وزارت جهاد كشاورزى
 سازمان تحقيقات، آموزش و ترويج كشاورزى مؤسسه تحقيقات شيلات ايران- پزوهشكده اكولوزي در درياى خزر

> عنوان:
> مولدسازى+ تكثير مصنوعى
> كفال خاكسترى (Mugil cephalus)
محمود قانعى تهر انى

شماره ثبت
ヘ9/11人r

- عنوان پروزه / طرح : مولدسازى+ تكثير مصنوعى كفال خاكسترى (Mugil cephalus)

 - نام و نامخانواد

 يوسف ايرى
- نامونامخانوادگى مشاور(ان): سهراب رضوانى- عباس متينفر - عبدالحليم آخوندى - حسينعلى رستمى - سيدعباس حسينى
- محل اجرا: استان مازندران

- مدت اجرا:
- ناشر: مؤسسه تحقيقات شيلات ايرات ات ان ان
- شمار گان(تيتراز): • ب نسخه

1ra. تاريخ انتشار: سال
حق چاپٍ برای مؤلف محفوظ است- نقل مطالب تصاوير،جداول،منحنىها و نمودارها با ذكـر مأخــذ بلامـانع

1.rا- مقدمه
r 1-1-كليات
μr-ا-سابقه تكثير در دنيا و ايران

$$
\Delta
$$

r-ا- سابقه تكثير و پرورش ماهيان دريايى در ايران ..

$$
\Delta .
$$

F- ا- زيست شناسى و ويز گى هاى زيستى كفال خاكسترى.

$$
9 .
$$

Y- مواد و روشها
9.
ا-Y- ا- موقعيت مكانى و جغر افيائى محل اجراى طرح.
9..
1.
ץ-Y- منبع تامين پيش مولد .
II ... T- T- ץ
Ir ... ب- مديريت استخرهاى مولد
ri.
^-^- تكثير كفال خاكسترى
rr ru - • •

ra.
r- Y- تعيين لقاح و درصد لقاح .
M ri r-
ryr- If - تغذيه لاروها
ro

ra
ا 1-r- نتايج بررسىهای فيزيكى، شيميايى و بهداشتى استخر مولدين . f. r-r-r- نتايج بررسى غدد تناسلى
40 r-r-r- نتايج تكثير
صفحه
09 F
91 بيشنهادها
V. منابع
Vr چچییده انگگليسى

چحكيده

استانهاى مازندران و گلستان با توجه به آب و هواى معتدل خود از استانهاى مستعد براى كشت و پرورش آبزيان دريائى نيز مى تواند باشند . مجاورت اين استان بادرياى خزر و وجود هزاران هكتارراضى شور و بلا استفــاده جهت كشاورزى زمينه مساعدى را براى كشت و پرورش آبزيان دريائى فراهم آورده است.بدنبال نتايج موفق حاصل از پروزه پرورش انگشت قدهاى وارداتى كفال خاكسترى در شرايط آب و هوايى شمال كشور كه بخوبى ويز گيهاى زيستى اين گونه از كفال را جهت پرورش در محيط محصور استخرى و تحت شرايط محيط آبى (شيرين - لب شور - شور) به اثبات رسانده بود، پروزه مولدسازى + تكثير مصنوعى كفال خاكسترى بمنظور تكميل فعاليت هاى انجام گرفته در طى سالهاى IrVV الى IrAI توسط مركز تحقيقات شيلاتى استان مازندران در محل ايستگاه پرورش ميگوى گميشان در مجاورت درياى خزر(شمال شرق استان مازندران) در طى دو مرحله به اجرا در آمد.هدف از اجراى اين طرح در مرحله اول بررسى امكان دستيابى به ماهيان با غدد تناسلى رسيده به عنوان مولد (مولد سازى) از مجموعه ماهيان كفال خاكسترى مورد پرورش در آب و هوايى شمال ايران و بدنبال آن انجام القاء رسيدگى نهايى و تكثير مصنوعى مولدين حاصل و دستيابى به لارو آنان بوده است ، تا از اين طريق ضمن كسب دانشى نوين در امر تكثير و پرورش ماهى كفال خاكسترى بعنوان گونهاى دريائى زمينه توليد انبوه آنرا بمنظور معرفى گونه ای جديد به آبزى پرورى كشور فراهم آوريم. در تحقيق حاضر امكان مولد سازى و تكثير مصنوعى كفال خاكسترى (Mugil cephalus) مورد پپوهش قرار گرفته است. ماهيان كفال خاكسترى مورد استفاده حاصل پرورش انگشت قدهاى وارداتى اين گونه از كشور هنگگ كنگ و پرورش
 قطعه استخر خاكى نيم هكتارى آماده سازى گرديد و از مجموعه ماهيان مورد پرورش تعداد . . ا قطعه ماهى ه+ سال با وزن متوسط ه/ه- ا كيلو گرم در هر يك از استخرها ذخيره شد.به منظور فراهم آوردن شرايط تغذيه اى و آبى مناسب ، ماهيان روزانه با غذاى غنى از پروتئين (\&F درصد) بميزان ه - r درصد وزن بدن تغذيه شده و در آب با شورى هr - •r در هزار نگهدارى مىشدند. بررسى رسيدگى جنسى در ماهيان مولد از طريق نمونه بردارى دوره ای از غدد تناسلى در طول سال انجام گرفت ، بررسيها نشان داد در مولدين ماده غالب تخمك ها در طول فروردين تا تيرماه در مرحله يكك ، در مرداد ماه در مرحله دوم ، در شهريور ماه در مرحله سوم و در

اواخر مهر ماه مرحله چهارم ميباشند .طى ماههاى آبان ، آذر، دى بترتيب مراحل سه گانه زرده سازى بتدريج در اووسيت هاى تخمدانى كامل مىشود. تخمكهاى با قطر حدود .9.9 ميكرون از اواسط پاييز تا اواسط زمستان مشاهده شد و ماهيان در اين ايام شرايط لازم جهت القاء هورمونى را دارا شدند. با هدف تكثير مصنوعى مولدين كفال خاكسترى از روش القاء هورمونى با استفاده از تزريق Cph, LHRH, HCG ، ... استفاده شده است. براساس عمليات انجام گرفته با استفاده از انواع تر كيبات هورمونى در دو تا جند نوبت تزريق و بفاصله YY ساعت از
 تناسلى مولدين ى فراهم آورد. در مجموع از عمليات انجام گرفته در سه نوبت لقاح تا مرحله خروج لارو محقق گرديد . كه در يك نوبت و در نوبت دوم . . .
 حاضر بيانگر تحقق امكان مولد سازى كفال خاكسترى در شرايط پرورشى و تكثير مصنوعى و توليد لارو در شرايط آب و هوايى شمال ايران براى نخستين بار در كشور بوده است. كلمات كليدى:كفال خاكسترى، مولدسازى، تكثيرمصنوعى، هورمون، هييوفيز، رسيدگى جنسى، القا تخمريزى .

1- مقدمه
1-1-كليات
كفال خاكسترى با نام علمى Mugil cephalus گسترد گی وسيعى در اقصى نقاط دنيا دارد. اين گونه در همه آبهاى ساحلى بين عرض جغر افيايى FY امروزه حدود •r گونه از انواع كفال ماهيان مورد پرورش قرار مى گیرند كه كفال خاكسترى مهمترين گونه برورشى آنها مى باشد (Cardona, 1996 ; Kuo, 1995). كفال خاكسترى بجهت ويز گيهاى زيستى خود همچحون: تحمل دامنه وسيع شورى (... - • در هزار) ، درجه حرارت (•ץ- • درجه سانتيگراد) ، طيف وسيع تغذيه (گياهى ، جانورى و دستى) ، رشد سريع ، اندازه بزر گ بالغين ، طعم خوب گوشت و سفت و چرب بودن گوشت آن ، كم تيغ بودن ، ضايعات كم ، تحمل ميزان كم اكسيزّن محلول در آب (Y-ا ميلى گرم در ليتر) از گونه هاى مشهور و مهم پرورشى كفال ماهيان است كه در بسيارى از مناطق دنيا پرورش آن به تنهائى يا توأم با انواع ديگر آبزيان از ماهى ، ميگو ، ... انجام مى شود .(Bardoch, 1973 ; Purginin, 1975)
(Liao 1969 ; تخمريزى خود بخود (طبيعى) كفال خاكسترى در شرايط پرورشى تاكنون گزارش نشده است . لذا امروزه در غالب كشورهاى پرورش دهنده . Shehadeh 1970 ; Nash 1980 ; Lee and Tamaru 1988; Kuo 1995) كفال، صيد نوزاد (بجٍه ماهيان) از طبيعت هنوز منبع اصلى تامين بحجه ماهى مى باشد. كيفيت و كميت بجه ماهيان وحشى و همحنين در دسترس بودن متغير آنان در هر سال مانعى در جهت توسعه فن پرورش متراكم آنان محسوب مى شود (Kuo, 1995).

- ا- ا- سابقه تكثير در دنيا و ايران

با توجه به مطالب فوق تلاشها در جهت دستيابى به تكنيك تكثير مصنوعى كفال خاكسترى از دهه هاى گذشته موضوع مورد مطالعه در كشورهاى تايوان، هنگک كنگ؛، كره، فلسطين اشغالى، ايالت متحده آمريكا، ... بوده

اولين بار تخم كشى مصنوعى كفال خاكسترى در سال . 194 در ايتاليا انجام گرفت. محققين (Sano, 1936 ، (Kimand و در كره موارد موفقيت آميز لقاح را از آميزش تخم و اسرم ماهيان 1962 ، Anderson, 1957 وحشى و بدون تزريق هورمون گزارش نمودند.اولين تخم كشى القائى توسط (Yang, 1963) در تايوان با استفاده از عصاره هييوفيز ماهيان در حال مهاجرت در فصل تخمريزى كفال خاكسترى انجام پذيرفت. توسط Yashove (1969) در فلسطين اشغالى با استفاده از هييوفيز كيور معمولى، توسط Liao (1972) در تايوان با استفاده از هييوفيز كفال ، توسط (Shehade, 1973) در هاوايى با گنادوتروبين نيمه خالص ماهى آزاد، تكثير القائى آن تكرار گرديد. تكنولوزى تكثير مصنوعى القائى كفال خاكسترى توسط (Nash, shehade 1981) ارائه شده است. نخستين بار توسط Lee و همكارانش (19AV) از هورمون LHRH و آنالو گهاى آن در تكثير القائى كفال خاكسترى استفاده شد و در سالهاى پس از آن تاكنون نيز از انواع هورمونهاى GnRH, HCG وCPH و آنالو گهاى آنها در القاء رسيد گى و تكثير مصنوعى كفال خاكسترى استفاده مى شود. در سالهاى اخير تلاش براى افزايش (توسعه) فصل تخمريزى كفال خاكسترى و دفعات آن در طى سال از طريق كنترل شرايط محيطى (دوره نورى ، درجه حرارت ، ...) انجام و به نتايج مشخصى رسيده است (Kuo, 1995 ; .(Shehadeh et al., 1973 به علاوه تسريع در فر آيند رسيدگى جنسى در ماهيان ماده و نر با استفاده از انواع هورمون ها به طريق كاشتن در زير پوست، خوراندن و تزريق نيز از موارد مورد توجه محققين بوده است (Tamaru et al., 1985). اگرچه در اين مدت تكنيك هاى تكثير و پرورش كفال خاكسترى از پيشرفت خوبى برخوردار بوده است اما هنوز نگهدارى و پرورش لارو تا \& \& روز گی بدليل مشكالات در فراهم آوردن غذاى كافى و مناسب براى آنان و اندازه كوچچك دهان لاروها ، پرورش اين گونه را جهت توليد انبوه و تجارتى دچار مشكل مى نمايد. لذا تحقيقات جديد بر روى شناسايى شرايط مطلوب محيطى براى انكوباسيون تخم ، تغريخ و پرورش لارو

「- ا- سابقه تكثير و پرورش ماهيان دريائى در ايران

در كشورمان سابقه تكثير و پرورش ماهيان دريائى در مقايسه با ماهيان آب شيرين (گرم آبى ، سردآبى) و همحِنين ميگو نویا و جوان مىباشد.

در زمينه پرورش ماهيان دريائى فعاليت ها و تحقيقات محدود به پپوهش هاى انجام گرفته در رابطه با پرورش بجچه ماهيان انگشت قد برخى از ماهيان بومى شمال و جنوب كشور مى باشد كه بچحه ماهيان آن از محيط طبيعى صيد شده بود كه عبارتند از كفال گونه Salins و Auratus، خامه ماهى، شانگك ، ...). در زمينه مولد سازى و تكثير ماهيان دريائى با توجه به ظرافت ها و پيچچيد گيهاى كار سابقه فعاليت بسيار محدود تر از پرورش بوده و ثزوهشهاى انجام گرفته در رابطه با () تكثير مصنوعى ماهى هامور، Y) مولد سازى خامه ماهى مى باشد.

سابقه فعاليت و تحقيقات در مورد كفال خاكسترى با توجه به غير بومى بودن آن، به پروزه "پرورش انگشت قدهاى وارداتى كفال خاكسترى در شرايط آب و هوايى شمال ايران" محدود مى گردد كه توسط نگارنده گزارش حاضر (قانعى تهرانى)در مر كز تحقيقات شيلاتى استان مازندران طى سالهاى VA - VA ITV اجرا گرديده است. بمنظور تكميل اين فعاليت ها، پروزه حاضر نخستين پثوهش انجام گرفته در كشور در مورد كفال خاكسترى مى باشد كه در رابطه با مولدسازى و تكثير مصنوعى كفال خاكسترى در كشورمان انجام گرفته است.

ع- ا - زيست شناسى و ويزگيهاى زيستى كفال خاكسترى

تاكسونومى
رابطه فيلوزنى كفال خاكسترى (Mugil Cephalus) مطابق طبقه بندى ارائه شده توسط Thomson در سال 1999 بشكل جدول 1 مى باشد.

\section*{جدول 1 - رابطه فيلوزنى كفال خاكسترى (Mugil Cephalus)
 | Mugil cephalus | |
| :---: | :---: |
| شاخه | مهره داران |
| رده | ماهيان استخوانى |
| فوق راسته | Actinopterygii |
| راسته | سوف ماهى شكلان |
| زير راسته | كفال |
| خانواده | كفال |
| جنس | موزيل |
| گونه | سفالوس |

مشخصات عمومى كفال خاكسترى (.Mugil cephalus L)

- بدن نسبتا كشيده كه كمى از دو پهلو فشرده شده است.
- سطح پشتى بدن خاكسترى رنگگ ، پهلوها نقره ای با خطوط راه راه در دو طرف بدن و شكم سفيد است. - فاقد خط جانبى بوده و غالبا لكه ای نيلى رنگگ در پايه باله سينه ای قابل مشاهده است.
- سر از جلو گرد و از بالا كمى فشرده (پیهن) شده است.
- فلسها سيكلوئيدى سطح بدن در روى سر در جلو بسيار كوچكک شده و از جلوى منافذ بويائى شروع و

اغلب به انتهاى پوزه مى رسند.

- چشم ها تا مردمكک توسط پلكک چربى پوشيده شده است.
 مى.
- تعداد خارهاى برانش در قوس اول •10×-10 عدد است.
- تعداد فلسها بر روى محل خط جانبى FY-FD عدد است.
- معده گرد و عضالنى و دارای Yعدد زوائد باب المعدى در اطراف مى باشد (شكل ()) (FAO,Oren,1981) .

شكل 1 - ماهى كفال خاكسترى(.Mugil cephalus L)

سن بلوغ

سن بلوغ در اين ماهيان در شرايط مختلف آب و هوايى متفاوت است . بلوغ در نقاط گرمسير (خليج تخزاس) در

 استراليا ، ه- ه ميليون عدد تخم در ماهيان ه ساله با طول VAV ميلى متر در تايوان و V-D ميليون عدد تخم در ماهيان •به ميلى متر و سن זا سال با وزن تخمدان •Or •Oren, 1981).

دوره (فصل) تخمريزى موزيل سفالوس در نقاط مختلف دنيا

 در مناطق مختلف جغر افيايى در زمانهاى متغاوتى از سال تخمريزى مى كنند. هندوستان: فصول گرم سال، اسپانيا: بهمن الى اسفند، جنوب غرب هندوستان:آذر الى اسفند، درياى سياه: تير الى شهريور، تايوان: آبان الى اسفند، استراليا: آذر الى اسفند، هاوايى: ارديبهشت الى شهريور، آدرياتيك شمالى: شهريور الى آبان، فلسطين اشغالى: مهر الى آبان) Kuo and Nash 1974)
تخمريزى طبيعى

تخمريزى در محيط طبيعى در آب كاملا شور دريا و بدور از ساحل در كنار فلات قاره در بالاى آبهاى عميق و

تخمها شناور بوده و بدون مراقبت پس از \&^ ساعت تفريخ شده و لاروها بتدريج با جريان آب شنا كرده و با طول هY ميلى متر وارد آبهاى ساحلى شده سپس براى تغذيه بطرف خوريات مى روند (YY)و (Oren, 1981). اندازه بجهه ماهيان كفال خاكسترى و فصل مهاجرت آنها به خوريا ت در نقاط مختلف دنيا: (Tang, 1958) (10 - ميلى متر -آبان الى اسفند-تايوان. MA M-YA ميلى متر -بهمن -جنوب آتلانتيك (Andersan, 1979).
 ها ميلى متر-شهريور الى مهر - شمال كوئيزلند(Silva, 1979).

「- مواد و روشها

موقعيت مكانى و جغر افيائى محل اجراى طرح -r-l

محل اجراى طرح كار گاه (ايستگاه) پرورش ميگوى گميشان در مجاورت آبگير گميشان است. آبگير گميشان در ضلع شرقى و متصل به درياى خزر قرار دارد. اين آبگير حاصل بالا آمدن سطح آب درياى خزر در ساليان اخير و پيشروى آب دريا در اراضى ساحلى خود مى باشد ، وسعت آن حدود .9 هكتار و عمق متوسط آن ץ-1 متر است. كار گاه گميشان در فاصله • ا كيلومترى شمال شهر گميشان و •Yه كيلومترى شمال شهرستان بندرتر كمن قرار
دارد (شكل ب).

آب و هواى منطقه نيمه بيابانى و در تابستانها گرم و در زمستانها سرد و خشك مى باشد ـ وسعت كار گاه حدود
 هكتارى و يك سالن هحِرى به وسعت . .
 در طول اجراى پروزه از استخرهاى خاكى و ساير امكانات موجود كار گاه كه با هدف تكثير و پرورش ميگو احداث گرديده بود استفاده گرديده است.

r-r-r منبع تامين آب

آب كار گاه ، استخرهاى پرورش و نگهدارى ماهيان كفال خاكسترى و همچچنين سالن هچֶرى از طريق كانال خاكى مرتبط به آبگير گميشان تامين مى شد ، به جهت ارتباط مستمر اين آبگير با درياى خزر شرايط فيزيكى و شيميايى Tب آن خاصه شورى اوليه Tب مشابه درياى خزر ها - 1 آ در هزار است. Tب بطريق ثقلى از طريق
 سيمانى آبرسان استخرها پٍمیازٌ شده و به استخر رسانده مى شود. بعلاوه آب لب شور آبغير (ها-سا) در r قطعه استخر خاكى r هكتارى كار گاه در طول سال ذخيره مى شود تا علاوه بر تامين آب مورد نياز كار گاه در زمان قطم Tب كانال بهنگام نوسانات ساليانه ضمنا بتوان از طريق تبخير و

نگهلارى آب در فصل گرما ، شورى آب را تا ميزان \& \& - \& در هزار افزايش داده تا بدين طريق ، آب با شورى مورد نياز (هr-•ب درهزار) جهت استخر مولدين كفال خاكسترى و همچخنين سالن هچرى در ايام تكثير را فراهم آورد.

r-r-r- منبع تامين پيش مولد

ماهيان كفال خاكسترى مورد استفاده جهت اجراى طرح، حاصل پرورش و نگهدارى بپحه ماهيان انگشت قدى است كه در فروردين سال سV از از كشور هنگک كنگک آورده شد. اين بجهه ماهيان از آبهاى طبيعى صيد شده و حاصل تكثير طبيعى بوده است. اين ماهيان از ابتداى ورودشان (ITVVV) تا زمان شروع اجراى طرح (تيرماه (IVV) در سه قطعه استخر خاكى ه/ همكتارى كار گاه محل اجـــراى طرح پرورش و نگهدارى مى شدند. ماهيان مذكور در طى اين مدت ساز گارى خود را به شرايط آب و هوايى محل اجراى طرح نشان داده اند و
تمدجنين مراحل اوليه از رسيد گى جنسى در آنان مشاهده شد.

شكل r - موقيعت مكانى و جغر افيايى محل اجراى طرح (گميشان)

با شروع فصل پرورش و افزايش دماى آب (IT C (I) در فروردين ماه دو قطعه استخر خاكى با وسعت ه/• هكتار و عمق مفيد ه/1 متر جهت مولد سازى انتخاب گرديد.
 استخرها به مدت ده روز در معرض آفتاب قرار گرفتند تا گل و لاى بستر خشك شود، سپس در دو نوبت كف استخرها به عمق . 10 سانتى متر شخم و ديسك زده شـــد ، سپس كود حيوانى (گاوى) بميزان r تن در كف استخر پخش شده و استخرها با آب لب شور (10-זا در هزار) تا ارتفاع •ه سانتى متر آبگيرى شدند.

پپ از گذشت f^ ساعت افزايش سطح آب تا ارتفاع يك متر با وارد كردن آب تازه به استخرها انجام گرفت . همزمان كود شيميايى فسفات آمونيوم و نيترات آمونيوم بترتيب به ميزان •بو •ه كيلو گرم براى هر استخر در يك تانكك اليترى حل شده و در سطح آب استخر پخش گرديد.پٍ از تاثير كوددهى ، مرحله صيد و انتخاب و انتقال ماهى به استخرهاى آماده شده انجام شد. لازم به ذكر آنكه آبگيرى استخرها بطور ثقلى از طريق كانال آبرسان و خروج Tب از طريق خروجى (مونك) كه در قسمت زير آن چارچوب تورى تعبيه شده بود انجام مى گرفت.

-r-0 صيد و انتخاب ماهيان اصلح پيش مولد

پّ از آماده سازى استخرهاى مولدين ، ابتدا از آب استخرها نمونه بردارى شده و وضعيت فيزيكى و شيميايى آب بررسى گرديد. جهت سهولت در صيد آب استخرهاى پرورشى كاهش يافت و سپس اقدام به پره كشى و صيد از استخرها گرديد (شكل \&).

MS 222 ماهيان صيد شده توسط ساتو كك از داخل پره گرفته شده و در تانكك حاوى آب استخر و ماده بيهوشى با دوز r.ppm قرار داده مى شد، پس از بيهوشى ، ماهيان از نظر سلامت و شرايط ظاهرى (فرم بدن ، داشتن رنگگ طبيعى، سلامت سطح بدن از هر گونه انگل، نداشتن زخم و خراش در سطح بدن ، عدم فلس كنده شده ، عدم خورد گى بالهها - سلامت داخل آبششها ...) بررسى شده و انتخاب مى شدند. ماهيان انتخاب شده در داخل يك

تانك؟ اليترى حاوى آب تازه همراه با هوادهى تا حصول هوشيارى نگهدارى شده،سپس با ساچو كك صيد و
به آرامى در استخر مولدين رها مىشدند.

با توجه به وسعت استخرمولدين كه ...ه متر مربع بوده است در هر يك از استخرها تعداد . 10 قطعه ماهى كفال خاكسترى باوزن متوسط ז/ه - ا كيلو گرم رهاسازى گرديد.

شكل 「 - آماده سازى استخر خاكى مولدين

شكل ع - صيد ماهى مولد كفال خاكسترى از استخر خاكى

اولين عامل جهت موفقيت در تكثير مصنوعى كفال خاكسترى در اختيار داشتن ماهيانى است كه ضمن برخوردارى از سلامت كامل واجد مواد تناسلى رسيده و قابل لقاح نيز باشند. لذا ضرورى بود تا شرايط زيستى و تغذيه ای ماهيان در محيط استخر بگونه ای فراهم آيد تا فاكتورهاى اساسى كه مى تواند در حصول رسيدگى نهايی جنسى و مولدسازى موثر واقع گردد، در حد مناسبى فراهم آيد، كه در اين رابطه عوامل موثر فراهم گرديد.

آبگيرى اوليه استخرهاى مولدين با آب لب شور ها در هزار انجام مى گرفت . اين ميزان شورى در طول نگهدارى ماهيان در استخرها در طول تابستان با توجه به شدت تبخير و تعويض دوره ایى Tب استخرهابه هY-Y Y درهزار مى رسيد ، همحِنين ازطريق تبخير آب در استخرهاى ذخيره در طول فصل گرما شورى آب به ه\&-•FDر
 ماهيان مولد كفال فراهم مى گرديد .

جهت فراهم آوردن شرايط تغذيه اى مناسب در استخرهاى ماهيان مولد ، در دوره هاى زمانى .Y-Y اY روزه با استفاده از كود شيميايى (ازته و فسفاته) و كود حيوانى (گاوى) نسبت به غنى سازى آب استخرها و بارورى آن جهت ايجاد توليدات طبيعى اقدام شد. همحِنين بمنظور تكميل شرايط تغذيهاى مناسب با هدف حصول رسيدگى جنسى در ماهيان كفال خاكسترى درسه ماه آخر از غذاى كنسانتره ماهيان مولد قزل آلا (BFT) كه توسط شر كت چينه توليد و ميزان پروتئين آن F4 درصد مىباشد استفاده گرديد. غذادهى روزانه دو نوبت صبح و عصر و به ميزان §- درصد وزن زنده ماهيان از طريق استقرار ^ عدد طشت غذا در هر استخره/ههكتارى انجام مى شــد. تر كيــبـ غـــذاى مورد مصرف بشرح جدول ب مى باشد.

جدول شمارهץ : تر كيب غذاى كنسانتره (BFT)

درصـــد	نوع ماده غذايى
${ }^{4 F}$	پروتيّن
11	خربى خام
r/b	فيبر
\cdot / \wedge	فسفر
11	خاكستر
1.	رطوبت

علاوه بر غذاى فوق در طول فصل بهار تا اواسط تابستان نيز ماهيان هر روز با بميزان ه-r درصد وزن بدن با تر كيب غذايى جدول r تغذيه مى شدند .

جدول شماره ٪ : تر كيب غذاى مصرفى ماهيان كفال خاكسترى

درصد	نوع ماده غذاييى
r.	سبوس گندم
r.	سبوس شالى
r.	آرد گندم
r.	كنجاله سويا
r.	بودر ماهى
-/D	مولتى ويتامين

مديريت كيفى و بهداشتى استخر هاى مولدين
شرايط محيطى مناسب در استخر مولدين و حفظ و كنترل آن بويزه در مرحله نهايى رسيدگى جنسى ضرورتى مهم در امر مولدسازى است.

شرايط محيطى مطلوب ، محيط مناسبى را براى حيات و سلامت ماهيان فراهم آورده ودر اين وضعيت غدد تناسلى ماهيان از رشد كمى و كيفى بهترى برخوردار شده و نتيجتا امكان دستيابى به ماهيانى بالغ بعنوان مولد محقق مى گردد.

لذا براى اطالع از وضعيت آب استخرها و ماهيان درون آن اقدامات در طول د ذيل انجام مى گرفت :

در دوره هاى زمانى •ب روزه از آب استخرها نمونه بردارى انجام شده ، فاكتو رهاى فيزيكى و شيميايى همجون pH - O2 گرديد و چنانجه نتايج حاصل بيانگر نياز به اصلاح شرايط آبى استخرها بود ، نسبت به انجام آن اقدام مى شد. بمنظور خروج مواد زائد حاصل از متابوليسم و تغذيه ماهيان و همحچنين انجام تبادلات آبى و گازى هر هفته در
 به منظور بهبود وضعيت فيزيكى و شيميايى آب استخرها در هر استخر يك تا دو دستگاه هواده ايرجت در جهت باد غالب مستقر گرديده بود. از دستگاههاى هواده در طول روز از ساعت •ا الى ها و در طول شب از ساعت r در دوره هاى •ب-.ץ روزه تعداد • • قطعه از ماهيان كفال خاكسترى از هر استخر صيد و سلامت ماهيان در پوست ، چشم ، باله ها ، آبشش ... مورد بررسى و مشاهده قرار مى گرفت. بمنظور جلو گيرى از ورود ماهيان هرز و جلو گيرى از رقابت غذايى در استخرهاى مولدين در محل ايستگاه پپمپاز و مدخل ورودى آب به استخرها و در طول كانال آبر سانى فيلترهاى تورى با چشمه هاى ץ-ه/• سانتى متر مستقر

شده بود
علاوه بر بررسيهاى دوره اى فوق روزانه در محل استخرها موارد ذيل انجام مى گرفت: - درجه حـرارت آب و هوا در سه نوبت صبح ، ظهر ، عصر توسـط دماسنــج جيوه اى بـا دقـت .ه + تا - ا- درجه سانتى گراد اندازه گيرى و ثبت مى گرديد.

- شورى آب استخرها با استفاده از شورى سنج انعكاسى چشمى ATAGOبا دقت . . ا - ا اندازه گيرى و ثبت مى شد. - شفافيت آب استخرها توسط صفحه شكسى ديسك در ساعت (1-- ا صبح اندازه گيرى و ثبت مى گرديد. Th Th -

ماهيان كفال خاكسترى مورد استفاده در طرح تنها ماهيان موجود از اين گونه در كشورمان مى باشد. به دليل عدم اطلاع و سابقه ای از مراحل رسيدگى اين ماهيان در شرايط اقليمى كشورمان (كه متفاوت از موطن اصلى

آنان كشور هنگك كنگ؟) مى باشد و همحنين نگهدارى و پرورش اين ماهيان در شرايط محصور استخر خاكى ، بررسى و تعيين چگونگى پيشرفت جنسى آنان تا حصول ماهيان بالغى كه واجد مواد تناسلى رسيده و قابل لقاح باشند ضرورتى بود كه انجام آن با نمونه بردارى دوره ای و بررسى مواد تناسلى ماهيان محقق مى گرديد ـ لذا در هر ماه تعداد • اعدد ماهى كفال خاكسترى از استخر بطور تصادفى توسط تور پر تابى (ماشك) صيد شده و پس از بيهوش كردن ماهى در آب حاوى MS222 با ماهى و غدد تناسلى آنان روش بيشنهادى توسط Shehade مورد بررسى و نمونه بردارى قرار مى گرفتند . در اين روش ماهى را به پشت خوابانده و سرماهى در دست قرار مى گيرد ، سپس يكك لوله پلى اتيلنى را بداخل كلواكك وارد مى نمائيم ، نمونه هاى تخمكك وارد شده به سوند را در
ظرف نمونه بردارى ريخته وآنرا براى بر رسيهاى بعدى نگهدارى مى نماييم (شكل ه و 9).

در ماهيان مولد نر نيز پس از وارونه كردن ماهى از سمت سينه ماهى به آرامى انگشتان را به سمت مخرج تناسلى
همراه با فشارى مختصر حر كت مى دهيم تا خروج شهب را مشاهده نمائيم .

همحچنين در طى اين نمونه برداريها ماهيان از نظر سلامت عمومى (چشم، فلسها، آبشش، بالهها ...) مورد بررسى قرار گرفته و در صورت مشاهده هر گونه مشكل از مجموعه ماهيان جدا مى گردند.

شكل 0 - تانكهاى نگَدارى مولدين كفال خاكسترى صيد شده از استخر

شكل 7 - نمونه بردارى از مواد تناسلى در مولدين ماهى كفالخاكسترى

در كفال خاكسترى خصوصيات آناتوميك (از قبيل اتساع شكم) نشانه معتبرى براى تشخيص رسيدگى جنسى نمى باشند.تحقيقات نشان داده است كه در كفال نمونه بردارى از اووسيت هاى داخل تخمدان روش قابل اعتمادى براى تشخيص رسيد گى تخمدان مى باشد.

با اين روش تكامل تخمدانى بطور دقيق و سريع تعيين مى گردد. اين روش به نام مبتكران آن Shehadeh و kuo نام گرفته است. قطر تخمكك هاى نمونه بردارى شده در تعداد • . ا- •ه عدد با استفاده از ميكروسكوپ ميزان و مرحله رسيدگى جنسى ماهى بر اساس متوسط قطر تخمكك ها تعيين مى شود.

مراحل تكامل جنسى در ماهيان ماده

تخمدان در كفال خاكسترى بزر گك و به تعداد يك جفت از نوع كيسه دار (Cystovarina) است(شكل \و ^). Kuo مراحل رسيد گیى تخمك و تكامل تخمدان در جنس ماده كفال خاكسترى توسط Yamato به هفت مرحله Kan و همكارانش به پنج مرحله و توسط Suluchanamma به شش مرحله تقسيم بندى شده است. I) اووسيت هاى اوليه:
 اين مرحله به •IV-YY ميكرون مى رسد.مرحله III مرحله گذر (تغيير پذيرى) لحاظ مى گردد (Kuo, 1995). (IV (V (VI

مراحل رسيدگى در ماهيان نر
مر احل رسيدگى در ماهيان نر بين صفر تا اسپرم (شهب) از ماهى نر بستگى دارد .

در اين رابطه وضعيت رسيد گى به (+، r+ + r+ تقسيم مى گردد (Kuo, 1995 و همكاران) .
در ماهيان نر كاملا رسيده (ץ+)، اسپرم با فشار انگشتان به ناحيه شكمى براحتى تراوش مكند (شكل هو • ().

شكل 9. غدد تناسلى ماهى مولد نر كفال خاكسترى

شكل • ا. غدد تناسلى ماهى مولد نر بالغ كفال خاكسترى

هورمونها و داروهاى مورد مصرف

(Human Chorionic Gonadotropin) HCG
هورمون مورد مصرف ساخت شر كت Organon كشور هلند و ميزان ماده مؤثر آن در هر ويال ..ه ، ،

آب استريل نمكى (سرم فيزيولوزى) مى باشد.
(Luteotropin hormone Releasing hormone) LHRH
هورمون مورد مصرف ساخت كارخانه SHUSHENG كشور چين مى باشد. اين هورمون بشكل پودر سفيد رنگك LHRH -a مى باشد. اين هورمون واجد آنالو گهاى HCG بوده و نحوه آماده سازى جهت مصرف مشابه هورمون و LHRH-a2 و ميزان ماده مؤثر آن در هر ويال •ه، . . . ميكرو گرم است.

غده هييوفيز استحصالى از ماهى كپور مى باشد كه پس از استحصال آماده سازى مى شود. جهت مصرف غده هييوفيز پس از تعيين مقدار آن جهت تزريق، بخوبى سائيده شده تا بصورت پودر در آيد ، سپس پودر حاصل در ا-ه/• ميلى متر آب نمك استريل (سرم فيزيولوزى) بخوبى حل مى شود،اين محلول با سرنگ كشيده شده و آماده تزريق مى گردد.
(هيوفيز ماهيان كفال درياى خزر) MPH هييوفيز ماهى كفال درياى خزر در طى فصل تابستان (مردادماه) قبل از شروع تخمريزى ماهيان كفال در درياى خزر استحصال گرديد و پس از استحصال مشابه روش آورده شده جهت غده هييوفيز كپور ماهيان آماده سازى گرديد و به همان روش تزريق شد.

ساير مواد مورد استفاده

ويتامين C:كاهش دهنده استرس و افز ايش ايمنى بدن مولدين.
ويتامين E: افزايش دهنده ايمنى بدن و آماده سازى و رسيدگى سريعتر غدد تناسلى مولدين. ويتامين B.Complex: تقويت كننده عمومى بدن مولدين در برابر دستكاريها و تزريقات هورمونى. مالاشيت گرين: ضد عفونى كننده و قارج كش وسيعالطيف. استرپيتومايسين: ضد عفونى كننده و باكترى كش وسيعالطيف. فر مالين: ضد عفونى كننده قوى و فيكس كننده نمونههاى تخم. كلر : ضدعفونى محيط و آب مصرفى سالن و هچְرى. متو كلوپراميد: تر كيب دارويى ضد دوپِامين جهت تزريق به مولدين.

براساس بررسيها و نمونه برداريهاى ماهيانه از غدد تناسلى ماهيان كفال خاكسترى در گميشان با حصول متوسط
 از آنجا كه اين فعاليت نيازمند فراهم آوردن شرايط كارى لازم و خاص خود را دارد. لذا ضمن تعيين زمان مناسب بمنظور شروع عمليات تكثير ديگر فعاليت ها در دو قسمت به شرح ذيل انجام گرفت.

الف) آماده سازى امكانات و تجهيزات سالن تكثير و هجرى - نظافت و ضد عفونى تانك ها و وسايل مورد مصرف در سالن هچرى . - تامين آب تميز (فيلتر شده و كلر زده) با شورى و حرارت مناسب در سالن هچرى . - تامين هوا (اكسيزَن) تانكك هاى سالن هجٍرى . - تامين و حفظ دماى مناسب در سالن هچٍرى . ب) عمليات تكثير

صيد ، انتخاب و آماده سازى مولدين علامتگذارى ، توزين و بيومترى مولدين. ضد عفونى مولدين. ساز گارى و نگهلارى مولدين.

آماده سازى سالن تكثير و هچֶرى

كليه تانكك ها و وسايل مورد مصرف در سالن هجچرى و عمليات تكثير اعم از تانكك هاى سيمانى و فايبر گلاس ، حوضجه هاى رسوبگير ، فيلتر اسيون ، تانكك هاى هواده ، كلرزنى ، تانكك هاى حمل ماهى مولد، ساچپ كك ، ... با
 قرار مى گرفتند.
 شورى VPpt از كانال آبرسان در محل تانكك رسوبگير با يكديغر مخلوط شده تا شورى مورد نياز سالن هجرى فراهم گردد.

آب شور از يك فيلتر شنى سنگى بطور ثقلى عبور داده شده و پس از فيلتر شدن با filter bag(ه ميكرون) وارد تانك هاى كلرزنى با حجم مفيد • ا تن مى گردد .آب جمع آورى شده در تانك كلرزنى با محلول كلر ppm ا ا خد عفونى و استريل شده و سپس در معرض هوادهى شديد قرار مى گيرد تا كلر آن متصاعد گردد. در كف اين تانك ها لوله آب گرم مستقر است كه از اين طريق آب مورد نياز سالن تا دماى مورد نظر گرم شده و سپس توسط پمپ كف كش به سالن هچرى و تانكك هاى موجود در آن منتقل مى گردد. -بمنظور حفظ دماى آب و هوا در محيط سالن و تانكك ها در دامنه مطلوب ، از سيستم حرارتى شوفاز استفاده شد . هوا (اكسيزن) مورد نياز براى تانكك ها توسط دو دستگاه Airblower توليد و توسط لوله يك اينج به سالن هحِرى هدايت شده و در محل تانكك ها از طريق شيلنگگ آكواريومى و سنگك هوا براى كليه تانك هاى سيمانى و فايبر گلاس تامين مى شد .

با شروع عمليات تكثير مجموعه فعاليت هاى زير تا آماده سازى هر ماهى مولد جهت القاء هورمون انجام مى گيرد. بمنظور صيد و انتخاب مقدماتى مولدين ، در هر دوره كارى با انجام پره كشى در هر استخر تعدادى ماهى صيد مى شود ، پس از بيهوش نمودن ماهيان ازنظر سلامت پوست، آبششها ، چشم ، باله ها از هر گونه ضربه و خراش و وجود انگال بررسى شده و از غدد تناسلى آنان نمونه بردارى (به روش آورده شده در قبل) انجام مى شود. در اين مرحله مولدينى كه از سلامت عمومى و مواد تناسلى مناسبى برخوردارند انتخاب مقدماتى مى گردند و در داخل يخدانهايى كه حاوى آب همدما و شورى با آب استخر مولدين است قرار مى گيرند. يخدانها جهت تمايز از يكديگر شماره گذارى مى شود. ماهيان انتخاب شده سريعا جهت انتخاب نهايى به محل سالن هجْرى منتقل مى گردند.

نمونه هاى تخمكك هر ماهى با ميكروسكوپ مورد بررسى كمى و كيفى قرار مى گيرد و ماهيانى كه واجد تخمكك با قطر متوسط بيش از • •ه ميكرون باشند انتخاب مى شوند . هر نوبت ه-r قطعه ماهى مولد ماده جهت القاء هورمونى انتخاب مى شوند . ماهيان نر مولد نيز در صورت داشتن اسرم سيال يا فعال نگهدارى مى شوند. علامتگذارى و توزين : ماهيان مولد انتخاب شده جهت شناسايى توسط نخ هاى رنگى كه به محل باله پشتى آنها متصل مىشود از يكديگر متمايز مى گردند. سپس توسط ترازوى عقربه ای با دقت گرم وزن كشى شده و طول آنها نيز با استفاده از متر پارچهه ای با دقت ميلى متر اندازه گيرى مى شوند (شكل (1). كليه اطلاعات مربوط به هر مولد جداگانه جهت استفاده در زمان تزريق يادداشت مى گردد. ضدعفونى ماهيان مولد: با هدف حفظ سلامت ماهيان مولد ، مولدين انتخاب شده در تانك هاى . .ه ليترى كه
 مى شوند و سپس به تانك هاى نگهلدارى و ساز گارى منتقل مى گردند .
 متر انجام مى شود. تانك ها با Tب شور هr-س در هزار و همدما با Tب استخر تا ارتغاع •ه-•r سانتى متر
 مولد به تانك تدريجى انجام مى گرفت .مولدين در تانك ها با تراكم ا قطعه در متر مكعب نگهدارى مى شدند. جهت تامين اكسيزن مورد نياز ماهيان در تانك ها تعداد • . (ـعدد سنگك هوا در هر تانكك قرار داشت (شكل سا).

- • • - كـنترل سالن هچچرى و تانك ها در طول عمليات تكثير

 1. تعويض دوره ای و روزانه بميزان .ب تا •ه درصد آب تانكك ها. س. كنترل pH Tاب تانك ها در دامنه ه/
 هـ. كنترل شورى آب تانكك ها در دامنه هr-Y

> 9. كنترل و حفظ دماى سالن در دامنه مطلوب .
. ايجاد پوشش تورى يا نايلون مشكى درسطح تانكها جهت جلو گيرى از پرش ماهيان . ^. خد عفونى و نظافت كليه وسايل و تانكك ها در هر دوره كارى . 9. اختصاصى بودن وسايل مصرفى براى هر تانكك

11
با هدف حصول رسيدگى نهايى و انجام تخمريزى در ماهيان مولد پس از فراهم شدن آب با دماى مطلوب در تانك نگهدارى ، ماهيان مولد بمدت Y Y - Y ساعت در اين دما نگهدارى مى شوند و سپس با استفاده از هورمون و ديگر مواد نسبت به القاء هورمونى ماهيان مولد اقدام مى شود.

تزريق در ماهيان مولد ماده معمولا در دو نوبت ((مقدماتى و نهايى) به فاصله YK ساعت از يكديگر انجام مى شود. اولين تزريق اغلب در ساعات ^ صبح انجام مى شود. جهت تزريق، مولد مورد نظر از تانك نگهدارى توسط ساجٍو كك صيد و در تانك حاوى ماده بيهوشى MS222 قرار مى گیرد. هورمونها و مواد به ميزان تعيين شده براى هر تيمارهاى آزمايشى به تنهايى يا توام با يكديگر مورد مصرف قرار مى گيرد . ميزان (دوز) تزريق هر يك از انواع هورمونها ، هييوفيز (mg/kg/B.W)و مواد دارويى براساس جنسيت مولدين، دفعات تزريق ، وزن مولدين ، تيمار مورد نظر متفاوت بوده كه مقادير مورد مصرف در جداول مربوطه آورده شده است. تزريق زير قسمت جلوئى باله پشتى و در داخل عضله پشتى انجام مى گيرد (شكل If). تزريق دوم بفاصله YY ساعت از تزريق اول انجام مى شود، مولد ين ماده تزريق شده همراه با Y-r قطعه مولد نر در يك تانك تخمريزى كه حاوى آب تميز ضد عفونى شده با شورى هr-Y گراد مى باشد قرار مى گيرند. جهت جلو گيرى پريدن ماهيان از درون آب تانكك به بيرون ، سطح تانكك با تور پوشانده مىشود (شكل 10).

شكل عا - تزريق هورمون در محل عضله پشتى ماهى مولد كفال خاكسترى

شكل 10 - تانكى نگهدارى مولدين با پوشش نايلون تير ه و محافظ تورى

تزريق مولدين نر با توجه به ميزان سياليت و فعاليت اسپرم هر مولد و Tمادگى مولد نر جهت شر كت در تخمريزى،

ميزان تغييرات در كيفيت و كميت اسپرم با انجام نمونه بردارى كنترل مى گرديد.

در پاسخ به تزريقات انجام گرفته؛ رها سازى مواد تناسلى مولدين به روشهاى زير انجام مى گرفت. - مولد ماده و نر هر دو در يكك زمان مواد تناسلى خود را در آب رها مى كردند. - مولد ماده تخمريزى ميكرد ولى مولدنر اسپرم ريزى نميكرد. - مولد ماده تخمريزى خود را كامل انجام نمى داد(شكل I9 IV IV).

شكل 1 - وضعيت ناحيه شكمى مولدين قبل از تزريق هورمون

شكلIV -وضعيت ناحيه شكمى مولدين بعل از تزريق هورمون

در حالت دوم با مشاهده شروع تخمريزى در مولد ماده ، يك تا دو قطعه ماهى نر آماده شكمشان شكافته شده و اسرير آنها در آب تانكك كه حاوى تخمكك هاى رها شده از مولد ماده بود جهت حصول لقاح سريعا معرفى مى شد. در حالت سوم، مولد ماده از تانكك خارج شده و به طريق دستى اقدام به تخم كشى مى گرديد. تخمكك هاى استحصالى در يك كاسه خشك تميز ريخته شده و مقدارى اسپرم به آن افزوده مى شد ، بعد با پر بمدت r-r دقيقه جهت حصول لقاح به هم زده ميشود . پس از آن با افزودن آب تازه دريا بـم زدن تا مدت •r دقيقه ادامه مى يابد وبعد از شستشوى تخم هاانجام شده و تخمها جهت انكوباسيون به تانكك هاى . . . ليترى يا يك تنى معرفى مى گردند (شكل 1^، 19 و • 19 .

شكل 1^ - تخم كشى از مولدين كفال خاكسترى

شكل 19 و - r - آماده سازى و شستشوى تخم هاى لقاح يافته مولدين كفال خاكسترى
 تانكك ديگرى معرفى مى گردند و سپس هوادهى در تانكك هاى تخمريزى براى مدت كو تاهى قطع مى گردد در اين زمان توسط ساچو كك تخمها از سطح Tب جمع آورى و در ديغر تانكك هاى آماده شده با نسبت ... عدد
تخم در ليتر حجم T Tب توزيع مى گردند (شكل I Y Y Y Y).

شكل Y - مولد رسيده در حال تخم ريزى كفال خاكسترى

شكل r ب - جمع آورى تخم هاى حاصل از تخم ريزى نيمه طبيعى در حوضجه هاى مولدين
r-r- r- تعيين لقاح و درصد لقاح

يك ساعت پس از تخمريزى و انجام لقاح يك نمونه از تخمها در زير ميكروسكوپ مورد بررسى قرار مى گيرد. تخمهاى بارور شده (لقاح يافته) به سادگى از تخم هاى لقاح يافته با مشاهده سلول در حال تقسيم قابل تشخيص مى باشد . با شمارش تعداد . . اعدد تخم و تعيين تعداد تخم لقاح يافته و لقاح نيافته درصد لقاح تعيين مى شود(شكل سץ تا Yو).

(دوتائى ، جهار تائى و گاسترولا)

جداسازى تخم هاى سالم

پِ از گذشت حدود YY ساعت و و تكميل پيشرفت تقسيمات جنينى تخم هاى نا بارور و مرده رسوب مى كنند با استفاده از اين وضعيت پس از رسوب تخمها، نسبت به سيفون مواد زائد و تخم هاى مرده از كف تانك
اقدام مى شود(شكل YV و YN).

شكل Y و و r^ - تخم سالم و تخم لقاح نيافته كفال خاكسترى

هج و تعيين درصد هچ

 توسط بشر Y Y از آب تانكك برداشته و متوسط تعداد لارو را محاسبه و در كل حجم آب تانكك تعميم مى
دهيم(شكل qrو •r و اب).

شكل rq و • - - مراحل ابتدائى و پيشرفته تشكيل كمربند جنينى درمراحل تكوين تخم كفال خاكسترى

شكل ا

پرورش لاروهاى كفال خاكسترى در تانكك هاى فايبر گلاس يا سيمانى با حجم هاى مختلف از . .ه تا . . . ه ليتر 4) $4 \times 1 / \Delta \times 1$ × قابل انجام است كه از اين تانكك ها در پرورش استفاده شده است تانكك هاى سيمانى بــه ابعاد

تنى) و (× ا× \times متر (F (تانكك هاى پرورش قابليت تخليه و تعويض آب از كف را داشته و سطح آب نيز توسط لوله هاى پلى اتيلنى مستقر در محــل خروجى تانكك ها تنظيم و كنترل مى گردد. تراكم مناسب لارو در هر تانك پرورش .
آب هr-rץr در هزار بود .

آب تانكك ها تا روز دهم تعويض نمى گردد. فقط لاروهاى تلف شده و رسوبات حاصل به آرامى از بستر تانكها
سيفون مى گردد.
از روز دهم تا پانز دهم تنها • ا درصد آب روزانه تعويض مى شود.

شكل Mr - تانكك سيمانى پرورش لارو كفال خاكسترى

شكل ז - تانكهاى فايبر گلاس پرورش لارو كفال خاكسترى

> ع ع- - تغذيه لاروها

1. 「 ${ }^{\text {T }}$

تراكم روتيفر در تانك ها همراه با رشد لاروها بايد افزايش يابد از روز دوم تا دهم تراكم ه عدد در ميلى ليتر بوده و از روز دهم تراكم بتدريج تا •rعدد در ميلى ليتر افزايش مى يابد. تراكم آرتميا Y-ا عدد در ميلى ليتر كفايت مى كند.

همحچنين مى توان در تغذيه لاروها از غذاى مورد مصرف جهت ساير ماهيان يا ميگو كه واجد درصد پروتئين بالا (بيش از FD درصد) و اندازه مناسب (•Y-•ه ميكرون) باشند استفاده نمود. يكك نمونه از برنامه عمومى تغذيه لارو تا بجچه ماهى انگشت قد ماهى كفال خاكسترى (Lee\&Tamaru1992)بشرح جدول F مىباشد.

جدول شماره ع - برنامه غذادهى لاروهاى كفال خاكسترى

نــوع غــــنـا	روز پرورش
تغذيه با انواع جلبك ها	r-1.
تغنيه با روتيفر (((Brachionus plicatilis	r-r.
(Artemia salina + نإله آرتميا + كويه يودا (Bris) Copepoda)	$19-9$.
غذاى دستى تركيى	ro-s.

شكل ع

ا-؟- نتايج بررسىهاى فيزيكى، شيميايى و بهداشتى استخر مولدين

 - درجه حرارت اندازه گيرى شده در طول سال از نوسانات ماهيانه و فصلى برخوردار مى باشد. ميانگين حداقل

جدول شماره ه - تغييرات ميانتين شورى و درجه حرارت آب و هوا در
استخر هاى مولدين كفال خاكسترى

سـال	1 rvV			Irvs		
مـ	هـوا	Tب	شـورى	هـوا	Tب	شـورى
فروردين	$1 r / V$	10/0	IV	$17 / 0$	10	ry
ارديبشت	19/N	19/0	r.	IV	M/r	Mf
خرداد	Y	rr/v	rr	rr	rr	MF
تير	r9/0	rV	ro	r9/b	rV	rV
مرداد	r//D	ra/r	rV	ra	r.	rq
شهريور	ro/b	r9/9	r	r9/0	Y9/0	rr
-	./r.	Y/L	rr	Y	Yr	H
آبان	Ir/A	10/6	Mf	1r/0	19/0	Mr
آذر	./^	9/V	ros	\wedge	9	ros
دى	./4	V/9	ro	9/0	V	ro
بهمن	\wedge	$9 / \square$	r	9/r	V/9	rr
اسفند	9	11	YA	V/r	9	r.

نمودار 「- تغييرات ميانگين شورى ودرجه حرارت آب وهوا ITYA در استخر هاى مولدين كفال سال

جدول شماره 7- تغييرات ميانگين شورى و درجه حرارت آب و هوا در استخر هاى مولدين

سـال	Irra			1r^。		
مــاه	18ـ0	آب	شـورى	هـو10	آب	شـورى
فروردين	$14 / 0$	19/0	Y	If	19/4	Yf
ارديبشت	r.	Y1/D	ro	19	Y	r9
خرداد	YI/V	YM/D	rV	rr	rm/o	rq
تير	$r \Delta / r$	Y9	r.	rg/v	Y/1/r	rq
مرداد	YV/D	YN	rr	Y//Q	μ.	r
شهريور	$r 4 / r$	r9/0	س	$r \Delta / V$	r9/A	س
ه80	IV/0	19/4	Mr	Y/Tr	Y//A	ros
آبان	$1 \% / 0$	$10 / r$	ros	$18 / 9$	19/1	MF
آذ	9/b	$1 \cdot / Y$	Mr	$9 / 1$	$1 \cdot 19$	M
دى	N/r	9/0	r	V/^	N/^	rr
بهمن	Δ	9/4	r.	V/b	11	rı
اسفند	1/R	17/9	r9	$9 / 4$	Ir/r	rV

ماه

نمودار r- تغييرات ميانگين شورى ودرجه حرارت آب وهوا در استخر هاى مولدين كفال سال ITYQ.

نمودار ع- تغييرات ميانگَين شورى ودرجه حرارت آب وهوا
در استخر هاى مولدين كفال سال •1ヶ人1.

- دامنه تغييرات اكسيرّن محلول در آب استخرها در طول سال از نوسانات فصلى و روزانه برخوردار بوده و از ه/ه تا 1 ا 1 ميلى گرم در ليتر ثبت گرديده است. حداقل ميزان اكسيزّن در ساعات قبل از طلوع آفتاب و حدا كثر Tآن در بعد از ظهر ساعات IF - IV ثبت گرديده است . TPH قليا ئى از حداقل V/4 الى حداكثر 9 قرار داشت .
- بين pH و سختى كل رابطه مستقيم وجود داشت و غالبا با افزايش pH ميزان آن افزايش و با كاهش pH نيز سختى كل كاهش مى يافت.
- حداقل و حداكثر ميزان كلسيم و منيزيم نيز غالبا به تبعيت از نوسانات شورى در تغيير بوده است.
- دامنه تغييرات آمونيوم از حداقل ا • • تا حداكثر ז/• اندازه گيرى شد كه در دامنه تغييرات قابل قبول قرار دارد. - دامنه تغييرات شورى آب استخرها با توجه به تعويض دوره اى آب داراى تغييراتى مى باشد ولى ميزان شورى آب در استخرها طى فصول رسيد گى نهايى جنسى در ماهيان مولد در دامنه مطلوب (هץ-•ץ قسمت در هزار) حفظ و كنترل مى گرديد.
- مجموع فاكتورهاى فيزيكى و شيميايى آب استخرهاى مولدين در طى سالهاى انجام پروزه در دامنه مناسب جهت نگهدارى و پرورش ماهيان قرار داشت. نتايج حاصل از بررسيهاى انجام گرفته در جدول V آورده شده

جدول Y - نتايج ميزان تغييرات عوامل فيزيكى و شيميايى آب استخر مولدين در طول مدت پرورش.

سـال	درجه حرارت آب (سانتى ترادا		درجه حرارت هوا (سانتى تراد)		$\begin{gathered} \text { (ليتر / ميليكرم) } \end{gathered}$		pH		$\begin{gathered} \text { OD } \\ \text { (ليتر / ميليكرم) } \end{gathered}$	
	حداقل	حداكثر								
Irvo	「	r	1	rf	IV	rf	v/r	N/6	f/V	9
Irva	\bigcirc	r	r	rf	rr	ro	v/s	N/4	F/0	1/^
Irva	r	r.	1	H	rf	rs	V / v	N/T	Δ / V	$1 . / r$
1r^.	F	r	r/a	ro	ro	ro	V/^	N/	Δ / Δ	11
سـال	$\begin{gathered} \text { Ca ++ } \\ \text { (ليليترم / ميترم } \end{gathered}$			$\begin{gathered} \text { Mg ++ } \\ \text { (ليليكرم / } \end{gathered}$		$\begin{gathered} \text { CaCo3 } \\ \text { (ليليلرم) } \end{gathered}$			$\begin{gathered} \text { + NH4 } \\ \text { / ميليكر م) } \end{gathered}$	
	حداقل	حداكثر		حداقل	حداكثر	حداقل	حداكثر		حدانِ	حداكثر
IrVV	49.	$1 r$.		$1 r$.	r...	90.	Ir...		$\cdot \cdot \mathrm{V}$	-/r
IrVA	ov.	$1 r$.		178.	rr..	vr..	$1 r \ldots$		\% \cdot r	-/r
Irva	$9 . \cdot$	$14 .$.		10.	rr..	A1.	$11 .$.		. 1	$\bullet \cdot \vee$
1r^.	94.	$10 .$.		Iv..	rr..	qv..	If...		$1 . r$. $/ .9$

: نتايج حاصل از بررسيهاى بهداشتى طى نمونه هاى انجام شده دوره ای
نتايج بر رسيهاى بهداشتـى در طول سال بيانگر سالامت ماهيان و فقدان هر گونه عامل انگلى يا باكتريايى كه بتواند موجب بروز

بيمارى يا تلفات در ماهيان كفال خاكسترى در طول سالهاى اجراء پروزه گردد بوده است. تلفات مشاهده شده نتيجه دستكارى ، جابجايى و صيد و بعبارتى در نتيجه فعاليت هاى فيزيكى مرتبط با ماهيان كفال بوده و بيمارى يا شرايط فيزيكى و شيميايى محيط آب موجب بروز تلفات در ماهيان مولد نگرديده است .

نتــيج بر رسى تغذيـه: ماهيان كفال خاكسترى بخوبى نسبت به تغذيه از تر كيب غذايى كه از طريق استقرار طشت غذا در استخرها در اختيارشان قرار داده مى شد علاقه نشان مى دادندبطوريكه پس از استقرار طشت غذا ماهيان بعد از مدتى در محل ظرف غذا حاضر مى شدند . تغذيه فعال ماهيان كفال خاكسترى از اواسط فصل بهار (فروردين - ارديبهشت) با افزايش دماى آب بتدريج شروع شده و در دامنه حرارتى .r-r.r درجه حداكثر تغذيه را انجام مى دادند ، در دماى ^\ درجه سانتى گراد تغذيه فعال آنها كمتر شده و با كاهش دما ميزان تغذيه دستى كم شده و نهايتا به تغذيه از غذاى دستى رغبت نشان نداده لذا تغذيه دستى متوقف مى شد.

r-r-r- نتايج بررسى غدد تناسلى

نتايج حاصل از بررسيهاى انجام گرفته در رابطه با روند رسيد گى جنسى در ماهيان كفال خاكسترى پرورش يافته در شرايط استخرى گميشان بيانغر تغيير در كميت و كيفيت اووسيتها در طول سال بوده است. براساس پارامترهايى نظير اندازه (قطر) تخم ، وسعت سيتوپلاسم ، ميزان تراكم زرده ، تعداد هستكك ها، ناپديد شدن هسته ، مهاجرت هسته به طرف قطب جانورى ،تغيير در فرم و شكل ظاهرى تخمدان و اندازه تخمكك ها مراحل رشد تخمدان و تخمكك ماهيان مولد ماده را مى توان به ه مرحله تقسيم نمود، كه چنانچه تحليل رفتن تخمكك ها نيز به عنوان يك مرحله مجزا آورده شود ،مر احل رسيدگى به 9 مرحله تقسيم مى گردد.

مرحله يك (نابالغ)
تخمدان ناز كك و بلند است ، اغلب سفيد رنگك و شفاف ، داراى ر گهاى خونى كم با ديواره ای ناز كك كه تعيين جنسيت مشكل است. تخمكك هاى نابالغ كروى ، بيضوى و يا چند وجهى است. داراى يك هسته بزر گك كه قسمت اعظم تخمكك را اشغال مى كند.(شكل هr)

مرحله دو (رشد اوليه)
تخمدان خاكسترى يا صورتى رنگک بزر گترشده ، ديواره آن ضخيم و چرم مانند مى شود. اطراف اووسيت ها را لايه فوليكولى ناز كى فرا مى گيرد ، هسته بزر گك و واضح شده و در مر كز آن شبكه كروماتين ،متصل به هستكك ها
وجود دارد (شكل هץ).

مرحله سوم (وزيكولهاى زرده)
تخمدان به رنگك زرد در آمده ، ديواره ها ناز كتر مى شود . هستكك ها كو چكك و بيضوى و محل استقرار آن نزديك غشاء هسته است (شكل rV). در اين مرحله زرده سازى (Vitellogenesis) و تبديل آنها به اجسام زرد شروع مى شودهمچجنين ظهور لايه
شعاعى(Zona Radiata) T غاز مى گردد.

مر حله چهارم（ بالغ ）
كامل شدن واكوئل هاى چربى و كنغره دار شدن هسته از مشخصات اين مرحله است． در ابتد دانه هاى زرده بتدريج نمايان شده و در اطراف هسته قرار داشته و در انتهاى مرحله در تمام نقاط
سيتوپ⿻اسم پر اكنده شده و حجم اوپلاسم را پر مى كنند .
در اين مرحله زرده سازى كامل مى شود و اووسيت ها بوسيله لايه ضخيمى از فوليكول احاطه شده و لايه

شعاعى Zona Radiata كاملا مشخص مى گردد（شكل＾ی）．

شكل＾＾－مرحله چهار رسيدگى جنسى در كفال خاكسترى
مرحله پֶنجم (بالغ كامل)

تخمدان به رنگك زرد پررنگك ديده مى شود، حجم آن بزر گك شده و بشكل استوانه ای تو پردر مى آيد كه محوطه شكمى را پر مى كند. اين مر حله نهايى تكامل اووسيت ها است. رشد تخمكك ها به حداكثر خود رسيده ، غشاء پروتئينى زرده حل شده و زرده با يكديگر تر كيب و يكسان مى شود. اين مرحله در ماهيان پس از القاء هورمونى قابل مشاهده است و در طى آن قطر تخمكك تا •90 ميكرون و قطر
گلبول چربى تا •rv ميكرون مى رسد(شكل ra).

شكل
مرحله ششم (آترزى)

وجود مقدار زيادى تخمكك خراب و تحليل رفته يا درحال جذب و ديواره تخمدان چرو كيده بيانگر اين مرحله است. اين وضعيت بعد از تخمريزى ماهيان كفال خاكسترى تحت تاثير تزريق هورمون يا در پايان فصل تكثير مشاهده مى گردد (شكل •ץ).

شكل • •- مرحله آترزى (تحليل رفتن) تخمك هاى كفال خاكسترى

نتايج حاصل ازبررسى بافت شناسى تخمدانهاى ماهى كفال خاكسترى در ماههاى مختلف نمونه بردارى بيانگر آن مى باشد كه در طول فروردين تا تير ماه اكثريت اووسيتها مولدين ماده در مرحله يك (نابالغ) بوده اند. ميانگين قطر اووسيت هاى نابالغ . . ا - •ه ميكرون بوده است . در مرداد ماه اكثريت اووسيت ها در مرحله دو با ميانگين قطر •1 - - I ميكرون قرار داشتند.

در شهريور ماه اكثريت اووسيت ها در مرحله سوم با ميانگين قطر •V. - می ميكرون قرار داشتند. در اواخر مهرماه ظهور مرحله چهارم محقق گرديد. مراحل سه گانه گويچه هاى زرده نيز در طى ماههاى آبان ، آذر ، دى در اووسيت هاى با قطر • • - - . م ميكرون مشاهده شد. از آذر ماه اووسيت هاى در حال باز جذب افزايش يافت ، بطوريكه در دى ماه ، در پنجاه درصد از مولدين اووسيت ها در حال باز جذب بودند ،اين ميزان در ماههاى بهمن و اسفند به حدود •^درصد رسيد. جدول شماره ^^ تعداد درصد مولدين را در مراحل مختلف رسيــد گى تخمـدان در ماههاى مختلف نشان مى دهد.

جدول شماره A. مراحل رسيدگى گناد در مولدين ماده كفال خاكسترى

فروردين	I	II	III	IV_{1}	IV_{2}	IV_{3}	IV	V	VI
تير	4.								f.
مرداد	F.	9.							
شهريور	r.	r.	0.	1.					
-		1.	r.	ro	ro				
آبان			1.	1.	f.	f.			
آذر					ヶ.	r.	F.	r.	
دی						1.	f.	Δ.	
به\%	1.					1.	r.	v.	
\|سفند						10	Δ	\wedge.	

 تعداد זا قطعه مولد ماده مورد تزريق قرار گرفتند ، از مجموع تزريقات انجام گرفته در سه مولد رسيدگى نهايى كامل گرديد و تخمريزى صورت گرفت كه به دليل عدم همزمانى در ريزش اسپرم از مولد نر لقاح محرز نگرديد. پِاسخ مولدين به تزريق هورمون پس از جزئيات فعاليت هاى انجام گرفته جهت القاء هورمونى مولدين و نتايج حاصل در جدول شماره هو • ا آورده در طول عمليات تكثير دماى Tب درتانكك مولدين YY - Y
هزار و pH Tب

جدول 9. نتايج تكثير ماهى كفال خاكسترى در سال IYYY

مولدين ماده تزريق شده	مولدين پاسخ داده به تزريق	تخمرديز	تخم كشى شده	نِاداده	لقاح
Ir	-	r	r	\wedge	.

ملاحظات	وزن ماهى كيلو گرم / واحد : ميز ان هو هورمون			قطر تخمك ($\mu \mathrm{m}$)	وزن ماهى (Kg)	رديف
	ميزان هورمون (r)	ميزان هورمون(Y)	ميزانهورمون(1)			
تلف شد		$\begin{gathered} \text { GnRH=r } . \\ \text { Met }=\Delta \end{gathered}$	Cph $=$ r .	090	1/9	1
تلف شد		$\begin{gathered} \text { GnRH=r.. } \\ \text { Met }=\Delta \end{gathered}$	$\begin{gathered} \mathrm{GnRH}=10 . \\ \text { Met }=\Delta \end{gathered}$	9.0	r/.	r
فوق رسيده	$\begin{gathered} \text { GnRH=1.. } \\ \text { Met }=\Delta \end{gathered}$	$\begin{gathered} \text { GnRH}=r \Delta . \\ \text { Met }=\Delta \end{gathered}$	$\begin{aligned} \text { GnRH } & =1 \cdots \\ \text { Met } & =0 \end{aligned}$	916	r/r	r
عدم جوابدهى	LRH=1. \cdot	$\begin{aligned} & \text { LRH }=1 . . \\ & \text { GnRH }=\text { ro. } \end{aligned}$	$\begin{aligned} & \text { Cph }=r . \\ & \text { Met }=\Delta \end{aligned}$	ovo	1/9	${ }^{4}$
فوق رسيده	LRH=1. \cdot	$\begin{aligned} & \mathrm{GnRH}=10 . \\ & \mathrm{HCG}=\uparrow 0 \ldots \end{aligned}$	$\begin{gathered} \text { Cph }=1 . \\ \text { GnRH}=1 . . \\ \text { LRH }=1 . . \end{gathered}$	09.	r/.	Δ
پس از تزريق نهايى تخمريزى كرد لقاح نشد.	LRH $=1 .$.	$\begin{gathered} \text { Cph }=1 . \\ \text { GnRH }=1 \Delta . \\ \text { Met }=\Delta \end{gathered}$	$\begin{gathered} \text { Cph=1. } \\ \text { GnRH }=1 . . \\ \text { LRH }=1 . . \end{gathered}$	44.	r/r	9
تلف شد		$\begin{gathered} \text { LRH=r.. } \\ \text { Met }=\Delta \end{gathered}$	Cph=r.	090	r/^	v
تلف شد		$\begin{gathered} \text { LRH }=\text { r.. } \\ \text { Met }=\Delta \end{gathered}$	Cph=r.	$\Delta \wedge \Delta$	1/^	\wedge
تلف شد		$\begin{gathered} \text { LRH }=1 . . . \\ \text { Met }=\Delta \end{gathered}$	Cph=r.	$\Delta \wedge$.	I/r	9
تخمريزى انجام گرفت. لقاح انجام نشد	$\begin{gathered} \text { LRH }=1 . . \\ \text { Met }=\Delta \end{gathered}$	$\begin{gathered} \mathrm{LRH}=10 . \\ \text { Met }=\Delta \end{gathered}$	Cph=rs	$9 .$.	r/.	1.
تلف شد	$\begin{gathered} \text { LRH }=1 . . \\ \text { Met }=\Delta \end{gathered}$	$\begin{gathered} \mathrm{LRH}=10 . \\ \text { Met }=0 \end{gathered}$	Cph=ro	91.	1/0	11
تخمريزى انجام گرفت. تخمها لقاح نشد	$\begin{gathered} \text { LRH }=1 . . \\ \text { Met }=\Delta \end{gathered}$	$\begin{gathered} \text { Cph=r. } \\ \text { LRH=r.. } \\ \text { Met= } \end{gathered}$	$\begin{gathered} \mathrm{Cph}=\Delta \\ \mathrm{LRH}=1 . \end{gathered}$	ه90	r/r	ir
تلف شدن مولد	$\begin{gathered} \text { LRH }=1 . . \\ \text { Met }=\Delta \end{gathered}$	$\begin{gathered} \text { LRH }=r . . \\ \text { Met }=\Delta \end{gathered}$	Cph $=\Delta \mathrm{LRH}=\Delta$.	91.	r/l	ir

Cph
=LRH

HCG
(Iu) هورمون آزاد كننده گنادوتروپين برحسب واحد بين المللى =GnRH

$$
\begin{aligned}
& \text { (mg) هيبوفيز ماهى كفال بر حسب واحد ميلى گرم =Mp } \\
& \text { Met }
\end{aligned}
$$

(ml) (H + GnRH = Ovaprim

نتايج تكثير سال ITYA

عمليات تكثير از تاريخ VN/V/9 لغايت • VN/1•/ انجام گرفت . تعداد فل قطعه مولد ماده مورد تزريق قرار گرفتند ، Y Y قطعه از مولدين رسيد گی نهايى حاصل شد. در ها مولد تخمريزى بطور كامل انجام گرفت و در همولد تخمريزى كامل نبوده لذا تخم كشى دستى انجام شد. در لقاح انجام گرفته بين تخم هاى استحصالى و اسپرم بصورت طبيعى و دستى؛ لقاح حاصل نگرديد. جزئيات فعاليت هاى انجام گرفته در جدول شماره Iا و Yآورده شده است . دماى آب در طول ع/V - N/l 1 TpH

جدول ITYA 1 - نتايج تكثير ماهى كفال خاكسترى در سال

تعداد مولد ماده تزريق شده	پاسخ داده به تزريق	تخمريزى كرده	تخم كشى شده	نداده	لقاح
00	r.	10	0	ro	-

ITVA جدول شماره ا - ميزان، دفعات و نوع هورمونهاى تزريق شده به مولدين كفال خاكسترى در سال

ملاحظات	وزن ماهى كيلوكرم / واحد : ميزان هورمون			قطر تخمك ($\mu \mathrm{m}$)	وزن ماهى (Kg)	رديف
	ميزان هورمون(1)	ميزان هورمون(\%)	ميزان هورمون (r)			
- بعد از تزريق دوم تلف شد.	-	LRH=r. \cdot	$\begin{gathered} \mathrm{LRH}=1 . . \\ \text { Met= } \end{gathered}$	$\Delta \Delta$.	1/8	1
ا-عودت به استخر. r- تلف شد. r-	$\begin{gathered} \text { LRH=r.. } \\ \text { Met }=\Delta \end{gathered}$	$\begin{gathered} \text { LRH=r.. } \\ \text { Met= } \end{gathered}$	Cph=ro	$\Delta 9$. ov. DF.	$\begin{aligned} & Y / \Delta \\ & r / r \\ & r / Y \end{aligned}$	r
ا- عودت به استخر r- تلف شد r-r- تلف شد	-	$\begin{gathered} \text { LRH=r.. } \\ \text { Met= } \end{gathered}$	Cph=ro	af. $\Delta \Delta$. ΔV.	$\begin{aligned} & 1 / 9 \\ & 1 / V \\ & 1 / V \end{aligned}$	r
1- تلف شد. r- بعد از تزريق سوم تخمريزى نمود،لقاح نشد.	$\begin{gathered} \text { LRH= }=\Delta \\ \text { HCG=1... } \\ \text { Met }=\Delta \end{gathered}$	$\begin{gathered} \text { LRH=r.. } \\ \text { Met= } \end{gathered}$	$\begin{gathered} \text { LRH=1.. } \\ \text { Met }=\Delta \end{gathered}$	$\begin{aligned} & \Delta 90 \\ & \Delta \wedge \Delta \end{aligned}$	$\begin{aligned} & 1 / V \\ & 1 / 9 \end{aligned}$	${ }^{*}$
1- تخمريزى كرد لقاح نشد.	-	LRH=r. \cdot	LRH=1..	$\Delta 9$.	1/^	\bigcirc
r- تخمريزى كرد ، لقاح نشدند.	-	-	$\begin{gathered} \mathrm{HCG}=1 \ldots \\ \mathrm{Cph}=\Delta \\ \mathrm{LRH}=1 . . \end{gathered}$	$9 \cdot$.	1/9	9

1- تلف شد Y- عودت به استخر	-	$\begin{gathered} \text { LRH=r.. } \\ \text { Met }=\Delta \end{gathered}$	LRH $=1 .$.	$\begin{aligned} & 41 . \\ & 94 . \end{aligned}$	r	v
جواب نداد	-	$\begin{gathered} \text { LRH=r.. } \\ \text { Met }=\Delta \end{gathered}$	LRH=1. ${ }^{\text {. }}$	94.	r / Δ	\wedge
تلف شد	-	LRH=r. \cdot	LRH=1. \cdot	94.	r/r	9
جواب نداد. 1- تلف شد.-r	$\begin{gathered} \text { LRH }=\text { r. } \\ \text { Met }=\Delta \end{gathered}$	$\begin{gathered} \text { LRH=r.. } \\ \text { Met= } \end{gathered}$	LRH $=1 . \cdot$	$\begin{aligned} & 9.0 \\ & 910 \end{aligned}$	$\begin{aligned} & Y / Y \\ & Y / Y \end{aligned}$	1.
- تخمريزى كرد ، لقاح نشد.	$\begin{gathered} \text { LRH=r.. } \\ \text { Met }=\Delta \end{gathered}$	$\begin{gathered} \text { LRH }=r . . \\ \text { Cph }=\text { rs } \\ \mathrm{HCG}=\Delta \cdots \end{gathered}$	$\begin{gathered} \text { LRH=1.. } \\ \text { Cph }=\text { r. } \end{gathered}$	94.	Y/r	11
ا- تخمريزى كرد ، لقاح نشد. rوr - تلف شدند	-	$\begin{gathered} \text { LRH }=r . . \\ \text { Met }=\Delta \end{gathered}$	LRH=r. \cdot	9.0 09. 4.0	$1 / \Delta$ 1/0 $1 / r$	ir
ا-جواب داد ، لقاح نشد. ب- تلف شد. r r	-	$\begin{gathered} \text { LRH }=r . . \\ \text { Met }=\Delta \end{gathered}$	LRH $=1 . \cdot$	$9 .$. $\Delta 9$. 91. 94.	r/ra/lir/o	If
1- تلف شد.	-	$\begin{gathered} \text { LRH }=\text { r.. } \\ \text { Met }=\Delta \end{gathered}$	$\begin{gathered} \text { LRH }=\Delta . \\ \text { Met }=\Delta \end{gathered}$	$91 .$ $49 .$	r/r	10
جواب نداد .	-	$\begin{aligned} \text { LRH } & =r . . \\ \text { Met } & =1 . \end{aligned}$	Cph=r.	94.	r	19

ملاحظات	وزن ماهى كيلوكرم / واحد : ميزان هورمون			قطر تخمكك ($\mu \mathrm{m}$)	وزن ماهى (Kg)	ديف
	ميزان هورمون(1)	ميزان هورمون(ץ)	ميزان هورمون (r)			
ا- جواب داد . لقاح نشد. r- تلف شد.	-	$\begin{gathered} \text { LRH }=\text { }=\text {. } \\ \text { Met }=1 . \end{gathered}$	Cph=rs	91.	1/هو/ه	IV
1-ج جواب داد ، لقاح نشد. r- تلف شد. r-r-عودت به استخر.	-	$\begin{aligned} & \text { LRH=r.. } \\ & \text { Met=D } \end{aligned}$	Cph=ra	9.0 9.0 910	$\begin{aligned} & 1 / \Delta \\ & 1 / r \\ & 1 / \Lambda \end{aligned}$	$1 \wedge$
او دادندولى لقاح نشد r	-	$\begin{aligned} & \text { LRH=r.. } \\ & \text { Met=D } \end{aligned}$	Cph=ra	$\Delta 90$ gr. 9. $\Delta 9$.	$\begin{gathered} \hline r \\ r \\ r \\ r \\ 1 / \Delta \end{gathered}$	19
1-جواب ندادند r-عودت به استخر	-	$\begin{gathered} \text { LRH=r.. } \\ \text { Met= } \end{gathered}$	LRH=1. .	$\begin{aligned} & 94 . \\ & 91 . \end{aligned}$	$1 / 0$	r.
اوr- جواب دادنه، لقاح نشد.	-	$\begin{aligned} & \text { LRH=r.. } \\ & \text { Met=D } \end{aligned}$	LRH=1. \cdot	910	$\begin{aligned} & 1 / 1 \\ & 1 / r \end{aligned}$	r

ا- جواب داد، لقاح نشد. r- جواب نداد.	-	$\begin{array}{r} \mathrm{r} \cdot \mathrm{LRH}= \\ \Delta \mathrm{Met}= \end{array}$	$r \cdot \mathrm{Cph}=$	90. $\Delta 1$.	$\begin{gathered} r \\ 1 / r \end{gathered}$	rr
1- جواب داد، لقاح نشد. r- جواب نداد.	-	$\begin{array}{r} \text { r. } \mathrm{LRH}= \\ 1 \cdot \mathrm{Met}= \end{array}$	$r \cdot \mathrm{Cph}=$	91. 94.	1 r	Y
ا و Y「	-	$\begin{array}{r} \text { r. } \mathrm{LRH}= \\ 1 \cdot \mathrm{Met}= \end{array}$	$\mathrm{r} \Delta \mathrm{Cph}=$	94.g94. 9Y. 991. 970	$\begin{aligned} & r / V, r / \Delta \\ & r / \Delta g r / \cdot \\ & r / \Delta \end{aligned}$	rf
1- جواب داد،لقاح نشد. r- تلف شد.		$\begin{array}{r} \mathrm{r} \cdot \mathrm{LRH}= \\ 1 \cdot \mathrm{Met}= \end{array}$	$r \cdot \mathrm{Cph}=$	94.990.	$r / \Delta g r / r$	ro
ا-جواب نداد. r r r -	-	$\begin{array}{r} \text { r. . LRH }= \\ 1 \cdot \text { Met }= \end{array}$	1. $\mathrm{LRH}=$	910 g94.	1/ه, ا/ه, ا/ه	r9

نتايج تكثير در سال ITYQ
 گرفتند كه ^ قطعه مولد بطور طبيعى تخمريزى كردند و تعداد ^مولد مقدارى تخمريزى كرده و سپس تخمكشى دستى صورت گرفته و با اسپرم مولد نر لقاح داده شد كه در طى عمليات انجام شده لقاح محرز نگرديد. دماى Tب در طول عمليات تكثير بوده است.جزئيات فعاليت هاى انجام گرفته در جدول شمارهזاو IF آورده شده است.

جدول IrYq نتايج تكثير ماهى كفال خاكسترى در سال

تعداد مولد ماده تزريق شده	پاسخ داده بها تزريق	تخمريزى كرده	تخم كشى	پاسخ نداده	لقاح
rr	19	\wedge	\wedge	19	.

جدول شمارهع أميزان، دفعات و نوع هورمونهاى تزريق شده به مولدين كفال خاكسترى در سال ITYQ

ملاحظات	وزن ماهى كيلوگّ / /واحد : ميزان هورمون		قطر تخمك	وزن ماهى$(\mathbf{K g})$	رديف	
	ميزان هورمون (Y)	ميزان هورمون (1)				
تلف شد.	LRH=ro.	HCG=ır...	090	r	1	
تلف شد.	LRH=ra.	HCG=ır...	$\Delta \wedge$.	r/b	r	
تخمكشى شد . لقاح نشد.	LRH=ro.	HCG=1r...	91.	r	r	
تخمكشى شد. . لقاح نشد	LRH=ro.	HCG=ır..	$9 .$.	r / Δ	F	
تخمكشى شد . لقاح نشد	LRH=ro.	HCG=ır..	910	r / v	0	
بعد از تزريق سوم تلف شد	HCG= $\quad \ldots$	HCG=ır...	910	r / v	9*	
بعد از تزريق سوم تلف شد	HCG= $\quad \ldots$	HCG=ir...	94.	r / v	V*	
جواب داد . لقاح نشد	$\begin{aligned} & \text { LRH=ra. } \\ & \text { Met }=\Delta \end{aligned}$	Cph=ro	94.	r / r	\wedge	
جواب نداد	$\begin{gathered} \text { LRH }=\text { r } \Delta . \\ \text { Met }=\Delta \end{gathered}$	HCG=rı...	$\Delta 90$	Y/Y	9	
تخم كشى شد . لقاح نشد.	$\begin{gathered} \text { LRH }=r \Delta . \\ \text { Met }=\Delta \end{gathered}$	$\begin{gathered} \mathrm{Cph}=1 . \\ \mathrm{HCG}=1 \ldots \end{gathered}$	97.	r	1.	
جواب داد لقاح نشد	$\begin{gathered} \text { LRH }=r \Delta . \\ \text { Met }=\Delta \end{gathered}$	$\begin{gathered} \mathrm{Cph}=1 . \\ \mathrm{HCG}=1 \ldots \end{gathered}$	91.	r	11	
تخم كشى شد لقاح نشد	$\begin{gathered} \text { LRH }=\text { r } \Delta . \\ \text { Met }=\Delta \end{gathered}$	Cph=rs	94.	Y/A	Ir	
جواب نداد	$\begin{gathered} \text { LRH=r }= \\ \text { Met }=\Delta \end{gathered}$	Cph=rs	$9 .$.	r/r	Ir	
تخم كشى شد. .	$\begin{gathered} \text { LRH }=\text { ro. } \\ \text { Met }=1 . \\ \text { Cph }=\Delta \end{gathered}$	$\begin{gathered} \mathrm{Cph}=1 . \\ \mathrm{HCG}=1 ヶ \mathrm{r} . \end{gathered}$	$\Delta 9$.	r	If	
تخم كشى شد. .	$\begin{gathered} \text { LRH }=\text { ro. } \\ \text { Met }=\\| . \\ \text { Cph }=\Delta \end{gathered}$	$\begin{gathered} \mathrm{Cph}=1 . \\ \mathrm{HCG}=1 ヶ \mathrm{r} . \cdot \end{gathered}$	$\Delta 9$.	Y/r	10	
تلف شد.	$\begin{gathered} \text { LRH }=\text { rs. } \\ \text { Met }=1 . \\ \text { Cph }=\Delta \end{gathered}$	$\begin{aligned} & \hline \text { Cph=ro } \\ & \text { LRH= } \\ & \text { Met= } \end{aligned}$	$9 \cdot$.	r	19	
تلف شد.	LRH= ro.	Cph=1.	$\Delta \wedge \Delta$	Y/b	IV	

ملاحظات(ادامه)	وزن ماهى كيلوترم / واحد : ميزان هورمون		قطر تخمك $\begin{gathered}(\mu \mathrm{m})\end{gathered}$	وزن ماهى (Kg)	رديف
	ميزان هورمون (1)	ميزان هورمون (ץ)			
تلف شد	$\begin{aligned} & \text { LRH=rه. } \\ & \text { Met= } \end{aligned}$	$\begin{gathered} \mathrm{Cph}=1 . \\ \mathrm{HCG}=1 \ldots \end{gathered}$	$9 .$.	r/b	$1 \wedge$
جواب داد.لقاح نشد	$\begin{gathered} \text { LRH=r }=\text {. } \\ \text { Met }=1 . \end{gathered}$	$\begin{gathered} \mathrm{Cph}=1 \mathrm{r} \\ \mathrm{HCG}=\lambda \ldots \end{gathered}$	95.	Y/^	19
تخم فوق رسيده	$\begin{aligned} & \text { LRH=ro. } \\ & \text { Met= } \end{aligned}$	$\begin{gathered} \text { Cph=1r } \\ \mathrm{HCG}=\lambda . . . \end{gathered}$	94.	r	$r \cdot$
تخم فوق رسيده	$\begin{gathered} \text { Cph }=\Delta . \\ \mathrm{HCG}=1 . \\ \mathrm{LRH}=1 . \end{gathered}$	$\begin{gathered} \mathrm{Cph}=1 . \\ \mathrm{HCG}=\Delta \cdots \\ \mathrm{LRH}=\diamond . \end{gathered}$	$\Delta 9$.	Y/r	r
جواب داد . لقاح نشد.	$\begin{gathered} \text { Cph }=\Delta \\ \mathrm{HCG}=1 . . . \\ \mathrm{LRH}= \end{gathered}$	$\begin{gathered} \text { Cph }=\mathrm{r} . \\ \mathrm{HCG}=\diamond \ldots \\ \mathrm{LRH}=\diamond . \end{gathered}$	91.	r	rr
جواب نداد	بفاصله Y M ساعت در ه مرحه	$\begin{gathered} \text { تزريق تدريجى } \\ \text { LRH=৯. } \end{gathered}$	$\Delta \wedge$.	Y/V	r
جواب نداد	LRH=rı.	$\begin{gathered} \text { Cph=ヶ. } \\ \mathrm{HCG}=\Delta \ldots \end{gathered}$	$\Delta \wedge$.	1/r	If
جواب داد. لقاح نشد.	$\begin{aligned} & \hline \text { LRH }=\text { Y } \cdot \\ & \text { Met }=\Delta \end{aligned}$	$\begin{gathered} \hline \mathrm{HCG}=1 . . . \\ \text { LRH }=1 . \end{gathered}$	91.	1/9	ro
ماهى تلف شد	$\begin{aligned} & \text { LRH=rs. } \\ & \text { Met= } \end{aligned}$	Mph=r.	94.	r/v	r9
طبيعى تخمريزى نمود لقاح نشد	$\begin{aligned} & \text { LRH=rs. } \\ & \text { Met= } \end{aligned}$	$\begin{gathered} \mathrm{Mph}=1 . \\ \mathrm{HCG}=1 \ldots . \end{gathered}$	94.	Y/s	rv
تخمريزى طييعى لقاح نشد	$\begin{gathered} \text { LRH }=\text { ro. } \\ \text { Met }=1 . \end{gathered}$	$\begin{gathered} \mathrm{Cph}=1 . \\ \mathrm{HCG}=1 \ldots . \end{gathered}$	910	Y/V	r^
جواب داد . لقاح نشد	LRH=r . Met=1.	Cph=ro	91.	Y/D	r9
جواب نداد	$\begin{gathered} \text { LRH=rs. } \\ \text { Met }=\Delta \end{gathered}$	$\begin{gathered} \mathrm{Mph}=1 . \\ \mathrm{HCG}=1 \ldots . \end{gathered}$	94.	r	$r \cdot$
جواب نداد	Cph $=1$.	Mph=r.	94.	r/b	r
جواب نداد	HCG=ro..	$\begin{gathered} \mathrm{Cph}=1 \cdot \\ \mathrm{HCG}=1 . \end{gathered}$	940	Y/r	rr

نتايج تكثير سال •1r^
 هو رمونى قرار گرفتند . تعداد YV قطعه از مولدين به تز ريقات انجام گرفته پاسخ داده و به مر حله تخمريزى يا

تخم كشى رسيدند . تعداد •ا قطعه مولد بطور كامل تخمريزى نموده و V قطعه مولد ماده تخمها با دست استحصال شده و تعداد • ا قطعه مولد ماده نيز در چند مرحله تخمريزى نمودند. از مجموع ماهيان جواب داده در V قطعه لقاح بين تخمكك و اسپرم محرز گرديد و تقسيمات جنينى مشاهده گرديد.
از V مورد لقاح انجام گرفته در r مولد لقاح منجر به توليد لارو گرديد.
 نوبت سوم تعداد • . . قطعه لارو يکروزه هج گگرديد كه بترتيب به مدت YF ، 19 ، 9 روز مورد نگهدارى و
 در هزار و pH آب V/9-N/Q بوده است. نتايج فعاليت هاى انجام گرفته در جداول ها و اء آورده شده است .

جدول 10 - نتايج تكثير ماهى كفال خاكسترى در سال • 10 ماده

مولد تزريق شده	مولد	مولد تخمريزى كرده	مولد تخمكشى شده	مولد پاسخ نداده	لقاح داده شده	توليدى
QD	rV	r.	V	rA	\wedge	r

ITA• جدول شماره7 ا - ميزان، دفعات و نوع هورمونهاى تزريق شده به مولدين كفال خاكسترى در سال

ملاحظات	وزن ماهى كيلوكرم / واحد : ميزان هورمون			قطر تخمك ($\mu \mathrm{m}$)	$\begin{gathered} \text { طول } \\ \text { كل } \\ \text { (cm) } \end{gathered}$	وزن ماهى (kg)	آزمايش 1 رديف
	ميزان هورمون (r)	ميزان هورمون (r)	ميزان هورمون (1)				
- - تخمريزى تكه تكه - لقاح دستى و طبيعى نتيجه ای حاصل نشد.		$\begin{aligned} & , \mathrm{LRH}=r . \\ & \text { Met=人 } \end{aligned}$	Cph=r.	$\Delta \wedge \Delta$	09	Y/l	1
- تخمريزى تكه تكه - تخم كشى + لقاح مصنوعى و طبيعى نتيجه حاصل نشد.	$\begin{gathered} \text { LRH=Irs } \\ \text { Met= }=\Delta \end{gathered}$	$\begin{gathered} , \mathrm{LRH}=\text { Iro } \\ \text { Met }=\Delta \end{gathered}$	Cph=rs	avN	97	r/b	r
- تخمريزى كامل و طبيعى لقاح حاصل نشد.		$\begin{gathered} \text {,LRH=r.. } \\ \text { Met }=\Delta \end{gathered}$	Cph=r.	$\Delta \wedge V$	9	r/b	r
- تخمريزى طبيعى بمقدار كم . - تخم كشى و لقاح دستى نتيجه ای الى نداشت.	$\begin{gathered} , \mathrm{LRH}=\mathrm{Iv} \mathrm{\Delta} \\ \mathrm{Met}=\Delta \end{gathered}$	$\begin{gathered} , \mathrm{LRH}=\mathrm{IVA} \\ \text { Met= } \end{gathered}$	Cph=rs	ovi	97	r/9	${ }^{+}$
- تخمريزى تكه تكه - تلف شد.	$\begin{gathered} \text {,LRH=r.. } \\ \text { Met= } \end{gathered}$	$\begin{gathered} , \mathrm{LRH}=r . . \\ \text { Met= } \end{gathered}$	Cph=r.	910	94	r/b	0
- تورم بعلت زخمى شدن تزريق سوم نشد.		$\begin{gathered} \mathrm{LRH}=\mathrm{V} \\ \mathrm{Met}=\Delta \end{gathered}$	$\begin{gathered} \mathrm{Cph}=\mathrm{r} . \\ \mathrm{HCG}=1 . \end{gathered}$	$\Delta \wedge$	97	r/ro	9

- تخمريزى كامل - لقاح حاصل نشد.	LRH=1. \cdot	$\begin{gathered} , \mathrm{LRH}=1 . \\ \text { Met }=\Delta \end{gathered}$	$\begin{gathered} \mathrm{Cph}=1 . \\ \mathrm{HCG}=10 \ldots \end{gathered}$	944	4	r/ro	v
- تخمريزى در دو مر حله ،لقاح حاصل نشـلـ.	LRH=1..	$\begin{gathered} , \mathrm{LRH}=1 . \\ \text { Met }=\Delta \end{gathered}$	$\begin{gathered} \mathrm{Cph}=1 . \\ \mathrm{HCG}=\boldsymbol{r} \ldots \end{gathered}$	944	9.	r/.	\wedge
- تخمريزى تكه تكه تخمكشى و لقاح مصنوعى + لقاح طبيعى نتيجه ای حاصل نشا	LRH=r..	$\begin{gathered} , \mathrm{LRH}=\mathrm{r} . \\ \text { Met= } \end{gathered}$	Cph=r.	gry	$\Delta 9$	r/r	9

ملاحظات	وزن ماهى كيلوكرم / واحد : ميزان هورمون				$\begin{gathered} \text { طول } \\ \text { كل } \mathbf{C m}) \end{gathered}$	وزن ماهى (Kg)	آزمايشr
	ميزان هورمون (؟)	ميزان هورمون (ץ)	ميزان هورمون (1)				
- تخمريزى كامل - لقاح حاصل نشد.	$\begin{aligned} & \text { LRH }=10 \text {. } \\ & \text { Met }=\Delta \end{aligned}$	$\begin{gathered} \mathrm{Mph}=1 . \\ \mathrm{HCG}=\boldsymbol{\ldots} . \end{gathered}$	HCG=1...	091	Qo	1/vo	1
- تخمريزى بصورت تكه تكه انجام شد. - لقاح حاصل نشد.	$\begin{gathered} \text { LRH=r.. } \\ \text { Met= } \end{gathered}$	$\begin{gathered} \mathrm{Mph}=1 . \\ \mathrm{HCG}=1 \ldots \end{gathered}$	HCG=ı...	-90	or	1/^	r
- تخمريزى كامل انجام داد. - لقاح طبيعى + تخم كشى نتيجه ای .	Wova=ıml	Wova= rml	Wova=rml	9.9	Do	.r/	r
تلف شد.	$\begin{gathered} \text { LRH=r.. } \\ \text { Met= } \end{gathered}$	Mph $=$ r .	-	$9 .$.	09	Y/b	${ }^{+}$
- تخمريزى كامل طبيعى و و لقاح حاصل شد . -در تقسيمات جنينى متوقف شد.	$\begin{aligned} & \text { LRH=rv. } \\ & \text { Met= } \end{aligned}$	Mph $=r$.	-	9.9	09	r/ro	\checkmark
عودت شد.	تزريق نشد	LRH=10.	-	$9 . \mathrm{V}$	F.	r/ro	9
- تخمريزى كامل انجام شد. - لقاح حاصل شد. تقسيمات جنينى بس از لقاح متوقف شد.	$\begin{aligned} & \text { LRH=r॰. } \\ & \text { Met= } \end{aligned}$	LRH=1. \cdot	-	Q9^	Q 0	r/G	v

ماحظات	وزن ماهى كيلوكرم / واحد : ميزان هورمون				$\begin{gathered} \text { طول } \\ \text { طو (Cm) } \end{gathered}$	$\begin{aligned} & \text { وزن } \\ & \text { وها } \\ & \text { (Kg) } \end{aligned}$	$\begin{gathered} \text { آزمايش } \\ \hline \end{gathered}$
	ميز ان هورمون (\%)	ميزان هورمون (ケ)	ميزان هورمون (1)				
							رديف
- تخمريزى طيبیى كامل - لتاح حاصل نشّد		LRH=ro.	Mph=ro	914	99	r/v	1
- تخمريزى كامل طبيىى - لقاح حاصل نثـد		LRH=ro.	HCG=10...	-ar	9.	r/f	r
بعد از تزريق اول تخم ها خار اب شـد.		تزريق دوم نشد	Mph=ro	gry	41	r/s	r
جواب نداد.		LRH=10.	HCG=r....	$\Delta \wedge 9$	9.	r/b	${ }^{*}$
تخم كثى لقاح حاصل نشد.	$\begin{gathered} \text { LRH=r.. } \\ \text { Met=』 } \end{gathered}$	$\begin{gathered} \text { LRH=r.. } \\ \text { Met= } \end{gathered}$	Cph=r.	9.1	4	r/^	\bigcirc
		LRH=ro.	Cph=r.	-99	41	r/9	9
تخم كـى لقاح حاصل نشد.		LRH=r..	HCG=r...	จ9.	4.	r/b	v

* ماحظات	ميزان هورمون وزن ماهى كيلوكرم /واحد :				تخمك	طول طل	$\begin{aligned} & \text { وزهن } \\ & \text { (Kg) } \end{aligned}$	آزمايش ε
	ميزان هورمون ($)$	ميزان هورمون(\%)	ميزان هورمون(\%)	ميزان هورمون (1)				رديف
تخمريزى انجام كرفت تخمهاى فوق رسيده . لقاح نثـد.	$10 \cdots \mathrm{HCG}=$	$\begin{gathered} \text { roCph= } \\ 10 \cdots \mathrm{HCG}= \end{gathered}$	تزرين نشد	$\begin{array}{r} \mathrm{r} \cdot \mathrm{Cph}= \\ \mathrm{ml} \text { lOva }= \end{array}$	9×9	9.	rnv	1
- تخريزى + تخمكشى - لقاح حاصل نثد.	-	ro.LRH=	$\begin{gathered} r \cdot \mathrm{Cph}= \\ r \cdots \cdot \mathrm{HCG}= \\ \hline \end{gathered}$	$r \cdot \mathrm{Cph}=$	940	ov	1/vo	r
- تخريز لقاح طيبیى + نيمه طيبيعى. - درصد لقاح •r درصد -قطر الـهـ ها درصد سِس از لقاح دماى آب با درجه سانتى گراد	ro.LRH=	mlrOva=	ml 1 Ova=	mlrOva=	هN1	ov	Y/ه	r

** مولدين قبل از تزريق اول به مدت ه روز متوالى با هورمون HCG به ميزان/ Iu/kg w . م تزريق شدند.

ماحظات	وزن ماهى كيلوكرم／واحد ：ميزان هورمون		قطر تخمك （ $\mu \mathrm{m}$ ）	طول كل （Cm）	$\begin{aligned} & \text { وزهن } \\ & \text { وزه (Kg) } \end{aligned}$	－آزمايش رديف
	ميزان هورمون（r）	ميزان هورمون（1）				
－تخدريزى محلود پس از تزريت نهايى． －در تخم كثى و تخمريزى لقاح حاصل نشد．	LRH＝ro． Cph $=$ r． Pim＝ه	Cph＝r．	914	90	r／	1
تلف شد．	$\begin{gathered} \hline \text { HCG }=r \ldots \\ \text { Cph }=r . \end{gathered}$	Cph＝r．	ه人r	or	1／rs	r

\％ماحظات \％	وزن ماهى كيلوكرم／واحد ：ميزان هورمون		قطر تخمك （ $\mu \mathrm{m}$ ）	طول كل （Cm）	وزن ماهى （Kg）	آزمايش
	ميزان هورمون （ r ）	ميزان هورمون （1）				رديف
تخم ها قبل از تزريق دوم خراب شد．	Cph＝r．	HCG＝r \cdot ．	v．．	94	r	1
تخم ها خا خراب شدر．		HCG＝r．\cdot	$\Delta 9$.	9 V	r / Δ	r
تخمها قبل از تزريق دوم خراب شر شد．	Cph＝rs	HCG＝r．\cdot	$9 .$.	ه人	r	r
تخمها خراب شد．		HCG＝r．．	ه＾s	ه人	r／s	${ }^{+}$

＊＊مولدين ه روز متوالى قبل از تزريق نوبت اول با هورمون HCG به ميزان／

ملاحظات	وزن ماهـى كيلوكرم／واحد ：ميزان هورمون					طول	$\begin{gathered} \text { وزن (Kg) } \\ \text { واهي } \end{gathered}$	$\begin{gathered} \text { آزمايش } \\ V \end{gathered}$
	ميزان هورمون（£）	ميزان هورمون（艹）	ميزان هورمون（ז）	ميزان هورمون （1）				
－تخمريز كامل －قطر تخم لقاح يافته ．ها ميكرون －لقاح 9 درصهد 1． درصد بيشيرفت در مرحله كاسترولا متوقف شد．	$\begin{gathered} \text { LRH=r.. } \\ \text { Pim= } \end{gathered}$	$\begin{gathered} \mathrm{Cph}=1 . \\ \mathrm{HCG}=1 . . \end{gathered}$	HCG＝r．．．	Cph＝r．	91．	9.	r	1

ملاحظات	وزن ماهه كيلوكرم／واحد ：ميزان هورمون				قطر تخمك $\begin{gathered}(\mu \mathrm{m})\end{gathered}$	$\begin{gathered} \text { طول } \\ \text { كل } \mathbf{C m} \text { (} \end{gathered}$	وزن ماهى （Kg）	آزمايش 人 رديف
	ميزان هورمون（£）	ميزان هورمون（؟）	ميزان هورمون（ץ）	ميزان هورمون（1）				
تخم خراب شد．	－	－	－	HCG＝r．．．．	990	09	r／s	1
－در تخريزى طييىى لقاحهدرصد		$\begin{gathered} \text { LRH }=r \Delta . \\ \text { Pim }=\Delta \end{gathered}$	$\begin{gathered} \text { LRH=r.. } \\ \text { Pim= } \end{gathered}$	Cph＝r．	90.	9.	r／v	${ }^{*}$
تخم فوق رسيده خراب شد．	Wova＝1	Wova＝1	Wova＝$=1 / \mathrm{s}$	－	9 NV	9	r／vo	r
تخم ريزى كامل درتقسيمات جنينى متوقف شدند．		HCG＝r．．．．	HCG＝r．．．	－	9.9	4.	r	${ }^{+}$

 ميكرون بود ．．درصصد تخم هاى لقاح يافته تا مر مله تشكيل كمربند جنينى تلف شدند．

ملاحظات	وزن ماهى كيلوكرم／واحد ：ميزان هورمو			$\begin{aligned} & \text { تخمك } \\ & \text { قطر } \end{aligned}$	طول كل （Cm）	وزن ماهـ （Kg）	آزمايش 9
	ميزان هورمون（ז）	ميزان هورمون （ r ）	ميزان هورمون （1）				
							رديف
تخمها خراب شد．	HCG＝r．．	HCG＝r．．	HCG＝r．．	914	91	r	1
تخم ها خراب شد．	HCG＝ఎ．．	HCG＝১．．	HCG＝॰．．	$\Delta \wedge$	vr	μ / r	r
－عدم تخمريزى و تلف شدن ماهى		$\begin{gathered} \text { Cph=r. } \\ \mathrm{HCG}=r \ldots . \end{gathered}$	Cph $=$ r．	994	90	r／vo	r
تخمريزى طبيعى و ـ تخم كشى و لقاح مصنوعى انجام شد ．		$\begin{gathered} \text { LRH }=ヶ \Delta . \\ \text { Pim }=\Delta \end{gathered}$	Cph＝r．	$9 V^{4}$	هヘ	r	＊

＊تخمريزى Y
－ميزان لقاح طبيعى •＾درصد تقسيمات يكساعت پس از لقاح مشاهده شد ．

－در تخم كشى و لقاح مصنوعى ميزان لقاح ．9 درصد بود ولى تقسيمات در مرحله كمربند جنينى متوقف شد

ملاحظات	وزن ماهى كيلوكرم / واحد: ميزان هورمون		قطر تخمك ($\mu \mathrm{m}$)	طول كل (Cm)	$\begin{aligned} & \text { وزن } \\ & \text { واهي } \end{aligned}$	آزمايش • رديف
	ميزان هورمون (r)	ميزان هورمون (1)				
تلف شد.	LRH=r..	Cph=r.	9.9	9.	r/v	1
- تخمريزى طبييىى - لقاح 「 در - تقسيمات در مراحل بيشرفت جنينى متوقف شد. - لقاح مصنوعى نشد. . قطر تخم لقاح يافته •Ar ميكرون .	$\begin{gathered} \text { Cph=r• } \\ \text { HCG=r.... } \end{gathered}$	Cph=r.	91.	9.	r/r	r
در تخمريزى و تخم كشى لقاح حاصل نشد.	$\begin{gathered} \text { LRH=r.• } \\ \text { Pim }=\Delta \end{gathered}$	HCG=r....	9.4	91	r/V	r

ملاحظات	وزن ماهى كيلوكرم / واحد : ميزان هورمون				قطر تخمك ($\mu \mathrm{m}$)	طول كل Cm)	وزن ماهى (Kg)	ش آزماي
	ميزان هورمون ($)$	ميزان هورمون (Γ)	ميزان هورمون (\upharpoonright)	ميزان هورمون (1)				
								رديف
- درتخريزى طييعى با حضور نر لقاح حاصل نــد	LRH=rs.	Ova=	$\begin{gathered} \mathrm{Cph}=r . \\ \mathrm{HCG}=10 \ldots \end{gathered}$	Cph=r.	94.	91	r/v	1
- تخمريزى انجام شدولى لقاح حاصل نشد	$\begin{gathered} \text { LRH }=\text { = } \Delta \\ \text { Pim }=1 . \end{gathered}$	HCG=10..	$\begin{gathered} \text { Cph }=r . \\ \mathrm{HCG}=10 \ldots \end{gathered}$	Cph=r.	9\%	9.	r/b	r

ملاحظات	\| واحل : ميزان هورمون	وزن ماهى كيلوگّ	قطر تخمك ($\mu \mathrm{m}$)		$\begin{array}{r} \text { وزن ماهیى } \\ (\mathrm{Kg}) \end{array}$	آزمايشا
	ميز ان هورمون (\%)	ميزان هورمون (1)				رديف
تزريق نشد. عودت شد.	-	Cph=r.	919	$\Delta 9$	r	1
- درتخمريزى و تخم كشى لقاح حاصل نشد .	$\begin{array}{r} \text { Cph }=r . \\ \mathrm{HCG}^{2}=\text { ro... } \end{array}$	Cph=r.	9ra	97	r/9	r

ملاحظات	وزن ماهى كيلوكرم / واحد : ميزان هورمون		قطر تخمك	$\begin{gathered} \text { طول } \\ \text { كل(Cm) } \end{gathered}$	وزن ماهى (Kg)	آزمايش Ir رديف
	ميزان هورمون (ץ)	ميزان هورمون (1)				
- تخمريزى تكه تكه ، -در تخمريزى و تخمكشى لقاح حاصل نشد		Cph=r.	901	$\Delta \Delta$	1/9	1
- نامناسب و زخمى عودت شد.	-	Cph=r.	94	9.	1/9	r
- تخمريزى طبيعى - ميزان لقاح •9 درصرمد. - تقسيمات جنينى در مرحله دوتايى متوقف شد.	Cph $=$ r.	Cph $=$ r.	9π	Δr	1/ヶD	r

امروزه •r گونه ماهى كفال از يكصد گونه شناخته شده از انواع كفال ماهيان بصورت تجارتى در دنيا پرورش مى شود.

كفال خاكسترى با نام علمى Mugil cephalus مهمترين و مشهورترين گونه پرورشى كفال مى باشد.امروزه در زمينه تكثير و پرورش كفال خاكسترى در دنيا تحقيقات و پيشرفتهاى قابل توجه ای صورت گرفته است ولى هنوز برورش تجارتى متكى بر صيد بجه ماهيان مورد نياز از دريا و تكثير مصنوعى نيز در اكثر كشورها با صيد مولدين بالغ از دريا حين مهاجر تهاى تخمريزى انجام مى گيرد (1996، Cardonan) . در تحقيق حاضر با توجه به بومى نبودن و شرايط محصور نگهدارى و پرورش كفال خاكسترى از مرحله انگشت قد تا بيش مولد ، براى دستيابى به اهداف پروزه حاضر يعنى حصول ماهيانى با غدد تناسلى رسيده (مولد سازى) در شرايط اب و هوايى شمال كشور به منظور انجام مرحله دوم تحقيق (تكثير مصنوعى كفال خاكسترى) مجموعه اى از فعاليت ها به انجام رسيده كه در پثوهش حاضر مورد بحث و نتيجه گيرى قرار مى گیرد. (1990) Tamaru ولى در مورد رسيدگى نهايى و بلوغ در ماهى كفال خاكسترى تحت شرايط اسارت (پرورش) تحقيقات محدودى انجام گرفته است .
 (1994 تحقيقات ديگر نشان داد ، مولدين كفال خاكسترى مى تواند در اسارت با فراهم شدن شرايط آبى و تغذيه اى مناسب مراحل زرده زايى را كامل مى نمايند(1981) Liao, 1981 Shehadeh,1970; Kuo, 1974; Nash,).
 دريا با شورى هr-•r در هزار و دامنه حرارتى هץ-٪ درجه سانتيگراد در دوره نهايى رسيدگى جنسى و در فصل تخمريزى كفال همراه با حفظ شرايط فيزيكى و شيميايى و بيولوزيك آب محيط نگهدارى مولدين مى تواند در حصول رسيد گى و ميزان جوابدهى مولدين كفال خاكسترى موثر مى باشد. بسيارى كشورها در شرايط پرورشى جهت حمايت از مولد سازى علاوه بر توليدات طبيعى محيط آب استخر (دياتومه ، جلبك هاى رشته ای ، آلگهاى سبز آبى ، ديتريت ، ...) كه بطور معمول مورد تغذيه مولدين كفال خاكسترى مى باشد، ماهيان را
 ماهيان دريائى مورد استفاده مى باشد ، تغذيه مى نمايند (Shehadeh 1980; Tamaru, 1993) . دراين تحقيق مشخص گرديد فراهم آوردن آب با شورى بيش از •ب در هزار و همچخنين تغذيه ماهيان كفال خاكسترى با تر كيب غذايى مورد مصرف مولدين قزل آلا (BFT) با سطح پروتئينى بيش از F F درصد و همحتنين حفظ شرايط فيزيكى و شيميايى و بيولوزيك محيط آب استخر مولدين مى تواند در حصول و بيشرفت جنسى ماهيان كفال خاكسترى موثر باشد بطوريكه در بر رسى حاضر وضعيت بيشرفت جنسى و حفظ رسيدگى جنسى ماهيان در استخرهاى مولدين كه منطبق بر كنترل فاكتورهاى تغذيه اى و محيطى بوده در مقايسه با ديگر استخرهاى نغهدارى كفال خاكسترى كه شرايط تغذيه ای و محيطى متفاوتى داشته اند قابل توجه است . در تحقيق حاضر در طول سالهاى نخهدارى ماهيان كفال خاكسترى در شرايط محصور استخرى به رغم حصول مرحله چهارم رسيدگى (زرده سازى) و فراهم شدن شرايط فيزيكى . شيميايى وتغذيه ای و حرارتى اپتيمم در محيط استخر و تانك هاى نگهدارى در ماهيان كفال خاكسترى پرورش يافته در گميشان مرحله پنجم يابعبارتى بلوغ كامل و تخم ريزى خودبخود (طبيعى) مشاهده نشد . اين امر مطابق با گزارشات ديگر محققين دنيا از وضعيت بلوغ و رسيدگى جنسى كفال خاكسترى در شرايط اسارت (پرورش) مى باشد . رسيدگى تخمدان در ماهيان كفال خاكسترى (Musil cephalus) بصورت همزمان گروهى (group synchronous) مى باشد ، (Wailace and selman, 1981; Tamaru et al., 1999) به اين صورت كه معمولاً يك گروه از تخمكك هر ساله به بلوغ مىرسند Shehadeh و Nash (• • بيان كردند سيكل توليد مثلى در كفال خاكسترى مشابه با منطقه هاوائى در نقاط
ديگر دنيا نيز مشاهده مى شود
(199r) Kelley و (19^r) Lam عدم فعاليت توليد مثلى مى باشند و ثابت شده است كاهش طول روز و درجه حرارت آب بر شروع زرده سازى در كفال خاكسترى موثر مى باشند.

تحقيقات Kuo و همكاران (1990) مشخص نمود در طبيعت زرده سازى در كفال هاى بالغ در دوره نورى كوتاه و كاهش درجه حرارت آب آغاز مى شود و تخمريزى نيز در سردترين ماههاى سال صورت مى گيرد.

در بر رسى حاضر روند رشد و نمو غدد تناسلى و سير تكاملى اووسيتها به گونه اى بود كه در هر مر حله تعدادى از اووسيتها تقريباً بطور يكدست مرحله رسيد گی را پشت سر گذاشته تا به مرحله بلوغ برسند ـ لذا براساس نتايج حاصل از بررسيهاى انجام گرفته بر روى مولدين كفال خاكسترى پرورش يافته در شرايط آب و هوايى گميشان مى توان بيان داشت، روند رسيدگى از الگوى مشابه با روند رسيدگى جنسى در ديگر مناطق دنيا پيروى مى كند و شامل شش مر حله مى باشد كه عبارتند از :

مرحله يك (نابالغ) ، مرحله دو م(رشد اوليه) ، مرحله سوم (وزيكولهاى زرده) ، مرحله جهارم (گويچحه هاى زرده) ، مرحله پنج (بلوغ نهائى يا تخم ريزى) ، كه اين مرحله پس از القاء هورمونى ظاهر مى
گردد، مرحله ششم (آترزى) .

ديگر نتايج حاصل از تحقيق مويد آن مى باشد زرده سازى در گميشان با كاهش دماى آب و هوا و كوتاه شدن طول روز شروع شده و در اواسط آذر تاوايل ديماه به حداكثر خود مى رسند . در تحقيق حاضر قطر اوويستها در مولدين ماده كفال خاكسترى در مرحله سوم گويحهه زرده كه بلوغ و رسيدگى در ماهيان حاصل مى گردد به حدود •90-9 -9 ميكرون رسيد. Mathew

 در آبهاى اقيانوس آرام و Tamaru و همكاران (1991) در آبهاى هاوايى قطر اوويست هاى بالغ را در پايان مرحله
زردهسازى ••••••• ميكرون گزارش كرده اند.

با توجه به نتايج تحقيق حاضر مى توان بيان دانست كه قطر اوويست هاى كفال خاكسترى پرورش يافته در گميشان مشابه با مولدين كفال خاكسترى آبهاى منطقه اقيانوس آرام و تايوان مى باشد. بر همين اساس مى توان نتيجه گرفت الگوى رسيدگى گنادها در كفال خاكسترى پرورش يافته در گميشان مى تواند با كفالهاى خاكسترى ابهاى منطقه اقيانوس آرام ، هاوايى و تايوان مشابهت بيشترى داشته باشد كه با توجه به آنكه اين ماهيان از آبهاى كشور هنگک كنگك صيد شده لذا وجود مشابهت دور از واقع نيز نمى باشد.

Kuo و همكاران (1990) گزارش نمودند درهاوايى مرحله جهارم رسيدگى جنسى در كفال خاكسترى (زرده سازى) اغلب در دسامبر (اواسط آذر تا اواسط دى) مشاهده مى گردد. تخمريزى از اواخر دسامبر (اواسط دى تا اوايل مارس (اواسط اسفند) اتفاق مى افتد . اوج تخمريزى كفال در آبهاى هاوايى در زانويه و فوريه (بهمن و اسفند) است . در تحقيق انجام گرفته در شرايط اب و هوايى گميشان نتايج بدست آمده بيانگر آن است كه زردهسازى در مهر ماه آغاز شده و تا اواخر آذر و اوايل ديماه ادامه مى يابد . شروع زودتر زرده سازى در شرايط گميشان را مى توان به فرارسيدن زودتر فصل سرما در طى ماههاى مهر ، آبان ، آذر ـ دى ـ بهمن مرتبط دانست . Kuo و همكاران (•199) بيان داشتند در شرايط اسارت (پرورش) رشد و نمو تخمكها در پايان مرحله زرده سازى موقتاً متوقف شده و محر كهاى خارجى ديگرى همانند القاء هورمونى براى آغاز دوباره بلوغ نهايى منجر به اوولاسيون و تخمريزى در مولدين كفال خاكسترى مورد نياز است . عدم انجام اوولاسيون و تخمريزى خود بخود در كفال خاكسترى نگهدارى شده در اسارت (پرورش) به اختلال در يك يا چند مسير در طول محور هييوتالاموس - هييوفيز - گناد نسبت داده شده است (Monbrison , 1997)، زيرا چرخه مذكور (H-P-G) روند توليد مثل در ماهيان را كنترل مى كند(Iclarm , 1980) . دليل اين اختلال در ماهيان برورشى يا ناكافى بودن مقدار گناد تروبين (GTH 1, 2) در هييوفيز و يا ترشح ناكافى هورمون آزاد كننده كنادو تروبين (GnRH) از هييو تالاموس و يا تر كيبى از اين دو عامل را مى داند (Monberson, 1997) . به منظور چيره شدن بر اين اختلال از انواع هورمونها (LRH, LHRH،Cph, GnRH, HCG)...) آنالو گهاى آنها جهت (Nash and shehadeh , 1973; . القاء اوولاسيون و تخمريزى در كفال خاكسترى بطور موثرى استفاده شده است Liao, 1980; lee et al., 1987;kuo et al , 1995)

نتايج تحقيق انجام شده نشان داد انواع تر كيبات هورمونى كه توسط ديگر محققين جهت القاء بلوغ نهايى كفال خاكسترى استفاده شده مى تواند در القاء بلوغ نهايى و انجام اوولاسيون در مولدينى كه اووسيت ها ى آنها مرحله سوم زرده سازى را به پايان رسانده اند موثر قرار گرفته و موجب تخمريزى در آنان گردد و عدم پاسخ به

تزريقات هورمونى انجام گرفته در صورت استفاده از مقادير استاندارد شده مى تواند بدليل عدم حصول رسيد گى يا بدليل مناسب نبودن اووسيت هاى آنها و ديگر شرايط محيطى باشد. نتايج حاصل از پزوهش حاضر نشان مى دهد ميانگين قطر اووسيت ها در مولدينى كه تزريقات هورمونى موجب اوولاسيون و تخمريزى آنان گرديده در شروع آزمايش حدود . .9 ميكرون بوده است . و در مقايسه مولدينى كه قطر اووسيت آنها كمتر بوده است، به تزريقات هورمونى انجام گرفته بخوبى پاسخ نداده يا در صورت تخمريزى ، لقاح موفقى را نداشتند. لذا مى توان حداقل قطر . 9 ميكرون را اندازه مناسب قطر تخمكك در مولدين ماده كفال خاكسترى پرورش يافته در گميشان بمنظور انجام القاء هورمونى بيان نمود. قليجّى (1) هورمونى پاسخ مثبت نداده و تخمريزى در آنها انجام نشد، به پايان مرحله سوم گويحه هاى زرده (انتهاى مرحله

چهار رسيدگى) نرسيده بودند و تزريقات هورمونى تنها موجب تسريع در روند تكوين اووسيتها شده بود. در تحقيق انجام شده نيز مشخص گرديد اووسيت هايى با قطر كمتر از . .9 ميكرون نياز به چند تزريق آمادگى جهت فراهم شدن شرايط كمى و كيفى تخمك ها بمنظور اوولاسيون را نياز دارند و اين نتايج با نظر و تحقيقات ديگر محققين كه حداقل ميانگين قطر تخمك در ماهى كفال خاكسترى را جهت انجام القاء هورمونى نتيجه بخش . .9 و ترجيحاً بيش از . .9 ميكرون مى داند . مطابقت دارد . . (Shehadeh, 1973; Apkine, 1979; Liao, 1980 ; Tamaru, 1988; kuo, 1975,1995)
(1999) گزارش كردند ، عدم پاسخ مناسب ماهيان كفالخاكسترى به تزريق هورمونهاى Pankhurst خارجى مى تواند به دليل شرايط عمومى اسارت و همحچنين استرس حاصل از تزريق و دستكارى باشد كه باعث مى گردد پيشرفت مراحل رسيد گى نهايى و اوولاسيون محقق نگردد. بنابر نظر (19AV) Pickering) بين استرس و كاهش سطح آندروزنها و استروزنهاى موجود در پلاسماى خون ماهيان استخوانى همبستگى مشخص وجود دارد. اين امر مىتواند مو جب اختلال در ترشح گناد و تروپين از غده هييوفيز كاهش ترشح استروئيدهاى جنسى از فوليكولهاى اووسيت ها گردد (yang, 2002) .

Oven باز جذب اووسيت ها در اين ماهيان شروع مى گردد. در تحقيق حاضر مشاهده گرديد باز جذب تخمها در ماهيان كفال موجود در ديخر استخرها زودتر از ماهيان موجوددر استخرهاى مولدين رخ داد.

در تحقيق حاضر پس از القاء هورمونى مولدين جهت حصول اوولاسيون، اووسيتها دستخوش تغييرات كمى و كيفى شدند .تغير كمى تخمكها شامل تغيير در اندازه قطر تخمكك ها بود، بطوريكه قطر تخمكك ها از حدود . .9 ميكرون تا . 9 ميكرون و بيشتر افزايش يافت كه بخشى كه از اين تغيير در نتيجه آبگيرى تخمكك ها حاصل مى گردد . (1919) Watanabe و گuo زرده سازى را سپرى كرده اند حاوى هQ/\& درصد آب مى باشند و در طول رسيدگى نهايى آب اووسيت ها بسرعت به NF/^ درصد افزايش مى يابد. تغييرات كيفى در طول رسيدگى نهايى در اووسيتها با حل شدن ديواره پروتئنيى وتوزيع يكنواخت زرده در درون اووسيت همراه مى باشد. تغييرات فوق در تحقيقات انجام گرفته توسط Lee و همكاران ($19 A V$) و Tamaru و همكاران (199r) kuo و همكاران (1990)نيز گزارش شده است.
 تكثير مصنوعى كفال خاكسترى به روش القاء هورمونى مؤيد آن است معمولاً دو نوبت تزريق هورمون به ماهيان كه مرحله Y بلوغ را پايان رسانده اند در دماى Tب YY-Y تخمريزى در مدت .Y-Y Y ساعت پس از تزريق نهايى مى گردد . Liao و همكاران (• 191) گزارش كردند در Tب Y از تزريق نهايى اوولاسيون كامل مى شود .

در تحقيق حاضر اوولاسيون و تخم ريزى ماهيان كفال خاكسترى تزريق شده در دماى آب هY-Y درجه سانتى گراد در مدت YY-YA ساعت حاصل شد.

چچربى را •^r - •هr ميكرون گزارش كرده اند.

در تحقيق حاضر ميانگين قطر تخم هاى ريخته شده و لقاح يافته كفال خاكسترى •M. - MA ميكرون و قطر
 براى راندمان حداكثر تنظيم مى نمايند(Blaxter, 1988) . Shehadeh
حرارت را YY - YY درجه سانتى گراد گزارش كردند.

- FFI ($19 V$.) Yashouv
 در تحقيق حاضر با كنترل شورى در طول انكوباسيون در دامنه هr-Y در هزار مشخص گرديد مدت زمان هج لارو كفال خاكسترى در منطقه گميشان از الگَيى زمانى بيان شده توسط ديخر محققين بيروى مى كند. بطوريكه طول مدت انكوباسيون و خروج لارو از تخم در آب با دماى هr-Y
(19Vr) Kuo گردندهمچنين Kuo اظهار كرده اكثر تخمهاى ته نشين شده لقاح نيافته يا تكامل پيدا نكرده بودند. در تحقيق حاضر نيز مشاهده شد تخمهاى ريخته شده توسط مولدين در صورت عدم لقاح در بستر تانك رسوب مىنمايند .

در تحقيق حاضر لاروهاى خارج شده از تخم با فعاليت كم شنا كرده و حر كات جهشى داشتند و در ستون آب

دهان لارو در روز سوم تا چهارم باز شد و غذاى زنده (روتيفر و جلبك) از روز پنجم تا ششم در دستگاه گوارش لاروها قابل مشاهده بود ـ كيسه زرده حدود روز چنجم جذب شده ولى گويچهِ چربى تا روز ها تا 19 نيز

مشاهده مى شد.
Liao كرده اند ، لاروهاى خارج شده از تخم دارای طول كل r/9D - - • س سانتيمتر مى باشند . دهان لارو در دماى YF درجه سانتى گراد در روز دوم و در Y در چهار تا شش روز اول بعد از هج هيج غذايى را دريافت نمى كنند (Kuo, 1974., Tamaru, 1994) . (19V1 ور (191•) Liao (Brachionus) مصنوعى استفاده كرده است . (198 Fr (Nash جلبك Cholorella و روتيفر و نايلى آرتميا و كوپه پودا و از YD-1 ال روز گى از آرتميا بالخ استفاده كرده است .
 آرتميا و از •ه-•بر روز گى از آرتميا بالغ و غذاى مصنوعى مورد تغذيه ميگو استفاده كردهاند. در تحقيق حاضر جهت تغذيه لاروهاى كفال خاكسترى خارج شده از تخم محيط تانكك هاى برورش با مخلوطى از جلبكك هاى (Cholorella, Isochrysis) و روتيفر (Brachionus p.)غنى شد. از هفته دوم علاوه بر جلبك و روتيفر ، از زئوپلانكتونهاى وحشى (كوپه پودا) با اندازه كمتر از •10 ميكرون و همچچنين محلول غذايى حاصل از حل كردن غذا كنسانتره ميگو در آب استفاده شد . بر طبق مشاهدات Liao (19V1 و •191) پپورش لاروهاى كفال خاكسترى حداقل داراى دو مرحله حساس و بحرانى است روزهاى سوم و پهارم و حتى روزهاى هفتم و هشتم و روزهاى يازدهم تا سيزدهم.Kuo (IaVr) دو مرحله بحرانى همراه با تلفات شديد لاروها را در روزهاى r-r و دومين مرحله بحرانى بيشتر از مر حله اول آن است .

در تحقيق حاضر تلفات لاروهاى كفال خاكسترى در مرحله نخست عليرغم سقوط لاروها به كف مخزن در روز سوم تا چهارم چشمگير نبوده ولى از 9 الى •ا روز گى كه همزمان با مرحله دوم بحران پرورش لارو مى باشد تلفات بطور نسبى افزايش يافته و از זا روز گی شدت يافته بطورى كه موجب گرديد با توجه به تعداد معلود لاروهاى توليد شده از سرى دوم و سوم در پايان دو هفتگى و از سرى اول لاروها ى كفال خاكسترى در پايان هفته سوم براى پرورش، لاروى باقى نماند.

در پايان ، نتايج و يافته هاى حاصل از تحقيقات انجام گرفته در پزوهش حاضر نشان داد كه امكان مولد سازى كفال خاكسترى در شرايط پپرورشى امكان پذير بوده و استفاده از انواع تر كيبات هورمونى(LRH,CPH,GnRH)ودارويى مى تواند موجب القاء رسيدگى نهائى و اوولاسيون و تخم ريزى گرديده و حصول لارو از ماهيان را در شرايط آب و هواى شمال ايران (گميشان) محقق نمايد.

پيشنهادها

I. احداث استخر جهت مولدين به صورت گلخانه همراه با تامين آب شور با دماى YY-Y درجه سانتى گراد و هوادهى دائم به منظور امكان نگهدارى طولانى مدت مولدين ماهى كفال خاكسترى در فصل تكثير و به هنگام كاهش دماى آب در طول زمستان. Y. تامين هورمونها و داروهاى اختصاصى جهت تكثير و پرورش ماهيان دريايى خاصه ماهى كفال خاكسترى به منظور افزايش راندمان عمليات تكثير.
r. آموزش نيروهاى تحقيقاتى در زمينه تكثير و پرورش و نى سازى انواع غذاى زنده (گیاهى و جانورى) در وسعت انبوه به منظور تغذيه لارو تا انگشت قد ماهيان دريايى.
F. F. احداث ايستگاه تحقيقاتى ماهيان آب شور همراه با امكانات مورد نياز در شمال كشور به منظور انجام فعاليتهاى تحقيقاتى متمر كز بر روى تكثير و پرورش ماهيان دريايى بويزه ماهى كفال خاكسترى. ه. اعزام كارشناسان تكثير و پرورش به مراكز تحقيقاتى و علمى معتبر جهانى در جهت آموزش علمى و عملى در زمينه تكثير و پرورش ماهيان دريايى با توجه به ظر افتها و بيجحيد گىهاى آن. 9. امكان مشاوره و همكارى علمى و عملى با كارشناسان معتبر در زمينه تكثير و پرورش ماهيان دريايى خاصه ماهى كفال خاكسترى.
V. ايجاد زمينه و بستر تحقيقاتى مناسب در شمال كشور در زمينه توسعه فعاليتهاى تكثير و پرورش ماهيان دريايى و ديگر آبزيان آبهاى لب شور و شور.

تشكر و قدردانى
پپزوهش حاضر حاصل همكارى فكرى و عملى عزيزان و بزر گوارانى است كه دست به دست يكديگر داده تا موفقيتى ديگر براى كشور اسالميان رقم زنند ، لذا اينجانب به عنوان مجرى پروزه بر خود لازم مى دانم تا بدينوسيله از يكايك آنان تشكر و قدردانى نمايم . از روساى محترم وقت موسسه تحقيقات ؛يزوهشكده اكولوزى درياى خزر ؛بخش آبزى پرورى ومعاونت هاى محترم تحقيقاتى .

- از كليه كارشناسان و تكنسين هاى همكار دربخشهاى آبزى پرورى ، بوم شناسى ، بيماريها،ترابرى ،.. آقايان مهندس قزل ، مهندس علومى ، مهندس نجف پور،دكتر بهروزى، مهندس فارابى ، مهندس معاضدى مهندس مهدوى و...
- از آقايان بينايى ، خدإيرست ، رضوانى ، شافعى ، سالكى ، پورمند و برادران حسينى ، داودى ، ابراهيم زاده ، آهنگر ، گشتاسبى ، جعفرى و همحچنين از آقاى نوش آبادى و سر كارخانمها نبوى، شريفى و علوى كه زحمت تدوين گزارش حاضر را تقبل نموده اند.
- از اداره كل شيلات گلستان و مسئولين محترم آن و همحچنين برادران كارشناس تكثير ايستگاه پرورش ميگوى گميشانآقايانمهندس پاسندى، مهندس وشتانى ،مهندس طريك ، مهندس سقرلى كه فضاى لازم جهت اجرای بروزْه را در اختيار نهاده اند.

منابع:

$$
\begin{aligned}
& \text { تهران. شماره IVFFF }
\end{aligned}
$$

$$
\begin{aligned}
& \text { دانشكده دامپزشكى دانشگاه تهران. } \\
& \text { ٪. بريمانى، احمد. وه٪ا. ماهی شناسى و شيلات (جلد دوم) - انتشارات دانشگاه اروميه }
\end{aligned}
$$

$$
\begin{aligned}
& \text { پايان نامه دانشگاه تربيت مدرس. } \\
& \text { ه. شعبانى پور، نادر. IFVF. بر رسى شكل و بافت شناسى تخمدان در كفال درياى خزر . مجله علمى شيلات } \\
& \text { ايران . شماره چهارم. شماره r. } \\
& \text { 9. قانعى تهرانى، محمود. •^זا. پֶرورش انگشت قدهاى كفال خاكسترى وارداتى در شرايط آب و هوايى } \\
& \text { شمال ايران . موسسه تحقيقات شيلات ايران. } \\
& \text { V } \\
& \text { هورمونهاى جنسى و مطالعات هيستوپاتولوزيك. پايان نامه دانشگاه آزاد. } \\
& \text { ^ م مجازى اميرى، باقر. ITVV. فيزيولوزى توليد مثل در ماهيان . دانشگاه تربيت مدرس. }
\end{aligned}
$$

9. Eckstein, B. 1975 . Possible reasons for the infertility of grey mullet confined of fresh water. Aquaculture, 5: 9-17.
10. Eda, H., Murahige, R., Oozeki, Y. $¢$ 1990. Factors affecting intensive larval rearing of striped mullet, Mugil cephalus. Aquaculture, 1: 281-294.
11. Kraul, S. $؛$ 1983. Results and hypothesis for the propagation of the grey mullet (Mugil cephalus L.). Aquaculture, 30: 273-284.
12. Hotos, G. M. 1998. Salinity tolerance of Mugil cephalus and Chelonlabrosus fry in experimental condition. Aquaculture. 167: 329-338.
13. Huet, Marcel. 1986. Textbook of fish culture breeding and cultivation of fish. Fishing news books Ltd. 230-240.
14. Kelley, C. D. 1995., Striped mullet (Mugil cephalus L.), pp: 80.
15. Kuo, C. M. 1973. Induced spawning of captive grey mullet (M. cephalus L.) femal by incection of Human chorionic Gonadotropin (HCG). Aquaculture 1: 429-432.
16. Kuo, C.M. 1973. Preliminary report on the development growth and survival of laboratory reared larvae of grey mullet (Mugil cephalus L) J. fish biology 5: 450-470.
17. Kuo, C.M. 1974. A procedural guide to induce spawning in grey mullet (Mugil cephalus L). Aquaculture 3:1-14.
18. Kuo, C. M., Nash, C.E., Shehadeh, Z.H. 1974. The effects of temperature and photoperiod on ovarian development in captive grey mullet (Mugil cephalus L.). Aquaculture, 3: 25-43.
19. Kuo. C.M., Nash. C.E. 1975. Recent progress on the control ovarian development and induced spawning of the grey mullet (Mugil cephalus L.). Aquaculture, 5: 19-29.
20. Kuo, C.M. 1995. Manipulation of ovarian development and spawning in Grey mullet (Mugil cephalus L.) Bamidgeh, 47: 43-58.
21. Lee, C.S., Weber, G. M. 1986, Effects of salinity and photoperiod on 17α - methyltestosteron Induced spermatogenesis in the grey mullet, (Mugil cephalus L.). Aquaculture, 56: 53-62.
22. Lee, C.S., C.C. Tamaru and C.C. Kelley. 1987. Induced spawning og grey mullet (Mugil cephalus L.) by LHRH - a. Aquaculture 62: 327-336.
23. Lee, C.S., C.C. Tamaru and C.D. Kelley. 1988. The cost and effectiveness of CPH, HCG and LHRH - a on the induce spawning of grey mullet (Mugil cephalus L.). Aquaculture. 73: 341-347.
24. Lee, C.S., Lamaru, C.S. 1988. Advaces and future prospects of controlled maturion and spawning of grey mullet (Mugil cephalus L.) in captivity. Aquaculture 74: 63-73.
25. Lee, C.S., Kelley, C.D. 1990. Artificial propagation of mullet in united states. Aquaculture, 2: 193-210.
26. Lee, C.S., Tamaru., C.S. 1992. Fatty acid and amino acid profiles of spawned eggs of striped mullet (Mugil cephalus L.). 105: 83-94.
27. Lee, C.S., Kelley, C.D. 1996. Hormonal injection of maturation in striped mullet, Mugil cephalus. A.F. 509: 9-20.
28. Liao, I. C., Pien, P. C. 1975. Preliminary report of histological studies on the grey mullet gonad related to hormone treatment. Aquaculture. 5: 31-39.
29. Liao, I. C. 1975. Experiments on induced breeding of the grey mullet in Taiwan from 1963 to 1973. Aquaculture 6: 31-42.
30. Mathew, A., Chandra, K., 1999. Embryonic and larva development of the striped mullet (Mugil cephalus L.) India J. Fish., 46: 123-131.
31. Monbrison, D., Tzchori, I., Zohar, M. C. 1997. Acceleration of gonadal development and spawning induced in the mediterranean grey mullet (Mugil cephalus L.). Bamidgin, 49: 214-221.
32. Nash, C. E. 1974. Operational procedures for rearing larva of grey mullet (Mugil cephalus L.). Aquaculture 3: 15-24.
33. Nash, C.E. and Z.H. Shehadeh. 1980. Review of breeding and propagation techniques for grey mullet (Mugil cephalus L.) ICLARM studies and reviews 3. int. Cent. Living Aquatic Resources Management. Manila. 78.
34. Shehadeh, Z.H. 1973. Establishing broodstock of grey mullet (Mugil cephalus L.) in small pond. Aquaculture 2: 397-384.
35. Tamaru, C.S., Kelley, C. D., Lee, C.S. 1991. Steroid profiles during maturation and spawning of the striped mullet (Mugil cephalus L.).

Abstract

Mazandaran and Gorgan provinces have temperate climate, thus they have more potential for aquatic animal culture. There are thousands hectare of salt and useless lands in adjacent to Caspian Sea. As these areas have provided a favorable back ground for aquatic animal culture. As a result, the successful results obtained from imported gray mullet (Mugil cephalus) culture project in north climate, it has demonstrated that the gray mullet has a good biocharacteristic for culturing in pond enclosure environment and in different aquatic conditions (fresh water, brackish water and salt water). From 1998 until 2001, the broodstock yield and gray mullet artificial propagation projects were performed by fisheries research center of Mazandaran in Ghomishan prawn culture station in adjacent to Caspian Sea (East north of Mazandaran Province). This investigation executed during two stages (phases). At first stage, the goal of this project included the survey of possibility available about matured fish as well as induction of final maturation and artificial propagation for producing of broodstock and larva. In addition, in this way, we will obtain new information about gray mullet propagation and culture as marine species. We introduce mass production in aquaculture. At present research, the possibility of broodstock yield and artificial propagation of gray mullet have investigated by gray mullet fingerlings imported from Hong kong and then they have cultured in earth ponds of Ghomishan areas during five years (1994-1998). In order to broodstock production in spring 1998, two earth ponds (0.5 hectare) were prepared. 100 specimens of fish stock ($1-2.5 \mathrm{~kg}$ weight average and 5 years of age) placed in each pond. For providing of suitable water and nutrition, fish were fed by food containing rich protein (40\%) with 3-5\% body weight and maintained in water with 30-35 ppt salinity. The survey of sexual maturation was performed by sampling of sexual glands through year. There were four stages in dominant female broodstocks. This survey indicated that oocytes have emerged stage 1 (immature) from March to June, stage 2 (yolk vesicle) in September and stage 4 (yolk globule) in October. Three stages (first, second and third) of yolk formation in oocytes will occur but these stages take place in October, December and January respectively. It's obvious that oocytes will progress into the end of third stage (yolk formation) and then their growth was arrested. Ovum with $600 \mu \mathrm{~m}$ diameter was observed when the water temperature declined less than $18^{\circ} \mathrm{C}$ and day time was short (from middle autumn to middle winter), on that time, fish were induced by hormone because lack of final maturation and ovulation, there fore, natural spawning was not occurred in pond condition. Furthermore, artificial propagation of mugil cephalus was occurred by hormonal induction. Hormonal induction was utilized by inject of many hormones (LHRH, Cph, HCG). Using different components of hormones and also their different doses obtained the best results from broodstock that the average ovum diameter was about $600 \mu \mathrm{~m}$. Several types hormones which were injected into gray mullet with two or several intermittent (24 h intervals) along with $20-25^{\circ} \mathrm{c}$ temperature and $30-35 \mathrm{ppt}$ salinity. This condition can provide stage 4 maturity for fertilization. Totally (as whole), three intermittent fertilization was necessary for exiting of larva, larva production in first, second and third intermittents that were 2000, 2500 and 300 specimens respectively. Larva fed on chlorella algae and rotifera and they have maintained for 14-15 days. The results of obtainable research indicated the possibility of gray mullet broodstock production in cultural condition, artificial propagation and larva production. This research took place for the first time in north climate of Iran. Key word: Gray mullet (Mugil cephalus), broodstock, production (yield), artificial propagation and hormone

Ministry of Jihad - e - Agriculture AGRICULTURAL RESEARCH, EDUCATION \& EXTENTION ORGANIZATION IRANIAN FISHERIES RESEARCH ORGANIZATION - Caspian Sea Ecology Research Center - Inland Waters Aquaculture Research Center

Title : Breeding and reproduction of grey mullet (Mugil cephalus L.)
Apprpved Number: 77-0710142000-11
Author: Mahmood Ghanei Tehrani
Executor : Mahmood Ghanei Tehrani
Collaborator : Y. Olumi, A,Shafei ,sh.behrozei,Sh.Najafpor,T.Rangbar,A,Mahdavi
,Y.Eirei, M.Yosefian,R.M.Nazari,A.Torik,H.Norozimoghadam,Gh.Lashtoaghaei, Advisor(s):S.Rezvani,A.Matinfar,A.Akhondi,H.A.Rostami,S.A.Hossieni
Location of execution : Mazandaran province
Date of Beginning : 1998
Period of execution : 3 Years \& 8 Months
Publisher : Iranian Fisheries Research Organization
Circulation : 20
Date of publishing : 2011
All Right Reserved. No Part of this Publication May be Reproduced or Transmitted without indicating the Original Reference

MINISTRY OF JIHAD - E - AGRICULTURE

AGRICULTURAL RESEARCH, EDUCATION \& EXTENTION ORGANIZATION IRANIAN FISHERIES RESEARCH ORGANIZATION- Caspian Sea Ecology Research Center

Title:

Breeding and reproduction of grey mullet

 (Mugil cephalus L.)Executor :
Mahmood Ghanei Tehrani

Registration Number
2010.1182

