
Constructing Data Marts from Web Sources Using a Graph

Common Model

Michael Scriney

B.Sc. Computer Applications (Hons)

A Dissertation submitted in fulfilment of the

requirements for the award of

Doctor of Philosophy (Ph.D.)

to

Dublin City University

Faculty of Engineering and Computing, School of Computing

Supervisor: Mark Roantree

June 2018

Declaration

I hereby certify that this material, which I now submit for assessment on the pro-

gramme of study leading to the award of Doctor of Philosophy is entirely my own

work, and that I have exercised reasonable care to ensure that the work is original,

and does not to the best of my knowledge breach any law of copyright, and has not

been taken from the work of others save and to the extent that such work has been

cited and acknowledged within the text of my work.

Signed:

ID No.: 59592997

Date: 6th June 2018

List of Publications

1. Michael Scriney and Mark Roantree. Efficient cube construction for smart city

data. In Proceedings of the Workshops of the EDBT/ICDT 2016 Joint Con-

ference, EDBT/ICDT Workshops 2016, Bordeaux, France, March 15,2016.,

2016.

2. Michael Scriney, Martin F. OConnor, and Mark Roantree. Generating cubes

from smart city web data. In Proceedings of the Australasian Computer Sci-

ence Week Multiconference, ACSW 2017, Geelong, Australia, January 31 -

February 3, 2017, pages 49:149:8, 2017.

3. Michael Scriney, Martin F. OConnor, and Mark Roantree. Integrating online

data for smart city data marts. In Data Analytics - 31st British International

Conference on Databases, BICOD 2017, London, UK, July 10-12, 2017,Pro-

ceedings, pages 2335, 2017.

4. Michael Scriney, Suzanne McCarthy, Andrew McCarren, Paolo Cappellari,and

Mark Roantree. Automating data mart construction from semi-structured

data sources. 2018. To appear in the Computer Journal, Oxford University

Press, 2018.

Acknowledgements

I would like to thank the Insight Centre for Data Analytics for funding my research

under grant no. SFI/12/RC/2289.

I would also like to thank my supervisor Dr. Mark Roantree for his support and

guidance. His hard work and dedication have been a constant source of inspiration.

I would also like to thank my colleagues who were always willing to help or listen

to any problems I encountered during my research.

My family and friends also provided me with their support throughout my research

and for that, I can never thank them enough.

Finally, I would like to thank Yvette for her continued love and support.

Abstract

Michael Scriney

Constructing Data Marts from Web Sources Using a Graph Common

Model

At a time when humans and devices are generating more information than ever, ac-

tivities such as data mining and machine learning become crucial. These activities

enable us to understand and interpret the information we have and predict, or better

prepare ourselves for, future events. However, activities such as data mining cannot

be performed without a layer of data management to clean, integrate, process and

make available the necessary datasets. To that extent, large and costly data flow

processes such as Extract-Transform-Load are necessary to extract from disparate

information sources to generate ready-for-analyses datasets. These datasets are gen-

erally in the form of multi-dimensional cubes from which different data views can

be extracted for the purpose of different analyses. The process of creating a multi-

dimensional cube from integrated data sources is significant. In this research, we

present a methodology to generate these cubes automatically or in some cases, close

to automatic, requiring very little user interaction. A construct called a StarGraph

acts as a canonical model for our system, to which imported data sources are trans-

formed. An ontology-driven process controls the integration of StarGraph schemas

and simple OLAP style functions generate the cubes or datasets. An extensive eval-

uation is carried out using a large number of agri data sources with user-defined

case studies to identify sources for integration and the types of analyses required for

the final data cubes.

Table of Contents

Preface 1

1 Introduction 2

1.1 Business Intelligence and the Importance of Data 2

1.2 Data Warehousing and ETL . 5

1.2.1 The Data Warehouse . 6

1.2.2 Warehouse Models . 7

1.2.3 OLAP . 11

1.2.4 The Extract-Transform-Load Architecture 12

1.3 Mining Data Streams . 12

1.3.1 Problem Statement . 14

1.4 Hypothesis, Aims and Goals . 15

1.5 Contribution and Thesis Structure 17

2 Related Research 19

2.1 ETL and Data Warehouse Construction 19

2.2 Data Stream Warehousing . 25

2.3 Related Research: A final Summary 32

3 An Architecture for Dynamic Processing of Data Streams 35

3.1 System Overview . 35

3.1.1 Stream Introduction (P1) . 37

3.1.2 StarGraph Creation (P2) . 38

3.1.3 Constellation Creation (P3) 41

3.1.4 Materialisation (P4) . 45

3.2 System Data Stores . 46

3.2.1 Data Lake . 46

3.2.2 StarGraph Metabase . 47

3.2.3 Data Warehouse . 48

3.3 StarGraph Ontology . 48

3.3.1 Terms . 49

3.3.2 Types . 49

3.3.3 Metamodel . 50

3.4 Evaluation Case Study Descriptions 51

3.4.1 Case Study 1: Pig Price Predictions 52

3.4.2 Case Study 2: Price Trend Comparison 53

3.4.3 Case Study 3: Analysing Milk Production 54

3.5 Summary . 55

4 A Canonical Model for Multidimensional Data Streams 56

4.1 Requirements for Managing Multidimensional Data 56

4.1.1 Requirement 1: Enriching the Data Source 57

4.1.2 Requirement 2: Graph Restructuring 59

4.1.3 Requirement 3: Generating Mappings 62

4.2 The StarGraph Model . 62

4.2.1 StarGraph Properties . 62

4.2.2 StarGraph Functions . 63

4.3 Materialisation Wrappers . 75

4.3.1 HTML Data Streams . 76

4.3.2 XML and JSON Data Streams 79

4.3.3 CSV Data Streams . 84

4.4 StarGraph Transformation: An Interim Case Study 86

4.5 Summary . 88

5 StarGraph Integration 89

5.1 Integrating Semistructured Data . 90

5.1.1 Resolving Mapping Difficulties 90

5.1.2 Identifying Integration Attributes 91

5.1.3 Selecting an Integration Strategy 92

5.2 Integration Functions . 93

5.2.1 The TermMap function . 94

5.2.2 The TypeMap function . 96

5.2.3 The MetamodelCheck function 99

5.2.4 The GranularityCheck function 103

5.2.5 The DetermineStrategy function 104

5.2.6 The Materialise function 110

5.3 Integration Data Flows and Mappings 112

5.3.1 Examining Graph Convergence 112

5.3.2 Constellation construction for Case Study 1 116

5.3.3 Constellation construction for Case Study 2 117

5.3.4 Constellation construction for Case Study 3 120

5.4 Summary . 121

6 Deleting Redundant Mappings 122

6.1 HTML formatting: Blank Value . 122

6.2 CSV Formatting: Repeating Value 124

6.3 StarGraph Integration: Duplicate Node 125

6.4 Valueless Node . 126

6.5 Optimisation Analysis . 128

6.5.1 Blank Value Optimisation . 128

6.5.2 Repeating Value Optimisation 129

6.5.3 Duplicate Node Optimisation 129

6.5.4 Valueless Node Optimisation 130

6.6 Summary . 130

7 Evaluation 132

7.1 Case Study 1: Price Prediction Data Mart 132

7.1.1 User Defined Integration. 133

7.1.2 Non-Assisted Integration . 133

7.1.3 Ontology-Assisted Integration 136

7.1.4 Summary . 138

7.2 Case Study 2: Price Comparison Data Mart 140

7.2.1 User Defined Integration . 140

7.2.2 Non-Assisted Integration . 140

7.2.3 Ontology-assisted integration. 141

7.2.4 Comparison . 142

7.3 Case Study 3: Milk Production Data Mart 143

7.3.1 User Defined and Non-Assisted Integration. 143

7.3.2 Ontology assisted integration 144

7.4 Overall Summary . 146

8 Conclusions 149

8.1 Thesis Overview . 149

8.2 Future Work . 151

8.2.1 Robust Query Mechanisms 151

8.2.2 On-Demand ETL . 151

8.2.3 Prescanning Data Sources . 152

8.2.4 Cloud based ETL . 152

8.2.5 A Different Approach to Experiments 152

Bibliography 154

Appendices 163

A Schema and Mappings for aim 1 StarGraph 164

B Schema and Mappings for imf StarGraph 166

C Schema and Mappings for tii StarGraph 169

D Schema and Mappings for usda StarGraph 176

E Schema and mappings for Case Study 1 180

F Schema and mappings for Case Study 2 187

G Schema and mappings for Case Study 3 193

List of Figures

1.1 Example sales and orders database 5

1.2 Star Schema with single fact and multiple (4) dimensions. 8

1.3 Sample Constellation with facts and dimensions 9

1.4 Sample Snowflake with Normalised Date Dimension. 10

1.5 Example Data Cube . 11

3.1 Extract-Transform-Load Architecture for Web Streams 36

3.2 P1 Stream Introduction Activity Diagram 37

3.3 StarGraph Construction: Activity Diagram 38

3.4 Constellation Construction: Activity Diagram 42

3.5 Materialisation: Activity Diagram 45

4.1 Example of graph restructuring and creating new container nodes. . 61

4.2 Graph representing the aim 1 dataset. 66

4.3 aim 1 dataset after classification . 68

4.4 aim 1 dataset with containers removed 71

4.5 Sample of aimis 1 data source . 76

4.6 Sample of the b 1 data source . 77

4.7 Sample of simple b 1 StarGraph . 78

4.8 StarGraph created from the imf dataset 82

4.9 StarGraph for tii dataset . 83

4.10 Sample StarGraph created from usda dataset. 86

5.1 Example of the ladder integration strategy for sources A,B,C and D 92

5.2 bb 1 StarGraph after application of the TermMap function. 94

5.3 aim 1 StarGraph after application of the TermMap function. 95

5.4 bb 1 StarGraph after application of the TypeMap function 97

5.5 aim 1 StarGraph after application of the TypeMap function 98

5.6 b 1 StarGraph after metamodel check 102

5.7 aim 1 StarGraph after metamodel check 102

5.8 Combination graph for aim 1 and b 1 106

5.9 Combination graph after merging row-append edges 107

5.10 Closure graph after combining edges 108

5.11 Closure graph after merging column append edges 108

5.12 Constellation created from aim 1 and b 1 StarGraphs 108

5.13 Constellation created from the five experimental data sources 113

5.14 Case Study 1: Final Constellation 117

5.15 Case Study 2: Final Constellation 119

5.16 Case Study 3: Final Constellation 120

6.1 Sample of the aim 1 data source . 123

6.2 Sample of usda data source . 124

6.3 Sample of the usda StarGraph . 125

6.4 usda StarGraph after termMap function 126

6.5 usda StarGraph after typeMap function 126

6.6 imf dataset with semantic redundancies 127

7.1 User defined Strategy (Case Study 1) 134

7.2 Case Study 1 Final Schema: A User View 138

7.3 User defined Constellation for Case Study 2 141

7.4 Non assisted approach for Case Study 2 141

7.5 User defined Strategy (Case Study 3) 144

7.6 Non-assisted Strategy (Case Study 3) 145

Preface

This thesis presents a set of data models and corresponding processes which facilitate

the construction of data marts from unseen web data in a semi-automatic fashion.

In chapter one, we present an overview of database, ETL and data warehousing

technologies, with their current limitations as motivation for this research. In chap-

ter two, we examine the state of the art in detail. Related research across a number

of sub-domains are provided which examine the state across all research threads in

this thesis. In chapter three, we present the overall system architecture required to

build a semi-automatic ETL process for unseen web data. This architecture was

first published as part of a smart cities project in [64].

We then examine the main components of the system where chapter 4 outlines the

common data model for the system called a StarGraph. This model consists of an

annotated graph detailing the multidimensional components of a data source which

can be used to construct a data mart and was published in [62]. An extension

of this model which incorporated an integration process using a Constellation is

presented in chapter 5. The model structure and construction methodology were

published in [63].

Chapter 6 presents optimisations which improve the construction time and structure

of data marts constructed from unseen web data. In chapter 7, we present our

evaluation which examines semi-automatic data warehouse construction to fully

automatic; we compare and contrast the benefits of each approach across three case

studies. This detailed validation of our methodology was published in [61].

1

Chapter 1

Introduction

This dissertation is focused on the varied and plentiful data streams that originate

on the web, are often rich in content and contain information that is not captured

in an organisation’s enterprise system. We will provide a framework for managing

these streams, through an automated extraction and integration process, with the

primary goal of delivering analysis-ready data to the end user. This dissertation will

show that the transformation and integration of data streams is both difficult and

costly and thus, we must provide a system to manage all layers of the process. This

introductory chapter, begins with an overview of the benefits of business intelligence

and data mining outlined in section 1.1 before a discussion on the importance of

data warehousing in section 1.2. In section 1.3, we will highlight the particular

issues faced when managing stream data before presenting the hypothesis and goals

of this research in section 1.4.

1.1 Business Intelligence and the Importance of Data

The term Business Intelligence (BI) generally refers to methods, technologies and

applications which together manage the harvesting, integration, analysis, and pre-

sentation of business information [66]. Its purpose is to support improved and

effective business decision making. The terms business intelligence and data analyt-

ics are closely linked and often interchanged. One can consider business intelligence

as the over-arching term for data usage in a predictive setting. Whereas data an-

2

alytics is focused on the means of making these predictions. However, both refer

to the usage of data to make decisions or predictions. Moreover, it has been cited

many times that ”data is the new oil”. In 2016, more data was created than in the

previous 5,000 years and with the proliferation of data from sensors and wearables,

volumes of data generated will continue to increase. However, less than 0.5% of this

data is analysed for usage in domains such as business intelligence [72].

Accessibility and integration are two primary reasons for this extraordinarily low

statistic [58]. These problems lie at the data management or engineering layer and

not at the business intelligence layer. In a recent Gartner report [53], some important

issues were highlighted with respect to the effort and time required in preparing data

for business intelligence. One of these issues related to the preparation of data states

”Data preparation is one of most difficult and time-consuming challenges facing

business users of BI and advanced analytics platforms”. In addition, this report

suggests that new capabilities are emerging which address the extract, transform

and load (ETL) functions, enabling users prepare, integrate, model and enrich data

for analysis. This emergence of new capabilities is only at infancy with an urgent

need for new methods and technologies to, in our opinion, ease the burden of data

preparation and reduce the time taken to present data for analysis. The research

presented in this dissertation aims to directly address this issue of moving data from

its simplest, rawest format and preparing it for data analysts or BI domain experts.

Throughout this thesis, we will use the terms data mining, data analytics or simply

analytics to mean similar activities: the usage of data to make predictions about the

future. Data mining algorithms allow analysts to glean new insights from their data

which can be used to enhance decision making. At a low level, analytics are merely

descriptive statistics. For example, the total sales per quarter of an enterprise, or the

average amount spent per customer. However, data mining operations can be used

to derive more complex information from within a dataset. Algorithms such as k-

means [30] provide a means of grouping data based on commonality which can then

be used to provide classifications for unseen data. In other words, if you construct a

new dataset (perhaps using sensor devices) or harvest a series of web streams, none

of the data instances have a classification. Clustering allows us to group all of the

3

data into a small number of clusters and after an analysis of what properties make

the clusters similar, classify the instances that belong to each cluster. Clustering

also provides a means of outlier analysis, where the data miner can detect those

data instances that are outside available classifications [34].

In another form of application, association rule mining such as Apriori [29] can corre-

late which items are frequently purchased together, providing a decision maker with

useful information about customer behaviour. This enables accurate predictions

about future buying patterns. In this application, rules are generated regarding the

simultaneous occurrence of two itemsets. Considerable research has been invested

into determining strong rules [2], those that have higher thresholds for occurrence,

and functions such as Lift and Leverage [29] to promote more interesting rules.

These algorithms can then be used to enhance an enterprise with predictive capa-

bilities and thus, give decision makers the capacity to plan for the future of the

enterprise.

However, all of these approaches assume that the data has been collected, cleaned

and integrated within a repository prior to the algorithms execution. The cleaning of

data and determining the required sanity checks for data is itself no mean feat. There

are numerous ways in which data may prove invalid. Missing values are presented

as the most common across domains, however, within a domain more problems

relating to the cleanliness of data may present themselves. In order to overcome

these difficulties a domain expert is required in order to provide the domain specific

sanity checks for the data. This necessitates the development of a “data dictionary“

which can be used as a reference for all incoming data into an ETL system in order

to ensure it is valid prior to loading within the data warehouse.

It is noteworthy that a paper dating as far back as 1958, presented three systems

that were needed to deliver decision making or analytics to the end user: the auto-

abstraction of documents; the auto-encoding of documents; and the automatic cre-

ation and updating of action-point profiles [45]. It was the first presentation of a

business intelligence system. Its focus on an automated system for harvesting or

abstraction of data and for encoding, which in today’s terms means data transform-

ing, remains in place today. Moreover action points refer to the separate stages

4

in information processing. In effect, this laid the basis for we now refer to as the

Extract-Transform-Load infrastructure, which underpins the data warehouse.

1.2 Data Warehousing and ETL

Most enterprises use database technologies in order to store data required for the

running of the enterprise. These databases are usually structured in a normalised

relational form [21], consisting of related tables. Each table representing an entity

with entities relating to each other through the use of primary and foreign key re-

lations. For example, Figure 1.1 presents a traditional sales database which keeps

track of products bought in stores, and orders for products from suppliers. This

model works well for the day-to-day operations of a business but it poses practical

problems for an analyst wishing to provide reports or execute data mining opera-

tions. For example, in order to obtain the total price of a sale, a query must be

executed per order to calculate the sum of all sale products per sale.

Figure 1.1: Example sales and orders database

As the database grows in size through normal day to day operations, the time taken

to extract this required data increases, leading to a decrease in the responsive capa-

bilities of the enterprise. This provides a motivation to archive data into a separate

5

repository. However, the execution of ad-hoc predictive software or data mining op-

erations can consume processing resources. This provides a more important reason

to keep operational and analytical operations separate. However, most compelling

of all, is the need to capture enterprise data from all available operational systems,

both internal and external to the organisation. The integration of these sources,

which requires resolving structural and semantic heterogeneities, led to the develop-

ment of the storage mechanism known as the data warehouse and a process known

as Extract-Transform-Load (ETL) [38].

1.2.1 The Data Warehouse

A data warehouse serves as a single repository for all analytic purposes across all

applications of an enterprise. The differences between a traditional database and

a data warehouse are architectural. The same underlying DBMS (DataBase Man-

agement System) may be employed but the structure and relationships of entities

are different. In the author’s original work on data warehousing [37], the follow-

ing definition was presented: a data warehouse is a subject-oriented, integrated,

time-variant and non-volatile collection of data in support of management’s deci-

sion making process. Subject oriented means it is not application oriented and thus,

we must provide for user requirements which focus on the concepts captured in the

warehouse. We will return to this point through the dissertation as we focus on the

construction of data marts and user requirements. The non-volatility aspect will be

captured by our system in the form of a Data Lake [17] and the time-variant aspect

will be present in all of our case studies. The integration property will form a big

part of our research as we seek to integrate multiple sources for the user.

Where database systems are large, views, representing a subset of the overall schema,

are defined with a single user group in mind. Similarly, a Data Warehouse is too large

and spreads across too many domains and for a individual analyst. The majority

of a Data Warehouse is of little interest for the needs of a specific decision maker.

The data warehouse equivalent of a view is a data mart, sometimes called a Cube

an n-Cube where n specifies the dimensionality of the cube.

A Data Mart is generally centred around a single user requirement (for example anal-

6

ysis of sales, by product, by region, by month) and in an enterprise environment,

these marts are provided to different departments depending on their needs. Con-

ceptually, each department is considered the owner of their own data mart, which fits

into the wider data warehouse. However, a data mart is generally formed through

integrating data from multiple sources. A definition of system integration [32] is a

process that builds applications that are adaptable to business requirements while

allowing underlying systems to operate in an autonomous fashion. This research

will focus heavily on integration systems which operate in an environment where

the data mart is formed from sources over which it may have no control.

1.2.2 Warehouse Models

Each data mart corresponds to a set of interests for the analyst, with each in-

dividual data mart within a data warehouse being structured as either a Star,

Constellation or Snowflake schema. We will briefly describe these different

schemas in order to be clear on what each represents in our research. All mod-

els have two main entities: the fact and the dimension. The difference between

these three models is the configuration of dimensions and facts.

A fact represents a single item of interest to an analyst. This is composed of a

metric of interest (e.g. sales) along a series of analytical axes called dimensions.

Recall the database schema shown in Figure 1.1. If an analyst wished to examine

total sales, a Star Schema such as that presented in Figure 1.2 would be used. In

Figure 1.2, the dimensions used to represent the sale are Store, Product, Customer

and Date. These all hold a one-to-many relationship to the fact table fact-scale.

This table contains two more attributes, the quantity of a product sold, and the total

price. This schema model is known as a Star Schema due to their representation in

diagrams being similar to a star, with a single fact in the centre (which can have

one or more measures) and dimensions as the points of the star. Using this schema,

queries such as total sales on a given day can be computed a lot easier than the

schema shown in Figure 1.1.

However, this structure requires the use of joins in order to consolidate data across

dimensions and measures. As the size of the data warehouse increases this poses a

7

Figure 1.2: Star Schema with single fact and multiple (4) dimensions.

bottleneck for query response times, due to the number of join operations required.

However, a data mart may contain multiple facts which share a set of conformed

dimensions [42], and this type of schema is known as a Constellation schema. A

Constellation schema consisting of the facts sale and order can be seen in Figure

1.3. In this figure, the two facts fact sale and fact order share the dimensions

Store, Date and Product. In other words, there is an integrated feature to this type

of schema model. We will exploit this relationship between a constellation schema

and integration later in this dissertation.

Finally in order to aid analysis, dimensions may be hierarchical in nature, providing

varying degrees of granularity to a fact. Such a schema in this case is called a

Snowflake Schema [44]. It is a Constellation Schema with normalised dimensions.

In Figure 1.4, the Date Constellation shown in Figure 1.3 has been changed into a

hierarchical structure, surmising the Month, Quarter and Year for a given Date.

Data Cubes The goal of these schemas is to provide fast computation of analytical

queries. The most common query executed on a fact table is the construction

8

Figure 1.3: Sample Constellation with facts and dimensions

of a data cube [28]. A data cube aggregates a measure across a series of analysis

dimensions. A data cube is composed of cells and dimensions. Each cell representing

an aggregate value of a measure for a series of dimensions. Figure 1.5 presents

a diagram of a data cube constructed from the dimensions Store, Product and

Customer. Thus, a cube could be considered as a SELECT ALL query from a data

mart and a clear correlation exists between both constructs.

Data cubes are very large and a lot of time is required to construct a full cube. This

has led to numerous approaches in optimisation, from cube approximation [75] to

distributed methodologies [76]. In addition, there are different types of data cubes,

such as Iceberg cubes [11] and Dwarf cubes [68] which provide optimisations for

9

Figure 1.4: Sample Snowflake with Normalised Date Dimension.

10

Figure 1.5: Example Data Cube

specific use cases.

1.2.3 OLAP

On-Line Analytical Processing (OLAP) [22] provides a means of posing multidi-

mensional queries and requires the use of an OLAP server which loads the cube.

There are many flavours of OLAP, from MOLAP (Multidimensional-OLAP), RO-

LAP (Relational-OLAP) and HOLAP (Hybrid-OLAP). The differences lie in im-

plementation and storage, with MOLAP opting to use multidimensional arrays,

ROLAP resting on top of a traditional RDBMS and HOLAP using a combination

of both.

OLAP provides a set of functions which provide analysts with a means of querying

a data cube. The main types of queries are:

• ROLLUP reduces the granularity of a dimension within a cube (for example,

Date −→Month).

• DRILL DOWN performs the opposite to ROLLUP and adds a dimension.

• SLICE extracts cells from the cubs corresponding to particular values within

11

a dimension (e.g. Month = Jan) while DICE provides the same functionality

for a series of dimensions (e.g. Month=Jan AND Region=Europe).

• PIVOT allows an analyst to pivot the cube, re-arranging the way in which

dimensions are displayed for the cube.

1.2.4 The Extract-Transform-Load Architecture

Constructing a Data Warehouse is a difficult task. It involves enterprise stakehold-

ers, developers, designers, users and domain experts, with numerous factors influenc-

ing the success of the project [77]. The first step in designing a data warehouse lies

in the identification of the data at hand [42]. In conjunction with end-user require-

ments, these form the basis of the data warehouse, where each fact and dimension

is specified and marts constructed.

The next step is to construct a process which extracts the required data from its

source, performs any necessary transformations and integrations and stores the data

in the data warehouse. These processes are called ETL (Extract-Transform-Load)

processes. The construction and deployment of the overall process consumes most

of a data warehouse’s development time and budget [24,36].

The use of domain experts, people who understand the data, is necessary for the

construction of this process in order to influence the application designers on how

data transformations should occur. The ETL process populates the data warehouse

and it is the only process that may write to this repository.

1.3 Mining Data Streams

Traditionally, there is a time delay between data used for the day-to-day opera-

tions of a business and data used for analysis. This is because the ETL process

to populate the data warehouse is run on a batch schedule periodically to popu-

late the warehouse for analysis [16]. However, this can lead to crucial information

and events becoming apparent to analysts after the knowledge was available for

important decision making as well as the time taken for ETL population.

12

The need for real time (or near real time) BI has led to the development of active

data warehousing [54]. Active data warehouses attempt to address this lag be-

tween data generation and analysis by improving the ETL process to reduce the

time taken to populate the data warehouse. Active data warehouses necessitate a

continuous flow of data for population such as a stream [41] and an efficient ETL

process.

However, the presence of data streams pose additional challenges in addition to time-

base responsiveness. Data streams are continuous collections of data which arrive

over time [26]. Data streams are used to publish high velocity data. Numerous

domains utilise streams, such as the Internet of Things, the Sensor Web [71] and

Smart Cities. The continuous granular nature of some streams pose additional

problems to the ETL process, Edge computing [60] seeks to address these issues by

providing a means of pre-aggregating and cleansing data arriving from continuous

streams. In addition, some streams are available publicly on the web which are

updated at a set interval, although these web data streams are not as high velocity

as sensor data, they may still pose problems to an ETL process depending on the

size of the data obtained per stream update and the frequency of the streams update

interval.

Traditional ETL processes were designed with the aim of reconciling various rela-

tional databases and document repositories spread across the departments of an

enterprise. As all of this data was under the control of the enterprise, designers and

developers had guarantees regarding the cleanliness of data, the update frequencies

and the structure of this information.

However, these guarantees also expose the main issue underlying traditional ETL

methodologies, that they are resistant to change. Within the context of a highly

regulated enterprise environment, where the data is known, structured and well

understood, this is not a problem. However, with the rise of the internet and its

technologies, valuable data is increasingly accessible online in the form of streams.

These streams may enhance data residing in a traditional DBMS, or a collection

of these streams may form a data mart of their own. However, incorporating these

streams poses a number of issues. As these data sources are outside the control

13

of an organisation, a domain expert is required in order to understand this data.

Additionally, designers must manually investigate the data to determine extraction

methods. Finally, a mechanism to integrate the data and construct the ETL pipeline

must be developed.

As this data is out of the control of the organisation, the assumptions made during

the construction of a traditional ETL process no longer hold. The structure of the

data and its format may change, which subsequently required a re-engineering of the

entire ETL process to accommodate these changes. The data sources on the web

may change [47], or disappear while new sources of interest may appear in future.

1.3.1 Problem Statement

The issues involved in web data management have been presented as far back as [33],

where a flexible approach was advocated, which suggested both a bottom-up and

top-down design in such an environment. In a similar fashion with data warehouses,

it has become evident that with all of these issues described above, the ETL process

and data warehouse must be re-designed for web data streams. When dealing with

web data, a new warehouse construction methodology is required which does not

incur the technical debt posed by traditional methodologies.

While issues surrounding the responsiveness of a Stream Processing System (SPS)

are dependant on user-requirements and the update intervals of the stream, an SPS

must be able to process an instance of a stream prior to the stream updating. A

flexible, faster approach which is more lightweight, could solve the issues to creating

data marts from streams. The issues can be highlighted as:

• Traditional ETL processes consume too much time and expense, requiring the

involvement of multiple designers, developers and domain experts. Clearly,

this is impractical in the rapidly changing environment of stream data.

• A traditional ETL system is resistant to change, leading to any extensions

requiring a re-engineering of ETL processes, further adding to the time and

expense involved. These issues are further compounded when dealing with

web data outside the control of the organisation, as they may change over

14

time, sources may disappear, or may change their location on the web.

• It is not impossible to build a traditional ETL process to construct a warehouse

from web data. However such a process would be ongoing, requiring the

continual involvement of designers, developers and domain experts to react

and re-engineer the process in the face of changing data.

• Web data and data obtained from streams require cleanliness and sanity checks

prior to loading into the Data Warehouse. This problem is further compounded

with the fact that these sources are outside the control of the enterprise and

are subject to change at a moments notice. Once again, the issues of “dirty

data“ require the continuous involvement of a domain expert and developer

to continuously update an ETL process as issues present themselves.

Ultimately the issues surrounding traditional ETL pipelines can be summed up

by time and expense. The initial time and expense required to construct the Data

Warehouse and subsequent ETL process coupled with the time and expense required

in order to overcome the technical debt incurred when making extensions to this

process.

1.4 Hypothesis, Aims and Goals

The construction of a data warehouse along traditional lines is costly and time

consuming. Furthermore, updates are always on a batched basis and take time

to process. If we are to incorporate web streams into a data warehouse, a new

approach is required to construct and manage warehouses from streams in a fast

and efficient manner. Ideally, such a process would be fully or semi-automatic and

where possible, reduce or eliminate the burden on users. Such a system requires

the ability to capture unseen data sources, determine a suitable mechanism for

integration and construction of an ETL pipeline, with minimal user-interaction. In

specific terms, this means that the construction of the data mart is built from new

or changing web streams in an automated fashion. In order to achieve this goal, a

15

process is required to extract multidimensional components from streams, determine

commonality across streams and combine them.

The hypothesis presented in this research is that if a new data model can be con-

structed which understands the multidimensional requirements of a data mart (or

star schema), and can feature extract from data streams. Subsequently it is possible

to deliver data marts from stream data. Such a model would provide an end user

with fast access to the most recent data. There are numerous benefits to providing

users with up to the minute data; the users are given the ability to react to events

as they are happening or in some cases old data may not prove useful (e.g. real time

traffic routing).

A number of research questions can now be posed which serve to highlight the major

goals of this research.

The main goal in this research and thus, the main research question is: could it be

possible to construct a data mart structure in an automated fashion, by analysing the

data captured inside the streams? We can break this overall goal into a manageable

set of research questions.

• The first step is in the specification of a canonical model for the system. Given

the genericity of graph structures [67] and their ability to represent data. Can

graph structures be used as a common data model to overcome the differences

posed by integrating web data sources? What type of data model structure

can be used as a mechanism to identify the facts, measures and dimensions

within a data source to construct a data mart?

• Once a common data model has been specified, the next stage would be to

identify items of interest within a data source. As the end goal of this system

is to construct data marts, these items of interest are namely: facts, dimen-

sions and measures. Is our data model semantically rich enough to interpret

multidimensional constructs?

• With facts, dimensions and measures identified, the next stage determines

commonality and an integration strategy to combine these sources. Is it possi-

16

ble to determine a suitable integration strategy which combines graphs struc-

tures representing web data to produce an integrated data mart?

• Finally, once the schema and integration strategy have been determined, the

next stage would be to provide an ETL pipeline which can automatically

translate this data from its source format into the Data warehouse. Is it

possible to automatically construct an ETL pipeline which can be used to

populate a Data Warehouse from web data?

1.5 Contribution and Thesis Structure

In this chapter, we presented the background to our work, motivated the area of

research in which our work is based, and presented our hypothesis. In chapter 2, we

examine the state of the art in data warehouse construction with a specific interest

on the management of streaming data. This addresses the open research questions

to be presented in this dissertation. In chapter 3, we present our overall system

architecture required in order to construct data marts from web data. The novelty

to our research begins in this chapter with an entirely new ETL approach which is

designed specifically to manage new and changing data sources. This architecture

was presented in a publication by the authors in [64] in the smart city domain. In

this dissertation we concentrate on the Agri domain, using chapter 3 to introduce

real-world case studies from the agri (agriculture) industry.

In chapter 4, we present a new data model (the StarGraph) and a methodology

designed to construct a data mart automatically from a single data source, and was

first presented by the authors in [62]. This forms a major part of the contribution

to our research as this data model captures facts, dimensions and measures and

together with the model functionality can analyse web sources to extract these mul-

tidimensional constructs. The graph is called a StarGraph for two reasons: it is a

representation of the facts, dimensions and measures of a data source and it is a

graph representation of a Star (Constellation or Snowflake) Schema. In chapter 5,

we provide a detailed discussion on how multiple StarGraphs may be integrated to

produce a Constellation in a semi-automatic manner with the aid of a lightweight

17

ontology. We presented our work on an integrated StarGraph in [63] and subse-

quently demonstrated its effectiveness in conjunction with a lightweight ontology

in [61]. This extended the StarGraph functionality to introduce an integration

strategy which creates data marts from multiple sources. In chapter 6, we present

some optimisations which remove redundancies within a StarGraph or Constella-

tion to improve the speed of materialising data marts. In chapter 7, we present

our evaluation and discuss the benefits and drawbacks of our approach compared

to traditional ETL processes. Finally, in chapter 8, we present our conclusions and

discuss potential areas for extending our research.

18

Chapter 2

Related Research

The construction and updating of data warehouses is costly both financially and in

terms of the time and human effort involved. In this thesis, we are proposing a more

automated approach not only to address the cost of these systems but in recognition

of the fact that online streams are wide ranging, heterogeneous and prone to change.

For this reason, a new approach to Extract-Transform-Load (ETL) is necessary

and as such, requires a combination of methodologies drawn from traditional data

warehousing techniques, warehousing web data and the use of ontologies in data

warehouse design. For this reason, the literature review is split into a number of

sections. In section 2.1, we begin by examining different approaches to warehouse

construction including research into ontology based ETL; approaches to warehousing

data streams are discussed in section 2.2, finally section 2.3 summarises the state of

the art and identifies outstanding issues within current research.

2.1 ETL and Data Warehouse Construction

The aim of this section is to discuss and analyse research into warehousing with a

focus on the Extract-Transform-Load (ETL) process. Ontologies are seeing increas-

ing use in Enterprise environments, and as such have seen extensive use within ETL

applications. Their ability to capture information centred around a domain and pro-

vide a means of relating these abstract concepts to real data has proven invaluable.

The works presented all propose ETL frameworks with an ontology as the main

19

focus of the application. This can take many forms, from a single global ontology,

to more complex approaches where each source contains a local ontology, coupled

with a global ontology, a data warehouse ontology and a requirements ontology.

In [9], the authors present a system to automatically facilitate extraction and popu-

lation in order to integrate additional data sources to a pre-existing data warehouse.

Their system constructs schemas for each data source required in the ETL process

through a series of wrappers. The process then annotates the source with terms

from the system’s ontology. Once this stage has been completed, the next step

involves examining the relationships found within a document in order to create

a thesaurus of relationships of terms found within the ontology. The next phase

in the process is the generation of clusters. This process utilises the thesaurus in

order to construct clusters of common terms. These serve to link attributes between

data sources. Finally, the addition of transformation functions and mapping rules

provide an automated means of running the extract phase of the ETL process.

The similarities between our research objectives and this research lie in the anno-

tation or enrichment of the original source. However, in their case, it is ontology

driven. A further and significant difference lies in the approach: they assume a

pre-constructed warehouse whereas our agile approach does not. Their approach to

using numerous semantic technologies to integrate data with the pre-existing ware-

house data only works if there exists a pre-defined data warehouse from which a

global schema can serve as a reference point.

Berro et al. present a graph based ETL process where the assumption is that

source data is a series of spreadsheets [10]. Their system uses an ontology to model

the representation of data within a spreadsheet. When a source is added to the

system, it is analysed using the ontology and annotated appropriately. As with many

approaches (including our own), the authors place an emphasis on spatio-temporal

datatypes (Date, Geo), naming them Semantic Annotations. This process outputs

an annotated graph representing system data types. The next phase of the system is

to integrate multiple annotated graphs into a single unified graph. The integration

approach consists of three phases: the first seeks to construct a similarity matrix

between two graphs; the process then uses a set of rules based on maximising these

20

similarities; the system then constructs the integrated graph.

The similarities between this and our research is again in the requirement to annotate

the source data. However, our construction of annotated graphs does not require

an underlying ontology to influence the annotation process. Furthermore, we would

not restrict source data to exclude tree-type data sources such as XML or JSON.

Finally, we advocate the usage of a metamodel in order to influence the integration

process which seeks to determine common types between sources in a semi-automatic

fashion.

The authors in [59] present a system which constructs ETL processes based on user

requirements. The system takes two inputs, the first being a series of required

sources for the data warehouse. All sources must be previously annotated with a

corresponding OWL ontology describing the structure and semantics of the data

source. The second input is a series of business requirements where the authors

represent these requirements as structured XML files. The first file represents the

functional requirements of the data warehouse, a process similar to the definition

of a data warehouse schema. It contains the measures and analysis axis required

for the data warehouse. The second file represents non-functional requirements, for

example, the age of the data within a respective OLAP view.

There are five main steps in generating an ETL workflow and multidimensional

schema from business requirements and data sources. The first step is a verifica-

tion step, which examines these requirements with respect to the sources shown to

determine if the mart is in fact possible, with respect to the sources presented. We

would not adopt this approach as it lacks a means of constructing a warehouse with

respect to a pre-defined schema derived from requirements.

The second step examines the sources in order to determine other items which are

required in order to satisfy the schema. The third step classifies the attributes of

data sources with respect to the components within a data warehouse (e.g. facts,

dimensions and measures). This process is similar to the dimensions and measures

identification process we will present in chapter 4. However, we advocate that this be

based on the data sources themselves, rather than this approach which uses ontology

sources. Their approach requires prior knowledge of all schemas before importation.

21

Step four constructs the ETL process, driven by the dimensions, measures and facts

identified in the previous step. Once this is complete, the final step is the out-

put step, which produces the ETL workflow and corresponding multidimensional

schema.

Their system places a heavy emphasis on user requirements, and is dependant on a

domain ontology (a global ontology) and an ontology for each source (local ontology).

Our approach will not require local ontologies.

An ontology-based ETL system was presented by Zhang et al [79]. The system

assumes a global ontology is present which serves as a reference to integrate the

individual data sources. There are four phases to the ETL process: Metadata

abstract, Ontology mapping, Rule reason and ETL direction. The first seeks

to build local-ontologies constructed from the metadata of data sources. The second

phase examines the local and global ontologies in order to determine how the data

source should be integrated. Once the local ontology has been linked with the

global ontology, the next phase is to provide a mapping between the two in order to

facilitate integration and querying. The final phase is the ETL phase, which uses

the mappings generated previously to extract data from source to target.

The 4-step process is similar to what we will design in order to materialise data

marts. The differences between the two approaches are as follows: while the authors

seek to generate a local ontology in order to link it with the global ontology, our

global ontology serves this purpose, with the layer of abstraction and metadata

analysis being performed by our proposed integration process. In addition, while

the authors refer to the mapping created between the local and global ontologies,

they fail to specify at what stage mappings and transformation functions required

for the ETL process are generated.

One common theme throughout all processes is the need for an ontology, the specific

implementation does not matter, but it does identify that ETL processes with min-

imal user-engagement require a means of capturing information and abstractions

which would be present to a designer creating an ETL workflow manually. In [51],

the authors present an ETL methodology using RDF and OWL technologies. The

system works by converting all required sources into RDF files which conform to

22

pre-existing ontology-maps.

Similar to our approach, the schema of the data mart is constructed automatically.

However, while our approach will construct a data mart by examining the sources re-

quired for integration, their system constructs a data mart through a user supplying

RDF queries, which are then used to generate the schema.

In [69], Skoutas et al outline how to construct an ETL process using OWL. The first

step in this process is the construction of a suitable domain ontology constructed

by a designer which captures all semantics relating to the application domain. The

next phase involves examining each data source required for the ETL process and

annotating the source. Once again, we discover an approach similar to our proposed

graph annotation stage. However, here the data store is additionally annotated

with an application vocabulary. This vocabulary outlines commonalities between

attributes in each data source, a function that we will also use in term and type

mapping processes discussed later in chapter 3.

Using the application vocabulary and the annotated data sources, the next step

involves generating the application ontology. This ontology is used to represent a

specific ETL process, linking the concepts derived from the domain ontology to the

vocabularies defined in the data sources. The final step is the design of the ETL pro-

cess. This process determines what is required form each data source and provides

necessary transformations by examining the domain ontology and the application

ontology. While the authors examine the use of multiple ontologies to construct an

ETL process, our process uses only one ontology to facilitate semantic integration

and construct the ETL process.

As part of the same research [70], the authors detail a means of constructing an

ETL process for semi-structured and structured data using an ontology. Here,

they use an XML graph construct called a datastore graph to internally represent

data sources. In this case, the annotated graph contains mappings to source data

for each node in the graph. The first stage in the process converts all required

data sources into the datastore graph format. The next step utilises a suitable

domain ontology in OWL format which will be used to annotate the data stores

with semantic information. This ontology is then itself converted into a graph

23

format named an ontology graph. The next step in the process seeks to map the

datastore graph processes to the ontology graph.

This differs from our approach in that the authors state that the mapping from

datastore graph to ontology graph is a manual process, with a designer manually

linking each node. Our goal is to annotate each node in the StarGraph with its

respective term and type in order to provide a level of automation to the linking

process.

The authors in [65] describe a means of constructing structured web data warehouses

using an ontology. The resulting data warehouse is constructed from first analysing

user requirements. Requirements are captured within a requirements model to spec-

ify what is required of the data warehouse. These requirements are modelled at the

ontological level and are linked to a domain ontology. The system assumes a global

domain ontology which links web sources. Once the requirements for the ontol-

ogy have been captured, the process for constructing the data warehouse and ETL

process is as follows: a data warehouse ontology is constructed from the global on-

tology by examining the user requirements; this ontology represents the structure of

the data warehouse and can be edited by a designer in order to provide additional

information.

The second phase analyses the requirements with respect to the sources in order to

determine that the data warehouse can be constructed. Specifically, the analysis is

used to determine required relationships and items required for the data mart to

facilitate semantic integration. The next phase annotates the data warehouse ontol-

ogy with facts, dimensions and measures. We will adopt a similar approach as one of

our stated aims is to automatically determine facts, dimensions and measures from

source data. However, while this process requires their ontology to be constructed

in advance, our process is more automated, extracting the multidimensional data

without the need for an ontology.

The final step in the process is the generation of the data warehouse schema from

the final ontology. The authors present a system which can create a warehouse from

web data with respect to user requirements. However it assumes all sources are

already known, and a global ontology linking said sources exist.

24

Summary All ontology based process rely on the existence of a suitable domain

ontology previously created by a designer. In addition there is a common series of

steps for all sources, namely the generation of a data warehouse schema from the

domain ontology.

While ontologies can be used to resolve differences between data sources and such

provide a means on integration, there is limited focus on the use of ontologies for

web data outside the control of an application designer.

In addition, all sources presented assume mappings exist within the ontology, and

contain an annotation step for identifying data warehouse concepts once a require-

ment or query has been posed. Our system instead generates mappings prior to

any source being in contact with our ontology as they are generated during our

annotated graph construction phase, with dimensions, facts and measures being

identified without the need for consulting an ontology.

2.2 Data Stream Warehousing

This section examines the state of the art in warehousing web data. Data Ware-

houses assume a relational structure for data, consisting of facts, dimensions and

measures. Such a structure is easy to create if the data is already relational. Tra-

ditionally, data warehouses were created by combining data from various relational

databases. However, web data can take many forms, from structured, to unstruc-

tured data. This poses problems for traditional warehouses, as there is now a need

to capture this semi or unstructured data and store it in a data warehouse.

A significant amount of research has been presented on capturing and transforming

XML data compared to other semi-structured data sources. The main reason for

this is the age of XML compared to newer semi-structured containers such as JSON.

The XML standard was first published in 1998 [15], whereas JSON is relatively new

having two competing standards published in 2013 [25] and 2014 [14] respectively.

The amount of time XML held as the only means of online data representation

solidified its exclusive use in both private and enterprise environments for a wide

array of use cases, from representing enterprise data to personal sensing [52] and

25

video annotation [7]. As such, many problems today which are grouped under

semi-structured data representation focused on the specifics of the XML language.

Research on XML and data warehousing falls into one of two categories; the first

focuses on creating data warehouses from XML data or from a combination of

XML data and an existing data warehouse. The second category focuses on XML

formalisms of data cubes and warehouses, to reduce transmission times for OLAP

analysis. While the latter may not immediately appear relevant to the research

presented in this thesis, these works present means in which a data mart may be

represented outside of a traditional relational data warehouse.

In [13], the authors present a means of creating a data warehouse and data cubes

from XML data through the use of X-Warehousing. This process uses XML as

an abstract model to capture the requirements of a data warehouse, so that XML

data can easily be populated. Like many ETL processes, the system focuses on the

requirements of the warehouse first, with a user defining the formalism of the data

warehouse with respect to the desired queries.

The process of mapping the user-requirements to the underlying data is achieved

through the use of XML Schemas with the schemas transformed into attribute-trees

to facilitate integration. This differs from our approach as the authors in this work

use attribute trees as they are dealing with XML data, while we propose the usage

of Graphs. This is necessary as not all streaming data will be represented as tree

structures so a more complex level of abstraction is required. Interestingly, the

resulting data cubes and facts are not stored in a Data Warehouse, but as a series

of homogeneous XML documents, with each document constituting a single fact.

This approach would allow for fast query times for small facts, as loading a fact for

OLAP analysis would constitute simply loading a single XML document.

We will adopt a metamodel approach which will have the similar effect of defining the

minimum amount of required data, so the user can easily formalise the definition of

the cube. In this research, it is referred to as the Minimal XML document content.

However, we will opt for a more automated approach which will only require the user

to supply missing data (where possible) in order to ensure a data sources compliance

with the metamodel.

26

Azabou et al present a new multidimensional model, designed to create OLAP cubes

from documents (XML) [6]. The model consists of three layers, each with a key role

in the overall process. The Standard Layer which represents standard dimensions,

derived from the top-level elements of a document. The Semantic Layer represents

semantic information obtained from the document. This is a similar resource to the

ontology used in many systems, which seeks to form semantic connections between

data sources. Finally, the Document Layer is a set of documents containing a similar

structure.

The transformation process is composed of three phases: Pretreatment, Generation

and Instantiation of the model. Pretreatment is equivalent to an Annotated

Graph phase. The pretreatment phase examines documents in their native format

in order to provide annotations which can help further analysis. This step annotates

edges between nodes in the XML tree with annotations provided by a user who has

examined the source document. In our approach, we require this step to be fully

automatic. The generation phase then constructs the model. This is achieved using

a series of rules for XML document parsing. Similar to our approach, this phase

utilises an ontology (or other resource) represented by a semantic dimension. This

dimension is examined in order to extract measures from text content. Finally, user-

intervention is required at the end of this process in order to verify the structure of

the model.

The authors in [40] present a system which integrates XML data at a conceptual

level where they present a methodology for integrating XML data with relational

data. The system accepts a Document Type Definition (DTD) from which the

UML representation of the document is generated. This makes the DTD easier to

comprehend by the user. Additionally, a UML representation of the relational data

to be integrated is also presented. A similar method of abstraction is proposed

in our approach but we opt to use a graphs model as opposed to the UML model

employed in this research. A user of the system creates a UML diagram representing

the structure of the cube they wish to create. This structure is then analysed and

the required queries are generated to extract the data. These queries can either take

the form of XML queries or SQL depending on where the source data is located.

27

In [55], Pujolle et al focus on text-heavy XML documents, in which they present a

methodology for extracting data from XML in order to create OLAP systems which

can utilise this data. The first stage in this process captures users requirements

using a matrix to represent the requirement query. This matrix is then analysed

in order to determine which attributes require interaction. This matrix and the

corresponding interactions are then used to construct a Galaxy model, a model of

the authors design which encapsulates all required attributes necessary for a fact to

be constructed from text data. Once this multidimensional model is constructed, it

must be verified against the data sources. Our approach will have no requirement

for this step, as the multidimensional model is generated from the data sources

themselves. The authors use XPath as a means of mapping from source to target

schemas which is similar to our approach. However, as we may deal with data

sources with multiple formats, multiple mapping languages are are necessary.

In [35], the authors present X-Cube, a set of XML document standards aimed at

reducing the time taken to transmit data cubes over a network and presenting an

open document format for interoperability between data warehouses. X-Cube aims

at representing the constituent components of a data mart through three documents:

XCubeDimension detailing information about hierarchical dimensions; XCubeFact

representing the individual facts (cells) in the data cube; and XCubeSchema which

represents the cube through combining the dimensions and facts detailed in the other

documents. Similar to our approach, the authors provide a system for representing

the components of a data mart outside of a traditional relational data warehouse.

However, this approach is created from analysing existing data warehouses while we

propose to create a data mart by analysing different forms of semi-structured data

sources.

Niemi et al present a system which collects OLAP data from heterogeneous sources,

represented by XML to construct an OLAP query (cube) [50]. This allows the user

to pose a query to an OLAP server, and create the cube by obtaining data from

all relevant data stores. The user expresses an MDX query which runs against a

global OLAP schema. The system then analyses the query and determines a suitable

OLAP schema for the query. This process requires a deep knowledge of the source

28

data and requires the construction of mapping rules in order to translate data from

source to target similar to our approach. This is quite different to what we propose

in that our schemas and mappings are constructed automatically, by extracting

the facts, dimensions and measures from within the data source. Similar to other

approaches, their XML representation of the cube consists of fact, dimension and

measures objects.

The authors in [73] use a combination of UML and XML in order to represent mul-

tidimensional models when designing a data warehouse. A designer would structure

the data warehouse using UML. This allows the data warehouse to contain complex

structures such as many-to-many relationships and multi-inheritance. Once the data

warehouse has been created using these means, the warehouse is then represented

using XML notation for ease in transmission. The XML notation is formalised in

a DTD (Document Type Definition) and is structured in a number of steps. Each

document contains a series of PKSCHEMAS representing a data warehouse schema.

Each schema contains one PKFACT (fact) and many PKDIMS (dimensions). While

this approach models the base attributes of a data warehouse (facts, dimensions and

measures), our StarGraph process may produce multiple facts for a data source.

Previously, research focused on XML data for one primary reason: that it was the

only structured or semi-structured means of representing data on the web, which

gave it a strong foothold in enterprise environments, specifically in data transmis-

sion. In [46], the authors presented a means of creating a data warehouse from

semi-structured social network data using Twitter as a motivating example. This

task focuses on the extraction of dimensions and measures from semi-structured ob-

jects (e.g. tweets). While the source data is represented in JSON, the system first

converts these objects into XML and stores them in an XML database. A similar

method of storing data prior to processing will be used in our approach. However,

our system stores data in its raw format through the use of a Data Lake. This has

the benefit of providing us with a mechanism for quickly detecting changes in the

structure of web data.

These XML database schemas are then queried in order to construct a relational

model for the source data. This step provides the system with information regarding

29

the relationships between attributes, their respective data types and their cardinal-

ities. While a similar approach will be used by our system, this is achieved through

an Annotated Graph Construction process. Also similar to our approach, all nu-

meric data items that are not marked as keys are candidates to be used as measures.

However, unlike our approach, their system contains a data enrichment step, using

external APIs to enrich the tweet for example using sentiment analysis.

Ravat et al present a means of combining an existing multidimensional warehouse

with linked open data at the conceptual level’ in order to provide more information to

decision makers [57]. This methodology takes the form of a modelling solution which

they name a Unified Cube. The model consists of four objects, the first of which is a

Dimension schema that is a series of tuples used to model a hierarchical dimension

at all levels. A Dimension instance seeks to map a hierarchical dimension to the

conceptual level provided by the linked open data. A Unified Cube schema which

consists of a finite set of dimensions and measures, and a set of rules (links) which

are used to combine data from multiple sources. A similar approach will be used in

our research when constructing the mapping rules for the final data mart. Finally,

a Unified Cube instance is constructed to connect the attributes of the cube to

the linked open data repository at the conceptual level.

The construction of a unified cube is a two stage process. The first step is to

construct an exportation cube which serves as an abstract representation of all

schemas set to be integrated into the cube. A similar approach is used by our process

where individual StarGraphs are used to construct a Constellation. The second step

proceeds to link these individual schemas to construct a Unified Cube. A similar

approach is used by our methodology, however in our case the type mapping and

term mapping processes provide these semantic links between StarGraphs.

The authors in [49] present a methodology for integrating ontologies using a series

of approaches including machine-learning, information retrieval and matching on-

tologies from different languages. The machine learning approach takes input in the

form of two separate ontologies, and an integrated ontology, representing the two

previous ontologies having been created by a domain expert. The machine learning

process then examines the two source ontology’s with respect to the integrated on-

30

tology in order to learn classifications of integrated attributes and how they relate

to each other. Using our approach, the integration ontology would represent our

global integration ontology with individual source not requiring separate ontologies

in order to facilitate integration.

The information retrieval method assumes that previously integrated ontologies are

not present and thus, the machine learning method cannot learn features. This

method examines attributes in each ontology and attempts to provide mappings

based on a combination of the similarities of labels and the informativeness of on-

tology attributes. It is important to note that our process will also require an

integration ontology in order to make correct integration decisions. The final ap-

proach seeks to resolve differences between ontologies of differing languages. While

this may not seem pertinent to our work, remember that data from the web may be

in any language and the case studies provided in Ch 3 utilise datasets from different

countries, and are published in different languages.

The approach for ontologies of different languages is similar to the information

retrieval approach, however there exists an additional step, namely the translation

of terms. The authors use Bing Translate, however any number of translation tools

may be used. Our work overcomes the differences in languages using the integration

ontology, as all attributes are assigned a canonical term during the term-mapping

process, with a further level of abstraction being applied during the type-mapping

phase.

In [43],Kittivoravitkul et al present a means of integrating semi structured data

sources in which they focus on normalising semi structured data before integration

and storage of this data in a relational database. The authors use YATTA which is

a modelling formalism for semi structured sources. It consists of two tree structures:

the YATTA schema and the YATTA data tree.

The YATTA schema can be roughly equated to an annotated graph with both storing

the name of attributes, their data types and relationship cardinalities. While the

YATTA schema contains more in-depth possibilities for relationship modelling (e.g.

1-n, n-m etc...), it does not contain mappings to source attributes present in our

proposed annotated graph. The YATTA data tree represents the physical data, as

31

expected, as a tree structure representation. Data is normalised to 3NF in order to

present a traditional normalised schema based on the source data. The integration

process seeks to construct a global schema by a series of transformations with a user

generating this global schema and providing mapping rules to the system. This dif-

fers from our approach, where mappings must, in terms of scaling, be automatically

generated.

The authors in [80] present Graph Cube, a data warehouse model which supports

OLAP queries on graph models. There are three separate models necessary to repre-

sent a data cube from graph data. The first model captures the multidimensional

network. This model represents the graph ‘as-is’, consisting of a series of nodes

and edges, each containing dimensions and attributes. The second model, which

provides OLAP functionality, is the aggregate network. This model represents a

graph which has undergone an aggregation function (e.g. ROLLUP) which stores

the aggregates as weights between nodes (attributes). The final model is the graph

cube model. This is constructed in a fashion similar to a traditional data cube by

performing multiple aggregation functions along a combination of axes in order to

represent the full data cube. In this instance, the graph cube is a collection of

aggregate networks.

Our proposed graph model will contain the ability to construct the all cube (*) as

our work is not focused on storage efficiency. The additions of the aggregate model

graph to provide our approach with a more robust query mechanism is discussed in

the final chapter of this dissertation.

2.3 Related Research: A final Summary

There is a large amount of work present in both supplementing existing data ware-

houses with semi-structured data, and creating data warehouses from entirely semi-

structured data. However, the common theme presented is the need for an abstract

representation of the data warehouse to overcome the differences presented by dif-

ferent data formats. These abstractions present in multiple ways, such as an XML

logical model [13], a multidimensional conceptual model [57], use more conventional

32

notation such as UML [73]. All approaches tend to follow the same basic steps in

achieving this goal. The first step involves analysing a data source and converting it

into an abstract format. The next step involves comparing this abstract representa-

tion to a pre-constructed semantic model, which can take the form of an ontology, a

specific dimension or as a series of rules. Once this is step is completed, the sources

can be integrated on a semantic level and it is logical that our approach would follow

a similar path.

However there remain outstanding issues.The first is that despite the fact that the

research analysed present a means of integrating data, they focus more on the inte-

grated model rather than the process for integration. The second lies in the method

for materialising data marts. The inclusion of web data requires an entirely new

approach as traditionally, data warehouses are updated on a batch schedule. This

may not provide the up-to-the-minute information that high velocity web streams

are capable of providing. We will directly address this issue using a Data Lake and a

metabase to manage the update velocity. Indeed, additionally, none of the research

we have uncovered utilises a Data Lake in order to capture semi-structured web

data efficiently.

ETL processes differ based on requirements of the system. Some focus on a particu-

lar domain of data [10] while others may focus on user-requirements [59]. However,

the common trait for all processes is the need for some form of ontology, or a means

of representing how data is mapped. It should be noted that in addition to the

ontology, most sources assume a mapping to source exists within the ontology. We

will adopt a different approach. We will employ a method which constructs the

mappings during StarGraph construction and, (at that point), without the need for

an ontology.

When considering XML-based approaches, they all construct cubes from XML data

by adopting a user-centric approach. The user specifies a query which is then used as

the basis for the construction of the data mart. Furthermore, a level of abstraction

is required when dealing with data from multiple sources. Here, many chose to use

UML for two reasons: firstly, as a means of abstraction as the modelling language

has sufficient capabilities to represent data from both XML and relational data;

33

and secondly, because UML is considered a well understood means of conveying

information to designers. However, all approaches assume a query designer has

sufficient knowledge of the underlying documents and in many instances, has access

to DTDs or XML Schemas which can be fed to a system in order to understand

and analyse the structure of the document. We cannot make this assumption when

constructing data marts from web sources. Our approach must deal with data

available from the web, where the ability to obtain a well structured schema is

not always possible. As such, our system must be designed to analyse the source

documents without the need for a schema. Additionally, our system uses graphs

as a means of abstraction at the conceptual level, as unlike UML models, they can

be analysed and converted and processed. Finally, approaches focus on facts as

individual entities (e.g. data cubes) rather than an attempt to model the data mart

in its entirety. Although multiple XML documents could be used to represent the

individual facts within the data warehouse, the absence of shared dimensions reduces

each fact to exist in isolation. For our work, where multiple facts may be created

from a single data source, such an approach would not work, as updating a dimension

would require an update to multiple documents, rather than a single update required

by a database. We feel that this is a crucial requirement to constructing data marts

from multiple, possibly heterogeneous, web sources.

While the process of creating data warehouse from other non-XML formats is rel-

atively recent compared to the large body of work presented on XML specific so-

lutions, there exists a requirement to integrate non-XML web data with existing

data warehouses. This is in part, due to the rise of semantic technologies (RDF,

SPARQL etc..) but also to the growing number of online resources providing data

in non XML formats (i.e. JSON, CSV). This requires a sufficiently rich canonical

model to enable communication between various web data representations.

34

Chapter 3

An Architecture for Dynamic

Processing of Data Streams

In order to deliver our research goals, we require a system capable of interpreting

unknown data streams, extracting data in multi-dimensional terms and integrating

across data streams. In this chapter, we provide a high level overview of our system

in terms of the components which deliver the different steps in this process. In

section 3.1, we introduce the architectural components; section 3.2 details the data-

stores used by the system; In section 3.3, we discuss the system ontology which has

a crucial role in stream integration, and in section 3.4, we provide details of the case

studies which will serve as running examples throughout the remaining chapters.

3.1 System Overview

An Extract Transform Load (ETL) process must provide critical functionality in

order to deliver a system suitably agile to process semi-structured web streams or

unknown source data. Firstly, the system must be able to capture and store data

from relevant data sources. Secondly, the system must possess an understanding of

the source data, specifically the ability to identify facts, dimensions and measures

required for analysis and creation of a data mart schema. The system must be able to

devise extraction and transformation rules to take the data from its raw format and

store it in a data mart. For multiple data sources, the system must first identify

35

Figure 3.1: Extract-Transform-Load Architecture for Web Streams

the facts, dimensions and measures per data source, then devise an integration

strategy for the data sources to present a unified data mart. When integrating

data from multiple sources, the system must be able to make use of abstractions

and generalisations which would be apparent to a manual ETL designer. This

information must be stored in the system for future verification, optimisation and

other forms of analyses. Finally, the system must include the ability to incorporate

optimisations that are provided by a domain expert to increase the efficiency of the

system.

The ETL architecture developed as part of this research, comprises four main com-

ponents and three different storage models to manage the demands of the different

types of processing involved. Figure 3.1 outlines the system architecture with the

system processes (and sub-processes) in green and the system data stores in blue.

In the remainder of this section, the four main components (Stream Introduction,

StarGraph Creation, Constellation Creation and Materialisation) are described in

detail.

36

3.1.1 Stream Introduction (P1)

This process is used to add new data sources to the system. An overview of this

process can be seen in Fig. 3.2.

Figure 3.2: P1 Stream Introduction Activity Diagram

In order to create and populate a data mart from a data stream (or series of data

streams), each data source must first be introduced to the system by a user. The

user provides a url to the stream (which serves as the streams unique identifier) and

supplies an update interval in milliseconds, to represent how often new information

from the data stream becomes available. At this point, the primary copy of the data

stream is retrieved and the url, update interval and the copy of the stream obtained

are stored in the metabase. For some data sources the stream update may provide

data already stored within the system along with new data, while other streams

may provide an entirely new copy of data.

37

Figure 3.3: StarGraph Construction: Activity Diagram

Once these items are stored, two independent processes are triggered: a metadata

(or data definition) process, followed by a process for extensional data (data insert).

The first process is StarGraph Creation (P2) which takes the copy of the stream and

uses it as a basis for constructing a StarGraph. The second process is the stream

service. This process continuously obtains new copies of the data stream and stores

them in their RAW format in the Data Lake to await population.

The stream service waits until the specified update interval has occurred. Once this

happens, it fetches a new copy of the stream and stores it in the Data Lake in its raw

format. Additionally, it creates Data Instance records in the Metabase indicating

when the raw data in the Data Lake was obtained.

3.1.2 StarGraph Creation (P2)

The goal of the StarGraph Creation process is to construct a StarGraph from a

single data source. A StarGraph is a graph structure which acts as the common

38

data model upon which the entire process is based. Data sources provided by the

user in (P1) may be of a variety of data formats (XML,CSV, HTML or JSON)

with each having a unique structure. However, as the main goal of the system is to

provide data marts by integrating this data, there is a need to provide a common

model which is powerful enough to represent both data and context in any of the

required data streams. It should also be suited to a suitable integration strategy

and be supported by the functions required to deliver the necessary integration [8].

In the case of this research, it must capture facts, measures and dimensions as these

are the structures crucial to our research.

The process is illustrated in Fig. 3.3. A Stargraph is created from the primary

copy of a data stream stored in the metabase which was acquired during P1. The

data stream copy is parsed and converted into an annotated graph. Nodes in

the graph represent objects found in the data source, and Edges represent the

relationships between these objects. Each node contains the data type of the object

while a generated mapping query is used to extract the object from the data source.

Each edge is annotated with the cardinality of the relationship between objects. At

this stage, the graph is simply a graph representation of the data source, with no

understanding of the constructs of a multi-dimensional schema. As this is a high

level overview of the transformation process, a detailed description of the StarGraph

is deferred until chapter 4.

The next stage in the process is to classify nodes based on their data type and

relations to other nodes. The classification process seeks to identify important di-

mensions (e.g. Date and Geo dimensions), items which may become measures and

nodes which are redundant and should be removed. This step involves a traver-

sal of the graph and removal of all nodes which have been classified as containers.

However, by removing some nodes marked as containers, this process may in fact

create more nodes which should be removed. To overcome this, once the graph has

been restructured and containers are removed, all nodes are then re-classified and

any new nodes marked as containers are also removed. This process repeats until

no nodes are marked as containers.

At this point in the process, all numeric items are considered measures and all other

39

nodes classified as dimensions, attributes to dimensions or sub-dimensions (of a

dimensional hierarchy). The process now has sufficient information to create a data

mart with identified measures and dimensions, and mappings to bind each node to

its place in the data source. The next step is to use this information to construct

mapping rules, which will be used to populate a data mart at a later stage. Once the

mapping rules have been created, the StarGraph and the mapping rules are stored

in the Metabase.

Issues to be Addressed. There are a number of challenges to be overcome in

the transformation process, caused mainly by the quality of the source stream. In

an integration process, all possible data formats and structures must resolve into the

same StarGraph structure. XML data is highly structured in a tree-like format. The

structure of the nodes in an XML tree indicate a hierarchy of sorts, which can be

used to identify objects which may potentially become dimensions. HTML sources

also take a tree-like structure but in these instances, nodes may not represent a

hierarchy of objects, but instead the structure of the document. In addition, as

HTML is primarily designed to be used in conjunction with CSS and Javascript

to be displayed in a browser, data which appears structured to a user, may be

represented internally as an entirely different structure.

CSV files also have their benefits and disadvantages. Firstly, their structure is quite

simple, namely, a matrix where the first row represents column names. However, in

comparison to other data sources. the CSV file does not have a means of indicating a

data type which is essential for detecting measures (which are numeric). For example

in JSON, all strings must be encapsulated by " or ‘, while numeric types are written

without quotes. However, the CSV structure does not contain this level of type

information and relies on the user’s knowledge of the data in order to determine

types and relations. Finally, missing values (which are a common occurrence when

using real-world datasets) adds additional complexity to this process.

All difficulties listed above relate to the structure and data presented by a data

source. One of the main goals in this research is to automate, as much as possible, the

integration process and construction of the multi-dimensional data mart. However,

40

there still exists issues related to the semantics between data sources which must be

captured in order to facilitate semantic data integration. The solution, presented in

detail, in the next two chapters, must address these issues.

3.1.3 Constellation Creation (P3)

The goal of this process is to create an integrated data mart from two or more data

sources, now in the form of StarGraphs. The integrated StarGraph is referred to as

a Constellation. While the previous process (P2 StarGraph Creation) ensures

that all data sources are using a common data format and structure, there remain

many issues when integrating these data sources.

An automatic approach to integration may provide an integrated data mart, however

it does not provide a usable mart. This is mainly due to the semantics of the

underlying data between sources. Data may be of differing granularities, use different

units of measurement, or may contain abstractions required for integration which are

not apparent to the automatic process. To address these issues, this process utilises

an ontology to influence the integration process in order to provide a semantically

correct data mart.

Let us begin with a brief outine of how an integrated data mart is made. Initially,

the designer selects the data sources to be integrated. These data sources have

previously been added to the system in process (P1) and have associated StarGraphs

previously constructed (P2). The creation of a Constellation is delivered using a

loose version of the ladder approach described in [8], where two sources are merged

first, and in each subsequent step, one new source is added. This loose version of the

integration strategy will always deliver an identical version of the final integrated

schema, irrespective of the ordering of sources during the integration process. This

is discussed and shown in chapter 5.

The purpose of the three subprocesses P3a, P3b and P3c is to examine StarGraphs

with respect to their semantic meaning in order to determine the subtleties in the

integration process that address the issues described earlier.

The processes P3a and P3b examine each StarGraph and query the ontology to

identify common types and abstractions present in both data sources. The process

41

Figure 3.4: Constellation Construction: Activity Diagram

P3c then examines each StarGraph with respect to their compliance with the meta-

model. This process is used to identify missing attributes which are required in

order to facilitate semantic integration.

Term Mapping (P3a).

The goal of the Term Mapping process is to resolve inconsistencies arising from

naming conventions across different data sources. The process attempts to capture

the knowledge the ETL designer has when making connections and comparisons be-

tween data sources. A common use for Term Mapping resides in the Geo dimension

in our case studies, where there are numerous ways in which different country names

can be represented.

However, the main use for Term Mapping is to provide direct equality between

42

terms. For example, two of the case study terms ‘IRL’ and ‘Éire’ are not related

using any standard string matching algorithm. However, both terms refer to the

country Ireland. The term mapping phase provides this equality using a list of terms

stored in the ontology. This does require that a set of canonical terms are recorded

in the StarGraph Ontology and over time, each term used in the integration process,

is added to the ontology.

Type Mapping (P3b).

The Type Mapping phase begins once canonical terms have been applied to the

nodes in a StarGraph, and its goal is to assign canonical types to each node.

While term mapping assigns canonical terms, type mapping links these terms across

different types. For example, consider two terms ‘IRELAND’ and ‘FRANCE’. A manual

designer may have the knowledge to integrate these two nodes as they both occupy

the Geo dimension. The type mapping process seeks to capture the abstract concepts

which link these nodes in order to further facilitate semantic integration.

There are five base types defined in the metamodel and described later in sec-

tion 3.3.3. These types have been identified as the minimum requirement of semi-

automatic semantic integration. However, a user may define their own types in

addition to those defined in the metamodel.

Both the term map and the type map wordnets are loaded into an in-memory

database to reduce the overhead incurred by querying the ontology for each node in

both StarGraphs marked for integration. Similar to term mapping, the difficulties

arising from the type mapping process are centred around the completeness of the

ontology, ensuring that every possible abstraction is captured.

Integration (P3c).

The integration process examines two StarGraphs which have undergone term and

type mapping and determines an integration strategy which will be used to

create an integrated graph (Constellation) and mapping rules to create an integrated

data mart. The integration process is a three phase process: metamodel check,

granualrity check and strategy selection.

43

• Metamodel Check. The first phase in the integration process is to examine

each StarGraph for compliance with the metamodel. In brief, the metamodel

is a series of types which must be present in a data source in order to provide

semantic integration. The metamodel is discussed in-depth in section 3.3.

These required types are assigned during the type-mapping phase, although at

this stage, there remains the issue of missing attributes. To address this issue,

the system first verifies that each data source contains all of the abstract types

necessary for semantic integration. In the event that one (or both) StarGraphs

do not contain all the types as specified in the metamodel, a MISSING ATTR

event will be triggered. This event prompts a user to supply a value for the

missing metamodel value. The end result of this process is a fully annotated

StarGraph with all required metamodel attributes.

• Granularity Check. Once compliance with the metamodel has been veri-

fied, the next step is to examine the data within each StarGraph to determine

their granularities. The granularity check examines both StarGraphs for hi-

erarchical dimensions. In the event both graphs occupy the same hierarchical

dimension, nodes are checked to see if they both reside on the same level of

the hierarchy.

The granularity check resolves conflicts which arise when integrating data

across dimensions which are hierarchical in nature. A common example in-

volves the date dimension where one data source has a monthly granularity

and the second source a daily granularity. In this event, the data cannot be

directly compared. These events trigger a GRAIN MISMATCH and requires the

finer-grained StarGraph to undergo a rollup operation so that both Star-

Graphs occupy the same dimension in the appropriate dimension hierarchy.

The challenges in this process reside in ensuring the system has a deep un-

derstanding of hierarchical dimensions, and where data extracted from a data

source would lie inside these hierarchies.

• Strategy Selection. The final step of the Integration process is to determine

the integration strategy to create an integrated data mart. There are two possi-

44

Figure 3.5: Materialisation: Activity Diagram

ble integration strategies: row-append and column-append. The row-append

strategy is used for StarGraphs which contain identical metamodel attributes.

In this instance both StarGraphs can be directly integrated. The column-

append strategy encompasses all other possible integration approaches. This

process identifies common metamodel attributes between both data sources

and using these combinations, identifies the integration attributes for both

StarGraphs and creates a unique integration strategy for the Constellation.

Once the integration strategy has been determined, a new series of mapping

rules are constructed to extract data from multiple sources residing in the

Data Lake and store them in a unified Data Mart.

3.1.4 Materialisation (P4)

The materialisation process populates a data mart by applying mappings stored in

the metabase, to raw data stored in the Data Lake. An overview of this process can

be seen in Fig. 3.5.

The materialisation process must initially be driven by the data scientist or analyst

who requires the dataset. The analyst selects an integrated data mart (Constella-

tion) or in some cases, a single source data mart (StarGraph) for population.

45

If the data mart has not been previously populated, the metabase is queried for all

Data Instance items related to the sources. Using these instances, the appropriate

(raw) data is obtained from the Data Lake. These raw instances are grouped to-

gether based on the times they were obtained from the Streaming Service. In the

event that not all data sources are yet present in the Data Lake, the system will wait

for the Stream Service to gather new data for the streams. This can occur when the

update granularity for 2 sources in the same mart differ. For example, one source

may have a 2-min update interval while a second has a 5-min update interval and

thus, the second source may be awaiting a refresh.

Once appropriate data instances have been grouped, the mapping rules are applied,

and this populates the data mart. This process continues until a termination event

occurs. Termination events are discussed in chapter 6.

3.2 System Data Stores

In this section, we describe the data stores necessary to support the different pro-

cesses in the StarGraph system. These include the Data Lake, which is used for

storing raw data streams; the StarGraph metabase which acts as a repository for

instances of the system’s constructs; and finally, the StarGraph ontology which is

central to integration and data mart construction.

3.2.1 Data Lake

The Data Lake acts as a repository for the raw data streams where a single stream

per data source is stored, in preparation for population commands. The benefit

of using a data lake is twofold: firstly, by storing the data in its raw format, it

allows the system to quickly detect changes in a data source; and secondly, the

implementation of a data lake separates the source data from the ETL process.

This separation provides a means of reproducing results, and allows the StarGraph

process to be modified and extended without the loss of data.

The Data Lake is written to by the Stream Service (P1a) and the information is

read by the materialise process (P4). When the stream service process obtains a

46

new copy of a stream, it creates a new Data Instance object inside the Metabase

and stores the raw stream into the Data Lake. The Materialise process (P4) extracts

the raw data for all data sources specified in a Constellation.

However, once population occurs, the Data Lake retains its raw copy of the stream

so that future data marts have a historical backlog of data from which to populate.

3.2.2 StarGraph Metabase

The Metabase contains all metadata generated by the system. This metadata in-

cludes information about data sources (Definition 3.1), StarGraphs (Definition 4.1

in the following chapter), instances of data streams captured in the Data Lake (Def-

inition 3.2) and the data mart definitions and mappings used to populate the data

mart (Definition 3.3). Each data source captures information about an individual

data stream which is used to construct a data mart. The system captures the url for

the data source with the corresponding update interval for that source. This update

interval is used by the Stream Processor (sect 3.1.1). Data sources are created by

the Stream Introduction process (P1) and are read by the StarGraph Construction

process (P2).

Definition 3.1. Data Source.

A data source DS = 〈U,N,W, I〉 is a four element tuple where U is the unique iden-

tifier the system generates for each new data source; N is the mnemonic associated

with the data source; W is the url at which the raw data is available for retrieval

from the remote data source, and I is the update interval of the url source.

A data instance is created for each data stream stored in the Data Lake. Data

Instance objects are created by the Stream Service Process (P1a) and are read by

the Materialisation process (P4).

Definition 3.2. Data Instance.

A data instance DI = 〈I, U,D, T 〉 is a four element tuple where I is the unique

identifier the system generate each time new data is retrieved from a specific source;

U is the identifier of the source from which data is retrieved; D is the UTC date-time

47

of data retrieval; and T is the file format of the raw data file.

A Cube Instance describes a populated data mart. The identifier D is used to

determine data inside the Data Lake which has yet to be extracted and used to

update the Data Mart. The Cube Instance is created when a Constellation is set to

be populated for the first time using the Materialisation process (P4).

Additionally, this process reads this information in order to determine what raw

data residing in the Data Lake has yet to be extracted and transformed and stored

in the Cube residing in the Data Warehouse.

Definition 3.3. Cube Instance.

A cube instance CI = 〈C,D,L〉 is a three element tuple where C is the unique

identifier the system generates for each new data mart created; D is the UTC date-

time of the cube creation/update; and L is number of times the cube has been loaded

since its (first) creation.

3.2.3 Data Warehouse

A data warehouse stores populated data marts. The schema for the data mart (facts,

dimensions and measures) are defined by a StarGraph and the populated data is

obtained by using the mapping rules provided by the StarGraph on the raw data

stored in the Data Lake.

Each data mart residing in the Data Warehouse has its own structure, which is

generated by the Constellation Creation process (P3). However, this schema is not

stored in the Data Warehouse until the Materialisation process occurs. When the

Materialisation process is triggered, it will create the data mart schema as defined

by the Constellation and begin to populate the data mart with data it obtains from

the Data Lake.

3.3 StarGraph Ontology

An Ontology is a resource which captures all knowledge of a particular domain [7].

The StarGraph ontology stores information about abstractions between data sources

48

which drives the semantic integration process. There are three main components

that comprise the ontology: Terms, Types and the integration Metamodel.

3.3.1 Terms

In the StarGraph Ontology, Terms are triplets which map a term found in a data

source to a canonical term. These terms resolve differences in naming (e.g. ‘US’ and

‘America’. These differences may arise from different domain language, or different

coding mechanisms employed by the stream designer.

Definition 3.4. Terms.

Terms are stored as a triplet T = 〈ST,N,CT 〉 where ST relates to the source term,

a node in a StarGraph; N is the unique url to the data source; and CT is the

ontology term.

A Term triplet stores the data source URL in addition to the source term, as some

strings which may be identical have different contexts. For example, one data source

may have the term ‘Ireland’ relating to the total sale of pigs in Ireland while in

another source, this term relates to the total slaughter of pigs in Ireland.

Terms are created by domain experts as part of the ontology and are used during

the term mapping process.

3.3.2 Types

Types capture abstractions known to the domain expert (or ontology designer) which

are crucial to the automation of the overall StarGraph process. The common usage

for Type instances is in identifying components of the Geo dimension. While term

mapping resolves naming differences between the same canonical term, type mapping

links canonical terms into groupings under a common abstraction (e.g. a country).

For example, the two terms ‘Ireland’ and ‘France’ are both canonical terms. How-

ever, an application designer would know that these terms are of the same type (in

this case, a country).

Definition 3.5. Types.

A Type is represented as a tuple T = 〈CT, TY 〉, where CT refers to the canonical

49

term and TY is the type to which this term belongs.

Types are created by a domain expert as part of ontology construction and are used

during the type mapping process.

3.3.3 Metamodel

The integration metamodel describes a series of attributes whose presence is crucial

for StarGraph integration to accurately process. When two StarGraphs are selected

for integration, their compliance with the metamodel is first confirmed. The presence

of the metamodel attributes determine the specific methodology for this specific

integration.

An enrichment process uses the metamodel to annotate each attribute in a Star-

Graph with its metamodel type. Grouped together, these annotations are called the

Attribute Semantic property, which is specified in Definition 3.6.

Definition 3.6. Attribute Semantic.

An attribute semantic AS = 〈D,G, I,M,U, 〉 is a five element tuple where D is

a Boolean describing whether the attribute represents the Date dimension; G is a

Boolean describing if the attribute is a Geo dimension; I indicates the name of the

measure in case the attribute is a measure of interest; M describes the metric for

the measure and U specifies the units for the metric.

These properties influence the integration process (P3) in order to construct a

semantically-correct data mart.

The metamodel is immutable. It is an abstraction based on the types in the ontol-

ogy, a series of properties required for semantic integration to occur. Metamodel

instances are created and modified as the ontology is extended for new data sources.

The presence or absence of metamodel attributes is determined by the types assigned

to a data source during the type mapping phase. These types are then examined

during the metamodel verification phase of the integration process.

50

3.4 Evaluation Case Study Descriptions

In the final section of this chapter, we will provide an overview of the three main case

studies which will serve as running examples throughout the remaining chapters.

These case studies utilise real-world datasets, have real customers/users, and operate

in the agri (agricultural) domain.

Agricultural industries had a global market value of US$8 trillion in 2016. A fast-

paced global industry such as agriculture requires decision-makers to have the most

up-to-date data in order to predict market trends. Like many other sectors, these

industries rely heavily on existing data warehousing technologies and as such, fall

victim to the problems traditional ETL processes entail. This problem has been

further compounded with the rise of web-APIs provided by many governmental

bodies and private organisations which provide important statistics on different

aspects of a countries agricultural sector.

These APIs are outside the control of agri decision-makers and are prone to change.

However in these instances, the time taken to re-engineer a traditional ETL process

to accommodate even simple changes ensure that the decision maker must work on

out of data information. Additionally, when creating ETL processes from global

data, careful attention must be made to how data is represented. Providers may use

different units of measurement and provide prices in using different currencies. Fur-

ther complicating issues is the presence of different languages. With each provider

using different terms which relate to the same product.

Such abstractions and difficulties require an ontology to provide semantic mappings

between data sources and additionally, provide functions which can be used to con-

vert units of measurement and currencies. We will now present three case studies

using data obtained from the web, drawn from disparate sources, to convey how

our system may be used to construct agri-data marts in an efficient and extensible

manner compared to their traditional ETL counterparts. Case studies were specified

by experts from the agri domain, representing real problems, using real world data.

51

3.4.1 Case Study 1: Pig Price Predictions

The motivation for this case study is to create a data mart consisting of pig prices

and production globally. Such a data mart would feed data mining algorithms

to predict global market trends and future pricing for pig meat and production.

In turn, this allows producers to estimate profits, and assign production resources

(where necessary) to react to the changing forces driving supply and demand.

There are six agri data providers used in this case study, delivering thirteen separate

streams to contribute to the data mart. The data sources and providers are listed

in Table 3.1. We now briefly outline the role of each data provider.

• Agriculture and Agri-Food Canada [4] is a governmental body who provides

statistics and weekly updates on various sectors in the agri-industry All data

published is freely available on the web. Specifically for this case study, we will

be using their reports on hog slaughter at various packaging plants in Canada.

• Bord Bia [12] is the Irish food board whose objective is to promote Irish food

and horticulture. They provide a web interface which can be used to look up

various statistics about Irish agriculture. The data used in this data mart is

their statistics based on the prices and production of pigs in Ireland.

• ADHB [3] is the Agriculture and Horticulture Development Board. This is a

statutory levy organisation centred around providing research and information

to stakeholders in the agricultural sector. They provide weekly statistics on

the price of pigs and pig production numbers.

• CME Group [20]is a designated contract market who provide economic re-

search and publish their findings. The data used for this case study is their

statistics on pig futures.

• IMF [39] is the International Monetary Fund. They publish exchange rates

between currencies daily based on SDR units (Special Drawing Rights). Their

data is required in order to compare pig prices that are using different curren-

cies.

52

• USDA [74] is the United States Department of Agriculture. They provide

an API called Quickstats which allows a user to query various agriculture

related statistics. The data used for this data mart relate to the number of

pigs slaughtered on a weekly basis.

Of the thirteen data sources listed in Table 3.1, twelve are updated weekly and the

remaining source (imf) updates daily. Most data sources are HTML, which are

displayed as tables to a user. Finally ID is the identifier for a specific data source.

These will be used to refer to individual data sources in later chapters.

Table 3.1: Data sources used for Case Study 1

Name ID Format Update Interval

Aimis 1 aim 1 HTML Weekly

Aimis 2 aim 2 HTML Weekly

Bord Bia 1 b 1 HTML Weekly

Bord Bia 2 b 2 HTML Weekly

AHDB 1 p 1 HTML Weekly

AHDB 2 p 2 HTML Weekly

AHDB 3 p 3 HTML Weekly

AHDB Bpex 1 bp 1 CSV Weekly

AHDB Bpex 2 bp 2 CSV Weekly

cme 1 c 1 HTML Weekly

cme 2 c 2 HTML Weekly

imf imf XML Daily

usda usda CSV Weekly

3.4.2 Case Study 2: Price Trend Comparison

This case study compares the prices of various vegetable oils and the price of butter.

A data mart is necessary to enable the comparison of vegetable oils and butter to

determine what effects the production and sale of one item may have over the sale

of others. For example, how do the sales and production of palm oil, affect the sale

and production of sunflower oil?

While there are only two data providers for this data mart, multiple data sources

are used from these providers.

• Quandl [56] is an online platform which provides economic statistics through

53

the use of an API. Data is generated from several queries relating to the prices

of various vegetable oils and dairy products.

• GlobalDairyTrade [27] is a private organisation who provide statistics related

to dairy production and sales online.

Table 3.2 outlines the 9 data sources used for this data mart. The sources ren and

gdt are obtained from GlobalDairyTrade, with the remainder being provided by

Quandl. All sources are CSV apart form one HTML source.

Table 3.2: Data sources used for Case Study 2

Name ID format Update Interval

PPOIL USD {pp} CSV Weekly

PROIL USD {pr} CSV Weekly

PSOIL USD {ps} CSV Weekly

PSUNO USD {psu} CSV Weekly

REN SU {ren} CSV Weekly

WLD COCONUT OIL {cn} CSV Weekly

WLD PALM OIL {po} CSV Weekly

WLD SOYBEAN OIL {so} CSV Weekly

GlobalDairyTrade {gdt} HTML Weekly

3.4.3 Case Study 3: Analysing Milk Production

The ability to analyse milk production worldwide can be used by agri-decision mak-

ers to identify potential trends and gaps in supply and demand for dairy products.

Alternatively, this information could be used by governmental agricultural organi-

sations to compare and contrast their country’s dairy exports with others. There

are three main providers of the data for this data mart:

• CLAL [19] is an Italian organisation which provides worldwide statistics cen-

tred around dairy production. The data sources used for this data mart are

statistics about milk deliveries in Argentina, and milk production in New

Zealand.

• Dairy World [23] is a German organisation which provides statistics about

dairy production in Germany. The data sources used in this data mart are

54

milk production statistics for Germany.

• USDA. Similar to Case Study 1, the Quickstats api was used to gather in-

formation about dairy production for the united states.

Table 3.3 outlines the data sources used to create this data mart. There are two

CSV sources and three HTML sources, with all data sources update weekly.

Table 3.3: Sources used for Case Study 3

Name ID Type Update Interval

Argentina Milk Deliveries {amd} HTML Weekly

Cows’ milk collection and products obtained {wdp} CSV Weekly

USDA {usda 2} CSV Weekly

Milk Production Germany {mpg} HTML Weekly

NZ Milk Production {nzmp} HTML Weekly

3.5 Summary

The purpose of this chapter was to provide a high level overview of our system

architecture and the steps involved in taking unknown data streams and constructing

a fully integrated data mart. This helps to provide the context for our research

and allows us to present the most critical components in depth, over the next few

chapters. This chapter was also used as an opportunity to introduce three real-

world case studies with queries provided by agri-partners which use live data to

generate the inputs for prediction algorithms. What is now required is a deeper

understanding of how streams are transformed into a canonical format that facilitate

an easier manipulation by our integration algorithms. In the following chapter, we

provide a specification of our StarGraph model and present a detailed description

of how StarGraphs are automatically created from web sourced data.

55

Chapter 4

A Canonical Model for

Multidimensional Data Streams

In order to deliver any integration strategy, it is necessary to select or specify a data

model which acts as the canonical model for the system. Its role is to represent all

participating data sources by using a transformation process to convert sources into

the system’s representation, or into canonical model format. In this chapter, we

present The StarGraph model, a canonical model for the integration of multidimen-

sional data. In section 4.1, we provide a detailed description of the StarGraph model;

in section, 4.2, we describe our methodology for extracting multidimensional data

from web sources and transforming these sources into StarGraphs; in section 4.3 we

describe the methods used to remove heterogeneity from sources during population

and finally in section 4.4, we present an assessment of the transformation process

using a large number of agri data sources that are necessary for the evaluation of

our work in chapter 7.

4.1 Requirements for Managing Multidimensional Data

In order to understand the capabilities necessary for a model to capture multidi-

mensional data, we must first specify the system requirements. In chapter 3, we

outlined the processes involved in transforming online data into a multidimensional

format. This makes demands of the system model, both in terms of its structural

56

makeup, and in the functions that operate around the model. In this section, we

examine in finer detail, the components involved in this transformation, in terms of

the requirements that they place on the system. In other words, these present the

functional requirements for the system’s canonical model.

1. The first requirement is the ability to parse and interpret data sources of

various formats and map the data from different formats into a usable, in-

termediary format. This requirement also involves the ability to identify and

extract structures and items which would be of interest in a data mart, specif-

ically dimensions and measures. This is effectively a form of enrichment where

a process seeks to identify multidimensional constructs and annotates the data

stream accordingly.

2. The next requirement is to restructure the original source data so as to prepare

data sources for transformation into a multidimensional format.

3. Finally, there is a requirement to perform the actual transformation and record

the process as a series of mappings which can be used later in materialising

data marts.

In the remainder of this section, we will examine these requirements in detail, to

serve as a specification for our system model, both in terms of its structure and

functional components.

4.1.1 Requirement 1: Enriching the Data Source

This requires a process to analyse the content of the data source, make determi-

nations about what data values, and the relations between data items mean, and

enrich the original data source with annotations that can be used in subsequent

transformations.

4.1.1.1 Data Source Analysis and Annotation

A process is needed to parse a data stream and produce an enriched graph repre-

sentation of the stream. It takes input in the form of a sample data stream, and

57

produces an annotated graph representing the data stream.

Each node in the graph represents a single item in the data stream, these nodes

are annotated with the datatype of the item and a generated query which can be

used to extract this data from its source. Edges in the graph represent relationships

between items in the data source. Each edge is annotated with the cardinality of

the relationship. There are three possible types: ONE TO ONE, ONE TO MANY

and MANY TO MANY.

It is important to note at this point, that any strict relations such as 1-n, or n-n

are classed as ONE TO MANY and MANY TO MANY respectively. This is because such

relationships would not be apparent in the data stream and would require a schema

of the data stream in order to be detected. Additionally, such a constraint has no

impact on the algorithms and procedures used to create the data mart. This step is

required in order to abstract the source data streams from their individual formats

and structures.

Annotated graph construction will require multiple stream parsers as each data for-

mat (XML, JSON, CSV etc...) require different mechanisms to be read and under-

stood. The difficulties in this process mainly revolve around resolving the differences

between data formats and structures. For example, consider a ONE TO MANY re-

lationship. Using XML data, this relationship would be represented through the

use of repeating sub-elements inside the document. On the other hand with JSON

data, the array datatype would be used to convey such information.

HTML data streams prove to be the hardest to parse and understand and have the

highest degree of failure among all datatypes. At a high level, this is due to the

decoupling between the way in which data is displayed, and the way it is internally

structured.

Additionally, HTML data may contain errors which would not be present in other

data formats, most common of which is the incorrect use of HTML tags, resulting

in a malformed document.

Due to the large degree of representations HTML data may use, the HTML parser

seeks table elements and scans them for structured information. Any more detailed

parsing would require writing custom queries based on a specific HTML document,

58

negating the benefits of an automatic process.

4.1.1.2 Node Classification

While the previous process provides an annotated graph, it will not contain enough

information in order to construct a data mart. A Node Classification step should

examine each node in the annotated graph and provides each node with a classifi-

cation to indicate which role it may play in a data mart. Preliminary analysis of a

large number of streaming data sources indicated five possible classifications:

• Potential Measure

• Dimension

• Dimension-attribute

• Subdimension

• Container

These property classifications are used in the following steps in order to identify

facts, dimensions and measures and construct a data mart. Additionally at this

stage, some nodes may be classified as redundant (Container) and should be removed

during the next step. The difficulties in this process will revolve around identifying

how graph topologies and graph subsets should be transformed into a data mart.

The classification of dimensions, their attributes and sub-dimensions relies heavily

on examining the structure of the graph and the cardinality of the edges between

nodes. For example, for any node classified as a dimension, all 1-1 nodes this

node is liked to will automatically be classified as dimension attribute nodes.

However, a dimension which holds a 1-m relationship with another dimension implies

a dimensional hierarchy, and as such should become a sub-dimension.

4.1.2 Requirement 2: Graph Restructuring

The previous step should produce an annotated graph with each node having been

assigned a classification. Some nodes produced by this step may be classified as

59

redundant. A process is needed to examine these classifications, remove nodes clas-

sified as redundant and restructure the graph.

Redundant nodes can take many forms. For example, XML data creates redun-

dant nodes when representing ONE TO MANY relationships. This is because the

markup dictates that a container tag must be used in order to manage this relation-

ship. Using JSON data, the same problem is encountered when dealing with array

datatypes. These container nodes serve no purpose in the graph, as edges denote

cardinality and as such they can be removed, once the relationship information has

been recorded.

Graph restructuring removes each node which was classified as redundant and re-

links the nodes descendants to its parent nodes. However, graph restructuring may

create new redundant nodes. This can occur if a parent node of a node classified

as a container holds a 1-1 relationship to the container node. Once the container

node is removed, the parent node will inherit the 1-m relationship held by the

container node. This in turn, provides the parent node will all conditions required

to be classified as a container. Figure 4.1 provides an illustration showing how this

process can occur. In Step 1, the node C has been identified as a container and is

removed. The node B previously classified as a Dimension 〈DIM〉 then inherits the

1-m relationship to node D. This in turn, means that B has all of the conditions

required to be re-classified as a container (Step 2).

Finally, in Step 3 the new container node B is also removed, leading to node A

inheriting the 1-m relationship. After re-classification, the node A does not satisfy

the requirements to be classified as a measure and graph restructuring is completed.

In order to overcome this, the process re-classifies all nodes after restructuring and

proceeds to restructure if any redundant nodes are found. This process should repeat

until all redundant nodes are removed from the graph. The output of this process

is a restructured annotated graph with node classifications.

4.1.2.1 Dimension and Measure Identification.

Once the graph has been annotated, all nodes have been classified and all redun-

dancies removed, the next step is to identify the constituent components of a (star)

60

Figure 4.1: Example of graph restructuring and creating new container nodes.

schema (dimensions and measures) from the graph. This process should examine the

graph structure, the classifications of nodes, and their datatype in order to create

dimensions and measures.

The assumption of this process is that all numeric datatypes are measures. In the

event this process incorrectly identifies an attribute as a measure, the type mapping

phase of the integration process will re-assign the attribute to its correct type.

There will be difficulties in this process. Firstly, the construction of dimensions

can either be a simple or very complex process. For example, attributes which

are date datatypes are automatically considered to be part of the date dimension.

While others may prove more complex, constituting sub-dimensions with multiple

attributes. The second difficulty is in constructing the required facts. As measures

may appear at any place in the graph, measures may depend on different dimensions

and would constitute different ‘facts’ with shared dimensions.

Ultimately, this process constructs dimensions, measures and facts from the graph.

61

Once all facts, dimensions and measures have been identified and their structure

created, the graph now represents a data mart. However, mapping rules should be

generated during graph construction in order to populate a data mart.

4.1.3 Requirement 3: Generating Mappings

The overall process should construct mapping rules which can be used to extract the

data in the data stream to materialise a data mart. One design might see a process

that examines the dimensions and measures previously identified and constructs a

JSON file specifying how the data should be extracted and stored.

Mapping rules should be derived from the queries generated for each node during

the Data source analysis and annotations step. Once the mapping rules are

generated, they should be stored alongside the data mart in the metabase. A design

requirement should insist that mapping rules be designed in such a way that they

can be used to extract data from a data stream without the need for the data mart

(or StarGraph presented in the following section). This will ensure that they may

be used to complement other systems. For example, these rules may be extracted

and implemented within a traditional ETL process.

4.2 The StarGraph Model

As explained in the previous section, our canonical model must be capable of rep-

resenting multidimensional data: the facts, dimensions and relationships that con-

ceptually represent a star schema. Our canonical model which we have termed the

StarGraph, is a graph based model with constructs to represent facts and dimen-

sional hierarchies that are captured from semi-structured data sources. In the first

part of this section, we focus on the properties of the StarGraph and in the second

part, we focus on its functionality or behaviour.

4.2.1 StarGraph Properties

Definition 4.1. StarGraph.

A StarGraph is composed of a set of nodes N and a set of edges E.

62

Definition 4.2. StarGraph-Node.

A StarGraph Node n ∈ N is a four-tuple n = 〈name, class, source, dType〉; where

name is the name of the node; class indicates the type of node; source specifies the

location of the data item in the schema; and dType is the datatype of the defined

node.

In Definition 4.2, a StarGraph node is defined. The source attribute can be XPath

[18] (for XML/HTML data) or dot-notation for JSON data. For the class attribute,

there are five possible types:

• Dimension marks a node which is the beginning of a dimension.

• dimension attribute is a marker denoting that the node in question is an

attribute of the parent dimension node.

• container indicates the node is an instance containing other nodes.

• measure indicates that this node is a measure.

• subdimension indicates the node is a subdimension

Definition 4.3. StarGraph-Edge.

A StarGraph Edge is a three-tuple E = 〈X,Y,REL〉 where: X,Y ∈ N ; REL is a

type denoting the relationship which exists between the nodes X and Y .

In Definition 4.3, we see the definition for an Edge as a triple connecting 2 nodes,

with a relationship type between nodes. The possible values for REL are: 1-1, 1-n

and m-n. The relationship type is obtained from examining the cardinality between

attributes such as the use on an array datatype in a JSON data source.

4.2.2 StarGraph Functions

StarGraph functionality is driven by the requirements specified in the previous sec-

tion. There are six main functions which define the behaviour of the StarGraph.

These functions manage all of the operations involved in constructing the StarGraph,

binding StarGraph elements to the original source data; and enabling materialisa-

tion of StarGraph instances. In later chapters, we will show how a special form of

the StarGraph can represent a data mart constructed from multiple sources. For

63

this chapter, we will focus on the core aspects of StarGraph construction from a

single data source. The six functions are:

• GraphAnnotate: analysis and markup of the initial graph.

• ClassifyNode: node analysis and classification.

• GraphEdit: different graph update operations.

• ClassifyDim: as part of graph analysis, detect and classify dimensions.

• ClassifyMeasure: as part of graph analysis, detect and classify measures.

• Materialise: populate or update the StarGraph.

4.2.2.1 The GraphAnnotate function

The role of GraphAnnotate is to examine a data source and construct a graph

representation of the data source which has been annotated with valuable metadata

about the source. This is necessary for two reasons; the first is that the graph

structure decouples source data from its original format, the second reason is to

provide metadata to the data source. When a data source is introduced to the

system, it is initially transformed into a typical graph format representing the source.

Each node captures a point of information: nodes will either become nodes in the

StarGraph, or be deemed unnecessary and removed. The edges between nodes are

derived from the structure of the data source (sub-elements in XML for example).

As part of the metadata obtained during this process, each node in the graph is

annotated with a query which can be used to extract information from the data

source. This query is created by scanning the data source. If the data source is

XML, or HTML , XPath queries are used. If the data source is JSON, dot-notation

is used, and if the data source is CSV the node contains a reference to the column

number.

Each edge in the graph is annotated with the cardinality of the relationship. Once

the queries for each node have been constructed, datatypes are assigned to each

node. The datatypes are discovered by using the queries generated previously to

extract the data found in the source. The datatypes applied are as follows:

64

• STRING - This type represents any textual information.

• OBJECT - This type is assigned to nodes which themselves do not contain any

information, but instead link to other nodes. These nodes become Dimensions

in the generated StarGraph.

• NUMBER - This type represents any numerical datatype. These nodes represent

potential measures.

• DATE - This type represents date datatypes.

• GEO - This type is reserved for nodes containing GEO dimensions.

This process produces an annotated graph representation ‘as-is’ from the data

stream. However, in order to identify the required dimensions and measures, each

node must be classified.

An example of the graph generated by the aim 1 dataset from Case Study 1 (section

3.4.1) is shown in Figure 4.2. The purpose of the box around the three blank nodes

is to simplify the visualisation, where each edge to the box represents an edge to

every node inside the box.

Algorithm 4.1 Algorithm for Assigning Node Types

1: function setNodeType(node)
2: switch node do
3: case isContainer(node)
4: node.setType(Container)

5: case isDimension(node.parent)
6: if node.reltype=”one” then
7: node.setType(Dimension-Attribute)
8: else
9: node.setType(Subdimension)

10: end if
11: case isNumeric(node)
12: node.setType(p-measure)

13: case Default
14: node.setType(Dimension)

15: for child in node do
16: setNodeType(child)
17: end for
18: end function

65

Figure 4.2: Graph representing the aim 1 dataset.

Additionally, a sample of the mappings produced at this stage are provided in JSON

format in Example 4.2.1. These mappings are very simple, consisting of; the node

name, the generated source query (XPath, JSON, CSV), the data type of the node

and a set of relationships connecting this node to other nodes. A relationship in

this instance is represented as a tuple 〈name, reltype〉 where name, is the name of

the related property, and type is the cardinality of the relationship.

Example 4.2.1. Sample mappings produced by the GraphAnnotate function.
[{
name:"",
src:"//table/tbody/tr[1]/th[1]",
type:"STRING",
relationships:[{

name:"WEST",
type:"one-to-one"

},...]
},
{name:"WEST",

src:"//table/tbody/tr[3]/th[1]",

66

srcformat:"HTML",
type:"STRING",
relationships:[

{name:"British Columbia - Alberta",
reltype:"one-to-one"},...]

},
{ name:"Federal/Provincial",

src:"//table/tbody/tr[1]/th[2]",
srcformat:"HTML",
type:"STRING",
relationships:[

{name:"2016-03-05",
reltype:"one-to-one"},...]

}...]

4.2.2.2 The ClassifyNode function

Once datatypes have been assigned to nodes, the next step of the process is node

classification. The role of ClassifyNode is to examine each node and provide a

classification related to a nodes role within a data source. This is necessary to

determine the relevance of each node and determine its potential place within a data

mart. At the outset, the graph is scanned node by node, using the classification logic

shown in Algorithm 4.1.

The ClassifyNode function examines a nodes information (name, data type) and

adjoining relationships to determine what class the node belongs to.

The function first tests to see whether or not a node is a container node and as such

is redundant. The function isContainer on line 3 of Algorithm 4.1 is specified in

Algorithm 4.2. This algorithm (4.2) examines a node’s direct relationships to ad-

joining nodes within the graph in order to determine whether the node is redundant

(a container node). The conditions for a container node are as follows:

1. If the node is a root node, it must have a name

2. A node may hold an edge to a single child node only, as shown in Line 2 in

Algorithm 4.2.

3. The edge between these two nodes must have a one-to-many cardinality, as

shown in Line 4 in Algorithm 4.2.

4. The child node may not hold a edge to any other parent node, as shown in

line 6 in Algorithm 4.2.

67

If all of these conditions are true, then the node is classified as a container node.

Lines 5-10 of Algorithm 4.1 determine whether a node is an attribute of a dimension

or a full sub-dimension itself. This is determined by examining the cardinality stored

in the annotated edge. If a node holds a 1-1 relationship with a Dimension node, it

is regarded as a dimension attribute. If they hold a one-to-many relationship, the

node is considered a sub-dimension.

Lines 11-12 of Algorithm 4.1 assign each numeric data type with the p-measure

classification. These nodes are considered to be potential measures within the data

mart. In the event that any of the previous classifications are not met, the algorithm

assumes the node is a dimension node as shown in line 14 of Algorithm 4.1.

Figure 4.3: aim 1 dataset after classification

Fig 4.3 presents the aim 1 graph after node classification. Classifications are ex-

68

pressed using ‘〈’ and ‘〉’ brackets. Nodes expressed as 〈M〉 are classified as potential

measures. 〈DIM〉 refers to dimensions, 〈SUBDIM〉 refers to sub-dimensions and

〈CONTAINER〉 identifies nodes which are candidates for removal.

Algorithm 4.2 Algorithm for Detecting Container Elements

1: function isContainer(node)
2: if node.isRoot AND isEmpty(node.name) then
3: return True
4: else if node.children.size!=1 then
5: return False
6: else if node.children.relType!=one-to-many then
7: return False
8: else if graph.instance(node.children)>1 then
9: return False

10: end if
11: return True
12: end function

These classifications extend the mappings provided in Example 4.2.1 by adding a

classification property to each node entry. An example of these updated mappings

can be seen in Example 4.2.2.

Example 4.2.2. Example mappings produced by the ClassifyNode function.
[{name:"",
src:"//table/tbody/tr[1]/th[1]",
type:"STRING",
classification:"CONTAINER"
relationships:[{

name:"WEST",
type:"one-to-one"

},...]
},
{name:"WEST",

src:"//table/tbody/tr[3]/th[1]",
srcformat:"HTML",
type:"STRING",
classification:"DIM"
relationships:[

{name:"British Columbia - Alberta",
reltype:"one-to-one"},...]

},
{ name:"Federal/Provincial",

src:"//table/tbody/tr[1]/th[2]",
srcformat:"HTML",
type:"STRING",
classification:"DIM"
relationships:[

{name:"2016-03-05",
reltype:"one-to-one"},...]

}...]

69

4.2.2.3 The GraphEdit function

Graph restructuring is a multi-phase process, the goal of which is to remove all

container elements from a StarGraph. The role of GraphEdit is to restructure the

graph (change the set of edges) upon removing redundant nodes. This is necessary to

simplify the graphs structure and ensures that redundancies are not present within

the data mart.

The first step is the removal of all container elements. This is achieved by removing

all nodes annotated as containers and relinking the child edges from the container

node to the containers’ parent nodes. The logic is shown in Algorithm. 4.3. Lines

4-9 within Algorithm 4.3 remove a container node from the graph, and re-link any

relationships between parent and children node which may have been broken by

removing the container node.

Once this process has been completed, all nodes in the graph are reclassified to ensure

no new container nodes have been created through the restructuring process. If new

container elements are detected, this process repeats until no container elements

are found in the graph. In the example Figure 4.4 the unnamed node previously

identified as a container (figure 4.3) was removed.

Algorithm 4.3 Algorithm for graph restructuring

1: function removeContainer(node)
2: parentNodes = node.parents
3: childnodes = node.children
4: for pNode in parentNodes do
5: for cNode in chlidNodes do
6: pNode.addChild(cNode)
7: cNode.addParent(pNode)
8: end for
9: p.removeChild(node)

10: end for
11: for c in childNodes do
12: c.removeParent(node)
13: end for
14: end function

This process updates the mappings produced, by removing nodes, and updating the

relationships for all nodes affected by the removal. In the case of the mappings

70

Figure 4.4: aim 1 dataset with containers removed

shown in 4.2.2, the only change is the removal off all references to the blank node.

This can be seen in Example 4.2.3.

Example 4.2.3. Example mappings produced by the GraphEdit function.
[{name:"WEST",

src:"//table/tbody/tr[3]/th[1]",
srcformat:"HTML",
type:"STRING",
classification:"DIM"
relationships:[

{name:"British Columbia - Alberta",
reltype:"one-to-one"},...]

},
{ name:"Federal/Provincial",

src:"//table/tbody/tr[1]/th[2]",
srcformat:"HTML",
type:"STRING",
classification:"DIM"
relationships:[

{name:"2016-03-05",
reltype:"one-to-one"},...]

}...]

71

4.2.2.4 The ClassifyDim and ClassifyMeasure functions

The next step in the StarGraph process is to identify all measures and dimensions.

The role of these functions is to determine the structure of data mart dimensions

and identify the measures within the data source. This is a crucial step in construct-

ing the StarGraph schema that provides the data mart with its multidimensional

properties.

All items which have previously been classified as candidate measures are evaluated

at this stage. In the event they are determined not to be measures, they are re-

classified as dimension-attribute nodes and become part of a dimension object.

The algorithm for constructing dimensions is shown in Algorithm 4.4. Line 6-7

of the Algorithm collects all child nodes for a dimension which have been identi-

fied as properties of that dimension. Similarly, lines 8-10 examine a dimension’s

relationship with sub-dimensions and construct a hierarchy within the dimension.

When constructing the fact object, the dimensions which describe the fact are those

through which the measure is either linked directly or transitively. In the event

a dimension does not have a specified key, a primary-foreign relationship will be

created for it. This relationship will be generated using attribute(s) captured on

both sides of the relationship: if two dimension objects contain the same values for

their attributes, they are considered to be of the same dimension.

Measures are grouped into the same fact based on their shared relationships. That is,

if two nodes classified as measures contain edges to the same dimension nodes, they

will share the same fact. This is determined by examining the edges connecting each

measure to dimensions and grouping them into dependency sets (Ex 4.4). Similar to

functional dependencies, the dependency sets identify which dimensions are required

for each measure. However, in addition to the structure of the graph, the cardinality

of the relationships must also be considered in order to determine which measures

can occupy the same facts.

Definition 4.4. Dependency Set.

A Dependency Set DS = 〈(d1, c1), (d2, c2)...(dn, cn)〉 is a set of tuples (d, c) ∈ DS

where d is the dimension to which a measure is connected, and c is the cardinality

72

of that connecting edge.

Our method makes the important assumption that measures that have the same

dependency set S are considered to be of the same fact: they share the same depen-

dencies. There may be multiple facts created from a single data source but these

facts will share dimensions in the same fashion as a constellation schema.

Once all dependency sets have been created, the final step is to construct the indi-

vidual facts, as at this stage, we have the set of all measures and their dependencies

to dimensions (i.e. all the required properties to construct a fact).

Algorithm 4.4 Algorithm for dimension construction

1: function constructDimension(node)
2: attributes = []
3: subdims = []
4: for n in node.children do
5: if n.classification!=”measure” then
6: if n.edgeType==”1-1” then
7: attributes.add(n)
8: else if n.edgeType==”1-m” then
9: sub =constructDimension(n)

10: subdims.add(sub)
11: end if
12: end if
13: end forreturn
14: Dimension(node, attributes, subdims)
15: end function

These properties enrich existing mappings as they now capture the constituent parts

of dimensions and a set of measures. These additions can be seen in Example 4.2.4.

Example 4.2.4. Example mappings produced by Classify functions.
{nodes:[{name:"WEST",

src:"//table/tbody/tr[3]/th[1]",
srcformat:"HTML",
type:"STRING",
classification:"DIM"
relationships:[

{name:"British Columbia - Alberta",
reltype:"one-to-one"},...],

attributes:["",..],
subdimensions:["TOTAL WEST"]

},
{ name:"Federal/Provincial",

src:"//table/tbody/tr[1]/th[2]",
srcformat:"HTML",
type:"STRING",

73

classification:"DIM"
relationships:[

{name:"2016-03-05",
reltype:"one-to-one"},...],

attributes:[],
subdimensions:["2016-03-05"]

}...],
dimensions:["WEST","FEDERAL/PROVINCIAL",...],
measures:["","%",...]}

4.2.2.5 The Materialise function

The role of the Materialise function is to populate the data mart by using the

mappings to a data source. As dimensions, subdimensions, measures and facts have

been previously generated, the first step in materialise is to simply render these as

JSON.

Example 4.2.5 details the schema generated by the StarGraph. The document con-

tains a set of dimensions, measures and facts which have been detected within the

StarGraph by the ClassifyDim and ClassifyMeasure functions. For example,

the dimension called ‘West’ contains no attributes, but does contain a subdimen-

sion called ‘British Columbia - Alberta’. This document constitutes the target

schema for the mappings.

Example 4.2.5. Target schema for aim 1.
{

name:"aim_1",
type:"HTML",
source:"http://aimis-simia.agr.gc.ca/..."
dimensions:[

{
name:"West",
attributes:[],
subdimensions:[
{

name:"British Columbia - Alberta",
attributes:[],
subdimensions:[]

},
...]

},
{

name:"Federal/Provincial",
attributes:[],
subdimensions:[...]

}...
],
measures:[

{
name:"",

},

74

...],
facts:[

{
dimensions:["West"...],
measures:["",....]

}]}

Definition 4.5. Mapping.

Each mapping is of the form (〈query〉) → 〈schema position〉 Where query is the

source query for a node within a StarGraph and schema position is where the value

for the node should be stored within the target schema. This is represented using

JSON dot notation.

Example 4.2.6 illustrates a subset of the mappings, containing a source query and

their corresponding place within the target schema, with the definition of a mapping

being presented in Definition 4.5.

Example 4.2.6. Mappings for aim 1.
("//table[1]/tbody/tr[3]/th[1]") -> West,
("//table[1]/tbody/tr[3]/th[2]")-> West.subdimensions

["British Columbia - Alberta"]
("//table[1]/tbody/tr[3]/td")->measures[""]

These mappings can then be used to extract data from its source and place them

within the target schema. As the majority of data sources available on the web are

in XML, JSON, HTML or CSV formats, our research focused on these standard

formats. However, this section presents the generic Materialise function and it

requires customisation depending on the structure of the underlying data source. In

the following section, we provide a detailed description of the process for managing

heterogeneous data sources.

4.3 Materialisation Wrappers

The purpose of the wrappers is to remove heterogeneity between data source formats.

This necessitates a wrapper data model to which each individual wrapper conforms.

Our wrapper is called an Annotated Tuple Set (ATS) shown in Definition 4.6. An

annotated tuple set represents source data as a series of tuples, annotated with

metadata such as the name of the attribute and the source query. Each wrapper

75

examines a data source and produces an annotated tuple set. The mappings are

then applied to this tuple set in order to extract the data.

Definition 4.6. Annotated Tuple Set.

An Annotated Tuple Set is of the form:

ATS = 〈A1....An〉 Where A represents a list annotated attributes, corresponding

to a particular data instance (e.g. a row in a CSV file). This is of the form:

〈(n, s, v)1...(n, s, v)n〉, ehere n is the name of an attribute, s is the source query and

v is the value for the attribute.

4.3.1 HTML Data Streams

HTML data streams such as aim 1 prove the hardest to transform into an ATS.

While wrappers may use knowledge about the rigid structure of other formats, the

wide array of possibilities used to represent HTML data poses problems.

HTML data makes use of both content (the HTML markup) and layout (CSS) to

convey information to the user. This means that multiple combinations of content

and layout may appear visually similar to a user, however they may be quite different

in their underlying implementations. Despite the fact that a specification for the

tags involved in the markup exist, enforcement of this structure is rare. Due to

the large degree of possibilities, the wrapper limits itself to searching for structured

tabular data. In short, it examines a page for table elements, and parses them.

This works well for data sources which use these elements correctly, for example

b 1.

Figure 4.5: Sample of aimis 1 data source

The process for transforming a HTML table into an ATS first requires constructing

76

a matrix representation of the data source. Tools such as Pandas [48] can be used to

accomplish this first task, consuming a HTML table and constructing a Data Frame

from it. Once the matrix representation is complete, the data source is examined

to determine the structure of the HTML table. If the table contains only column

headers, the table can be scanned row-by-row in order to flatten it, similar to a

CSV file. However if the source contains row and column headers, or multiple row

and column headers, the source must be traversed by first flattening the row and

column headers and then, iterating through the matrix in a row ∗ column fashion.

For example, Figure 4.5 presents the raw table shown by the aim 1 dataset. Once

the wrapper has been applied, the ATS can be seen in Example 4.3.1.

Example 4.3.1. Annotated tuple set for aim 1.
({name:Federal, src:"...", val:"Federal"},
{name:"2016-03-05", src:"...",
val:"2016-03-05"},
{name:"West",src:"...", val:"West"},
{name:"Total West",src:"...",
val"Total West"},
{name:"",src:"...",val:"226,171"}),...

Figure 4.6: Sample of the b 1 data source

The StarGraph produced by this dataset can be seen in Fig 4.4, while simpler

HTML structures as shown in the b 1 dataset (shown in Figure 4.6) produce a

series of tuples in the form shown in Example 4.3.2. Each item in the tuple list in

this instance contains three attributes: the column name; the source query (the row

number); and the value of the td element under the val header. These examples are

simple tables, containing a date and a value, which produces a StarGraph consisting

of a single measure and a Date dimension as shown in Figure 4.7.

Example 4.3.2. Annotated tuple set for b 1.
({name:Time, src:"...", val:"2017-01-07"},
{name:"Ireland/Total Pigs",src:"...",val:"51,051"}),...

This graph produces rather simple mappings, consisting of one dimension and one

77

Figure 4.7: Sample of simple b 1 StarGraph

measure and thus, renders a fact object as a tuple. The target schema produced by

the b 1 StarGraph transformation can be seen in Example 4.3.3 and the mappings

are shown in Example 4.3.4.

Example 4.3.3. Target Schema produced from b 1 dataset.
{

"name" : "b_1",
"type" : "HTML",
"source" :"https://www.bordbia.ie/ind...",
dimensions : [
{

"name" : "Time",
"type" : "Date",
"attributes":[],
"src" : "//table/tbody/tr/td[1]"

}
],
measures : [
{

"name" : "Ireland/Total Pigs",
"type" : "MEASURE",
"src" : "//table/tbody/tr/td[2]"

}
],
facts:[{

dimensions:["Time"],
measures:["Ireland/Total Pigs"]

}]
}

Example 4.3.4. Mappings produced from b 1 dataset.

(“//table/tbody/tr/td[1]”)→Time

(“//table/tbody/tr/td[2]”)→“Ireland/Total Pigs”

A complete target schema and mappings for the aim 1 StarGraph are provided in

Appendix A.

78

4.3.2 XML and JSON Data Streams

The process to construct a tuple list from XML or JSON data is relatively simple,

requiring a single traversal of the structure. This essentially flattens the data source

which in normal circumstances, results in the loss of metadata or semantics captured

in the XML or JSON documents. However, with our approach, this is not lost as

the StarGraph captures this metadata. Thus, information such as the cardinality

between nodes and the structure of dimensions and measures as extracted from the

documents structure are retained in the StarGraph.

Algorithm 4.5 presents a high level overview of how the traversal takes place. The

function getSource at line 7 extracts the data source query from the raw data

source. It then traverses a data source recursively, at each level extracting a nodes

name, source path and value. These constitute a set of nodes found at a level within

the data source structure. This set is then passed to the nodes parent element,

which is then used to formulate another set of values. The process repeats until

the entire data source has been parsed leading to a set of tuples representing the

flattened XML or JSON data source.

Algorithm 4.5 High level algorithm for XML and JSON traversal

1: function traverseStructure(nodelist)
2: end set = []
3: if nodelist(size)==0 then
4: return []
5: else
6: for node in nodelist do
7: node structure = {node.name, node.getSource, node.value}
8: if node.hasChildren then
9: child set = traverseStructure(node.children)

10: for item in child set do
11: end set.append(node structure + item)
12: end for
13: else
14: end set.append(node structure)
15: end if
16: end for
17: end if
18: return end set
19: end function

79

There is only one XML data stream presented in the case studies, the imf dataset.

This dataset has a rich structure, containing many nodes, representing a series of

elements for each possible currency, listing its values as SDRs (Special Drawing

Rights). A subset of the imf dataset can be seen in Example 4.3.5, and the corre-

sponding tuple set can be seen in Example 4.3.6.

Example 4.3.5. Sample of the imf dataset.
<EXCHANGE_RATE_REPORT>
<EFFECTIVE_DATE VALUE="09-Nov-2017">
<RATE_VALUE CURRENCY_CODE="ALGERIAN DINAR" ISO_CHAR_CODE="DZD">

0.00617914
</RATE_VALUE>
<RATE_VALUE CURRENCY_CODE="Australian dollar" ISO_CHAR_CODE="AUD">

0.547397
</RATE_VALUE>

</EFFECTIVE_DATE>
</EXCHANGE_RATE_REPORT>

Example 4.3.6. Sample tupleset for imf dataset.
({name:"EXCHANGE_RATE_REPORT",src:"/",val:"EXCHANGE_RATE_REPORT"},
{name:"EFFECTIVE_DATE",src:"..",
val:"EFFECTIVE_DATE"},
{name:"VALUE",src:"..",
val:"09-Nov-2017"},
{name:"CURRENCY_CODE",src:"..",
val:"ALGERIAN DINAR"}
{name:"ISO_CHAR_CODE",src:"..",
val:"DZD"},
{name:"RATE_VALUE",src:"..",
val:" 0.00617914"}),...

Figure 4.8 shows the StarGraph created from the imf dataset which produces a

reasonably complex StarGraph. However, many of the nodes found in this graph

are redundant. For example, the dimension named USER SELECTIONS contains only

metadata about the query used to generate the data. Similarly the node DISCLAIMER

is a legal disclaimer stored inside an XML node. These values provide no information

to the data mart. However, as they contain data, the StarGraph process assumes

they are of use and will be populated in a data mart unless a user specifies they

should be removed. Approaches to dealing with these types of redundancies are

discussed in chapter 6.

The one measure found is unnamed and resides as a child of the RATE VALUE node,

with the single fact holding an edge to all dimensions.

Example 4.3.7. Target schema produced by the imf StarGraph.
{

"name" : "imf",

80

"type" : "XML",
source:"http://www.imf.org/external/...",
dimensions : [
{

"name" : "ExchangeRateReport",
"type" : "Object",
"src" : "//ExchangeRateReport",
"attributes":[{

"name":"ReportName",
"type":"String",
"src":"//ExchangeRateReport/ReportName/text()"

},
....]...,

},...
],
measures : [
{

"name" : "RateValue",
"type" : "MEASURE",
"src" : "//ExchangeRateReport/EffectiveDate/RateValue/text()"

},...
],
facts:[{

dimensions:["ExchangeRateReport","UserSelections,....],
measures:["RateValue/text()"]

}]
}

Example 4.3.8. Mappings for imf StarGraph.

(“//ExchangeRateReport/ReportName/text()”)→ExchangeRateReport[“ReportName”]

(“//ExchangeRateReport/EffectiveDate/RateValue/text()”)→RateValue

A sample of the target schema produced by this StarGraph is shown in Example

4.3.7, with sample mappings in Example 4.3.7, and a full version provided in Ap-

pendix B.

As there are no JSON data sources in the agri case studies, we present a JSON

data source from one of our earlier research collaborations from the Smart Cities

domain. Transport Infrastructure Ireland [1] provide a JSON data set which details

the travel times between all junctions on all motorways across Ireland. This dataset

updates every five minutes.

JSON data is parsed in a similar manner to XML. However, less work is involved in

terms of detecting structures and inferring datatypes as JSON provides array, object

string and number data types. These provide an easier mechanism for determining

node classifications. Figure 4.9 shows the constructed StarGraph as consisting of

three measures: the distance between two junctions, the current travel time, and

81

Figure 4.8: StarGraph created from the imf dataset

the minimum travel time. A sample of the target schema and mappings produced

by the tii StarGraph can be seen in Example 4.3.9 and Example 4.3.10 with a full

set being provided in Appendix C.

82

Figure 4.9: StarGraph for tii dataset

83

Example 4.3.9. Target Schema produced by the tii StarGraph.
{

"name" : "tii",
"type" : "JSON",
source:"dataproxy.mtcc.ie/..",
dimensions : [
{

"name" : "M&_EastBound",
"type" : "Object",
"src" : "M7_EastBound",
"attributes":[],
"subdimensions":[

{
name:"",
"type":"Object",
"src":"M7_EastBound.data[*]",
"attributes":[{

"name":"from_name",
"type":"String",
"src":"M7_EastBound.data[*].from_name"

},...]
}

]...,
},...
],
measures : [
{

"name" : "c_travel_time",
"type" : "MEASURE",
"src" : "*.data[*].current_travel_time"

},...
],
facts:[{

dimensions:["M7_EastBound",....],
measures:["current_travel_time", "distance",...]

}]
}

Example 4.3.10. Mappings produced by the tii StarGraph.

(“M7 EastBound.data[*].from name”)→ M7 EastBound[“from name”]

(“M7 EastBound.data[*].to name”)→ M7 EastBound[“to name”]

(“M7 EastBound.data[*].c travel time”)→ c travel time

4.3.3 CSV Data Streams

CSV data streams are the easiest to transform into an ATS. However, determining

data types requires examining every value for a column. As such, the process for

determining datatypes is O(nm) where n is the number of rows and m the number of

columns. Additionally, relationships in CSV files are assumed to be ONE TO ONE. This

84

is due to the complexity involved in determining relationships which is O(
(
n
2

)
m).

CSV datasets also generate simple StarGraphs, with each column occupying a node

in the StarGraph. These columns can then either become dimensions or measures.

This is due to the fact that complex dimensions cannot be obtained from CSV

files, as they are largely dependent on the structure of the raw data. Case Study 2

utilises many CSV data sources and they produce similar StarGraphs to b 1 from

Case Study 1. This is because like these HTML data sources, the CSV sources

contain only two columns, a date and a measure. More complex CSV sources such

as usda produce StarGraphs with a large degree of dimensions and measures.

A sample of this StarGraph can be seen in Figure 4.10 while the target schema

and mappings produced can be seen in Example 4.3.11 and Example 4.3.12 with a

complete version being provided in Appendix D.

Example 4.3.11. Target Schema produced from the usda dataset.
{

"name" : "usda",
"type" : "CSV",
"source" :"http://quickstats.nass.usda.gov/api/..",
dimensions : [
{

"name" : "source_desc",
"type" : "STRING",
"attributes":[],
"src" : "[0]"

},...
],
measures : [
{

"name" : "Value",
"type" : "MEASURE",
"src" : "[37]"

},...
],
facts:[{

dimensions:["source_desc",....],
measures:["Value",....]

}]
}

Example 4.3.12. Mappings produced from the usda dataset.

(“[0]”)→“source desc”

...

(“[37]”)→“Value”

85

Figure 4.10: Sample StarGraph created from usda dataset.

However, all CSV data sources, produce StarGraphs similar to the source data. This

is because unlike JSON and XML, the data is tabular in nature, and unlike HTML,

does not have dimension hierarchies or complex structures.

4.4 StarGraph Transformation: An Interim Case Study

At this point, the reader may have a fundamental question to ask: is there an over-

riding assumption that all sources are multi-dimensional? Where is the value in our

research if there exists no multidimensional data in the sources that make up our

multidimensional data marts? Our assumption is that analytical data (data used

in reports, tables, analyses) is by its nature, multi-dimensional in structure. To

demonstrate that our hypothesis is sufficiently on track to continue with our stated

goals, we were provided with the entire set of agri sources (120 in total) used in a

research project by one of our collaborators. The goal of this analysis is a mid-term

evaluation of our research to ensure that the StarGraph concept works, and can be

used in later stages to integrate sources and form usable and potentially complex

data marts.

As part of this evaluation, we examined 120 unseen Agri-data sources and as ex-

pected, not all of these sources could form part of a StarGraph while others produced

StarGraphs of varying quality. For all 120 data sources, we provided classifications

regarding the suitability of the resulting StarGraph with the results presented in

Table 4.1. The classifications for sources are as follows:

• Full. This classification was reserved for sources which produced full Star-

Graphs complete with dimensions and measures.

86

Table 4.1: Results of Analysing 120 Agri Data Sources

Classification Facts Dims Holistic Non-Spurious Count Sources(%)

Full 3 3 3 3 41 34%

Partial 3 3 3 7 29 24%

Descriptive 7 3 3 7 14 12%

Missing 7 3 7 3 2 1%

Unusable 7 7 7 7 34 29%

• Partial. This classification was used for StarGraphs which were missing at-

tributes and metadata but still provided a usable data mart.

• Descriptive. This classification was used for StarGraphs which did not pro-

duce any measures, but instead contained rich dimensional hierarchies which

could prove useful when integrating StarGraphs.

• Missing. This classification was used for StarGraphs which did not contain

enough information in order to be usable. Dimensions may be present for

sources found within this classification, however they are not of sufficient depth

to be usable.

• Unusable. This classification was reserved for sources which failed to produce

a StarGraph.

We can see from Table 4.1 that 70% (84) of the unseen data sources produced usable

StarGraphs and of this 84, 41 produced Full StarGraphs. The columns Facts, Dims,

Holistic and Non-Spurious refer to the presence (or absence) of desired attributes

within each classification. Facts indicates that one or more facts were identified.

Dims indicates one or more dimensions were found. Holistic means no attributes

were discarded during construction. Non-Spurious indicates whether or not the

StarGraph was ‘usable’. Finally, Count details the number of sources which fell

under a classification.

Unusable sources included non supported formats (e.g. PDFs, JPEG etc...), HTML

files which contained malformed markup. In these instances the misuse or absence

of recommended tags halted program execution. Finally, some sources which failed

to integrate were small data cubes represented as pivot tables in Excel. The two

87

sources classified as Missing found only a date dimension and nothing else. In the

absence of any other attributes the dimension is of little use. No facts were found for

the Descriptive data sources, however rich dimensional hierarchies were discovered

which could prove useful when integrated with another StarGraph. Finally, Partial

data sources produced unusable StarGraphs. A common example was the misuse

of 〈table〉 tags within HTML sources, using these elements to present data and

determine page layout.

One may ask through our analysis did a standard of data sources emerge which

could be used to facilitate top down integration [31]. Our metamodel (Sect. 3.3.3)

emerged from our search for commonality across the full set of agri sources. In

essences, this provided us with a form of standard for multi-dimensional represen-

tation of agri sources.

4.5 Summary

This chapter presented a system and methodology which can be used to construct

and populate a data mart from a single data source. The process uses an annotated

graph as a common data model, with a series of node classifications to identify

the facts and dimensions located within a single data source. These measures and

dimensions are subsequently used to construct a series of facts which will constitute

a data mart. The mappings constructed by the process are subsequently used to

populate the data mart. The overall methodology provides a means of automatically

capturing an individual data stream and populating a data mart without the need

for user intervention. However, most analyses will require data from multiple sources

and at this point, this approach can only construct a data mart (as a StarGraph)

from a single data source. To facilitate more powerful analyses, it is necessary to

integrate data sources. This provides the focus for the next chapter.

88

Chapter 5

StarGraph Integration

While the previous chapter presented a system which provided a means of con-

structing a data mart from a singe data source, this chapter provides a series of

extensions to this system which allow a user to construct a data mart from multiple

data streams.

In the previous chapter we presented a detailed description of our method for con-

structing a data mart from a single data source. However, data marts generally

comprise multiple heterogeneous data sources, requiring a significant investment

in data integration. There are multiple problems associated with automatic and

semi-automatic data integration. Specifically, the fact that these approaches fail

to capture and understand the abstractions known to the ETL designer or domain

expert. In this chapter we present a multi-source representation of the StarGraph

which we call a ConstellationGraph or Constellation for short. In section 5.1, we

provide a discussion on the functions necessary to create the Constellation. This is

similar to the requirements section in chapter 4 but here, we focus on the integration

process and the specific issues causes by the semi-structured nature of the data. In

section 5.2, we present the functional aspects to the StarGraph model that manage

integration; and finally in section 5.3, we provide a detailed description of data mart

construction and the mappings generated by the transformation process.

89

5.1 Integrating Semistructured Data

In chapter 4, it was necessary to highlight the issues to be addressed when trans-

forming data from one model representation to another. The process of integrating

two (or more) data sources requires a similar process. In this section, we ensure

that these issues are highlighted and understood, before specifying the integration

properties of our model.

5.1.1 Resolving Mapping Difficulties

When designing an ETL system, the designer draws upon domain and general knowl-

edge to provide semantic integration. As we provide a more automated integration,

the reliance on the data engineer must be minimal. Therefore, we must provide a

method for resolving structural and semantic issues that arise during the integration

process.

Term Mapping.

There is generally a requirement to resolve different terminologies used in separate

data sources. These differences may manifest in various ways, most obvious is the

fact that different languages use different strings to represent the same concept.

Another reason for differences is using different specific terminologies to a domain

or having multiple strings which may represent the same concept (for example ab-

breviations such as the strings ‘EU’ and ‘European Union’). However, all of these

problems can be overcome by providing canonical terms to each item found amongst

all data sources. By replacing individual strings with canonical terms representing

the concepts that the string represents, the system is able to identify common fea-

tures across datasets. This process requires the existence of some form of ontology

which captures these terms and serves as a lookup table (called a term-map).

Type Mapping.

Unfortunately term mapping does not resolve all differences between data sources.

While term mapping seeks to resolve entities of the same concept, there still exists

the need to determine concepts of the same type. Some types may be automatically

determined, for example date types and geo-location data. However other types

90

are not present in an automatic system which a designer would have knowledge

of. A common example of types lies within a Geo dimension. For example, the

strings ‘Ireland’ and ‘France’ are not similar. However, an application designer

would know that these are both countries and as such would both be values within

a country dimension. This process should examine the canonical terms assigned

during the previous step, and annotate these with the abstract types that the concept

represents. This requires an extension to the term-map ontology which provides the

addition of type information.

5.1.2 Identifying Integration Attributes

One of the tasks for integration is the identification of the attributes which are

common to both sources and these attributes are subsequently used to integrate

the data sources. Considerable research into warehouse building [42] has show the

same subset of dimensions used in almost all application areas, if we consider them

in their most abstract form. Using this research, we propose that an ontology or

metamodel should capture and understand the following properties:

• Date. These must be a value for a data dimension

• Geo. This type is of the Geo dimension.

• Item. This is a string denoting what item is being measured. (e.g. product)

• Metric. This is a string what method is being used to provide the measure

• Units. This is a string denoting the units of measurement for the measure.

These can be standard units of measurement (e.g. kg, lb) or aggregate func-

tions (SUM/TOTAL, AVERAGE, COUNT).

• Value. This type is the value of the measure itself.

However, all of these values may not be present within a data source, so it should

possible for a user to provide these values in the event that they are not found. It

is also important to note that these attributes are required per-measure. That is

for each measure (Value) found within a data source.

91

5.1.3 Selecting an Integration Strategy

A process is required to examine the two data streams for integration in order

to determine the possible integration attributes. The process should combine di-

mensions which are of the same value, and determine the degree of integration for

the two data sources. Some data sources may be directly integrated, producing a

data mart which closely matches the system metamodel while others may produce

marts of varying complexity, depending on the degree of integration. These two

possibilities are encapsulated within the two integration strategies row-append and

column-append.

row-append is reserved for data sources which share the exact metamodel. This is

reserved for data which may be fully integrated while column-append encapsulates

all other possibilities deriving from the possible combinations of metamodel values

present within both data sources.

Figure 5.1: Example of the ladder integration strategy for sources A,B,C and D

92

5.2 Integration Functions

Data sources required for integration are selected by a user. These sources are then

passed as a list to the system and integrated using the ladder strategy [8]. That is,

the first two sources in the list are integrated, then the next source is selected and

integrated into the previously integrated sources. This process continues until there

are no more sources to integrate. This results in a process involving n−1 integration

steps where n is the number of sources to integrate. A conceptual diagram of the

ladder strategy for data sources named A, B, C and D can be seen in Figure 5.1.

It is important to note that the order in which the sources are selected does not

influence the integration process. That is, for all possible permutations of that set,

there exists only one possible StarGraph configuration. This is due to the presence

of the ontology which influences the integration approach. An empirical analysis

and discussion of this property is presented in section 5.3.1.

Our assumption is that the user selects a set of data sources which they would like to

merge into a single data mart. The StarGraph behaviour (functionality) described

in chapter 4 has an extended behaviour to manage integration. There are seven main

functions which comprise the integration process. These functions detail all steps

involved in integrating two web datasets, from the initial selection of the sources to

the construction and materialisation of the multi-source mart. These functions are:

• TermMap: annotate data sources with canonical terms.

• TypeMap: annotate data source with abstract types.

• MetaModelCheck: ensure a data source is compliant with the metamodel.

• GranularityCheck: ensure the data sources set to be integrated are of the

same grain.

• DetermineStrategy: determine an integration strategy.

• GenerateTargetSchema and GenerateMappings: Construct the target schema,

and corresponding mappings to extract and integrate data.

• Materialise: populate or update the constellation.

93

5.2.1 The TermMap function

The TermMap function annotates the graph with canonical terms for attributes found

within the data source and is necessary in order to resolve heterogeneities in data

sources. A common use for TermMap resides in the Geo dimension with the numerous

ways different country names can be represented. For example, the terms ‘IRL’ and

‘Éire’ are not related using any standard string matching algorithm. However, both

terms refer to the country Ireland.

Algorithm 5.1 takes two parameters: the name of the required node, and the context

of the graph. The context of the graph is the source (unique-identifier) of the data

source from which the StarGraph was created. This is required as different data

sources may use similar terms within different contexts. For example, one source

may use the term ‘Ireland’ to refer to the sale of pigs in Ireland, while another may

use the same term to refer to the production of pigs in Ireland.

Algorithm 5.1 The TermMap function

1: function termMap(graph)
2: for node in graph.nodes do
3: term = getTermForNode(n.name,graph.context)
4: node.addTerm(term)
5: end for
6: return
7: end function

Using the Bord Bia example, the node with the name ‘time’ is renamed to ‘week’ as

in this context, the data values are dates representing weeks and do not contain time

values. A diagram of this graph after the TermMap process can be seen in Figure.

5.2 with the annotated terms between ‘(’ and ‘)’.

Figure 5.2: bb 1 StarGraph after application of the TermMap function.

For the aim 1 dataset, the application of the TermMap function removed some am-

94

biguities, such as the lack of a name for the measures, and provided more context

in relation to terms such as‘East’ and ‘West’ referring specifically to ‘East-Canada’

and ‘West-Canada’ respectively. The aim 1 StarGraph returned from the TermMap

function can be seen in Figure 5.3.

Figure 5.3: aim 1 StarGraph after application of the TermMap function.

This process extends the mappings for a StarGraph by adding a property term to

each node denoting the canonical term obtained from the ontology. An example of

this for the aim 1 data source can be seen in Example 5.2.1. In this example, we

can see the addition of a term property for each dimension, attribute, subdimension

and measure, denoting the canonical term obtained from the ontology.

Example 5.2.1. Mappings after TermMap for aim 1.

95

{
name:"aim_1",
type:"HTML",
source:"http://aimis-simia.agr.gc.ca/..."
dimensions:[

{
name:"West",
type:"object",
term:"WEST-CANADA"
src:"//table[1]/tbody/tr[3]/th[1]",
attributes:[],
subdimensions:[...]

},
{

name:"Federal/Provincial",
type:"object",
term:"FEDERAL-PROVINCIAL",
src:"//table[1]/tbody/tr[2]/th[2]",
attributes:[],
subdimensions:[...]

},
...],...

5.2.2 The TypeMap function

There still exists the issue of resolving concepts which should be treated as the same

type, even though they appear to different (e.g. ‘Ireland’ , ‘France’ are two values

of the same Country type). Type mapping assigns canonical types to each node by

capturing the abstract concepts which link these nodes in order to further facilitate

semantic integration. These types are obtained from the ontology. There are five

types specified as being the minimum requirement for an automated integration

as defined by the metamodel (section 3.3.3). However, the user may extend the

metamodel by defining their own types within the ontology in addition to base

types.

Algorithm 5.2 The TypeMap function

1: function typeMap(graph)
2: for node in graph.nodes do
3: type = getTypeForNode(n.term)
4: node.addType(type)
5: end for
6: return
7: end function

The TypeMap function can be seen in Algorithm 5.2. This function call getTypeForNode

on line 3 searches the ontology for the type of the node. The function takes the term

96

previously applied to a node and performs a lookup operation in the ontology to

return the canonical type associated with that term.

Figure 5.4: bb 1 StarGraph after application of the TypeMap function

For the Bord Bia dataset, the applied types were both metamodel types: Date

and Value. The bb 1 StarGraph produced by the TypeMap function can be seen

in Figure. 5.4. Similarly for the aim 1 StarGraph, there were three Metamodel

attributes: Date, Geo and Metric. In addition, one type which was not part of

the metamodel, but a part of the ontology, Region, was annotated to the nodes

Federal, Provincial and Federal/Provincial. The aim 1 StarGraph returned

by the TypeMap function can be seen in Figure. 5.5.

Similar to the TermMap function, this function extends the mappings by adding a

property onttype (ontlogy type) denoting the type of the node as obtained from

the ontology. An example of these mappings for the aim 1 dataset can be seen in

Example 5.2.2.

97

Figure 5.5: aim 1 StarGraph after application of the TypeMap function

Example 5.2.2. Mappings after TypeMap for aim 1.
{

name:"aim_1",
type:"HTML",
source:"http://aimis-simia.agr.gc.ca/..."
dimensions:[

{
name:"West",
type:"object",
term:"WEST-CANADA",
onttype:"GEO",
src:"//table[1]/tbody/tr[3]/th[1]",
attributes:[],
subdimensions:[...]

},
{

name:"Federal/Provincial",
type:"object",
term:"FEDERAL-PROVINCIAL",
onttype:"REGION",
src:"//table[1]/tbody/tr[2]/th[2]",
attributes:[],
subdimensions:[...]},...],

98

5.2.3 The MetamodelCheck function

The MetamodelCheck function ensures that a measure has sufficient information to

complete the integration process. For every measure, the function confirms that the

measure has connections to nodes with the types Date, Geo, Item, Metric and Unit.

These types are required for each measure as multiple measures within a data source

may represent different metrics. For example, one measure may provide a total count

for a given date, while another may provide cumulative totals. However, without the

necessary information Item, Metric and Unit for the measure, it is impossible to

infer what the measure represents. The system examines each measure to determine

if these attributes are present and, if not, prompts the user to supply the missing

value.

For example, the aim 1 dataset contains two measures: the total number of pigs

slaughtered in a given week, and the percentage change of this number compared

to the same week of the previous year. For this data source, the type Item refers

to the high level concept being analysed, in this instance, the value for Item is

Pigs. Metric refers to the metric used for the measure in question, in this instance,

the value of Metric is Slaughter. However, the type Unit is different for each

measure, with the number of pigs slaughtered having a Unit value of Total and the

percentage change measure having the Unit value PCHANGE WEEK YEAR referring to

the percentage change of the value for the same week in the previous year.

Conversely, the b 1 dataset contains a single measure, the total number of pigs

slaughtered per week and as such, has an Item value of Pigs, a Metric value of

Slaughter and a Unit value of Total. By comparing both sets of metamodel at-

tributes, it can be determined that the sole measure presented in b 1 is semantically

identical to the Total measure in aim 1 and thus, the system can integrate both

into the same fact.

However, metadata such as Date, Geo, Item, Metric and Unit may not be present

within the data source and this final process requires user assistance to complete.

The benefit of the MetamodelCheck function is that it highlights the precise location

where these user-assisted inputs are required.

99

The function examines all nodes which connect to a measure (either direct rela-

tionships or through transitive closure). The types of these nodes returned by the

TermMap function are then analysed and placed within a set.

Once the set has been constructed, it is examined in order to determine if all required

types are present in the set. If there are missing attributes, a MISSING ATTR event

is triggered. This event prompts a user to provide values for the missing metamodel

attributes.

Once these values have been provided by a user, they are stored in the metabase

and will be used by any future integrations involving this data source.

Algorithm 5.3 outlines the process for the metamodel check function. The func-

tion examines the measure found within a StarGraph. The function call on line 4

getRelatedNodes is shorthand for loading all nodes which share an edge with a

measure, either directly or through transitive closure. Once a list of related nodes

are loaded, this list is then examined to see if there exists a node in this set for each

metamodel attribute using the contains(〈type〉) function.

If no such type exists, the missing attr event is triggered which prompts a user

for a value.

It is important to note, even though Value is a metamodel attribute, this function

does not check for the existence of these types. This is because each measure is

assigned the type Value as they contain the value of the measure of interest.

100

Algorithm 5.3 The MetamodelCheck function

1: function MetamodelCheck(graph)
2: measures = graph.measures
3: for m in measures do
4: relNodes = m.getRelatedNodes
5: if !relNodes.contains(Date) then
6: missing attr(Date)
7: end if
8: if !relNodes.contains(Geo) then
9: missing attr(Geo)

10: end if
11: if !relNodes.contains(Item) then
12: missing attr(Item)
13: end if
14: if !relNodes.contains(Metric) then
15: missing attr(Metric)
16: end if
17: if !relNodes.contains(Units) then
18: missing attr(Units)
19: end if
20: end for
21: return
22: end function

Once all metamodel attributes for all measures between both data sources are found,

the next stage is to examine these metamodel attributes to determine if they are

semantically compatible.

The b 1 dataset, consisting of only two values required multiple metamodel at-

tributes to be entered by a user. These attributes were values for the Item, Metric,

Units and Geo attributes of the metamodel.

Figure. 5.6 shows the b 1 StarGraph with the addition of these attributes. They

are represented by graph nodes with dotted lines.

The aim 1 dataset also required a user to enter metamodel attributes, these were

attributes for the Item, Metric and Units attributes.

As this function acts as a check to see if desirable properties are present, and if not,

add them. If all desirable properties are present there, no change is made to the

underlying mappings. However, if a user supplies missing metamodel values, these

are incorporated into the mappings.

101

Figure 5.6: b 1 StarGraph after metamodel check

Figure 5.7: aim 1 StarGraph after metamodel check

A sample of the new mappings produced by the aim 1 StarGraph after the MetamodelCheck

function can be seen in Example. 5.2.3.

102

The only difference between these and previous mappings are the presence of these

new metamodel values. In addition, the src properties for these values is the static

value supplied by the user.

Example 5.2.3. Mappings after MetamodelCheck for aim 1.
{

name:"aim_1",
type:"HTML",
source:"http://aimis-simia.agr.gc.ca/..."
dimensions:[

{
name:"West",
type:"object",
term:"WEST-CANADA",
onttype:"GEO",
src:"//table[1]/tbody/tr[3]/th[1]",
attributes:[],
subdimensions:[...]

},
{

name:"SLAUGHTER",
type:"String",
term:"SLAUGTER",
onttype:"METRIC",
src:"SLAUGHTER"

},
{

name:"Federal/Provincial",
type:"object",
term:"FEDERAL-PROVINCIAL",
onttype:"REGION",
src:"//table[1]/tbody/tr[2]/th[2]",
attributes:[],
subdimensions:[...]},...],

5.2.4 The GranularityCheck function

The role of the GranularityCheck function is to examine the two StarGraphs for

integration to determine if their dimensions have the same granularity. This ensures

that any integration is semantically correct. In the event that both graphs contain

the same hierarchical dimension, they are checked to see if they both reside on the

same level in the hierarchy.

This function resolves conflicts which can arise when integrating data from, for

example, the date dimension which is hierarchical in nature. For example, one

data source may be monthly while the other is daily. In this event, data cannot

be directly compared. These events trigger a GRAIN MISMATCH event. The system

cannot directly integrate the two sources on this level as it requires the finer grained

source to undergo a rollup operation so that both StarGraphs occupy the same

103

level in the appropriate dimension hierarchy.

5.2.5 The DetermineStrategy function

The role of the DetermineStrategy function is to examine the metamodel attributes

of data sources and determine how they should be integrated using four steps.

Step 1: Construct Dependency Sets. The first step constructs dependency

sets for each measure in both data sources. Each set contains a measure and all

metamodel attributes found for the measure. For the source b 1, there is only one

dependency set shown in Example 5.2.4.

Example 5.2.4. Dependency set for b 1.

〈WEEK, GEO, PIGS, SLAUGHTER, COUNT, VALUE 〉

As there are two measures in aim 1, there are two dependency sets, shown in Ex-

ample 5.2.5. In the remainder of this discussion, we will refer to the set in b 1 as

b 1 a and the sets in aim 1 as aim 1 a and aim 1 b.

Example 5.2.5. Dependency sets for aim 1.

〈WEEK, GEO, PIGS, SLAUGHTER, COUNT, VALUE 〉,

〈WEEK, GEO, PIGS,SLAUGHTER ,PERCENT CHANGE, VALUE 〉

Step 2: Create Combination Table. The next step is to examine dependency

sets to determine how they may be integrated. The process examines each combina-

tion of dependency sets, at each stage calling the combine function (Algorithm 5.4).

There are three possible outcomes to this function: row-append, column-append

and no-integration, which represent the integration strategies. The output is a

table detailing how each combination of dependency sets may be integrated.

The row-append method is used for sets which are identical, meaning that a direct

integration can take place. The column-append method is used for sets which only

differ based on their Metric and Unit values. In these instances, the facts are based

around the same concept, but differ in the metrics and units used. The column-

append strategy integrates data where two sources contain the same values for the

metamodel values Date, Geo and Item. This strategy overcomes differences between

104

Table 5.1: Combine function results: aim 1 and b 1

Set 1 Set 1 Method

b 1 a aim 1 a row-append

b 1 a aim 1 b column-append

aim 1 a aim 1 b column-append

units of measurement, and combines multiple measures into a single fact based on

their similar metamodel attributes. Finally the no-integration method is reserved

for sources for which comparisons cannot be determined. Specifically, if they contain

different Date, Geo or Item values, then integration cannot take place.

Algorithm 5.4 The Combine function

1: function combine(set a, set b)
2: if identical(set a,set b) then
3: return row-append
4: else if difference(set a,set b) = 〈METRIC, UNITS〉 or 〈METRIC〉 or
〈UNITS〉 then

5: return column-append
6: else
7: return no-integration
8: end if
9: end function

Algorithm 5.4 shows the combine function. The call identical on line 2 determines

if both sets are completely identical ((set a ∪ set b) \ (set a ∩ set b) = ∅). The call

difference on line 4 calculates the difference ((set a∪set b)\(set a∩set b)) between

two sets. Once all combinations have been calculated, a table of all combinations and

their respective methods are returned. Table 5.1 details the results of the combine

function for the data sources aim 1 and b 1. The sets b 1 a and aim 1 a were

deemed identical and as such the row-append strategy is used. For the remaining

combinations, the column-append strategy is used as the sets only differ based on

their Metric and Unit values.

Step 3: Create Combination Graph. While the results of the previous step

show how each pair of dependency sets may be integrated, there remains the issue

of integrations which may occur through transitive closure. In order to overcome

this, a combination graph is constructed from the table. A combination graph

105

is an undirected graph, where each node in the graph represents a dependency set,

and the edges between nodes determine how they should be combined. As such we

shall call this graph a combination graph.

Figure 5.8 represents the combination graph for the sources aim 1 and b 1. From the

graph we can see the nodes aim 1 a and b 1 a are linked through the row-append

method and aim 1 b is linked to both using the column-append method.

Figure 5.8: Combination graph for aim 1 and b 1

Step 4: Collapse Combination Graph. The next step is to collapse the graph.

At the end of this process, the number of nodes in the graph relate to the number

of facts which shall be constructed in the Constellation. The graph is collapsed by

merging nodes in the graph. The function first examines all nodes which share a

row-append edge and combines them into a single node. This new node inherits all

the edges obtained from the previous nodes. This results in a graph similar to the

one shown in Figure 5.9. In this figure, we can see that the nodes aim 1 a and b 1 a

have been merged to produce a single node. This node holds two column-append

edges to the node aim 1 b.

At this stage, it is possible to have a node which holds two edges to the collapsed

node. The next step of this process is to resolve these edges. It achieves this by

selecting the highest possible edge from a hierarchy. Table 5.2 outlines the possible

combinations of edges, and the resulting edge which is chosen. From this table we

can see that the column-append edge is selected. This results in the graph shown

in Figure 5.10.

106

Figure 5.9: Combination graph after merging row-append edges

Table 5.2: Integration Strategy Based on Edges

Edge 1 Edge 2 Final Strategy

row-append row-append row-append

row-append column-append row-append

row-append no-integration row-append

column-append column-append column-append

column-append no-integration column-append

no-integration no-integration no-integration

This process repeats for every set of row-append edges until there are none present

in the graph. Once there are no row-append edges, the process or merging nodes

continues for all column-append edges. At the end of this process, there are two

possibilities. There is a single unified node, which means that all sources can be

combined into a single unified fact, or there are a series of merged nodes, which all

hold no-integration links to each other. As shown by the single node in Figure

5.11.

The steps taken to collapse the graph are captured and constitute the integration

strategy, producing a set of integration steps shown in Table 5.3. Figure 5.12 out-

lines, on a high-level, the Constellation created from the StarGraphs aim 1 and b 1.

This highlights metamodel values (i.e. the values for Date, Geo,Item,Metric and

Unit) found within each data source, and their interactions which constitute a fact.

The blank dotted nodes indicate different measures, and the dotted node Region is

an optional dimension obtained from the aim 1 StarGraph.

107

Figure 5.10: Closure graph after combining edges

Figure 5.11: Closure graph after merging column append edges

Figure 5.12: Constellation created from aim 1 and b 1 StarGraphs

Table 5.3: Integration Steps produced by the collapsed graph

Step Source 1 Source 2 Method Join

1 {aim 1 a} {b 1 a} row-append all

2
{aim 1 a}
{b 1 a} {aim 1 b} column-append DATE, GEO, ITEM

108

Once this function finishes, it provides the Constellation and the integrations deter-

mined to the Materialise function to construct the mappings.

The GenerateTargetSchema and GenerateMappings functions

The GenerateTargetSchema and GenerateMappings functions for a Constellation

is similar to that of a StarGraph, with the main differences being the number of

sources to be accessed in the data lake and the complexity of the mapping rules. The

GenerateTargetSchema function creates a JSON file describing the target schema

for the integrated sources in readiness for subsequent materialisation. Example 5.2.6

shows the target schema generated for the constellation created from the aim 1 and

b 1 StarGraphs. The target schema lists all metamodel and optional attributes

for a Constellation per data source under the source meta property. The ”facts”

property lists the individual sources that constitute a fact and their metamodel

attributes. Example 5.2.7 details the mappings produced by the Constellation.

Example 5.2.6. Sample target Schema aim 1 and bb 1 Constellation.{
"name" : "aim_1,bb_1",
"source_meta" : {

"aim_1" : {
"DATE" : [

{
name:"2016-03-05",
type:"WEEK",
src:"//table/tbody/tr[2]/th"

},
{

name:"2016-03-05",
type:"WEEK",
src:"//table/tbody/tr[3]/th"

}
],
"GEO" : [

{
name:"CANADA",
type"Geo",
src:""//table/tbody/tr[6]/th""

},....
],
"ITEM" : [
{

name:"PIGS",
type:"Item",
src:"STATIC"

}
],...

}
},
"facts" : [

{

109

"sources" : ["aim_1","b_1"
],
"META_VAL" : [

{
"attr" : "DATE",
"val" : "WEEK"

},
{

"attr" : "GEO",
},
{

"attr" : "METRIC",
"val" : "COUNT"

},
{

"attr":"ITEM",
"val":"PIG"

},
{

"attr":"UNIT",
"val":"Count"

}
],
"OPTIONAL":[

{
"attr":"Region"

}
]

},...
]

}

Example 5.2.7. Sample mappings for aim 1 and bb 1 Constellation.
("//table[1]/tbody/tr[3]/th[1]") -> West-CANADA,
("//table[1]/tbody/tr[3]/th[2]")->West-CANADA.su...,
("//table[1]/tbody/tr[4]/th[2]")-> West.subdimensions["Saskatchewan ..,
("//table[1]/tbody/tr[5]/th[2]")-> WestWest-CANADA.subdimen...
("//table[1]/tbody/tr[6]/th[1]")-> East-CANADA,...,
(//table/tbody/tr/td[1])->Date,
(//table/tbody/tr/td[2])->Total

5.2.6 The Materialise function

The role of the Materialise function is to use the target schema and mappings

generated by the previous functions to produce a populated integrated data mart.

Similar to a StarGraph, the same methodology used to transform a dataset into an

Annotated Tuple Set (ATS), is first applied on all sources required for population.

In order to overcome terminology issues, each tuple set must undergo term mapping,

to ensure canonical terms are used within the source data. For the aim 1 dataset,

the ATS before term mapping can be seen in Example 4.3.1 and the ATS after term

mapping can be seen in Example 5.2.8. The difference between the two lies in the

property name which has been term mapped from ‘West’ to ‘West-Canada’

110

Example 5.2.8. Annotated tuple set for aim 1 after term mapping.
({name:Federal, src:"...", val:"Federal"},
{name:"2016-03-05", src:"...",
val:"2016-03-05"},
{name:"West-Canada",src:"...", val:"West"},
{name:"Total West",src:"...",
val"Total West"},
{name:"Total",src:"...",val:"226,171"}),...

Once an ATS has been created for each data source and term mapping has finished,

the next step is to extract the dependency sets identified by the DetermineStrategy

function. This produces a series of named annotated tuple sets as shown in Example

5.2.9.

Example 5.2.9. Named ATS for aim 1.
{ name:"aim_1_a",
ats:[{name:Federal, src:"...", val:"Federal"},
{name:"2016-03-05", src:"...",
val:"2016-03-05"},
{name:"West-Canada",src:"...", val:"West"},
{name:"Total West",src:"...",
val"Total West"},
{name:"Total",src:"...",val:"226,171"},
...]
}
{
name:"aim_1_b",
ats:[{name:Federal, src:"...", val:"Federal"},

{name:"2016-03-05", src:"...",
val:"2016-03-05"},
{name:"West-Canada",src:"...", val:"West"},
{name:"Total West",src:"...",
val"Total West"},
{name:"PChange",src:"...",val:"5"},
...]
}

After these sets have been extracted, the steps used to collapse the combination

graph are executed step by step. If two dependency sets have a row-append strategy,

they are simply appended one after the other, as shown in Example 5.2.10. If

two sets are column-append then they are integrated based on the common join

attributes identified in Table 5.3. Once all steps have been executed, the data mart

is populated.

Example 5.2.10. Named ATS for aim 1.
{ name:"aim_1_a, b_1_a",
ats:[{name:Federal, src:"...", val:"Federal"},
{name:"2016-03-05", src:"...",
val:"2016-03-05"},
{name:"West-Canada",src:"...", val:"West"},
{name:"Total West",src:"...",
val"Total West"},

111

{name:"Total",src:"...",val:"226,171"},...,
{name:"Date", src:"...", val:"2017-01-07"},
{name:"Total",src:"...",val:"51,051"})
]
}
{
name:"aim_1_b",
ats:[{name:Federal, src:"...", val:"Federal"},

{name:"2016-03-05", src:"...",
val:"2016-03-05"},
{name:"West-Canada",src:"...", val:"West"},
{name:"Total West",src:"...",
val"Total West"},
{name:"PChange",src:"...",val:"5"},
...]
}

5.3 Integration Data Flows and Mappings

In order to fully illustrate what takes place during the creation of a Constellation, we

now present a case study integration, showing the required schema transformations.

We then present a discussion on the construction of the constellations for each of

the three case studies that are used for our ongoing evaluation.

5.3.1 Examining Graph Convergence

As part of this integration case study, we will also show that the order of which

sources are integrated does not change the final schema configuration for the sources

used in our case studies. A data mart was constructed from five sources using

different integration orders to demonstrate this fact. We chose to use five sources as

the number of potential orderings of a set of sources n is n!. For five sources, this

presents us with 120 different possible configurations which still result in the same

Constellation structure. Of course, intermediate steps will produce different graph

structures which will converge once all sources have been processed.

The five sources chosen were aim 1, b 1, p 1, bp 1 and c 1 from Case Study 1 (sec-

tion 3.4.1). For the purpose of this experiment, all missing metamodel attributes

were previously entered. Figure 5.13 outlines the resulting constellation, detailing

located metamodel values and facts, and how they are joined at each step. The

facts are represented as nodes with dotted circles and the edges indicate the joining

112

attributes which constitute each fact. Due to the large number of possible permuta-

tions, Table 5.4 presents the first integration step of each permutation and selected

integration steps. The column Step indicates at which step of the integration pro-

cess, that output represents. As we use a ladder strategy there are n − 1 steps to

integrate n sources.

Figure 5.13: Constellation created from the five experimental data sources

In Table 5.4, we can see that the source aim 1 and b 1 were joined based on their

Date, Item, Metric and Unit metamodel values, with the presence (or absence) of

these values indicating the common attributes found between two data sources. As

we can see from the table, the source c 1 only joined on the Item attribute for all

data sources. This is because c 1 lists future pig prices monthly worldwide. The

last two rows in the table indicate how a graph will always converge. The second

last row to integrates the aim 1 dataset with all others, and joins on the Date,

Item,Metric and Unit metamodel values. This high degree of integration is due to

the fact that the source b 1 was already within the constellation. The same can be

said for the last row of the table which attempts to integrate b 1 into a constellation

113

Table 5.4: Small subset of Integration steps from 120 possible configurations

Step Source 1 Source 2 JOIN ON

1 {aim 1} {b 1} DATE, ITEM, METRIC, UNIT

1 {aim 1} {p 1} ITEM, METRIC, UNIT

1 {aim 1} {bp 1} DATE, ITEM

1 {aim 1} {c 1} ITEM

1 {b 1} {p 1} ITEM, METRIC, UNIT

1 {b 1} {bp 1} DATE, ITEM

1 {b 1} {c 1} ITEM

1 {p 1} {bp 1} ITEM, METRIC, UNIT

1 {p 1} {c 1} ITEM

1 {bp 1} {c 1} ITEM

2 {aim 1},{bp 1} {p 1} ITEM, METRIC, UNIT

2 {b 1},{c 1} {aim 1} DATE, ITEM, METRIC, UNIT

3 {bp 1},{p 1},{c 1} {b 1} ITEM, METRIC, UNIT

3 {c 1},{b 1},{bp 1} {p 1} ITEM, METRIC, UNIT

4 {aim 1},{b 1},{p 1},{bp 1} {c 1} ITEM

4 {aim 1},{b 1},{p 1},{c 1} {bp 1} ITEM, METRIC, UNIT

4 {aim 1},{b 1},{bp 1}, {c 1} {p 1} ITEM, METRIC, UNIT

4 {b 1},{p 1},{bp 1}, {c 1} {aim 1} DATE, ITEM, METRIC, UNIT

4 {aim 1},{p 1},{bp 1}, {c 1} {b 1} DATE, ITEM, METRIC, UNIT

which contains aim 1. As this represents only an summary, we will now present a

step by step approach for two integration combinations.

5.3.1.1 Configuration 1

Table 5.5: Integration steps for Approach 1

Step Source 1 Source 2 JOIN ON

1 {aim 1} {b 1} DATE, ITEM, METRIC, UNIT

2 {aim 1}, {b 1} {p 1} ITEM, METRIC, UNIT

3 {aim 1}, {b 1}, {p 1} {bp 1} DATE, ITEM, METRIC, UNIT

4 {aim 1}, {b 1}, {p 1}, {bp 1} {c 1} ITEM

This approach integrated the five sources in the following order: 〈aim 1, b 1, p 1,

bp 1, c 1〉, with table 5.5 showing the steps involved. The first step integrated aim 1

and b 1. There was a high degree of common metamodel attributes between the two

sources, resulting in them being integrated on the values Date, Item, Metric, Unit.

The second stage integrated p 1 with this constellation where: p 1 joined to both

114

aim 1 and b 1 on the Item, Metric and Unit metamodel values but not Date as it is

monthly while aim 1 and b 1 are weekly. The third step integrated the source bp 1.

This source joined aim 1 and b 1 on the Date and Item values, and joined p 1 on

the Item, Metric and Units values. The final step integrated the c 1 source. This

source integrated on the Item value with all other sources, and on nothing else.

5.3.1.2 Configuration 2

This approach integrated the five sources in the following order: 〈bp 1, c 1, aim 1,

p 1, b 1〉 and Table 5.6 shows the steps involved. The first step integrated the

sources bp 1 and c 1 on the Item value. The second step integrated the source

aim 1 with bp 1 and c 1. It integrated on bp 1 on the Date and Item values and

on c 1 on the Item value. The third step integrated the source p 1. This source

integrated on bp 1 on the Item, Metric and Unit values, c 1 on the Item value and

aim 1 on the Item, Metric and Unit values.The final stage integrated the source

b 1. This source integrated on bp 1 on the Date and Item values, on c 1 on the

Item value, on aim 1 on the Date, Item, Metric and Unit values and finally on p 1

on the Item, Metric and Unit values.

Table 5.6: Integration steps for Approach 2

Step Source 1 Source 2 JOIN ON

1 {bp 1} {c 1} ITEM

2 {bp 1}, {c 1} {aim 1} DATE, ITEM

3 {bp 1}, {c 1}, {aim 1} {p 1} ITEM, METRIC, UNIT

4 {bp 1}, {c 1}, {aim 1}, {p 1} {b 1} DATE, ITEM, METRIC, UNIT

Summary. These experiments demonstrate that for the sources used, the inte-

gration order does not affect the constellation. This is due to the presence of the

metamodel and ontology. The metamodel values and the term and type map pro-

cesses, ensure that there is only one way two individual sources may be integrate and

as such, there is only one final possible configuration of a Constellations structure

regardless of the order of integration.

115

5.3.2 Constellation construction for Case Study 1

Case Study 1 (section 3.4.1) attempts to construct a pig prices data mart from

13 separate sources. Table 5.7 outlines the 12 integration steps taken in order to

construct this data mart. Step is the integration step, Source 1 and Source 2 detail

what sources are being integrated at each stage, Cons is shorthand for Constellation.

Join on details on what metamodel attributes the integration joined on and User

Supplied indicates metamodel attributes which were supplied by a user for this

integration step.

Table 5.7: Integration steps for Case Study 1

Step Source 1 Source 2 Join on User Supplied

1 {aim 1} {aim 2} GEO, ITEM,
METRIC, UNIT

ITEM, METRIC,
UNIT

2 Cons {b 1} DATE, ITEM,
METRIC, UNIT

GEO, ITEM,
METRIC, UNIT

3 Cons {b 2} ALL GEO, ITEM,
METRIC, UNIT

4 Cons {p 1} DATE, ITEM,
METRIC, UNIT

ITEM, METRIC

5 Cons {p 2} ALL GEO, ITEM

6 Cons {p 3} ALL GEO, METRIC

7 Cons {bp 1} ALL ITEM, UNIT

8 Cons {bp 2} ALL ITEM, UNIT

9 Cons {c 1} DATE, ITEM GEO, UNIT

10 Cons {c 2} ALL GEO, UNIT

11 Cons {imf} DATE METRIC, UNIT

12 Cons {usda} ALL NONE

Step 1 attempted to integrate the aim 1 and aim 2 datasets. These sources shared

Geo, Metric, Item and Units values but failed to integrate into the same fact as

aim 1 is weekly and aim 2 is yearly. Step 2 integrated the b 1 dataset with the

Constellation. This source integrated with aim 1 on the Date, Item, Metric and

Units values. Step 3 integrated b 2 however as this data source is identical to b 1 in

structure, a full integration occurred. Step 4 integrated p 1 with the Constellation,

this source joined on the Date, Item, Metric and Unit values. Steps 5 and 6

integrated p 2 and p 3 both sources integrated on all values. Step 7 and 8 integrated

the bp 1 and bp 2 soures. These joined on all attributes. Step 9 integrated the c 1

116

source. This only joined on the Date and Item values as it presents future prices,

which have previously been unseen by the Constellation. Step 10 integrated c 2,

this proceeded to fully integrate with c 1. Step 11 added the imf data source. This

source only joined on the Date attribute, as it provides exchange rate reports, it

added a new Item, Metric and Unit values to the Constellation. Step 12 added the

usda data source. This source fully integrated into the constellation with no user

supplied metamodel values.

Overall, this produced a reasonably complex data mart, consisting of three facts as

determined by the differing Date granularities. The produced constellation can be

seen in Figure 5.14. Due to the size of the mappings and target schema produced

it is provided in Appendix E

Figure 5.14: Case Study 1: Final Constellation

5.3.3 Constellation construction for Case Study 2

Case Study 2 (section 3.4.2) constructs a data mart from 9 separate sources. All

CSV sources were incredibly sparse, consisting of a Date dimension and a mea-

sure, requiring a user to enter multiple metamodel attributes. Table 5.8 details the

117

integration steps for the construction of this data mart. Most data sources were

semantically similar, detailing the weekly price of a vegetable oil worldwide in USD.

As such, once metamodel attributes were supplied these all proceeded to integrate

on the Date, Geo, Metric and Units values (Steps 1-7). However, the final step

for the source gdt only integrated on the Geo, Metric and Units values as it is

a daily data source, while the others are weekly. This discrepancy resulted in the

construction of two fact tables with shared dimensions Geo, Metric and Units, one

for the weekly sources and another for the daily source.

Table 5.8: Integration steps for Case Study 2

Step Source 1 Source 2 Join on User Supplied

1 {pp} {pr} DATE, GEO,
METRIC, UNITS

GEO, METRIC,
ITEM, UNITS

2 Cons {ps} DATE, GEO,
METRIC, UNITS

GEO, METRIC,
ITEM, UNITS

3 Cons {psu} DATE, GEO,
METRIC, UNITS

GEO, METRIC,
ITEM, UNITS

4 Cons {ren} DATE, GEO,
METRIC, UNITS

GEO, METRIC,
ITEM, UNITS

5 Cons {cn} DATE, GEO,
METRIC, UNITS

GEO, METRIC,
ITEM, UNITS

6 Cons {po} DATE, GEO,
METRIC, UNITS

GEO, METRIC,
ITEM, UNITS

7 Cons {so} DATE, GEO,
METRIC, UNITS

GEO, METRIC,
ITEM, UNITS

8 Cons {gdt} UNITS, GEO,
METRIC

GEO, METRIC,
UNITS

Figure 5.15 details the Constellation constructed from this integration. Due to the

size of the mappings and target schema produced it is shown in Appendix F.

118

Figure 5.15: Case Study 2: Final Constellation

119

5.3.4 Constellation construction for Case Study 3

Case Study 3 (section 3.4.3) constructs a data mart from five sources, all centred

around dairy production and deliveries. Table 5.9 outlines the integration steps for

this data source. All sources, despite structure differences due to HTML, contained

many metamodel attributes, requiring the user to only enter the Geo and Item

values. As all sources were of the same date granularity (weekly) only one fact was

produced. Figure 5.16 shows the Constellation produced by this Case Study. Due

to the size of the mappings and schema produced they are shown in Appendix G .

Figure 5.16: Case Study 3: Final Constellation

Table 5.9: Integration steps for Case Study 3

Step Source 1 Source 2 Join on User Supplied

1 {amd} {wdp} DATE, ITEM, METRIC, UNITS GEO, ITEM

2 Cons {usda 2} DATE, ITEM, METRIC, UNITS NONE

3 Cons {mpg} DATE, ITEM, METRIC, UNITS GEO

4 Cons {nzmp} DATE, ITEM, METRIC, UNITS GEO, ITEM

120

5.4 Summary

In this chapter, we detailed our approach for integrating heterogeneous data sources

through the use of our ontology assisted termMap and typeMap functions. These

functions coupled with the metamodel provide a means of both structurally and

semantically integrating data sources. Using the metamodel values found within a

data source, we detail how an integration strategy may be determined and how to

materialise a Constellation. Finally, our evaluation examines the integration steps

for three case studies and shows how the integration order does not affect the final

outcome due to our ontology-assisted integration approach. However, despite the

ability to construct integrated data marts, some issues centred around optimisation

and redundancy in data sources still remain. These issues will be addressed in the

following chapter.

121

Chapter 6

Deleting Redundant Mappings

While the StarGraph system is capable of constructing a data mart from previously

unseen sources, there still remains issues of redundancy within the mart. These

issues, while not interfering with the usefulness of a data mart, are undesirable

as they lead to increased population times for data marts. In this chapter, we

will identify and classify the types of redundancies found within the source data in

sections 6.1 to 6.4. In section 6.5, we present the results of a series of experiments

which implemented these optimisations to demonstrate the efficiencies that were

achieved.

6.1 HTML formatting: Blank Value

A blank value redundancy is a redundancy where blank attributes are present

within a constructed data mart. Blank value redundancies occur in HTML data

sources, resulting from the incorrect use of HTML tags to dictate page layout. For

example, consider the aim 1 source shown in Figure 6.1, which is a HTML table.

Note the whitespace at the top-left of the table. Such space is required in order

to accurately convey information to the user. However, in order to achieve such

a table, a developer must edit the tables structure by providing blank td and th

elements.

Unfortunately, these elements are also required to convey data within a table. As

such, a StarGraph would identify these elements and construct nodes within a Star-

122

Graph for them. Such nodes act in a similar manner to other StarGraph nodes,

their datatype is assumed to be a String, and they are classified as either Dimen-

sions or Dimension attributes depending on their location within the table. As they

have a place within the HTML table, mappings are constructed for them and sub-

sequently, they are populated during the materialisation process. As these elements

serve only to direct the visual layout of a table to a user, semantically they serve

no purpose within a StarGraph or data mart. Additionally, their removal results in

fewer mappings which ultimately reduces the population time.

Figure 6.1: Sample of the aim 1 data source

Detecting these redundancies is generally straightforward. When constructing a

StarGraph, a check on a node to determine if it is empty would suffice in detecting

these nodes. The system must ensure that when determining if these nodes are

blank, it may be because they direct layout, or because they represent a missing

value within a dataset. A value which serves to direct layout, holds no functional

dependencies to other nodes, while nodes representing a missing value must be

captured by the StapGraph as appropriate.

Within a StarGraph, a node is functionally dependant on other nodes if it has

parent nodes. Algorithm 6.1 checks to see if a node is a blank-value redundancy.

By adding this check as a classification within the ClassifyNode function (Section

4.2.2.2), these nodes can be classified as containers and subsequently removed.

Algorithm 6.1 Algorithm to detect blank value redundancies

1: function isBlankValue(node)
2: return isEmpty(node.name) AND !hasParents(node)
3: end function

123

Case Study Analysis for Blanks. This redundancy only occurs within HTML

data sources. Of the 84 usable agri data sources, 46 (54%) were HTML. Of these

46 sources, the blank value redundancy was present within 5 sources (10.8%).

6.2 CSV Formatting: Repeating Value

A repeating value redundancy appears within CSV datasets. This is a result of

the data being presented in a flattened format. While other formats may convey

relationships through structure, CSV must use redundancy. This appears in the

data as repeating values for a column. For example, the usda dataset has a high

degree of redundancy across dimensional values. Figure 6.2 shows a small sample

of the usda data source. Note the repeating values for all columns.

Figure 6.2: Sample of usda data source

While this redundancy does not interfere with the semantic structure of a data

mart, it must be addressed in order to optimise the mappings of a StarGraph (or

Constellation) by determining if the value for a column is the same across all rows.

If this is the case, this value can be stored and read only once instead of n times

(where n is the number of rows within the file). In order to detect this redundancy,

a Set must be constructed containing the values for a column. If the size of the

constructed set is 1, then there exists a single value for every row within the dataset

and such, this column exhibits the repeating value redundancy.

In order to detect this redundancy, the entire file must be scanned, with the effect

that no optimisation can be achieved for the first copy of this stream. However,

subsequent versions of this file within the data lake can make use of this optimisa-

124

tion as the redundancies have previously been identified. During population, this

optimisation reduces the number of mappings applied to an Annotated Tuple Set,

replacing the Get commands with a Static value within the target schema. If there

is more than one repeating value within a CSV file, the functionality to detect this

redundancy can be further extended through the use of predictive algorithms such

as decision trees as discussed in our future work 8.2.3.

Case Study Analysis for CSV Redundancies. Of the 84 usable sources, 16

(19%) were CSV files. Of these 16 files, 3 contained the repeating value redundancy

(18.7%).

6.3 StarGraph Integration: Duplicate Node

Figure 6.3: Sample of the usda StarGraph

A duplicate node redundancy occurs when a data set contains two nodes which are

structurally similar. For example, the usda dataset contains two attributes state

alpha and country name. The value for state alpha is a single repeating value

US and the value for country name is also a single value United States. These

repeating values can be determined using the optimisation described in Section 6.2.

However, there exists a structural redundancy within the StarGraph. As both values

simply relate to the country name, only one node is required in order to construct

a data mart. As these values are semantically similar, the termMap and typeMap

functions (Section 5.2.2 and Section 5.2.1) can be used to determine if these two

nodes are identical.

Figure 6.3 shows the StarGraph constructed from the usda data source. The two

nodes state alpha and country name are semantically identical. By applying the

125

termMap function we can see that they resolve to the same term United States

(Figure 6.4).

Figure 6.4: usda StarGraph after termMap function

However, even though both nodes resolve to the same term, they may represent

different data types. As such, the typeMap function must be applied. Figure 6.5

shows the usda StarGraph after the application of the typeMap function. From this

illustration, we can see that both state alpha and country name nodes contain the

same term and type and as such are structurally identical.

Figure 6.5: usda StarGraph after typeMap function

Case Study Analysis for Duplicate Node. From all CSV data sources used in

this evaluation, one file out of 16 exhibited this redundancy.

6.4 Valueless Node

Valueless node redundancies are items within a StarGraph (or Constellation)

which should not be there as they provide no value, or are unusable within the Data

Mart. An example of this kind of redundancy lies in the imf dataset (Figure 6.6).

Within this StarGraph, the nodes ReportName, Disclaimer and USER SELECTIONS

126

(and all of it’s sub-nodes) should not be present within a data mart. This is because

all of these nodes contain information about the query which was executed on the

IMF website to obtain this data source.

Figure 6.6: imf dataset with semantic redundancies

However, as all of these nodes contain information, they are considered valid dimen-

sions by the StarGraph. Ultimately, the data contained within these nodes seems

identical to valid data as far as our StarGraph system is concerned. As such, the

only meaningful way to determine if these nodes are redundant is for a user to spec-

ify them as of having No Value. This can be achieved in two ways. Firstly, the user

may edit the StarGraph mapping and structure to remove these nodes manually.

Secondly, the addition of a redundant type to the lightweight ontology which could

be used to assign these nodes with a redundant type during the typeMap function

(Section 5.2.2).

127

6.5 Optimisation Analysis

As the end goal of each of these optimisations is to either remove nodes, or reduce

reads to source datasets, these optimisations ultimately reduce the population time

of a Constellation or StarGraph by reducing the number of required mappings. As

such, for all data sources identified with these redundancies, we will examine their

population times with and without these optimisations in order to determine their

impact on the population times of a data mart.

6.5.1 Blank Value Optimisation

Table 6.1 outlines the evaluation of Blank Value redundancies found for HTML

data sources. The column Source refers to the experimental ID given to the data

source; Redundancies refers to the number of redundancies found within the source

(the number of blank th and td cells); Popa is the population time in milliseconds

without optimisations present; and Popb is the population time in milliseconds with

the optimisations; and finally, Difference is the difference between the population

times in milliseconds.

Table 6.1: Results for Blank Value Optimisation

Source Redundancies Popa Popb Difference

aim 1 1 446 445 1

bb 4 109 99 10

adhb 1 48 364 277 87

adhb 2 1 199 194 5

mlk 3 61 59 2

From table 6.1, we can see while that the optimisations reduce the population times

for the data sources, their effect is small. However, we are using comparatively

small datasets and as the number of redundancies increases, the savings posed by

the optimisation increases, with the adhb 1 dataset seeing the largest reduction in

population times going from 364ms to 277ms.

128

6.5.2 Repeating Value Optimisation

Table 6.2 outlines the population times of all sources which have Repeating Value

redundancies. It shows the experimental id of the source (Source); the number

of columns within the source containing repeating values Redundancies; Rows is

the number of rows in the CSV file; population time in milliseconds of the source

without optimisations Popa; population time once optimisations are applied Popb;

and the difference in milliseconds gained by the optimisation.

Table 6.2: Results for Repeating Value Optimisation

Source Redundancies Rows Popa Popb Difference

usda 1 27 1812 797 236 561

usda 2 25 167 74 32 42

statcan 1 520 43 40 3

The effect on population time by these redundancies is a measure of both the number

of redundancies within a file (columns) and by the number of instances of the data

(rows).

From this we can see that the usda 1 dataset containing both the highest number

of redundant columns and the highest number of rows, stands to benefit the most

from these optimisations, having a reduction in population time of 561 milliseconds.

While the usda 2 source saw a reduction of 42 milliseconds with the statcan dataset

having a reduction of 3 milliseconds.

6.5.3 Duplicate Node Optimisation

The single data source which contained a duplicate node redundancy additionally

had numerous repeating value redundancies examined previously. As such, we will

now examine the effect the duplicate node redundancy has on population times, and

will present the population time for this source with both the repeating value and

duplicate node redundancies removed.

Table 6.3 examines the effect in population times between various redundancies

found within the usda 1 source. Optimisation refers to the optimisations applied

to the population of the source. Popa is the time without optimisations, Popb is

129

the time taken, with optimisations applied, and Difference is the difference in

milliseconds between the two.

Without optimisations the usda 1 source has a population time of 797 milliseconds.

The Duplicate Node optimisation combined two nodes into one, resulting in a

saving of 53 milliseconds. Combining the optimisations for duplicate node and

repeating value changes the population time from 797 milliseconds to 230ms. This

provides a reduction of 567 milliseconds, which provides a 6 milliseconds increase

on top of the benefits gained by the repeating value optimisation alone.

Table 6.3: Results of Duplicate Node Optimisation for usda source

Source Optimisation Popa Popb Difference

usda 1 None 797 797 0

usda 1 Duplicate Node 797 744 53

usda 1
Duplicate Node
Repeating Value

797 230 567

6.5.4 Valueless Node Optimisation

Table 6.4 details the optimisation gained by the imf dataset by removing unneces-

sary nodes. For the single source containing unnecessary nodes there was a small

benefit of 7 milliseconds. The benefit in this instance was small, as these nodes only

appear once per file and not per instance as seen in CSV files.

Table 6.4: Results for Valueless Node Optimisation

Source Redundancies Popa Popb Difference

imf 8 20 13 7

6.6 Summary

In this chapter, we identified and classified a number of redundancies that were

encountered when constructing StarGraphs from the 84 agri data sources used in

our evaluation case studies. We presented methodologies which are used to detect

and remove each of these redundancies. Our analysis showed increased efficiency in

all cases, with a reduction in data mart population times once optimisations were

130

used to remove redundancies. While in some cases, the benefits are quite small, for

a number of sources, savings of up to half a second can be made by applying these

optimisations.

At this stage, our methodology has been presented in full. We have also presented

analyses in chapter 4 to illustrate the feasibility of our approach in terms of the

numbers of data sources that were usable in data marts: i.e. those with extractable

dimensions and fact metadata. In this chapter, we showed how efficiencies in data

mart population could be achieved. The final part of this dissertation is a complete

evaluation of our approach using a series of case studies and the assistance of agri

domain users.

131

Chapter 7

Evaluation

The goal of the StarGraph system is to construct a data mart from web data to

meet specific user (or business) requirements. In order to evaluate our approach,

it is necessary to determine the effectiveness of the StarGraph system in building

data marts in a series of real-world settings. The three case studies presented in

chapter 3 provide the user requirements from an agri collaborator that forms part of

this research. We evaluate these three data marts with regards to their construction

quality and population time. In all three case studies, we compare manually created

data marts with data marts constructed using the StarGraph system. In sections

7.1 to 7.3, we provide a detailed analysis and discussion for the three separate data

marts and conclude with a comparison of results across all case studies in section

7.4.

7.1 Case Study 1: Price Prediction Data Mart

This first case study requires the construction of a data mart to facilitate analyses

on pig market trends and prices in order to predict future pricing. This case study

uses all 13 data sources outlined in Table 3.1 to construct a data mart to be used

to predict the price of pigs on the global market. It contains the number of pig

slaughters and prices per date and location. The dataset imf is required in order

to resolve different currencies. From the classifications of StarGraphs presented in

Table 4.1 13 data sources specified by the end user, 8 sources were classified as Full

132

while the remaining 5 were classified as Partial.

7.1.1 User Defined Integration.

The manual data mart was created by editing the mapping files of each generated

StarGraph to influence the integration process. Four measures were identified: the

number of pigs slaughtered slaughter, the price of pigs price, the milk futures

quotes milk-future and the corn futures corn-future quotes. In addition there

were three main dimensions, Date, Geo and Currency.

The dimensions Date and Geo are dimensional hierarchies containing various levels of

granularity. For the Date dimension, the data sources provided were either monthly

or weekly. For the Geo dimension, the hierarchies were based on area. For example,

the USDA source provided a breakdown of slaughtering by state, while the Bord Bia

source lists the number of slaughters as a whole.

Figure 7.1 details the composition of this data mart in a relational format as it

would be displayed to a user. Internally, this structure is a Constellation but in

order to convey the structure of this data mart, it is displayed as a traditional

entity relationship diagram. When constructing this data mart, all prices have been

converted to Euro and stored in the price eur column, this has been provided by

the imf dataset, which lists exchange rates.

A high-level overview of the Constellation can be seen in Fig 7.1, with details of

dimensions and facts and the links between them. Solid nodes indicate a dimension

while dotted nodes indicate a fact. Solid edges detail the links between dimensions

and facts, while dotted edges indicate hierarchical relationships within a dimension.

7.1.2 Non-Assisted Integration

The integration process is outlined in Table 7.1 and contains all the three approaches.

Source 1 and Source 2 indicate the sources used at different stages of the integra-

tion process and for Source 1, the value Cons represents the current Constellation.

Issues highlights problems which appeared during the non-assisted integration and

OntologyAssist indicates the rule or process utilised by the ontology to resolve

the issue. The User Supplied column indicates the metamodel values a user was

133

Figure 7.1: User defined Strategy (Case Study 1)

required to supply in order for the integration process to complete. For example,

GEO indicates that the user was prompted to provide a value for the GEO attribute,

while NONE indicates that no user intervention was required.

The initial Constellation (Step 1) was created from the datasets aimis 1 and aimis 2.

There was a high degree of integration at Step 1. This is because structurally aim 1

and aim 2 were very similar. However, granularity for integrated data proved a

problem. Both of these sources contained a measure called % which denotes the per-

centage change between two dates. However, for one source the percentage meant

the percentage change from the previous week, and for the second source, it meant

the percentage change for a year. Despite these both being correctly identified as

measures, the ontology is needed to resolve these issues of granularity.

Step 2 integrated the b 1 data. Here, there was a single node to be integrated with

the previous data, based on the date dimension. However, as there was no matching

node in the Constellation for the measure, it was not combined with an existing one

and instead occupies its own column in the fact table. This measure should have

integrated with the previous two sources in addition to the Date dimension as they

all relate to the sales and production of pigs. However, without a form of abstrac-

tion (supplied by an ontology) to semantically link the two measures they remain

separate. Step 3 included the StarGraph created from b 2 into the Constellation.

Similar to b 1, this source was integrated based on the date dimension as no suit-

134

able candidate was found for measure integration. In other words, the dimensional

hierarchy was enriched but no new facts were added.

Step 4 integrated p 1 into the Constellation. Once again, a matching date candidate

was found which saw a large reduction in the graph (as this source is largely time-

series data). However, other dimensions which failed to integrate were country

identifiers (e.g. “Austria”). Again, an extension to the ontology to indicate a type

hierarchy would see a large degree of integration produced (and subsequently a lower

number of nodes & edges). As this data was initially modelled as a matrix, a large

number of rows were produced in the fact table associated with the measure which

could not be integrated with the existing Constellation. Steps 5 & 6 integrates p 2

and p 3. These sources were simple tables matching years to a measure. As such

the data was integrated based on the date dimension and the measure was added

to the fact table.

Step 7 integrated bp 1 with the Graph partially integrated on the countries listed

in p 1 as one dimension specified a country. As expected, without the ontology,

which contains a full dimensional hierarchy, some countries failed to be integrated

due to differing tags (e.g.“Great Britain” and “Northern Ireland” combined would

be synonymous with the tag “United Kingdom”). Step 8 integrated the bp 2 data

source. This data source was identical in structure to bp 1. As such, there was a 1-1

integration between this source and the Constellation with all measures additionally

being merged with those provided by bp 1.

Step 9 integrated c 1 with date providing the only common attribute for integration.

This is due to the fact that the data source c 1 refers to future prices. However,

a large number of measures were found within this data source, and as such have

been added to the fact data joined on the date dimension. Step 10 integrated c 2

and, similar to Step 9, the structural similarity between c 1 and c 2 facilitated a

1-1 mapping between all nodes. Step 11 sought to integrate currency conversion

data from the imf data source. The data was successfully integrated on the date

dimension, while the new currencies occupied new dimensions and the rates were

included as measures within the fact table. Finally, Step 12 integrated the usda data,

once again using the date dimension. The data was highly dimensional, adding in

135

30 previously unseen dimensions and 8 measures.

This process generated a large data mart containing 66 dimensions and 7 fact tables

and thus, a final illustration cannot be displayed. There was a large degree of redun-

dancy in this data mart as most items failed to integrate due to lacking semantics

(e.g. country names, similar products).

7.1.3 Ontology-Assisted Integration

In this section, we describe how a close-to-automatic process for data mart con-

structed was achieved. However, at various points in the process, it was necessary

for the user to update the ontology (through a system prompt) so that integration

could complete and to ensure a fully automated integration for the same sources in

future data marts.

For the initial Constellation, both a Date and Geo dimension were found for both

data sources. Two measures were found for each source, but there was no defined

Item, Metric or Units attributes. As both of these sources were the same struc-

turally and semantically, they were fully integrated. However, the process prompted

the user for input in both cases.

The next source b 1, was very sparse, containing only two attributes: date and

measure. In this instance, the integration processes stopped again to prompt a user

for input for the dimensions Geo and the attributes Item, Metric and Units, as the

ontology again could not provide the precise level of detail. Once supplied, integra-

tion was completed using the Date and Geo dimensions, and along the measure by

the item dimension. This is because both measures are of the product Pig but have

different metric and unit attributes.

The next source - b 2 - was again missing a Geo dimension and Item, Metric and

Units attributes. Once provided, the system proceeded to integrate this source on

the Date and Geo dimensions, and integrated the measure with the aimis 1 and

aimis 2 sources, as they were identical. The source p 1 found Date and Geo dimen-

sions, but failed to find the attributes Item, Metric. However a Units attribute

was found (kg per head). The source p 2 found a Date and Units attributes, but

failed to find a Geo and Item attributes. Once again, a user prompt updated the

136

Table 7.1: Non-Assisted Integration Issues for Case Study 1

Step Issues OntologyAssist User Supplied

1 GRAIN MISMATCH GRAIN CHECK ITEM, METRIC,
UNIT

2 MISSING ATTR METAMODEL CHECK GEO, ITEM,
METRIC, UNIT

3 MISSING ATTR METAMODEL CHECK GEO, ITEM,
METRIC, UNIT

4 TERM-TYPE MISMATCH TERM-TYPE MAP ITEM, METRIC

5 MISSING ATTR METAMODEL CHECK GEO, ITEM

6 MISSING ATTR METAMODEL CHECK GEO, METRIC

7 TERM-TYPE MISMATCH TERM-TYPE MAP ITEM, UNIT

8 TERM-TYPE MISMATCH TERM-TYPE MAP ITEM, UNIT

9 MISSING ATTR METAMODEL CHECK GEO, UNIT

10 MISSING ATTR METAMODEL CHECK GEO, UNIT

11 TERM-TYPE MISMATCH TERM-TYPE MAP METRIC, UNIT

12 TERM-TYPE MISMATCH TERM-TYPE MAP NONE

ontology and integration was completed.

The source p 3 found a Date attribute and two Unit attributes. However, there was

no Metric or Geo dimension. The source bp 1 found all required attributes except

an Item and a Unit attribute. Once provided by a user, it was integrated into an

existing Metric and Unit dimension.

The source bp 2 was also missing the Item and Unit attributes and, after user

prompting, integration with bp 1 was successful.

The source c 1 provided several new Metric attributes. However, a Unit was not

listed and the Geo dimension was not found. c 2 was also missing Unit attributes

and a Geo dimension. However, with a user prompt and ontology update, the

integration was completed. The final integration was different as the data source

provided quotes about corn, and every Item thus far referred to pigs. Thus, the

system integrated on the Date and Geo dimensions, which was correct.

The source imf found a series of Item attributes and a Date attribute. However, it

failed to find a Metric or Unit attribute for each measure. Once again, this data was

of an entirely new domain, currency conversion rates, and as such was integrated

on the Date and Geo dimensions, after the ontology was updated. The final source

usda found all required attributes and was integrated automatically.

137

Rendered as a view, this Constellation can be seen in Figure 7.2. This Constellation

contained seven dimensions and four facts. In this data mart, most dimensions

contain only two attributes: name and key. For example, the Units dimension

contains one attribute name which stores units of measurement for a measure (e.g.

kg).

Figure 7.2: Case Study 1 Final Schema: A User View

7.1.4 Summary

Case study 1 required the integration of 13 data sources to construct the data mart.

In terms of the user-defined approach, not only do they have to have an in depth

understanding of the data they are capturing, it was also necessary to manually

design and create the Data Mart (e.g. construct the schema, add constraints, write

queries to insert data). This raised the same issues as were seen during both non-

assisted and ontology-assisted integration strategies, in terms of having to determine

the correct grain in hierarchy dimensions and in detecting the correct attribute for

integration. Manual integration was estimated to take between 8 and 10 hours for

what was a reasonably complex data mart (13 separate sources), while the auto-

mated approach required 118ms and populated with a batch update in 1.1 seconds.

The manual data mart had a faster population time of 0.9 seconds.

It is worth highlighting the reasons as to why manual construction takes such a

long time as these are generally the same issues that are resolved during ontology-

138

assisted integration. This process also highlights how the ontology is used to aid

integration and how rules are updated when issues with the structure of data sources

are uncovered.

Step 1 integrates two sources into a Constellation (Cons) and from there, proceeds

to integrate more sources into this constellation. At a high level, there are three

main issues. The first is GRAIN MISMATCH, which occurs when two data source are

of differing levels of granularity. For example, the Date dimension has one source

that provides weekly data and the other providing monthly data. Similarly for

the Geo dimension, some data sources indicate individual countries while others

provide statistics globally. The approach is to create a separate fact for each level

of granularity. Later, a ROLLUP operation can be employed to join facts.

The second issue is labelled generically as MISSING ATTR. This indicates that the

data source did not contain enough information to correctly (semantically) integrate

facts. In short, it means that the data source did not contain all of the attributes

specified in the metamodel. The approach in this instance is for the ontology to

prompt a user for input on these values. The most common reason for this issue to

occur is that the data is sparse in terms of dimensions and attributes. When this

occurs, it is impossible to infer these values so the system defers to a user to provide

the missing contextual information.

The final issue is labelled as TERM-TYPE MISMATCH and revolves around two problems.

The first being different terminologies used across data sources, particularly across

the Geo dimension (for example ‘US’ vs ‘America’). These issues are resolved by the

ontology during the term mapping phase, where both possibilities are resolved into

a single canonical term. The second issue arises from a lack of type information in

both sources. This issue arises when attempting to resolve different attributes and

dimensions which are of the same abstract type. For example one source may have

a dimension called ‘France’ and another ‘Australia’. Without an ontology linking

these two concepts under the common theme ‘Country’, they cannot be integrated.

For this case study, term and type mapping resolved integration problems for the

Geo and product dimensions, while the metamodel was used to enforce semantic

integration by prompting a user for the metric and units attributes.

139

For the remaining two case studies, we will provide a more abbreviated discussion as

the issues are identical across case studies. However, it is important to demonstrate

the generic nature of our work and the wider applicability.

7.2 Case Study 2: Price Comparison Data Mart

This case study requires the construction of a data mart to allow the analyst to

compare the trend in the price of butter with the price of vegetable oil. It requires

the 9 sources shown in Table 3.2 to construct the appropriate data mart. Of the 9

sources, 8 were classified as Full StarGraphs and GlobalDairyTrade being classified

as Partial. Data sources such as PPOIL USD provide historical data up to the

current week.

7.2.1 User Defined Integration

All of the data sources provided for this case study provide the same information, a

product and a price at datetime t. However, some attributes such as product name

are taken from the name of the source (e.g. PPOIL USD refers to the product Palm

Oil in USD). Figure 7.3 details the structure of this Constellation when presented

as a view to a user. The Constellation consists of five dimensions and a single fact

table containing the measures, the value (price) of a product, and the percentage

change of the price compares to the previous week.

7.2.2 Non-Assisted Integration

The sources used in this case study are very similar with most containing only two

items: a date and measure called Value. Figure 7.4 details the structure of this

Constellation when rendered as a view to a user. There are ten dimensions and

a single fact in the final data mart. Nine of the dimensions found are product

names obtained from the gdt source. However, the user defined approach contains

a single dimension called Item which refers to the product name. Additionally, the

two measures RenCas change and % both refer to the percentage change from the

previous week and failed to integrate due to their different names. These are two

140

Figure 7.3: User defined Constellation for Case Study 2

significant issues which motivated the need for some form of ontology.

Figure 7.4: Non assisted approach for Case Study 2

7.2.3 Ontology-assisted integration.

Term mapping and type mapping were correctly able to identify all attributes nec-

essary for the GTD data source. However, due to the sparse nature of the CSV data

sources, user input was required to determine the Type, Metric and Units for these

data sources. Once provided, all data sources shared a date dimension and all CSV

sources shared the same metric and units dimensions.

141

Table 7.2: Integration Issues for Case Study 2

Step Issues OntologyAssist User Supplied

1
TERM-TYPE MISMATCH,
MISSING ATTR

TERM-TYPE MAP,
METAMODEL CHECK

GEO, METRIC,
ITEM, UNITS

2
TERM-TYPE MISMATCH,
MISSING ATTR

TERM-TYPE MAP,
METAMODEL CHECK

GEO, METRIC,
ITEM, UNITS

3
TERM-TYPE MISMATCH,
MISSING ATTR

TERM-TYPE MAP,
METAMODEL CHECK

GEO, METRIC,
ITEM, UNITS

4 MISSING ATTR METAMODEL CHECK
GEO, METRIC,
ITEM, UNITS

5
TERM-TYPE MISMATCH,
MISSING ATTR,
GRAIN MISMATCH

TERM-TYPE MAP,
METAMODEL CHECK,
GRAIN CHECK

GEO, METRIC,
ITEM, UNITS

6
TERM-TYPE MISMATCH,
MISSING ATTR

TERM-TYPE MAP,
METAMODEL CHECK

GEO, METRIC,
ITEM, UNITS

7
TERM-TYPE MISMATCH,
MISSING ATTR

TERM-TYPE MAP,
METAMODEL CHECK

GEO, METRIC,
ITEM, UNITS

8 TERM-TYPE MISMATCH TERM-TYPE MAP
GEO, METRIC,
UNITS

7.2.4 Comparison

Table 7.2 shows: the issues found in the non-assisted integration; the ontology

rules applied to mitigate these issues for the ontology-assisted integration; and a

marker denoting whether user intervention was needed at a particular integration

step. Most of the sources for this data mart were structurally identical, containing

only a Date and a measure. The non-assisted integration approach integrated on

both attributes. This was the incorrect approach, even though these sources are

structurally identical, they are semantically different.

What was different in this case study, and was due to the sparse nature of sources,

was the lack of information required to deliver proper (semantic) integration. These

issues are overcome through a combination of the ontology (TERM-TYPE MAP) and

user intervention through the ontology’s METAMODEL CHECK function. The user sup-

plies the necessary metamodel values for most of these sources and in general, these

contained only a date and measure.

This approach produced a structure identical to the user defined approach. However,

this is due to the large number of missing metamodel attributes within the data

142

sources which required user intervention to supply these missing values.

Summary. Case study 2 used nine data sources in the construction of the data

mart. The user defined approach and the ontology-assisted approach suffered from

the same problem: the sparseness of the majority of the data sets. However, as

most of the datasets were identical in structure, there was a significant saving in

development time when manually constructing the data mart. We estimate that

this manual approach completed in about 5 hours and took 17 seconds to perform

a population. A large amount of time was spent understanding the data due to

its sparse nature. Conversely, the automatic approach had a time of 102ms and

populated the data mart in 23 seconds.

7.3 Case Study 3: Milk Production Data Mart

This case study required a data mart to examine year on year changes for milk

production and deliveries and required the 5 data sources outlined in Table 3.3.

Two were classified as Full and three as Partial StarGraphs. For this case study,

we again used a summary table (Table 7.3) to provide a brief overview of the different

integration strategies and the issues that arose.

7.3.1 User Defined and Non-Assisted Integration.

Similar to the first case study, this data mart requires use of information which is

not visible to the StarGraph. For instance, terms with names such as Kg/$ imply

that this attribute is a measure; it is created from two units. Additionally, the

knowledge a designer has such as New Zealand, Germany == Country allow the

schema designer to create generic dimensions such as Type, Country and Units.

The reason for the units dimension is that unless one explicitly identifies those units

used for a specific measure, they cannot be directly compared.

Due to that fact that some sources were csv files with two attributes date and value,

this provided a direct mapping for integration. One other source also provided a

date dimension and as such the attributes named butter, for example, integrated on

this dimension. However, for the remaining source, the only attribute to integrate

143

Figure 7.5: User defined Strategy (Case Study 3)

on was the name of the measure. Despite the fact that it provided usable facts,

the data content was incorrect in data mart usage. This required an entry in the

ontology to prevent this aspect to the integration.

The differences between user-defined (Fig. 7.5) and non-assisted (Fig. 7.6) are

primarily due to abstractions of which the analyst in the user-defined approach had

knowledge. In general, all facts present in the automatic approach are combined

into a single fact entity. This is accomplished through the use of a Type dimension.

However, without a suitable ontology to inform the automatic approach that these

facts can be combined, they will remain separated.

7.3.2 Ontology assisted integration

All attributes required for an integration approach were found within both csv files.

However, there was no geo dimension found for the Argentina and NZ milk pro-

duction tables. Finally, for the Milk production in Germany data, no date or geo

dimensions were located. This required the user prompt for dimensions and an on-

tology update before the integration process could complete. This produced a single

fact table with five dimensions, one for each metamodel value, similar to the user

defined approach 7.5.

Comparison. While case study 3 constructed a data mart from just 5 sources,

the levels of missing metadata and heterogeneity in the data, resulted in the most

144

Figure 7.6: Non-assisted Strategy (Case Study 3)

Table 7.3: Integration Issues for Case Study 3

Step Join on Issues OntologyAssist User Supplied

1 DATE TERM-TYPE MISMATCH TERM-TYPE MAP GEO, ITEM

2 DATE TERM-TYPE MISMATCH TERM-TYPE MAP NONE

3 DATE TERM-TYPE MISMATCH TERM-TYPE MAP GEO

4 DATE TERM-TYPE MISMATCH TERM-TYPE MAP GEO, ITEM

difficult integration effort of all three case studies. Regarding the user-defined ap-

proach, in addition to the time taken to understand the data and design/implement

a data mart, additional time was spent individually examining the markup specific

to each HTML source so that the correct data could be extracted. We estimate this

process took in the region of 10 hours while the automatic approach completed in

approx. 110ms.

With regards to population time, the automatic approach was 11 seconds slower

than the manual approach (74s to 63s). Table 7.3 outlines the issues found during

the non-assisted approach, the ontology rule applied to overcome this issue, and

whether or not user intervention was required at an integration step. For all sources

the only issues found were those of term and type mapping. Once again, the ontology

145

Table 7.4: Analysis of all case study approaches

Name Source Meta Ins Time Struct Sem Dims Facts

cs 1 user
defined

13 24 262 8hrs 3 3 3 1

cs 1 non
assisted

13 143 262 N/A 3 7 66 7

cs 1 ontology
assisted

13 24 262 11m 3 3 7 4

cs 2 user
defined

9 16 4016 5hrs 3 3 5 1

cs 2 non
assisted

9 28 4016 N/A 3 3 10 1

cs 2 ontology
assisted

9 16 4016 8m 3 3 5 1

cs 3 user
defined

5 17 19709 10hrs 3 3 5 1

cs 3 non
assisted

5 60 19709 N/A 7 7 5 2

cs 3 ontology
assisted

5 17 19709 3m 3 3 5 1

uses these to assign canonical terms to each data source, and provides a layer of

abstraction between the data sources so that they can be semantically linked.

7.4 Overall Summary

The goal of our evaluation was to examine the differences between a manual in-

tegration approach and our automated approach, both to determine the value of

our methodology and to identify potential improvements to our process. Table 7.4

allows us to compare the results of all three use cases under both a manual and auto-

matic approach. Column Name relates to the case study and the approach used: the

columns Source and Ins refer to the number of data sources involved in the integra-

tion, and the number of instances for each; Meta refers to the number of attributes

found in the multidimensional schema once integration has been completed; Time

is the time taken to construct the final data mart; Struct (Structure) relates to

the usability of the data (yes/no); Sem (Semantics) refers to the correctness of data

(yes/no); and finally Dim refers to the number of dimensions within the constructed

146

data mart, while Facts refers to the number of facts within the mart.

The Time column illustrates the savings in time using our approach. The 3 manual

approaches required between 5 and 10 hours approximately while the automated

approach was between 3 and 11 minutes. In the earlier discussion on case studies,

the automated time was reported as between 110ms and 7s. However, here we

include 1 minute for each user prompt and response (60 seconds was the longest

time recorded). This demonstrates a clear benefit of the StarGraph approach.

In terms of Metadata, the manual approach detected and removed more redun-

dancies than the automatically generated approach. This is due in a large part

to the domain expert’s knowledge of the dataset compared to the automatic ap-

proach. While the semi-automatic approach had similar results to the automatic

approach, this is undoubtedly due to the semi-automatic approach requesting infor-

mation from the user as needed. This results in marginally slower times for batch

updates as recorded in the case study discussions. The degree of redundant data

determines the difference in data loading times and is our current area of research

in terms of improving the ontology.

When examining the dimensions and facts constructed for each data mart, the man-

ual approach provides the best schema for large datasets. With case study 1 con-

taining three dimensions compared to the 7 used for the ontology assisted approach.

However, in this instance, only two operations are required in order to exhibit the

same functionality as the user defined approach; the removal of redundancies, and

a ROLLUP operation to consolidate the two facts into the same date dimension.

Case studies 2 and 3 contain identical marts for both their user defined and non

assisted approaches. For case study 2, this is because of the large number of missing

metamodel values which required user intervention. For the user defined approach,

these values are also required, resulting in an identical data mart. For case study 3,

the same result is obtained due to the minimal amount of metamodel values supplied

namely Geo and Item. In this instance, as the majority of metamodel values are

found within each data source, a similar data mart is constructed from both the

user defined and ontology-assisted approaches.

In all cases, the non-assisted approach has the worst performance, with the worst

147

instance being for case study 1 where 66 dimensions and 7 facts are constructed

while a user can represent the same information through three dimensions and a

single fact. This shows that some form of ontology coupled with user intervention

is required in order to construct data marts as the ontology assisted approaches for

sparse data are identical to the user defined methods.

While the user-defined approach is guaranteed to produce the best schema, it is

important to note the Time taken to construct each data mart. The time taken

to construct a mart manually varied from 5-10 hours, depending on the number of

sources and their structure. While the time taken to construct a mart using the

ontology-assisted approach lies within 3-11 minutes.

148

Chapter 8

Conclusions

In this final chapter, we will provide a brief summary of the work presented in this

dissertation in section 8.1 before discussing possibilities for extending this research

in section 8.2.

8.1 Thesis Overview

This dissertation began with discussing the importance of data mining and machine

learning in an environment where very large volumes of data are created daily.

However, activities such as data mining cannot be performed without a layer of data

management to clean, integrate, process and make available the necessary datasets.

To that extent, large and costly data flow processes such as Extract-Transform-

Load are necessary to extract data from disparate information sources, and generate

ready-for-analyses datasets. Furthermore, the traditional approach to this type of

processing is not sufficiently robust in the face of streaming data or data sources

that can change format in an uncontrolled fashion. In chapter 1, we motivated the

hypothesis and goals of this research: a new method for data management is needed

if we are to warehouse data streams. As our work encompasses multiple fields, the

discussion on related research in chapter 2 included methodologies for determining

facts, dimensions and measures from unseen data; means in which a data cube

and data mart can be represented outside of an RDBMS; ETL systems which seek

to combine traditional relational data with web data; and finally, systems which

149

leverage ontologies in order to construct ETL systems for data marts.

Chapter 3 was used to outline our system architecture: the processes and data

stores required to provide a means of constructing integrated web data marts. This

chapter also provided details of the data sources and case studies which served as

running examples throughout chapter 4 and chapter 5. Chapter 4 presented the

StarGraph data model and the methodology used to construct a data mart from an

unseen data source. In addition, this chapter demonstrates how a StarGraph can be

automatically populated from a Data Lake, and examined StarGraphs constructed

from 84 previously unseen data sources, some of which constitute the data sources

presented by the case studies in chapter 3. A data mart is constructed to meet a

set of business requirements and generally involves combining data from multiple

sources. Chapter 5 describes the processes involved in integrating two or more

StarGraphs constructed from web data to produce a Constellation. Through the

use of a lightweight ontology, StarGraphs were integrated to produce semantically

correct data marts. In addition, this chapter details how data marts are populated

and examines the structure of the Constellations produced by the data sources

presented within each case study. Chapter 6 addressed the issue of redundancies

found within the data sources which slowed down materialisation times. These

redundancies, while not interfering with the usability of a data mart constructed

from a StarGraph or Constellation provide opportunities to reduce the time taken

to populate data sources. This chapter described the properties of each redundancy

type and provided a mechanism to detect and remove the redundancy prior to

population.

Chapter 7 described our evaluation, which sought to validate the effectiveness of

our automatically constructed data marts. We compared their structure, popu-

lation times and semantics to data marts constructed by designers and domain

experts using the same sources. While the evaluation showed that the ETL pro-

cesses constructed by users have more efficient population times, due to differences

in structure, the StarGraph data marts were verified by collaborators from the agri

domain and thus, usable for the requirements for which they were specified. As

part of the evaluation, we were provided with 120 unseen data sources of which

150

84 were directly usable as data mart components, using the StarGraph model and

transformation methodology.

In summary, the main contribution of this research was the specification and deploy-

ment of the StarGraph model to automatically construct data marts from previously

unseen data sources. Using a semi-automatic process requiring a lightweight ontol-

ogy and minimal user intervention, we demonstrated how two (or more) StarGraphs

can be integrated semantically to produce an integrated data mart.

8.2 Future Work

In this final section of the dissertation, we will explore possibilities for future work

arising from this research.

8.2.1 Robust Query Mechanisms

This research focused on the automated construction of data marts from web data

sources. As such, the constructed data marts produce the all cube (*) query format,

meaning a full materialisation of the data mart. In many cases, the entire data

cube is not required by the analyst. By providing mechanisms which enable full

OLAP functionality on the data mart, an analyst may pose full OLAP queries to

our data marts. While this represents a small extension to our work, this would

provide the analyst with a means of filtering the all cube (e.g. slice, dice) which are

desirable features for an analyst. Such mechanisms for querying graph models has

been presented in chapter 2 with [80] presenting a data warehouse model for storing

and querying graphs.

8.2.2 On-Demand ETL

Traditional ETL systems employ a rigid approach to batch updating due to the high

volumes of data which are transferred to the data warehouse. While we present a

more lightweight approach of data marts constructed outside the main warehouse

environment, we still require the same batch updating of data marts. ETL on-the-

fly differs from traditional ETL, where a data mart is previously constructed and

151

queried by a user. ETL on-the-fly constructs a data mart from data sources only

at the point at which the query posed by a user. This mechanism provides the

system which the ability to process and deal with partially materialised data marts.

It works best when used with a data lake and thus, our current system provides a

solid platform for this type of extension.

8.2.3 Prescanning Data Sources

At present, a StarGraph is constructed from a data source, prior to redundancies

being found. By providing a process which can examine data prior to StarGraph

construction, redundancies can be detected and removed from the source data. In

addition, machine learning and data mining algorithms may be used on the data

lake to scan data sources. These algorithms may further optimise the redundancies

presented in chapter 6. For example, the use of predictive algorithms such as decision

trees can optimise the population process by identifying duplicate values within the

data lake, removing the need to populate multiple values within a data source.

8.2.4 Cloud based ETL

At present our system runs in a local environment. However, as the data lake

increases in size through day-to-day use, the time taken to query data from the

lake and populate it in a local environment may become unrealistic. By storing the

data lake in a distributed environment using technologies such as Hadoop [5] and a

suitable streaming platform such as Spark [78], this would provide large scale ETL,

using many sources in a distributed environment. As a result, this could overcome

the problems encountered by a local ETL system as the number of sources and size

of the data lake increases.

8.2.5 A Different Approach to Experiments

In chapter 7 the time taken to design and implement the manual approach for each

case study was obtained by the author implementing a manual ETL process. A

more different set of experiments to fully test the systems capabilities could be

implemented by utilising a larger set of data sources across domains and a number

152

of developers. Each developer would be given the task of constructing a data mart

corresponding to a user query from a series of these data sources. While designing

and implementing the data mart the developer would be asked to take note of the

time taken to:

• Gain an understanding of the data

• Determine a suitable schema for the data mart

• Implement the ETL process to populate the data mart

• The population time from source to warehouse for the data mart.

By then constructing the same data marts using the automated system we can

then gather more data about the performance of the system compared to a manual

approach.

153

Bibliography

[1] Transport Infrastructure Ireland [Online].

https://www.tiitraffic.ie/travel_times/. (Accessed 10/05/2018).

[2] Rakesh Agrawal, Ramakrishnan Srikant, et al. Fast algorithms for mining

association rules. In Proc. 20th int. conf. very large data bases, VLDB,

volume 1215, pages 487–499, 1994.

[3] Agriculture and Horticulture Development Board.

http://pork.ahdb.org.uk/. (Accessed 10/05/2018).

[4] AIMIS - Agriculture and Agri-Food Canada.

http://www5.agr.gc.ca/eng/home/. (Accessed 10/05/2018).

[5] Apache Software Foundation. Hadoop. https://hadoop.apache.org.

(Accessed 10/05/2018).

[6] Maha Azabou, Käıs Khrouf, Jamel Feki, Chantal Soulé-Dupuy, and Nathalie

Vallès. Diamond multidimensional model and aggregation operators for

document OLAP. In Research Challenges in Information Science (RCIS),

2015 IEEE 9th International Conference on, pages 363–373. IEEE, 2015.

[7] Liang Bai, Songyang Lao, Weiming Zhang, Gareth JF Jones, and Alan F

Smeaton. Video semantic content analysis framework based on ontology

combined mpeg-7. In International Workshop on Adaptive Multimedia

Retrieval, pages 237–250. Springer, 2007.

154

https://www.tiitraffic.ie/travel_times/
http://pork.ahdb.org.uk/
http://www5.agr.gc.ca/eng/home/
https://hadoop.apache.org

[8] Carlo Batini, Maurizio Lenzerini, and Shamkant B. Navathe. A comparative

analysis of methodologies for database schema integration. ACM Comput.

Surv., 18(4):323–364, 1986.

[9] Sonia Bergamaschi, Francesco Guerra, Mirko Orsini, Claudio Sartori, and

Maurizio Vincini. A semantic approach to ETL technologies. Data &

Knowledge Engineering, 70(8):717–731, 2011.

[10] Alain Berro, Imen Megdiche-Bousarsar, and Olivier Teste. Graph-based ETL

processes for warehousing statistical open data. 2015.

[11] Kevin Beyer and Raghu Ramakrishnan. Bottom-up computation of sparse and

iceberg cube. In ACM Sigmod Record, volume 28, pages 359–370. ACM, 1999.

[12] Bord Bia. http://www.bordbia.ie/Pages/Default.aspx. (Accessed

10/05/2018).

[13] Omar Boussaid, Riadh Ben Messaoud, Rémy Choquet, and Stéphane

Anthoard. X-warehousing: an XML-based approach for warehousing complex

data. In ADBIS, volume 6, pages 39–54. Springer, 2006.

[14] T. Bray. The JavaScript Object Notation (JSON) Data Interchange Format.

RFC 7159, RFC Editor, March 2014.

http://www.rfc-editor.org/rfc/rfc7159.txt (Accessed 10/05/2018).

[15] Tim Bray, Michael Sperberg-McQueen, and Jean Paoli. XML 1.0

recommendation. W3C recommendation, W3C, February 1998.

http://www.w3.org/TR/1998/REC-xml-19980210 (Accessed 10/05/2018).

[16] Donald Burleson. New Developments In Oracle Data Warehousing, 2004.

Available Online:

http://www.dba-oracle.com/oracle_news/2004_4_22_burleson.htm

(Accessed 10/05/2018).

[17] Chris Campbell. Top five differences between data lakes and data warehouses.

January 2015. Available Online:

155

http://www.bordbia.ie/Pages/Default.aspx
http://www.rfc-editor.org/rfc/rfc7159.txt
http://www.w3.org/TR/1998/REC-xml-19980210
http://www.dba-oracle.com/oracle_news/2004_4_22_burleson.htm

https://www.blue-granite.com/blog/bid/402596/

top-five-differences-between-data-lakes-and-data-warehouses

(Accessed 10/05/2018).

[18] Don Chamberlin, Jerome Simeon, Michael Kay, Scott Boag, Jonathan Robie,

Anders Berglund, and Mary Fernandez. XML path language (XPath) 2.0

(second edition). W3C recommendation, W3C, December 2010.

http://www.w3.org/TR/2010/REC-xpath20-20101214/ (Accessed

10/05/2018).

[19] Clal. https://www.clal.it/en/index.php. (Accessed 10/05/2018).

[20] CME Group. https://www.cmegroup.com/. (Accessed 10/05/2018).

[21] Edgar F Codd. A relational model of data for large shared data banks.

Communications of the ACM, 13(6):377–387, 1970.

[22] Edgar F Codd, Sharon B Codd, and Clynch T Salley. Providing olap (on-line

analytical processing) to user-analysts: An IT mandate. Codd and Date, 32,

1993.

[23] Dairy World. http://www.milk.de/. (Accessed 10/05/2018).

[24] Marc Demarest. The politics of data warehousing.

http://www.hevanet.com/demarest/marc/dwpol.html, 1997. (Accessed

12/03/2018).

[25] ECMA. ECMA-404–The JSON Data Interchange Syntax. ECMA (European

Association for Standardizing Information and Communication Systems),

Geneva, Switzerland, Oct 2013.

[26] Mohamed Medhat Gaber. Advances in data stream mining. Wiley

Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2(1):79–85,

2012.

[27] GlobalDairyTrade. https://www.globaldairytrade.info/. (Accessed

10/05/2018).

156

https://www.blue-granite.com/blog/bid/402596/top-five-differences-between-data-lakes-and-data-warehouses
https://www.blue-granite.com/blog/bid/402596/top-five-differences-between-data-lakes-and-data-warehouses
http://www.w3.org/TR/2010/REC-xpath20-20101214/
https://www.clal.it/en/index.php
https://www.cmegroup.com/
http://www.milk.de/
http://www.hevanet.com/demarest/marc/dwpol.html
https://www.globaldairytrade.info/

[28] Jim Gray, Surajit Chaudhuri, Adam Bosworth, Andrew Layman, Don

Reichart, Murali Venkatrao, Frank Pellow, and Hamid Pirahesh. Data cube:

A relational aggregation operator generalizing group-by, cross-tab, and

sub-totals. Data mining and knowledge discovery, 1(1):29–53, 1997.

[29] Jiawei Han, Jian Pei, and Micheline Kamber. Data mining: concepts and

techniques. Elsevier, 2011.

[30] John A Hartigan and JA Hartigan. Clustering algorithms, volume 209. Wiley

New York, 1975.

[31] Wilhelm Hasselbring. Top-Down vs. Bottom-Up Engineering of Federated

Information Systems. In Engineering Federated Information Systems,

Proceedings of the 2nd Workshop EFIS’99, Kühlungsborn, Germany, May 5-7,

1999, pages 131–138, 1999.

[32] Wilhelm Hasselbring. Information system integration. Communications of the

ACM, 43(6):32–38, 2000.

[33] Wilhelm Hasselbring. Web data integration for e-commerce applications. Ieee

Multimedia, 9(1):16–25, 2002.

[34] Victoria J. Hodge and Jim Austin. A survey of outlier detection

methodologies. Artif. Intell. Rev., 22(2):85–126, 2004.

[35] Wolfgang Hümmer, Andreas Bauer, and Gunnar Harde. Xcube: Xml for data

warehouses. In Proceedings of the 6th ACM International Workshop on Data

Warehousing and OLAP, DOLAP ’03, pages 33–40, New York, NY, USA,

2003. ACM.

[36] Bill Inmon. The data warehouse budget. DM Review Magazine, January,

1997.

[37] William H. Inmon. Building the Data Warehouse. John Wiley & Sons, Inc.,

New York, NY, USA, 1992.

[38] William H Inmon. Building the data warehouse. John wiley & sons, 2005.

157

[39] International Monetary Fund.[Online].

http://www.imf.org/external/index.htm. (Accessed 10/05/2018).

[40] Mikael R Jensen, Thomas H Møller, and Torben Bach Pedersen. Specifying

olap cubes on xml data. In Scientific and Statistical Database Management,

2001. SSDBM 2001. Proceedings. Thirteenth International Conference on,

pages 101–112. IEEE, 2001.

[41] Alexandros Karakasidis, Panos Vassiliadis, and Evaggelia Pitoura. ETL

queues for active data warehousing. In Proceedings of the 2nd international

workshop on Information quality in information systems, pages 28–39. ACM,

2005.

[42] Ralph Kimball and Margy Ross. The data warehouse toolkit: The complete

guide to dimensional modeling. 2002.

[43] Sasivimol Kittivoravitkul and Peter McBrien. Integrating unnormalised

semi-structured data sources. In CAiSE, pages 460–474. Springer, 2005.

[44] Mark Levene and George Loizou. Why is the snowflake schema a good data

warehouse design? Information Systems, 28(3):225–240, 2003.

[45] Hans Peter Luhn. A business intelligence system. IBM Journal of Research

and Development, 2(4):314–319, 1958.

[46] Svetlana Mansmann, Nafees Ur Rehman, Andreas Weiler, and Marc H Scholl.

Discovering olap dimensions in semi-structured data. Information Systems,

44:120–133, 2014.

[47] Adriana Marotta, Regina Motz, and Raul Ruggia. Managing source schema

evolution in web warehouses. Journal of the Brazilian Computer Society,

8(2):20–31, 2002.

[48] Wes McKinney. Data structures for statistical computing in python. In Stéfan

van der Walt and Jarrod Millman, editors, Proceedings of the 9th Python in

Science Conference, pages 51 – 56, 2010.

158

http://www.imf.org/external/index.htm

[49] DuyHoa Ngo and Zohra Bellahsene. Yam++: A multi-strategy based

approach for ontology matching task. In International Conference on

Knowledge Engineering and Knowledge Management, pages 421–425.

Springer, 2012.

[50] Tapio Niemi, Marko Niinimäki, Jyrki Nummenmaa, and Peter Thanisch.

Constructing an OLAP cube from distributed XML data. In Proceedings of

the 5th ACM international workshop on Data Warehousing and OLAP, pages

22–27. ACM, 2002.

[51] Marko Niinimäki and Tapio Niemi. An ETL process for OLAP using

RDF/OWL ontologies. J. Data Semantics, 13:97–119, 2009.

[52] Martin F O’Connor, Kenneth Conroy, Mark Roantree, Alan F Smeaton, and

Niall M Moyna. Querying XML data streams from wireless sensor networks:

An evaluation of query engines. In Research Challenges in Information

Science, 2009. RCIS 2009. Third International Conference on, pages 23–30.

IEEE, 2009.

[53] Josh Parenteau, Neil Chandler, Rita L. Sallam, Dogulas Laney, and Alan D.

Duncan. Predicts 2015: Power shift in business intelligence and analytics will

fuel disruption. Technical report, Gartner, November 2014. https:

//www.gartner.com/doc/2920717/predicts--power-shift-business

(Accessed 10/05/2018).

[54] Neoklis Polyzotis, Spiros Skiadopoulos, Panos Vassiliadis, Alkis Simitsis, and

Nils-Erik Frantzell. Supporting streaming updates in an active data

warehouse. In Data Engineering, 2007. ICDE 2007. IEEE 23rd International

Conference on, pages 476–485. IEEE, 2007.

[55] Geneviève Pujolle, Franck Ravat, Olivier Teste, Ronan Tournier, and Gilles

Zurfluh. Multidimensional database design from document-centric XML

documents. Data Warehousing and Knowledge Discovery, pages 51–65, 2011.

[56] Quandl. https://www.quandl.com/. (Accessed 10/05/2018).

159

https://www.gartner.com/doc/2920717/predicts--power-shift-business
https://www.gartner.com/doc/2920717/predicts--power-shift-business
https://www.quandl.com/

[57] Franck Ravat, Jiefu Song, and Olivier Teste. Designing multidimensional

cubes from warehoused data and linked open data. In Research Challenges in

Information Science (RCIS), 2016 IEEE Tenth International Conference on,

pages 1–12. IEEE, 2016.

[58] Antonio Regalado. The data made me do it. MIT Technology Review, May

2013. https:

//www.technologyreview.com/s/514346/the-data-made-me-do-it/

(Accessed 10/05/2018).

[59] Oscar Romero, Alkis Simitsis, and Alberto Abelló. Gem: requirement-driven

generation of etl and multidimensional conceptual designs. In International

Conference on Data Warehousing and Knowledge Discovery, pages 80–95.

Springer, 2011.

[60] Mahadev Satyanarayanan. The emergence of edge computing. Computer,

50(1):30–39, 2017.

[61] Michael Scriney, Suzanne McCarthy, Andrew McCarren, Paolo Cappellari,

and Mark Roantree. Automating data mart construction from

semi-structured data sources. 2018. To appear in the Computer Journal,

Oxford University Press, 2018.

[62] Michael Scriney, Martin F. O’Connor, and Mark Roantree. Generating cubes

from smart city web data. In Proceedings of the Australasian Computer

Science Week Multiconference, ACSW 2017, Geelong, Australia, January 31 -

February 3, 2017, pages 49:1–49:8, 2017.

[63] Michael Scriney, Martin F. O’Connor, and Mark Roantree. Integrating online

data for smart city data marts. In Data Analytics - 31st British International

Conference on Databases, BICOD 2017, London, UK, July 10-12, 2017,

Proceedings, pages 23–35, 2017.

[64] Michael Scriney and Mark Roantree. Efficient cube construction for smart

city data. In Proceedings of the Workshops of the EDBT/ICDT 2016 Joint

160

https://www.technologyreview.com/s/514346/the-data-made-me-do-it/
https://www.technologyreview.com/s/514346/the-data-made-me-do-it/

Conference, EDBT/ICDT Workshops 2016, Bordeaux, France, March 15,

2016., 2016.

[65] Khouri Selma, Boukhari IlyèS, Bellatreche Ladjel, Sardet Eric, Jean

Stéphane, and Baron Michael. Ontology-based structured web data

warehouses for sustainable interoperability: requirement modeling, design

methodology and tool. Computers in Industry, 63(8):799–812, 2012.

[66] Rick Sherman. Business intelligence guidebook: From data integration to

analytics. Newnes, 2014.

[67] David I Shuman, Sunil K Narang, Pascal Frossard, Antonio Ortega, and

Pierre Vandergheynst. The emerging field of signal processing on graphs:

Extending high-dimensional data analysis to networks and other irregular

domains. IEEE Signal Processing Magazine, 30(3):83–98, 2013.

[68] Yannis Sismanis, Antonios Deligiannakis, Nick Roussopoulos, and Yannis

Kotidis. Dwarf: Shrinking the petacube. In Proceedings of the 2002 ACM

SIGMOD international conference on Management of data, pages 464–475.

ACM, 2002.

[69] Dimitrios Skoutas and Alkis Simitsis. Designing etl processes using semantic

web technologies. In Proceedings of the 9th ACM international workshop on

Data warehousing and OLAP, pages 67–74. ACM, 2006.

[70] Dimitrios Skoutas and Alkis Simitsis. Ontology-based conceptual design of

ETL processes for both structured and semi-structured data. International

Journal on Semantic Web and Information Systems (IJSWIS), 3(4):1–24,

2007.

[71] Alan F. Smeaton. The sensor web: Unpredictable, noisy and loaded with

errors. In 2010 IEEE/WIC/ACM International Conference on Web

Intelligence, WI 2010, Toronto, Canada, August 31 - September 3, 2010,

Main Conference Proceedings, page 3, 2010.

161

[72] Paul Thomas. Business intelligence and analytics: A new perspective.

https://www.provenir.com/2017/08/

rise-business-intelligence-analytics-using/, 2017. (Accessed

10/05/2018).

[73] Juan Trujillo, Sergio Luján-Mora, and Il-Yeol Song. Applying UML and XML

for designing and interchanging information for data warehouses and OLAP

applications. Journal of Database Management (JDM), 15(1):41–72, 2004.

[74] USDA. https://quickstats.nass.usda.gov/. (Accessed 10/05/2018).

[75] Jeffrey Scott Vitter, Min Wang, and Bala Iyer. Data cube approximation and

histograms via wavelets. In Proceedings of the seventh international conference

on Information and knowledge management, pages 96–104. ACM, 1998.

[76] Yuxiang Wang, Aibo Song, and Junzhou Luo. A mapreducemerge-based data

cube construction method. In Grid and Cooperative Computing (GCC), 2010

9th International Conference on, pages 1–6. IEEE, 2010.

[77] Barbara H Wixom and Hugh J Watson. An empirical investigation of the

factors affecting data warehousing success. MIS quarterly, pages 17–41, 2001.

[78] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and

Ion Stoica. Spark: Cluster computing with working sets. HotCloud,

10(10-10):95, 2010.

[79] Zhuolun Zhang and Sufen Wang. A framework model study for

ontology-driven etl processes. In Wireless Communications, Networking and

Mobile Computing, 2008. WiCOM’08. 4th International Conference on, pages

1–4. IEEE, 2008.

[80] Peixiang Zhao, Xiaolei Li, Dong Xin, and Jiawei Han. Graph cube: on

warehousing and OLAP multidimensional networks. In Proceedings of the

2011 ACM SIGMOD International Conference on Management of data, pages

853–864. ACM, 2011.

162

https://www.provenir.com/2017/08/rise-business-intelligence-analytics-using/
https://www.provenir.com/2017/08/rise-business-intelligence-analytics-using/
https://quickstats.nass.usda.gov/

Appendices

163

Appendix A

Schema and Mappings for aim 1

StarGraph

{
name:"aim_1",
type:"HTML",
source:"http://aimis-simia.agr.gc.ca/..."
dimensions:[

{
name:"West",
attributes:[],
subdimensions:[
{

name:"British Columbia - Alberta",
attributes:[],
subdimensions:[]

},
{

name:"Saskatchewan - Manitoba",
attributes:[],
subdimensions:[]

},
{

name:"TOTAL WEST",
attributes:[],
subdimensions:[]

}]
},
{

name:"East",
attributes:[],
subdimensions:[
{

name:"TOTAL EAST",
attributes:[],
subdimensions:[]

}
]

},
{

name:"Canada",

164

attributes:[],
subdimensions:[]

},
{

name:"Federal/Provincial",
attributes:[],
subdimensions:[]

},
{

name:"Federal",
attributes:[],
subdimensions:[]

},
{

name:"Provincial**",
attributes:[],
subdimensions:[]

},
{

name:"Date",
attributes:[],
subdimensions:[]

}
],
measures:[

{
name:"",

},
{

name:"%"
}],

facts:[
{

dimensions:["West","East","CANADA","Federal","Provincial"
,"Federal/Provincial**","Date"],
measures:["","%"]

}]}
("//table[1]/tbody/tr[3]/th[1]") -> West,
("//table[1]/tbody/tr[3]/th[2]")-> West.subdimensions["British Columbia - Alberta"]
("//table[1]/tbody/tr[4]/th[2]")-> West.subdimensions["Saskatchewan - Manitoba"]
("//table[1]/tbody/tr[5]/th[2]")-> West.subdimensions["TOTAL WEST"]
("//table[1]/tbody/tr[6]/th[1]")-> East
("//table[1]/tbody/tr[6]/th[1]")-> East.subdimensions["TOTAL EAST"]
("//table[1]/tbody/tr[7]/th[1]")-> Canada
("//table[1]/tbody/tr[1]/th[1]")-> Federal
("//table[1]/tbody/tr[1]/th[2]")-> Provincial**
("//table[1]/tbody/tr[1]/th[3]")-> Federal/Provincial
("//table[1]/tbody/tr[2]/th[1]")-> Date
("//table[1]/tbody/tr[2]/th[2]")-> Date
("//table[1]/tbody/tr[2]/th[3]")-> %
("//table[1]/tbody/tr[2]/th[4]")-> Date
("//table[1]/tbody/tr[2]/th[5]")-> Date
("//table[1]/tbody/tr[2]/th[6]")-> Date
("//table[1]/tbody/tr[2]/th[7]")-> Date
("//table[1]/tbody/tr[3-7]/td[1,2,4,5,6,7]")->measures[""]
("//table[1]/tbody/tr[3-7]/td[3]")->measures["%"]

165

Appendix B

Schema and Mappings for imf

StarGraph

{
"name" : "imf",
"type" : "XML",
source:"http://www.imf.org/external/...",
dimensions : [
{

"name" : "ExchangeRateReport",
"type" : "Object",
"src" : "//ExchangeRateReport",
"attributes":[{

"name":"ReportName",
"type":"String",
"src":"//ExchangeRateReport/ReportName/text()"

},
{

"name":"Disclaimer",
"type":"String",
"src":"//ExchangeRateReport/Disclaimer/text()"

}],
"subdimensions":[

{
name:"USER SELECTIONS",
type:"Object",
src:"//ExchangeRateReport//USER_SELECTIONS",
attributes:[

{
name:"text()",
src:"//ExchangeRateReport//USER_SELECTIONS/text()",
type:"String",

},
{

name:"currencies",
src:"//ExchangeRateReport//USER_SELECTIONS/currencies",
type:"String"

}
],
subdimensions:[

166

{
name:"DATE_RANGE",
type:"object",
src:"//ExchangeRateReport//USER_SELECTIONS/date_range",
subdimensions:[],
attributes:[{
name:"from_date",
type:"string",
src:"//ExchangeRateReport//USER_SELECTIONS/
date_range/from_Date"

},
{
name:"to_date",
type:"string",
src:"//ExchangeRateReport//USER_SELECTIONS
/date_range/to_Date"

}]
}

]
},
{

name:"Rate_value",
type:"object",
src:"//ExchangeRateReport/EffectiveDate/RateValue[*]",
attributes:[
{

name:"CURRENCY_CODE",
type:"string",
src:"//ExchangeRateReport/EffectiveDate/RateValue[*]
@CURRENCY_CODE"

},
{

name:"ISO_CHAR_CODE",
type:"string",
src:"//ExchangeRateReport/EffectiveDate/RateValue[*]
@ISO_CHAR_CODE"

}],
subdimensions:[]

}
]

},...
],
measures : [
{

"name" : "RateValue",
"type" : "MEASURE",
"src" : "//ExchangeRateReport/EffectiveDate/RateValue[*]/text()"

},...
],
facts:[{

dimensions:["ExchangeRateReport","UserSelections,....],
measures:["RateValue/text()"]

}]
}

(//ExchangeRateReport)->ExchangeRateReport
(//ExchangeRateReport/ReportName/text())->ExchangeRateReport[‘‘ReportName"]
(//ExchangeRateReport/Disclaimer/text())->ExchangeRateReport[‘‘Discalimer"]
(//ExchangeRateReport/User_Selections) ->

ExchangeRateReport.subdimensions[‘‘User_Selections"]
(//ExchangeRateReport/User_Selections/Currencies/text()) ->

ExchangeRateReport.subdimensions[‘‘User_Selections"].Currencies

167

(//ExchangeRateReport/User_Selections/DATE_RANGE) ->
ExchangeRateReport.subdimensions[‘‘User_Selections"].subdimensions["DATE_RANGE"]

(//ExchangeRateReport/User_Selections/DATE_RANGE/FROM_DATE) ->
ExchangeRateReport.subdimensions[‘‘User_Selections"]

.subdimensions["DATE_RANGE"].from_date
(//ExchangeRateReport/User_Selections/DATE_RANGE/TO_DATE) ->

ExchangeRateReport.subdimensions[‘‘User_Selections"]
.subdimensions["DATE_RANGE"].to_date

(//ExchangeRateReport/EffectiveDate/RateValue[@CURRENCY_CODE])->
RateValue.currency_code

(//ExchangeRateReport/EffectiveDate/RateValue[@ISO_CHAR_CODE])->
RateValue.iso_char_code

(//ExchangeRateReport/EffectiveDate/RateValue/text())->RateValue

168

Appendix C

Schema and Mappings for tii

StarGraph

{
"name" : "tii",
"type" : "JSON",
source:"dataproxy.mtcc.ie/..",
dimensions : [
{

"name" : "M7_EastBound",
"type" : "Object",
"src" : "M7_EastBound",
"attributes":[],
"subdimensions":[

{
name:"",
"type":"Object",
"src":"M7_EastBound.data[*]",
"attributes":[{

"name":"from_name",
"type":"String",
"src":"M7_EastBound.data[*].from_name"

},
{

"name":"to_name",
"type":"String",
"src":"M7_EastBound.data[*].to_name"

},
{

"name":"status",
"type":"String",
"src":"M7_EastBound.data[*].status"

}]
}

]
},
{

"name" : "M4_WestBound",
"type" : "Object",
"src" : "M4_WestBound",
"attributes":[],

169

"subdimensions":[
{

name:"",
"type":"Object",
"src":"M4_WestBound.data[*]",
"attributes":[{

"name":"from_name",
"type":"String",
"src":"M4_WestBound.data[*].from_name"

},
{

"name":"to_name",
"type":"String",
"src":"M4_WestBound.data[*].to_name"

},
{

"name":"status",
"type":"String",
"src":"M4_WestBound.data[*].status"

}]
}

]
},
{

"name" : "M3_EastBound",
"type" : "Object",
"src" : "M3_EastBound",
"attributes":[],
"subdimensions":[

{
name:"",
"type":"Object",
"src":"M3_EastBound.data[*]",
"attributes":[{

"name":"from_name",
"type":"String",
"src":"M3_EastBound.data[*].from_name"

},
{

"name":"to_name",
"type":"String",
"src":"M3_EastBound.data[*].to_name"

},
{

"name":"status",
"type":"String",
"src":"M3_EastBound.data[*].status"

}]
}

]
},
{

"name" : "M7_WestBound",
"type" : "Object",
"src" : "M7_WestBound",
"attributes":[],
"subdimensions":[

{
name:"",
"type":"Object",
"src":"M7_WestBound.data[*]",
"attributes":[{

"name":"from_name",
"type":"String",

170

"src":"M7_WestBound.data[*].from_name"
},
{

"name":"to_name",
"type":"String",
"src":"M7_WestBound.data[*].to_name"

},
{

"name":"status",
"type":"String",
"src":"M7_WestBound.data[*].status"

}]
}

]
},
{

"name" : "M1_NorthBound",
"type" : "Object",
"src" : "M1_NorthBound",
"attributes":[],
"subdimensions":[

{
name:"",
"type":"Object",
"src":"M1_NorthBound.data[*]",
"attributes":[{

"name":"from_name",
"type":"String",
"src":"M1_NorthBound.data[*].from_name"

},
{

"name":"to_name",
"type":"String",
"src":"M1_NorthBound.data[*].to_name"

},
{

"name":"status",
"type":"String",
"src":"M1_NorthBound.data[*].status"

}]
}

]
},
{

"name" : "M2_SouthBound",
"type" : "Object",
"src" : "M2_SouthBound",
"attributes":[],
"subdimensions":[

{
name:"",
"type":"Object",
"src":"M2_SouthBound.data[*]",
"attributes":[{

"name":"from_name",
"type":"String",
"src":"M2_SouthBound.data[*].from_name"

},
{

"name":"to_name",
"type":"String",
"src":"M2_SouthBound.data[*].to_name"

},
{

171

"name":"status",
"type":"String",
"src":"M2_SouthBound.data[*].status"

}]
}

]
},
{

"name" : "M4_EastBound",
"type" : "Object",
"src" : "M4_EastBound",
"attributes":[],
"subdimensions":[

{
name:"",
"type":"Object",
"src":"M4_EastBound.data[*]",
"attributes":[{

"name":"from_name",
"type":"String",
"src":"M4_EastBound.data[*].from_name"

},
{

"name":"to_name",
"type":"String",
"src":"M4_EastBound.data[*].to_name"

},
{

"name":"status",
"type":"String",
"src":"M4_EastBound.data[*].status"

}]
}

]
},
{

"name" : "M1_SouthBound",
"type" : "Object",
"src" : "M1_SouthBound",
"attributes":[],
"subdimensions":[

{
name:"",
"type":"Object",
"src":"M1_SouthBound.data[*]",
"attributes":[{

"name":"from_name",
"type":"String",
"src":"M1_SouthBound.data[*].from_name"

},
{

"name":"to_name",
"type":"String",
"src":"M1_SouthBound.data[*].to_name"

},
{

"name":"status",
"type":"String",
"src":"M1_SouthBound.data[*].status"

}]
}

]
},
{

172

"name" : "M50_SouthBound",
"type" : "Object",
"src" : "M50_SouthBound",
"attributes":[],
"subdimensions":[

{
name:"",
"type":"Object",
"src":"M50_SouthBound.data[*]",
"attributes":[{

"name":"from_name",
"type":"String",
"src":"M50_SouthBound.data[*].from_name"

},
{

"name":"to_name",
"type":"String",
"src":"M50_SouthBound.data[*].to_name"

},
{

"name":"status",
"type":"String",
"src":"M50_SouthBound.data[*].status"

}]
}

]
},
{

"name" : "M50_NorthBound",
"type" : "Object",
"src" : "M50_NorthBound",
"attributes":[],
"subdimensions":[

{
name:"",
"type":"Object",
"src":"M50_NorthBound.data[*]",
"attributes":[{

"name":"from_name",
"type":"String",
"src":"M50_NorthBound.data[*].from_name"

},
{

"name":"to_name",
"type":"String",
"src":"M50_NorthBound.data[*].to_name"

},
{

"name":"status",
"type":"String",
"src":"M50_NorthBound.data[*].status"

}]
}

]
},
],
measures : [
{

"name" : "current_travel_time",
"type" : "MEASURE",
"src" : "*.data[*].current_travel_time"

},
{

"name" : "free_flow_travel_time",

173

"type" : "MEASURE",
"src" : "*.data[*].free_flow_travel_time"

},
{

"name" : "distance",
"type" : "MEASURE",
"src" : "*.data[*].distance"

}
],
facts:[{

dimensions:["M7_EastBound","M4_WestBound","M3_EastBound",
"M7_WestBound","M1_NorthBound","M2_SouthBound","M4_EastBound",
"M1_SouthBound","M50_SouthBound","M50_NorthBound"],
measures:["current_travel_time", "distance","free_flow_travel_time"]

}]
}

(M7_eastBound)->M7_EastBound
(M7_eastBound.data[*].status)->M7_EastBound.subdimsnions[""].status
(M7_eastBound.data[*].from_name)->M7_EastBound.subdimsnions[""].from_name
(M7_eastBound.data[*].to_name)->M7_EastBound.subdimsnions[""].to_name
(M7_eastBound.data[*].distance)->Distance
(M7_eastBound.data[*].current_travel_time)->current_travel_time
(M7_eastBound.data[*].free_flow_travel_time)->free_flow_travel_time
(M4_westBound)->M4_westBound
(M4_westBound.data[*].status)->M4_westBound.subdimsnions[""].status
(M4_westBound.data[*].from_name)->M4_westBound.subdimsnions[""].from_name
(M4_westBound.data[*].to_name)->M4_westBound.subdimsnions[""].to_name
(M4_westBound.data[*].distance)->Distance
(M4_westBound.data[*].current_travel_time)->current_travel_time
(M4_westBound.data[*].free_flow_travel_time)->free_flow_travel_time
(M3_eastBound)->M3_eastBound
(M3_eastBound.data[*].status)->M3_eastBound.subdimsnions[""].status
(M3_eastBound.data[*].from_name)->M3_eastBound.subdimsnions[""].from_name
(M3_eastBound.data[*].to_name)->M3_eastBound.subdimsnions[""].to_name
(M3_eastBound.data[*].distance)->Distance
(M3_eastBound.data[*].current_travel_time)->current_travel_time
(M3_eastBound.data[*].free_flow_travel_time)->free_flow_travel_time
(M7_westBound)->M7_westBound
(M7_westBound.data[*].status)->M7_westBound.subdimsnions[""].status
(M7_westBound.data[*].from_name)->M7_westBound.subdimsnions[""].from_name
(M7_westBound.data[*].to_name)->M7_westBound.subdimsnions[""].to_name
(M7_westBound.data[*].distance)->Distance
(M7_westBound.data[*].current_travel_time)->current_travel_time
(M7_westBound.data[*].free_flow_travel_time)->free_flow_travel_time
(M1_northBound)->M1_northBound
(M1_northBound.data[*].status)->M1_northBound.subdimsnions[""].status
(M1_northBound.data[*].from_name)->M1_northBound.subdimsnions[""].from_name
(M1_northBound.data[*].to_name)->M1_northBound.subdimsnions[""].to_name
(M1_northBound.data[*].distance)->Distance
(M1_northBound.data[*].current_travel_time)->current_travel_time
(M1_northBound.data[*].free_flow_travel_time)->free_flow_travel_time
(M2_southBound)->M2_southBound
(M2_southBound.data[*].status)->M2_southBound.subdimsnions[""].status
(M2_southBound.data[*].from_name)->M2_southBound.subdimsnions[""].from_name
(M2_southBound.data[*].to_name)->M2_southBound.subdimsnions[""].to_name
(M2_southBound.data[*].distance)->Distance
(M2_southBound.data[*].current_travel_time)->current_travel_time
(M2_southBound.data[*].free_flow_travel_time)->free_flow_travel_time
(M4_eastBound)->M4_eastBound
(M4_eastBound.data[*].status)->M4_eastBound.subdimsnions[""].status
(M4_eastBound.data[*].from_name)->M4_eastBound.subdimsnions[""].from_name
(M4_eastBound.data[*].to_name)->M4_eastBound.subdimsnions[""].to_name
(M4_eastBound.data[*].distance)->Distance
(M4_eastBound.data[*].current_travel_time)->current_travel_time

174

(M4_eastBound.data[*].free_flow_travel_time)->free_flow_travel_time
(M1_southBound)->M1_southBound
(M1_southBound.data[*].status)->M1_southBound.subdimsnions[""].status
(M1_southBound.data[*].from_name)->M1_southBound.subdimsnions[""].from_name
(M1_southBound.data[*].to_name)->M1_southBound.subdimsnions[""].to_name
(M1_southBound.data[*].distance)->Distance
(M1_southBound.data[*].current_travel_time)->current_travel_time
(M1_southBound.data[*].free_flow_travel_time)->free_flow_travel_time
(M50_northBound)->M50_northBound
(M50_northBound.data[*].status)->M50_northBound.subdimsnions[""].status
(M50_northBound.data[*].from_name)->M50_northBound.subdimsnions[""].from_name
(M50_northBound.data[*].to_name)->M50_northBound.subdimsnions[""].to_name
(M50_northBound.data[*].distance)->Distance
(M50_northBound.data[*].current_travel_time)->current_travel_time
(M50_northBound.data[*].free_flow_travel_time)->free_flow_travel_time
(M50_southBound)->M50_southBound
(M50_southBound.data[*].status)->M50_southBound.subdimsnions[""].status
(M50_southBound.data[*].from_name)->M50_southBound.subdimsnions[""].from_name
(M50_southBound.data[*].to_name)->M50_southBound.subdimsnions[""].to_name
(M50_southBound.data[*].distance)->Distance
(M50_southBound.data[*].current_travel_time)->current_travel_time
(M50_southBound.data[*].free_flow_travel_time)->free_flow_travel_time

175

Appendix D

Schema and Mappings for usda

StarGraph

{
"_id" : ObjectId("59e397eff0f2229021f27d52"),
"name" : "download(1).csv",
"type" : "CSV",
"source" : "C:Users\\mscri\\Desktop\\exp_sources\\Agri-data\\download(1).csv",
"dimensions" : [

{
"name" : "source_desc",
"type" : "STRING",
"src" : "[0]"

},
{

"name" : "sector_desc",
"type" : "STRING",
"src" : "[1]"

},
{

"name" : "group_desc",
"type" : "STRING",
"src" : "[2]"

},
{

"name" : "commodity_desc",
"type" : "STRING",
"src" : "[3]"

},
{

"name" : "class_desc",
"type" : "STRING",
"src" : "[4]"

},
{

"name" : "prodn_practice_desc",
"type" : "STRING",
"src" : "[5]"

},
{

"name" : "util_practice_desc",

176

"type" : "STRING",
"src" : "[6]"

},
{

"name" : "stasticcat_desc",
"type" : "STRING",
"src" : "[7]"

},
{

"name" : "unit_desc",
"type" : "STRING",
"src" : "[8]"

},
{

"name" : "short_desc",
"type" : "STRING",
"src" : "[9]"

},
{

"name" : "domain_desc",
"type" : "STRING",
"src" : "[10]"

},
{

"name" : "domaincat_desc",
"type" : "STRING",
"src" : "[11]"

},
{

"name" : "agg_level_desc",
"type" : "STRING",
"src" : "[12]"

},
{

"name" : "state_alpha",
"type" : "STRING",
"src" : "[15]"

},
{

"name" : "state_name",
"type" : "STRING",
"src" : "[16]"

},
{

"name" : "asd_code",
"type" : "STRING",
"src" : "[17]"

},
{

"name" : "asd_desc",
"type" : "STRING",
"src" : "[18]"

},
{

"name" : "county_ansi",
"type" : "STRING",
"src" : "[19]"

},
{

"name" : "county_code",
"type" : "STRING",
"src" : "[20]"

},
{

177

"name" : "counry_name",
"type" : "STRING",
"src" : "[21]"

},
{

"name" : "region_desc",
"type" : "STRING",
"src" : "[22]"

},
{

"name" : "zip_5",
"type" : "STRING",
"src" : "[23]"

},
{

"name" : "watershed_desc",
"type" : "STRING",
"src" : "[25]"

},
{

"name" : "congr_district_code",
"type" : "STRING",
"src" : "[26]"

},
{

"name" : "country_name",
"type" : "STRING",
"src" : "[28]"

},
{

"name" : "location_desc",
"type" : "STRING",
"src" : "[29]"

},
{

"name" : "year",
"type" : "DATE",
"src" : "[30]"

},
{

"name" : "freq_desc",
"type" : "STRING",
"src" : "[31]"

},
{

"name" : "reference_period_desc",
"type" : "STRING",
"src" : "[34]"

},
{

"name" : "week_ending",
"type" : "STRING",
"src" : "[35]"

},
{

"name" : "load_time",
"type" : "DATE",
"src" : "[36]"

},
{

"name" : "CV (%)",
"type" : "STRING",
"src" : "[38]"

178

}
],
"measures" : [

{
"name" : "state_ansi",
"type" : "MEASURE",
"src" : "[13]"

},
{

"name" : "state_fips_code",
"type" : "MEASURE",
"src" : "[14]"

},
{

"name" : "watershed_code",
"type" : "MEASURE",
"src" : "[24]"

},
{

"name" : "country_code",
"type" : "MEASURE",
"src" : "[27]"

},
{

"name" : "begin_code",
"type" : "MEASURE",
"src" : "[32]"

},
{

"name" : "end_code",
"type" : "STRING",
"src" : "[33]"

},
{

"name" : "Value",
"type" : "MEASURE",
"src" : "[37]"

}
]

}

179

Appendix E

Schema and mappings for Case

Study 1

{
"name":"pig_mart",
"source_meta":{

"aim_1":{
"DATE":{

"type":"DATE",
"from":"source:,
"src":"//table[1]/tbody/tr[2]/th[1,2]"

},
"GEO":{

"type":"String",
"from":"Source",
"src":"//table[1]/tbody/tr[7]/th[1]"

},
"ITEM":{

"type":"String:,
"from":"static",
"src":"PIGS"

},
"METRIC":{

"type":"String",
"from":"Static",
"src":"Slaughterings"

},
"UNITS":{

"type":"String",
"from":"static",
"src":"Count"

}
},
"aim_2":{

"DATE":{
"type":"DATE",
"from":"source:,
"src":"//table[2]/tbody/tr[2]/th[1,2]"

},
"GEO":{

"type":"String",

180

"from":"Source",
"src":"//table[2]/tbody/tr[7]/th[1]"

},
"ITEM":{

"type":"String:,
"from":"static",
"src":"PIGS"

},
"METRIC":{

"type":"String",
"from":"Static",
"src":"Slaughterings"

},
"UNITS":{

"type":"String",
"from":"static",
"src":"Count"

}
},
"b_1":{

"DATE":{
"type":"DATE",
"from":"source:,
"src":"//table[1]/tbody/tr[1]/th[1]"

},
"GEO":{

"type":"String",
"from":"static",
"src":"Ireland"

},
"ITEM":{

"type":"String:,
"from":"static",
"src":"PIGS"

},
"METRIC":{

"type":"String",
"from":"Static",
"src":"Slaughterings"

},
"UNITS":{

"type":"String",
"from":"static",
"src":"Count"

}
},
"b_2":{

"DATE":{
"type":"DATE",
"from":"source:,
"src":"//table[1]/tbody/tr[1]/th[1]"

},
"GEO":{

"type":"String",
"from":"static",
"src":"Ireland"

},
"ITEM":{

"type":"String:,
"from":"static",
"src":"PIGS"

},
"METRIC":{

"type":"String",
"from":"Static",

181

"src":"Price"
},
"UNITS":{

"type":"String",
"from":"static",
"src":"EUR_CENT"

}
},
"p_1":{

"DATE":{
"type":"DATE",
"from":"source:,
"src":"//table[1]/tr[1-*]/th[1]"

},
"GEO":{

"type":"String",
"from":"static",
"src":"GB"

},
"ITEM":{

"type":"String:,
"from":"static",
"src":"PIGS"

},
"METRIC":{

"type":"String",
"from":"Static",
"src":"Price"

},
"UNITS":{

"type":"String",
"from":"static",
"src":"EUR_CENT"

}
},
"p_2":{

"DATE":{
"type":"DATE",
"from":"source:,
"src":"//table[1]/tr[1-*]/th[1]"

},
"GEO":{

"type":"String",
"from":"static",
"src":"GB"

},
"ITEM":{

"type":"String:,
"from":"static",
"src":"PIGS"

},
"METRIC":{

"type":"String",
"from":"Static",
"src":"Price"

},
"UNITS":{

"type":"String",
"from":"static",
"src":"EUR_CENT"

}
},
"p_3":{

"DATE":{
"type":"DATE",

182

"from":"source:,
"src":"//table[1]/tr[1-*]/th[1]"

},
"GEO":{

"type":"String",
"from":"static",
"src":"GB"

},
"ITEM":{

"type":"String:,
"from":"static",
"src":"PIGS"

},
"METRIC":{

"type":"String",
"from":"Static",
"src":"Price"

},
"UNITS":{

"type":"String",
"from":"static",
"src":"EUR_CENT"

}
},
"bp_1":{

"DATE":{
"type":"DATE",
"from":"source:,
"src":"//table[1]/tr[1]/th[1]"

},
"GEO":{

"type":"String",
"from":"static",
"src":"GB"

},
"ITEM":{

"type":"String:,
"from":"static",
"src":"PIGS"

},
"METRIC":{

"type":"String",
"from":"Static",
"src":"Price"

},
"UNITS":{

"type":"String",
"from":"static",
"src":"GBP"

}
},
"bp_2":{

"DATE":{
"type":"DATE",
"from":"source:,
"src":"//table[1]/tr[1]/th[1]"

},
"GEO":{

"type":"String",
"from":"static",
"src":"GB"

},
"ITEM":{

"type":"String:,
"from":"static",
"src":"PIGS"

183

},
"METRIC":{

"type":"String",
"from":"Static",
"src":"Price"

},
"UNITS":{

"type":"String",
"from":"static",
"src":"GBP"

}
},
"c_1":{

"DATE":{
"type":"DATE",
"from":"source:,
"src":"//table[1]/tr[1]/th[2]"

},
"GEO":{

"type":"String",
"from":"static",
"src":"WORLD"

},
"ITEM":{

"type":"String:,
"from":"static",
"src":"PIGS"

},
"METRIC":{

"type":"String",
"from":"Static",
"src":"FUTURE"

},
"UNITS":{

"type":"String",
"from":"static",
"src":"QUOTE"

}
},
"c_2":{

"DATE":{
"type":"DATE",
"from":"source:,
"src":"//table[1]/tr[1]/th[2]"

},
"GEO":{

"type":"String",
"from":"static",
"src":"WORLD"

},
"ITEM":{

"type":"String:,
"from":"static",
"src":"PIGS"

},
"METRIC":{

"type":"String",
"from":"Static",
"src":"FUTURE"

},
"UNITS":{

"type":"String",
"from":"static",
"src":"QUOTE"

}
},

184

"imf":{
"DATE":{

"type":"DATE",
"from":"source:,
"src":"//ExchangeRateReport/User_Selections/DATE_RANGE"

},
"GEO":{

"type":"String",
"from":"static",
"src":"WORLD"

},
"ITEM":{

"type":"String:,
"from":"static",
"src":"Currency"

},
"METRIC":{

"type":"String",
"from":"Static",
"src":"Exchange Rate"

},
"UNITS":{

"type":"String",
"from":"static",
"src":"SDR"

}
},
"usda":{

"DATE":{
"type":"DATE",
"from":"source:,
"src":"//ExchangeRateReport/User_Selections/DATE_RANGE"

},
"GEO":{

"type":"String",
"from":"source",
"src":"[21]"

},
"ITEM":{

"type":"String:,
"from":"source",
"src":"[3]"

},
"METRIC":{

"type":"String",
"from":"source",
"src":"[7]"

},
"UNITS":{

"type":"String",
"from":"source",
"src":"[8]"

}
}

},
"facts":[

{
"sources":[

"aim_1",
"aim_2",
"b_1",
"b_2",
"p_1",
"p_2",

185

"p_3",
"bp_1",
"bp_2",
"usda"

],
},
{

"sources":["c_1","c_2"]
},
{

sources:["imf"]
}

]
}

186

Appendix F

Schema and mappings for Case

Study 2

{
"_id" : ObjectId("59e880840e4b9b1a17316d57"),
"name" : "oil_data_mart",
"source_meta" : {

"PPOIL_USD" : {
"DATE" : {

"type" : "DATE",
"from" : "SOURCE",
"src" : "[0]"

},
"GEO" : {

"type" : "STRING",
"from" : "STATIC",
"src" : "AMERICA"

},
"ITEM" : {

"type" : "STRING",
"from" : "STATIC",
"src" : "PALM OIL"

},
"METRIC" : {

"type" : "STRING",
"from" : "STATIC",
"src" : "PRICE"

},
"UNITS" : {

"type" : "STRING",
"from" : "STATIC",
"src" : "USD"

},
"VALUE" : {

"type" : "MEASURE",
"from" : "SOURCE",
"src" : "[1]"

}
},
"PROIL_USD" : {

"DATE" : {
"type" : "DATE",

187

"from" : "SOURCE",
"src" : "[0]"

},
"GEO" : {

"type" : "STRING",
"from" : "STATIC",
"src" : "AMERICA"

},
"ITEM" : {

"type" : "STRING",
"from" : "STATIC",
"src" : "RAPESEED OIL"

},
"METRIC" : {

"type" : "STRING",
"from" : "STATIC",
"src" : "PRICE"

},
"UNITS" : {

"type" : "STRING",
"from" : "STATIC",
"src" : "USD"

},
"VALUE" : {

"type" : "MEASURE",
"from" : "SOURCE",
"src" : "[1]"

}
},
"PSOIL_USD" : {

"DATE" : {
"type" : "DATE",
"from" : "SOURCE",
"src" : "[0]"

},
"GEO" : {

"type" : "STRING",
"from" : "STATIC",
"src" : "AMERICA"

},
"ITEM" : {

"type" : "STRING",
"from" : "STATIC",
"src" : "SOYBEAN OIL"

},
"METRIC" : {

"type" : "STRING",
"from" : "STATIC",
"src" : "PRICE"

},
"UNITS" : {

"type" : "STRING",
"from" : "STATIC",
"src" : "USD"

},
"VALUE" : {

"type" : "MEASURE",
"from" : "SOURCE",
"src" : "[1]"

}
},
"PSUNO_USD" : {

"DATE" : {
"type" : "DATE",
"from" : "SOURCE",
"src" : "[0]"

188

},
"GEO" : {

"type" : "STRING",
"from" : "STATIC",
"src" : "AMERICA"

},
"ITEM" : {

"type" : "STRING",
"from" : "STATIC",
"src" : "SUNFLOWER OIL"

},
"METRIC" : {

"type" : "STRING",
"from" : "STATIC",
"src" : "PRICE"

},
"UNITS" : {

"type" : "STRING",
"from" : "STATIC",
"src" : "USD"

},
"VALUE" : {

"type" : "MEASURE",
"from" : "SOURCE",
"src" : "[1]"

}
},
"REN_SU" : {

"DATE" : {
"type" : "DATE",
"from" : "SOURCE",
"src" : "[0]"

},
"GEO" : {

"type" : "STRING",
"from" : "STATIC",
"src" : "AMERICA"

},
"ITEM" : {

"type" : "STRING",
"from" : "STATIC",
"src" : "SUNFLOWER OIL"

},
"METRIC_1" : {

"type" : "STRING",
"from" : "STATIC",
"src" : "PRICE"

},
"UNITS_1" : {

"type" : "STRING",
"from" : "STATIC",
"src" : "USD"

},
"VALUE_1" : {

"type" : "MEASURE",
"from" : "SOURCE",
"src" : "[1]"

},
"METRIC_2" : {

"type" : "STRING",
"from" : "STATIC",
"src" : "PRICE"

},
"UNITS_2" : {

"type" : "STRING",
"from" : "STATIC",

189

"src" : "PERCENT_CHANGE"
},
"VALUE_2" : {

"type" : "MEASURE",
"from" : "SOURCE",
"src" : "[2]"

}
},
"WLD_COCONUT_OIL" : {

"DATE" : {
"type" : "DATE",
"from" : "SOURCE",
"src" : "[0]"

},
"GEO" : {

"type" : "STRING",
"from" : "STATIC",
"src" : "WORLD"

},
"ITEM" : {

"type" : "STRING",
"from" : "STATIC",
"src" : "COCONUT OIL"

},
"METRIC" : {

"type" : "STRING",
"from" : "STATIC",
"src" : "PRICE"

},
"UNITS" : {

"type" : "STRING",
"from" : "STATIC",
"src" : "USD"

},
"VALUE" : {

"type" : "MEASURE",
"from" : "SOURCE",
"src" : "[1]"

}
},
"WLD_PALM_OIL" : {

"DATE" : {
"type" : "DATE",
"from" : "SOURCE",
"src" : "[0]"

},
"GEO" : {

"type" : "STRING",
"from" : "STATIC",
"src" : "WORLD"

},
"ITEM" : {

"type" : "STRING",
"from" : "STATIC",
"src" : "PALM OIL"

},
"METRIC" : {

"type" : "STRING",
"from" : "STATIC",
"src" : "PRICE"

},
"UNITS" : {

"type" : "STRING",
"from" : "STATIC",
"src" : "USD"

},

190

"VALUE" : {
"type" : "MEASURE",
"from" : "SOURCE",
"src" : "[1]"

}
},
"WLD_SOYBEAN_OIL" : {

"DATE" : {
"type" : "DATE",
"from" : "SOURCE",
"src" : "[0]"

},
"GEO" : {

"type" : "STRING",
"from" : "STATIC",
"src" : "WORLD"

},
"ITEM" : {

"type" : "STRING",
"from" : "STATIC",
"src" : "SOYBEAN OIL"

},
"METRIC" : {

"type" : "STRING",
"from" : "STATIC",
"src" : "PRICE"

},
"UNITS" : {

"type" : "STRING",
"from" : "STATIC",
"src" : "USD"

},
"VALUE" : {

"type" : "MEASURE",
"from" : "SOURCE",
"src" : "[1]"

}
}

},
"facts" : [

{
"sources" : [

"PPOIL_USD",
"PROIL_USD",
"PSOIL_USD",
"PSUNO_USD",
"REN_SU"

],
"join" : [

{
"attr" : "DATE",
"type" : "EQUALITY"

},
{

"attr" : "GEO",
"type" : "EQUALITY"

},
{

"attr" : "METRIC",
"type" : "EQUALITY"

}
],
"int-approach" : "COLUMN_APPEND"

},
{

191

"sources" : [
"WLD_SOYBEAN_OIL",
"WLD_PALM_OIL",
"WLD_COCONUT_OILs"

],
"join" : [

{
"attr" : "DATE",
"type" : "EQUALITY"

},
{

"attr" : "GEO",
"type" : "EQUALITY"

},
{

"attr" : "METRIC",
"type" : "EQUALITY"

}
],
"int-approach" : "COLUMN_APPEND"

}
]

}

192

Appendix G

Schema and mappings for Case

Study 3

{
"_id" : ObjectId("59e9aea39ba46d546f783a36"),
"name" : "dairy_data_mart",
"source_meta" : {

"apro_mk_colm_1_Data" : {
"DATE" : {

"type" : "DATE",
"from" : "SOURCE",
"src" : "[0]"

},
"GEO" : {

"type" : "STRING",
"from" : "SOURCE",
"src" : "[1]"

},
"ITEM" : {

"type" : "STRING",
"from" : "SOURCE",
"src" : "[2]"

},
"METRIC" : {

"type" : "STRING",
"from" : "SOURCE",
"src" : "[3]"

},
"UNITS" : {

"type" : "STRING",
"from" : "SOURCE",
"src" : "[3]"

},
"VALUE" : {

"type" : "MEASURE",
"from" : "SOURCE",
"src" : "[4]"

}
},
"download(1).csv" : {

"DATE" : {

193

"type" : "DATE",
"from" : "SOURCE",
"src" : "[34]"

},
"GEO" : {

"type" : "STRING",
"from" : "SOURCE",
"src" : "[28]"

},
"ITEM" : {

"type" : "STRING",
"from" : "SOURCE",
"src" : "[3]"

},
"METRIC" : {

"type" : "STRING",
"from" : "SOURCE",
"src" : "[9]"

},
"UNITS" : {

"type" : "STRING",
"from" : "SOURCE",
"src" : "[10]"

},
"VALUE" : {

"type" : "MEASURE",
"from" : "SOURCE",
"src" : "[37]"

}
},
"milk.de > Home - Dairy World Information from the ZMB - 2" : {

"DATE" : {
"type" : "DATE",
"from" : "STATIC",
"src" : "function(){return new Date().toString();}"

},
"GEO" : {

"type" : "STRING",
"from" : "STATIC",
"src" : "GERMANY"

},
"ITEM" : {

"type" : "STRING",
"from" : "SOURCE",
"src" : "//table[2]/tbody/tr/td[1]"

},
"METRIC" : {

"type" : "STRING",
"from" : "STATIC",
"src" : "PRODUCTION"

},
"UNITS" : {

"type" : "STRING",
"from" : "STATIC",
"src" : "METRIC TONNES"

},
"VALUE" : {

"type" : "MEASURE",
"from" : "SOURCE",
"src" : "//table[2]/tbody/tr/td[2]"

}
}

},
"facts" : [

194

{
"sources" : [

"apro_mk_colm_1_Data",
"download(1).csv",
"milk.de > Home - Dairy World Information from the ZMB - 2"

],
"join" : [

{
"attr" : "DATE",
"type" : "EQUALITY"

}
],
"int-approach" : "COLUMN_APPEND"

}
]

}

195

	Preface
	Introduction
	Business Intelligence and the Importance of Data
	Data Warehousing and ETL
	The Data Warehouse
	Warehouse Models
	OLAP
	The Extract-Transform-Load Architecture

	Mining Data Streams
	Problem Statement

	Hypothesis, Aims and Goals
	Contribution and Thesis Structure

	Related Research
	ETL and Data Warehouse Construction
	Data Stream Warehousing
	Related Research: A final Summary

	An Architecture for Dynamic Processing of Data Streams
	System Overview
	Stream Introduction (P1)
	StarGraph Creation (P2)
	Constellation Creation (P3)
	Materialisation (P4)

	System Data Stores
	Data Lake
	StarGraph Metabase
	Data Warehouse

	StarGraph Ontology
	Terms
	Types
	Metamodel

	Evaluation Case Study Descriptions
	Case Study 1: Pig Price Predictions
	Case Study 2: Price Trend Comparison
	Case Study 3: Analysing Milk Production

	Summary

	A Canonical Model for Multidimensional Data Streams
	Requirements for Managing Multidimensional Data
	Requirement 1: Enriching the Data Source
	Requirement 2: Graph Restructuring
	Requirement 3: Generating Mappings

	The StarGraph Model
	StarGraph Properties
	StarGraph Functions

	Materialisation Wrappers
	HTML Data Streams
	XML and JSON Data Streams
	CSV Data Streams

	StarGraph Transformation: An Interim Case Study
	Summary

	StarGraph Integration
	Integrating Semistructured Data
	Resolving Mapping Difficulties
	Identifying Integration Attributes
	Selecting an Integration Strategy

	Integration Functions
	The TermMap function
	The TypeMap function
	The MetamodelCheck function
	The GranularityCheck function
	The DetermineStrategy function
	The Materialise function

	Integration Data Flows and Mappings
	Examining Graph Convergence
	Constellation construction for Case Study 1
	Constellation construction for Case Study 2
	Constellation construction for Case Study 3

	Summary

	Deleting Redundant Mappings
	HTML formatting: Blank Value
	CSV Formatting: Repeating Value
	StarGraph Integration: Duplicate Node
	Valueless Node
	Optimisation Analysis
	Blank Value Optimisation
	Repeating Value Optimisation
	Duplicate Node Optimisation
	Valueless Node Optimisation

	Summary

	Evaluation
	Case Study 1: Price Prediction Data Mart
	User Defined Integration.
	Non-Assisted Integration
	Ontology-Assisted Integration
	Summary

	Case Study 2: Price Comparison Data Mart
	User Defined Integration
	Non-Assisted Integration
	Ontology-assisted integration.
	Comparison

	Case Study 3: Milk Production Data Mart
	User Defined and Non-Assisted Integration.
	Ontology assisted integration

	Overall Summary

	Conclusions
	Thesis Overview
	Future Work
	Robust Query Mechanisms
	On-Demand ETL
	Prescanning Data Sources
	Cloud based ETL
	A Different Approach to Experiments

	Bibliography
	Appendices
	Schema and Mappings for aim_1 StarGraph
	Schema and Mappings for imf StarGraph
	Schema and Mappings for tii StarGraph
	Schema and Mappings for usda StarGraph
	Schema and mappings for Case Study 1
	Schema and mappings for Case Study 2
	Schema and mappings for Case Study 3

