “Upload,” Class “File” or

“Multimedia”, “Input Text”,

“Web URL” or “Text Input” etc.

M0 Objects and data, i.e.,

instances of M1 model

constructs

Upload File1.txt or Audio1.mp3,

Input text google.com, “this is a

book”

7.5.2 Metalevels

MOF architecture is based on four “metalevels”. We define these levels as M3, M2,

M1, and M0, as shown in Table 7.1.

M3 Level

M3 refers to MOF, whose components are constructs supplied by MOF in order to

describe metamodels. The components are Class, Attribute, Association etc.

Essentially there exists a single MOF concept. Many regards MOF as the Meta-

metamodel as MOF is essentially a model describing metamodel. Though using the

meta twice may sound unusual, it is correct in the actual essence of the term. To

elaborate further, MOF may be considered as a collection of constructs.

108

M2 Level

M2 Level is populated by metamodels described through MOF constructs. We have

already encountered few such metamodels, like the UML or a few not so standardized

such as the simple instances that served as our examples. The definition of such

constructs involves MOF Class, MOF Attribute, MOF Association etc. Hence, the

examples of M3 constructs are regarded as M2 constructs in the true sense. Figure

7.3., describes these metamodel defined constructs that serve as examples of MOF

constructs.

M1 Level

This consists of models, which contain examples of M2 constructs. A UML object

diagram has been depicted in Figure 7.3 showing a simple data metamodel that can

be an instance of showing involvement of instances M1 and M2 model constructs. A

data model is depicted in this instance model which describes the Text Input table

having two columns: Event and Text Length. Figure 5.5 highlights, as instance of

metamodel M2, while the basically instance of metamodel M2. The links between the

Web URL class and its child are instances of the M2 association between metalevel

and its metamodel. So, Text Input (M1) is an instance (M2), which is an instance of

MOF Class (M3). Event (M1) is an instance (M2), which is an instance of MOF Class

(M3). The link between Extraction and data source (M1) is an instance of the

metamodel’s association between parent and child (M2), which is an instance of MOF

Association (M3).

M0 Level

The link between File Upload and Text File or Multimedia (M1) is an instance of the

metamodel’s association between MDA metalevel and M2, which is an instance of

MOF Association (M3).

109

7.6 Implementing DSR Generation by MDA

The architecture of the DSR generator follows the MDA four-level model

organization presented by Bézivin [188] as illustrated in Figure 7.3. At top level, the

M3 is the Syntax Definition Formalism (SDF) meta-metamodel, which is the grammar

of the SDF. This level is also known as Computational Independent Model (CIM)

Figure 7.3: MDA Organization View of the Model Approach and DSR Artifact

where the meta-metamodel is defined (and thus conforms to itself) [159]. A BNF

notation can represent the rule in one line. Thus, BNF use as a self-representation

notation. This notation allows defining infinite number of well-formed grammars. A

given grammar allows defining the infinitely many syntactically correct DSR

configuration.

At the M2 level, we define the DSRL metamodel, i.e., the grammar of DSRL with

ECA defined in SDF and this level is called Platform Independent Model (PIM). The

metamodel conforms to the meta-metamodel at level M3. At the M1 level, we define

DSRL models of configuration applications. This is known as Platform Specific

Model (PSM), consisting of entity and definitions. The model conforms to the

metamodel at level M2. The bottom level is called M0, where we define the

configuration of process model customization consisting with DSR in the XML

format, which represent the models at the M1 level.

110

D
o
m

ai
n
 E

n
g
in

ee
ri

n
g

M3 Domain

Variability

Domain Model

(MOF)

Process Model Weaving

Model

M2 Feature

Metamodel

DSRL

Metamodel

 Relational

Metamodel

A
p
p
li

ca
ti

o
n
 E

n
g
in

ee
ri

n
g

M1 Feature Model DSRL Model Relational

Model

M0 Feature

Selection

DSRL Configuration Tuples

Figure 7.4: DSR Generation and Process Model Configuration in SPLE Aspect

7.6.1 Technical Space

A model management of framework which consists of tools, concepts, mechanisms,

languages, techniques, and formalisms linked with specific technology is introduced

in technical space [99]. The used metamodel (M3 level) actually determines this

space. As per Section 6.4.2, we defined the ECA rules in XML, therefore XML acts

as in a technical space, that involves XML Schema as meta-metamodel. Languages

like XML, XMI, XSLT, and XQuery are supported by this space. Also, Object

Management Group (OMG) endorses the MDA as a technical space that employs

MOF as meta-metamodel, supporting domain model for language. There are a number

of technical spaces, a few of which are depended on abstract and concrete syntax;

grammars; and semantics of domain models and its translations, rule and code

technology, or ontologies.

The source and target models of a model translation might be associated with

either same or different technical spaces. If they belong to different spaces, specialized

tools are required for defining translations for connecting the technical spaces. A

111

potential solution is to have model knowledge transfer as exporters at the time of

execution of the translation in the technical space. The solution could be used by the

either the source or the target model.

If we take the translation of domain model into XML rule, for an example, we can

either opt for XML or MDA technical space for executing the translation of models

and opt for XML presenting the translated or generated rules. If we choose XML

technical space, XSLT or XQuery programs can be used for translation of XML rule

into XML document obeying syntax of XMI standard (XML metadata interchange)

as well as semantic abstractions of MOF 2.0/XMI [189] for UML profile standard.

Next XMI parser[190] may be employed for importing the resultant XMI document

in a UML profile tool, in MDA technical space.

7.6.2 Solution Space

The purpose of rule generation framework is to use a Asp.NET 5.010 web prototype

from a domain model that is customized based on end-user requirement. Our

framework is specific for our domain model, but it is reused for different application

within a specific domain. The customized domain model (after de-activation of

feature) provide as input for MDA. The generated artifacts are in the form for low-

level text. These artifacts are an output as a domain-specific rules with the

syntactically concrete and semantically abstract syntax. The customization domain

template is an input, generated rules is an output and configuration are an operation

and functional requirement of domain in terms of constraints. A MOF metamodel will

be needed for translation into MDA technical space. When rules have been parsed into

instances of metamodel, MOF (as per Figure 7.2) translation is considered as

completed. We propose to provide standardization of rule generation and implement

this type of model translation.

To implement the configuration of the domain constraint at the running process

model, the execution component is divided into two steps: 1) DSR is generated

10 https://msdn.microsoft.com/en-us/magazine/dn879354.aspx

112

through customized domain model (activated or deactivated classes) which is adapted

by the parametric domain constraint value 2) DSR is configured for adapting the

customized process model operation in terms of functionality. These steps are

described below in detail.

Step 1: DSR Generation

The DSR is generated from a customized domain model by using the MDA. This is

the principle step as the entire configuration and customization of the process model

is executed by generating the DSR. We have implemented a DSR generation with

customization of domain template with dynamic selection of the required feature.

Step 2: DSR Configuration

The adaptation of customized process is configured by the end-user selecting

information at the time of input. when the end-user. In this step, an approach to reflect

the changes is proposed, which is made at the input of DSR generation by (de)-

activating the domain template. Specifically, DSR generation carries out the three

actions to adapt the customized process model shown in Figure 7.5.

Figure 7.5: DSR Generation and Signature

The principle argument is that customization of process models can be carried out

at run-time, which is made possible, by SPLE. An SPLE facilitates mass

113

customization and satisfies different stakeholder requirements [39] (discussed in

Chapter 4). The SPLE can be implemented in two steps: domain engineering and

application engineering. The domain engineering is responsible for reusable platform

and defining the variability and the commonality of the product line.

The application engineering provides a platform for managing the product line

applications which are utilized or accessed in domain engineering. Therefore, we

consider the SPLE as an enabler for mass customization. Rule generation is challenges

when it is translated from high-level domain model to low-level rule. The MDA [156,

191, 192] concept can be used to generate rules (DSRL), providing definition and

composition (discussed in Chapter 6) of domain challenges.

MDA approach can give us a multiple conceptual platform, which helps the end-

user in developing application models, business logic concept and generating rule for

target platform through translations. With the help of MDA, one can actually put the

emphasis on creating models specifically for application domain, even while

maintaining independence from platform, rather than being obligated to use high-level

language for writing platform-specific rule [193]. Therefore, MDA assists in

increasing the abstraction level in software development.

7.7 Summary

The overview of the implementation of the framework for generating a set of DSRs

was described. The DSRL generator principle with model to text transformation was

defined, the model translation and Metalevels are described. The conceptualization of

Domain-specific rule generation was formulated. The model to text transformation

was presented. Finally, the implementation of DSRL generation was defined and

discussed. This section divided into two subsections: (i) Technical Space; and (ii)

Solution Space. The technical space defines the XML and its components.

CHAPTER 8

PROCESS MODEL CUSTOMIZATION AT RUN-TIME

8.1 Overview

In the last chapter (Chapter 7), the implementation of DSR generation from the

domain template was discussed, along with MDA methods and its components, to

translate the models into rule language. This chapter presents our approach to achieve

the process model customization at run-time. And, to illustrate this approach using

four common steps to manage a MAPE-K loop [194] : (i) Monitor, (ii) Analyze, (iii)

Plan, and (iv) Execute, Knowledge. In our case the knowledge is both the domain

template, and the feature model that manages the loop as a flow at run-time. The loop

components (MAPE-K) are given in Figure 8.1. The technical contribution of this

chapter is to customize the process model, based on end-user requirement, and to adapt

the new process model. As discussed in Chapter 5. Therefore, it is essential that selected

Figure 8.1: Scope of Chapter 8

features and configurable values are verified and validated both prior and post

generation of the set of rules. In absence of such verification and validation, the output

of customization and configuration may be incorrect and error prone, leading to

115

undesirable results. Therefore, this chapter discusses validation techniques which aim

to protect against unwanted feature selection.

Accordingly, the feature model has complementary artifacts that use the

variability points to capture requirements as input. This requires mapping between the

feature model and the domain template where the weaving model is used as a mapping

bridge between both models (discussed in Chapter 5 during the design phase). Here,

in this chapter, the feature model serves as an input of the framework, that is

responsible for activation or de-activation of the domain template components to

customize the whole domain template.

Section 8.2 discusses dynamic adaptation and the implementation of an overall

approach; Section 8.3 clarifies how the target feature is monitored and Section 8.4

explains the analysis of the collected user input information in order to request

activation or de-activation, if target features are valid. Section 8.5 explains the plan

and how the domain template is customized. Section 8.6 explains the execution of the

adaptation on the generated DSR configuration for customization process model.

Finally, Section 8.7 presents the summary of the whole chapter. The next Chapter 9

discusses the evaluation to validate the research claim.

8.2 Dynamic Adaptation Process

This section discusses the implementation of the customization process model based

on the end-user requirements. Chapter 6 shows an ECA based DSRL has already been

provided which allows the end-user to configure the domain constraints. These

configured domain constraints provide functional and operational aspects of business

applications. This framework allows the end-user to select the features, from the

feature model, based on the requirement of process models. The end-user customizes

the process model application and configures domain constraints, at the same

platform, without requiring technical knowledge.

Whenever changes need to be applied in an existing business application, a new

process model needs to be developed. Following the change requests, domain experts

116

are always dependent on developers and process engineers. The developer each and

every time encounters the huge challenge of developing, managing, and maintaining

the regular change requests from the end-user; consistently changing, re-compiling

and redeploying the code on the server.

 Introducing these changes is error-prone for the developer. This proposed

framework is an automated solution for a DSR generation to configure domain

constraints in generated rules and customizes the process model in a single platform.

The validation of feature selection and its mappings describes the realization of target

models by the activities in the process model application.

An ad-hoc approach to building customize process model applications is to use

existing variability mechanisms11 (e.g., if-statements or method dispatch) directly in

the architecture. Therefore, in the dynamic adaptation of our framework, we use the

captured requirement of end-users, in the form of features to help the dynamic

adaptation of process model. In response to changes in the context; the system, based

on selection, can activate, or deactivate, these models to determine the necessary

adjustment modifications in the domain template.

This approach achieves the dynamic adaptation of process models through the

run-time generation of DSR and configuration with the help of feature selection (see

Figure 8.2). The infrastructure of this framework is based on the components of the

SPLE and MDA, for achieving the mass customization of the domain template and

generation of rules from the domain model respectively. In this approach, the DSR

manages the configuration (new system) or reconfiguration (old system) based on

models at run-time.

The Figure 8.2 follows the MAPE-K loop to achieve dynamic adaptation of the

process model. First, the collection of selected feature information is gathered from

the feature variability models by the end-user, which is called Target Feature

Selection. The second component is the Monitor component that monitors the feature

11 Single and multi-model approach discussed in Chapter 1

117

selection information. The Analyze component analyzes and validates selected

features from variability models. The feature and its relationship (in Table 5.1) like

Figure 8.2: Dynamic Adaptation of Process Model Customization

mandatory, optional, OR and alternative types are observed, and the information is

analyzed by Feature Validation. Once the features are validated, the request of

activation or deactivation has been processed, then customization is processed. The

domain template activities or de-activities the models and its component based on

feature selections.

The variabilities of the domain template are activated or deactivated at run-time

and then the model changes. The SPLE architecture supports the dynamic

customization of models for the generation of DSR and adaptation of process model.

The adapted domain template is used to automatically generate a domain-specific rule

plan with adaptation actions to carry out the process model customization

simultaneously. The customized process models are processed on server to Execute

component.

In the Execute component, the generated DSR is mapped with the adapted process

models and configured domain constraints. The configuration DSR and other required

artifacts are deployed or published in the business process/enterprise Execution Server

or Engine at run-time.

118

8.3 Feature Monitoring

The monitoring component in this approach involves capturing basic requirements of

the end-user in terms of the features. The main component in the monitoring is the

feature monitor that observes and gathers the information of target model in terms of

operational requirements of the end-user at the time of feature selection. The Feature

Monitor works as an application that is connected with the domain template at run-

time as an input, or as behavioral monitoring. Therefore, the Feature Selection can be

used or implemented by different mechanisms according to specific needs or

requirements. The feature monitor observes every input from the end-user like

selection or optional input performance. Exceptions can arise when an operation fails

to meet its time constraints in terms of waiting time exceeding a specific value (session

time-out or connection pooling or load pooling in web applications). We have

implemented a Feature Monitor that observes the feature-by-feature selection

triggering, an automatic request for the validation and verification response. Our

motivations to implement, Feature Monitor is as follows: (i). To rely on complete

flexibility in the feature selection information being observed and the frequency of its

observations; (ii). To gather the information on end-user selection type monitoring of

the feature for understanding the automatic feature selection analysis.

The Feature Monitor follows request/response message pair between nodes [195],

in our case, between the Feature Monitor and the Feature Validation. The

request/response approach can be used to determine selected feature availability in

actual feature (domain template) and to find the feature miss matching in the

communication. The Feature Monitor counts the feature selection to monitor the

context and to get measures for the basic feature model types (Mandatory, Optional,

Alternative, etc.) the validation and parametric value verification12 for input

information quality attributes.

This prototype has a feature selection interface where the end-user can select

features, and based on the features, domain-specific constraint parameters can be

12 end-user configures constraint values and validate the type data type like, string, integer, and
date time as input value for configuration

119

selected, based on the rule generation, and then the configuration of domain

constraints values may be given. Several features can be chosen at the same time, and

parametric values for new or updated old process model corresponding to its features

can be added simultaneously.

8.4 Analyzing the Feature Validation

The list of feature collection is processed with parametric values where the input by

the end-user has to be made a model-based composition. This schema flow task is

validated by the feature requirement and verifies the parametric values of every

feature. This is done in order to count the parametric value of features with respect to

every feature collection, which has been monitored by the Feature Monitor. Next

selecting the feature in the feature model, the analyzer evaluates the information

values to find out if any validation and verification (V&V) condition has been

violated.

Here, we have implemented a model view approach for V&V operation for

understanding the feature selection, and its corresponding constraint values, whether

the condition is fulfilled or not. The model is based on the data type corresponding to

domain variabilities in the specific domain. For example, the end-user selecting the

web crawling as a translation memory in the particular condition; in that case, the

regular expression or keyword matching, the web link analysis. Based on features, a

data type of parametric value, which is matched against the analyzer model and the

result obtained from the matching, is processed to validate the information. The

feature can be used as a simple query or string matching or regular expression model.

The same validation is also used for a configured rule, based on this regular

expression, the prototype can then be identified by the number of error preventions

during rule configuration by the end-user.

120

8.5 Planning the Model Customization

When model customization has been requested (i.e., after a feature validation and

parametric value verification condition has been fulfilled), DSR generation carries out

the following steps (8.5.1 - 8.5.2) to plan the adaptation of the process model

customization and domain constraint configuration.

The target model, in domain engineering lifecycle, capture the variability [196,

197] and motivations of present features in SPL. Therefore, with the target model, it

ensures that the present features and the relationship of variability in feature models

has to be in line with the variability of the target model. The product differences can

help us trace back the differences in end-users or stakeholders’ motivations.

8.5.1 Model Process Customization Plan

In this step, the end-user bases the template and feature models and their variability

used for customizing the domain template on target feature selection. Following the

feature selection, the activations or deactivations takes place in the domain template.

In the following case, we specify the target feature to be released from a domain

template by the feature of a feature model in terms of mappings. Based on these

mappings, we protect any type of inconsistencies that might occur due to contradicting

relationships of the target model and their mapped features. This flow schema is the

part of domain engineering lifecycle and the mapping relationship designed by the

domain expert.

The target model is used in a domain template to resolve product line variability

in the intentional space. Hence, the contribution links might meet the expected amount

of satisfaction of domain template to target models in terms of rule generation and

customization. The process model configuration with domain constraints features

selected, and their constraints value could help in achieving the adaptation of process

model based on the selection of appropriate product line variant-based intentional

variability. For instance, the challenge of the file upload is the size of the file as it

cannot be modified by end-user from X MB to Y MB. Goals and tasks facilitate in

121

choosing a proper variant of product lines based on intentional variability. In order to

reduce cost delivery, the target model may serve as a criterion for resolving product

line variability in the item delivered goal. Target models may be described as below:

Customize Model A domain template DT= D, P, F, f extends a target model DT= Df,

Pf as follows: The decomposition relation D is extended by decompositions that cover

product line variability Df⊆D × Pf⊆ P × {OR, XOR, AND, AND-O, OR-VP, XOR-

VP}. Here DT is Domain Template, D is Domain Model, P is Process Model F is

Feature Model and f is selected feature.

The explicit mapping (those coming from domain expert) may be represented in

this model by developing a mapping relation for each mapped task. To illustrate this,

consider, the gic: Extraction where File Upload task is mapped to the

Document File and Multimedia features, therefore, a mapping relation (Extraction,

(File Upload, {Document File, Multimedia}), (Input Text, {Web URL}, {Text Input}))

comes into existence. Once there is explicit mapping among features in a feature

model and tasks in domain template, the intermediate tasks, and target features may

be implicitly mapped by present relations in templates and feature models. For

instance, it can be inferred that the target gic:Extraction managed in the

templates model is implicitly mapped to the feature gic:Extraction

management (see Figure 5.4).

Figure 8.3: Customization of Domain Template Plan

122

8.5.2 Adapt the Domain template

In this step, DSR generation plan and configuration contains a set of action for (De)-

activating components and adapting the domain template according to the target

model (end-user feature selection). The customization actions are stated as domain

template activation (DTa) and domain template deactivation (DTd). These operations

take variability models as input, and they calculate the modification to the domain

template by activating (adding) DTa or deactivating (removing) DTd variant in domain

template (Figure 8.4). The customized domain template eventually causes the

activation or deactivation of the domain template that orchestrates the generation of

the DSR and the process model’s operations adaptation.

In order to perform activation and deactivation actions, the domain template

associated with the weaving model mapping between features is responsible for

activating the new customization of the domain model and related process model. In

this way, the adaptive domain template only active when it is related to the selected

feature in the domain template customization. The domain template is customized

through the activation or deactivation of features. The currently active features, which

have not been deactivated in the customized domain template of the variability model,

remain still active.

Example: Customization Plan of gic:Extraction

When activation and deactivation are applied to the domain template during the

initial stage of the case study (Figure 8.4), the resulting customization plan

forthcoming as:

DT= {File Upload {Document File, Multimedia}, Input Text {Web URL, Text Input}}.

DTa= {Input Text {Web URL, Text Input}}.

DTd= {File Upload {Document File, Multimedia}}.

These actions express how to reorganize the variable elements in the domain

template to move from one state (domain template) to other state (required models)

123

when these feature elements are activated or deactivated in Extraction sub-process of

DCT.

Figure 8.4: Overview of Process Model Customization

124

8.6 Executing the Customization Adaptation

This section discusses the implementation of customization process model through

feature selection in feature model at run-time. The selected features are reflected as

an activation and de-activation of a feature component in the domain template.

8.6.1 Adapt the Process Model Customization

In this step, the target model applied the customization plan (with DTa and DTd

actions) on the domain template (as per Figure 8.5). Specifically, it carries out the

following actions:

1. Fresh target model is planned to be created at domain engineering and design

time. The default domain template is loaded, and the features are selected in

application engineering at run-time. There is no need, any extra effort to

customize the running instance version due to the flexibility of the DSR

configuration (XML format). The loaded models are activated or deactivated

in the feature according to needs of the end-user.

2. Domain template deactivates all the possible modeling elements except

mandatory features at the variation point while the running both models, and

is adjusted by DTd actions.

3. Domain template activates all the modeling elements in the variable model at

the variation point of the running both models according to DTa actions.

4. The new version of target model is deployed automatically and is

correspondingly configured rule in the running model.

A summary of example

a) Initial feature model arrangement.

b) Feature selection in terms of feature activate (green with check sign) and

deactivate (red with cross sign) form the feature model

125

c) After customized process model based on feature selection by the end-user has

been executed.

Figure 8.5: Adaptation of Customized Process Model

The section shows the initial feature model (variability model) of DCT domain,

we select a sub process as a gic:Extraction for our case study. Here, the feature

model contains the possible feature of machine translation sub-process. In Section 5.4,

the activation and deactivation of feature in domain template are based on the

variability model, which is selected by the end-user. Finally, in this section, process

model activates and deactivates the feature plan and execute the DSR generation and

configure the process model.

8.7 Summary

This chapter presented an approach to achieve the dynamic adaptation of

customization process model at run-time. An approach to the dynamic adaptation of

the process customization was introduced at run-time and discussed the need for

process model customization. Then, the collection of information was monitored in

terms of feature selection and constraint value as a parameterized input. Afterwards,

the analysis of collected information and verification of the condition that was fulfilled

were described. Here we are discussed the validation of the feature model. The

customization was described in terms of activation and deactivation plan and

adaptation of domain template, i.e., specifically, the DSR generation, a configuration

gic:Extractions Customized

Input TextInput

Web URL

Text Input

Source Text

126

plan and customization of the process model. Finally, the action that is carried out by

DSR generated and customized process models, to execute the adaptation were

described.

127

CHAPTER 9

EVALUATION AND VALIDATION OF THE ARTIFACT

9.1 Overview

In the previous chapters, we presented a DSR generation and configuration solution

for process model customization. These rules are the final solution elements for

configuring the domain constraints in the domain-specific environment. The final

solution helps in adapting changes in various applications, such as BPM. In this

chapter, we describe the process of validation of the research claims, which were

presented in Chapter 1. In particular, this includes a certain set of generated domain-

specific rules, to meet the user requirements. The objective of this chapter is to:

• Evaluate the efficiency and effectiveness of the rule configuration process and

establish to what degree the semi-automatic configuration is better than the

manual configuration.

• Demonstrate the user satisfaction and usability of the framework in a real-

world scenario.

This chapter presents the results of the experiments, and their analysis. This

validates the research claims and answers the research question (RQ3). It also partially

answers RQ2 with regards to the usability of the developed prototype by non-technical

domain experts (as addressed in Section 1.3). Among the different types of

investigation, we use a combination of evaluation techniques, which are defined in

the Chapter 3. In the next Chapter 10, we will focus on the conclusions.

9.2 Introduction

Nowadays, business applications struggle with rapid changes in the business itself due

to the dynamic and competitive environment [198]. These changes are continuous,

128

and process models have to be continually customized to meet the new requirements

of end-users, in that particular domain (see Chapter 1). Incorporation of all changes

in business applications are time consuming, because of the complexity of the

business application (e.g. heterogeneous data sources, hundreds of software libraries,

etc.) and rigidity of the process model (hard-coded components). Therefore, the

application passes through several stages such as development, deployment on the test

environment: testing, test reporting, redeveloping and subsequently testing when

needed. In many cases, the required changes are incorporated rapidly and

implemented without following any processes which increase the time to deliver the

product/service to the market.

In the standard set-up, the changes should be first understood by a domain expert,

who should then be able to explain it, to a program developer. Afterwards, the

developer should develop the application according to his interpretation. This

development process takes time and additional human resources, with beginning to

end and end-to-end loop reparative process. The more iterations, the more prone to

errors the code becomes, to build/compile the code and to install it on the application

server. With every code change, we need to go through the same process and

sometimes reboot the server.

In contrast, the proposed solution allows a non-technical expert to introduce the

changes without knowing about the technical details. We discussed the solution and

its components in Chapter 4 and explained each separate component in Chapters 5, 6,

7, and 8. The design of a domain-specific system, or an application, that aims to

resolve domain related issues, influences the functional and operational quality (FOQ)

of the final framework solution. We discuss several challenges that impact the FOQ:

the first part of this work concerns the evaluation of the proposed generated DSR

configuration in terms of efficiency and effectiveness. The second part of the

evaluation focuses on the SUS satisfaction as well as the efficiency and effectiveness

of the framework as judged by the end-user experience. For user experience

evaluation, we use usability as defined according to ISO 9241-11 [199]. Broadly,

usability is defined as “the extent to which a product can be used by specified users

to achieve specific goals with effectiveness, efficiency, and satisfaction in a specified

129

context of use”. Usability has been considered as an obvious requirement for all genres

of technology [200] and is evaluated in terms of effectiveness, efficiency and

satisfaction with which specified users achieve the stated goals in particular

environments. These usability objectives have been considered independent of any

specific domain of human activity, so they have been taken into consideration for

design and evaluation of various software systems, including digital technology [201].

We present our finding on usability (Evaluation Criteria) in Section 9.4.1.

The main concerns for evaluating the configuration of the rule generation

framework are its usability, efficiency, and effectiveness. These help us analyze how

useful the proposed solution is, and how effectively it solves the problems faced by

the end-users in the real-world settings. The objective here is to make the solution

appropriate, and suitable for answering the real-world problems, faced by the end-

users. The efficiency of using the semi-automatic (proposed) versus manual

(traditional or baseline) configuration, is measured by the difference in time, required

by both approaches for execution. The effectiveness of rule configuration is measured

in terms of error prevention and correction in the proposed solution. The satisfaction

is completely subjective, and the SUS helps to clarify the answer to it. Our

experimental results show and prove that our approach can be validated with statistical

significance.

9.3 Evaluation Process and Planning

The objective is to evaluate the generation of rule based on verification of the feature

model and its configurable parameters. In this regard, first, we need to confirm that

the framework is valid and represents real-world changes. Second, we evaluate how

useful the framework is for the rule configuration by end-user and how easily it could

be understood, learned and adapted by the users.

The steps for evaluation process are as follows:

1. Define the evaluation strategy and criteria

130

2. Evaluate the rule configuration change process using empirical case studies in

particular domain

Define Evaluation

Strategy
Define and Design

Experiment

Introduce DSR
Configuration

process Run Case
Study

Data collection from
experiment and

experience of user

Statistical Data
Analysis

Web Prototype

User Groups

DSR Configuration

Participants

Evaluation Criteria

1 2 3

45

Outcomes

Figure 9.1: Evaluation Process and Planning

3. Conduct the user experience evaluation

4. Collect data from different modes13 of tasks (experiments) and assigned tasks

as a participant activity such as configuration time

We now describe these steps in more detail:

The first step (Figure 9.1) of the evaluation process is to accurately define criteria

used to determine suitability of an artifact. The evaluation criteria are derived from

the primary question of this research, i.e., how to configure the generated rule with

minimal technical knowledge and research output – a configurable domain-specific

rule that customizes the process model. The evaluation strategy is described in Section

9.4.

In the second step, we evaluate the rule configuration change process using

empirical case studies in particular domain. Below, we discuss the experimental setup

13 Mode of tasks like semiautomatic, manual and SUS

131

(in terms of domain selection and rule configuration development), empirical results

and analysis of the empirical results. For empirical findings and statistical analysis of

the configuration of the rule generated in the framework using empirical case studies

with two different groups in Digital Content domains, we conduct a web-based user

experience usability evaluation between manual and semi-automatic configuration.

We designed tasks and divided them into two different categories. The first category

of the task is to configure the generated rule which is divided into two modes, i.e., the

manual and the semi-automatic. The manual model is defined as a simple text editor

where the rule can be can be configured by the participant. Semi-automatic model is

defined as a text box corresponding to each constraint parameter which are needed to

be configured in the rule. Each participant had two manual and two semi-automatic

tasks which were assigned automatically at the time of registration. The second

category of the task is SUS. It is a completely subjective task based on five positive

and negative sentiment questionnaires. Each sentiment has a different type of

calculation (illustrated in Table D1 in Appendix D). Each user has independently to

finish 5 different tasks which are pre-assigned on their dashboard in the web interface,

after login. The user needs experience as an experimental setup is required in data

collection for evaluating the performance of rule configuration in experiments under

a controlled environment.

The third step of the evaluation process of this research study is to conduct the

user experience evaluation. Normally, the prototype evaluation takes 20-30 min

during registration; we ask participants about domain knowledge14, skills, and

technical knowledge. The objective of organizing the evaluation is compared to the

manual and semi-automatic configurations. Additionally, it also allows to determine

which system is better in terms of usability.

At the end of the evaluation, we collected the data of all the tasks and participant

activity such as configuration time, what was configured, how much time was taken

for configuring the tasks. A number of errors while the tasks were being configured,

14 Domain knowledge about Digital Content Technology – Domain knowledge is part of the design. It
means, the selected participants have certain domain knowledge (Specifically, how to extract the
data from different source).

132

during feedback pertain to the concerned parameters mentioned in the last stage of the

evaluation process. This phase may be interpreted as a collection of participant’s data.

Further, a combination of qualitative and quantitative approaches (with a focus on the

qualitative one) was chosen to evaluate the present study. SUS was adopted in this

step to collect the quantitative data as it provides a mechanism for measuring the

usability satisfaction of the end-user [202].

Table 9.1: Summary of Challenges, Proposed Solutions, and Evaluation Methods

Analysis of raw data and transforming it into the practical and meaningful

outcome was the last phase in this evaluation process. The analysis aimed at retrieving

some relevant data which facilitate in gauging the issue or specific circumstances by

examining the situational perspectives and behavior of individuals within the context

[203].

9.4 Evaluation Strategy

We use both quantitative and qualitative research methods and analysis throughout

this evaluation. The evaluation strategy of the present study broadly encompasses the

C
h

a
llen

g
e

E
v
a

lu
a

tio
n

 C
riteria

E
v
a

lu
a

tio
n

su
b

-criteria

 S
o

lu
tio

n
 A

rtifa
cts

Evaluation

method

E
x
p

erim
en

ts

S
yste

m
 U

sa
b

ility

 S
ca

le

C1 Efficiency Performance Processing time

D
S

R

C
o

n
fig

u
ra

tio
n

√ √

√

C2 Effectiveness Accuracy Error detection √ √

√

Quality Error prevention √ √

C3 Satisfaction Effectiveness O
v

era
ll

F
ra

m
ew

o

rk

 √

Efficiency √

Learnability √

133

following methods, selected and based on the design science research as discussed in

Section 3.3.4:

• Case study

• Controlled user study experiments

• End-user opinions and feedback analysis (SUS)

9.4.1 Evaluation Criteria

The solution should be effective, efficient and satisfactory according to the end-user

when they configure the domain constraints with specific conditions. We evaluate our

contribution in usability of the following aspects which are illustrated in Table 9.1 and

Figure 9.2. One component of the ISO standard 9241, highlighting to the usability

specification, applies equally to both hardware and software design. In Chapter 4 of

this thesis, the following definition of usability was provided:

Figure 9.2: Usability Criteria

• Effectiveness: Each activity contains certain parameters (see Tasks and their

Distributions for details in Section 9.6.4). An evaluation of the effectiveness

of the technique is done in terms of accuracy and quality in the obtained results

when using the generated rules as stated in Chapter 6 and 7. The manual and

semi-automatic configuring of the rule are while studied, the accuracy is

measured based on monitoring the errors, in terms of protection (text field

validation), message quality, and error correction (discussed in Section 9.8).

134

o Accuracy of configuration: the capability of the solution to produce

error-free rule configuration and deployment on the server. An error-

free configuration helps to run the process model application smoothly,

i.e., without interruption while producing accurate output. We evaluate

the accuracy by analyzing the system’s capability for error prevention,

error correction and error message.

o Quality of configuration: the process of validation and verification of

the information value before finalizing the configuration. Quality of

configuration refers to the system’s capability to prevent functional,

operational and data errors (such as type-, semantics-, syntactic-

mismatches). In our experiments, we consider the data type of the input

value as a quality parameter where we calculated how many errors

were prevented through dynamic validation, at the time of semi-

automatic configuration.

• Efficiency: refers to ensuring that the attributes of the generated rule require

minimum configuration and processing time. The processing time is estimated

based on an evaluation of configuration of the constraints, and feature

parameters. Afterwards, using randomized tasks for generating rules and

parametric values of different sizes, we determine the time needed to configure

the rules. The configuration time is judged by the time for assigning values to

the parameters by the individual participants (discuss in Section 9.7).

o Performance - The performance is measured based on configuration

time, that includes run-time semi-automatic and manual configuration

of the rule, domain constraints and their validations. In other words, it

refers to the capability of the solution to be able to provide the required

performance (in terms of time), relative to the number of resources

used under stated conditions.

▪ By comparing the time for rule configuration between manual

and semi-automatic mode, we measure the time improvement

135

of the semi-automatic configuration over the traditional or

manual one.

• Satisfaction: the support provided by the tool that allows end-users to select

features and generate rules. This includes the implementation of the rule

configuration. We use the SUS from end-user intervention to evaluate the

satisfaction of the end-users (discussed in Section 9.9).

9.5 Case Study – Process for Data Extraction Digital Content

In Chapter 7, we presented a domain-specific rule generator which we refer to as

DSRL. We evaluate our DSRL in a case study, through which we validate the research

claim (RQ3) of this thesis (i.e., research and industrial applicability, see Chapter 1).

This case study considers a scenario of customizing Digital Content Technology

(DCT) service for machine translation. The DCT domain is a significant domain that

contains multiple activities. The main process activities are: data extraction,

segmentation and Name Entity Recognition, Machine Translation, quality estimation,

and post-editing. These are illustrated in Figure 4.3; an overview of this case study is

given in Section 4.3. For demonstration purposes, we focus on the Extraction

sub-process which is a part of the DCT business process that extracts the data from

different sources like from text, web, document and multimedia sources (see Figure

9.3). The data extraction is an initial and fundamental operation for retrieving data for

machine translation. The objective of this case study is to validate the research and to

prove which mode of configuration is better in the overall framework, i.e., the

usability evaluation. In Chapter 3, we already explained, why this case study (Section

3.2.2) is relevant for our research.

We now conduct a comparative analysis of the manual and semi-automatic modes

for the extraction activity. After carrying out the literature review and the interviews

with BPM industries (Section 3.3.1 Problem Identification and Motivation), we

considered a manual configuration as a baseline (or traditional) system to compare

against the proposed semi-automatic. The emphasis is laid on analyzing the relative

136

benefits of the proposed framework in a manual approach regarding the efficiency,

effectiveness, and satisfaction with function and operational compliance support. The

feature selection and configuration scenarios involve modifications resulting from the

improvement of the complex process activity that affected the function and operation

of the process.

Figure 9.3: Extraction Sub-Process of the Digital Content Process.

The experiment was performed on an extraction sub-process of DCT of a real

business process model. As per Figure 5.5 and 9.2, there are 8 classes and 8 activities

(T1-T8) respectively in this case study: illustrating 27 class attributes are used in the

entire experiment.

9.6 Experimental Design

The experiment was set up as a user experiment remotely through a web portal15,with

a between-subjects design. The user experiment was chosen remotely to be able to

reach a wider audience of the domain and non-domain users in the domain of the DCT.

An advantage is that this is a controlled experiment, with fixed tasks having different

modes of settings (manual and semi-automatic). There is no control over the

configuration value in manual setting. We use both analytical evaluation and

experimental evaluation to evaluate the manual and semi-automatic configurations for

performance in terms of efficiency and effectiveness. The analytical evaluation is used

15 http://dsrl.nlplabs.org/

137

to evaluate the performance in speed/time, accuracy in error, correctness, and

satisfaction. We implement a prototype to experimentally evaluate the manual and

semi-automatic performance at process run-time for performance.

9.6.1 Definition and Planning

The experimental evaluation described in this chapter considers the strategy for a

single product and team [204], where a researcher is interested in a better

understanding of the quality of a product (software/technique), using an a priori set of

variables for observation. The evaluation considers a number of experiments in

Table 9.2: User Experience Evaluation Methods

Evaluation Factor Evaluation context

Lab tests Prototyping- Framework

Field tests Competitive evaluation of prototypes in the manual and

semi-automatic environment

Field observation Experiment result statistical analysis and observation

Evaluation of groups Evaluating collaborative user experiences

Instrumented product TRUE Tracking Real-time User Experience

Domain Digital Content Technology

Approach Evaluating UX jointly with usability

Evaluation data Focus groups (multiple groups or measures,

participants) evaluation (Quasi-Experiment)

User questionnaire System Usability Scale

Human responses PURE - preverbal user reaction evaluation

Expert evaluation • Expert evaluation

• Perspective-Based Inspection

the DCT cases to investigate the effectiveness, and efficiency of the proposed

framework in different conditions with the domain constraint (as per section 9.4.1)

and its values. Table 9.2 gives a brief overview of the entire experiment.

The semi-automatic performance measure and quality assurance processes are

needed as the manual rule configuration by different end-users for statistical analysis

138

of the efficiency in terms of configuration time, and the effectiveness in terms of error

propensity, accuracy, and correctness.

A semi-structured questions survey was used for collecting qualitative data. The

survey consisted of several open-ended questions relating to the usability of the

system.

Initially, we developed a web-based prototype for rule generation and

configuration with different tasks for participants in the same application. This

assignment is called SUS in Figure 9.4 -with blue back color and red foreground color.

The SUS contains a set of pre-defined questions on system usability. Those

participating in the experiments are asked to select the score based on their own

experience, and then give critical feedback in terms of their satisfaction with the

system in terms of the scale of effectiveness and efficiency.

9.6.2 Experimental Procedure

The experiment was performed by distributing a web link (URL) among domain users

at the DCT Centre as well as at other organizations. The web link directed and asked

the users to register the user with a consent form. After registration, the user can login

and access the prototype. The welcome page defines the user-assigned tasks and

explains the process of experiments as a power-point presentation tutorial. The PPT

tutorial of the prototype was shown, followed by a short practice session.

After watching the tutorial, users can choose the task, and each task mentions the

task type: manual, or semi-automatic. The users were instructed to select the feature

model based on their assigned tasks and generate the rule. The configuration of the

rule was carried out with two interfaces: first was the manual implementation and

139

Figure 9.4: Assigned Tasks on Dashboard of Participants

the second was the semi-automatic. After generating the rule, participants configure

the rules according to their requirements. The final steps consist of a SUS with ten

different questions. A session takes about 15-20 minutes per user (sequential steps of

experiment in Appendix C). This user experience experiment was a voluntary task,

and no payments were made for participation.

9.6.3 Group and User Selection

In our research, more than one task was evaluated with different parameters, while

having participants from a single group, as the tasks for participants were not

randomly assigned. It was a controlled experiment, where each participant had five

certain tasks in a different mode. This type of experiment is called a quasi-experiment

[205]. The structure of the study follows factorial design because there are two or

more independent variables in our research. The factorial design determines the

number of conditions, so we consider adapting between groups, and within group, or

split-plot. The between groups participants are only exposed to one experiment, and

within groups participants are exposed to multiple experimental conditions. We used

the within group participants for multiple tasks and conditions.

9.6.4 Participants and Tasks

We selected participants from the digital content domain organization and institution.

The participants worked in the area of web mining, machine translation, information

retrieval and other digital contents. There were twenty-four participants in this

140

experiment: all the participants were divided into two different experiments using,

manual and semi-automatic configuration. The experiment results were compared in

terms of individual performance as well as experimental performance, and it included

SUS score and the feedback of each participant.

Table 9.3 : Tasks Details of DCT Case Study

S.No. Activities of Process

Model (Tasks Names)

Configuration

Parameters

Appendix

1. Multimedia 8 C6

2 Document File 7 C8

3 Web URL 6 C5

4 Text Input 6 C7

Tasks and their Distributions

The total number of combinations of the features involved in experiments is 4!

(4x3x2=24). As each task has been divided into two categories like manual and semi-

Table 9.4 : Example of Web URL Task

S.No. Tasks

Names

Name of Configuration

Parameters

Example

1. Web URL Input Text This is a source text for

English to German

translation.

2. Text (Source) Language English

3. Event KeyPress

4. Text Length Word count

5. URL Name https://translate.google.com/

6 Target Language German

141

automatic, therefore, the total number of tasks is 24x2=48. In Table 9.3, we mentioned

the tasks performed by the user which are Multimedia, Document File, Web URL, and

Text Input. We also provide the number of parameters configured for individual tasks.

In Table 9.4 present an example of Web URL task. Common errors occur in parameter

configuration for example, the participants wrongly entered invalid Web URL.

Table 9.5: Tasks Distributions of DCT Case Study

Experiment

Mode

Number of

Participants

Number of Tasks

Assigned to User

Total

Tasks

Manual
24 2 48

Semi-automatic
24 2 48

SUS
24 1 24

automatic. Therefore, the total possible tasks (from Table 9.5) in one mode is 48 and

total possible tasks assigned is 96. The distribution of tasks is listed in Table 9.5.

Therefore, we considered 50% of the total possible combination of the tasks as

distributed among the 24 participants in our experiment.

9.7 Evaluation of DSR Configuration: Efficiency

The objective is to evaluate the efficiency of the framework, based on the

configuration time or processing time of the artifact or solution. First, we need to

compare that the proposed framework is efficient with respect to the configuration

time. Second, we evaluate how useful the framework is for a non-technical domain

expert and non-domain user, and how easily it could have been understood,

configured, and adapted by the end-users. We evaluate the configuration of the

generated rule framework, using an empirical case study between the manual and

semi-automatic modes.

The performance is measured at the time of completion of tasks (the configuration

time), in manual and semi-automatic experiments, which are assigned to end-users.

142

We evaluate a considerable number of parameters involved in every task during

experiments, based on which, the performance of the tasks is calculated. The

assumption behind these criteria is to compare the time and effort required to

implement the configuration of the generated rule that has a large number of

constraints, or parametric values. For each evaluation strategy, we count the number

of configuration parameters and how much time is taken for the configuration of these

parameters. This measure is useful when there is a need to compare strategies using a

number of parameters, irrespective of their configuration time.

9.7.1 Result and Analysis

The output of the manual rule is considered as a baseline. The standard manual

configuration must be measured and compared to establish a baseline. In order to

control the experiment, the configuration time needs to be kept within a set limit, and

has to remain relatively constant. This allows for a comparison of the manual

(baseline), and semi-automatic values, once we compare both the values and measures

to indicate the performance.

The configured manual rule is considered as a baseline or standard for measuring

and comparing tasks with a semi-automatic configuration. Our experiment is a

controlled experiment where the set of limited parameters configured, are dependent

on the tasks. We recorded the configuration time for both modes (manual and semi-

automatic) and compared them.

Table 9.6: Paired t-Test Sample Statistics of Manual and Semi-automatic

Paired Samples Statistics

 Mean N Std. Deviation Std. Error Mean

Pair 1 Manual 2.0102 48 .39446 .05694

Semi-automatic 1.1423 48 .38007 .05486

Statistical Evaluation efficiency of Manual v Semi-Automatic Configuration

(Paired t-Test)

The following 3 tables illustrating a paired t-Test are: Paired Samples Statistics (9.6),

Paired Samples Correlations (9.7), and Paired Samples Test (9.8) which present the

143

statistical paired t-test evaluation on the (manual and semi-automatic) configuration

time. Table 9.6 (Paired Samples Statistics) gives univariate descriptive statistics such

as mean, sample size, standard deviation, and standard error for each of the entered

variables. Table 9.7 (Paired Samples Correlations) shows the bivariate Pearson

correlation coefficient with a two-tailed test of significance for each pair of variables

entered. The Table 9.8 (Paired Samples Test) gives the hypothesis test results.

The Paired Samples Statistics result recurrences what was configured before the

tests were executed. The Paired Samples Correlation table highlights the information

that the manual configuration and semi-automatic configuration times is significantly

positively correlated (r =. 457).

Table 9.7: Paired Samples Correlations of Manual and Semi-automatic

Paired Samples Correlations

 N Correlation Sig.

Pair 1 Manual & Semi-automatic 48 .457 .001

Interpretation of Paired Sample Test is as follows (reading from left to right):

• First column: the pair of variables being tested, ordered, and then the

subtraction is carried out.

• Mean: the average difference between the two variables.

• Standard deviation: the standard deviation of the difference scores.

• Standard error mean: the standard error, i.e., the standard deviation divided by

the square root of the sample size.

Table 9.8: Paired t-Test Samples of Manual and Semi-automatic

Paired Samples Test

Paired Differences

T df S
ig

.
(2

-t
ai

le
d
)

Mean

Std.

Deviation

Std.

Error

Mean

95% Confidence

Interval of the

Difference

Lower Upper

Pair 1 Manual –

Semi-

automatic

.86792 .40371 .05827 .75069 .98514 14.895 47 .00

0

144

• T: the paired t-Test statistic (denoted T).

• df: the degrees of freedom for this test.

• Sig. (2-tailed): the p-value corresponding to the given test statistic t.

Result and Discussion of Pair t-Test

Manual and Semi-automatic scores were statistically signification correlated (r =

0.457, p < 0.001). There was a significant average difference between manual and

semi-automatic configuration time (t47 =14.895, p < 0.001). On average, manual

configuration times were .86792 higher than semi-automatic time (4.0371% CI

[0.75069, 0.98514])

It shows that semi-automatic configuration is more efficient than manual

configuration. We measured and compared the configuration time between the manual

and the semi-automatic modes.

Comparison of Manual vs Semi-Automatic Mode

In Figures 9.5 and 9.6, we show a comparison between the manual and semi-

automation configuration of rules with respect to comparative configuration time, i.e.,

Figure 9.5: Comparison between Semi-automatic and Manual Configuration Time

0

0.5

1

1.5

2

2.5

3

3.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

C
o

n
fi

gu
ra

ti
o

n
 T

im
e

(M
in

)

Number of Tasks

Configuration Time of Manual vs Semi-Automatic
Mode

Manual Semi-Automatic

145

the time to finish each task is given in minutes. Figure 9.5 illustrates the time taken

for each of the 48 tasks. It shows how regular changes affect the configurationtime for

Figure 9.6: Average Time Taken in Manual and Semi-Automatic Configuration

both the manual and the semi-automatic modes. We observe that the semi-automatic

mode is more efficient than the manual one. In Figure 9.6, we calculated the average

time taken in each mode: the AvgManual = 2.010 and AvgSemiAuto = 1.142. That is, the

semi-automatic mode is 56.97% more efficient than the manual one.

9.7.2 Discussion

In the DCT domain, the end-user can change their machine translation system, input

data type, source language, target language, file type, file format, and the length of the

text. The empirical observation shows that parametric semi-automatic configuration

of the generated rule, takes lesser time than the manual configuration from t Pair Test,

and as evident is lesser than the manual rule configuration, as illustrated in Figure 9.5.

The average time taken in manual and semi-automatic configuration is then illustrated

in Figure 9.6 and it shows the significant changes between them.

The objective of the DCT domain-specific rule configuration is to facilitate ease

of the end-user with the execution of activities within the domain. In this case, the

process model of the DCT is customized and configured with many sub-processes and

2.010208333

1.142291667

0

0.5

1

1.5

2

2.5

Manual Semi-Automatic

A
ve

ra
ge

 C
o

n
fi

gu
ra

ti
o

n
 T

im
e

(M
in

u
te

s)

Mode of Tasks

Average Time of Manual vs Semi-automatic

Manual

Semi-Automatic

146

activities with a large number of parameters in business applications. The

requirements for change come from each business level, based on the requirements of

the end-user, rapidly and regularly at the feature level. The list of Web URL tasks and

its parameters are given in Table 9.4. The table is based on the user requirement of

the participants.

9.8 Evaluation of DSR Configuration: Effectiveness

The main research question focuses on finding the usability of the overall framework

and analysis of the configuration of the generated rules. In this section, we focus on

the effectiveness of the configuration of the generated rules, in terms of error

prevention and error corrections. This includes identification of the impact of

accuracy and the quality of the configured rule with individual participants.

In this section, we discuss looking at the accuracy and quality impact of the overall

framework by user experience. As discussed, a prototype is built to implement the

proposed method. In this experiment, we analyze the performance of the semi-

automatic configuration data, for finding the error, and a number of errors prevented.

By using the prototype, we evaluate the accuracy of the proposed method to identify

the impact of errors occurred and the errors prevented during the configuration of

rules. We conducted experiments to evaluate the accuracy and adequacy of the

proposed solution and further compared the effectiveness of the configuration with

both the experiments.

147

Figure 9.7: Error Prevention based on Numbers of Parameters

The objective is to evaluate the effectiveness of the proposed artifacts in finding

the number of error preventions and assessing the quality during rule configuration

based on the usability. Participants made mistakes during the rule configuration, but

in system design, it is usually assumed that they should not make errors in the first

place. However, if they do so, the semi-automatic configuration should detect these

earlier, and it becomes easier to prevent mistakes. It helps participants to recognize,

diagnose and recover from errors with proper error messages. The proposed approach

offers error prevention and simple error handling that, in case, participants make

mistakes, they can recover by providing clear and informative instructions.

9.8.1 Result and Analysis

The number of correct configured values and number of incorrect attempts is

identified by using input from participants, and the number of errors is analyzed.

Precision in the error measures the number of correctly configured rules, identified

the impact compared to the number. In Figure 9.7, the graph shows the bar chart of

the number of parameters and line chart shows the number of errors prevented during

0

1

2

3

4

5

6

7

8

9

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

N
u

m
b

e
r

o
f

Er
ro

rs
 P

re
ve

n
te

d
 a

n
d

 P
ar

am
et

er
s

Error Prevention and Parameters

Error Prevention vs Parameters

Parameters Error Prevented

148

the semi-automatic configuration. As per graph and Table 9.9, the percentage of errors

prevented during configuration is 26.24%. It indicates, the semi-automatic mode

prevented significant amount of errors. Therefore, it improves the quality of the

configured rules.

Table 9.9: Number of Error Prevented in Semi-Automatic Configuration

Total No. of Parameter No. of Error Prevented % of Error Prevented

324 85 26.24 %

9.9 Evaluation of Overall Framework by System Usability Score (SUS)

The comments and feedback by the participants, in accordance with the criteria set in

the process of evaluation, may be considered as the final step in the list. Figure 9.1

describes this phase as a collection of data based on the feedback of the participants.

As mentioned earlier, both qualitative and quantitative techniques have been

employed for the purpose of validating the present study. An elaborate account of the

logic and motives of the choice of this approach has been provided in Section 9.4 as

evaluation strategy. The respondents of the scale (SUS) expressing their opinion in

the last section with feedback and comments on a 5-point scale (by selecting a radio

button), along with any particular comment in a text box if they wish so (presented in

Figure D.1 at Appendix D as a user interface of SUS form16) is required.

9.9.1 System Usability Score Process

The first step of the evaluation starts with the identification of parameters or criteria.

Next, data collection from the participants begins, as per the steps described in Figure

9.1. Both qualitative and quantitative techniques (with an emphasis on qualitative

approach) have been employed for the purpose of evaluating the present study. An

elaborate account of the logic and motives behind the choice of this approach has been

16 Web interface of SUS http://dsrl.nlplabs.org/UsabilityScale.aspx

149

provided in Section 3.3.4. The Post-Study System Usability Questionnaire (PSSUQ)

[206] survey tool was adopted and employed for collecting the quantitative data at

this juncture and SUS served as the evaluative instrument since it allows capturing the

usability factor [207]. A total of 10 questions is presented on this scale, where the

participants are required to choose from five response categories ranging from

strongly disagree to agree strongly (Appendix D). Along with this, to understand the

logic of the respondents’ response-selection, qualitative data was gathered from them.

The data was collected by the researcher himself and the outcome in this phase was

raw data – like SUS answer sheets that can be scored to obtain quantitative results and

the open-ended text comments for each SUS question, that are qualitative in nature.

9.9.2 SUS Calculation and Measurement

The administration of SUS usually takes place after the participants have received

enough exposure to the rule generation prototype system but not before a discussion

or debriefing has occurred about the same. Participants are required to choose the

immediate response that comes to their mind after reading each specific question,

instead of dwelling long about each item. Another requirement is that each question

is to be answered. In case a participant is undecided regarding a particular question,

the centre point of the scale is to be checked for that item. After the scale is properly

filled, it has to be scored to obtain a single score for the entire scale that provides a

composite measure of the system usability as a whole. The individual item scores are

irrelevant in SUS. In order to obtain the final score for the SUS, the individual item

scores are to be determined first, which ranges from 0 to 4. For items 1, 3, 5, 7, and 9

the score contribution is the scale position minus 1. For items 2, 4, 6, 8 and 10 the

contribution is 5 minus the scale position. In order to calculate the total score for the

scale, the sum of all scores is to be multiplied by 2.5. The total score should always

be between 0 and 100. An example of SUS scoring is presented in next Section 9.9.3.

The Evaluation tools differ in terms of their effectiveness, on the basis of

particular features of the environment and goals of evaluation [208]. Few popular

evaluation methods are heuristic evaluation [209], field studies and observations [210,

150

211], filling questionnaires based on the usability of the overall framework and

participant performance in web-based environment.

In the context of the present study, involving evaluation of rule configuration

systems, a primary focus lies on identifying a design science methodology which

involves adequate tools to evaluate the usability of different framework components

in the digital content domain, along with ascertaining the satisfaction and

effectiveness of the prototype of the framework on the basics of usability. For this

purpose, an elaborate evaluation research of a digital content domain framework has

been carried out in a controlled environment by a group of domain experts. The

particular framework prototype was developed and is currently being in operative,

allowing a platform in which customization of the process model and the

configuration of its operational part can be done by non-technical domain experts

through generating a rule from the customized domain model. The evaluation of

usability for overall framework SUS component of the prototype is carried out in the

context of this study.

9.9.3 Experimental Results

Analysis of statistical performance in terms of efficiency is provided in Section 9.7

where processing time of configuration is described and, in Section 9.8 the

effectiveness is assessed on the basis of the accuracy and quality of the configured

rule. The SUS has been used for the validation of the statistical analysis. In order to

assess the overall performance of the framework, the statistical score has been

compared with the subjective score. The subjective score model is described in the

previous Section 9.9.2.

151

Figure 9.8: SUS Score Individual Questions

In addition to the quantitative analysis outlined above, a pre-defined question

approach was employed with in tandem the SUS to satisfy the usability evaluation

criteria

Figure 9.9: SUS Normal Scale

discussed in Table 9.1, and Figure 9.2. Reflecting the research criteria, there were

three main areas of concern: efficiency, effectiveness, and satisfaction. The sub

criteria of efficiency are performance, i.e., processing time or configuration time. As

per Table D1 and Section D1 (in Appendix D), the question number 8 “I found the

system very cumbersome to use” is associated with efficiency and its SUS score is 73,

it shows that the prototype is efficient. This is presented in Appendix D.

A per Figure 9.8 and 9.9, it is evident that the semi-automatic configuration is

more efficient, effective, and satisfactory than the manual configuration in terms of

66 68
72

76

63 62

75 73 72 73

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10

To
ta

l S
co

re
 o

f
th

e
 P

ar
ti

ci
p

e
n

ts

Number of SUS Question

SUS Score

152

performance, accuracy, quality, learnability, user-friendliness, and reliability. The

horizontal axis represents 5 positive and 5 negative questions, and in the Figure 9.8,

the vertical axis of indicates the total number of points corresponding to each question.

9.10 Summary

The aim of this chapter was to answer the third research question RQ3 – “How to

evaluate the proposed prototype of the framework in terms of its usability?”. The focus

was to evaluate the usability of the artifact from two points of views: (i) Effectiveness

and Efficiency of rule configuration and, (ii) Satisfaction of the overall framework in

the DCT domain. We discussed the principal findings, and results of this research

evaluation.

In summary, we evaluated the usability of the framework for adaptation of the

configured rule for process model customization. We assessed the efficiency,

effectiveness, and satisfaction of the proposed solution. Specific to this research, we

evaluated, the usability of the framework for non-technical domain experts where the

rules were generated and configured with specific claims, which we made in Chapter

1 (discussed in Section 1.3 as evaluation claim):

• Evaluation of Hypothesis 1 (run-time efficiency): The configuration activities

that need to be semi-automatically configured in the generated rule are

required to be time efficient in comparison to manual (traditional)

configuration. Therefore, we compared the time taken by participants in the

manual versus semi-automatic tasks. The semi-automatic configuration turned

out to be more efficient than manual configuration (see Section 9.7). The

difference in performance was statistically significant.

• Evaluation of Hypothesis 2 (run-time effectiveness): Although the number of

parameters that needed to be configured are modest, the framework yielded a

26.24 % reduction of error when using the semi-automatic, as opposed to

manual evaluation. We only considered the data validation (data type error

prevention like string, integer and date time) (as per Section 9.8).

153

• Evaluation of Hypotheses 3 (overall satisfaction): Results from SUS and data

analysis showed that participants’ experience was positive based on SUS

Likert scale with regard to satisfaction Table 9.1 of use in terms of: (i)

efficiency; (ii) effectiveness; (iii) most of them do not need a technical person

to run the system, (iv) learnability and (v) overall framework (as per Section

9.9).

154

CHAPTER 10

CONCLUSIONS AND FUTURE WORKS

10.1 Overview

This chapter outlines key conclusions, the significance of the research and discusses

its limitations. It identifies possible areas for future research as follow: Section 10.2

provides a summary of the research contribution of the thesis; Section 10.3 discusses

limitations; and Section 10.4 examines possibilities for further research. Section 10.5

presents closing remarks which encapsulate the essence of this thesis.

10.2 Summary of Solution Approach and Thesis Contribution

As per the thesis introduction and the acknowledged inherent problem and challenges

that end-users in business face challenges, caused by day to day changes from internal

and, external sources. The users in business require a platform where they can

customize and configure changes to business strategy and adapt these changes

smoothly to their business processes.

This research aims to present an appropriate framework where non-technical

domain users can customize and configure a process model with the assistance of rule

language generation and domain constraint configuration. No doubt, variability is an

important concept: variability analysis, modeling, and management have been the

fundamental research in software product line engineering (SPLE). SPLE addresses

the challenges of planning and developing systems with the foundation of large-scale

reuse in development. In fact, SPLE offers effective and efficient methods and

techniques for variability and systematic reuse in software development, in order to:

(i) enable mass customization, and (ii) support configurable software architectures.

This approach of configuration and customization to meet the requirements of

individual customers, based on modifications, is a desirable model. In parallel,

model-driven approaches are one of the most promising paradigms in software

engineering. The model-driven approach enables a systematic use of models in the

engineering lifecycle. Models are first class entities, foremost, to replace the code as

a primary artifact.

10.2.1 Contribution of the Research

The thesis contributes a DSRG framework where by the process model

customizations and configuration of the domain constraint at run-time is configured

by end-user dynamically. Rule generation, configuration, and validation, as well as

validation of feature selection by the end-user, are presented in this thesis. The

process model customization based on a domain template is included. The

contribution of the research is summarized as follows:

• A DSRG framework that allows the generating a set of rules from a high-

level of abstract models (domain model) to a low-level configurable rule

language on an ad hoc basis.

• Controlled variability management models to customize the domain template

for generating the DSR.

• A DSR language definition, explicitly in ECA language, which is based on

XML.

• A set of domain-specific rules are generated from the domain model, and

configuring the domain constraint for process model customization.

• A prototype implementation of dynamic configuration of generated rules and

customization of process models.

156

10.2.2 A DSRG Framework Solution

The primary research question focuses on the development of a usability framework

where end-users can generate and configure domain-specific rules to customize

process model dynamically. This research addresses the problem by dividing it into

three research questions and proposing a solution for each question. The first sub-

research question is ‘RQ 1. How to develop a rule generation and configuration

framework to customize the process model dynamically?’.

The first step of the solution is to design the essential components and the

framework as they are defined in Chapter 4. The next step is the development and

implementation of designed components as a prototype framework where end-users

can perform their tasks.

The design-time challenges were discussed in Chapter 5. The basic components were

validated conceptually and theoretically in line with other research in this area. This

chapter defined the abstract syntax, in order to discuss the semantic checks for the

domain model.

10.2.3 Domain-specific Rule Language Definition

The primary purpose of the research is to define the rule language that can represent

the translation of a low-level rule to a high-level domain model. The second sub-

research question ‘RQ2 How to implement a framework to support a domain-specific

rule language that is usable by non-technical domain experts?’ primarily focuses on

the rule language and definition in terms of abstract and concrete syntax, as well as

an adopted model of ECA language for the fulfillment of operational and functional

requirements. Domain-specific rule language are defined in terms of basic artifacts

such as syntax, structure, definition, and model in Chapter 6.

 Chapter 6 provided a partial answer to the RQ2, covering the main objective of

the question; is it ‘usable for non-technical domain experts.' Section 6.4.2 describes

how the rule language in the XML format including the ECA language is expressed,

157

allowing a non-technical person to configure the rule or implement the usable

criteria.

10.2.4 Domain-specific Rule Generation

Another important element of this research is generating domain-specific rules from

the high-level domain model. Accordingly, the model-driven approach (MDA) was

used to generate the rule as a text model from the high-level model. It is also relevant

to RQ2 as it relates to the implementation side of the framework where non-technical

domain experts where able to generate the desired configurable rules, and to

configure them according to their need or the domain constraints of the application.

The implementation of rule translation from the domain model in terms of

conceptual, theoretical and technical implementation aspects are discussed in

Chapter 5 and Chapter 7.

10.2.5 Framework Implementation

This research uses the SPLE as a platform to combine all the components which were

defined in Chapter 4. At the application level, the framework takes input from the

end-user and processes it at the domain engineering level. After processing, the final

output comes back to the end-user with the appropriate changes applied dynamically

at application engineering level. The implementation part of a framework has two

main components: implementation of the DSR generation, and customization of the

process model. The DSR generation is covered in Chapter 7 and process model

customization is implemented in Chapter 8.

10.3 Limitation

This research does not address all the problems associated with rule definition,

generation, and configuration. There are areas that are not covered, and areas that are

covered are not necessarily covered in the required depth. Consequently, we present

158

the work on configuration-based DSR generation for process model customization

with the following limitations:

1. The prototype does not provide a facility to end-users to add new features

and update the feature from the application end. As discussed in Chapter 2

and 4, domain expert and process engineer work on the domain engineering

level. End-users have only access to the application engineering level, they

cannot access the domain engineering. Therefore, our framework has a

dependency on the domain expert as they can only add new features in a

domain template.

2. The SPLE is used as a platform of the framework. This framework restricts

adding, editing and removing of the features from the feature model at run-

time. End-users can only activate and deactivate the feature in domain

template at run-time. Whereas the domain expert can change the domain

template at design time (domain engineering level). Hence, the framework

limits adding and updating the features at application engineering level or run

time. As we have mentioned, in the first limitation above i.e., during domain

engineering, the domain template can be changed, which is generic for the

particular domain. It has the limitation that it works in a specific domain.

Therefore, the current research is focused on the Digital Content Technology

domain (DCT). In this thesis, we only apply our framework in one domain,

but it could be used in another domain.

3. We considered the two levels of classes which comprised one level of parent

or superclass class and second level of child class at the time of rule

generation. Therefore, a framework is restricted for implementing the domain

model to n-level of a tree or an ontologies structure of classes. This is the

limitation of the framework, i.e., it covers only the above two levels.

159

10.4 Future Work

The proposed work can be extended in several ways. The directions in which the

work can be extended are summarized as follows: For the approach to be general,

i.e., applicable to other domains, research focusing on how to adapt the DSRL across

multiple domains and how to convert conceptual models into universal DSR

languages will be required.

Thus far, the framework supports semi-automatic translation, however, it can be

improved with a system that learns from existing rules and domain models. This

improvement is driven by the feature approach and results in an automated DSRL

generation. However, this thesis addresses many of the problems identified, through

the research, and discovered areas that would benefit from further investigation in

the future.

1. The proposed rule generation and configuration approach are based on the

requirements of the end-user. Based on past activities of the end-user and

work patterns, the feature model provides feature recommendations in real

time. Additionally, the system recommends features based on previously

generated rules and vice versa. These approaches can be utilized for mining

the previously configured rules, which can be applied to customization and

configuration of process models. The system also recommends the future

steps during rule generation and configuration on the case information.

2. In the proposed rule generation, we consider only two level of the classes

(discussed in Section 10.3). This limitation needs more attention. Also,

attention is given to the value of the parameters that should be automatically

recommended to end-user based on their previous configuration values.

3. Cloud-based business processes-as-a-service (BPaaS) as an emerging trend,

signifies the need to adapt resources, such as processes to varying consumer

needs (called customization of multi-tenant resources in the cloud).

Furthermore, provisioning of self-service for resources also requires a non-

expert to manage this configuration. BPaaS relies on providing processes as

160

customizable entities. It targets constraints as the customization point and is

advantageous compared to customization through restructuring. For BPaaS,

if a generic service is provided to external users, the dynamic customization

of individual process instances would require the utilization of a coordinated

approach, e.g., through using a coordination model. Other architecture

techniques can also be used to facilitate flexible and lightweight cloud-based

provisioning of process instances, e.g., through containerization.

4. For both digital content technology and machine translation systems, users

require more autonomic functionality. We consider the rule generation and

configuration techniques for process model customization of the DCT

domain that can achieve similar results using other techniques such as

Service Oriented Architecture or Method Engineering or Service-as-a-

service as described here.

5. Further research which focuses on adapting the DSRL across different

domains and converting conceptual models into generic DSR language,

applicable to other domains, is required. Thus far, this translation is semi-

automatic, but shall be improved with another domain as mentioned in third

limitation (Section 10.3).

10.5 Conclusion

The contribution of this thesis is that people who have not much technical knowledge

can easily create and customize business application to deal with rapid changes in

the business world. This research work demonstrates a prototype framework for

generating the rule language and configuring domain constraints. This framework

builds upon the core idea of Software Product Lines Engineering (SPLE) and Model-

Driven Architecture (MDA). We evaluated the usability of the framework for

adaptation of the configured rule for process model customization. We assessed the

efficiency, effectiveness, and satisfaction of the proposed solution. The novel

approach of this research is to generate domain-specific rule language from a high-

level domain model by only using variability management.

161

162

REFERENCE

[1] Y. Antonucci, "Using workflow technologies to improve organizational competitiveness,"

International journal of management, vol. 14, pp. 117-126, 1997.

[2] R. Lenz and M. Reichert, "IT support for healthcare processes–premises, challenges,

perspectives," Data & Knowledge Engineering, vol. 61, pp. 39-58, 2007.

[3] A. Kumar and W. Yao, "Design and management of flexible process variants using templates

and rules," Computers in Industry, vol. 63, pp. 112-130, 2// 2012.

[4] A. Jiménez-Ramírez, B. Weber, I. Barba, and C. Del Valle, "Generating optimized

configurable business process models in scenarios subject to uncertainty," Information and

Software Technology, vol. 57, pp. 571-594, 1// 2015.

[5] M. Asadi, B. Mohabbati, G. Gröner, and D. Gasevic, "Development and validation of

customized process models," Journal of Systems and Software, vol. 96, pp. 73-92, 2014.

[6] G. H. Alférez, V. Pelechano, R. Mazo, C. Salinesi, and D. Diaz, "Dynamic adaptation of

service compositions with variability models," Journal of Systems and Software, vol. 91, pp.

24-47, 2014.

[7] C. Ayora, V. Torres, B. Weber, M. Reichert, and V. Pelechano, "VIVACE: A framework for

the systematic evaluation of variability support in process-aware information systems,"

Information and Software Technology, vol. 57, pp. 248-276, 2015.

[8] J. Wang, Z. Feng, J. Zhang, P. C. Hung, K. He, and L.-J. Zhang, "A Unified RGPS-Based

Approach Supporting Service-Oriented Process Customization," in Web Services

Foundations, ed: Springer, 2014, pp. 657-682.

[9] A. Lazovik and H. Ludwig, "Managing process customizability and customization: Model,

language and process," in Web Information Systems Engineering–WISE 2007, ed: Springer,

2007, pp. 373-384.

[10] A. Hallerbach, T. Bauer, and M. Reichert, "Capturing variability in business process models:

the Provop approach," Journal of Software Maintenance and Evolution: Research and

Practice, vol. 22, pp. 519-546, 2010.

[11] N. Assy, W. Gaaloul, and B. Defude, "Mining Configurable Process Fragments for Business

Process Design," in DESRIST, 2014, pp. 209-224.

[12] T. Morgan, "Business process modeling and ORM," in On the Move to Meaningful Internet

Systems 2007: OTM 2007 Workshops, 2007, pp. 581-590.

[13] L. Aldin and S. de Cesare, "A literature review on business process modelling: new frontiers

of reusability," Enterprise Information Systems, vol. 5, pp. 359-383, 2011.

[14] O. Standard, "Web services business process execution language version 2.0."

[15] B. List and B. Korherr, "An evaluation of conceptual business process modelling languages,"

in Proceedings of the 2006 ACM symposium on Applied computing, 2006, pp. 1532-1539.

[16] S. A. White, "Business process modeling notation," Specification, BPMI. org, 2004.

[17] M. Reichert and P. Dadam, "ADEPTflex—Supporting dynamic changes of workflows

without losing control," Journal of Intelligent Information Systems, vol. 10, pp. 93-129,

1998.

[18] W. M. Van Der Aalst and A. H. Ter Hofstede, "YAWL: yet another workflow language,"

Information systems, vol. 30, pp. 245-275, 2005.

[19] M. Boukhebouze, Y. Amghar, A. c.-N. Benharkat, and Z. Maamar, "A rule-based approach

to model and verify flexible business processes," International Journal of Business Process

Integration and Management, vol. 5, pp. 287-307, 2011.

[20] M. E. Rangiha and B. Karakostas, "Goal-driven social business process management," in

Science and Information Conference (SAI), 2013, 2013, pp. 894-901.

[21] A. Gromoff, N. Kazantsev, K. Evina, M. Ponfilenok, and D. Kozhevnikov, "Modern era in

business architecture Design," Far East Journal of Psychology and Business, vol. 9, pp. 15-

34, 2012.

[22] T. van Eijndhoven, M.-E. Iacob, and M. L. Ponisio, "Achieving business process flexibility

with business rules," in Enterprise Distributed Object Computing Conference, 2008.

EDOC'08. 12th International IEEE, 2008, pp. 95-104.

163

[23] C. Ayora, V. Torres, M. Reichert, B. Weber, and V. Pelechano, "Towards run-time flexibility

for process families: open issues and research challenges," in Business Process Management

Workshops, 2013, pp. 477-488.

[24] S. W. Sadiq, M. E. Orlowska, and W. Sadiq, "Specification and validation of process

constraints for flexible workflows," Information Systems, vol. 30, pp. 349-378, 7// 2005.

[25] B. Weber, S. Sadiq, and M. Reichert, "Beyond rigidity–dynamic process lifecycle support,"

Computer Science-Research and Development, vol. 23, pp. 47-65, 2009.

[26] A. v. Deursen, P. Klint, and J. Visser, "Domain-specific languages: an annotated

bibliography," SIGPLAN Not., vol. 35, pp. 26-36, 2000.

[27] M. Fowler, Domain-specific languages: Pearson Education, 2010.

[28] M. Mernik, J. Heering, and A. M. Sloane, "When and how to develop domain-specific

languages," ACM computing surveys (CSUR), vol. 37, pp. 316-344, 2005.

[29] P. Hudak, "Domain-specific languages," Handbook of Programming Languages, vol. 3, pp.

39-60, 1997.

[30] J. Brooke, "SUS-A quick and dirty usability scale," Usability evaluation in industry, vol.

189, pp. 4-7, 1996.

[31] J. Bosch, Design and use of software architectures: adopting and evolving a product-line

approach: Pearson Education, 2000.

[32] F. Stallinger and R. Neumann, "A Framework for Innovation System Customization for

Product Line-based Software Businesses," in Software Engineering and Advanced

Applications (SEAA), 2013 39th EUROMICRO Conference on, 2013, pp. 94-97.

[33] N. Anquetil, B. Grammel, I. Galvao Lourenco da Silva, J. Noppen, S. Shakil Khan, H.

Arboleda, et al., "Traceability for model driven, software product line engineering," 2008.

[34] W. B. Frakes and S. Isoda, "Success factors of systematic reuse," IEEE software, vol. 11,

pp. 14-19, 1994.

[35] P. Clements and L. Northrop, "Software product lines: practices and patterns," 2002.

[36] M. Acher, "Managing, multiple feature models: foundations, languages and applications,"

Nice, 2011.

[37] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson, "Feature-oriented

domain analysis (FODA) feasibility study," DTIC Document1990.

[38] S. Soltani, M. Asadi, D. Gašević, M. Hatala, and E. Bagheri, "Automated planning for

feature model configuration based on functional and non-functional requirements," in

Proceedings of the 16th International Software Product Line Conference-Volume 1, 2012,

pp. 56-65.

[39] K. Pohl, G. Böckle, and F. J. van der Linden, Software product line engineering:

foundations, principles and techniques: Springer Science & Business Media, 2005.

[40] M. Hindawi, L. Morel, R. Aubry, and J.-L. Sourrouille, "Description and implementation of

a UML style guide," in International Conference on Model Driven Engineering Languages

and Systems, 2008, pp. 291-302.

[41] G. Böckle, F. J. van der Linden, and K. Pohl, Software product line engineering:

foundations, principles and techniques: Springer Science & Business Media, 2005.

[42] M. Harsu, A survey on domain engineering: Citeseer, 2002.

[43] J.-C. Royer and H. Arboleda, Model-Driven and Software Product Line Engineering: John

Wiley & Sons, 2013.

[44] G. Génova, M. C. Valiente, and M. Marrero, "On the difference between analysis and design,

and why it is relevant for the interpretation of models in Model Driven Engineering," Journal

of Object Technology, vol. 8, pp. 107-127, 2009.

[45] A. Kalnins, L. Lace, E. Kalnina, and A. Sostaks, "DSL Based Platform for Business Process

Management," in International Conference on Current Trends in Theory and Practice of

Informatics, 2014, pp. 351-362.

[46] K. C. Kang and H. Lee, "Variability modeling," in Systems and Software Variability

Management, ed: Springer, 2013, pp. 25-42.

[47] K. Czarnecki and M. Antkiewicz, "Mapping features to models: A template approach based

on superimposed variants," in Generative programming and component engineering, 2005,

pp. 422-437.

164

[48] H. Gomaa, "Designing software product lines with uml 2.0: From use cases to pattern-based

software architectures," in Reuse of Off-the-Shelf Components, ed: Springer, 2006, pp. 440-

440.

[49] K. Schmid and I. John, "A customizable approach to full lifecycle variability management,"

Science of Computer Programming, vol. 53, pp. 259-284, 12// 2004.

[50] P. Sochos, I. Philippow, and M. Riebisch, "Feature-oriented development of software

product lines: mapping feature models to the architecture," in Object-Oriented and Internet-

Based Technologies, ed: Springer, 2004, pp. 138-152.

[51] M. A. Simos, "Organization domain modeling (ODM): Formalizing the core domain

modeling life cycle," in ACM SIGSOFT Software Engineering Notes, 1995, pp. 196-205.

[52] M. Diouf, S. Maabout, and K. Musumbu, "Merging model driven architecture and Semantic

Web for business rules generation," in International Conference on Web Reasoning and Rule

Systems, 2007, pp. 118-132.

[53] M. L. Griss, J. Favaro, and M. D. Alessandro, "Integrating feature modeling with the RSEB,"

in Software Reuse, 1998. Proceedings. Fifth International Conference on, 1998, pp. 76-85.

[54] M. Eriksson, J. Börstler, and K. Borg, "The PLUSS approach–domain modeling with

features, use cases and use case realizations," in Software Product Lines, ed: Springer, 2005,

pp. 33-44.

[55] A. Mos and M. Cortes-Cornax, "Business Matter Experts do Matter: A Model-Driven

Approach for Domain Specific Process Design and Monitoring," arXiv preprint

arXiv:1606.04287, 2016.

[56] J. Bayer, S. Gerard, Ø. Haugen, J. Mansell, B. Møller-Pedersen, J. Oldevik, et al.,

"Consolidated product line variability modeling," in Software Product Lines, ed: Springer,

2006, pp. 195-241.

[57] M. Sinnema and S. Deelstra, "Classifying variability modeling techniques," Information and

Software Technology, vol. 49, pp. 717-739, 2007.

[58] K. Czarnecki, S. Helsen, and U. Eisenecker, "Formalizing cardinality‐based feature models

and their specialization," Software process: Improvement and practice, vol. 10, pp. 7-29,

2005.

[59] K. Czarnecki, S. Helsen, and U. Eisenecker, "Staged configuration through specialization

and multilevel configuration of feature models," Software Process: Improvement and

Practice, vol. 10, pp. 143-169, 2005.

[60] M. Sinnema, S. Deelstra, J. Nijhuis, and J. Bosch, "Covamof: A framework for modeling

variability in software product families," in Software Product Lines, ed: Springer, 2004, pp.

197-213.

[61] D. Beuche, H. Papajewski, and W. Schröder-Preikschat, "Variability management with

feature models," Science of Computer Programming, vol. 53, pp. 333-352, 12// 2004.

[62] L. Chen and M. Ali Babar, "A systematic review of evaluation of variability management

approaches in software product lines," Information and Software Technology, vol. 53, pp.

344-362, 4// 2011.

[63] J. Van Gurp, J. Bosch, and M. Svahnberg, "On the notion of variability in software product

lines," in Software Architecture, 2001. Proceedings. Working IEEE/IFIP Conference on,

2001, pp. 45-54.

[64] A. Hein, M. Schlick, and R. Vinga-Martins, "Applying feature models in industrial settings,"

in Software Product Lines, ed: Springer, 2000, pp. 47-70.

[65] L. Lace, A. Kalnins, and A. Sostaks, "Process DSL Transformation by Mappings Using

Virtual Functional Views," Baltic Journal of Modern Computing, vol. 3, p. 133, 2015.

[66] A. Van Deursen and P. Klint, "Domain-specific language design requires feature

descriptions," CIT. Journal of computing and information technology, vol. 10, pp. 1-17,

2002.

[67] M. Acher, P. Collet, P. Lahire, and R. B. France, "A domain-specific language for managing

feature models," in Proceedings of the 2011 ACM Symposium on Applied Computing, 2011,

pp. 1333-1340.

[68] J. Park, M. Moon, and K. Yeom, "Variability modeling to develop flexible service-oriented

applications," Journal of Systems Science and Systems Engineering, vol. 20, pp. 193-216,

2011.

165

[69] M. Galster and A. Eberlein, "Identifying potential core assets in service-based systems to

support the transition to service-oriented product lines," in Engineering of Computer Based

Systems (ECBS), 2011 18th IEEE International Conference and Workshops on, 2011, pp.

179-186.

[70] T. Nguyen, A. Colman, and J. Han, "Modeling and managing variability in process-based

service compositions," in Service-Oriented Computing, ed: Springer, 2011, pp. 404-420.

[71] X. Zhou, S. Chen, B. Liu, R. Zhang, Y. Wang, P. Li, et al., "Development of traditional

Chinese medicine clinical data warehouse for medical knowledge discovery and decision

support," Artificial Intelligence in Medicine, vol. 48, pp. 139-152, 2010/02/01/ 2010.

[72] F. Puhlmann, A. Schnieders, J. Weiland, and M. Weske, "Variability mechanisms for

process models," PESOA-Report TR, vol. 17, pp. 10-61, 2005.

[73] R. Mietzner and F. Leymann, "Generation of BPEL customization processes for SaaS

applications from variability descriptors," in Services Computing, 2008. SCC'08. IEEE

International Conference on, 2008, pp. 359-366.

[74] Y.-J. Hu, C.-L. Yeh, and W. Laun, "Challenges for rule systems on the web," in Rule

Interchange and Applications, ed: Springer, 2009, pp. 4-16.

[75] A. Paschke, H. Boley, Z. Zhao, K. Teymourian, and T. Athan, "Reaction RuleML 1.0:

standardized semantic reaction rules," in Rules on the Web: Research and Applications, ed:

Springer, 2012, pp. 100-119.

[76] K. Kulkarni, N. Mattos, and R. Cochrane, "Active database features in SQL3," in Active

Rules in Database Systems, ed: Springer, 1999, pp. 197-219.

[77] A. Bonifati, D. Braga, A. Campi, and S. Ceri, "Active XQuery," in Data Engineering, 2002.

Proceedings. 18th International Conference on, 2002, pp. 403-412.

[78] E. Cho, "ARML: an active rule mark-up language for heterogeneous active information

systems."

[79] S. Abitrboul, O. Benjellourn, I. Manolescu, T. Milo, and R. Weber, "Active xml: Peer-to-

peer data and web services integration," in Proceedings of the 28th international conference

on Very Large Data Bases, 2002, pp. 1087-1090.

[80] R. Khalaf, "From RosettaNet PIPs to BPEL processes: A three level approach for business

protocols," Data & Knowledge Engineering, vol. 61, pp. 23-38, 2007.

[81] A. Schnieders and F. Puhlmann, "Variability Mechanisms in E-Business Process Families,"

BIS, vol. 85, pp. 583-601, 2006.

[82] N. Boffoli, D. Caivano, D. Castelluccia, and G. Visaggio, "Business process lines and

decision tables driving flexibility by selection," in Software Composition, 2012, pp. 178-

193.

[83] M. La Rosa, W. M. van der Aalst, M. Dumas, and F. P. Milani, "Business process variability

modeling: A survey," 2013.

[84] M. La Rosa, W. M. van der Aalst, M. Dumas, and A. H. Ter Hofstede, "Questionnaire-based

variability modeling for system configuration," Software and Systems Modeling, vol. 8, pp.

251-274, 2009.

[85] M. Lin, J. Malec, and S. Nadjm-Tehrani, "On semantics and correctness of reactive rule-

based programs," in International Andrei Ershov Memorial Conference on Perspectives of

System Informatics, 1999, pp. 235-246.

[86] S. A. White, "Introduction to BPMN," IBM Cooperation, vol. 2, p. 0, 2004.

[87] W. M. P. van der Aalst and A. H. M. ter Hofstede, "YAWL: yet another workflow language,"

Information Systems, vol. 30, pp. 245-275, 6// 2005.

[88] M. Dumas and A. H. Ter Hofstede, "UML activity diagrams as a workflow specification

language," in ≪ UML≫ 2001—The Unified Modeling Language. Modeling Languages,

Concepts, and Tools, ed: Springer, 2001, pp. 76-90.

[89] R. Davis, Business process modelling with ARIS: a practical guide: Springer Science &

Business Media, 2001.

[90] IBM, "WebSphere©MQ Workow FlowMareket©Definition Language (FDL)," December

2010.

[91] L. Zeng, B. Benatallah, A. H. Ngu, M. Dumas, J. Kalagnanam, and H. Chang, "Qos-aware

middleware for web services composition," Software Engineering, IEEE Transactions on,

vol. 30, pp. 311-327, 2004.

[92] JBoss, "jBPM Process Denition Language (jPDL)," January 2008.

166

[93] R. Maker, T. Cullinane, P. deWitte, W. Knappenberger, B. Perakath, and M. Wells, "IDEF3–

process description capture method report," Information Integration for Concurrent

Engineering (IICE), Armstrong Laboratory, Wright-Patterson AFB, OH, 1992.

[94] H. Mili, G. Tremblay, G. B. Jaoude, É. Lefebvre, L. Elabed, and G. E. Boussaidi, "Business

process modeling languages: Sorting through the alphabet soup," ACM Computing Surveys

(CSUR), vol. 43, p. 4, 2010.

[95] M. Koning, C.-a. Sun, M. Sinnema, and P. Avgeriou, "VxBPEL: Supporting variability for

Web services in BPEL," Information and Software Technology, vol. 51, pp. 258-269, 2009.

[96] M. Colombo, E. Di Nitto, and M. Mauri, "Scene: A service composition execution

environment supporting dynamic changes disciplined through rules," in Service-Oriented

Computing–ICSOC 2006, ed: Springer, 2006, pp. 191-202.

[97] C. Barreto, "Web services business process execution language version 2.0," 2007.

[98] A. Bucchiarone, C. Mezzina, and M. Pistore, "CAptLang: a language for context-aware and

adaptable business processes," in Proceedings of the Seventh International Workshop on

Variability Modelling of Software-intensive Systems, 2013, p. 12.

[99] J. Bézivin, G. Dupé, F. Jouault, G. Pitette, and J. E. Rougui, "First experiments with the ATL

model transformation language: Transforming XSLT into XQuery," in 2nd OOPSLA

Workshop on Generative Techniques in the context of Model Driven Architecture, 2003.

[100] M. Reichert and B. Weber, Enabling flexibility in process-aware information systems:

challenges, methods, technologies: Springer Science & Business Media, 2012.

[101] M. Weske, Business process management: concepts, languages, architectures: Springer

Science & Business Media, 2012.

[102] B. Mohabbati, D. Gašević, M. Hatala, M. Asadi, E. Bagheri, and M. Bošković, "A quality

aggregation model for service-oriented software product lines based on variability and

composition patterns," in Service-Oriented Computing, ed: Springer, 2011, pp. 436-451.

[103] O. Bubak and H. Gomaa, "Applying software product line concepts in service orientation,"

International Journal of Intelligent Information and Database Systems, vol. 2, pp. 383-396,

2008.

[104] B. Mohabbati, M. Asadi, D. Gašević, and J. Lee, "Software Product Line Engineering to

Develop Variant-Rich Web Services," in Web Services Foundations, ed: Springer, 2014, pp.

535-562.

[105] D. Beuche, "Modeling and building software product lines with pure:: variants," in

Proceedings of the 16th International Software Product Line Conference-Volume 2, 2012,

pp. 255-255.

[106] C. W. Krueger, "The biglever software gears unified software product line engineering

framework," in Software Product Line Conference, 2008. SPLC'08. 12th International,

2008, pp. 353-353.

[107] R. Angles, P. Ramadour, C. Cauvet, and S. Rodier, "V-BPMI: A variability-oriented

framework for web-based business processes modeling and implementation," in Research

Challenges in Information Science (RCIS), 2013 IEEE Seventh International Conference on,

2013, pp. 1-11.

[108] H. Andersson, E. Herzog, and J. Ölvander, "Experience from model and software reuse in

aircraft simulator product line engineering," Information and Software Technology, vol. 55,

pp. 595-606, 3// 2013.

[109] J. Xiong, Y. Hu, G. Li, R. Tang, and Z. Fan, "Metadata distribution and consistency

techniques for large-scale cluster file systems," IEEE Transactions on Parallel and

Distributed Systems, vol. 22, pp. 803-816, 2011.

[110] P. K. Kumar and R. Kanagaraj, "Harmonizing the business process customization using

ontology," in Advances in Engineering, Science and Management (ICAESM), 2012

International Conference on, 2012, pp. 788-791.

[111] Y. Huang, Z. Feng, K. He, and Y. Huang, "Ontology-based configuration for service-based

business process model," in Services Computing (SCC), 2013 IEEE International

Conference on, 2013, pp. 296-303.

[112] D. Schleicher, T. Anstett, F. Leymann, and R. Mietzner, "Maintaining compliance in

customizable process models," in On the Move to Meaningful Internet Systems: OTM 2009,

ed: Springer, 2009, pp. 60-75.

167

[113] M. V. Hecht, E. K. Piveta, M. S. Pimenta, and R. T. Price, "Aspect-oriented code

generation," Simpsio Brasileiro de Engenharia de Software, 2005.

[114] K. Peffers, T. Tuunanen, M. A. Rothenberger, and S. Chatterjee, "A design science research

methodology for information systems research," Journal of management information

systems, vol. 24, pp. 45-77, 2007.

[115] G. Goldkuhl, "The research practice of practice research: theorizing and situational inquiry,"

Systems, Signs & Actions, vol. 5, pp. 7-29, 2011.

[116] H. Van de Ven Andrew, "Engaged scholarship: A guide for organizational and social

research," 2007.

[117] G. Goldkuhl, "From action research to practice research," Australasian Journal of

Information Systems, vol. 17, 2012.

[118] C. Cassell and P. Johnson, "Action research: Explaining the diversity," Human relations,

vol. 59, pp. 783-814, 2006.

[119] P. Y. Martin and B. A. Turner, "Grounded theory and organizational research," The journal

of applied behavioral science, vol. 22, pp. 141-157, 1986.

[120] R. K. Yin, "Discovering the future of the case study method in evaluation research,"

Evaluation practice, vol. 15, pp. 283-290, 1994.

[121] S. Gregor and D. Jones, "The anatomy of a design theory," Journal of the Association for

Information Systems, vol. 8, p. 312, 2007.

[122] A. Hevner and S. Chatterjee, "Design science research in information systems," in Design

research in information systems, ed: Springer, 2010, pp. 9-22.

[123] K. Lewin, "Action research and minority problems," Journal of social issues, vol. 2, pp. 34-

46, 1946.

[124] R. N. Rapoport, "Three dilemmas in action research: with special reference to the Tavistock

experience," Human relations, vol. 23, pp. 499-513, 1970.

[125] J. Iivari and J. Venable, "Action research and design science research-Seemingly similar but

decisively dissimilar," in ECIS, 2009, pp. 1642-1653.

[126] J. Nandhakumar, M. Rossi, and J. Talvinen, "The dynamics of contextual forces of ERP

implementation," The Journal of Strategic Information Systems, vol. 14, pp. 221-242, 2005.

[127] C. Urquhart, H. Lehmann, and M. D. Myers, "Putting the ‘theory’back into grounded theory:

guidelines for grounded theory studies in information systems," Information systems journal,

vol. 20, pp. 357-381, 2010.

[128] W. J. Orlikowski and J. J. Baroudi, "Studying information technology in organizations:

Research approaches and assumptions," Information systems research, vol. 2, pp. 1-28,

1991.

[129] R. E. Stake, Multiple case study analysis: Guilford Press, 2013.

[130] J. Venable, J. Pries-Heje, and R. Baskerville, "A comprehensive framework for evaluation

in design science research," in International Conference on Design Science Research in

Information Systems, 2012, pp. 423-438.

[131] R. H. Von Alan, S. T. March, J. Park, and S. Ram, "Design science in information systems

research," MIS quarterly, vol. 28, pp. 75-105, 2004.

[132] P. Petkov, "Assessing and analysing data quality in service oriented architectures;

developing a data quality process," Dublin City University, 2016.

[133] C. Okoli and K. Schabram, "A guide to conducting a systematic literature review of

information systems research," 2010.

[134] Ł. Ostrowski, "Detailed Design Science Research and Its Impact on the Quality of Design

Artefacts," in European Design Science Symposium, 2011, pp. 60-70.

[135] C. Pahl, N. Mani, and M.-X. Wang, "A Domain-Specific Model for Data Quality Constraints

in Service Process Adaptations," in Advances in Service-Oriented and Cloud Computing:

Workshops of ESOCC 2013, Málaga, Spain, September 11-13, 2013, Revised Selected

Papers, C. Canal and M. Villari, Eds., ed Berlin, Heidelberg: Springer Berlin Heidelberg,

2013, pp. 303-317.

[136] N. Mani, M. Helfert, and C. Pahl, "Business Process Model Customisation using Domain-

driven Controlled Variability Management and Rule Generation," International Journal on

Advances in Software, vol. 9, pp. 179 - 190, 2016.

168

[137] N. Mani and C. Pahl, "Controlled variability management for business process model

constraints," in ICSEA 2015, The Tenth International Conference on Software Engineering

Advances, 2015, p. 445 to 450.

[138] C. Pahl and N. Mani, "Managing quality constraints in technology-managed learning content

processes," in EdMedia’2014 Conference on Educational Media and Technology, 2014.

[139] N. Mani, M. Helfert, and C. Pahl, "A Framework for Generating Domain-specific Rule for

Process Model Customisation," presented at the International Conference on Computer-

Human Interaction Research and Applications (CHIRA),, Funchal, Maderia- Portugal, 2017.

[140] N. Mani, M. Helfert, and C. Pahl, "Domain-specific Generation Using Variability for

Business Process Model Constraint," presented at the 21st International Conference on

Knowledge-Based and Intelligent Information & Engineering Systems, Marseille, France,

2017.

[141] A. Miller, "Engineering design: its importance for software," IEEE Potentials, vol. 8, pp.

14-16, 1989.

[142] M. D. Del Fabro and P. Valduriez, "Semi-automatic model integration using matching

transformations and weaving models," in Proceedings of the 2007 ACM symposium on

Applied computing, 2007, pp. 963-970.

[143] C. Pahl, "Semantic model-driven architecting of service-based software systems,"

Information and software Technology, vol. 49, pp. 838-850, 2007.

[144] L. Geyer and M. Becker, "On the influence of variabilities on the application-engineering

process of a product family," in Software Product Lines, ed: Springer, 2002, pp. 1-14.

[145] J. Bosch, G. Florijn, D. Greefhorst, J. Kuusela, J. Obbink, and K. Pohl, "Variability Issues

in Software Product Lines," Software Product-Family Engineering, pp. 303-338, 2002.

[146] D. Batory, Feature models, grammars, and propositional formulas: Springer, 2005.

[147] K. Czarnecki, "Generative programming," Edited by G. Goos, J. Hartmanis, and J. van

Leeuwen, p. 15.

[148] M. Fowler, UML distilled: a brief guide to the standard object modeling language: Addison-

Wesley Professional, 2004.

[149] B. M. Kadhim and W. M. Waite, "Maptool—supporting modular syntax development," in

Compiler Construction, 1996, pp. 268-280.

[150] D. S. Wile, "Abstract syntax from concrete syntax," in Proceedings of the 19th international

conference on Software engineering, 1997, pp. 472-480.

[151] J. L. Overbey and R. E. Johnson, "Generating rewritable abstract syntax trees," in Software

Language Engineering, ed: Springer, 2008, pp. 114-133.

[152] F. Jouault, J. Bézivin, and I. Kurtev, "TCS:: a DSL for the specification of textual concrete

syntaxes in model engineering," in Proceedings of the 5th international conference on

Generative programming and component engineering, 2006, pp. 249-254.

[153] W. L. G. Riedewald and M. Stoya, "Semantics-preserving migration of semantic rules after

left recursion removal in attribute grammars."

[154] J. J. Gough and K. J. Gough, Compiling for the. Net Common Language Runtime: Prentice

Hall PTR, 2001.

[155] W. May, J. Alferes, and R. Amador, "Active Rules in the Semantic Web: Dealing with

Language Heterogeneity," in Rules and Rule Markup Languages for the Semantic Web. vol.

3791, A. Adi, S. Stoutenburg, and S. Tabet, Eds., ed: Springer Berlin Heidelberg, 2005, pp.

30-44.

[156] J. D. Poole, "Model-driven architecture: Vision, standards and emerging technologies," in

Workshop on Metamodeling and Adaptive Object Models, ECOOP, 2001.

[157] J. Cano, G. Delaval, and E. Rutten, "Coordination of ECA Rules by Verification and

Control," in Coordination Models and Languages, 2014, pp. 33-48.

[158] A. Ranta, "Grammatical framework," Journal of Functional Programming, vol. 14, pp. 145-

189, 2004.

[159] E. Visser, Syntax definition for language prototyping: Eelco Visser, 1997.

[160] J. Heering, P. R. H. Hendriks, P. Klint, and J. Rekers, "The syntax definition formalism sdf—

reference manual—," ACM Sigplan Notices, vol. 24, pp. 43-75, 1989.

[161] Y. Wei, S. Zhang, and J. Cao, "Coordination among multi-agents using process calculus and

ECA rule," in Engineering and Deployment of Cooperative Information Systems, ed:

Springer, 2002, pp. 456-465.

169

[162] J. Bailey, G. Papamarkos, A. Poulovassilis, and P. T. Wood, "An event-condition-action

language for XML," in Web Dynamics, ed: Springer, 2004, pp. 223-248.

[163] J. Bailey, A. Poulovassilis, and P. T. Wood, "Analysis and optimisation of event-condition-

action rules on XML," Computer Networks, vol. 39, pp. 239-259, 2002.

[164] G. Papamarkos, A. Poulovassilis, and P. T. Wood, "Event-condition-action rule languages

for the semantic web," in Proceedings of the First International Conference on Semantic

Web and Databases, 2003, pp. 294-312.

[165] N. Koch, A. Knapp, G. Zhang, and H. Baumeister, "UML-based web engineering," in Web

Engineering: Modelling and Implementing Web Applications, ed: Springer, 2008, pp. 157-

191.

[166] S. Ceri, A. Bongio, P. Fraternali, M. Brambilla, S. Comai, and M. Matera, Morgan

Kaufmann series in data management systems: Designing data-intensive Web applications:

Morgan Kaufmann, 2003.

[167] D. M. Groenewegen, Z. Hemel, L. C. Kats, and E. Visser, "WebDSL: a domain-specific

language for dynamic web applications," in Companion to the 23rd ACM SIGPLAN

conference on Object-oriented programming systems languages and applications, 2008, pp.

779-780.

[168] M. Ribarić, D. Gašević, M. Milanović, A. Giurca, S. Lukichev, and G. Wagner, "Model-

Driven engineering of rules for web services," in Generative and Transformational

Techniques in Software Engineering II, ed: Springer, 2008, pp. 377-395.

[169] H. Boley, S. Tabet, and G. Wagner, "Design rationale of RuleML: A markup language for

semantic web rules," in Proceedings of the First International Conference on Semantic Web

Working, 2001, pp. 381-401.

[170] G. Wagner, A. Giurca, and S. Lukichev, "A usable interchange format for rich syntax rules

integrating OCL, RuleML and SWRL," Proc. of WSh. Reasoning on the Web, 2006.

[171] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M. Dean, "SWRL: A

semantic web rule language combining OWL and RuleML," W3C Member submission, vol.

21, p. 79, 2004.

[172] Z. Meliš, J. Žáček, and F. Huňka, "Comparison of MDA and DSM Technologies for the

REA Ontology Model Creation," e-Informatica Software Engineering Journal, vol. 7, 2013.

[173] T. Mens and P. Van Gorp, "A Taxonomy of Model Transformation," Electronic Notes in

Theoretical Computer Science, vol. 152, pp. 125-142, 3/27/ 2006.

[174] K. Czarnecki and S. Helsen, "Classification of model transformation approaches," in

Proceedings of the 2nd OOPSLA Workshop on Generative Techniques in the Context of the

Model Driven Architecture, 2003, pp. 1-17.

[175] J. B. Warmer and A. G. Kleppe, "The object constraint language: Precise modeling with uml

(addison-wesley object technology series)," 1998.

[176] D. L. McGuinness and F. Van Harmelen, "OWL web ontology language overview," W3C

recommendation, vol. 10, p. 2004, 2004.

[177] I. S. Bajwa, B. Bordbar, and M. G. Lee, "OCL constraints generation from natural language

specification," in Enterprise Distributed Object Computing Conference (EDOC), 2010 14th

IEEE International, 2010, pp. 204-213.

[178] I. S. Bajwa, M. G. Lee, and B. Bordbar, "SBVR Business Rules Generation from Natural

Language Specification," in AAAI spring symposium: AI for business agility, 2011, pp. 2-8.

[179] Ö. Ö. Tanrıöver and S. Bilgen, "A framework for reviewing domain specific conceptual

models," Computer Standards & Interfaces, vol. 33, pp. 448-464, 2011.

[180] M. Völter, T. Stahl, J. Bettin, A. Haase, and S. Helsen, Model-driven software development:

technology, engineering, management: John Wiley & Sons, 2013.

[181] J. Žácek and F. Hunka, "Reusable Object-Oriented Model," e-Informatica Software

Engineering Journal, vol. 7, 2013.

[182] R. M. Soley and C. M. Stone, Object management architecture guide: revision 2.0: Object

Management Group, Incorporated, 1993.

[183] F. Truyen, "The fast guide to model driven architecture the basics of model driven

architecture," 2006.

[184] F. Truyen, "The Fast Guide to Model Driven Architecture The Basics of Model Driven

Architecture," URL: http://www. omg. org/mda/presentations. htm, January, 2006.

170

[185] M. Belaunde, C. Casanave, D. DSouza, K. Duddy, W. El Kaim, A. Kennedy, et al., "MDA

Guide Version 1.0," 2003.

[186] J. P. Almeida, R. Dijkman, M. Van Sinderen, and L. F. Pires, "On the notion of abstract

platform in mda development," in Enterprise Distributed Object Computing Conference,

2004. EDOC 2004. Proceedings. Eighth IEEE International, 2004, pp. 253-263.

[187] D. Wagelaar and V. Jonckers, "Explicit platform models for MDA," in International

Conference on Model Driven Engineering Languages and Systems, 2005, pp. 367-381.

[188] J. Bézivin, "On the unification power of models," Software & Systems Modeling, vol. 4, pp.

171-188, 2005.

[189] T. O. M. G. OMG, "MOF 2.0/XMI Mapping Specification," OMG Specification (formal/05-

09-01)2005.

[190] L. A. Lanceloti, J. C. Maldonado, I. Gimenes, and E. A. Oliveira Jr, "Smartyparser: a xmi

parser for uml-based software product line variability models," in Proceedings of the Seventh

International Workshop on Variability Modelling of Software-intensive Systems, 2013, p. 10.

[191] R. Soley, "Model driven architecture," OMG white paper, vol. 308, p. 308, 2000.

[192] S. J. Mellor, K. Scott, A. Uhl, and D. Weise, "Model-driven architecture," in Advances in

Object-Oriented Information Systems, ed: Springer, 2002, pp. 290-297.

[193] G. A. Lewis, B. C. Meyers, and K. Wallnau, "Workshop on Model-Driven Architecture and

Program Generation," CARNEGIE-MELLON UNIV PITTSBURGH PA SOFTWARE

ENGINEERING INST2006.

[194] A. Computing, "An architectural blueprint for autonomic computing," 2006.

[195] M. Torres and G. H. Alférez, "Software Architecture Evolution in the Open World through

Genetic Algorithms," in Proceedings of the International Conference on Software

Engineering Research and Practice (SERP), 2014, p. 1.

[196] Y. Yu, J. C. S. do Prado Leite, A. Lapouchnian, and J. Mylopoulos, "Configuring features

with stakeholder goals," in Proceedings of the 2008 ACM symposium on Applied computing,

2008, pp. 645-649.

[197] S. Liaskos, A. Lapouchnian, Y. Yu, E. Yu, and J. Mylopoulos, "On goal-based variability

acquisition and analysis," in 14th IEEE International Requirements Engineering Conference

(RE'06), 2006, pp. 79-88.

[198] E. Papulova and Z. Papulova, "Competitive strategy and competitive advantages of small

and midsized manufacturing enterprises in Slovakia," E-Leader, Slovakia, 2006.

[199] I. 9241-11, "Ergonomic requirements for office work with visual display terminals (VDTs)–

Part 11," International Organization for Standardization,Geneva, 1998.

[200] A. Dix, Human-computer interaction: Springer, 2009.

[201] N. Tselios, N. Avouris, and V. Komis, "The effective combination of hybrid usability

methods in evaluating educational applications of ICT: Issues and challenges," Education

and Information Technologies, vol. 13, pp. 55-76, 2008.

[202] J. Sauro, "Measuring Usability with the System Usability Scale (SUS)," 2011.

[203] B. Kaplan and D. Duchon, "Combining qualitative and quantitative methods in information

systems research: a case study," MIS quarterly, pp. 571-586, 1988.

[204] V. R. Basili, "The role of experimentation in software engineering: past, current, and future,"

in Proceedings of the 18th international conference on Software engineering, 1996, pp. 442-

449.

[205] J. Lazar, J. H. Feng, and H. Hochheiser, Research methods in human-computer interaction:

John Wiley & Sons, 2010.

[206] J. R. Lewis, "IBM computer usability satisfaction questionnaires: psychometric evaluation

and instructions for use," International Journal of Human‐Computer Interaction, vol. 7, pp.

57-78, 1995.

[207] A. Bangor, P. T. Kortum, and J. T. Miller, "An empirical evaluation of the system usability

scale," Intl. Journal of Human–Computer Interaction, vol. 24, pp. 574-594, 2008.

[208] R. Molich and J. Nielsen, "Improving a human-computer dialogue," Communications of the

ACM, vol. 33, pp. 338-348, 1990.

[209] J. Nielsen, "Heuristic evaluation," Usability inspection methods, vol. 17, pp. 25-62, 1994.

[210] B. Tognazzini, TOG on Interface: Addison-Wesley Longman Publishing Co., Inc., 1992.

171

[211] J. Preece and H. D. Rombach, "A taxonomy for combining software engineering and human-

computer interaction measurement approaches: towards a common framework,"

International journal of human-computer studies, vol. 41, pp. 553-583, 1994.

172

APPENDIX A

INDUSTRIAL SURVEY FOR PROCESS CUSTOMIZATION RESEARCH

A 1. BPM Survey Questions

Figure A.1: Research Applicability Survey on Process Model Industry Participant

173

A 2. DCU Research Ethics Committee Approval

174

A 3. Research Work on Process Model Customization

Table A1: Compendium Research Work on Process Model Customization

17Web Ontology Language-Business Process Customization (OWL-BPC)

A
u

th
o

rs

C
o
m

p
a
ri

so
n

s

S
u

m
m

a
ry

S
o
lu

ti
o
n

Im
p

le
m

en
ta

ti
o
n

co
m

p
o
n

en
t

D
o
m

a
in

Liang et al.

[109] [114]

Ontology Service-based for business

processes customization

1. Semantic inconsistencies

2. Behavioral mismatches

3. Misaligned rendezvous

 OWL-

BPC17

Kumar and

Kanagaraj

[110]

Ontology Knowledge based human

semantic web for customizing

process model.

The framework with both the

customization detection and

enactment; the two techniques

are used to solve both the

semantic and behavioral

mismatch.

Dynamic

adaptation

and

accuracy

OWL-

BPC

Huang et

al.[111]

Ontology The dependencies are

captured between variation

points via variation point

ontology and utilize SWRL

rules encoded in ontology

 SWRL Urban

logistics

distribution

La Rosa

and van der

Aalst [84]

Questionnaire

driven

Questionnaire models

capture system variability

based on questionnaire

models that include order

dependencies and domain

constraints

 Film

production

175

A
u

th
o

rs

C
o
m

p
a
ri

so
n

s

S
u

m
m

a
ry

S
o
lu

ti
o
n

Im
p

le
m

en
ta

ti
o
n

co
m

p
o
n

en
t

D
o
m

a
in

Kumar

and

Yao [3]

Rule

templates

Template and

configuration rules for

customizing the

process model

Designing flexible

business processes

based on combining

process, generic

process template with

business rules.

Template- and rule-

based

Approach

 Java and used the

Drools Rule

Language (DRL)

conflict

resolution

component

Variant

configuration

algorithm

Transformation

between a

Process template

in BPEL.

Insurance

process

Asadi

et al.

[5]

Feature

model

Post validation

Inconsistencies

resulting from the

customization of

business process

models, which were

originally derived from

references process

through configuration

procedures.

Variability

complexity,

Modeling

complexity, Delta

requirements, and

Customization

validation

Propositional

logic, first-order

logic and

temporal logic,

Traversal

algorithms to

compare process

graphs,

Compare

execution traces

of process

models and

Description

logics (DL)

Health

care

Alférez

et al.

[6]

Feature

model

WS-BPEL and service

activation &

deactivation

MoRE-WS tool

activates and

deactivates features in a

Automatizes the

creation of

variability model

configurations at

design and run

time.

Constraint logic

programming,

WS-BPEL code

Online

book

176

variability model at

runtime.

Dynamic

adaptations on an

enterprise

orchestration

engine

177

APPENDIX B

RULE LANGUAGE AND SYNTAX

B1. Rule Language Concrete Syntax

In this appendix, we give the concrete syntax of DSRL (discussed in Chapter 6)

that has been implemented in form of XML. The abstract syntax and language

description are being used to formulate and construct the DSR representing the

configured rule of gic:Extraction with document upload with different validation

level of rule.

<DSR>
 <Head>
 </Head>
 <Domain>Globic Intellegent Content</Domain>
 <FeatureModelName="File">
 <FeatureType>Mandatory</FeatureType>
 <Inherited>gic:Extraction</Inherited>
 </FeatureModelName>
 <Functions>
 <LevelId="1">
 <Functionname="FileSizeCal">
 <Paramsid="1"type="String">
 <paramName>FilePath</paramName>
 </Params>
 <Return>
 <Var>$returnParam</Var>
 <DataType>Integer</DataType>
 </Return>
 </Function>
 <Functionname="FileTypeCheck">
 <Paramsid="1"type="String">
 <paramName>FileType</paramName>
 </Params>
 <Paramsid="2"type="String">
 <paramName>FileExtenstion</paramName>
 </Params>
 <Return>
 <Var>$returnParam</Var>
 <DataType>Boolean</DataType>
 </Return>
 </Function>
 </Level>
 <LeveId="2">
 <Functionname="DocSize">
 <Paramsid="1"type="String">
 <paramName>FileName</paramName>
 </Params>

178

 <Return>
 <Var>$returnParam</Var>
 <DataType>Integer</DataType>
 </Return>
 </Function>
 <Functionname="IsDocument">
 <Paramsid="1"type="String">
 <paramName>FileName</paramName>
 </Params>
 <Paramsid="2"type="String">
 <paramName>SourceLanguage</paramName>
 </Params>
 <Return>
 <Var>$returnParam</Var>
 <DataType>Boolean</DataType>
 </Return>
 </Function>
 </Leve>
 </Functions>
 <Body>

 <ProcessName="gic:Extraction">
 <State.Transitions>
 <TransitionDisplayName="T-LG-EX"

 </Transition>
 </State>
 </State.Transitions>

 <EventON="FileUpload">
 <Rulename="Level-1:ValidUpload">
 <VarId="1">
 <Name>Accept File Extenstion</Name>
 <DataType>String</DataType>
 </Var>
 <VarId="2">
 <Name>Max File Size(MB)</Name>
 <DataType>Integer</DataType>
 </Var>
 <VarId="3">
 <Name>Upload Directory</Name>
 <DataType>String</DataType>
 </Var>
 <Condition>
 <Rel>UploadCheck</Rel>
 <Param>
 <VarId="1">
 .pdf,.txt,.html</Var>
 <VarId="2">
 10</Var>
 <VarId="3">
 http://dsrl.nlplabs.org/DSRRepository/Upload</Var>
 </Param>
 <IF>
 <Check>FileTypeCheck==True</Check>
 <Action>
 <Do>ValidDocument()</Do>
 </Action>
 </IF>

179

 <Else>
 <Message>File type is not valid!</Message>
 </Else>
 </Condition>
 </Rule>
 <Rulename="Level-2:ValidDocument">
 <VarId="1">
 <Name>File Path</Name>
 <DataType>String</DataType>
 </Var>
 <VarId="2">
 <Name>Type of File</Name>
 <DataType>string</DataType>
 </Var>
 <VarId="3">
 <Name>File Extenstion</Name>
 <DataType>string</DataType>
 </Var>
 <VarId="4">
 <Name>File Name</Name>
 <DataType>String</DataType>
 </Var>
 <VarId="5">
 <Name>Source Language</Name>
 <DataType>String</DataType>
 </Var>
 <Condition>
 <Rel>ValidDocument</Rel>
 <Param>
 <VarId="1">
 C:\SourceFile\</Var>
 <VarId="2">
 Text File</Var>
 <VarId="3">
 .txt</Var>
 <VarId="4">
 English.txt</Var>
 <VarId="5">
 English</Var>
 </Param>
 <IF>
 <Check>ValidFileSize==True</Check>
 <Action>
 <Do>Next</Do>
 </Action>
 </IF>
 <Else>
 <Message>File name is not valid!</Message>
 </Else>
 </Condition>
 </Rule>
 </Event>
 </Process>
 </Body>
</DSR>

180

APPENDIX C

USER EXPERIENCE EVALUATION

C 1. Tasks Assigned on Dashboard

Figure C.1: The Dashboard of the Participant

C 2. Tasks Finished on Dashboard

The finished tasks are illustrated with red color and mouse click is disabled on

the dashboard

181

Figure C.2: The Dashboard of the Participant after Task Finished

C 3. Feature Model Selection Interface

 Where end-users select their desire tasks and requirement for DSR generation.

Figure C.3: Feature Selection from Feature Model Interface

182

C 4. Interface of Generated Rule for Manual Configuration

Figure C.4: Manual Configuration of Interface

C 5. Interface of End-user for Semi-Automatic Configuration

Figure C.5: Semi-Automatic Configuration of Web URL

183

C 6. Semi-automatic Configuration of Multimedia

Figure C.6: Semi-Automatic Configuration of Multimedia

In Figure C.6 illustrated, the process model gic:Extraction as Process Name

and FileUpload is the Event Name for Multimedia process activities or sub-process.

This event validated on two level: ValidaUpload and ValidDocument. The

ValidaUpload contains 3 domain constraints to configure and ValidDocument

contains 4 domain constraints. Each user has to configure the constraints value

according to their requirement or need.

184

C 7. Semi-automatic Configuration of Text Input

Figure C.7: Semi-Automatic Configuration of Text Input

C 8. Semi-automatic Configuration of Document

Figure C.8: Semi-Automatic Configuration of Document Input

185

C 9. Tasks Distribution Matrix

Table C1: Tasks Distributions Matrix

1 1 1 1 1 1 2 2 2 2 2 2

2 2 3 3 4 4 1 1 3 3 4 4

3 4 2 4 3 2 3 4 1 4 3 1

4 3 4 2 2 3 4 3 4 1 1 3

3 3 3 3 3 3 4 4 4 4 4 4

1 1 2 2 4 4 3 3 2 2 1 1

2 4 1 4 2 1 2 1 3 1 2 3

4 2 4 1 1 2 1 2 1 3 3 2

186

APPENDIX D

SYSTEM USABLITY SCORE

D 1. SUS Form

System Usability Scale Survey

1. I think that I would like to use

configuration and customization in

DCT or another domain frequently

2. I found the prototype tool

unnecessarily complex

3. I thought the semi-automatic

mode of prototype was easy to use

4. I think that I would need the

support of a technical person to be

able to use this prototype

5. I found the various functions in

prototype tasks were well integrated

6. I thought there was too much

inconsistency in this prototype

7. I would imagine that most people

would learn to use this tool very

quickly

8. I found the system very

cumbersome to use

9. I felt very confident using the

system

10. I needed to learn a lot of things

before I could get going with the

prototype tool

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

187

Please provide your comments about the prototype and a short description about

your choice for each of the SUS statements why and what make you take your

decision?

D 2. SUS Web User Interface of SUS Form

Figure D.1: SUS for DSRG Framework

188

D 3. SUS Form Analysis

Table D1: SUS Analysis

Q
u

es
ti

o
n

N
u

m
b

e
r

Evaluation

Criteria

S
en

ti
m

en
t

o
f

Q
u

es
ti

o
n

s

S
y

st
em

U
sa

b
il

it
y

S
co

re

1. Domain User Positive 4

2. UX Negative 1

3. UX Positive 4

4. Non-Technical

User-UX

Negative 1

5. Effectiveness Positive 4

6. Effectiveness Negative 1

7. Learnability Positive 4

8. Efficiency Negative 1

9. Learnability/User

Friendly

Positive 4

10. Learnability Negative 1

