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Abstract

Ian Kavanagh

Accurate and efficient full-wave modelling for indoor

radio wave propagation

The transition towards next-generation communication technologies has increased

the need for accurate knowledge about the wireless channel. Knowledge of radio

wave propagation is vital to the continued development of efficient wireless com-

munications systems capable of providing a high data throughput and reliable con-

nection. Thus, there is an increased need for accurate propagation models that can

rapidly predict and describe the propagation channel. This is extremely challenging

for indoor environments given the large variety of materials encountered and very

complex and widely varying geometries.

Currently, empirical or ray optical models are the most common for indoor propaga-

tion. Empirical models based on measurement campaigns provide limited accuracy,

are very costly and time-consuming but provide rapid predictions. Deterministic

models are applied to the geometrical representation of the environment and are

based on Maxwell’s equations. They can produce more accurate predictions than em-

pirical models. Ray tracing, an approximate model, is the most popular deterministic

model for indoor propagation. The current trend of research is focused on improving

its accuracy.

Full-wave propagation models are based on the numerical solution of Maxwell’s

equations. They are able to produce accurate predictions about the wireless channel.

However, they are very computationally expensive. Thus, there has been limited

attempts at developing indoor propagation models based on full-wave techniques.

In this work, the Volume Electric Field Integral Equation (VEFIE) is used as the basis

xiv



of a full-wave indoor propagation model. The 2D and 3D formulations of the VEFIE

are applied to model the propagation of radio waves indoors. An enhancement to the

2D VEFIE, called 2D to 3D models, is developed to improve its accuracy and utilise

its efficiency. It is primarily used for the prediction of time domain characteristics

due to its high efficiency whereas the 3D VEFIE is shown to be suitable for frequency

domain predictions.

xv



Acknowledgements

I would like to thank my supervisor Dr. Conor Brennan for his help, advice and

support during this work. Thanks are also due to my fellow colleagues in DCU,

including Sajjad Hussein, Vinh Pham-Xuan, John Monks and Anderson Simiscuka.

I would also like to thank my family for their constant love and support. Special

thanks are due to Sarah Connolly for sticking by me through a very stressful and busy

time.

xvi



Chapter 1

Introduction

The increase in use of mobile devices, in recent times, has put a strain on wireless

communications infrastructure. This has led to a move towards decentralised net-

works. Femto and pico cells served by small telecommunications access nodes are

becoming more attractive as a means to provide reliable wireless communications

networks with a high capacity [1]. These devices are built to work inside buildings

and normally provide a small area of coverage but have to serve very complex en-

vironments composed of a large variety of different materials [2]. Knowledge of the

propagation characteristics of these environments in the frequency and time domains

is vital to the continued development of energy efficient wireless communications

systems that can provide the required coverage and performance. A more detailed

description of some of the problems faced by wireless communications systems and

the need for accurate propagation models that can rapidly describe the propagation

channel and serve as tools to optimise the location and configuration of base stations

within femto and pico cell environments is presented in Section 2.1. These propaga-

tion models should be capable of including as much of the geometrical and mater-

ial information of the environment as is reasonably possible but also yield predic-

tions rapidly. This is extremely challenging for indoor environments. The study of

propagation modelling and the incorporation of geometrical and material informa-

tion is examined in Sections 2.2 and 2.7. The remainder of Chapter 2 reviews the

current state-of-the-art of indoor propagation models.

Empirical models are presently the most common models used for indoor propaga-

tion. They provide rapid predictions but lack the accuracy needed for modern applic-

ations. In addition, specific models are intended for either frequency or time domain

predictions but not for both. A brief survey of some empirical models is presented

in Section 2.3. The COST 231 multi-wall model [3] and the Motley-Keenan model
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[4], [5] are two quick and theoretically simple empirical1 models for predicting path

loss but their accuracy is restricted by the underlying measurement campaigns used

to develop them. The SIRCIM computer simulator [6] produces power delay pro-

files based on statistical channel impulse response models. Recently, deterministic

models have grown in popularity due to advances in compute power and the wide

availability of efficient computing resources [7]. In Section 2.4, ray tracing the most

popular deterministic model for indoor environments is briefly reviewed. Ray optical

methods are built on Geometrical Optics (GO). It is a relatively fast method, although

slower than empirical models, that originates from the asymptotic approximation of

Maxwell’s equations at high frequencies. It is capable of producing predictions in

both the frequency and time domains. GO has been augmented with the Geometrical

Theory of Diffraction and the Uniform Theory of Diffraction in [8], [9] respectively to

include the diffraction phenomenon and increase its accuracy. Lately, diffuse scatter-

ing [10] has seen significant investigation in the literature [11]–[18] and is increasingly

being included in ray optical models to further augment their accuracy. The current

trend towards improving the accuracy of ray optical methods and consequentially

their computation time and complexity suggests that it may be beneficial to take a

different approach - to start with an accurate full-wave method and attempt to re-

duce its computational complexity.

Full-wave propagation models are based on the numerical solution of Maxwell’s

equations. Providing they include all of the information of the propagation envir-

onment they should be able to produce accurate predictions. There have been lim-

ited attempts in the literature at developing full 3D propagation models based on

full-wave techniques because they are very computationally expensive. The most

popular of these employed for indoor propagation are surveyed in Section 2.5. For

example, the Finite Difference Time Domain method is shown to be slow for rel-

atively small indoor problems [19], [20] in both 2D and 3D with research ongoing

to reduce its computational complexity. The boundary integral equation is another

full-wave technique that has been used for indoor propagation [21], while the Multi-

Resolution Frequency Domain ParFlow (MR-FDPF) method [22]–[24] is based on a

full-wave technique but employs approximations to significantly reduce its compu-

tational cost. These approximations require the MR-FDPF method to be calibrated

with measurements before it can be used as an accurate propagation model, thus,

1 Empirical models that require some knowledge of the environment are often referred to as semi-
empirical models.
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calling into question the deterministic nature of the model.

The focus of this thesis is on the use of the Volume Electric Field Integral Equation

(VEFIE) as an indoor propagation modelling tool. To the best of this authors know-

ledge there has only been a single attempt in the literature at developing an indoor

propagation model based on the VEFIE [25]. It is reviewed in Section 2.5.2 along with

the use of surface integral equations.

Chapter 3 provides a general overview of computational electromagnetics. It presents

Maxwell’s equations in their differential, integral and time-harmonic forms which

underpin the propagation of electromagnetic waves. The two most common meth-

ods used to solve Maxwell’s equations the finite difference method and the Method of

Moments (MoM) are briefly described. The VEFIE which is used extensively through-

out the later chapters of this thesis is derived from Maxwell’s equations. The MoM is

applied to it to discretise it and enable its numerical solution. The application of the

MoM results in a set of N linear simultaneous equations that can be formulated as a

matrix equation. The N linear equations result from the expansion of the unknown

electric field in the VEFIE using N basis functions.

The matrix equation created by the MoM process can be solved by direct matrix

inversion. However, for indoor propagation problems this matrix is usually large

because the size of the problem is on the order of a few hundred wavelengths. The

MoM requires a discretisation rate of λ
10 in order to accurately model the variations of

electromagnetic waves. Thus, iterative solvers are employed to more efficiently solve

the matrix equation. The Krylov family of iterative solvers that are employed in this

thesis are examined in Chapter 4. The convergence rate of these solvers is based

on the spectral properties and condition number of the matrix. Preconditioners are

matrices that are used to improve the spectral properties of the system matrix and

enhance the convergence rate of the iterative solver. Some of these are described in

Section 4.3. The slowest element of the iterative solution is the matrix-vector product

that must be performed during each iteration. With specific knowledge of the un-

derlying problem and the composition of the system matrix this computation can be

accelerated. The Fast Fourier Transform (FFT) can be used to take advantage of a reg-

ular grid pattern in the system matrix to reduce the computational complexity of the

matrix-vector product and the storage requirements of the system matrix. The fast

multipole method and fast far field approximation are two electromagnetic specific

methods that break the problem up into near field and far field regions. Near field in-

teractions are computed exactly whilst those in the far field are approximated. These
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techniques are described in Section 4.4. The FFT approach is used to accelerate the

solution of the VEFIE in this thesis.

The subsequent chapters describe the work done by the author. The 2D VEFIE

discretised with the MoM and solved with the BiCGSTAB method is employed in

Chapter 5 to model propagation in buildings. The 2D VEFIE model is accelerated by

using the FFT which requires the discretisation of the entire problem domain includ-

ing free space unknowns. It can be shown that unknowns located in free space are

only present to impose a regular grid and enable the use of the FFT and thus don’t

have any effect on the solution of any other unknown in the problem. Thus, they can

be essentially ignored within each iteration, allowing the solver to focus on the fields

within the scatterers. This is done using a reduced operator which is described in

Section 4.3.3.

Chapter 5 examines the computational efficiency of the VEFIE and its surface coun-

terpart the Surface Electric Field Integral Equation. It validates the 2D VEFIE with the

analytical Mie series solution for scattering from a dielectric cylinder. The propaga-

tion modelling capabilities of the 2D VEFIE in both the frequency and time domains is

examined and it is compared against measurements and contrasted with other indoor

propagation models.

In Chapter 6 the 3D VEFIE is presented and used for indoor propagation modelling.

The 3D VEFIE is solved similarly to the 2D formulation using the MoM to discretise

it and the BiCGSTAB accelerated with the FFT and reduced operator to solve it. The

3D VEFIE is also validated against the analytical Mie series solution for scattering

from a dielectric sphere before being applied to model propagation in realistic indoor

environments.

In Chapter 7 novel techniques for extending the 2D VEFIE to be able to make ac-

curate 3D predictions are presented. The, so called, 2D to 3D models use the main

benefit of the 2D VEFIE, its speed, to develop accurate and efficient indoor propaga-

tion modelling tools. The 2D to 3D models are used for frequency and time domain

predictions where they are compared against measurements and popular empirical

and statistical models.

Lastly, Chapter 8 summarises the thesis and presents some avenues for future re-

search.
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1.1 Notation

In this work, matrices and vectors, both linear algebra and those related to position,

are represented in bold (e.g. r, E) and ||.||2 denotes the Euclidean norm.
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Chapter 2

Literature review

2.1 Introduction

Increasingly, it is becoming imperative to be able to accurately model and character-

ise the wireless channel for several reasons. The demand for wireless data is putting a

massive strain on communications networks and exacerbating the global bandwidth

shortage and problem of limited spectrum availability for cellular technologies and

personal communications systems [26]. Network planning and optimisation tools

are critical to the development and operation of communications systems capable of

providing a minimum level of signal quality that prevents portable devices from ex-

periencing signal interruptions. The quality of service of a wireless system depends

on many factors. Traditionally, the received signal strength has been the most crucial

[27] as, historically, planning aimed at pursuing a satisfactory coverage level. How-

ever, the development of advanced technical solutions, to solve issues associated with

the wireless data boom, more and more depends on the overall nature of the received

signal (e.g. time delay, angle of arrival, etc.) and multipath effects (e.g. angle spread

and polarimetric properties) than the received signal strength in isolation [28]. In fact,

the current 802.11ad and 4G (Long-Term Evolution) standards already make use of

Orthogonal Frequency-Division Multiplexing (OFDM) and Multiple Input Multiple

Output (MIMO) antenna systems that require knowledge of the spatial and temporal

aspects of the channel to operate at maximum capacity and efficiency. Multipath ef-

fects, which are very significant in indoor propagation, are a source of attenuation

and signal degradation [29] that advanced propagation models can be used to ana-

lyse and exploit.

The Internet of Things (IoT) and new wireless communications technologies has

necessitated the reuse of frequency spectrum in the unlicensed bands for multiple dif-
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ferent and new applications. Frequency reuse causes co-channel interference, which

is detrimental to system performance, reducing the coverage area, reliability and

throughput of the wireless system [30]. Mitigating co-channel interference in the un-

licensed frequency bands remains a major challenge particularly for indoor environ-

ments [31]. It is also necessary to consider the best location and optimum number

of transmitters for indoor wireless systems in order to maximise performance and

reduce costs during deployment and maintenance phases. Propagation models are

helpful in complying with safety regulations too [32], [33].

Motivated by the global bandwidth shortage the millimetre wave spectrum is be-

ing explored for future 5G communications systems [26]. There is very little know-

ledge about the propagation of radio waves at the typically underutilised millimetre

wave frequencies. Developing channel models and obtaining information about the

channel at these frequencies is vital for the efficient design of these systems and the

specification of the 5G standard. The next generation of communication systems are

expected to use more advanced techniques to provide higher data throughput that

will require an in-depth knowledge of the propagation channel [26], [28]. As the

frequency increases the size of objects in the environment that need to be modelled

decreases and the accurate modelling of surface roughness becomes of greater im-

portance [12]. Dynamic beamforming or beam-switching techniques could possibly

require a propagation model assisted algorithm to achieve optimal performance in

the future.

The indoor localisation problem is becoming more and more important as IoT ex-

pands and for tracking in factories, warehouses, hospitals, smart-homes and high

security areas [34] where global positioning systems (GPS) aren’t capable of operat-

ing. Propagation models are seen as a method to improve the accuracy of real-time

location systems and reduce the need for expensive and time-consuming measure-

ment campaigns to characterise the channel for fingerprinting based systems [35].

The ultrawideband (UWB) technology that has emerged as one of the most viable

candidates for indoor positioning [34] primarily requires the time of arrival or time

difference of arrival to triangulate an object [36]. The development of accurate tri-

angulation algorithms requires knowledge of the multipath effects [37] and ability to

adapt due to the time-varying nature unique to the indoor environment [38]. Reviews

of UWB technology [34], [39], [40] have outlined the potential benefits associated with

it but also the requirements for further development and channel modelling.
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2.2 Propagation modelling

The propagation of electromagnetic waves is governed by Maxwell’s equations. The

study of how these waves propagate and create the wireless channel is called propaga-

tion modelling. Propagation analysis helps to determine the characteristics of a sig-

nal for a given environment and is a companion to performing expensive and time-

consuming measurement campaigns. If accurate, they can reduce the number that

need to be undertaken [41]. Propagation modelling includes signal strength analysis,

impulse response characterisation and, increasingly, determining the angle of depar-

ture and arrival of the received signal [42].

Propagation models can be classified as either statistical or deterministic which

can be further classified into empirical, approximate or full-wave methods. Statistical

channel models describe the channel in an average sense without requiring know-

ledge of the underlying geometry of the environment. They are popular in wireless

planning tools [24], [43] due to their simplicity and relatively fast computation time.

However, they are limited to the scenarios for which they have been characterised

and are unable to capture the multipath effects experienced in indoor propagation.

To overcome the first issue, site-specific empirical models [44], [45] have been de-

veloped that require an underlying knowledge of the environment but they still only

describe the channel in an average sense and fail to accurately capture multipath fad-

ing effects. For this reason, site-specific deterministic models are seeing increased use

in the literature for indoor propagation modelling [28], [41], [46]–[48].

Deterministic channel models are typically based on approximate methods, like

ray optics, or full-wave techniques that numerically solve Maxwell’s equations. Ap-

proximate methods are based on the underlying physics of Maxwell’s equations but

in the case of ray optical methods employ a high frequency approximation to simplify

their solution. Ray optical methods (such as ray tracing or ray launching) approxim-

ate electromagnetic waves as rays travelling along infinitesimally thin lines. When a

ray impinges on a different medium it undergoes an electromagnetic interaction like

reflection, transmission, diffraction or diffuse scattering, which are explained later

in Section 2.4. Full-wave techniques, on the other hand, attempt to accurately solve

Maxwell’s equations without approximations except for those required by their nu-

merical solution. They discretise an environment to enable its solution with a com-

puter. Deterministic site-specific methods require knowledge of the geometry and

electrical parameters of materials for the environment of interest. Provided that this
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information is available full-wave models should produce accurate results for electro-

magnetic wave propagation except for numerical inaccuracies. Approximate models

require a trade off between the level of accuracy they provide and their complexity

and computation time [22], [49], [50]. Full-wave techniques are typically too compu-

tationally expensive and require supercomputers to solve them [51], [52]. They are

only applicable for electrically small problems unlike those found in indoor propaga-

tion [25] or are applied in two dimensions limiting their accuracy [53]. For these

reasons, site-specific hybrid models have been proposed, which utilise the accuracy

of full-wave techniques and the efficiency of approximate methods, as a viable altern-

ative for indoor propagation modelling [54].

2.3 Statistical and empirical models

The simplest method to predict the wireless channel is with empirical models. They

are based on the statistical characterisation of the wireless channel and are determ-

ined experimentally from measurement campaigns. The general empirical model

[55], [56] that all others are primarily based on expresses the path loss as

PL(d) = PL(d0) + 10n log10

(

d

d0

)

+ Xσ (2.1)

where PL(d) is the path loss in dB at a distance d from the transmitter, PL(d0) is the

known path loss at a reference distance d0, n is a path loss exponent that depends

on the propagation environment, and Xσ is a variable that represents uncertainty

in the model [57], it could represent slow and/or fast fading. Significant research

has focused on determining the parameters of this model for several scenarios [32].

However, its accuracy is limited to the scenarios it has been characterised for and

it is unable to provide a high level of accuracy as well as many quantities sought

after for indoor propagation modelling. The model above is specific to predicting

path loss characteristics of the wireless channel. A model to compute time domain

characteristics and estimate the RMS delay spread of the wireless channel was first

proposed by Saleh and Valenzuela in 1987 [58]. This was extended to predict angle of

arrival information in [59].

Empirical models have been constantly updated, refined and modified since their

inception. There is now a wide array of empirical models that have been developed

with more and more appearing every year, especially with the move towards next

9



generation communications technology and millimetre-waves [26]. Some of the most

popular empirical models for path loss prediction in indoor propagation today are:

the dual-slope model [60], the Cheung model [61], the COST 231 Multi-Wall model

[3], the ITU-R Recommendation P.1238-1 model [62] and the Motley-Keenan model

[4]. In fact, the popular Motley-Keenan model has recently been adjusted to further

enhance its accuracy [5].

A recent development for empirical models is attempting to build in some elements

of the underlying physics and geometry into the models to enhance their accuracy.

This approach to indoor propagation modelling was previously used for predicting

the average power delay profile (PDP) characteristics of a room using reverberation

theory [63]. The reverberation theory approach to PDP computation has been en-

hanced further by considering the locations of transmitters and receivers [64]. Mean-

while, the meaningful indoor path loss model [44] and simple heuristic indoor path

loss model [45] are two statistical approaches to predicting path loss based on the

environment. They report improved accuracy and portability to different environ-

ments without the need for extensive measurement campaigns to characterise their

parameters for every scenario.

The choice of which empirical model is best has until yet remained unanswered.

Several studies have been performed to analyse the accuracy of different empirical

models [60], [65], [66]. In [65] the authors results demonstrate the COST 231 model

outperforms the ITU-R model. However, in [66] the COST 231 model produces worse

results than the ITU-R model. [66] finds the best model is the partitioned model

and proposes a new model based on it that includes the wall penetration factor from

the COST 231 multi-wall model. [60], on the other hand, finds that the COST 231

multi-wall model and average walls model (which is based on the COST 231 multi-

wall model) produce more accurate results than the partitioned model. These studies

and their conflicting results demonstrate some of the issues associated with empirical

models and the main reason the propagation community is moving towards determ-

inistic site-specific propagation modelling techniques.

2.4 Ray optical techniques

Initially applied to optical problems ray tracing or ray launching methods are fast be-

coming the most popular method for electromagnetic wave propagation. The meth-

ods by which electromagnetic waves propagate in ray optical models are broken
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down into individual components; reflection, refraction, transmission, diffraction,

and scattering. A reflected wave occurs when an electromagnetic wave (or ray) im-

pinges on an obstacle whose dimensions are larger than its wavelength [67]. The

angles reflected waves take are governed by Snell’s law of reflection. Refraction and

transmission are linked but are also separate. Electromagnetic waves can refract in

the atmosphere due to a changing refractive index but this is less of an issue for indoor

propagation modelling and is more seen in tropospheric propagation [68]. Transmis-

sion occurs when an electromagnetic wave impinges on an object and instead of all of

its energy being reflected some of it passes through the object. The transmitted wave

refracts as it traverses the boundary between two different materials [69]. The angle

of refraction can be determined from Snell’s law of refraction. Typically, because it is

difficult to compute and not very significant, the shift due to refraction in transmitted

waves through materials, like walls, isn’t taken into account in most ray optical mod-

els. This simplification can often be satisfactory for computing the magnitude of the

transmitted wave but it introduces inaccuracies into the phase calculation. Thus, a

simple approximation to slightly correct for this is demonstrated in [69] which shows

a good agreement for normal and oblique incident waves. Geometric Optics (GO) is

the process used to determine incident, reflected and transmitted fields. It is a high

frequency approximation for Maxwell’s equations that well captures the propagation

of electromagnetic waves when their wavelength is much smaller than the size of the

objects being studied.

Very early ray optical models consisted mainly of reflected and transmitted waves

but in order to achieve higher levels of accuracy diffracted waves were included [67].

Diffraction occurs at the edges of obstacles and was first introduced in 1962 by Keller

as the Geometrical Theory of Diffraction (GTD) [70]. However, it does not produce

continuous fields in the incidence and reflection shadow boundaries. In order to over-

come these issues Kouyoumjian and Pathak introduced an extension to GTD, the

Uniform Theory of Diffraction (UTD) [71], that bounded the diffracted fields across

the shadow boundaries. UTD has been approximately extended to consider finite

conductivity diffracting edges [72]–[74] which makes it more accurate and viable for

indoor propagation problems but it is still shown to produce slight inaccuracies for

some complex multipath environments [67]. Advances in computing power over

the last few years have helped the development of ray optical methods by making

it easier to analyse their accuracy against full-wave approaches and develop more

accurate diffraction coefficients [67].
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Increasingly, the inclusion of diffuse scattering in ray tracing models has been seen

as very important for accurate indoor propagation modelling [11]–[15], [17], [28], [50],

[75]. Specular reflections described above are idealised approximations of the inter-

action that occurs when electromagnetic waves impinge on an object. They consider

that the entire ray strikes a single infinitesimally small point and all of the energy

in the field reflects in a single direction or is transmitted through the boundary. In

reality, the field scatters in many different directions due to the irregular surface or

roughness of the object [14], [57]. General GO can’t be applied to calculate the effect

of this scattering phenomenon so several different models have been developed [11],

[14], [17]. In fact the theory dates back to 1953 [10] and has been included in ray

tracing models since 1996 [76] but only more recently has it been regularly applied

to study indoor propagation [14]–[17] where its importance has been demonstrated

[17]. However, the inclusion of diffuse scattering represents a considerable increase

of the computational burden of ray optical models [28].

Ray optical models can be categorised as based on either ray tracing which is

mostly image theory based, ray launching, also called the shooting and bouncing rays

method, or a hybrid approach [77], [78]. Image theory determines the locations where

electromagnetic interactions occur by computing images of the transmitter with re-

spect to the faces and edges the interactions occur at and drawing straight lines from

the receiver to the image point. Multiple interactions can be computed by utilising

visibility algorithms that determine the faces and edges that can see other faces and

edges. The path from receiver to transmitter is then traced starting at the receiver.

There are many efficient algorithms that can be used. Some of the most popular are

binary space partitioning (BSP) [79] and the polar sweep algorithm [80]. The image

theory approach can compute all of the interactions for a given receiver point ex-

actly but it is very computationally expensive if a large number of receiver points are

required. In [81] image theory coupled with the BSP algorithm and a parallel ray ap-

proximation has been shown to reduce the computational time by 66% whilst adding

a 10% error in the results. Moreover, the ray launching technique is a brute force

approach that is more efficient for computing dense coverage maps. Ray launching

algorithms launch a number of rays from the transmitter at a distinct set of angles

when the ray interacts with an object the scattered field is computed based on reflec-

tion, transmission or diffraction of the launched ray. The process of tracing launched

rays continues until their power drops below some threshold level. Ray launching

implies an angular/spatial discretisation that limits accuracy and can result in gaps
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occurring in the coverage. Thus, it is necessary to construct a reception sphere around

receiver points [28], [82]. Any rays which intersect the reception sphere are summed

together to produce the field at that point. The coverage issue with ray launching led

to the development of the intelligent ray launching algorithm [83] that dynamically

accounts for rays to fill the gaps in coverage. Ray splitting [84] is another approach

designed to alleviate this problem. The need to launch a large number of rays in ray

launching algorithms produces a significant computational burden that has seen a lot

of interest in the literature [85]. One very promising approach is based on the use

of neural networks [85] whilst [50] found that including diffuse scattering based on

an equation of transfer approach is approximately 40% quicker than including dif-

fraction for the same level of accuracy in indoor propagation problems. To further

improve upon the image theory and ray launching approaches hybrid methods [77]

and approaches based on Gaussian beam tracking [86] have been developed. The use

of GPUs has also been investigated [87].

All of the ray optical methods described until now are frequency domain approaches

but time domain GO (TDGO) [88] is another approach that can be used. TDGO of-

fers an efficient method for producing frequency sweep information using ray tra-

cing. The approach is very similar to classical (frequency domain) GO except the field

strengths are computed in the time domain instead of the frequency domain. TDGO

like Finite Difference Time Domain (FDTD) (discussed in Section 2.5.1) can simulate

wideband systems in a single run making it much more efficient than frequency do-

main methods. In fact, TDGO can produce very accurate results in a time frame that

is 20 times faster than the full-wave FDTD method [88] but it has still seen very little

investigation in the literature compared with its frequency domain counterpart.

2.5 Full-wave methods

2.5.1 Finite Difference Time Domain

FDTD is the most popular full-wave method for indoor propagation modelling [19],

[31], [51], [53], [89]–[92]. It is not limited to indoor propagation modelling and has

been used in circuit modelling and optics [93]–[95]. It was first introduced by Yee in

1966 [96] and has remained in continuous development and use ever since due to its

flexibility and simplicity. It is an explicit finite difference approach that solves Max-

well’s curl equations. The Yee algorithm defines a grid for the electric and magnetic
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field components. The electric and magnetic fields are then solved in a time-stepping

approach which is terminated when the steady-state is reached, i.e. around 3 times

the length of time required for the incident field to propagate along the longest dir-

ection, or after a predetermined length of time depending on the analysis being per-

formed. The FDTD method requires careful consideration of the boundary of prob-

lems to prevent spurious reflections. For indoor propagation problems this requires

that all outward propagating waves are simulated as propagating to infinity. For this

reason, several absorbing boundary conditions (ABCs) [97]–[104] were developed.

The most popular ABC is the perfectly matched layer [105] that was developed by

Berenger in 1994, which has been further improved by Berenger [106] and Roden et

al. [107].

The FDTD method, like all full-wave methods, has some drawbacks that have pre-

vented its widespread adoption for indoor propagation modelling. Most full-wave

methods require a spatial discretisation of λ
10 where λ is the wavelength of the largest

frequency being simulated in the problem. For indoor propagation problems this is

a major disadvantage of full-wave methods as it leads to extremely large memory

requirements [51]–[53] and can often make it extremely difficult to execute full 3D

simulations. The FDTD method is also not unconditionally stable and the Courant-

Friedrich-Levy (CFL) limit puts restrictions on the maximum time-step that can be

used in FDTD simulations. This requires that in one time-step of the FDTD the in-

cident field must not travel more than the distance of one cell in any direction. These

restrictions for a long time limited the use of FDTD to electrically small problems [92]

and for indoor propagation limited its use to two-dimensional problems [53]. It was

not until the turn of the last decade [19], [31], [51], [91], [92] that three-dimensional

FDTD models began to be used for indoor propagation.

The simplicity and popularity of the FDTD method has led to several attempts to

reduce its computational burden. Early attempts proposed using multiple independ-

ent 2D simulations to generate 3D results in a 2.5D model [89]. Most attempts have

focused on reducing the memory requirements of FDTD [90] or attempting to reduce

the CFL limit imposed on the time-step to preserve stability [19], [92]. The Multi-

Resolution Time Domain (MRTD) method is another improvement to FDTD that at-

tempts to reduce its memory requirements and offer faster solutions, it is reviewed

in Section 2.5.5. More recently, advances in computing power, supercomputers and

GPUs have been seen as a viable approach to reduce the runtime of FDTD methods.

The reduced FDTD (R-FDTD) [90] method reduces the memory requirements of
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FDTD by only requiring four field components to be stored in 3D instead of six. The

remaining field components are spatially linked to the stored components by using

the divergence-free nature of the electric displacement current and can be computed

from the other components when needed. A similar process can be applied in two

dimensions where only two components need to be stored instead of three. This

results in a 33% reduction in the memory requirements of FDTD (in practical imple-

mentations 28.6% because of other elements that need to be stored) but requires 6

extra multiplications per FDTD update due to the need to compute the component

that isn’t stored. The R-FDTD method exhibits perfect agreement with the full FDTD

approach.

Both the locally one-direction FDTD (LOD-FDTD) [92] and alternating-direction

implicit FDTD (ADI-FDTD) [19] methods attempt to reduce the CFL limit imposed on

the FDTD for stability. The LOD and ADI schemes are similar approaches that solve

each time-step in the FDTD method in two steps. The reader is referred to [108], [109]

for more information on the LOD scheme and to [110] for more information on the

ADI scheme. The one-step ADI scheme is used in [19]. The LOD-FDTD and modified

leapfrog ADI-FDTD methods are not exact as in the case of FDTD but applying a limit

of 1% on the relative error, which should be sufficient for most indoor propagation

problems, they offer a 33% and 60% reduction, respectively, in computational time

for typical indoor propagation problems.

In recent years, the use of parallelisation [91], supercomputers [31], [51] and GPUs

[43], [111]–[113] has seen significant interest to accelerate FDTD solutions. Simple

parallelised indoor propagation FDTD solutions have been shown to experience around

a 15 times speed up on a desktop computer [91]. Whilst, the real advantages for ac-

celerating indoor propagation problems have been seen in GPU programming. An

off the shelf GPU has been shown to provide a 100 times speed up [43]. However,

careful consideration is required in the parallelisation of FDTD on CPUs and GPUs

in order to manage memory accesses and achieve the best possible speed up.

2.5.2 Integral equations

The integral form of Maxwell’s equations can be formulated as surface or volume in-

tegral equations in the frequency or time domain. Surface formulations are primarily

used to model piecewise homogeneous dielectrics or metals (perfect conductors) be-

cause they discretise only the surface of scatterers, whilst, volume formulations can
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be used for inhomogeneous problems as they discretise the entire volume of scatter-

ers. Integral equation methods have seen very limited use in the literature [21], [25],

[114] for indoor propagation modelling. Full-wave methods and particularly integ-

ral equation methods have primarily been used for low-frequency electrically small

problems because of the required λ
10 discretisation rate.

Integral equation methods can be more complex to solve than ray tracing and

FDTD but they provide significant benefits also. Integral equation approaches incor-

porate all electromagnetic interactions inherently [114] whereas ray optical models

must include reflection, transmission, diffraction and diffuse scattering phenomenon

individually. Integral equation approaches do not require ABCs and are capable of

providing the same propagation information and characteristics as FDTD using both

frequency [21], [25] and time [114] domain formulations.

Surface integral formulations are more popular in the literature for indoor propaga-

tion modelling. De Backer et al. [115] was one of the first to demonstrate the use of

surface integral equations for indoor propagation problems in 1997. De Backer et

al. used a surface integral equation discretised with the method of moments (MoM)

and demonstrated techniques that can be applied to accelerate the solution of the

model. Whilst, the model is only 2D and takes a considerable length of time (10

hours) to produce predictions it is extremely accurate and with modern advances and

improvements in computing power this runtime would be expected to fall dramatic-

ally. In fact, in 2006, nearly 10 years later, [21] showed that a similar approach using

the finite-element boundary-integral (FE-BI) method, a hybrid of the MoM and finite

element method applied to surface integral equations, in 3D required less time (7.8

hours) for a problem of a similar size. That same problem can be computed in 6 mins

[21] by applying the Array Decomposition-Fast Multipole Method (AD-FMM) [116]

to accelerate its solution. The AD-FMM method is good for modelling environments

that consist of a large number of repeatable components, like chairs in a classroom,

because it only stores each repeatable element once. This part is known as the Array

Decomposition Method (ADM). The Fast Multipole Method (FMM) is used to accel-

erate the computation of interactions between different elements in the problem. The

memory requirements and CPU time are reduced by a factor of 10 when the AD-

FMM is applied to the FE-BI with the error between the two methods less than 1%.

This demonstrates the viability of integral equation methods for indoor propagation

modelling and makes them a real alternative to ray tracing and empirical models.

Volume integral equations have seen very little interest in the literature for indoor
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propagation modelling. [25] demonstrates the use of the volume electric field integ-

ral equation (VEFIE) for indoor propagation problems. The volume integral model is

compared against a surface integral formulation and an exact analytic solution where

both are shown to produce an excellent agreement. The multilevel Fast Multipole

Algorithm (MLFMA) is used in [25] to accelerate the solution of the volume integral

model. The MLFMA reduces the complexity of matrix-vector multiplications in the

solution of the method from O(N2) to O(N log N). This is also similar to the benefit

provided by the Conjugate Gradient-Fast Fourier Transform (CG-FFT) approach to

solving the VEFIE. The authors state in [25] that the CG-FFT approach is not as effi-

cient as the MLFMA because of the significant number of extra unknowns it requires

to create a regular grid and fill in free space unknowns but it would be more efficient

for problems where most of the problem domain consists of dielectrics as opposed

to free space. However, another consideration to make is the accuracy of the model.

The FFT approach exactly computes the interactions between different cells in the

problem whilst the MLFMA approach is an approximate method with a very small

error.

2.5.3 ParFlow

The ParFlow method is a time domain approach for electromagnetic modelling based

on the idea of flows. It was first proposed by Chopard et al. in [117] for solving urban

propagation problems and is a generalisation of the well-known Transmission Line

Matrix (TLM) method (for circuit design) [52], [118]. The ParFlow method is a full-

wave approach to propagation modelling. The flows that are introduced to simulate

electromagnetic interactions between cells inherently model effects like reflections

and diffractions.

Recently, the ParFlow equations have been formulated in the frequency domain

and solved using a multi-resolution approach [119], [120]. The frequency domain Par-

Flow (FDPF) method has been proposed to reduce the computational load of the time

domain approach and ensure a faster convergence of the steady-state fields [52]. A

multi-resolution scheme has been proposed to solve it. The multi-resolution solution

scheme exploits the concept of flows to split the solution into a pre-processing phase

and a propagation phase. The pre-processing step creates a cell based tree structure

that defines the geometry and interactions between cells in a pyramidal structure,

this step is independent of the source location. In the propagation step, a radiating
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source is propagated throughout the problem taking advantage of the pre-processed

cell based tree structure. The pre-processing step is the most computationally expens-

ive [119], [121] but it only has to be computed once. The coverage due to a source can

then be computed efficiently for any location or multiple different locations.

The 3D multi-resolution FDPF (MR-FDPF) method suffers from high memory re-

quirements and computational load [22]. To overcome this drawback of the 3D ap-

proach an optimised algorithm [23] has been proposed that ignores propagation modes

with a low influence on the resulting coverage predictions using a singular value de-

composition approximation. The optimised solution reduces the computational load

but introduces approximations. To overcome the large computational time of the

3D MR-FDPF a 2.5D approach [120] has also been proposed for indoor propagation

modelling that demonstrates a good agreement with measurements after calibration

against those measurements.

As stated previously, the MR-FDPF algorithm is a full-wave method, however, its

use as a viable deterministic model without calibration is unclear. In all of the com-

parisons and validations made with the MR-FDPF method against measurements

[22]–[24], [52], [119], [120] the model is simulated at a lower frequency than the phys-

ical one. This is an obvious approach to reducing the computational complexity of

frequency domain methods as their runtime increases as frequency increases. How-

ever, this approach requires that the model is calibrated against measurements, call-

ing into question its deterministic nature. Even with calibration there are errors in

predicting the fields due to diffractions [52] in the MR-FDPF method.

2.5.4 Parabolic equation

The parabolic equation is a full-wave method derived from the time-harmonic form

of Maxwell’s equations using the paraxial approximation. The paraxial approxim-

ation assumes an electromagnetic wave propagates mainly along a single direction

and significant propagation effects do not occur at angles greater than 15◦ away from

this direction. Thus, it has seen limited interest in the literature for indoor propaga-

tion problems [122], [123]. It is primarily suited to cases like long narrow corridors

[123] and tunnels [124]. However, there is a wide angle correction [125]–[127] for

the parabolic equation that can extend its use for propagation angles within ±90◦ of

the paraxial direction which makes it more viable for complex indoor propagation

problems.
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The parabolic equation can be discretised using a numerical differentiation scheme,

like the finite element method, and solved with a time-marching approach. It is a

one-way propagation model, similar to FDTD, that can be marched forwards and

backwards to account for reflections from end walls and propagation effects in the

negative directions as well as the positive direction. For the case of corridors, where

the parabolic equation has been designed to work well, it produces reasonable res-

ults compared with ray tracing [123] when marched forwards and backwards but its

accuracy degrades for more complex indoor scenarios. In [127] the authors compare

the 2D parabolic equation with wide-angle approximation in a multi-floor building

against measurements and an empirical model. The parabolic equation struggles to

accurately capture the fading characteristics present in the measurements and pro-

duces very similar RMS error and standard deviation values compared with the em-

pirical model. This suggests the parabolic equation is not sufficient to model complex

indoor propagation problems.

The complex geometry of scattering objects in indoor environments produces elec-

tromagnetic effects that are not fully captured by the parabolic equation method.

Thus, in [29], [128] the parabolic equation has been augmented with an integral equa-

tion formulation to capture these complex scattering effects, in two and three dimen-

sions, respectively. This hybrid technique uses the parabolic equation to compute the

fields due to an excitation from a transmitting antenna in scattering objects. These

fields are then propagated to any free space point of interest using the VEFIE, de-

scribed in Section 2.5.2, in a simple post-processing step. The volume integral ap-

proach assumes scatterers are equivalent sources and because it is used to compute

the fields external to scatterers only there is no singularity present. The hybrid tech-

nique greatly improves the accuracy of the parabolic equation method with an aver-

age improvement to the absolute error of 13.5dB over the standard parabolic equation

when compared against measurements [128].

2.5.5 Multi-Resolution Time Domain

The MRTD method is an extension to the FDTD method. There are two variations of

it that depend on the type of function used to expand the electromagnetic fields in

Maxwell’s equations in space, either scaling functions (called S-MRTD) or wavelet

functions (called W-MRTD). The electromagnetic fields are also expanded in time

and, similarly to the FDTD method, a set of finite difference equations, which can be
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solved to determine the field components in a time-stepping approach, are derived.

The S-MRTD method, which has been applied to indoor propagation problems [20],

[129], uses order-7 Deslauriers-Dubuc biorthogonal interpolating functions to expand

the electromagnetic components in space and pulse basis functions to expand them

in time.

The S-MRTD method is able to use a coarser discretisation rate than FDTD due to

the use of higher order finite differences and expansion functions. This enables it to

be able to provide a similar level of accuracy as FDTD with a speed up of around 4

times [20]. Using a FDTD simulation with a discretisation rate of λ
20 the authors of

[20] found that an S-MRTD simulation with a discretisation rate of λ
7.5 produces an

error of 0.8% against it but offers an 8 times speed up. In [129] the S-MRTD method

has been accelerated by taking advantage of GPU programming offering a further

speed up of 30 times whereas GPU programming is seen to offer only a 10 times

speed up for FDTD. In fact for a typical indoor propagation problem the GPU accel-

erated S-MRTD method is capable of determining PDPs correlated to an accuracy of

90% depending on the simulation frequency in 1
134 the time. The MRTD method has

also been parallelised on a CPU and compared against a similarly parallelised FDTD

implementation [49]. The CPU parallelised MRTD implementation is able to produce

the same level of accuracy as the parallelised FDTD method 2.4 times quicker with

one third less memory requirements. However, currently, only the two-dimensional

form of the S-MRTD method has been applied to indoor propagation modelling. In

general, the MRTD method has seen very little investigation in the literature despite

the speed up it offers over FDTD [20], [49], [129].

2.5.6 Finite integration technique

The finite integration technique (FIT) is a scheme for discretising the integral form

of Maxwell’s equations. It is applied to the Maxwell Grid Equations (MGE) [130]

which can be applied to an open boundary electromagnetic problem. FIT restricts an

open boundary problem to a bounded simply connected region1 that is divided into a

number of cells on a regular grid, similarly to FDTD and MoM. The MGE are applied

to model discretised fields and produce discrete matrix equations that can be solved

by direct inversion or iterative methods.

In [131], the FIT method has been compared against ray tracing and an empirical

1 A region is simply connected if any simple closed curve can be shrunk into a point while remaining
in the region.
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model. With adaptive meshing and parallelisation 3D simulations using FIT can be

performed in relatively good runtimes of a couple of hours [131]. The main disad-

vantage of the FIT technique is the large memory requirements [130] that impose a

limit on the upper frequency of simulations that can be performed as it uses a spatial

discretisation rate of λ
5 . However, it has been shown to produce a much higher level of

accuracy (2 - 3.7 dB) than ray tracing (1.4 - 7.5 dB) and the one slope empirical model

using average configuration parameters (4 - 8.2 dB) for several different transmitter

locations and simulation frequencies [131]. It has also been shown to experience less

accuracy degradation (0.3 dB) when detail is removed from the geometrical descrip-

tion of the environment than ray tracing (0.7 - 2.5 dB).

2.6 Hybrid approaches

Due to the high computational burden of full-wave methods and the inaccuracies

associated with ray tracing, hybrid approaches have been proposed as a technique

to achieve higher accuracies with a lesser computational time. Most hybrid methods

involve using a full-wave method to solve the fields in a small region close to complex

discontinuities or in the presence of objects comparable in size with the wavelength

of the incident field where ray tracing solutions breakdown. This approach has been

used with the FDTD [54], [132], [133] and FIT [134] methods for indoor propagation

modelling. [54] produced results with a greater accuracy than ray tracing in a shorter

runtime because of the large number of receiver locations that were computed. [132]

demonstrates a 5 times speed-up over FDTD in 2D with accuracy comparable to it. A

trade-off in accuracy can also be made at the expense of a longer or shorter runtime.

Hybrid techniques have seen very little investigation in the literature because it is

very difficult to couple the different methods together and it appears a simpler task

to either enhance the accuracy of ray optical methods or reduce the computational

burden of full-wave methods. [122] employs a novel hybrid approach that uses the

parabolic equation to enhance a ray tracing model to compute the coverage over a

wide area much more efficiently than ray tracing alone but it is limited in its applic-

ability to general problems. Another issue with hybrid methods is the need for hu-

man interaction to define the regions that will be solved with the full-wave technique

and ray tracing [25]. Hybrid techniques have also seen very little implementation in

three dimensions. The implementation of the Finite Volume Time Domain (FVTD)

[54] method in three dimensions [135] demonstrated very little improvement in the
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hybrid method over ray tracing and pointed towards the inclusion of diffuse scatter-

ing in ray tracing as a larger source of error.

2.7 Parameter uncertainty

Ray tracing approaches are ideally suited to studying the effects of parameter vari-

ations [136] or uncertainties in the modelled geometries [137]–[139] and the effects

they have on predictions. Polynomial chaos is used in [136] to determine the effect of

uncertainties in material properties, building geometry and location of objects, and

the difference between real and simulated transmit and receive antennas. The results

show that for typical variations that could be considered likely in indoor propagation

problems the path loss can vary by around 10 dB for slight changes due to the signi-

ficant multipath fading found in indoor environments. [137] and [138], [139] studied

the effect of uncertainties in material permittivities and geometrical locations of walls

separately with respect to the path loss and RMS delay spread. They found that ma-

terial permittivity uncertainties have a small effect on the path loss but can have a

large effect on the RMS delay spread whilst the opposite is true of uncertainties in

the building geometry. [140] investigated the level of detail required in geometrical

data using point cloud information. The authors constructed an extremely detailed

point cloud model and compared simulations using reduced levels of detail against

the ultra detailed model. They found very little difference in the field predictions

between the ultra detailed point cloud with 0.13 points per square wavelength and

the minimal model with 0.2 points per square wavelength. These conclusions appear

to suggest that it is not necessary to have ultra detailed models but it is important

that the simulated material permittivities and geometries are correct.

2.8 Conclusions

Propagation modelling is needed more and more to keep up with the demands put

on wireless communications infrastructure and to aid the development of next gener-

ation communications systems and exploitation of millimetre wave bands. Advances

in numerical algorithms, computing power and the use of general purpose Graph-

ics Processing Units (GPGPUs) to solve numerical problems has helped change the

propagation modelling landscape over the last few years. It will continue to change

as 5G systems are developed and deployed with data usage expected to continue to
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grow exponentially. The Internet of Things and smart connected devices are expected

to dramatically increase the number of applications that require wireless communic-

ations to operate placing further demands on the already strained infrastructure.

Of all the methods presented that have been used for indoor propagation model-

ling there is no consensus on the best method to use or a widely accepted approach.

Each of the methods have advantages and disadvantages over each other and in most

cases the trade off between desired accuracy and a reasonable runtime plays a huge

role in determining the method to use. However, the propagation modelling land-

scape is changing thanks to the improvements in computational processing power in

part due to Moore’s law [7] and the development of platforms like Compute Unified

Device Architecture (CUDA) by Nvidia which enables the use of GPGPUs to solve

numerical problems [141]. The strain on current wireless technologies and systems

is leading the development of next generation communications technologies which

plan to use advanced technologies and explore the millimetre wave bands to over-

come the global bandwidth shortage and keep up with the demands on wireless sys-

tems [32]. The future development and operation of these systems requires more ac-

curate knowledge and information about the wireless channel and millimetre wave

propagation characteristics. This is pushing the propagation modelling landscape

towards the development of more accurate models. However, incorporating these

models into algorithms for advanced beamforming techniques and dynamic systems

will require that their computational load is kept low, further emphasising the trade

off between accuracy and computational complexity that has been a hallmark of the

propagation landscape since its early days in the 20th century.

Early attempts of propagation modelling started off with the development of em-

pirical and statistical models based on measurement campaigns. These are the simplest

models to implement and have remained under constant investigation since their ini-

tial development. There are countless numbers of empirical models that have been

developed, some of these are presented in Section 2.3. Unfortunately, most empirical

models need to be tuned before they can be used for a specific environment which

requires an expensive and time-consuming measurement campaign be carried out

beforehand. The large number of empirical models and some studies that compare

some for the same scenario [60], [65], [66] demonstrates that there is no widely accep-

ted empirical model that can be used for all scenarios.

In an effort to develop more accurate deterministic site-specific propagation mod-

els that don’t require calibration with measurements, ray optical methods have seen
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significant investigation and use in the literature. However, ray tracing based on GO

has been shown to not provide a high enough level of accuracy and has been augmen-

ted with the diffraction [67] phenomenon and more recently with diffuse scattering

[12], [28] to enhance its accuracy. However, with these additions the complexity of ray

optical methods is increasing and tending more towards that of full-wave methods.

The choice between a ray tracing and ray launching approach also represents a trade

off between accuracy and runtime. Ray tracing has been shown to produce accurate

results for particular points but is much slower than ray launching for wide coverage

areas [69]. On the other hand, ray launching can suffer from coverage issues, which

can effect its accuracy for particular points, depending on the environment and also

requires the use of a reception sphere for each point of interest to improve its accuracy

[83].

Full-wave methods, on the other hand, can solve the accuracy issues faced by em-

pirical and ray optical models but they are extremely computationally expensive.

There are a wide number of full-wave methods available that either solve the dif-

ferential or integral form of Maxwell’s equations. However, they typically require the

environment to be discretised at a rate of λ
10 which makes them very computationally

expensive for electrically large problems, like indoor propagation, and even more so

for the millimetre wave bands. Whereas, the computational load of empirical models

and ray optical methods does not increase appreciably with frequency. There have

been attempts to develop full-wave methods that don’t require the discretisation rate

of λ
10 [19], [92] but they require a larger number of computations and are typically

slower than ray optical methods.

In summary, there is no one size fits all approach to propagation modelling. The

choice of which method to use requires a trade off between the desired level of accur-

acy and an acceptable runtime. The propagation modelling landscape has changed

considerably over the early part of the 21st Century and will continue to change for

the foreseeable future. Research is tending towards the use of full-wave techniques

as they can provide the level of accuracy required but because of their currently slow

runtime and large computational load there is still a requirement for ray optical meth-

ods and empirical models, particularly those that take into account some facets of the

underlying geometry.
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Chapter 3

Computational electromagnetics

Computational electromagnetics (CEM) is the study of numerical solutions of Max-

well’s equations. It focuses on modelling the interaction of electric and magnetic

fields with their surrounding environment. The analytical solution of Maxwell’s

equations is only possible for a restricted set of problems and the majority of real-

world applications, including general scattering problems, must be tackled numer-

ically. CEM is a multi-disciplinary field. Its core disciplines are electromagnetic the-

ory, mathematics and computer science. The advent of computers and numerical

algorithms in the 20th century were the beginning of the field that today drives the

development of wireless communications technology and devices [142]. CEM is seen

by some as a replacement for measurements, which can be very costly and time con-

suming to carry out, whilst others see it as a companion to measurements [7].

CEM techniques have grown in popularity recently. The improvements in compute

power in part thanks to Moore’s law but also due to advances in computer science,

such as parallelisation and certain key algorithms have been a major contributing

factor. CEM is not just a mathematical or electromagnetic analysis but careful consid-

eration also needs to be given to parallelisation, GPU computing, memory and cache

issues and other software engineering principles. Efficient numerical algorithms un-

derpinning commercial CEM programs have begun to drive the development of wire-

less communications technology in recent years. They have been able to reduce the

amount of expensive and time consuming measurement campaigns and enable radio

communications engineers to optimise and simulate designs before they are manu-

factured or deployed. However, a criticism of CEM has arisen because numerical

techniques are increasingly being applied to problems they have not been designed

for by users who are unfamiliar with the underlying electromagnetic theory of the al-

gorithm and problem. The discussion that follows lays out some of the fundamental
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ideas of CEM and discusses some of the methods used to solve Maxwell’s equations.

3.1 Maxwell’s equations

Maxwell’s equations are a set of four independent equations that were found through

experiments by several scientists but first unified by James Clerk-Maxwell in the

1860s [143]. They are based on Coulomb’s law, Ampere’s law, Faraday’s law and

Gauss’ laws. These four equations underpin the study of CEM and drive the devel-

opment of wireless communications technology.

3.1.1 Differential form

The differential form of Maxwell’s equations form the basis of CEM analysis. They

describe the electric and magnetic field vectors, current densities and charge densities

at any point in space and at any given time. They are given by [143]

∇× E = −M− ∂B

∂t
(3.1)

∇×H = J +
∂D

∂t
(3.2)

∇ ·D = ρe (3.3)

∇ ·B = ρm (3.4)

where the field quantities E , H, J , M, D, B, ρe and ρm
1 are assumed to be time-

varying and a function of space and time, that is E = E(x, y, z; t). The definitions and

quantities of these field components are

E is the electric field intensity (volts/meter)

H is the magnetic field intensity (amperes/meter)

J is the electric current density (amperes/square meter)

M is the magnetic current density (volts/square meter)

D is the electric flux density (coulombs/square meter)

1 Magnetic current and charge are not physically realisable but have been introduced to balance Max-
well’s equations.
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B is the magnetic flux density (webers/square meter)

ρe is the electric charge density (coulombs/cubic meter)

ρm is the magnetic charge density (webers/cubic meter)

The four equations, (3.1) to (3.4), are known respectively as Faraday’s law, the

Ampere-Maxwell law, Gauss’s law for electric fields and Gauss’s law for magnetic

fields. Faraday’s law, (3.1), states a time-varying magnetic field produces a circulat-

ing electric field. (3.2) is commonly referred to as the Maxwell-Ampere law because

Maxwell added the electric displacement current density to it. It states that an electric

current or a time-varying electric field produces a circulating magnetic field. Gauss’s

law for electric fields, (3.3), states that an electric charge produces an electric field and

similarly for Gauss’s law for magnetic fields, (3.4). [144]

A complete description of the electric and magnetic field vectors requires Max-

well’s equations and the boundary conditions between different mediums to be con-

sidered. The differential form of Maxwell’s equations involves derivatives of the field

vectors in the space domain which at the boundary between mediums with discon-

tinuous electrical properties have no meaning. The boundary conditions define the

behaviour of the field vectors across discontinuous boundaries. The most convenient

method for deriving the boundary conditions is to use Maxwell’s equations in their

integral form [143].

3.1.2 Integral form

The integral form of Maxwell’s equations can be derived from the differential form

by using Stokes’ theorem and the divergence theorem. They describe the electric and

magnetic field vectors, current densities and charge densities over a region of space

and are analogous to the differential forms. The integral form of Maxwell’s equations

are given by [143]
˛

C
E · dl = −

¨

S
M · ds − ∂

∂t

¨

S
B · ds (3.5)

˛

C
H · dl =

¨

S
J · ds +

∂

∂t

¨

S
D · ds (3.6)

‹

S
D · ds = ̺e (3.7)

‹

S
B · ds = ̺m (3.8)
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where ̺e and ̺m are the total electric and magnetic charge in a volume V bounded

by a surface S,
˜

S denotes integration over a surface S that has the contour C as its

boundary and
¸

C is the integral over a closed path C.

3.1.3 Time-harmonic form

The modern form of Maxwell’s equations assume the field is time harmonic with a

time dependence of ejwt. This will be the format used from here on. Another repres-

entation of the time dependence is to use e−jwt where the e−jwt fields are related to

the fields obtained assuming ejwt dependence using complex conjugation.

The time-harmonic fields are a major simplification over the instantaneous fields

as they are a function of position only. The instantaneous fields are related to the

complex time-harmonic spatial form by, in the case of the electric fields,

E(x, y, z; t) = Re[E(x, y, z)ejwt] (3.9)

where E , H, J , M, D and B represent the instantaneous field vectors whilst E,

H, J, M, D and B represent the corresponding complex time-harmonic spatial forms

that are a function of position only. Thus, the most common format of Maxwell’s

equations, the time-harmonic differential form, are given by [7], [145], [146]

∇× E = −M − ωB (3.10)

∇× H = J + ωD (3.11)

∇ · D = ρe (3.12)

∇ · B = ρm (3.13)

and consequently, the time-harmonic integral form of Maxwell’s equations can be

expressed as [143]
˛

C
E · dl = −

¨

S
M · ds − ω

¨

S
B · ds (3.14)

˛

C
H · dl =

¨

S
J · ds + ω

¨

S
D · ds (3.15)

‹

S
D · ds = ̺e (3.16)
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‹

S
B · ds = ̺m (3.17)

3.2 Integral equation formulation

The integral equation formulation of scattering problems is derived by considering a

general scattering problem and applying the volume or surface equivalence principle.

The volume integral equation (VIE) is usually applied to inhomogeneous problems

whilst the surface integral equation (SIE) is applied for homogeneous problems as

only the boundary of scatterers need be discretised and not the entire volume. The

continuous integral equations are then solved using the Method of Moments (MoM)

procedure described in Section 3.3.2. The VIE and its derivation is described in detail

as it is used throughout the thesis.

3.2.1 General scattering problem

Consider a region of space containing an inhomogeneity with finite volume V illu-

minated by an electromagnetic field, with a time dependence of ejwt (assumed and

suppressed in the following), located outside of the scatterer as shown in Figure 3.1.

The inhomogeneous scatterer material is characterised by its relative permittivity

ǫr(x, y, z), permeability µr(x, y, z) and conductivity σ(x, y, z). The fields external to

the scatterer are governed by the equations in Section 3.1.3 and can be split into two

components, one associated with the primary source denoted the incident field Ei

and Hi and the other due to the presence of the scatterer material called the scattered

field Es and Hs. Both fields radiate in free space and their superposition gives the

total field, which is the solution to the scattering problem:

E = Ei + Es (3.18)

H = Hi + Hs (3.19)

where the incident fields in the vicinity of the scatterer must satisfy the vector Helm-

holtz equations

∇2Ei + k2Ei = 0 (3.20)

∇2Hi + k2Hi = 0 (3.21)

The solution of the scattered fields is described in Section 3.2.2.
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Figure 3.1: An inhomogeneous scatterer illuminated by an incident electromagnetic
field that produces a scattered electric field. The fields in the vicinity of
the scatterer must satisfy Maxwell’s equations.
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3.2.1.1 Constitutive parameters

The constitutive parameters of a material are used to characterise its electrical proper-

ties. They are called permittivity, permeability and conductivity of a medium and are

related to the electromagnetic field vectors. On a macroscopic scale they account for

the presence and behaviour of charged particles in materials which when subjected to

electromagnetic fields produce currents and alter the propagation of electromagnetic

waves to that in free space [143].

The time-varying permittivity of a medium
ˇ
ǫ̂ (farads/meter) relates the electric flux

density D to the electric field intensity E in the time domain by

D =
ˇ
ǫ̂ ∗ E (3.22)

where ∗ denotes convolution, and
ˇ
ˆ represents a time-varying quantity. The time-

varying permeability of a medium
ˇ
µ̂ (henries/meter) relates the magnetic flux density

B to the magnetic field intensity H in the time domain by

B =
ˇ
ǫ̂ ∗H (3.23)

The conduction current density J c is related in the time domain to the electric field

intensity E with the time-varying conductivity of a medium
ˇ
σ̂ (siemens/meter) by

J c =
ˇ
σ̂ ∗ E (3.24)

For free space

ˇ
ǫ̂ = ǫ0 = 8.854 × 10−12 (farads/meter)

ˇ
µ̂ = µ0 = 4π × 10−7 (henries/meter)

ˇ
σ̂ = σ = 0 (siemens/meter)

and (3.22) to (3.24) reduce to a product.

Materials can be classified as linear versus non-linear, homogeneous versus in-

homogeneous, isotropic versus anisotropic, and dispersive versus non-dispersive. A

material is linear if its constitutive parameters are not functions of the applied field

strength; otherwise it is non-linear. If the constitutive parameters of a material are

constant throughout it is homogeneous; otherwise it is referred to as inhomogen-

eous. An isotropic material has identical values of its constitutive parameters in all
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directions - the constitutive parameters are not functions of direction of the applied

field; otherwise they are anisotropic materials. A material whose constitutive para-

meters are functions of frequency is dispersive; otherwise it is non-dispersive and

waves of different frequencies all travel at the same speed throughout the material.

For linear isotropic non-dispersive materials in the frequency domain the relations

(3.22) to (3.24) reduce to products:

D = ǫE (3.25)

B = µH (3.26)

Jc = σE (3.27)

3.2.2 Volumetric equivalence principle

To simplify the formulation of integral equations it is convenient to replace the in-

homogeneous scatterer material in Figure 3.1 by equivalent induced polarisation cur-

rents and charges produced by a source located outside the scatterer as shown in

Figure 3.2. This leads to an equivalent problem given by [145]

∇× E = −ωµ0H − Meq (3.28)

∇× H = ωǫ0E + Jeq (3.29)

∇ · (ǫ0E) = ρe (3.30)

∇ · (µ0H) = ρm (3.31)

where

Meq = ωµ0(µr − 1)H (3.32)

Jeq = ωǫ0(ǫr − 1)E (3.33)

ρe = ǫ0ǫrE · ∇(
1
ǫr
) (3.34)

ρm = µ0µrH · ∇(
1
µr

) (3.35)

(3.28) to (3.31) are equivalent to (3.10) to (3.13) thus the procedure of replacing the

dielectric or magnetic scatterer material by equivalent induced sources is referred to

as the volumetric equivalence principle. The scattered fields described in Section 3.2.1
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can now be found from

∇2Es + k2Es = ωµ0Jeq −
∇∇ · Jeq

ωǫ0
+∇× Meq (3.36)

∇2Hs + k2Hs = −∇× Jeq + ωǫ0Meq −
∇∇ · Meq

ωµ0
(3.37)

where Jeq and Meq are the equivalent sources and functions of the total fields E and

H as given by (3.32) and (3.33).

The sources in (3.32) and (3.33) are assumed to radiate in free space and are much

more useful for propagation modelling than solving Maxwell’s equations directly in

inhomogeneous environments. It is also easier to solve for electromagnetic fields in

free space than in inhomogeneous scatterers because explicit integrals can be used

to describe the fields produced by sources radiating in free space. These sources are

unknown as they depend on the fields which are also unknown. If the relative per-

meability µr(x, y, z) of the inhomogeneity in Figure 3.1 is assumed constant and equal

to that of free space, i.e. µr(x, y, z) = 1 ∀ [x, y, z], this has the benefit of removing terms

involving magnetic currents and charges from the volume integral equation formula-

tion which will also be used later on to simplify the task of modelling electromagnetic

wave propagation.

3.2.3 Electric field integral equations

There are a number of solutions to the Helmholtz equations (3.36) and (3.37). One

particular solution is to express the scattered fields as a mixed potential formalisation

in terms of the magnetic and electric vector potentials A and F as

Es = −ωµ0A −∇Φe −∇× F (3.38)

Hs = ∇× A − ωǫ0F −∇Φm (3.39)

where

Φe =
ρe

ǫ0
∗ G (3.40)

Φm =
ρm

µ0
∗ G (3.41)
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Figure 3.2: Volumetric equivalence problem for the general scattering problem depic-
ted in Figure 3.1.
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The vector potentials must satisfy the relationship [145]

∇2A + k2A = −Jeq (3.42)

∇2F + k2F = −Meq (3.43)

where one solution can be written in terms of convolution with the three-dimensional

Green’s function

A = Jeq ∗ G (3.44)

F = Meq ∗ G (3.45)

The scalar three-dimensional Green’s function is

G(r) =
e−k0|r|

4π|r| (3.46)

and the magnetic and electric vector potentials can be expressed as

A(r) =

˚

Jeq(r)
e−k0|r−r′|

4π|r − r′|dr (3.47)

F(r) =

˚

Meq(r)
e−k0|r−r′|

4π|r − r′|dr (3.48)

The derivation thus far assumed a three-dimensional problem but for a two-dimensional

problem it can be shown that the integration in the third dimension only involves the

Green’s function. It can be shown that the scalar two-dimensional Green’s function is

given by [145]

G(r) =
1
4

H
(2)
0 (k0|r|) (3.49)

where H
(2)
0 (k0|r|) is the zeroth order Hankel function of the second kind.

Combining the sources described by (3.32) to (3.35) with the source field relation-

ships in (3.38) and (3.39) produces the volume integral equations:

Ei = E(r) + kηA +∇Φe +∇× F (3.50)

Hi = H(r)−∇× A + 
k

η
F +∇Φm (3.51)

If the scatterer material is composed entirely of dielectric material, i.e. µr(x, y, z) = 1
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∀ [x, y, z], the volume integral equations can be simplified to

Ei = E(r) + kηA +∇Φe (3.52)

Hi = H(r)−∇× A (3.53)

(3.52) is an Electric Field Integral Equation (EFIE) and (3.53) is a Magnetic Field In-

tegral Equation (MFIE).

3.2.4 Volume Electric Field Integral Equation

The Volume Electric Field Integral Equation (VEFIE) is used as the basis for indoor

propagation modelling throughout this thesis. It is derived from (3.52) by replacing

Φe and A by (3.40) and (3.47) to give

E(r) = Ei(r) + k2
0

(

1 +
1
k2

0
∇∇·

)

ˆ

V
G(r, r′)χ(r′)E(r′)dr′ (3.54)

where G(r, r′) is the three-dimensional scalar Green’s function and

χ(r′) =
k2(r′)

k2
0

− 1 (3.55)

is a contrast function, the use of which incorporates the geometry of the problem. k0

is the background (free space) wave number and k2(r) = ω2µ(r)ǫ(r)− ωµ(r)σ(r).
´

V

denotes three-dimensional integration over the entire volume. The three-dimensional

form of the VEFIE can be generalised to two dimensions assuming the problem is ho-

mogeneous in the z-direction, i.e. infinite scatterers, and invariant fields, and trans-

verse magnetic (TM) polarisation to give

Ez(r) = Ei
z(r) + k2

0

ˆ

S
G(r, r′)χ(r′)Ez(r

′)dr′ (3.56)

where G(r, r′) is the scalar two-dimensional Green’s function and
´

S represents in-

tegration over the two-dimensional plane. The specific formulations chosen for the

VEFIE here use the total electric field E as the primary unknown as opposed to the

volume currents J. This has specific computational benefits in the solution of the

VEFIE that will be explained further in Chapter 4. The volume currents are related to
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the total electric field by

J(r) = ωǫ0[ǫr(r)− 1]E(r) (3.57)

3.3 Numerical solutions of Maxwell’s equations

There are various numerical techniques for solving Maxwell’s equations that can be

classified into two families; full-wave and asymptotic methods. Full-wave methods

numerically approximate Maxwell’s equations without any physical approximation.

Whereas, asymptotic methods make both numerical and physical approximations

to Maxwell’s equations. The validity of the physical approximations of asymptotic

methods increases asymptotically with frequency. Full-wave methods have been typ-

ically used for electrically small problems due to their high computational burden.

Whilst, asymptotic methods have been developed to study larger problems as they

are significantly more efficient. However, with the move towards next generation

communications technology asymptotic methods whilst fast, don’t provide as high a

level of accuracy as full-wave methods. The advancement in numerical algorithms

and computing power is making the use of full-wave methods more viable.

Full-wave methods can be further subdivided into those that solve the differen-

tial form and the integral form of Maxwell’s equations and those that operate in the

time and frequency domains. The finite difference (FD) approach and Finite Element

Method (FEM) are used to solve the differential form of Maxwell’s equations. The

MoM is typically used to solve the integral form of Maxwell’s equations. The FD ap-

proach is most commonly applied in the time domain as the Finite Difference Time

Domain (FDTD) whereas the MoM is usually applied to frequency domain integral

equations. These are the two most commonly used full-wave techniques [7], [147]

and will be described generally below.

The imposition of full-wave methods requires the problem domain to be discret-

ised. Discretising involves subdividing the geometry of the problem into a, typically

large, number of small elements. It is also called meshing. There are a large vari-

ety of meshes available depending on the technique being used. Some of the more

common approaches are a triangular surface mesh, a cuboidal volumetric mesh and

a tetrahedral volumetric mesh. The accuracy of full-wave methods is related to the

discretisation size and mesh used. The rule of thumb for the discretisation size in

the electromagnetic community is ten discrete elements per wavelength, or a mesh

size of λ
10 [7], [145]. Fewer elements per wavelength have been shown to be unable to
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capture the variations of the electric and magnetic fields accurately whereas more ele-

ments increases the accuracy that can be achieved with the solution and its runtime

[142]. The more accurately the environment is modelled and the level of detail that

is included, such as modelling small clutter like tables and chairs in indoor environ-

ments, also affects the accuracy and runtime of full-wave methods.

Asymptotic methods are primarily based on ray optic methods. Geometric Op-

tics [148]–[150] is the basis of ray tracing [151], [152] and the shooting and bouncing

rays method [153]. It originates from the approximation of Maxwell’s equations at

high frequencies and is currently the most popular method for indoor propagation

modelling [46]–[48]. It is used to determine the propagation of incident, reflected and

transmitted fields. However, this approach has been deemed not accurate enough

for modern applications. Initially, the Geometrical Theory of Diffraction (GTD) [70],

[154] was introduced to include the diffraction phenomenon in ray tracing methods.

GTD produces infinite fields at shadow boundaries and has been replaced in modern

ray tracing models by the Uniform Theory of Diffraction [71], [155], [156] producing

accurate diffracted fields across the shadow boundary. Increasingly, the inclusion of

diffuse scattering [11]–[13], [18], [75] in ray tracing models has become more popular

as a greater level of accuracy is desired. Diffuse scattering considers rays impinging

on a surface and scattering in different directions due to the roughness of the surface

as opposed to a single specular reflection. Another, less commonly used asymptotic

approach is that of Physical Optics [157].

3.3.1 Finite Difference Time Domain

Finite Difference Time Domain (FDTD) is one of the most popular methods in elec-

tromagnetic modelling. It has been used in circuit modelling and optics [93]–[95]. It

was first introduced by Yee in 1966 [96] and has remained in continuous development

and use ever since due to its flexibility and simplicity. Two of its major advantages

are; its ability to compute wideband responses in a single computational run and the

ease with which it can be parallelised on both CPUs [158], [159] and GPUs [43], [112],

[113].

FDTD computes both the electric and magnetic fields, analogous to the Combined

Field Integral Equation [160], [161] form of Maxwell’s equation. FDTD takes Max-

well’s curl equations in the case of linear, isotropic, nondispersive, lossy2 materials,

2 Energy of a propagating electromagnetic wave is absorbed in a lossy material.
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[94]
∂H

∂t
= − 1

µ
∇× E − 1

µ
(M + σ∗H) (3.58)

∂E

∂t
=

1
ǫ
∇× H − 1

ǫ
(J + σE) (3.59)

where σ is the electrical conductivity (siemens/meter) and σ∗ is the equivalent mag-

netic conductivity (ohms/meter), and writes them as six coupled partial differential

equations (PDEs) where the PDEs for (3.58) are given by

∂Hx

∂t
=

1
µ

[

∂Ey

∂z
− ∂Ez

∂y
− 1

µ
(Mx + σ∗Hx)

]

(3.60a)

∂Hy

∂t
=

1
µ

[

∂Ez

∂x
− ∂Ex

∂z
− 1

µ
(My + σ∗Hy)

]

(3.60b)

∂Hz

∂t
=

1
µ

[

∂Ex

∂y
− ∂Ey

∂x
− 1

µ
(Mz + σ∗Hz)

]

(3.60c)

and similar forms can be found for (3.59). The Maxwell curl equations are found by

substituting (3.25) and (3.26) into Faraday’s law, (3.1), and the Ampere-Maxwell law,

(3.2). The six PDEs form the basis of the FDTD method. The FDTD grid, shown in

Figure 3.3, must be defined in such a way that Gauss’ laws are implicit in the positions

of the H and E field vector components. The finite difference update equations are

derived based on Yee’s algorithm and for the Ex component is given by

Ex|n+
1
2

i,j+ 1
2 ,k+ 1

2
− Ex|n−

1
2

i,j+ 1
2 ,k+ 1

2

∆t
=

1
ǫi,j+ 1

2 ,k+ 1
2









Hz|ni,j+1,k+ 1
2
− Hz|nj,k,l+ 1

2

∆y
−

Hy|ni,j+ 1
2 ,k+1

− Hy|ni,j+ 1
2 ,k

∆z

− Jx|ni,j+ 1
2 ,k+ 1

2
− σi,j+ 1

2 ,k+ 1
2
Ex|ni,j+ 1

2 ,k+ 1
2









(3.61)

for the n + 1’th time-step. A similar expression can be derived for the Ey, Ez, Hx, Hy

and Hz update equations. i, j and k refer to the locations in the x, y and z directions.

The n + 1
2 and n − 1

2 time-steps arise because of the FD approximation of the partial

derivative with respect to time.

The Yee algorithm and FDTD method is an explicit FD approach. The set of FD up-

date equations are solved in a leapfrog time-stepping (or time-marching) approach

whereby the E fields are computed for the next time-step based on the field values at
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Figure 3.3: Diagram of the Yee cell for the FDTD method.
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the current time-step and previous time-steps, then the H fields are computed simil-

arly and this process continues until the time-stepping is terminated [96]. The FDTD

algorithm is typically stopped when the steady-state is reached, i.e. around 3 times

the length of time for the incident field to propagate along the longest direction, or

after a predetermined length of time depending on the analysis under consideration

[94].

The FDTD method requires careful consideration of the boundary. It is based on

differential equations that are approximated by central differences which have no

meaning on the boundary of the spatial domain and an open region problem would,

therefore, have an infinite computational domain and be impossible to discretise.

Thus, the boundary must be terminated appropriately such that the computational

domain is finite but the spatial domain is simulated as extending to infinity. For

this reason, several absorbing boundary conditions (ABCs) [97]–[104] have been de-

veloped which simulate all outward propagating waves propagating to infinity and

prevent spurious reflections. The most popular ABC developed by Berenger in 1994

[105] is the perfectly matched layer (PML) that solved the previous issue of mesh ter-

mination and led to widespread adoption of the FDTD method [7]. Berenger’s PML

was revolutionary in that it is completely reflectionless and highly absorbing to plane

waves of arbitrary incidence, polarisation and frequency.

The simplicity of the FDTD method stems from the form of the update equations

and leapfrog time-stepping algorithm but they do mean that the method is not un-

conditionally stable. In order to preserve stability an upper limit is placed on the

time-step and careful consideration must be given to the discretisation of the com-

putational domain. The time-step restriction was first introduced by Yee but later

corrected by Taflove [162] who demonstrated ∆t should be chosen according to

vmax∆t ≤
(

1
∆x2 +

1
∆y2 +

1
∆z2

)− 1
2

(3.62)

where ∆x, ∆y and ∆z are the dimensions of the Yee cube in the x, y and z directions..

A lot of research has been done on non-orthogonal FDTD grids [163]–[165] but this

causes the method to lose most of its simplicity.
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3.3.2 Method of Moments

The MoM is another extremely popular method in CEM. It was developed by Har-

rington in 1968 [166] and has been referred to as the method of weighted residuals or

boundary element method. It converts a continuous integral equation into a discrete

matrix equation that can be solved with linear algebra techniques. It has primarily

been used for solving frequency domain integral equation formulations of Maxwell’s

equations, with an assumed time dependence of ejwt, but can also be applied to time

domain integral equation formulations [167], [168].

To describe the MoM procedure, first consider a general inhomogeneous problem

of the form

L( f ) = g (3.63)

where L is a continuous operator, f is the unknown function (in the context of EM

problems often a current or field quantity) to be determined and g is the excitation

(incident field). The unknown function f is expanded into a sum of N weighted basis

functions

f =
N

∑
n=1

αn fn (3.64)

where αn are unknown coefficients and fn are the basis functions. The basis functions

are chosen such that they model the expected behaviour of the unknown function, f ,

throughout their domain. Substituting (3.64) into (3.63) and using the linearity of L

yields
N

∑
n=1

αnL( fn) = g (3.65)

An inner product (or moment) between a basis function, fn, and a testing (or weight-

ing) function, wm, is defined as

〈w, f 〉 =
ˆ

w(x) f (x)dx (3.66)

and the inner product of (3.65) is taken with the weighting function. This results in

N

∑
n=1

αn〈wm, L( fn)〉 = 〈wm, g〉 (3.67)
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which can be written as a matrix equation of the form

Za = b (3.68)

where

Z =













〈w1, L( f1)〉 〈w1, L( f2)〉 · · · 〈w1, L( fN)〉
〈w2, L( f1)〉 〈w2, L( f2)〉 · · · 〈w2, L( fN)〉

...
... . . . ...

〈wN, L( f1)〉 〈wN, L( f2)〉 · · · 〈wN, L( fN)〉













(3.69)

a =













α1

α2
...

αN













(3.70)

b =













〈w1, g〉
〈w2, g〉

...

〈wN, g〉













(3.71)

(3.68) can be solved by direct matrix inversion or iterative methods.

The choice of basis, fn, and testing, wm, functions is important. The basis func-

tions should be linearly independent and chosen such that they can approximate the

unknown function, f , reasonably well. The testing functions should similarly be lin-

early independent. The choice of basis and testing functions is also dependent on the

desired accuracy of the solution, the ease of evaluation of the matrix entries and the

computational properties of the linear operator L. In two dimensions the simplest and

most popular basis function is the pulse basis function [146]. Other basis functions

like the piecewise triangular and sinusoidal basis functions exist but they require a

slightly higher computational effort. In three dimensions, the most popular basis

function for SIE formulations is the Rao-Wilton-Glisson (RWG) basis function [169]

whilst for VIE formulations the pulse basis function and Schubert-Wilton-Glisson

(SWG) basis function [170] are the most popular. In the MoM the most commonly

used testing functions are the Dirac delta function, which is a method referred to

as point matching (effectively applying the boundary condition at discrete locations)

or using the same basis and testing functions which is known as Galerkin’s method

[146], [166].
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3.4 Method of Moments applied to the volume

integral equation

The MoM is used to convert the continuous integral equations (3.54) and (3.56) into

linear systems that can be solved by direct matrix inversion or iterative solvers. A

weak-form discretisation process will be applied to the 3D VEFIE. It rewrites the in-

tegral equation in a different format and uses appropriate basis and testing functions

to enable the numerical evaluation of the ∇∇· operation in (3.54) to weaken the sin-

gularity. The process of discretising the problem domain and solving the 2D VEFIE

with the conventional MoM will be presented first. Then, the weak-form discretisa-

tion and MoM will be applied to the 3D VEFIE to solve it.

Considering the general scattering problem in Figure 3.1 the entire problem domain

containing scatterer and free space regions is discretised into uniform cubic cells as

shown in Figure 3.4. The cells have volume ∆v = ∆x × ∆y × ∆z with cell centres

located at rj,k,l = (xj, yk, zl) where (j, k, l) ∈ [1, J] · [1, K] · [1, L], in two dimensions

their size is ∆x × ∆y with cell centres at rj,k = (xj, yk). The dimensions, ∆x, ∆y and

∆z, of each cell are chosen such that there are at least 10 cells per wavelength.

The unknown total electric field in the VEFIE is expanded with N pulse basis func-

tions represented by

pn(r) =







1 if r ∈ cell n

0 if otherwise
(3.72)

producing an approximation of

Ez(r) ≈
N

∑
n=1

en pn(r) (3.73)

for the total electric field in two dimensions. Substituting (3.73) into (3.56) produces

Ei
z(r) =

N

∑
n=1

en

(

pn(r)− k2
0

ˆ

cell n
G(|r − r′|)χ(r′)dr′

)

(3.74)

Enforcing (3.74) at the cell centres using point matching produces a N × N system of
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Figure 3.4: Discretised depiction of a general scattering problem.
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linearly independent simultaneous equations that can be written as













Ei
z(r1,1)

Ei
z(r2,2)

...

Ei
z(rN,N)













=













Z11 Z12 · · · Z1N

Z21 Z22 · · · Z2N
...

... . . . ...

ZN1 ZN2 · · · ZNN

























e1

e2
...

eN













(3.75)

or more conveniently by

v = Ze (3.76)

where v is a N × 1 vector containing the discrete values of the incident electric field,

e is a N × 1 vector containing the discrete values of the total electric field and Z is a

N × N dense matrix given by

Z = I − GD (3.77)

Zmn = pn(r)− k2
0

ˆ

cell n
G(|r − r′|)χ(r′)dr′ (3.78)

The entries of Z are given by

Zmn = 0 − 1
4

¨

cell n
H

(2)
0 (k0|rm − r′|)[k2(r′)− k2

0]dx′dy′ m 6= n (3.79)

for the off-diagonal entries and

Zmm = 1 − 1
4

¨

cell m
H

(2)
0 (k0|rm − r′|)[k2(r′)− k2

0]dx′dy′ (3.80)

for the diagonal entries. Normally, the integrals in (3.79) and (3.80) would need to be

evaluated by numerical quadrature but if the cells are approximated by circles of the

same area they can be evaluated analytically using [171]

ˆ 2π

φ′=0

ˆ a

ρ′=0
H

(2)
0 (k0R)ρ′ dρ′ dφ′ =







2πa
k0

J0(k0ρ)H
(2)
1 (k0a)− 4

k2
0

ρ < a

2πa
k0

J1(k0a)H
(2)
0 (k0ρ) ρ > a

(3.81)

where (ρ, φ) represent cylindrical coordinates, a denotes the radius of the equivalent

circle, Jn() is the Bessel function of the first kind and order n, H
(2)
n () is the Hankel

function of the second kind and order n and

R =
√

(x − x′)2 + (y − y′)2 (3.82)
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Using the circular-cell approximation [172] the off-diagonal entries and diagonal entries

of Z can be computed from

Zmn = 0 − 1
4
[k2(r′)− k2

0]

(

2πan

k0
J1(k0an)H

(2)
0 (k0Rmn)

)

m 6= n (3.83)

Zmm = 1 − 1
4
[k2(r′)− k2

0]

(

2πam

k0
J0(k0Rmm)H

(2)
1 (k0am)−

4
k2

0

)

(3.84)

where |r − r′| is the distance from the centre of the cell of interest to the integrand

point. For the self term, when m = n Rmm = 0 and J0(k0Rmm) = 1, therefore, (3.84)

reduces to

Zmm = 1 − 1
4
[k2(r′)− k2

0]

(

2πam

k0
H

(2)
1 (k0am)−

4
k2

0

)

(3.85)

I, G and D from (3.77) are, thus, given by

Imn =







1 m = n

0 m 6= n
(3.86)

Dmn =







1
4 [k

2(r′)− k2
0] m = n

0 m 6= n
(3.87)

Gmn =







2πam
k0

H
(2)
1 (k0am)− 4

k2
0

m = n

2πan
k0

J1(k0an)H
(2)
0 (k0Rmn) m 6= n

(3.88)

3.4.1 Weak-form discretisation in three dimensions

The weak-form discretisation reduces the effect of the singularity in the VEFIE [173],

[174]. It results in a linear system of N simultaneous equations. The weak-form dis-

cretisation defines the magnetic vector potential A as

A(r) = −ωµ0ǫ0

ˆ

V
G(|r − r′|)χ(r′)E(r′)dr′ (3.89)

The integral equation, (3.54), can then be rewritten as

Ei(r) = E(r)− ωA(r)− Eirr(r) (3.90)
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where

Eirr(r) =
ω

k2
0
∇∇ · A(r) (3.91)

is the irrotational part of the scattered electric field3.

The problem domain is discretised into N uniform cubic cells. The cell centres

are located at rj,k,l = (xj, yk, zl) where (j, k, l) ∈ [1, J] · [1, K] · [1, L] and are of size

∆x × ∆y × ∆z in the x, y and z directions respectively. Pulse basis functions are used,

defined as (3.72), and testing is performed with a Dirac delta function to obtain

Ei
j,k,l = Ej,k,l − ωAj,k,l − Eirr

j,k,l (3.92)

where Ej,k,l = E(rj,k,l) and Ei
j,k,l , Aj,k,l and Eirr

j,k,l are defined similarly. The elements of

Aj,k,l are obtained from

Aj,k,l = C0

J

∑
j′=1

K

∑
k′=1

L

∑
l′=1

Gj−j′,k−k′,l−l′χj′,k′,l′Ej′,k′,l′ (3.93)

where C0 = −ωµ0ǫ0∆v. Eirr
j,k,l is approximated using a central finite differencing

scheme which gives rise to

Eirr
x:j,k,l =

ω

k2
0∆x2

(Ax:j−1,k,l − 2Ax:j,k,l + Ax:j+1,k,l)

+
ω

4k2
0∆x∆y

(Ay:j−1,k−1,l − Ay:j−1,k+1,l − Ay:j+1,k−1,l + Ay:j+1,k+1,l)

+
ω

4k2
0∆x∆z

(Az:j−1,k,l−1 − Az:j−1,k,l+1 − Az:j+1,k,l−1 + Az:j+1,k,l+1)

Eirr
y:j,k,l =

ω

k2
0∆y2

(Ay:j,k−1,l − 2Ay:j,k,l + Ay:j,k+1,l)

+
ω

4k2
0∆x∆y

(Ax:j−1,k−1,l − Ax:j−1,k+1,l − Ax:j+1,k−1,l + Ax:j+1,k+1,l)

+
ω

4k2
0∆y∆z

(Az:j,k−1,l−1 − Az:j,k−1,l+1 − Az:j,k+1,l−1 + Az:j,k+1,l+1)

Eirr
z:j,k,l =

ω

k2
0∆z2

(Az:j,k,l−1 − 2Az:j,k,l + Az:j,k,l+1)

+
ω

4k2
0∆x∆z

(Ax:j−1,k,l−1 − Ax:j−1,k,l+1 − Ax:j+1,k,l−1 + Ax:j+1,k,l+1)

+
ω

4k2
0∆y∆z

(Ay:j,k−1,l−1 − Ay:j,k−1,l+1 − Ay:j,k+1,l−1 + Ay:j,k+1,l+1)

(3.94)

3 A vector field is irrotational if its curl is zero.
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(3.92) can be written as a matrix equation of the form

v = Ze (3.95)

similarly to the 2D case. Here, Z can be rewritten as

Z = I − k2
0∆vGD − ∆vHGD (3.96)

v and e are column vectors of length 3N representing the unknown total electric field

and the known incident electric field respectively.

v =







Ei
x

Ei
y

Ei
z






, e =







Ex

Ey

Ez






(3.97)

Each Ei
µ and Eµ, where µ = {x, y, z}, in (3.97) are vectors of length N and contain the

x, y and z components of the incident and total electric fields at the centre of each cell

in the discretised problem. I is the identity matrix, G represents the Green’s function

in (3.46)

G =







GT 0 0

0 GT 0

0 0 GT






(3.98)

where each GT has dimensions N × N and block Toeplitz structure. D is a diagonal

contrast matrix consisting of (3.55) evaluated at the cell centres. H is a sparse matrix

containing a suitable numerical implementation of the ∇∇· operation.

(3.76) and (3.95) can be solved by direct matrix inversion but for very large prob-

lems like those encountered in indoor propagation modelling this is very prohibitive.

N, the number of linear independent simultaneous equations that must be solved

grows as λ
10 for each of x, y and z. This quickly produces matrix equations in two

dimensions of tens of thousand unknown values and in three dimensions millions of

unknowns for indoor propagation problems. With a best-case computational com-

plexity of O(N2.373) [175] and a typical complexity of O(N3) [176] for matrix inver-

sion and the memory requirements to store the N × N Z matrix this becomes very

unwieldy quickly. The next chapter investigates iterative methods with a computa-

tional complexity of O(m
√

k) [177], where m is the number of non-zero entries in Z

and k is its condition number, as a means to speed up the solution of (3.76) and (3.95).
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Chapter 4

Iterative solvers for the solution of

linear systems

4.1 Introduction

The application of the Method of Moments (MoM) produces a large linear system of

equations. The resulting V = Ze matrix equation is dense and of large order due

to the need to discretise the geometry at a rate of at least λ
10 . There are two main

approaches that can be used to solve the system; direct matrix inversion or through

iterative methods. Direct matrix inversion is only suitable for solving small problems

as it requires the storage and inversion of Z which has O(N2) storage requirement

and O(N3) computational complexity for inversion, where N is the number of un-

known values to be computed. Iterative methods on the other hand do not require

the explicit storage of Z and have a computational complexity O(N2).

Iterative solvers can’t solve all linear systems successfully [178]. The choice of

which iterative solver to use has been studied extensively [179], [180] and is depend-

ent on the type of system to be solved. Some factors which affect the choice of iterative

solver are whether the matrix is Hermitian1, the cost of matrix-vector multiplication

and the availability of the transpose of the system matrix Z. Iterative solvers are ter-

minated after they satisfy a specific convergence criterion and thus produce a numer-

ically approximate solution. Their efficiency is dependant on various factors such as

the geometry and types of materials within the problem which affect the composition

of Z.

There are two main types of iterative methods: stationary and non-stationary. West

and Sturm [181] have compared various iterative solvers for 2D scattering problems.

1 A Hermitian matrix is a complex square matrix that is equal to its conjugate transpose.

50



They concluded stationary methods are more efficient than non-stationary when the

problem is well-conditioned. However, non-stationary methods are more robust and

are affected less by the geometry of scatterers or for problems where there is a high

potential for multipath scattering as in the case of indoor propagation problems [58],

[182]–[184]. Greenbaum [179] found the convergence rate of non-stationary methods

to be superior to stationary methods for symmetric positive definite systems. Thus,

our analysis of iterative methods and use of them in this work will focus on the more

robust non-stationary methods, particularly those based on Krylov subspace projec-

tion [180], [185].

4.2 Krylov iterative solvers

Non-stationary Krylov iterative solvers are used to solve matrix equations of the form

Ax = b (4.1)

where A is a N × N matrix, x and b are N × 1 vectors where x is the unknown to be

computed. They are based on projection onto Krylov subspaces and make successive

approximations to x. They are currently considered to be the most robust iterative

solvers available [145], [179]–[181], [185].

Instead of solving (4.1) they initially solve Kx0 = b where x0 is an approximation to

x. If x0 is chosen as an initial guess to x the aim is to find the correction z that satisfies

A(x0 + z) = b (4.2)

or alternatively written as

Az = b − Ax0 (4.3)

Instead of solving (4.3) it is easier solve

Kz0 = b − Ax0 (4.4)

which leads to a new approximation of x1 = x0 + z0. By repeating this procedure for

consecutive approximations of xn an iterative method for the solution of x is achieved

xn+1 = xn + zn

= xn + K−1(b − Axn)
(4.5)
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It must be noted that K−1 is (almost) never computed explicitly and is only used for

notational purposes. If K is approximated by the identity matrix, I, (4.5) reduces to

the Richardson iteration

xn+1 = b + (I − A)xn = xn + rn (4.6)

where rn is the residual given by rn = b − Axn. (4.6) is the basis for most iterative

methods and in particular those discussed here.

Krylov subspace methods aim to make better approximations to the Richardson

iteration by projection onto Krylov subspaces. The original idea for Krylov subspaces

is based on the Cayley Hamilton theorem [186] which states that the inverse of a

N × N matrix A can be expressed by a polynomial of degree (N − 1) in A

A−1 = α1I + α2A + α3A2 + · · ·+ αNAN−1 (4.7)

where αn are coefficients and I is the identity matrix. By repeating the Richardson

iteration process it can be shown that the approximation to the solution is made up

of successive approximations of the previous solutions and thus the residuals

xn+1 = r0 + r1 + r2 + · · · rn

=
n

∑
m=0

(I − A)mr0

∈ span{r0, Ar0, A2r0, · · · , An−1r0}
≡ Kn(A; r0)

(4.8)

The m-dimensional Krylov subspace, Km(A; v) is defined as the m-dimensional space

spanned by a given vector, v, with increasing powers of A applied to v up to the

(m − 1)th power [180]

Km(A; v) = span{v, Av, A2v, · · · , Am−1v} (4.9)

Thus, successive approximations to the solution are contained within the Krylov sub-

space, where v = r0.

Krylov solvers attempt to minimise the residual rn at the nth iteration. There are

four different classes of Krylov subspace methods that arise from the different ap-

proaches used to minimise the residual. The Ritz-Galerkin and Petrov Galerkin ap-
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proaches lead to the Conjugate Gradient (CG) and Bi-Conjugate Gradient (BiCG)

methods examined here [187]. The CG method is limited to the solution of real,

symmetric positive definite matrices2. A modification to the CG method known as

the Conjugate Gradient applied to the normal equations (CG-NE) will be the variant

studied here as it does not require a real, symmetric positive definite system matrix.

The minimum norm residual and minimum norm error approaches lead to methods

such as the Generalized Minimal Residual (GMRES) and Symmetric LQ (SYMMLQ)

[188]. The reader is referred to [189] for more information on these methods. The

Bi-Conjugate Gradient Stabilised (BiCGSTAB) [190] method is a hybrid of the Con-

jugate Gradient Squared (CGS) [191] and BiCG methods. Its aim is to overcome the

irregular convergence problem associated with the BiCG method. For a more detailed

overview of Krylov subspace methods and iterative solvers the reader is referred to

[179], [180], [185], [189].

4.2.1 Conjugate Gradient method

In electromagnetic scattering problems the system matrix often exhibits some sym-

metry but is not real symmetric positive definite which is required by the CG al-

gorithm. The CG-NE method is suitable for all types of linear systems as it forces the

system matrix to be symmetric positive definite by premultiplying by AT to produce

the normal equations

ATAx = ATb (4.10)

where T denotes the conjugate-transpose operation. The remainder of the CG-NE

algorithm is very similar to the conventional CG algorithm.

The CG-NE algorithm seeks an estimate for the solution xn with

xn+1 = xn + αnpn (4.11)

where αn determines how far the algorithm moves along pn, the search direction in

the N-dimensional Krylov subspace, to correct the estimate. It attempts to minimise

the least-squares problem

||b − Axn||2 (4.12)

where the αn that minimises (4.12) along pn in N-dimensional space for (4.10) is given

2 A symmetric N × N real matrix A is said to be positive definite if the scalar xT Ax is strictly positive
for all nonzero vectors x.
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by

αn =
||ATrn||2
||Apn||2

(4.13)

If the minimisation is considered along two directions

xn+1 = xn + αn(pn + βnqn) (4.14)

is obtained where qn, like pn, is a search direction in N-dimensional space and βn

determines how far along qn the CG-NE algorithm moves to minimise (4.12). If qn is

a direction vector that has been used previously in the iteration process then the best

optimisation direction for pn is orthogonal to qn. If pn is chosen orthogonal to qn the

iteration process is minimising the error in a new direction in N-dimensional space,

thus, ensuring the best choice possible for subsequent search directions. If the error

has already been minimised in one direction with the optimal αn then minimising it

in this direction again would be redundant. Due to the orthogonality of the search

directions the residual can be expressed as

rn+1 = rn − αnApn (4.15)

where the direction vectors are found from

pn+1 = ATrn+1 + βnpn (4.16)

βn is chosen such that pn+1 is orthogonal to pn

βn =
||ATrn+1||2
||ATrn||2

(4.17)

The complete CG-NE algorithm is shown in Algorithm 4.1. An in-depth description

of the CG method and its origins can be found in [177].

4.2.2 Bi-Conjugate Gradient method

The BiCG method is another approach for solving non-symmetric systems similar to

the CG-NE but it does not guarantee minimisation. It does not try to produce a set

of orthogonal residual vectors but instead replaces the residual vector sequence with

two mutually orthogonal sequences. One sequence is based on the original system

Ax = b and the other is derived from the transpose of the original matrix ATx =
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Algorithm 4.1 Conjugate Gradient method applied to the normal equations

1: x0 = initial guess

2: r0 = b − Ax0

3: z0 = ATr0

4: p0 = z0

5: for n = 0, 1, . . . do

6: qn = Apn

7: αn = ||zn||2
||qn||2

8: xn+1 = xn + αnpn

9: rn+1 = rn − αnqn

10: zn+1 = ATrn+1

11: βn = ||zn+1||2
||zn||2

12: pn+1 = zn+1 + βnpn

13: if
||rn||2
||b||2 < tolerance then

14: Terminate algorithm

15: end if

16: end for
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b. Hence, the BiCG involves the computation of two different residuals and two

different search directions during each iteration. This requires the computation of

two matrix-vector products which can increase its computation time.

The residuals in the BiCG are updated similarly to the CG

rn+1 = rn − αnApn (4.18)

r̃n+1 = r̃n − αnATp̃n (4.19)

and the direction vectors

pn+1 = rn+1 + βnpn (4.20)

p̃n+1 = r̃n+1 + βnp̃n (4.21)

The coefficients αn and βn are chosen to produce orthogonality between the residuals

αn =
(r̃n)Trn

(p̃n)TApn
(4.22)

βn =
(r̃n+1)

Trn+1

(r̃n)Trn
(4.23)

The minimisation process of the CG isn’t preserved as the orthogonality of the re-

siduals is not based on previous residuals. Thus, the BiCG has been shown to have

irregular convergence [179], [180], [189]. It also requires two matrix-vector products

per iteration. The BiCG algorithm is summarised in Algorithm 4.2.

4.2.3 Conjugate Gradient Squared method

The CGS method is a hybrid method developed to avoid the use of AT in the BiCG. It

can obtain a better convergence rate than the BiCG but suffers from rounding errors

that can lead to inaccurate results [189]. It has a similar computational complexity to

the BiCG method.

The CGS expresses the residual from the BiCG method as

rn = φn(A)r0 (4.24)

where φn is a polynomial of degree n and pn, the search direction, is given by

pn = ψn(A)r0 (4.25)
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Algorithm 4.2 Bi-Conjugate Gradient method

1: x0 = initial guess

2: r0 = b − Ax0

3: r̃0 = r0

4: p0 = r0

5: p̃0 = r̃0

6: for n = 0, 1, . . . do

7: qn = Apn

8: q̃n = ATp̃n

9: αn = (r̃n)Trn

(p̃n)Tqn

10: xn+1 = xn + αnpn

11: rn+1 = rn − αnqn

12: r̃n+1 = r̃n − αnq̃n

13: βn = (r̃n+1)
Trn+1

(r̃n)Trn

14: pn+1 = rn+1 + βnpn

15: p̃n+1 = r̃n+1 + βnp̃n

16: if
||rn||2
||b||2 < tolerance then

17: Terminate algorithm

18: end if

19: end for
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where ψn is a polynomial of degree n also. r̃n and p̃n are expressed similarly to (4.24)

and (4.25)

r̃n = φn(A
T)r̃0 (4.26)

p̃n = ψn(A
T)r̃0 (4.27)

The polynomials φn and ψn are squared forming the basis of the CGS algorithm to

give

rn = φ2
n(A)r0 (4.28)

pn = ψ2
n(A)r0 (4.29)

The CGS algorithm is summarised in Algorithm 4.3. The CGS algorithm still suffers

from irregular convergence that can be worse due to the squaring of the polynomials

and it introduces significant rounding error too [185].

4.2.4 Bi-Conjugate Gradient Stabilised method

The BiCGSTAB method is a hybrid of the BiCG and CGS methods. It removes the

drawbacks of the CGS method and employs a steepest descent update to produce

a much smoother convergence. It can be very effective but its performance is quite

irregular depending on the problem to be solved [189].

The residual in the BiCGSTAB method is similar to the CGS

rn = γn(A)φn(A)r0 (4.30)

where φn is the residual polynomial associated with the BiCG algorithm and γn is a

new polynomial defined recursively at each iteration step for the purpose of ‘stabil-

ising’ the convergence rate of the original algorithm

γn+1(A) = (1 − ωnA)γn(A) (4.31)

ωn is chosen, similarly to αn in the CG, to minimise the error and is given by

ωn =
(sn)TAsn

(Asn)TAsn
(4.32)

where

sn = rn − αnApn (4.33)
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Algorithm 4.3 Conjugate Gradient Squared method

1: x0 = initial guess

2: r0 = b − Ax0

3: r̃0 arbitrary such that r̃T
0 r0 6= 0, e.g. r̃0 = r0

4: p0 = u0 = r0

5: for n = 0, 1, . . . do

6: wn = Apn

7: αn = (r̃0)
Trn

(r̃0)Twn

8: qn = un − αnwn

9: xn+1 = xn + αn(un + qn)

10: rn+1 = rn − αnA(un + qn)

11: βn = (r̃0)
Trn+1

(r̃0)Trn

12: un+1 = rn+1 + βnqn

13: pn+1 = un+1 + βn(qn + βnpn)

14: if
||rn||2
||b||2 < tolerance then

15: Terminate algorithm

16: end if

17: end for
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and the residual is given by

rn+1 = (I − ωnA)sn (4.34)

Successive approximations to x are computed from

xn+1 = xn + αnpn + ωnsn (4.35)

The addition of the ‘stabilising’ component in the residual of the BiCGSTAB causes

it to take a steepest descent step, similar to the CG, to minimise the residual error.

This smooths the irregular convergence pattern of the BiCG method. The lack of

squaring in the BiCGSTAB method eliminates the rounding errors associated with

the CGS method. These improvements lead to a more efficient and stable algorithm

that is applied to the matrix equations used in the propagation models investigated

here. The BiCGSTAB algorithm is summarised in Algorithm 4.4 and a more complete

description of its derivation and that of the CGS and BiCG can be found in [180],

[185], [190].

4.3 Preconditioning techniques

A preconditioner transforms a linear system into an equivalent system with the same

solution but better spectral properties. This makes its solution via iterative techniques

more robust and efficient. The convergence rate of iterative solvers is heavily depend-

ent on the spectral properties of the system matrix [189], [192], [193]. Preconditioners

make it possible to improve these properties by more closely clustering the eigen-

values of the system matrix and reducing its condition number3. The reliability of

iterative methods can depend more heavily on the use of a preconditioner than accel-

eration techniques [185].

There are three main types of preconditioning techniques: left preconditioning,

right preconditioning and left-right preconditioning. If P is a preconditioner for the

system Ax = b, left preconditioning transforms the system into the equivalent system

P−1Ax = P−1b (4.36)

The new system is equivalent to the original and P is chosen such that P−1A has better

3 The condition number is the ratio of the largest to the smallest singular value of the matrix.
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Algorithm 4.4 Bi-Conjugate Gradient Stabilised method

1: x0 = initial guess

2: r0 = b − Ax0

3: r̃0 arbitrary such that r̃T
0 r0 6= 0, e.g. r̃0 = r0

4: p0 = r0

5: for n = 0, 1, . . . do

6: qn = Apn

7: ρn = (r̃0)
Trn

8: αn = ρn

(r̃0)Tqn

9: sn = rn − αnqn

10: tn = Asn

11: ωn = (sn)Ttn

(tn)Ttn

12: xn+1 = xn + αnpn + ωnsn

13: rn+1 = sn − ωntn

14: βn =
(

(r̃0)
Trn+1
ρn

) (

αn
ωn

)

15: pn+1 = rn+1 + βn(pn − ωqn)

16: if
||rn||2
||b||2 < tolerance then

17: Terminate algorithm

18: end if

19: end for
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spectral properties than A. Right preconditioning takes the form

AP−1y = b where x = P−1y (4.37)

and right-left preconditioning has the form

P−1
1 AP−1

2 y = P−1
1 b where x = P−1

2 y (4.38)

and P1 and P2 are left and right preconditioners, respectively.

The choice of appropriate preconditioner is very complex. The preconditioner

should be chosen as a close approximation to A but it should be relatively easy to

construct P−1 and not require excessive computation or storage. It should also be

relatively easy to perform multiplication with the preconditioner. The study of pre-

conditioners is quite extensive and also considers their applicability to parallelisation

[185], [189], [190], [192], [194]. Preconditioned algorithms for the above iterative solv-

ers can be found in [185], [192].

4.3.1 Diagonal (Jacobi) preconditioner

The simplest and most popular preconditioner is the diagonal or Jacobi precondi-

tioner [189], [195]. The preconditioner P approximates A by its diagonal components

only

P =













A11 0 · · · 0

0 A22 · · · 0
...

... . . . . . .

0 0 · · · ANN













(4.39)

where the inverse of the preconditioner is given by

P−1 =













A−1
11 0 · · · 0

0 A−1
22 · · · 0

...
... . . . . . .

0 0 · · · A−1
NN













(4.40)

A block variant of the preconditioner is also commonly used where diagonal blocks

are used to construct the preconditioner. In the block version the Ann are blocks, the

matrix is block diagonal [189] and its inverse is computed by computing the inverse
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of each of the blocks. Due to the simplicity of the preconditioner it is well suited

to parallel implementation but it is limited in its effectiveness when compared with

more complicated preconditioners.

4.3.2 Sparse approximate inverse preconditioner

A more complicated and popular preconditioner is based on a sparse approximate

inverse (SPAI) [196]–[200]. The main advantage of SPAI preconditioners over other

methods is the ability to implement them in parallel and memory requirements that

can be controlled with a well chosen sparsity pattern. SPAI preconditioners are thus

well suited for very large problems.

SPAI preconditioners aim to minimise the following Frobenius norm

F(A) = ||I − AP||2F =
N

∑
n=1

||un − Avn||22 (4.41)

where un is the nth column of the identity matrix I, vn is the nth column of the precon-

ditioner matrix P and A is an N × N matrix. The main advantage of this approach is

the ability to express this problem as N independent least-squares problems for each

of the N columns of P. Because the n least-squares problems are independent they can

be solved in parallel. The difficult task is the selection of the sparsity pattern [201],

[202] and the minimisation of the Frobenius norm which GMRES has been used for

[203]. The two main approaches for determining the sparsity patterns are based on

adaptive and static techniques. Adaptive techniques attempt to dynamically identify

the best pattern for P but they are very complex and expensive. Static techniques de-

termine the sparsity pattern in advance. In electromagnetic scattering problems this

can sometimes be based on the physical geometry of the problem [204], [205].

4.3.3 Reduced operator as a preconditioner

A reduced forward operator can be used in conjunction with iterative solvers, sim-

ilarly to a preconditioner, to force them to ignore certain unknown values when

computing successive approximations to the solution. The VEFIE formulation in

Chapter 3 uses the total electric field as its primary unknown instead of the volume

currents. This form enables the use of the Fast Fourier Transform (FFT) to speed up

the matrix-vector multiplication during each iteration of the iterative method but it
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also greatly increases the required number of unknown values. The use of the FFT is

discussed in Section 4.4.1.

Consider the discretised problems shown in Figure 4.1. If the volume currents

are chosen as the unknown in the VEFIE then only the scatterer objects need to be

discretised as shown in Figure 4.1a. Contrasting Figure 4.1a with Figure 4.1b, where

the electric field is chosen as the unknown in the VEFIE, a much larger number of

discretisations is required because the electric field exists everywhere in the problem

domain, both within scatterers and free space, whereas the volume currents only exist

within scatterers. It can be shown that in the VEFIE formulation electric field values

in free space do not contribute to the electric field at any other discretised point within

the problem. Consider the cell c in Figure 4.1b which is located in free space. Cell c

has an associated row and column in the discretised matrix equation (3.76) and (3.95),

V = Ze;































V1
...
...

Vc
...
...

VN































=































Z11 · · · · · · 0 · · · · · · Z1N
... . . . ...

...
... . . . 0

...

Zc1 · · · Zc(c−1) 1 Zc(c+1) · · · ZcN
... 0 . . . · · · ...
...

... . . . ...

ZN1 · · · · · · 0 · · · · · · ZNN





























































e1
...
...

ec
...
...

eN































(4.42)

The column of (4.42) represents its contribution to other cells and the row represents

the contribution of other cells to cell c. It can be seen that all of the elements of the

column for cell c are zero except the self term which is one, thus, the free space cell

c does not contribute to the field at any other location in the problem. The column

associated with cell c is zero because the contrast (3.55) is zero for all free space cells.

Consequently, it is beneficial to extract only elements corresponding to unknowns

located in scatterers and to focus the iterative solver on solving for these unknowns

whilst ignoring all free space unknowns. In the VEFIE formulation the ignored un-

knowns could be removed if the volume currents were used as the unknown quantity

to be computed but this prevents the FFT from being used. They are needed to en-

force a regular grid that enables use of the FFT, as explained in Section 4.4.1, but can

be ignored as shown here to improve the convergence rate of the iterative solver. The

ignored free space unknowns can then be solved for in a simple computation after
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the iterative solver has converged. This technique and an analysis of its convergence

is presented in more detail in [206].

4.4 Fast matrix-vector multiplication techniques

The main bottleneck of the iterative solvers presented in Section 4.2 is the matrix-

vector product of A with x and the storage of the N × N A matrix. Thus, a significant

amount of research has been concerned with accelerating this computation and re-

ducing its storage requirements [7], [25], [142], [145], [146], [207]. Iterative methods,

unlike direct solution methods, offer the possibility of reducing the storage bottleneck

by exploiting structures and sparsity patterns present in the system. Iterative solvers

only require an implicit matrix operator that returns the product of the N × N system

matrix with a vector.

4.4.1 Fast Fourier Transform

The FFT can be used to exploit symmetries in the discrete convolutional kernel of

some electromagnetic problems. A general one-dimensional discrete convolution is

of the form [7], [145]

em =
N−1

∑
n=0

fngm−n m = 1, 2, . . . , N − 1 (4.43)

or in matrix form


















e0

e1

e2
...

eN−1



















=



















g0 g−1 g−2 · · · g1−N

g1 g0 g−1 · · · g2−N

g2 g1 g0 · · · g3−N
...

...
... . . . ...

gN−1 gN−2 gN−3 · · · g0





































f0

f1

f2
...

fN−1



















(4.44)

The N × N matrix shown in (4.44) is a general Toeplitz matrix; all of the elements are

contained in the 2N − 1 entries of the first row and column. If the elements repeat

with period N so that

gn−N = gn n = 1, 2, . . . , N − 1 (4.45)
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(a) If the volume currents are chosen as the primary unknown then only the scatterers need
to be discretised.

(b) If the primary unknown is the electric field then both scatterers and free space regions
need to be discretised. Cell c is located in free space.

Figure 4.1: Discretisation of problem domain with the VEFIE depending on the
primary unknown.
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the N × N matrix in (4.44) is circulant



















g0 gN−1 gN−2 · · · g1

g1 g0 gN−1 · · · g2

g2 g1 g0 · · · g3
...

...
... . . . ...

gN−1 gN−2 gN−3 · · · g0



















(4.46)

the operation is known as a circular discrete convolution. Otherwise, it is a linear dis-

crete convolution. Any discrete linear convolution of length N can be embedded into

a circular discrete convolution of length 2N − 1 by extending the original sequence

g to repeat with period 2N − 1, padding f with zeros to length 2N − 1 and changing

the summation limit of (4.43) to 2N − 2

em =
2N−2

∑
n=0

fngm−n (4.47)

which in matrix form this looks like


































e0

e1
...

eN−1

0

0
...

0



































=



































g0 g−1 · · · g1−N 0 gN−1 · · · g1

g1 g0 · · · g2−N g1−N 0 · · · g2
...

... . . . ...
...

... . . . ...

gN−1 gN−2 · · · g0 g−1 g−2 · · · 0

0 gN−1 · · · g1 g0 g−1 · · · g1−N

g1−N 0 · · · g2 g1 g0 · · · g2−N
...

... . . . ...
...

... . . . ...

g1 g0 · · · 0 gN−1 gN−2 · · · g0





































































f0

f1
...

fN−1

0

0
...

0



































(4.48)

The discrete convolution theorem states that if (4.43) is a discrete circular convolu-

tion it is equivalent to [145]

ẽm = f̃m g̃m n = 0, 1, . . . , N − 1 (4.49)

where ẽ is the N-point Discrete Fourier Transform (DFT) of e and similarly f̃ and g̃ are

the N-point DFTs of f and g respectively. Hence, the matrix-vector product in (4.43)
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and (4.44) can be efficiently computed using the FFT by

e = F−1
N {FN( f )FN(g)} (4.50)

where FN denotes the N point DFT

g̃n = FN(g) =
N−1

∑
k=0

gke− 2πnk
N n = 0, 1, . . . , N − 1 (4.51)

and F−1
N denotes the N point inverse DFT

gk = F−1
N (g) =

1
N

N−1

∑
n=0

g̃ne 2πnk
N k = 0, 1, . . . , N − 1 (4.52)

If (4.43) is a discrete linear convolution then it must first be embedded in a circular

convolution as described above. This process can easily be extended to two and three

dimensions as shown in Appendix A.

In the VEFIE formulations in Section 3.2 due to the use of the total electric field as

the primary unknown and uniform discretisation with pulse basis functions the FFT

can be used to compute the matrix-vector product of G with e in (3.76) and (3.95). In

(4.44) and (4.48)

gn = g−n (4.53)

because the value of the Green’s function in two and three dimensions varies with the

absolute distance between cells only. Thus, all of the elements are contained in the N

entries of the first row or column.

The product of G with e in (3.76) and (3.95) is a two and three-dimensional linear

discrete convolution for the 2D and 3D VEFIEs respectively. Thus, the FFT can be

used to reduce the storage requirements of G from O(N2) to O(N) and the cost to

compute the matrix-vector product from O(N2) to O(N log N). This represents a sig-

nificant saving for very large N such as those seen in indoor propagation modelling

and greatly improves the efficiency of the volume integral MoM approach for elec-

tromagnetic scattering [7]. The Adaptive Integral Method [208]–[210] is an extension

of this idea for triangular basis functions. The matrix-vector product of D with e can

also be performed efficiently because D is a diagonal matrix. It can be considered as a

vector, stored in O(N) and multiplied with e with O(N) computational complexity.

However, because of the use of the electric field as the primary unknown the entire
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problem domain must now be discretised as opposed to just the scatterers. Thus, the

reduced operator explained in Section 4.3.3 is used to further accelerate the iterative

solution.

4.4.2 Fast multipole method

The Fast Multipole Method (FMM) [142] is an alternative to the FFT. It can be used to

improve the efficiency of the matrix-vector multiplication in iterative solvers applied

to integral equation formulations. The FMM separates the computational domain

into near-zone and far-zone regions based on the distances between the basis and

testing functions:

Ze = ZNFe + ZFFe (4.54)

where ZNF is a sparse matrix containing information about the basis and testing func-

tions that are close together, i.e. in the near-zone region, and ZFF is a dense mat-

rix containing information about the far-zone interactions between basis and testing

functions. The near-zone computation ZNFe is sparse and can be computed exactly

from the integral equation and MoM discretisation whilst the far-zone computation

ZFFe is approximated.

The FMM accelerates the computation of far-zone components. Cells of basis and

testing functions are grouped into approximately
√

N groups of equal size and num-

ber of unknown values. Within each group all of the cells are considered to be in the

near-field and are calculated exactly. Cells within other groups are considered to be in

the far-field and are calculated by an approximation. To calculate the field at a point

in group j due to (equivalent) sources in group i three operations are required. First,

the sources in group i are expanded into outgoing plane waves centred on ri. Then,

the outgoing plane waves are translated into incoming plane waves centred on rj.

Finally, the incoming plane waves are converted into real contributions for each cell

within the group j. More detail and explanation on the FMM can be found in [7], [25],

[142], [195]. The approximations made in the FMM and use of
√

N groups reduces

the complexity to compute the matrix-vector product to O(N1.5). The complexity can

be further reduced by implementing a multilevel scheme to O(N log N) [25], [142],

[195] comparable to that of the FFT. However, the main advantage of the FFT is the

exact computation of the matrix-vector product as opposed to the relatively accurate

approximations used in the FMM.
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4.4.3 Fast Far Field Approximation

The Fast Far Field Approximation (FAFFA) [207] is a technique similar to the FMM.

It efficiently computes the matrix-vector product in MoM solutions in O(N1.33) com-

plexity with a storage requirement of O(N). The FAFFA uses the same basic idea as

the FMM. Cells of basis and testing functions are grouped together. Near-field inter-

actions are computed exactly while far-field interactions are approximated using the

FAFFA in three operations: aggregation, translation and disaggregation.

The FAFFA differs from the FMM by the approximation it applies and in fact the

two algorithms can be combined together [211] to provide even higher efficiency. The

FAFFA is based on the far-field form of the Hankel function

H
(2)
α (x) ≃

√

2
πx

e(x−α π
2 −π

4 ) (4.55)

However, the main computational advantage arises from the use of interpolation to

compute the aggregation of the fields at all points within a group and the disag-

gregation of the field from the centre of a group to all points within it. Using this

approach and choosing the number of groups equal to N
2
3 leads to a total complexity

of O(N1.33). By implementing a multilevel scheme the complexity can be reduced to

O(N log N). For further information the reader is referred to [207], [212].

4.5 Implementation and parallelisation considerations

The implementation and parallelisation of the algorithms discussed thus far has been

of huge importance in recent times. These algorithms are mathematical approaches to

reducing the computational cost of solving linear systems and Maxwell’s equations

but are not the only approach. These algorithms have not been studied in isolation

but specific considerations to their implementation and their parallelisation has gone

hand in hand with their development [7], [142], [180], [185].

High-performance computing is a major area of study in CEM and has fuelled most

of the current use of full-wave methods in CEM. Implementations of iterative solvers

and preconditioners have specifically been developed to take advantage of parallel

computations [180], [185]. The implementation of iterative solver algorithms needs to

take account of vector operations and data memory distribution to ensure optimum

performance. The message passing interface (MPI) is one standard for exchanging

data on distributed memory systems.
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The language of choice to develop software for CEM can often be a trade-off between

efficiency and ease of development. MATLAB is a very popular numerical comput-

ing environment and programming language. It was developed to aid in solving

matrix problems and hides much of the complex memory and implementation de-

tails required in CEM. It is extremely easy to learn and complex simulations can be

written with great ease. However, its scripts are interpreted and it is less efficient

than compiled programs. FORTRAN is a popular compiled language for numerical

and scientific computing. Two of the most widely used and robust software libraries

in scientific computing BLAS (Basic Linear Algebra Subprograms) and LAPACK are

written in FORTRAN and freely available. In fact, most of MATLAB’s operations are

performed by calls to the BLAS and LAPACK libraries. MATLAB uses the Intel MKL

(Math Kernel Library) versions of BLAS and LAPACK which are written in C as the

basis for its computations. C and consequently C++ are two further programming

languages that see significant use in scientific computing due to their speed. C++ as

an object-oriented language can exhibit a higher overhead than C but it can be sim-

pler to write complex programs due to its use of classes and templates. Both C and

C++ can call the BLAS and LAPACK libraries or can be built on top of Intel MKL. In

recent times, the use of other languages for scientific computing has been increasing,

such as Python and Julia.

Of significant investigation recently is the use of graphics processing units (GPUs)

for scientific computing. The advent of the OpenCL and CUDA platforms enabled

the use of GPUs to perform general purpose calculations in FORTRAN, C and C++.

Many of the operations used in the algorithms described here can be computed much

more efficiently on GPUs than on CPUs. Specific implementations of the Conjugate

Gradient and preconditioning techniques have been developed for GPUs [213]–[220].

4.6 Conclusions

This chapter presented a number of techniques that can be used to efficiently solve

the matrix equation resulting from the application of the MoM to the integral equa-

tion formulation of Maxwell’s equations. The solution of the VEFIE applied to the

description of a building forms the basis of an indoor propagation model. The dis-

cretised forms of the 2D and 3D VEFIE in Section 3.2 are solved using the BiCGSTAB

method preconditioned by a block Jacobi preconditioner. The iterative solver is accel-

erated by using the FFT and reduced operator.
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Chapter 5

2D integral equations for indoor

propagation modelling

5.1 Introduction

The Volume Electric Field Integral Equation (VEFIE) was derived from Maxwell’s

equations in Chapter 3. The discretisation of the VEFIE with the Method of Moments

(MoM) was also described in this chapter. In Chapter 4 iterative techniques for the

solution of the linear system arising from the MoM discretisation were detailed. In

this chapter the Surface Electric Field Integral Equation (SEFIE) and VEFIE are ap-

plied in two dimensions to indoor propagation modelling. The VEFIE model is val-

idated against the Mie series solution for scattering from a dielectric cylinder before

the two integral equation approaches are compared. The propagation modelling cap-

abilities of the VEFIE is examined and compared against popular empirical models

and ray tracing for indoor propagation.

5.2 2D integral equation formulations

Integral equation methods have seen very little interest in the literature for indoor

propagation modelling. This is demonstrated in Section 2.5.2. They haven’t been

used because they are typically very computationally burdensome and can be quite

complicated to implement in contrast to a ray tracing solution or empirical model.

However, integral equation methods are derived from Maxwell’s equations without

any approximations and are full-wave in nature as described in Section 3.2. If their

computational load can be reduced they could be a very useful tool in analysing in-

door propagation.
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The VEFIE is well suited to the problem of modelling indoor propagation. It is de-

rived from Maxwell’s equations upon applying the volumetric equivalence principle,

which is explained in Section 3.2. The SEFIE is derived analogously to the VEFIE us-

ing the surface equivalence principle instead of the volume equivalence principle.

Volume integral equation (VIE) formulations are typically applied to inhomogeneous

problems because they are applied to the entire volume of the problem domain and

can thus easily model inhomogeneities within materials. Surface integral equation

(SIE) methods are applied to problems involving piecewise homogeneous dielectrics

or metals (perfect conductors) where the number of distinct regions is small because

they only solve for the fields on the surface or boundary between different materials.

The combined Volume Surface Integral Equation (VSIE) [142] can be used to take ad-

vantage of the VIEs ability to model inhomogeneous scatterers and the SIEs ability

to model metals but it represents a significant increase in complexity over the single

volume or surface integral equation methods.

Integral equation methods have a significant advantage over many other full-wave

techniques because they do not require the use of absorbing boundary conditions

(ABCs). As described in Section 2.5.1, the FDTD method requires the problem do-

main be extended at the boundaries with an ABC to prevent spurious reflections and

to simulate outgoing electromagnetic waves as propagating to infinity. Integral equa-

tion methods do not require this because they solve for the fields within scatterers

and consider the regions external to these as free space extending to infinity.

5.2.1 Volume electric field integral equation

The 2D VEFIE is derived from Maxwell’s equations by considering transverse mag-

netic (TM) polarisation and scatterers which extend to infinity in one dimension. For

convenience, the z dimension is chosen although any dimension can be chosen. The

2D VEFIE is given by (3.56)

Ez(r) = Ei
z(r) + k2

0

ˆ

S
G(r, r′)χ(r′)Ez(r

′)dr′

Section 3.2 presents its derivation. The MoM is applied to discretise the 2D VEFIE in

Section 3.4. It results in a linear system of N independent simultaneous equations that

can be solved to predict the electric field within the problem. The matrix equation is

given by (3.76)

V = Ze
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where Z is (3.77)

Z = I − GD

(3.76) can be solved by direct matrix inversion but for indoor propagation prob-

lems this is infeasible due to the high memory requirements of the VEFIE. Thus, as

described in Chapter 4, (3.76) is solved with an iterative technique, namely those from

the Krylov family of iterative methods. This enables the use of other techniques to

speed up the solution, namely the Fast Fourier Transform (FFT) or Fast Multipole

Method (FMM). In this work, the FFT is used, as described in Section 4.4.1, to acceler-

ate the computation of the matrix vector product within each iteration of the iterative

solver. The FFT requires a regular grid to operate which forces the use of the electric

field as the primary unknown in (3.56). This increases the number of unknown values

that need to be specified but by using the reduced operator described in Section 4.3.3

the iterative technique can be focused so that it primarily solves for unknowns in

scatterers that have a greater effect on the final solution. The result of this is that the

iterative method needs a reduced number of iterations to reach the same error level

than without it. The solution can be further accelerated by using preconditioning or

parallelisation techniques described in Sections 4.3 and 4.5.

5.2.2 Validation against Mie series

The analytical Mie series solution is ideal for validating the integral equation meth-

ods described earlier. The Mie series computes the exact fields at any point interior

or exterior to a dielectric sphere illuminated by a plane wave and should agree well

with the full-wave integral equation approaches if they have been implemented cor-

rectly. The Mie series can only be applied to 2D or 3D spheres [221]. Other analytical

solutions exist, for example scattering by wedges [143], but as the VEFIE does not

treat these any differently to the Mie series problem it is sufficient to only validate the

VEFIE against the Mie series.

To validate the VEFIE, consider a homogeneous dielectric 2D cylinder in a free

space region illuminated by a TMz plane wave propagating in the x direction as

shown in Figure 5.1. The cylinder has radius a and is characterised by its permit-

tivity and permeability, ǫ and µ respectively. The total field at a point exterior to the

sphere in free space can be expressed as

Ez(r) = Ei
z(r) + Es

z(r) (5.1)
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where the z subscript will be assumed and omitted from here on. The incident plane

wave can be expressed as

Ei(r) = e−k0x (5.2)

The Mie series writes (5.2) in expanded form as

Ei(r) = e−k0ρ cos θ =
∞

∑
n=−∞

−n Jn(k0ρ)enφ (5.3)

where Jn() is the Bessel function of the first kind and nth order. Analogous to (5.3)

the Mie series writes the scattered field external to the cylinder as

Es(r) =
∞

∑
n=−∞

−n AnH
(2)
n (k0ρ)enφ (5.4)

where

An =

η0
ηd

Jn(k0a)J′n(kda)− J′n(k0a)Jn(kda)

Jn(kda)H
(2)′
n (k0a)− η0

ηd
J′n(kda)H

(2)
n (k0a)

(5.5)

where kd and ηd are the wave number and wave impedance of the dielectric cylinder.

The total field interior to the sphere in the Mie series is given by

Et(r) =
∞

∑
n=−∞

−nBn Jn(kdρ)enφ (5.6)

where

Bn =

−2
πk0a

Jn(kda)H
(2)′
n (k0a)− η0

ηd
J′n(kda)H

(2)
n (k0a)

(5.7)

J′n() and H
(2)′
n () are the derivatives of the Bessel function of the first kind and the

Hankel function of the second kind. They can be expressed as

J′n(ψ) =
1
2
[Jn−1(ψ)− Jn+1(ψ)] (5.8)

H
(2)′
n (ψ) =

1
2

[

H
(2)
n−1(ψ)− H

(2)
n+1(ψ)

]

(5.9)

The Mie series and VEFIE are compared for a 2D cylinder of radius r = 1.25m,

with ǫr = 4, µr = 1 and σ = 0.01 at 700MHz. The VEFIE discretises a 5m× 5m region

centred around the cylinder at a rate of λ
40 leading to N = 230, 400 unknowns to be

solved. The discretisation rate of λ
40 is used to accurately capture the curvature of the
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Figure 5.1: Incident plane wave illuminating dielectric sphere for Mie series problem.
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cylinder because pulse basis functions are used in the discretisation process which

results in a structure like that shown in Figure 3.4 and also to reduce numerical inac-

curacies so an accurate validation can be performed. It is solved using the BiCGSTAB

method with the reduced operator and block Jacobi preconditioner. The infinite Mie

series is truncated to 501 terms where n ∈ [−250,+250]. The total electric field along

a line of points external to the sphere is computed by the VEFIE and Mie series. A

very good agreement is achieved between both the real and imaginary parts shown

in Figure 5.2. The VEFIE and Mie series have been compared for several different

cases all producing a good agreement.

5.2.3 Surface electric field integral equation

The 2D SEFIE is derived analogously to the 2D VEFIE by considering TM polarisation

and scatterers which extend to infinity in one dimension. For convenience, again the

z dimension is chosen. The 2D SEFIE is given by

Ei
z(r) = Mt(r) + k0η0A

(0)
z (r) +

{

∂F
(0)
y (r)

∂x
− ∂F

(0)
x (r)

∂y

}

S+

0 = −Mt(r) + kdηd A
(d)
z (r) +

{

∂F
(d)
y (r)

∂x
− ∂F

(d)
x (r)

∂y

}

S−

(5.10)

where r describes the cylinder surface,

A
(α)
z (r) =

ˆ

Jz(r
′)

1
4

H
(2)
0 (kα|r − r′|)dl′ (5.11)

F̄
(α)
t (r) =

ˆ

t̂(r′)Mt(r
′)

1
4

H
(2)
0 (kα|r − r′|)dl′ (5.12)

and t̂ is a unit vector tangent to the scatterer surface. k0 is the free space wave num-

ber for the medium external to the scatterer and kd represents the wave number of

the scatterer material. The impedances of the media are represented by η0 and ηd,

respectively. The expressions in brackets in (5.10) depend on the side of the surface

the observer is located. The first equation should be evaluated with the observer an

infinitesimal distance outside the surface of the scatterer, while the second equation

should be evaluated with the observer an infinitesimal distance inside the surface.

For the complete derivation of the SEFIE the reader is referred to [145]. In this work,

the 2D SEFIE is discretised using the MoM and N pulse basis functions, similarly to
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Figure 5.2: Comparison of real and imaginary components of VEFIE and Mie series
for the problem in Figure 5.1.
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the 2D VEFIE. The N pulse basis functions are defined on the scatterer surface so that

the nth segment has centre rn, normal vector n̂n and is of length ∆n. This yields a

2N × 2N linear system, as opposed to the N × N system for the VEFIE,

(

ei

0

)

=

(

Za Zb

Zc Zd

)(

j

m

)

(5.13)

where ei is a known N × 1 vector containing information about the incident field

impinging on the scatterer surface and j and m are unknown N × 1 vectors containing

information about the electric and magnetic currents, Jz and Mt, on the surface of the

scatterer. Each Zβ is a N × N matrix whose elements are given by

Za
mn =







k0η0
4 H

(2)
0 (k0rmn)∆n m 6= n

k0η0
4 {1 −  2

π [ln(
γk0∆n

4 − 1)]}∆n m = n
(5.14)

Zb
mn =







−k0
4 n̂n · r̂nmH

(2)
1 (k0rmn)∆n m 6= n

1
2 m = n

(5.15)

Zc
mn =







kdηd
4 H

(2)
0 (kdrmn)∆n m 6= n

kdηd
4 {1 −  2

π [ln(
γkd∆n

4 − 1)]}∆n m = n
(5.16)

Zd
mn =







−kd
4 n̂n · r̂nmH

(2)
1 (kdrmn)∆n m 6= n

− 1
2 m = n

(5.17)

where ln() is the natural logarithm, H
(2)
n () is the Hankel function of the second kind

and order n, γ ≈ 1.781, r̂nm and rnm are the unit vector and length of rnm which is

defined as

rnm = rn − rm (5.18)

Again, as with the VEFIE, the matrix equation resulting from the application of the

MoM is solved with an iterative technique. The FFT isn’t applicable to the SEFIE

to efficiently compute the matrix vector product because there is no regular grid as

is present in the VEFIE but the FMM or Fast Far Field Approximation (FAFFA) can

be used. Here, the FAFFA, which is briefly described in Section 4.4.3, is applied to

efficiently compute the matrix vector product during each iteration of the iterative

method to speed up its solution. As with the VEFIE, the solution can be further ac-

celerated by using preconditioning and parallelisation techniques.
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5.2.4 Integral equation comparison

The SEFIE and VEFIE approaches described above are applied to a typical 2D indoor

propagation scenario. Further numerical results are examined in Section 5.3. Both

methods are solved using the BiCGSTAB method preconditioned with a block Jacobi

preconditioner. The SEFIE is enhanced with the FAFFA, whilst the VEFIE uses the

FFT and reduced operator to accelerate its solution. The two formulations are applied

to the 15m × 15m indoor environment shown in Figure 5.3 which is characterised by

the parameters in Table 5.1. A line source producing electric fields given by H
(2)
0 (k0R)

radiating at 1GHz is positioned at (0, 0). The fields computed by the VEFIE are shown

in Figure 5.4. The SEFIE produces a similar result. It is not shown but a comparison

of the fields computed by both methods can be seen in Figures 5.5 and 5.6 for two

different lines through Figure 5.3. A very good agreement between the two models

is achieved as expected. It is not exact for several reasons. The two methods are not

solved exactly, the BiCGSTAB solver is terminated when it reaches a tolerance level

which introduces slight inaccuracies into the solution. The tolerance level between

the VEFIE and SEFIE differ also, the BiCGSTAB solves the VEFIE to an error tolerance

of 0.001 and the SEFIE to an error tolerance of 0.02. Inaccuracies are introduced into

the two methods due to the numerical discretisation with the MoM. For the SEFIE, the

FAFFA is an approximate method for efficiently computing the interaction between

basis functions that are far away, while the FFT used in the VEFIE is an exact approach

except for numerical inaccuracies.

Table 5.1: Material parameters used to characterise the indoor environment in Fig-
ure 5.3.

Material ǫr µr σ

Concrete 3.5 1 0.0334

Glass 7.0 1 0

Wood 1.8 1 0

Having shown the SEFIE and VEFIE methods produce similar results their com-

putational efficiency will be analysed here. Table 5.2 compares the runtime of the

SEFIE and VEFIE methods. The discretised SEFIE solution requires 40,952 basis func-

tions to describe the problem. The VEFIE requires 1,440,000 basis functions but only

141,472 of these describe scatterers. The other 1,298,528 are in free space and ignored

by the reduced operator. The SEFIE is solved to an error tolerance of 0.02 in 388 it-
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Figure 5.3: 15m × 15m indoor environment consisting of concrete, glass and wood
used to compare the SEFIE and VEFIE methods.

Figure 5.4: Total electric field computed within the indoor test environment.
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Figure 5.5: Comparison of the received power computed with the SEFIE and VEFIE
along the line x = −1 in Figure 5.3.
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Figure 5.6: Comparison of the received power computed with the SEFIE and VEFIE
along the line y = −1 in Figure 5.3.
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erations and a time of 21,064s. However, the VEFIE is much more efficient as it can

be solved to a lower error tolerance of 0.001 in 54 iterations and 43s. The SEFIE also

suffers from a very long post-processing time of 8,183s. This is the time it takes to

compute the fields everywhere in the problem domain from the surface currents, Jz

and Mt. Overall, the SEFIE solution takes 29,370s whilst the VEFIE only takes 69s.

This can be attributed to several different reasons. The use of the FFT reduces the

storage requirements of the VEFIE from O(N2) to O(N) whereas the FAFFA requires

extra information to be computed and stored about the problem which results in the

longer setup time than the VEFIE. The FFT is an easily parallelisable operation built in

to MATLAB whilst the FAFFA is more computationally intensive. This is the primary

reason why each iteration of the VEFIE solution is nearly two orders of magnitude

quicker than the SEFIE iterations. The block diagonal preconditioner used is more

efficient for the VEFIE solution as it assumes the interaction between basis functions

is only dependant on their distance. This assumption holds true for the VEFIE where

the mutual interaction between basis functions only depends on the argument of the

Green’s function, |r− r′|. In the SEFIE, the mutual interaction between basis functions

depends on the distance between them and their orientation. This leads to a worse

performance of the preconditioner for the SEFIE than the VEFIE. However, despite

these issues some of which could be alleviated the main issue with the SEFIE method

for indoor propagation modelling is the long processing time. The solution of the

VEFIE produces the fields everywhere in the problem domain as shown in Figure 5.4,

particularly when the electric field is chosen as the primary unknown. The SEFIE

requires a significant processing time to compute the electric field everywhere in the

problem domain from the surface currents which ultimately makes it the less optimal

integral equation method for indoor propagation modelling. Thus, in the next section

the 2D VEFIE will be examined for its use as an indoor propagation model and in the

next chapter the 3D VEFIE will be investigated.

5.3 Numerical results

The propagation modelling capabilities of the VEFIE are examined and compared

against measurements. The efficiency of the iterative solvers described in Chapter 4

and some of the acceleration techniques is investigated also. All the following sim-

ulations, unless otherwise stated, are executed through MATLAB on a laptop with a

Core i7-4720HQ CPU and 16GB RAM.
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Table 5.2: Comparison of runtime for SEFIE and VEFIE

SEFIE VEFIE

Error tolerance 0.02 0.001

Required number of iterations 388 54

Iterative solution time (s) 21,064 43

Initialisation time (s) 123 26

Post-processing time (s) 8,183 0

Total runtime (s) 29,370 69

5.3.1 Propagation modelling

The VEFIE is an efficient method for indoor propagation modelling. Its ability to

model inhomogeneous scatterers and the lack of a need for absorbing boundary con-

ditions make it a very convenient method to use. It is known that the VEFIE can

produce accurate results when the simulation environment can be controlled exactly,

as demonstrated in Section 5.2.2. However, its applicability to real world scenarios is

not known and must be considered. Thus, a measurement campaign was performed

to further validate it and analyse its accuracy in real world scenarios. The results

presented here are intermediary results for the 2D VEFIE. Full 3D results with the 3D

VEFIE and 2D to 3D model are presented in Chapters 6 and 7.

5.3.1.1 Measurement campaign

The measurement campaign was performed in the 6.95m × 8.2m × 2.95m portion

of the house depicted in Figure 5.7. In the 2D slice shown and for the purposes of

applying the 2D integral equations to the problem the only materials present are those

shown in Figure 5.7, i.e. concrete, glass and wood. The floors in the house are wood,

stone and tile for the living room, hall and bathroom respectively. The ceiling is a thin

layer of plaster in each room. The electrical parameters used to model these materials

can be found in Table 5.3. They are based on averaged values from the literature

around 915MHz. Small clutter such as a coffee table, book cabinet and chairs have

been neglected in the model but are present in the measurement environment. The

stairs located on the left hand side of the building, as seen in Figure 5.7, are modelled

as a solid block of wood. These discrepancies between the model and measurement

environment will introduce a source of error in the results.
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Figure 5.7: 2D depiction of a single storey portion of a house. Received power meas-
urements were taken at the 28 receiver locations shown. The transmitter
was kept constant throughout the measurement campaign. Small clutter
such as a coffee table, book cabinet and chairs have been neglected in the
model but are present in the measurement environment. The stairs loc-
ated on the left hand side of the building are modelled as a solid block of
wood.
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Table 5.3: Parameters used to characterise the materials for the house in Figure 5.7.

Material ǫr µr σ

Concrete 4.4 1 0.01

Glass 4.8 1 0

Wood 2.2 1 0

Stone 4.0 1 0.1

Tile 12 1 0

Plaster 2.5 1 0

The measurement campaign used two LSR 900 MHz omnidirectional dipole anten-

nas operating at 915MHz and an Anritsu MS2651B spectrum analyser to measure the

received signal strength. At each receiver location shown in Figure 5.7 five measure-

ments were taken; one at the receiver location and the remaining four at the corners

of a λ × λ square centred on the receiver location. These five measurement values

were averaged to remove some of the effects of fast fading on the results.

5.3.1.2 Indoor Propagation Modelling

The 2D VEFIE is applied to the problem shown in Figure 5.7 and solved for the re-

ceived power within it, which can be seen in Figure 5.8. The incident field is described

by a line source radiating at 915MHz1, which is commonly used in 2D problems in-

stead of a dipole. The VEFIE is discretised at a rate of λ
10 which produces 57,200

unknowns. It is solved with the BiCGSTAB method enhanced with the FFT, reduced

operator and block Jacobi preconditioner. It takes 4.63 seconds to solve the VEFIE to

an error tolerance of 10−3.

To validate the VEFIE for indoor propagation modelling it is compared against

the measurements in Figure 5.9. The VEFIE results are averaged over a λ × λ box

centred on the receiver location to remove some of the effects of fast fading, similarly

to the averaging applied to the measurements. We can see there is a poor agreement

between the mean power level of the measurements and the VEFIE in Figure 5.9a.

This is primarily because there has been no effort made to match the transmit power

of the 2D VEFIE to the transmit power in the measurement campaign.

1 A broadband signal with a narrow channel width can be approximated by a single frequency simu-
lation but for a wider channel response a full frequency sweep is required.
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Figure 5.8: Received power for the house shown in Figure 5.7 computed by the VEFIE
at 915MHz.
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In the 2D VEFIE simulation the fields produced by the transmit antenna are mod-

elled using a line source given by

Ei
z(r) = H

(2)
0 (k0|r|)

which assumes the fields are constant in the third dimension, the z dimension. Whereas,

in the measurements a 3D vertical dipole was used which produces fields according

to

Ei(r) ∼= θ̂ωµ0
Il

4π|r| e
−k0|r| sin θ

where I the current flowing in the dipole was 1mW and l its length was λ
2 corres-

ponding to a half-wavelength dipole. The line source can’t accurately approximate

the fields close to the dipole due to its doughnut-like shape. The fields produced

by the line source decay as
√

1
|r| whereas those produced by the dipole decay as 1

|r| .

Thus, a choice was made not to attempt any matching of the transmit power for the

2D VEFIE as it would rely on measurement results and remove the fully determin-

istic nature of the 2D VEFIE. The 3D VEFIE and 2D to 3D models are investigated in

Chapters 6 and 7 which do not experience this problem.

By applying a shift2 to the 2D VEFIE results so that the mean error with the meas-

urements is 0dB a very good agreement is achieved as shown in Figure 5.9a. How-

ever, without matching the transmit power the 2D VEFIE is able to capture the path

loss characteristics of the environment very well which can be seen in Figure 5.9b.

The path loss results do not require a correction because path loss is computed in dB

by

PL = Pt − Pr (5.19)

where Pt is the transmitted power and Pr is the received power. In this thesis, path loss

is considered as a relative quantity independent of the absolute transmitted power

whereas the average level of received power is dependent on the transmitted power

and won’t match if the transmitted powers aren’t matched. The root mean square

(RMS) error and standard deviation of error (Std. Dev.)3 of the VEFIE against the

measurements is shown in Table 5.4. It can be seen that the 2D VEFIE is able to model

the path loss characteristics well.

2 The shift adds the mean error between the 2D VEFIE and measurement results to the 2D VEFIE
results so that the mean error between them is zero.

3 If the RMS error is the same as the Std. Dev. then the mean error between two results is zero.
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Figure 5.9: Comparison of the VEFIE and measurements taken at the receiver loca-
tions shown in Figure 5.7.
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Table 5.4: RMS error and standard deviation of the 2D VEFIE compared with meas-
urements.

Quantity RMS Error Std. Dev.

Received power 28.25 dB 4.65 dB

Received power with 0dB mean correction 4.57 dB 4.65 dB

Path loss 4.96 dB 4.65 dB

5.3.1.3 Statistical and empirical model analysis

Empirical path loss models are one of the most common methods used for indoor

propagation because they are extremely simple to apply. The most commonly used is

the log-normal shadowing model, which has the form

PL(d) = PL(d0) + 10n log10(
d

d0
) + Xσ + F (5.20)

and is also described in (2.1). PL(d) is the path loss in dB at a distance d from the

transmitter, PL(d0) is the known path loss at a reference distance d0, n is a path loss

exponent that depends on the propagation environment, Xσ represents shadow (or

slow) fading, and F represents fast fading. Shadow fading is due to large objects and

is primarily experienced when the receiver’s line of sight (LOS) to the transmitter is

obstructed. Fast fading occurs due to multipath effects in the environment and is

affected by smaller objects in the environment. In the measurement campaign and

VEFIE results in Figure 5.9 the effect of F is reduced due to the averaging process. A

higher level of averaging would completely remove F and also partially or entirely

remove the effect of Xσ.

The path loss model in (5.20) is normally parameterised by measurement cam-

paigns but the VEFIE can be used instead. The values of PL(d0) and n are determined

by finding the best fit using a least squares approach which produces values of 6.5602

and 2.1951 respectively, which are in line with typical values quoted in the literature

[32]. The shading fading data, which is often modelled as normal (given that we are

working with log values, or log-normal on a linear scale) is extracted by subtract-

ing the mean path loss curve from the local mean path loss data. This data can be

seen in Figure 5.10a. The resultant shadow fading data has a mean of 0.4298 and a

standard deviation of 5.4177, again in accordance with values found in the literature

[32]. To further validate the computed path loss model parameters and in particular
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the shadow fading data its cumulative distribution function is compared to that of

a normal variable in Figure 5.10b. An excellent agreement is achieved between the

two demonstrating the ability to use the VEFIE to characterise statistical and empir-

ical path loss models. The extracted path loss models are compared against the path

loss VEFIE results and measurements in Figure 5.11 and Table 5.5. The mean path

loss model is computed with PL(d0) + 10n log10(
d
d0
) in (5.20) where PL(d0) and n

are given above. The mean path loss with random shadow fading data model adds

random shadow fading data to the mean path loss model with the same mean and

standard deviation found above.

Table 5.5: RMS error and standard deviation of the path loss 2D VEFIE results and
extracted path loss model compared with measurements. The mean path
loss model is computed by PL(d0) + 10n log10(

d
d0
) in (5.20) and the local

mean path loss model by PL(d0) + 10n log10(
d
d0
) + Xσ in (5.20).

Model RMS Error Std. Dev.

2D VEFIE - path loss 4.96 dB 4.65 dB

Mean path loss 3.91 dB 3.38 dB

Local mean path loss 7.69 dB 6.79 dB

Empirical path loss models have seen significant investigation in the literature [3]–

[5], [32], [41], [44], [45], [57], [60], [63], [65], [66] and provide fast approximations

for indoor propagation. The accuracy of the dual slope model, COST 231 multi-wall

model and the adjusted Motley-Keenan model is examined against the VEFIE here.

Other models exist like the average walls model and the partitioned model but they

have been shown to be less accurate for indoor propagation modelling [60], [65].

Dual Slope Model The dual slope model has two distinct slopes; the first slope is

for LOS regions whilst the second is for non line of sight (NLOS) regions. It states the

path loss (in dB) at a point is given by

PL(d) = L0 +











10n1 log10(d) 1m < d < dbp

10n1 log10(dbp) + 10n2 log10(
d

dbp
) d ≥ dbp

(5.21)

where dbp is the breakpoint between the LOS and NLOS regions and n1 and n2 must

be determined experimentally through measurements. L0 is fitted to the measure-
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Figure 5.10: VEFIE data fitted to (5.20).
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Figure 5.11: Comparison of the VEFIE and extracted path loss models against meas-
urements. The mean path loss model is computed with PL(d0) +

10n log10(
d
d0
) in (5.20) where PL(d0) = 6.5602 and n = 2.1951. The mean

path loss with random shadow fading data model adds random shadow
fading data to the mean path loss model with a mean of 0.4298 and stand-
ard deviation of 5.4177.
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ments using a least squares approach and n1 and n2 are chosen to be 1.6 and 4 re-

spectively as reported in [32] for in building LOS and NLOS propagation.

COST 231 Multi-Wall Model The single floor COST 231 multi-wall model repres-

ents the path loss as

PL(d) = L0 + 20 log10(d) +
Hw

∑
i=1

hwiLwi (5.22)

where d is the distance from the transmitter, Hw is the number of different types of

walls, two being used in this work. hwi is the number of walls of type Lwi obstructing

the field and Lwi is 3.4dB for light walls (<10cm) and 6.9dB for heavy walls (>10cm).

L0 is fitted to the measurements similarly to that for the dual slope model.

Adjusted Motley-Keenan Model The adjusted Motley Keenan model calculates the

path loss as

PL(d) = L0 + 10n log10(d) +
Hw

∑
i=1

hiL0i2
log3(

ei
e0i

) (5.23)

where hi is the number of walls of type i, L0i is the loss in the reference wall of type

i, e0i is the thickness of the reference wall of type i and ei is the actual thickness of

the wall. Hw is the number of different walls. n must be determined experiment-

ally by performing measurement campaigns. The reference values required for the

adjusted Motley-Keenan model can be found in Table 5.6. L0 and n are fitted to the

measurements using a least squares approach.

Table 5.6: Reference values for Motley-Keenan model.

Wall e0i (cm) L0i (dB)

Plasterboard 12 2.5
Concrete 15 6.0

The RMS error and standard deviation of the dual slope model, the COST 231

multi-wall model and the adjusted Motley-Keenan model are shown in Table 5.7.

It can be seen in Figure 5.12 the empirical models fit a curve through the measure-

ment results with a few variations to account for NLOS areas. They do not include

the fading information present in the 2D VEFIE. The dip in the COST 231 multi-wall
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and adjusted Motley-Keenan models between 3m and 3.5m is because the points be-

fore and after the dip are in NLOS but the point where the dip occurs is in LOS. This

isn’t the capturing of fading information. It arises because of the format the data is

displayed in. Each of the empirical models have to be fitted to the measurement res-

ults. They require L0 to be determined experimentally. The Motley-Keenan model

requires a measurement campaign to determine the value of n also. The VEFIE does

not require measurement campaigns to be able to provide a good level of accuracy

for path loss predictions but it does require knowledge of the environment, the scat-

tering objects that are present and the electrical parameters used to characterise them,

permittivity, permeability and conductivity. The VEFIE can also be used to produce

angle of arrival and time domain information both of which are investigated next.

Table 5.7: RMS error and standard deviation of the VEFIE and popular empirical
models compared with measurements.

Model RMS Error Std. Dev.

2D VEFIE - path loss 4.96 dB 4.65 dB

Dual slope 4.39 dB 3.51 dB

COST 231 multi-wall 2.81 dB 2.82 dB

Adjusted Motley-Keenan 6.37 dB 5.01 dB

5.3.1.4 Angle of arrival information

The VEFIE can leverage its computation of the fields for every point within the prob-

lem to compute angle of arrival information. From (3.56) the total field at any point

is composed of the superposition of the incident field and a scaled contribution from

every point within a scatterer. This information can be broken down into the descrip-

tion shown in Figure 5.13 where the power received versus angle for the receiver

location (0.35, 3.43) in Figure 5.7 is shown. The angle, θ = 0, is chosen such that

the incident field arrives from this angle. The VEFIE is capable of providing detailed

information at each angle down to a limit defined by the discretisation rate because

every electromagnetic interaction is inherent within it.
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Figure 5.12: Comparison of the VEFIE and popular empirical models against meas-
urements.
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Figure 5.13: Received power with angle at (0.35, 3.43) in Figure 5.7. θ = 0 is chosen
such that the incident field arrives at that angle.
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5.3.1.5 Time domain information

The VEFIE as described is a frequency domain method but it can be used to generate

time domain information. To do so the VEFIE must be solved independently over a

large frequency range as shown in Figure 5.14. This information is then transformed

from the frequency domain to the time domain using the inverse Fourier transform

to give the power delay profile (PDP) in Figure 5.15. The VEFIE solution at each

frequency is independent of the solution at neighbouring frequencies and produces

information about the field for all points within the problem domain. This enables

time domain predictions in the form of PDPs to be computed for any point within

the problem domain without any extra overhead after it has been solved at each fre-

quency of interest. Here, the VEFIE has been applied to Figure 5.7 and solved over

the frequency range from 10MHz to 3GHz with a frequency spacing of 10MHz pro-

ducing information at 300 discrete frequencies. The information for the point (-0.86,

2.48) has been extracted and is shown in Figure 5.14. This information is windowed

with a Blackman-Harris window to reduce some of the effects of aliasing due to the

discrete data set and inverse Fourier transformed to produce the PDP in Figure 5.15.

As a simple validation of this approach Geometrical Optics (GO) is used to determine

when pulses are expected to arrive in the PDP by considering reflections and diffrac-

tions with a travel time of

τ =
R

c0

where R is the distance travelled by the wave and c0 is the speed of light which is

assumed to be the speed electromagnetic waves travel through air. With this ap-

proach the time for the LOS pulse to arrive as well as reflections and diffractions can

be computed. Some of these are overlaid on Figure 5.15 and show an excellent agree-

ment with the VEFIE data. It is important to note the VEFIE produces more detailed

information than GO can as it inherently includes all the interactions of electromag-

netic waves on their surrounding environment. Alternative approaches like the time

domain VEFIE [167], [168] exist but it is considerably more complex and has seen

very little investigation in the literature.

As with all modelling approaches based on the VEFIE, time domain modelling also

suffers from numerical inaccuracies. The transformation with the Fourier transform

introduces aliasing into the time domain predictions as well as the numerical inac-

curacies introduced in the frequency domain due to the discretisation and finite error

tolerance the VEFIE is solved to. Aliasing is introduced in the time domain predic-
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Figure 5.14: Electric field computed at (-0.86, 2.48) in Figure 5.7 from 10MHz to 3GHz
with a frequency spacing of 10MHz with the VEFIE.
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Figure 5.14. The LOS pulse is shown in black, first order reflections are in
green, first order diffractions are in red, a first order reflection followed
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are shown in purple.
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tions because of the finite bandwidth and resolution used. There is a direct relation-

ship between the bandwidth of the frequency domain data and the resolution of the

PDP given by

ts ∝
1
B

(5.24)

where ts is the sample time in the time domain and B is the bandwidth in the fre-

quency domain. The length of the time domain signal is related to the number of

points in the frequency domain (or frequency spacing) by

T ∝
1

N f
(5.25)

where T is the total length of time for the time domain signal and N f is the number

of frequencies computed in the frequency domain. The Figures 5.16 to 5.19 are used

to illustrate the relationships in (5.24) and (5.25).

Figure 5.16 shows two signals; one signal with a bandwidth of 2GHz from 10MHz

to 2.01GHz and another with a bandwidth of 1GHz from 0.51GHz to 1.51GHz. Both

signals have a frequency spacing of 10MHz. The PDPs in Figure 5.17 are computed

using the 2GHz and 1GHz bandwidth signals depicted in Figure 5.16. The two results

show a poor agreement with each other. The average sense of the envelope is matched

relatively well but the specific peaks and troughs within the PDPs are not matched

accurately. The accuracy of the 1GHz bandwidth signal significantly degrades further

along the time axis. Figure 5.18 shows two signals; the 10MHz signal has a frequency

spacing of 10MHz and a bandwidth from 20MHz to 3GHz whereas the 20MHz signal

has a frequency spacing of 20MHz and the same bandwidth. The PDPs shown in

Figure 5.19 are computed using the 10MHz and 20MHz signals in Figure 5.18. The

effect of aliasing can clearly be seen at the start and end of the 20MHz signal where

the noise level is higher preceding the LOS pulse and this also affects the end of

the signal by slightly increasing its power level above that of the 10MHz signal. The

PDPs show an excellent agreement for around 30ns from the LOS pulse. These results

demonstrate that to accurately capture the envelope of the time domain signal a large

bandwidth is required in the frequency domain whereas the spacing does not play a

crucial role up to a specific time. However, if a long time domain signal is required a

small frequency domain resolution is necessary.
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Figure 5.16: Depiction of a 2GHz and 1GHz bandwidth. The 2GHz bandwidth is
from 10MHz to 2.01GHz and the 1GHz bandwidth is from 0.51GHz to
1.51GHz. Both signals have a frequency spacing of 10MHz. The two
results shown here are used to compute the PDPs shown in Figure 5.17.
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Figure 5.17: Illustration of the effect of a finite bandwidth in the frequency domain on
the computation of time domain PDPs using the inverse Fourier trans-
form. The frequency domain data used to compute these PDPs is shown
in Figure 5.16. Both signals have the same frequency spacing of 10MHz
but due to their different bandwidths (2GHz vs 1GHz) they have a dif-
ferent time domain spacing because of the relationship in (5.24).
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Figure 5.18: The 10MHz signal has a frequency spacing of 10MHz, whereas, the
20MHz signal has a frequency spacing of 20MHz. Both signals have a
bandwidth from 20MHz to 3GHz. The 20MHz signal has 150 samples
but the 10MHz signal has 299 samples. These signals are used to com-
pute the PDPs shown in Figure 5.19.
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Figure 5.19: Illustration of the effect of a finite number of frequency samples in the
frequency domain on the computation of time domain PDPs using the
inverse Fourier transform. The frequency domain data used to compute
these PDPs is shown in Figure 5.18. Both signals have a bandwidth from
20MHz to 3GHz. The 20MHz signal produces a PDP with approximately
half the length of the 10MHz signal due to the relationship in (5.25).
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5.3.2 Comparison with 3D ray tracing

In order to determine the viability of the VEFIE as an indoor propagation model it

should be compared against the most popular deterministic model, ray tracing. The

VEFIE has already been shown to be more efficient than the SEFIE, to match path loss

measurements accurately and to be able to provide more information than statistical

or empirical models. The 2D VEFIE is compared against GO and the Uniform Theory

of Diffraction (UTD) which underpin most ray tracing models before being compared

against a 3D ray tracing model developed by Kenny and Nuallain [152] that considers

up to 3rd order reflections and transmissions but does not consider diffraction or

diffuse scattering.

The 2D VEFIE is compared against GO and UTD (GO/UTD) for the problem de-

scribed by Figure 5.20. The problem consists of a 5m × 5m 2D block positioned in the

bottom left corner of a free space region of size 10m × 10m. The block is characterised

by ǫr = 5, µr = 1 and σ = 0.5. The problem is illuminated by a line source radiating

at 1GHz positioned at (-5, 3) for both the 2D VEFIE and 2D GO/UTD model. The

agreement between the 2D VEFIE and GO/UTD is excellent as shown in Figure 5.21.

The 2D VEFIE is compared against the 3D ray tracing model for the environment

shown in Figure 5.7. The incident field is modelled as a full three-dimensional di-

pole in the ray tracing model and its transmit power is matched to that of the meas-

urements whilst the 2D VEFIE models the transmitter as a line source and does not

match the transmit power. The 3D ray tracing model is, as expected, more accurate

than the 2D VEFIE model as seen in Figure 5.22 and Table 5.8. However, despite

the transmitted power in the ray tracing model being the same as the measurement

campaign the mean power of the ray tracing predictions does not match the mean

received power of the measurements as shown in Figure 5.22a. A correction similar

to the 2D VEFIE is required for the ray tracing predictions to force the mean error to

be 0dB. Both the mean corrected VEFIE and ray tracing received power results agree

well with the measurements as shown in Figure 5.22a as do the path loss results in

Figure 5.22b. The 3D ray tracing model produces a lower RMS error and standard

deviation for the path loss results as shown in Table 5.8. The 3D VEFIE and 2D to

3D models in Chapters 6 and 7 are developed to remove the need for the mean error

correction in the 2D VEFIE.

The 2D VEFIE model is more efficient than the 3D ray tracing model. The runtime

of the 2D VEFIE and ray tracing is shown in Table 5.8. Both models are executed

on a laptop with a Core i5-5250U CPU and 8GB RAM. The VEFIE model has 57,200
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Figure 5.20: Problem scenario for comparison of GO/UTD with the 2D VEFIE. The
models are compared along the black line. The direct ray path is illumin-
ated in blue whilst the reflected ray path is shown in red. Non illumin-
ated paths represent the region where only diffracted rays are present.
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Table 5.8: Runtime, RMS error and standard deviation of the VEFIE and ray tracing
compared with measurements.

Received power Path loss

Model Runtime RMS Error Std. Dev. RMS Error Std. Dev.

2D VEFIE 6.5s 28.25 dB 4.65 dB 4.96 dB 4.65 dB

Ray tracing 415s 7.85 dB 2.54 dB 2.50 dB 2.54 dB
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Figure 5.21: Comparison of the VEFIE and UTD for the problem shown in Figure 5.20.
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Figure 5.22: Comparison of the VEFIE and ray tracing against measurements taken at
the receiver locations shown in Figure 5.7.
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unknown values to be computed. The ray tracing model computes the 3D fields

for the plane perpendicular to the centre of the dipole, similarly to the 2D VEFIE.

53,463 receiver locations are used in the ray tracing model. The VEFIE is executed

in MATLAB and takes advantage of parallelisation whilst the ray tracing model is

written in C++ without parallelisation. The 2D VEFIE model is over 60 times faster

than the 3D ray tracing model and computes the fields at slightly more points too.

5.3.3 Computational complexities

The efficiency and applicability of the methods described in Chapter 4 are investig-

ated for the Mie series problem described by Figure 5.2. The problem is discretised at

a rate of λ
10 which results in 48,400 unknown values to be solved. Each of the iterative

solvers in Chapter 4 are applied to solve the problem and their convergence rates are

shown in Figures 5.23 and 5.24. Only the CG-NE and BiCGSTAB methods converge

to an error tolerance less than 10−2. The CGS method converges to an error tolerance

of 10−1.9 in 136 iterations but after that its solution diverges possibly due to the issues

with rounding errors due to the squaring operation described in Section 4.2.3. The

CG method does not converge as expected because it is only applicable to real sym-

metric positive definite problems which typical indoor propagation problems are not.

The BiCG method does not converge and this is likely because it does not guarantee

minimisation of the residual error.

The CG-NE, CGS, and BiCGSTAB methods all converge to a solution. Although in

the case of the CGS it eventually diverges after reaching an error tolerance of 10−1.9.

Table 5.9 shows the number of iterations each method requires to converge to an error

tolerance of 10−1.9 and 10−6. The average time for a single iteration of each method is

shown in Figure 5.25. Overall, it can be seen that each method takes a similar length of

time per iteration and, thus, the overriding factor for their total computation time and

efficiency is their convergence rate. Each solver requires a similar computation time

per iteration because there are two matrix vector multiplications required within each

iteration for them which is the major time component per iteration. The BiCGSTAB

method performs better than the CG-NE method as shown in Table 5.9, whilst the

CGS method performs well to 10−1.9 before it diverges.

Section 4.3.3 demonstrates that a reduced operator can be used within iterative

solvers to ignore the extra unknowns present in the VEFIE that arise by using the

electric field as the primary unknown. In Figures 5.26 and 5.27 the effect of the re-
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Figure 5.23: Convergence rate of the CG-NE and BiCGSTAB methods. The CG-NE
converges to an error tolerance of 10−6 in 11,635 iterations and the BiCG-
STAB method requires 2,298 iterations.
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Figure 5.24: Convergence rate of the CG, BiCG and CGS methods. The three iterative
solvers all diverge and never reach an error tolerance below 10−2.
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Figure 5.25: Average time to compute a single iteration within several iterative solvers
for the problem described in Section 5.2.2.
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Table 5.9: Number of iterations and runtime of iterative solvers to reach a given error
tolerance.

10−1.9 10−6

Iterations Runtime Iterations Runtime

CG-NE 2,659 36.22s 11,635 159.46s

CGS 136 2.08s

BiCGSTAB 115 1.74s 2,298 35.72s

duced operator on the number of iterations it takes for the CG-NE and BiCGSTAB

methods, respectively, to converge to an error tolerance of 10−6 is shown. It can be

seen from Figure 5.26 that the reduced operator has a significant effect on the CG-NE

method reducing the number of iterations it takes to reach 10−6 from 11,635 to 5,120.

The reduced operator does not have as large an effect on the BiCGSTAB method as

shown in Figure 5.27. It reduces the number of iterations required to reach 10−6 from

2,298 to 2,039, an 11% reduction as opposed to the 56% reduction observed in the CG-

NE method. The additional time to compute an iteration with the reduced operator is

negligible over the case without it as shown in Figure 5.28. In fact it is slightly lower

because the added sparsity can be exploited to marginally speed up some computa-

tions.

Preconditioning is described in Section 4.3 as a means to improve the convergence

rate of iterative solvers. However, it was found that for the problem described in

Section 5.2.2 using a block Jacobi preconditioner with the CG-NE method causes it to

diverge and it offers no improvement to the BiCG and CGS methods. Thus, the ap-

plication of the preconditioner will only be examined with respect to the BiCGSTAB

method. The convergence rate of the BiCGSTAB without and with the preconditioner

is shown in Figure 5.29. With the preconditioner the BiCGSTAB converges to an er-

ror tolerance of 10−5.9 in 460 iterations. After this it begins to diverge and eventually

breaks down after 1,076 iterations. The unpreconditioned BiCGSTAB converges to

10−5.9 in 2,102 iterations. The preconditioner offers a reduction of 49% in the number

of iterations, much better than the reduced operator, but unlike the reduced operator

it greatly affects the time to compute a single iteration as shown in Figure 5.30a. The

use of the preconditioner triples the time it takes to compute a single iteration with

the BiCGSTAB method but due to the large reduction in number of iterations required

the total time to reach a solution is much faster with the preconditioner than without,
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Figure 5.26: Convergence rate of CG-NE method. The CG-NE converges to an error
tolerance of 10−6 in 11,635 iterations. With the reduced operator it con-
verges in 5,120 iterations.
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Figure 5.27: Convergence rate of BiCGSTAB method. The BiCGSTAB converges to an
error tolerance of 10−6 in 2,298 iterations. With the reduced operator it
converges in 2,039 iterations.
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Figure 5.28: Average time to compute a single iteration within the CG-NE and BiCG-
STAB methods.
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which can be seen in Figure 5.30b. The reasons for the divergence of the BiCGSTAB

with preconditioner are beyond the scope of this thesis but a possible reason could

be due to implementation specific computations that cause floating point rounding

error to propagate.

The reduced operator and preconditioner both improve the convergence rate and

runtime of the iterative solution. Figure 5.31 examines the convergence rate of the

BiCGSTAB method with the reduced operator and preconditioner applied together.

The number of iterations and runtime for the various BiCGSTAB approaches are

shown in Table 5.10. It can be clearly seen that the best approach is to use both the

reduced operator and the preconditioner with the BiCGSTAB method. The main ad-

vantage of this approach is that the reduced operator can be used to reduce the size

of the preconditioner which results in less computations and faster time to compute a

single iteration, which can be seen in Figure 5.32a. Even though the time to compute a

single iteration is still greater than without the preconditioner because the combined

approach requires so few iterations it is much faster than the other approaches, which

can be seen in Figure 5.32b. The reduced operator and preconditioner offer a 83% re-

duction in iterations over using the reduced operator only and a 85% reduction over

the standard BiCGSTAB.

Table 5.10: Number of iterations and runtime of BiCGSTAB to reach a given error
tolerance.

10−5.9 10−6

Iterations Runtime Iterations Runtime

BiCGSTAB 2,102 32.70s 2,298 35.72s

With reduced operator 1,990 30.73s 2,039 31.51s

With preconditioner 460 23.05s
With reduced operator
and preconditioner 346 9.50s 351 9.67s

5.4 Conclusions

2D integral equations have been examined for indoor propagation modelling. The

SEFIE and VEFIE are briefly described. The VEFIE solution is validated against the

analytical Mie series solution for scattering from a dielectric cylinder. Then the SEFIE
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Figure 5.29: Convergence rate of BiCGSTAB method. The BiCGSTAB converges to
an error tolerance of 10−6 in 2,298 iterations. With the preconditioner it
converges to an error tolerance of 10−5.9 in 460 iterations after which it
diverges and eventually breaks down.
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(a) Average time to compute a single iteration within the BiCGSTAB method.
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Figure 5.30: Comparison of the average time per iteration and total time of the BiCG-
STAB method.
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Figure 5.31: Convergence rate of the BiCGSTAB method. The BiCGSTAB converges to
an error tolerance of 10−6 in 2,298 iterations. With the reduced operator
and preconditioner it converges in 351 iterations.
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Figure 5.32: Comparison of the average time per iteration and total time of the BiCG-
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and VEFIE are applied to a realistic 2D indoor propagation environment and shown

to yield similar results as expected. However, the convergence rate and runtime of

the VEFIE is considerably better than that of the SEFIE. Thus, it is used as the basis

for an indoor propagation model in this chapter and extended to 3D in the next.

The propagation modelling capabilities of the VEFIE are investigated for the fre-

quency and time domains. It is also shown how the VEFIE can compute angle of

arrival information. The VEFIE is compared against popular empirical models where

it shows a high level of accuracy and can produce more detail. It is compared against

ray tracing too where it is shown it produces good predictions considerably faster.

Lastly, the computational complexities and convergence properties of the iterative

solvers, reduced operator and block Jacobi preconditioner described in Chapter 4 are

examined. It is shown that the BiCGSTAB method accelerated with the reduced op-

erator and preconditioner is the most efficient approach to solve the VEFIE.
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Chapter 6

3D volume integral equation for

indoor propagation

6.1 Introduction

The 2D Volume Electric Field Integral Equation (VEFIE) was examined in Chapter 5

for indoor propagation modelling, in this chapter the 3D VEFIE is investigated. A

discretised form of the 3D VEFIE derived in Chapter 3 is solved using the BiCGSTAB

method enhanced with the Fast Fourier Transform (FFT) and reduced operator. The

3D VEFIE is validated against the Mie series for scattering from a dielectric sphere

before it is compared against measurements for a realistic indoor propagation en-

vironment. A comparison between ray tracing based on Geometrical Optics (GO)

against the 3D VEFIE is presented.

6.2 3D volume integral equation

A propagation model based on the 3D VEFIE solves Maxwell’s equations in a numer-

ically exact fashion1. Therefore, it should be able to provide the high level of accuracy

being sought after and required for next generation communications technology. The

2D VEFIE has been shown to be a good method for indoor propagation modelling in

Chapter 5. However, its accuracy is limited because of its 2D nature but due to the

efficiency it can be solved with its extension to three dimensions is a logical approach

for improving accuracy. For these reasons, the 3D VEFIE is used here for indoor

propagation modelling.

1 By numerically exact it is meant that the only errors introduced are those introduced by the discret-
isation process and tolerance level used in the iterative solver.
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The 3D VEFIE is derived from Maxwell’s equations by applying the volumetric

equivalence principle. It can be written as (3.54)

E(r) = Ei(r) + k2
0

(

1 +
1
k2

0
∇∇·

)

ˆ

V
G(r, r′)χ(r′)E(r′)dr′

Its derivation is presented in Section 3.2. A weak-form discretisation is applied to

the 3D VEFIE because it weakens the effect of the singularity present in the integral.

Its application is demonstrated in Section 3.4.1 along with the method of moments

(MoM). The MoM results in a matrix equation of 3N linearly independent simultan-

eous equations that can be solved to predict the electric field throughout the envir-

onment to which it has been applied to. The resultant matrix equation has the form

(3.95)

V = Ze

where Z is (3.96)

Z = I − k2
0∆vGD − ∆vHGD

Similarly to the 2D VEFIE, the matrix equation resulting from the discretised 3D

VEFIE can be solved by direct matrix inversion but this is prohibitive due to the

large memory requirements of the VEFIE. The system matrix of the VEFIE is of size

3N × 3N where N the size of the problem is given by N = NxNyNz where Nx is the

number of discretisations in the x direction and similarly for Ny and Nz. The factor

of 3 is due to the need to independently compute the x, y and z components of the

electric field, whereas in 2D only a single component is needed. Thus, the discretised

form of the 3D VEFIE is solved with an iterative technique, namely the BiCGSTAB

method. The FFT and reduced operator are used to speed up its solution. The Toep-

litz nature of G requires only 1 row or column to be stored, D can be stored as a single

vector because it is a diagonal matrix and H can be implemented within the solver as

a function of O(N) complexity. These benefits reduce the storage requirements of Z

from O(N2) to O(N) and the cost of multiplying Z with e from O(N2) to O(N log N)

using the FFT.

6.2.1 Validation against Mie series

The analytical Mie series is employed to validate the 3D VEFIE before it is applied

to indoor propagation problems. The Mie series theory is described by Stratton and
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Bohren et al. in [222], [223]. The Mie series computes the electric field at any point

interior or exterior to a dielectric sphere illuminated by a plane wave. To validate

the VEFIE, consider a homogeneous dielectric 3D sphere in free space irradiated by

an impinging plane wave propagating in the z direction as shown in Figure 6.1. The

sphere has radius a and is characterised by its permittivity, permeability and conduct-

ivity, ǫ, µ and σ respectively. The total field at a point exterior to the sphere in free

space can be expressed as

Et(r) = Ei(r) + Es(r) (6.1)

The incident field is formulated as

Ei(r) =
∞

∑
n=1

n 2n + 1
n(n + 1)

(

m
(1)
o1n − n

(1)
e1n

)

(6.2)

where m
(1)
o1n and n

(1)
e1n are given by

m
(1)
o1n =

1
sin θ

cos φP1
n(cos θ)Jn(ρ) θ̂

− sin φ
dP1

n(cos θ)

dθ
Jn(ρ) φ̂

(6.3)

n
(1)
e1n =

Jn(ρ)

ρ
cos φn(n + 1)P1

n(cos θ) r̂

+ cos φ
∂P1

n(cos θ)

∂θ

1
ρ

d

dρ
[ρJn(ρ)] θ̂

− sin φ
P1

n(cos θ)

sin θ

1
ρ

d

dρ
[ρJn(ρ)] φ̂

(6.4)

where Jn() is the spherical Bessel function of the first kind of order n. ρ = k0r and r is

the distance from the centre of the sphere to the point the fields are being evaluated

at. P1
n() represents the Legendre function of degree n and order 1. r̂, θ̂ and φ̂ are unit

vectors in the direction of increasing r, θ and φ. The scattered field external to the

sphere is given by

Es(r) =
∞

∑
n=1

n 2n + 1
n(n + 1)

(

ann
(3)
e1n − bnm

(3)
o1n

)

(6.5)

where m
(3)
o1n and n

(3)
e1n are obtained by replacing the spherical Bessel function in (6.3)

and (6.4) with the spherical Hankel function of the first kind, H
(1)
n () and order n. an
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and bn are given by

an =
µ0v2 Jn(vx)[xJn(x)]′ − µd Jn(x)[vxJn(vx)]′

µ0v2 Jn(vx)[xH
(1)
n (x)]′ − µdH

(1)
n (x)[vxJn(vx)]′

(6.6)

bn =
µd Jn(vx)[xJn(x)]′ − µ0 Jn(x)[vxJn(vx)]′

µd Jn(vx)[xH
(1)
n (x)]′ − µ0H

(1)
n (x)[vxJn(vx)]′

(6.7)

where v = kd
k0

and x = k0a. ′ denotes differentiation with respect to the argument of

the Bessel or Hankel function. The total field internal to the sphere is given by

Et(r) =
∞

∑
n=1

n 2n + 1
n(n + 1)

(

cnm
(1)
o1n − dnn

(1)
e1n

)

(6.8)

where cn and dn are given by

cn =
µd Jn(x)[xH

(1)
n (x)]′ − µdH

(1)
n (x)[xJn(x)]′

µd Jn(vx)[xH
(1)
n (x)]′ − µ0H

(1)
n (x)[vxJn(vx)]′

(6.9)

dn =
µdvJn(x)[xH

(1)
n (x)]′ − µdvH

(1)
n (x)[xJn(x)]′

µdv2 Jn(vx)[xH
(1)
n (x)]′ − µdH

(1)
n (x)[vxJn(vx)]′

(6.10)

The Mie series and VEFIE are compared for a 3D sphere of radius a = 0.5m, with

ǫr = 4, µr = 1 and σ = 0.01 at 700MHz. The VEFIE discretises a 2m × 2m × 2m re-

gion centred around the sphere at a rate of λ
20 leading to N = 804, 357 unknowns to be

computed. The discretisation rate of λ
20 is used to accurately capture the curvature of

the sphere because pulse basis functions are used in the discretisation process which

results in a structure like that shown in Figure 3.4 and also to reduce numerical inac-

curacies so an accurate validation can be performed. The infinite Mie series is trun-

cated to 200 terms. The total electric field at a point external to the sphere is computed

by the VEFIE and Mie series. A very good agreement is achieved between both the

real and imaginary parts of the x, y and z components shown in Figure 6.2.

6.3 Numerical results

The indoor propagation modelling capabilities of the 3D VEFIE are examined here.

The 3D VEFIE is compared against measurements and the 2D VEFIE. Some results

comparing the 3D VEFIE against a 3D ray tracing model are presented also.
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Figure 6.1: Incident plane wave impinging dielectric sphere for Mie series problem.
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Figure 6.2: Comparison of real and imaginary components of VEFIE and Mie series
for the problem in Figure 6.1.
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6.3.1 Indoor propagation modelling

The 2D VEFIE has been shown to be an efficient method for indoor propagation mod-

elling in Section 5.3. However, the 2D VEFIE is not able to accurately predict the

received power of an indoor wireless communications system. A large mean error

arises between the 2D VEFIE and measurement results because it is difficult to match

the transmitted power when the transmit antennas are not the same. The power in

the 2D VEFIE also decays as 1
R , whereas in reality (for the measurements) and in the

3D VEFIE it decays as 1
R2 where R represents the distance from the transmitter. This

is another source of error in the 2D VEFIE results that can be alleviated by using a full

3D model. The 3D VEFIE is compared against the 2D VEFIE and measurements here.

To recap, received power measurements were taken in the 6.95m × 8.2m × 2.95m

portion of the house depicted in Figure 6.3. The floors in the house are wood, stone

and tile and the ceiling is a thin layer of plaster throughout. The electrical parameters

used for the materials are shown in Table 6.1. Small objects in the house have been

neglected in the model but are implicitly present in the measurement environment.

The discrepancies between the model and measurement environment will introduce

a source of error in the results.

Table 6.1: Parameters used to characterise the materials for the house in Figure 6.3.

Material ǫr µr σ

Concrete 4.4 1 0.01

Glass 4.8 1 0

Wood 2.2 1 0

Stone 4.0 1 0.1

Tile 12 1 0

Plaster 2.5 1 0

The 3D VEFIE is applied to this problem and the received power is computed

throughout the environment. This can be seen in Figure 6.4. The incident field is pro-

duced by a vertically oriented Hertzian dipole radiating at 915MHz, which matches

the transmit antenna used in the measurement campaign. The 3D VEFIE is discretised

at a rate of λ
10 which produces 4,865,133 unknowns but because the ∇∇· operator in

(3.54) is computed with a central difference the problem domain must be padded with

a layer of free space unknowns, which increases the size of the problem to 5,058,735,
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Figure 6.3: 2D depiction of a single storey portion of a house. Received power meas-
urements were taken at the 28 receiver locations shown. The transmitter
was kept constant throughout the measurement campaign.
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an increase of 193,602 unknowns to be computed. It takes 19 hours and 28 minutes to

solve the 3D VEFIE to an error tolerance of 10−3.

The 3D VEFIE is compared against measurements in Figure 6.5 to validate it for

indoor propagation modelling. The VEFIE results are averaged over a λ × λ box

centred on the receiver location. We can see there is a very good agreement between

the 3D VEFIE and measurements for both the received power and path loss compar-

ison. The 3D VEFIE is able to predict the received power very accurately without any

corrections whereas the 2D VEFIE is not. The discrepancies between the 3D VEFIE

and measurements are likely due to errors introduced due to the numerical solution

and the differences between the actual propagation environment and the simulated

propagation environment. Both the 3D and 2D VEFIE are able to capture the path loss

characteristics of the environment very well without any corrections being applied as

shown in Figure 6.5b. The runtime, RMS error and standard deviation of the VEFIEs

against measurements is shown in Table 6.2. It can be seen that the 3D VEFIE is more

accurate than the 2D VEFIE but at the expense of a significant increase in runtime.

These results form the basis for the development of the 2D to 3D models in Chapter 7

which attempt to utilise the efficiency of the 2D VEFIE to develop a full 3D model

that can achieve an accuracy closer to the 3D VEFIE.

Table 6.2: Root mean square (RMS) error and standard deviation of the VEFIE com-
pared with measurements.

Received power Path loss

Model Runtime RMS Error Std. Dev. RMS Error Std. Dev.

3D VEFIE 19.5hrs 3.68 dB 3.67 dB 3.11 dB 3.67 dB

2D VEFIE 4.63s 28.25 dB 4.65 dB 4.96 dB 4.65 dB

6.3.2 Statistical and empirical model analysis

The most common empirical path loss model for indoor propagation is described and

parameterised in Section 5.3.1.3 with the 2D VEFIE. The parameterised values using

both the 3D VEFIE and 2D VEFIE are shown in Table 6.3. The only significant dif-

ference between the 2D VEFIE and the 3D VEFIE is for n where the 3D VEFIE fits a

value of 4.1747 but the 2D VEFIE fits 2.1951. This difference is likely due to the data

from the full 3D environment being used instead of a single 2D plane. It could also be
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Figure 6.4: Received power for the house shown in Figure 6.3 computed by the VEFIE.
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Figure 6.5: Comparison of the VEFIE and measurements taken at the receiver loca-
tions shown in Figure 6.3.
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caused by the difference in decay of the power in the 3D and 2D VEFIEs, 1
R2 versus 1

R .

Along with Figures 5.11 and 6.6 and Table 6.4 it shows that, although the 3D VEFIE

is well able to model received power and path loss at a point, characterising empir-

ical models is better done by the 2D VEFIE, at least for this scenario. This analysis

points towards some of the main issues with statistical and empirical models, the dif-

ficulty in characterising them and their lack of a basis on the underlying physics of

the problem.

Table 6.3: Parameterised values of log-normal shadowing path loss model.

Xσ

Model n Mean Std. Dev.

3D VEFIE 4.1747 0.3174 6.6598

2D VEFIE 2.1951 0.4298 5.4177

Table 6.4: RMS error and standard deviation of the VEFIE and extracted path loss
models compared with measurements. The mean path loss models are
computed with the corresponding parameters from Table 6.4.

Path loss Mean path loss

Model RMS Error Std. Dev. RMS Error Std. Dev.

3D VEFIE 3.11 dB 3.67 dB 6.25 dB 4.53 dB

2D VEFIE 4.96 dB 4.65 dB 3.91 dB 3.38 dB

In Section 5.3.1.3 the 2D VEFIE is compared against the dual slope model, COST

231 multi-wall model and the adjusted Motley-Keenan model. The empirical models

are compared against the 2D and 3D VEFIEs in Figure 6.7 and Table 6.5 where it can

be seen that the 3D VEFIE provides a high degree of accuracy. It produces a lower

RMS error and standard deviation than all of the models except the COST 231 multi-

wall model as well as being able to track the fading of the measurements.

6.3.3 Comparison against ray tracing

Ray tracing is the most common deterministic model for indoor propagation. It is

based primarily on GO. GO defines the electromagnetic interactions for reflections
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Figure 6.6: Comparison of the 3D VEFIE and extracted path loss models against meas-
urements.
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Figure 6.7: Comparison of the VEFIE and popular empirical models against measure-
ments.
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Table 6.5: Root mean square (RMS) error and standard deviation of the VEFIE and
popular empirical models compared with measurements.

Model RMS Error Std. Dev.

3D VEFIE 3.11 dB 3.67 dB

2D VEFIE 4.96 dB 4.65 dB

Dual slope 4.39 dB 3.51 dB

COST 231 multi-wall 2.81 dB 2.82 dB

Adjusted Motley-Keenan 6.37 dB 5.01 dB

and transmissions. Here the 3D VEFIE is compared against GO before being com-

pared against a full 3D ray tracing model that considers up to 3rd order reflections

and transmissions only.

Figure 6.8 details a comparison of GO and the 3D VEFIE. A concrete like slab of

size 2.5m × 5m × 2m is positioned in a free space region of size 5m × 5m × 2m.

It has ǫr = 4, µr = 1 and σ = 0.04. A dipole radiating at 700MHz is positioned at

(-2, 0). A good agreement is observed between GO and the 3D VEFIE in Figures 6.9

and 6.10. The models do not agree close to the edges of the slab where diffraction

effects are present but further away from the edges, particularly in Figure 6.10, a very

good agreement is observed between GO and the 3D VEFIE. This lays the basis for

a full comparison between the 3D VEFIE and the 3D ray tracing model. The VEFIE

based methods, unlike ray tracing, do not consider the incident and reflection shadow

boundaries differently to any other region, thus, there is no specific requirement to

analyse the VEFIEs accuracy for these reasons. A comparison between the 2D VEFIE

and UTD is presented in Section 5.3.2.

The 2D VEFIE is compared against a 3D ray tracing model in Section 5.3.2. The res-

ults demonstrate that both models require their mean power to be corrected against

the measurements in order to accurately predict the received power but they are cap-

able of accurately predicting path loss within the building without a correction. The

2D VEFIE is significantly quicker than the 3D ray tracing model but it is less accurate.

In Figure 6.11 and Table 6.6 the 3D VEFIE is compared against the 2D VEFIE and ray

tracing for the same problem. The 3D VEFIE is the only model that does not require

a correction to be able to accurately predict the received power measurements. It is

less accurate than the ray tracing model for path loss prediction based on the RMS

and standard deviation error values shown in Table 6.6. All of the models are ex-
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Figure 6.8: Problem scenario to compare reflections computed by the 3D VEFIE and
ray tracing. The black slab is of size 2.5m × 5m × 2m and is in a free space
region of size 5m × 5m × 2m. It is characterised by ǫr = 4, µr = 1 and
σ = 0.04. The coloured x and y lines are used for comparison.
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Figure 6.9: Comparison of VEFIE and ray tracing along the line x = −0.5 in Figure 6.8.
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Figure 6.10: Comparison of VEFIE and ray tracing along the line y = 2 in Figure 6.8.
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ecuted on a laptop with a Core i5-5250U CPU and 8GB RAM. The VEFIE models are

implemented in MATLAB and make use of its built-in parallelisation whereas the ray

tracing model is implemented in C++ without parallelisation. The 2D VEFIE model

has 57,200 unknown values to compute, the 3D VEFIE computes 5,058,735 unknown

values and the ray tracing model computes the fields at 53,463 receiver locations. The

3D VEFIE is the slowest model despite only being solved to an error tolerance of 0.2

instead of 0.001. The comparison of the received power and path loss in Figure 6.11

and Table 6.6 uses 3D VEFIE results solved to an error tolerance of 0.001, the same as

the 2D VEFIE and all of the other results presented in this thesis.

Table 6.6: Runtime, RMS error and standard deviation of the 3D and 2D VEFIEs and
ray tracing compared with measurements. The 3D VEFIE is solved to an
error tolerance of 0.2, instead of the usual 0.001, to determine its runtime
only.

Received power Path loss

Model Runtime RMS Error Std. Dev. RMS Error Std. Dev.

3D VEFIE 4305s 3.68 dB 3.67 dB 3.11 dB 3.67 dB

2D VEFIE 6.5s 28.25 dB 4.65 dB 4.96 dB 4.65 dB

Ray tracing 415s 7.85 dB 2.54 dB 2.50 dB 2.54 dB

6.4 Conclusions

The 3D VEFIE is examined here for indoor propagation modelling. The 3D VEFIE is

briefly described and validated against the analytical Mie series solution for scatter-

ing from a dielectric sphere. The 3D VEFIE is applied to a realistic indoor propagation

environment and compared against measurements were it demonstrates a very good

agreement. Its ability to characterise a log-normal shadowing empirical propagation

model is examined and contrasted with the 2D VEFIE. The 3D VEFIE is compared

against other popular empirical models. Lastly, the 3D VEFIE is compared against

GO for an idealised problem where a good agreement is achieved before being com-

pared against a full 3D ray tracing model for an indoor propagation problem. The 3D

VEFIE can accurately predict received power measurements without any corrections

that are required by ray tracing but it is significantly slower than ray tracing. This

helps form the basis for the development of the 2D to 3D models in the following
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(a) Received power.
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Figure 6.11: Comparison of the 3D and 2D VEFIEs and ray tracing against measure-
ments taken at the receiver locations shown in Figure 6.3.
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chapter which aim to be able to provide a similar level of accuracy to the 3D VEFIE

but utilising the efficiency of the 2D VEFIE.
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Chapter 7

Efficient 2D to 3D VEFIE modelling

approaches

7.1 Introduction

In Chapter 5 the 2D Volume Electric Field Integral Equation (VEFIE) is presented for

indoor propagation modelling. However, it is difficult for it to make accurate received

power predictions without correcting the mean error against measurements for a few

reasons. In 2D a different antenna radiation pattern is simulated because power de-

cays as 1
R for the 2D VEFIE whereas in reality it decays as 1

R2 where R is the distance

from the transmitter to the receiver. The 3D VEFIE is used in Chapter 6 to develop a

more accurate propagation model. In the 3D VEFIE the modelled antenna radiation

pattern is correct and power decays correctly according to 1
R2 for both the incident

and scattered fields. It is shown that the 3D VEFIE can produce accurate received

power predictions without any corrections but it is extremely slow. Moreover, the 2D

VEFIE is a much more efficient approach for indoor propagation modelling and if its

predictions can be corrected to account for the radiation pattern of the antenna and

3D propagation mechanisms it would prove to be a very useful method for indoor

propagation modelling. This leads to the development of efficient models based on

2D VEFIE simulations that are able to produce more accurate 3D propagation predic-

tions than the 2D VEFIE.

The models presented here are called 2D to 3D models and three different ap-

proaches are investigated. The 2D to 3D modelling approaches are compared against

each other before the most accurate approach is chosen and validated against the

3D VEFIE. This model is then used for indoor propagation modelling where it is

compared against measurements in the frequency and time domains. Due to the effi-
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ciency of the 2D to 3D modelling approach accurate time domain predictions can be

made which are infeasible with the 3D VEFIE due to its long runtime. The 2D to 3D

model is shown to be accurate for line of sight (LOS) and non line of sight (NLOS)

and compare favourably against empirical and statistical models and ray tracing both

in terms of efficiency and accuracy.

7.2 2D to 3D model

The solution of the 3D VEFIE is quite computationally expensive when compared

with the 2D formulation for two reasons. Firstly, the solution of the 3D VEFIE re-

quires the computation of three field components, x, y and z, as opposed to the single

z component in the 2D transverse magnetic (TM) case. Secondly, assuming that Nx,

Ny and Nz are the number of discretisations in the x, y and z-directions respectively,

the total number of discretisations required grows as NxNyNz instead of NxNy for

the two-dimensional problem. This shows that a more computationally efficient ap-

proach would be to develop a model based on the 2D VEFIE and correct its solution

to account for three-dimensional propagation. Three approaches based on the 2D

VEFIE are examined here. The first technique is a simple heuristic correction applied

to the solution of the 2D VEFIE. The second method averages the solution of two 2D

VEFIE simulations that use the 2D and 3D Green’s functions. To derive the 2D VEFIE

from the 3D VEFIE the z dimension is assumed to extend from −∞ to +∞. The third

2D to 3D approach removes this approximation and uses a finite integration of the

third dimension in the 2D VEFIE.

7.2.1 Heuristic correction method

There are several differences between the 2D and 3D forms of the VEFIE. The main

difference as described above is the rate of decay of power. This is present in the

both the incident and scattered fields. For instance, the fields produced by a vertical

Hertzian dipole in spherical coordinates are given by

Ei(r) ∼= θ̂ωµ0
Il

4π|r| e
−k0|r| sin θ (7.1)

where I is the current flowing in the dipole and l is its length. l is commonly λ
2 or

λ
4 corresponding to a half or quarter-wavelength dipole. (7.1) is the far-field repres-
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entation of a Hertzian dipole, it can be used as a good approximation for the fields

produced by a Hertzian dipole providing k0|r| ≫ 1 which is kept true for the cases

investigated here. In 2D a line source is commonly used which produces fields given

by

Ei
z(r) =

1
4

H
(2)
0 (k0|r|) (7.2)

(7.2) can be expanded using the large argument approximation of the zeroth order

Hankel function to give

Ei
z(r) ≈

√

2

πk0|r|
e−k0|r| (7.3)

The main difference between (7.1) and (7.3) is

√

1
|r|

this is also present in the difference between the 2D and 3D Green’s functions in (3.46)

and (3.49),

G(r) =
1
4

H
(2)
0 (k0|r|) ≈

1
4

√

2

πk0|r|
e−k0|r|

G(r) =
e−k0|r|

4π|r|
respectively, when the zeroth order Hankel function is expanded using its large argu-

ment approximation.
√

2
πk0

is also present in the differences between incident and scattered fields. Thus, a par-

tial correction for both fields can be computed by multiplying the solution of the 2D

VEFIE (the total field, Ez) by
√

k0

2π|r| (7.4)

It should be noted that the fields produced by a Hertzian dipole in 3D and a line

source in 2D have been examined here but the correction in (7.4) is not specific to the

incident fields and is instead specific to the differences between 2D and 3D as shown

in the Green’s functions. The remaining elements of the heuristic correction model

are specific to a Hertzian dipole and line source.
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There are several differences between the field representations in (7.1) and (7.3) that

have not been accounted for with (7.4). By examining (7.1) and (7.3) it has been found

that a reasonable correction for the total field computed by the 2D VEFIE for the plane

perpendicular to the centre of axis of the dipole (θ = π
2 ) is given by

β
√

|r|
(7.5)

where

β =
ωµ0 Il

4

√

k0

2π
(7.6)

The base correction for the solution of the 2D VEFIE is, thus, given by

E
(3)
z (rx,y,z) ≈ β

E
(2)
z (rx,y)

|rx,y,z|
(7.7)

where E
(3)
z (rx,y,z) is the z component of the corrected 3D fields, E

(2)
z (rx,y) is the solu-

tion of the 2D VEFIE assumed to be the plane perpendicular to the centre of axis of the

dipole, rx,y,z is the position in three-dimensional space and rx,y is the corresponding

position in two-dimensional space where z is set equal to the height of the transmit-

ter denoting the fields are computed for the plane θ = π
2 . The fields for planes where

θ 6= π
2 can be approximated by splitting the scenarios into those points that have LOS

of the transmitter and those that do not (NLOS). For points in LOS, the 3D fields can

be approximated by

E
(3)
z (rx,y,z) ≈ β

E
(2)
z (rx,y)

|rx,y,z|
sin(γ) (7.8)

where

γ = tan−1

(

√

x2
a + y2

a

|za|

)

(7.9)

and xa, ya and za are the distances in the x, y and z-directions to the point rx,y,z from

the transmitter. sin(γ) applies a correction based on the radiation pattern of the di-

pole. It has been found that points in NLOS regions can be better approximated by

E
(3)
z (rx,y,z) ≈ α + β

E
(2)
z (rx,y)

|rx,y,z|
sin(γ) (7.10)
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than (7.8) up to a height of 1.5m where α has been experimentally determined as

α =
|za|
10

for |za| ≤ 1.5 (7.11)

E
(3)
z (rx,y,z) is a good approximation for the total field in three dimensions as the

dominant component of the field is the z component. Heights greater than 1.5m have

not been thoroughly investigated due to the presence of floors and ceilings in typical

indoor environments which will have an effect on the scattered field that can’t simply

be accounted for by the shift given by α. The heuristic correction inherently assumes

that the geometry of the propagation environment is invariant in the z dimension.

This correction could be extended to analyse multifloor environments by combining

2D simulations in a 2.5D approach similar to those presented in [31], [120].

7.2.2 Average Green’s model

Simulating the propagation of electromagnetic fields with the 2D VEFIE instead of

the 3D VEFIE introduces errors. The main differences between the two formulations

are in the representation of the incident field, the Green’s function and the ∇∇· op-

eration. The average Green’s model attempts to eliminate some of these potential

inaccuracies.

The approximated fields computed by the average Green’s model is based on the

solution of two 2D simulations and an accurate representation of the incident field in

three dimensions. From Chapter 3 the discretised form of the 2D VEFIE is given by

(3.76)

v = Ze

where v is a known vector containing the values of the incident field at the centre of

each discretised cell, e is an unknown vector containing the values of the z component

of the electric field at the same locations and Z is given by (3.77)

Z = I − GD

I is the identity matrix, G represents the 2D Green’s function, (3.49), and D is the con-

trast (3.55). G and D are evaluated at the centres of the discretised cells. In typical

2D VEFIE simulations v is represented as the fields being produced by a line source

which is a 2D source whose power decays as 1
R . The average Green’s model instead
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of using a line source to model the incident field uses the fields produced by the cor-

rect 3D radiation pattern which for the analysis here will be assumed to be a Hertzian

dipole producing fields given by (7.1). The equation for the fields produced by the

correct 3D incident field is evaluated for the plane perpendicular to its centre of axis

θ = π
2 , i.e. with z = 0, only. The z component of the resultant fields is then sub-

sequently taken and used in the 2D VEFIE simulations as the 2D VEFIE was derived

for the TM case. This reduces one source of error in the 2D VEFIE over its 3D coun-

terpart. The other main source of error in the 2D VEFIE over the 3D formulation that

the average Green’s model attempts to alleviate is in the differing Green’s functions.

The average Green’s model approximates the total electric field in three dimensions

as

E
(3)
z = αE

(2)V
z + βE

(2)VG
z (7.12)

where α and β are constants1. E
(2)V
z is the solution of the following 2D VEFIE problem

v(3) = ZE
(2)V
z (7.13)

where v(3) represents the z component of the fields produced by the 3D antenna eval-

uated for the plane z = 0 as described above. E
(2)VG
z is the solution of the following

2D VEFIE problem

v(3) = ZGE
(2)VG
z (7.14)

where ZG is given by

ZG = I − k2
0G(3)D (7.15)

where G(3) is the 3D Green’s function evaluated for points in the plane z = 0. Z in

(7.13) is the same as that in the normal 2D VEFIE. Similarly to the heuristic correc-

tion, E
(3)
z is a good approximation for the total field in three dimensions because the

dominant component in three dimensions is the z component.

The average Green’s model improves on the standard 2D VEFIE for two main reas-

ons. Firstly, the representation of the incident field is closer to the correct representa-

tion. Secondly, the use of the 3D Green’s function and averaging applied with the 2D

Green’s function reduces the error in the scattered field. The solution of (7.13) with

the 2D Green’s function implicitly assumes the total electric field at all points over

the entire z axis from −∞ to +∞ is invariant. This results in an overestimation of the

scattered field when compared with the 3D VEFIE. On the other hand, the solution

1 α and β equal to 1
2 has been found to produce a good agreement with the 3D VEFIE.
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of (7.14) solves the 3D VEFIE assuming the z axis is one cell high which produces

an underestimation of the scattered field. The averaging of the two results in (7.12)

produces fields that demonstrate a much better agreement with the 3D VEFIE than

the standard 2D VEFIE. This can be seen in Figure 7.2 where the solutions of (7.12)

to (7.14), (E(3)
z , E

(2)V
z , and E

(2)VG
z ), are compared against the 3D VEFIE for the scen-

ario described by Figure 7.1. (7.12) is called "Average Green’s", (7.13) is called "2D

Green’s" and (7.14) is called "3D Green’s" in Figure 7.2.

7.2.3 Finite integration model

The average Green’s model attempts to partially correct for the errors introduced in

the 2D VEFIE due to the use of the 2D Green’s function instead of the 3D formulation.

However, it requires two simulations. The finite integration model presented here

attempts to produce a model with a similar level of accuracy as the average Green’s

model but in a single simulation. The 2D Green’s function is derived from the 3D

Green’s function by integrating over the invariant dimension from −∞ to +∞ (in

this thesis the z dimension is used). The finite integration model begins with the 2D

VEFIE and replaces the 2D Green’s function with the 3D Green’s function integrated

between limits defined by the geometry of the environment, specifically the height of

the environment. As with the average Green’s model, the incident field used in the

simulation for the finite integration model is the z component of the radiation pattern

of the 3D antenna evaluated for the plane z = 0.

The finite integration model begins with the premise that the main error between

the 2D and 3D VEFIE is due to the infinite integration in the z axis. Therefore, it

builds in a finite integration along the z axis. The finite integration model takes the

2D VEFIE given by (3.56)

Ez(r) = Ei
z(r) + k2

0

ˆ

S
G(r, r′)χ(r′)Ez(r

′)dr′

and replaces the 2D Green’s function G(r, r′) with

ˆ ha

hb

e−k
√

ρ2+z2

4π
√

ρ2 + z2
dz (7.16)

147



Figure 7.1: Simple slab scenario used to analyse the effect of the 2D and 3D Green’s
functions in the average Green’s model and the accuracy of all of the 2D
to 3D models. The scenario consists of a slab of size 5m × 0.5m × 2m
positioned in a free space region of size 5m × 3m × 2m with a dipole
radiating at 700MHz placed at (-2, 0, 0). The slab material has a relative
permittivity of 4.4 and a conductivity of 0.01.
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Figure 7.2: Comparison showing the overestimation and underestimation effects in
the average Green’s model.
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to give

Ez(r) = Ei
z(r) + k2

0

ˆ

S

(

ˆ ha

hb

e−k
√

ρ2+z2

4π
√

ρ2 + z2
dz

)

χ(r′)Ez(r
′)dr′ (7.17)

where z = 0 is defined as the plane perpendicular to the centre of the 3D antenna and

ha and hb are the heights above and below this plane in the 3D environment governed

by its geometry. hb ≤ 0 and ha ≥ 0. For example, if the environment being modelled

has a height of 2m and the transmitter is located 1m above the bottom surface then

ha = 1 and hb = −1. In the finite integration model the geometry of the environment

is assumed constant in the z dimension up to the limits ha and hb. e−k
√

ρ2+z2

4π
√

ρ2+z2
from

(7.16) is the 3D Green’s function, (3.46), assuming no variance in the geometry in z

where
√

ρ2 + z2 is the distance in three-dimensional space. It can be shown that (7.16)

reduces to the 2D Green’s function (3.49) if ha = ∞ and hb = −∞ [145].

7.2.4 Model analysis

The accuracy and runtime of the 2D to 3D models will be analysed against the 3D

VEFIE. The heuristic correction, average Green’s and finite integration 2D to 3D mod-

els are compared against the 3D VEFIE for the slab scenario shown in Figure 7.1. The

comparison of the 2D to 3D models and the 3D VEFIE for the slab scenario can be

seen in Figure 7.3 where the models are compared for two lines, x = 1 and y = 1.

It is clear from this comparison that the finite integration model is the least accur-

ate. It is more accurate than the 2D VEFIE which can be seen in Table 7.1 where the

RMS error and standard deviation of the models is shown. The heuristic correction

and average Green’s models are more accurate than the finite integration model and

2D VEFIE. They are also quicker than the finite integration model. As the finite in-

tegration model has demonstrated the worst performance in terms of runtime and

accuracy it will not be analysed further. The remaining scenarios will analyse the

heuristic correction and average Green’s models only.

The heuristic correction and average Green’s models will be compared against the

3D VEFIE for a slightly more complex scenario that contains some NLOS regions

shown in Figure 7.4. A comparison of the fields along two lines is shown in Figure 7.5

where it can be seen that the heuristic correction model is slightly more accurate than

the average Green’s model. This is further demonstrated in Table 7.2 where it can be

seen that the heuristic correction model produces a lower RMS error and standard

deviation than the average Green’s model. It is also slightly faster than the average
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Figure 7.3: Comparison of the heuristic correction, average Green’s and finite integ-
ration 2D to 3D models against the 3D VEFIE for the scenario shown in
Figure 7.1.
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Table 7.1: Runtime and accuracy of the 2D to 3D models compared against the 2D
and 3D VEFIE. The RMS error and standard deviation are calculated for
the entire free space region for the scenario in Figure 7.1.

Model Runtime RMS Error Std. Dev.

3D VEFIE 11.62 mins

2D VEFIE 4.68 secs 11.03 dB 3.27 dB

Heuristic correction 4.68 secs 0.85 dB 0.85 dB

Average Green’s 4.83 secs 0.76 dB 0.76 dB

Finite integration 7.38 secs 2.68 dB 2.65 dB

Green’s model.

Table 7.2: Runtime and accuracy measurements of the heuristic correction and aver-
age Green’s 2D to 3D models compared against the 2D and 3D VEFIE. The
RMS error and standard deviation are calculated for the entire free space
region for the scenario in Figure 7.4.

Model Runtime RMS Error Std. Dev.

3D VEFIE 11.59 mins

2D VEFIE 5.92 secs 10.71 dB 3.63 dB

Heuristic correction 5.92 secs 1.73 dB 1.73 dB

Average Green’s 6.08 secs 2.58 dB 2.58 dB

A realistic building geometry is shown in Figure 7.6 and it is used to further ana-

lyse the accuracy of the heuristic correction and average Green’s 2D to 3D models.

Their comparison can be found in Figure 7.7 and Table 7.3 where again it is found

that the heuristic correction model provides a higher level of accuracy and is quicker.

The heuristic correction model is simpler to implement too as it requires a single un-

modified simulation of the 2D VEFIE whereas the average Green’s model requires

two simulations where the Green’s function is modified in one. Thus, the ability of

the heuristic correction 2D to 3D model to be used for propagation modelling will be

examined in Sections 7.2.5 and 7.3.
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Figure 7.4: Simple block scenario used to analyse the accuracy of the 2D to 3D models.
A block of size 2.5m × 1m × 2m is positioned in a free space region of size
5m × 3m × 2m with a dipole radiating at 700MHz placed at (-2, 0, 0). The
block material has a relative permittivity of 4.4 and a conductivity of 0.01.
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Figure 7.5: Comparison of the heuristic correction and average Green’s 2D to 3D mod-
els against the 3D VEFIE for the scenario shown in Figure 7.4.
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Figure 7.6: Building scenario used to analyse the accuracy of the 2D to 3D models.
The building is of size 10m × 10m × 3m. A vertical dipole radiating at
700MHz is placed at (-1, -0.5, 0). The building material has a relative per-
mittivity of 4.4 and a conductivity of 0.01.
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Figure 7.7: Comparison of the heuristic and hybrid 2D to 3D models against the 3D
VEFIE for the scenario shown in Figure 7.6.

156



Table 7.3: Runtime and accuracy measurements of the heuristic correction and aver-
age Green’s 2D to 3D models compared against the 2D and 3D VEFIE. The
RMS error and standard deviation are calculated for the entire free space
region for the scenario in Figure 7.6.

Model Runtime RMS Error Std. Dev.

3D VEFIE 181.31 mins

2D VEFIE 68.81 secs 8.26 dB 4.86 dB

Heuristic correction 68.82 secs 4.25 dB 4.10 dB

Average Green’s 73.99 secs 5.28 dB 4.93 dB

7.2.5 Further validation of heuristic correction against 3D VEFIE

Consider a cube of size 2m × 2m × 2m consisting of a concrete-like material defined

by ǫr = 4, µr = 1 and σ = 0.01 positioned in free space with its top left edge located

at (−0.5, 1.5) and centred in the z-direction, i.e. it extends from z = −1 to z = 1, as

shown in Figure 7.8. The transmitter is located at (−1.5, 2, 0). Figure 7.9 demonstrates

a comparison between the 2D to 3D model and the 3D and 2D VEFIE at a frequency

of 1.2GHz along the z axis from z = −1.5 to z = 1.5. The LOS results are located at

(−2,−1, z), whilst the NLOS results are for the location (2,−1, z). The RMS error and

standard deviation for the results in Figure 7.9 can be found in Table 7.4.

Table 7.4: Averaged accuracy of the 2D to 3D model and 2D VEFIE against the 3D
VEFIE for the results in Figure 7.9.

LOS NLOS

RMS Error Std. Dev. RMS Error Std. Dev

2D VEFIE 7.80 dB 2.58 dB 16.66 dB 5.34 dB

2D to 3D 3.06 dB 1.87 dB 2.61 dB 2.60 dB

The 2D to 3D model produces a propagation model that is capable of accurate and

efficient predictions in the frequency and time domains. It is valid over a wide fre-

quency range due to its derivation from the full 3D VEFIE. Figure 7.10 and Table 7.5

demonstrate the effectiveness of the 2D to 3D model over a frequency range from

500MHz to 1.5GHz for the same problem described by Figure 7.8. Figure 7.10 com-

pares the 2D to 3D model against the 3D VEFIE and 2D VEFIE at the points (−2,−1, 0),

(2,−1, 0), (−2,−1,−1) and (2,−1, 1). The average RMS error and standard deviation
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Figure 7.8: Cube scenario used to analyse the accuracy of the heuristic correction 2D
to 3D model. A cube of size 2m × 2m × 2m is positioned in a free space
region of size 5m × 5m × 3m with a dipole radiating at 700MHz placed
at (-1.5, 2, 0). The cube material has a relative permittivity of 4 and a
conductivity of 0.01.
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Figure 7.9: Comparison of the 2D to 3D model against the 3D and 2D VEFIE. The LOS
results are at (−2,−1, z) and the NLOS results are at (2,−1, z).
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for all of these results including results at (−2,−1, 1) and (2,−1,−1) are shown in

Table 7.5. These results include points in LOS, NLOS, points in the same plane as the

transmitter and points in a plane 1m above and below the transmitter but in each case

the 2D to 3D model provides a much better agreement with the 3D VEFIE than the

2D VEFIE.

Table 7.5: Averaged accuracy of the 2D to 3D model and 2D VEFIE against the 3D
VEFIE for the results in Figure 7.10 including results at (−2,−1, 1) and
(2,−1,−1) also.

LOS NLOS

RMS Error Std. Dev. RMS Error Std. Dev

2D VEFIE 9.65 dB 2.95 dB 19.32 dB 5.51 dB

2D to 3D 2.44 dB 2.45 dB 3.14 dB 3.00 dB

7.2.6 2D to 3D model limitations

The 2D to 3D models are limited in the information they can provide as they are based

on the 2D VEFIE. The main limitation is that only the z component of the electric field

can be computed because TM polarisation is assumed. The heuristic correction in

Section 7.2.1 is limited to a dipole but works well for other omni-directional antennas

that have a similar radiation pattern to a dipole as shown in Section 7.3.1.3. The aver-

age Green’s and finite integration models in Sections 7.2.2 and 7.2.3 are only capable

of making predictions in a 2D plane perpendicular to the centre of axis of a three-

dimensional antenna.

7.3 Results

The heuristic correction 2D to 3D model is compared against the 3D and 2D VEFIEs

for indoor propagation problems. The runtime and accuracy of the 2D to 3D model

is compared against the 3D and 2D VEFIE for typical environments. It is shown how

the 2D to 3D model takes the advantages from the 2D VEFIE and the 3D VEFIE to

produce a propagation model capable of making rapid frequency and time domain

predictions.
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Figure 7.10: Comparison of the 2D to 3D model against the 3D and 2D VEFIE over a
frequency range from 500MHz to 1.5GHz with a spacing of 10MHz.
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7.3.1 In-building propagation modelling

The 2D VEFIE has been shown to be an efficient method for indoor propagation mod-

elling in Section 5.3. The 3D VEFIE was examined to make accurate received power

predictions but it is very slow as shown in Section 6.3. Thus, the 2D to 3D model was

developed and is applied to examine propagation modelling in buildings.

7.3.1.1 Measurement campaigns

The 2D to 3D model will be applied to several different environments where meas-

urement campaigns have been performed. The first scenario is the same as that in

Section 5.3.1.1 which was used to examine the use of the 2D and 3D VEFIE for in-

door propagation modelling. This campaign took received power measurements at

28 locations in a 6.95m × 8.2m × 2.95m portion of a house shown in Figure 7.11 that

consists of 6 different materials characterised by the parameters in Table 7.6.

Table 7.6: Parameters used to characterise the materials for the house in Figure 7.11.

Material ǫr µr σ

Concrete 4.4 1 0.01

Glass 4.8 1 0

Wood 2.2 1 0

Stone 4.0 1 0.1

Tile 12 1 0

Plaster 2.5 1 0

The second measurement campaign measured the complex channel transfer func-

tion for the room shown in Figure 7.12. The size of the room is 3.35m × 6.1m. It is

made up of four different materials, namely concrete, glass, wood and metal. The

electrical parameters used to model these are shown in Table 7.7. These are based on

values reported by Meissner et. al in [224] and averaged values from the literature for

wood and metal (assumed to be aluminium). Only the 2D VEFIE and heuristic cor-

rection 2D to 3D model are applied to this building, therefore, the height, floor and

ceiling are neglected for modelling purposes. There are also tables on the right hand

side of the room that are neglected which will introduce a source of error. Skycross

SMT-3TO10M UWB antennas and custom made coin antennas which both have an
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Figure 7.11: 2D depiction of a single storey portion of a house. Received power meas-
urements were taken at the 28 receiver locations shown. The transmitter
was kept constant throughout the measurement campaign.
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approximately uniform azimuthal radiation pattern and zeros in the pattern at +/-

90◦ elevation angle [225] were used. The complex channel transfer function over the

frequency range from 3.1GHz to 10.6GHz was measured using a Rohde and Schwarz

ZVA-24 vector network analyser [225].

Table 7.7: Material parameters used to characterise the room in Fig. 7.12.

Material ǫr µr σ

Concrete 6.0 1 0.08

Glass 5.5 1 0

Wood 2.2 1 0

Metal 1.7 1 3 × 107

7.3.1.2 Frequency domain analysis

The 2D and 3D VEFIE have been applied to the propagation problem defined by the

house in Figure 7.11. A comparison of the 2D and 3D VEFIE against the measurement

results is shown in Figure 7.13 for both received power and path loss predictions. The

root mean square (RMS) error and standard deviation between the 2D and 3D VEFIE

and measurements are shown in Table 7.8. The 3D VEFIE agrees very well with the

measurement results. However, it is clear from Figure 7.13 and Table 7.8 that the 2D

VEFIE is not able to make accurate received power predictions for 3D propagation.

Table 7.8: Root mean square (RMS) error and standard deviation of the 2D and 3D
VEFIE and 2D to 3D model compared with measurements.

Received power Path loss

Model Runtime RMS Error Std. Dev. RMS Error Std. Dev.

3D VEFIE 19.5hrs 3.68 dB 3.67 dB 3.11 dB 3.67 dB

2D VEFIE 4.63s 28.25 dB 4.65 dB 4.96 dB 4.65 dB

2D to 3D 4.63s 4.33 dB 4.09 dB 4.69 dB 4.09 dB

The heuristic correction 2D to 3D model presented in Section 7.2.1 is also compared

against the 2D and 3D VEFIE and measurements in Figure 7.13 and Table 7.8. It can

clearly be seen that the 2D to 3D model provides a significant improvement over the

2D VEFIE for received power predictions. It also provides a slight improvement for
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Figure 7.12: A laboratory room. The complex channel transfer function was meas-
ured at the two receiver locations from 3.1GHz to 10.6GHz at 5MHz in-
crements for both of the transmitter locations.
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Figure 7.13: Comparison of the 2D and 3D VEFIE, 2D to 3D model and measurements
taken at the receiver locations shown in Figure 7.11.
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path loss predictions as shown in Table 7.8. The full 3D VEFIE solution is more accur-

ate than the 2D to 3D model. However, the main advantage of the 2D to 3D model

is its significantly quicker runtime, 4.63 seconds as opposed to 19.5 hours for the full

3D VEFIE. It should be noted that the runtime of the 2D to 3D model is dependant on

the efficiency of the visibility algorithm used to determine whether points are in LOS

or NLOS regions. Here, the visibility is known for the 28 receiver points and thus the

additional time to compute the 2D to 3D model over the 2D VEFIE is negligible.

Indoor environments typically contain many NLOS regions so it is important that

an indoor propagation model is able to perform well in both LOS and NLOS cases.

Conventional empirical models typically break down and lose accuracy for NLOS

scenarios. The RMS error and standard deviation for LOS and NLOS regions for the

2D to 3D model and the 2D and 3D VEFIE are shown in Table 7.9. It can be seen that

the 2D to 3D model’s accuracy does not degrade for NLOS regions. This is further

demonstrated in Figure 7.14 where the 2D to 3D model and 2D and 3D VEFIE are

compared against the measurements for LOS and NLOS regions, respectively.

Table 7.9: RMS error and standard deviation of the 2D and 3D VEFIE and the 2D to
3D model for LOS and NLOS regions.

Received Power

LOS NLOS

RMS Error Std. Dev. RMS Error Std. Dev.

3D VEFIE 3.01 dB 2.96 dB 5.03 dB 4.26 dB

2D VEFIE 29.10 dB 5.08 dB 26.89 dB 3.81 dB

2D to 3D 4.65 dB 4.07 dB 3.77 dB 3.94 dB

Path Loss

LOS NLOS

RMS Error Std. Dev. RMS Error Std. Dev.

3D VEFIE 3.01 dB 2.96 dB 6.26 dB 4.26 dB

2D VEFIE 5.05 dB 5.08 dB 4.82 dB 3.81 dB

2D to 3D 5.13 dB 4.07 dB 3.92 dB 3.94 dB
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Figure 7.14: Comparison of the 2D and 3D VEFIE, 2D to 3D model and measurements
for LOS and NLOS at the receiver locations shown in Figure 7.11 Receiv-
ers 1 - 17 are in LOS and 18 - 28 are in NLOS.
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7.3.1.3 Time domain modelling

An indoor propagation model should be capable of predicting the radio channel in

both the frequency and time domains accurately and efficiently. The 2D to 3D model

presented has been shown to work well for frequency domain predictions. It was

demonstrated in Section 5.3.1.5 how time domain predictions can be computed using

the frequency domain 2D VEFIE method. Now, the 2D to 3D model will be used to

compute accurate 3D time domain predictions in the form of PDPs and be compared

against measurements for the scenario shown in Figure 7.12. The 2D VEFIE is applied

to this scenario for the separate transmitter locations shown, (0.35, 2) and (0.35, 4) and

solved from 3.1GHz to 10.6GHz at 5MHz increments. The 2D to 3D model is applied

to the resultant 2D VEFIE data, and an example of this can be seen in Figure 7.15, to

compute 3D predictions. The 2D to 3D data is then inverse Fourier transformed to

generate PDPs that can be compared with the measurements.

The inverse Fourier transform is applied to the data in Figure 7.15 for the trans-

mitter located at (0.354, 2) and (0.354, 4) and the receiver located at (1.95, 5.35) and

(1.75, 0.65), four in total, to compute a PDP such as those shown in Figure 7.16. In

Figure 7.16 the 2D to 3D model is compared against the measurement results where

it can be seen that except for the noise preceding the initial pulse a good agreement

is achieved. The average RMS error and standard deviation for all transmitter and

receiver pairs for the 2D to 3D model and 2D VEFIE is shown in Table 7.10. The 2D

to 3D model is also able to accurately predict the mean delay and RMS delay spread

of the environment as shown in Table 7.11.

Table 7.10: Average RMS error and standard deviation for all transmitter and receiver
pairs.

RMS Error Std. Dev.

2D to 3D 9.33 dB 9.30 dB

2D VEFIE 28.40 dB 9.30 dB

The 2D to 3D time domain modelling approach produces a large amount of data. In

the frequency domain analysis, the data from the VEFIE and measurement campaign

was averaged over a box of size λ × λ to remove some of the effects of fast fading.

Here, by applying a 10-point moving average filter, which corresponds to a delay of

1ns, a much clearer picture of the signal can be seen in Figure 7.17.
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Figure 7.15: Illustration of the complex channel transfer function data computed by
the 2D to 3D model for the second receiver location, at (1.75, 0.65). The
transmitter was located at (0.354, 2).
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(a) Rx = (1.95, 5.35).
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Figure 7.16: Comparison of the PDPs computed by the 2D to 3D model and measure-
ments for receivers (1.95, 5.35) and (1.75, 0.65). The transmitter is located
at (0.35, 2).
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Figure 7.17: Comparison of the PDPs computed by the 2D to 3D model and measure-
ments for receivers (1.95, 5.35) and (1.75, 0.65). The transmitter is located
at (0.35, 2). A moving average filter has been applied to both data sets.
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Table 7.11: Average mean delay and RMS delay spread for all transmitter and receiver
pairs.

Mean Delay RMS Delay Spread

Measurements 51.46 ns 28.28 ns

2D to 3D 52.40 ns 28.30 ns

2D VEFIE 53.05 ns 28.21 ns

7.3.2 Statistical and empirical model analysis

7.3.2.1 Frequency domain analysis

In Section 6.3.2 the 2D and 3D VEFIE are compared against the dual slope model,

COST 231 multi-wall model and the adjusted Motley-Keenan model. The dual slope

model and COST 231 multi-wall model achieve a higher level off accuracy against the

measurements than the Motley-Keenan model. The 2D to 3D model is shown to be

more accurate than the 2D VEFIE in Section 7.3.1. Thus, the dual slope model and the

COST 231 multi-wall model are compared against the 2D to 3D model and 3D VEFIE

in Figure 7.18 and Table 7.12. It can be seen from Table 7.12 that the empirical models

produce a lower RMS error and standard deviation than the 2D to 3D model but as

explained in Section 5.3.1.3 the empirical models require a measurement campaign to

characterise them. The 2D to 3D model does not.

Table 7.12: RMS error and standard deviation of the VEFIE and popular empirical
models compared with measurements.

Model RMS Error Std. Dev.

3D VEFIE 3.11 dB 3.67 dB

2D to 3D 4.69 dB 4.09 dB

Dual slope 4.39 dB 3.51 dB

COST 231 multi-wall 2.81 dB 2.82 dB

As mentioned in Section 7.3.1 an important consideration for indoor propagation

models is their ability to make accurate predictions in both LOS and NLOS regions.

The results in Figure 7.18 are broken down into LOS and NLOS regions in Figure 7.19

where it can be seen that the accuracy of the empirical models degrades for NLOS

regions over LOS. This can be seen more clearly in Table 7.13 where the RMS error
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Figure 7.18: Comparison of the 3D VEFIE, heuristic correction 2D to 3D model and
popular empirical models ability to model path loss against measure-
ments for the scenario shown in Figure 7.11.
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and standard deviation for each model is broken down into LOS and NLOS regions.

The empirical models produce a very high level of accuracy in LOS regions as they

are primarily developed for these regions but their accuracy degrades significantly

for NLOS regions.

Table 7.13: RMS error and standard deviation of the 2D and 3D VEFIE, the 2D to 3D
model and popular empirical models for LOS and NLOS regions.

LOS NLOS

RMS Error Std. Dev. RMS Error Std. Dev.

3D VEFIE 3.01 dB 2.96 dB 6.26 dB 4.26 dB

2D to 3D 5.13 dB 4.07 dB 3.92 dB 3.94 dB

Dual slope 1.93 dB 1.83 dB 6.58 dB 3.40 dB

COST 231 multi-wall 1.81 dB 1.84 dB 3.88 dB 3.67 dB

7.3.2.2 Time domain analysis

The dual slope and COST 231 multi wall models produce path loss predictions but

do not provide phase or multipath information, thus, they can’t be used to make time

domain predictions unlike the VEFIE. A simple time domain model based on rever-

beration theory is compared against the 2D to 3D heuristic correction and measure-

ments in Figure 7.20 for the scenario shown in Figure 7.12. The reverberation theory

model tracks the overall trend of the measurements but lacks a significant amount

of detail. It also lacks accuracy in characterising the environment based on its mean

delay and RMS delay spread as shown in Table 7.14.

Table 7.14: Average mean delay and RMS delay spread for all transmitter and receiver
pairs.

Mean Delay RMS Delay Spread

Measurements 51.46 ns 28.28 ns

2D to 3D 52.40 ns 28.30 ns

Reverberation theory 57.73 ns 35.98 ns

The analysis in Sections 7.3.2.1 and 7.3.2.2 demonstrates the need for deterministic

models to produce accurate predictions for indoor propagation. The VEFIE and 2D
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(a) Line of sight. Receivers 1 - 17 in Figure 7.11.
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(b) Non line of sight. Receivers 18 - 28 in Figure 7.11.

Figure 7.19: Comparison of the 3D VEFIE, heuristic correction 2D to 3D model and
popular empirical models ability to model path loss against measure-
ments for LOS and NLOS at the receiver locations in Figure 7.11.
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(a) Rx = (1.95, 5.35).
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Figure 7.20: Comparison of the PDPs computed by the 2D to 3D model, reverberation
theory and measurements for receivers (1.95, 5.35) and (1.75, 0.65). The
transmitter is located at (0.35, 2).
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to 3D models don’t require measurement campaigns but they do require information

about the environment geometry and material composition which should be easier to

acquire in the future than it will be to perform measurement campaigns due to the use

of 3D CAD tools and the trend towards point-clouds to generate the geometry of 3D

environments. This will provide a greater level of accuracy for deterministic models

whilst empirical and statistical methods won’t be able to provide a higher level of ac-

curacy without more detailed and comprehensive measurement campaigns. The next

section examines the accuracy of the heuristic correction model against ray tracing.

7.3.3 Comparison against ray tracing

In Section 5.3.2 it is shown that the 2D VEFIE is much faster than the 3D ray tracing

model and that neither model is able to make accurate received power predictions.

The 3D ray tracing model produces a higher level of accuracy for path loss predictions

than the 2D VEFIE. It also produces a higher level of accuracy than the 3D VEFIE for

path loss predictions and in a quicker time frame, which can be seen in Section 6.3.3.

In Figure 7.21 the 2D to 3D model is compared against the same 3D ray tracing model

for the scenario shown in Figure 7.11. The 2D to 3D heuristic correction is faster than

the 3D ray tracing model as shown in Table 7.15. As shown in Table 7.15 the ray

tracing model is more accurate for path loss predictions in this case. However, the 2D

to 3D model is better for received power predictions.

Table 7.15: Runtime, RMS error and standard deviation of the 2D to 3D model, 3D
VEFIE and ray tracing compared with measurements. The 3D VEFIE is
solved to an error tolerance of 0.2, instead of the usual 0.001, to determine
its runtime only.

Received power Path loss

Model Runtime RMS Error Std. Dev. RMS Error Std. Dev.

3D VEFIE 4305s 3.68 dB 3.67 dB 3.11 dB 3.67 dB

2D to 3D 6.5s 4.33 dB 4.09 dB 4.69 dB 4.09 dB

Ray tracing 415s 7.85 dB 2.54 dB 2.50 dB 2.54 dB
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(a) Received power.
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Figure 7.21: Comparison of the 3D VEFIE, heuristic correction 2D to 3D model and
ray tracing ability to model path loss against measurements for the scen-
ario shown in Figure 7.11.
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7.4 Conclusions

2D to 3D models are presented here to produce accurate and efficient indoor propaga-

tion models. The 2D to 3D models are compared against each other before the heur-

istic correction model is validated against the 3D VEFIE for frequency and time do-

main predications. The heuristic correction 2D to 3D model is applied to realistic

indoor propagation environments. Its efficiency is demonstrated over the 3D VEFIE

and it is shown how it provides nearly the same accuracy as the 3D VEFIE. The ac-

curacy of the 2D to 3D model is examined in both the frequency and time domains

and is also compared against empirical and statistical models where it shows a good

level of accuracy. Lastly, the heuristic correction 2D to 3D model is compared against

a full 3D ray tracing model which it is faster than.
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Chapter 8

Conclusions

The focus of this thesis is on the use of full-wave techniques to model radio wave

propagation in buildings. An overview of propagation modelling and the most com-

mon methods used for indoor propagation modelling is presented in Chapter 2. A

strong focus is put on the most commonly used full-wave methods. The advantages

and disadvantages of the various methods are contrasted. Hybrid methods combin-

ing the advantages of several different types of methods are discussed also. A general

description of statistical and empirical models as well as ray optical techniques was

also provided in this chapter.

Maxwell’s equations which underpin the propagation of electromagnetic waves are

described in Chapter 3. The two most common full-wave methods for solving Max-

well’s equations for indoor propagation, Finite Difference Time Domain (FDTD) and

the Method of Moments (MoM), are briefly explained. The full-wave propagation

models presented in this thesis are based on the Volume Electric Field Integral Equa-

tion (VEFIE) which is derived from Maxwell’s equations in this chapter also. The

MoM is applied to the VEFIE and it results in a matrix equation that can be solved

numerically.

The matrix equation obtained after applying the MoM to the VEFIE is typically

very large for the problems found in propagation modelling. Therefore, it is usually

prohibitive to solve it by direct matrix inversion. Iterative solvers can be employed

instead. Chapter 4 delivers a description of Krylov iterative solvers along with an

explanation of preconditioning and fast matrix-vector multiplication techniques. The

matrix-vector multiplication techniques are specific to computational electromagnet-

ics problems as they depend on the Green’s function but the preconditioning tech-

niques are generic to linear algebra problems. This chapter also mentions some con-

siderations that are required when implementing these methods numerically and in

181



parallel.

Chapters 5 to 7 report on the use of the VEFIE in 2D and 3D as an indoor propaga-

tion modelling tool. Chapter 5 details the use of the 2D VEFIE, whilst Chapter 6 uses

the 3D VEFIE. Novel modifications to the 2D VEFIE designed to produce accurate 3D

predictions in a fraction of the time it takes for a full 3D VEFIE solution are presen-

ted in Chapter 7. The 2D and 3D VEFIE are discretised using the MoM. The resulting

matrix equation is solved using the BiCGSTAB method which is primarily accelerated

by using the Fast Fourier Transform (FFT) and a reduced operator.

In Chapter 5 the 2D VEFIE is employed to model the propagation of electromag-

netic waves in buildings. The 2D VEFIE is validated against the analytical Mie series

solution for scattering from a dielectric cylinder before it is compared against a sur-

face integral equation, the Surface Electric Field Integral Equation (SEFIE) in order

to determine the most efficient integral equation formulation for indoor propagation.

The 2D VEFIE whilst requiring significantly more unknowns than the surface equa-

tion converges much more rapidly and reaches a more accurate solution in a faster

runtime. The 2D VEFIE is then used to model indoor propagation in both the fre-

quency and time domains. It is capable of producing accurate path loss predictions

but suffers when predicting the received power due to its 2D nature. A comparison

is also made against a 3D ray tracing model. An examination of the computational

efficiencies of the methods described in Chapter 4 applied to the 2D VEFIE is also

presented.

In Chapter 6 the 2D VEFIE is extended to three dimensions and the 3D VEFIE is

adopted for in building propagation. The 3D VEFIE is validated against the analytical

Mie series solution for scattering from a dielectric sphere. It is employed as an indoor

propagation model where it shows a high level of accuracy compared with popular

empirical models and 3D ray tracing but it suffers from a very long runtime.

The extremely long runtime of the 3D VEFIE led to the development of 2D to 3D

methods in Chapter 7. The 2D to 3D methods are enhancements to the 2D VEFIE de-

signed to improve its accuracy and make accurate 3D predictions. They are faster

than the 3D VEFIE as they are based on the 2D VEFIE. Results presented in this

chapter demonstrate that the heuristic correction method is the best and it is valid-

ated over a wide range of frequencies against the 3D VEFIE. It is shown how the 2D to

3D model is capable of providing a high level of accuracy in both the frequency and

time domains. Comparisons are again made against popular empirical and statistical

models as well as 3D ray tracing.
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8.1 Future work

In terms of future work there are a few avenues that can be pursued further. The

first is the use of the VEFIE for providing angle of arrival (AoA) information. The

AoA results presented in this thesis have not been compared against measurements

or another model to validate that they are correct and the right procedure is being

used to generate them. This is the only quantity presented in this thesis that has not

been compared against measurement results as they are quite difficult to obtain.

Secondly, the 3D VEFIE model is quite slow and memory intensive. It is currently

implemented in MATLAB. Future work could investigate implementing it in a com-

piled language like C or C++ to reduce its memory requirements and computational

burden. The use of parallelisation and advantages of vectorisation should also be

examined. Supercomputers and GPGPUs provide a large benefit over conventional

computers for performing large computations. Their use could also be investigated

to improve the runtime of the 3D VEFIE.

The 2D to 3D models presented in Chapter 7 require more exploration. Currently,

the models do not provide information about the x and y components of the electric

field in three dimensions. One possible avenue of investigation is the use of the x

and y components of the incident field and Born series [226] to compute predictions

for them. The 2D to 3D models could also benefit from taking a different approach,

instead of solving for the 2D free space fields and then correcting these, they could

solve for 2D fields in scatterers, correct these for 3D propagation and then the fields in

free space can be computed by a single integration with the 3D VEFIE over the fields

in the scatterers. This may be able to produce a more accurate 3D representation of

the fields.

In power delay profiles (PDPs) computed by the VEFIE a large noise floor is ex-

perienced that is not found in measurement data. This needs further investigation

in order to determine its cause, which may be due to the 2D to 3D model or the lack

of accurate knowledge of the propagation environment. One such method that may

be able to eliminate this is the Hilbert transform which imposes causality in the time

domain on a frequency domain signal. Coupling the Hilbert transform with the time

shifting property of the Fourier transform could effectively eliminate the noise floor.

The VEFIE is a frequency domain method. In order to produce time domain pre-

dictions it must be solved at a large number of independent frequencies. This is ex-

tremely time consuming and eliminates the ability to use the full 3D VEFIE. Fast
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frequency sweep techniques like asymptotic waveform evaluation (AWE) [227], [228]

should be further investigated to speed up this computation. They were briefly ex-

amined but simple implementations were found not to converge or produce mean-

ingful results and thus were omitted from this thesis.
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Appendix A

Embedding a Discrete Linear

Convolution in a Circular

Convolution - An Extension from

One Dimension to Two and Three

Dimensions

In Section 4.4.1 the process of computing a one-dimensional discrete linear convolu-

tion by the Fast Fourier Transform (FFT) to reduce its complexity is described. Here,

the extension of this process, whereby the linear convolution is first embedded in a

circular convolution, is briefly described for two and three dimensions. The circular

convolution is then computed using the 2D and 3D FFT and inverse FFT

e = F (2)−1
N {F (2)

N ( f )F (2)
N (g)} (A.1)

e = F (3)−1
N {F (3)

N ( f )F (3)
N (g)} (A.2)

where F (2)
N and F (3)

N are the 2D and 3D N point DFT with inverses F (2)−1
N and F (3)−1

N .

A two-dimensional discrete convolution is an operation of the form

epq =
N−1

∑
n=0

M−1

∑
m=0

fnmgp−n,q−m

{

p

q

}

= 0, 1, . . . ,

{

N − 1

M − 1

}

(A.3)
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or in matrix form









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G0 G−1 G−2 · · · G1−M
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







(A.4)

where each element of the M × M block Toeplitz matrix in (A.4) is itself a Toeplitz

matrix of the form depicted in (4.44) and each Em and Fm are of length N. If the

elements Gm repeat with period M, so that

Gm−M = Gm m = 1, 2, . . . , M − 1 (A.5)

and the elements within GM repeat with period N as described for the 1D case then

this too is a circular discrete convolution. Otherwise, it is a linear discrete convolution

problem. The 2D linear convolution problem of size N × M can be embedded into

a circular convolution problem by extending each element Gm to repeat with period

2N − 1 as in the 1D case, extending g so that it repeats with period 2M − 1, padding

f with zeros to size 2N − 1 × 2M − 1 and increasing the summation limits to 2N − 2

and 2M− 2. Then, (A.3) and (A.4) can be efficiently computed using the FFT by (A.1).

A three-dimensional discrete convolution is an operation of the form

epqr =
N−1

∑
n=0

M−1

∑
m=0

O−1

∑
o=0

fnmogp−n,q−m,r−o











p

q

r











= 0, 1, . . . ,











N − 1

M − 1

O − 1











(A.6)

or in matrix form
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(A.7)

where each element of the O × O block Toeplitz matrix in (A.7) is itself a Toeplitz

matrix of the form depicted in (A.4) and each Eo and Fo are of size N × M. If the
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elements Go repeat with period O, so that

Go−O = Go o = 1, 2, . . . , O − 1 (A.8)

and the elements within Go repeat as described for the 2D case then this too is a circu-

lar discrete convolution. Otherwise, it is a linear discrete convolution problem. A 3D

linear convolution problem of size N × M × O can be embedded in a circular convo-

lution problem of size 2N − 1× 2M − 1× 2O − 1 by following the same procedure as

the extension from 1D to 2D. Then, (A.6) and (A.7) can be efficiently computed using

the FFT by (A.2)
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