دوره ۱۳، شماره ۳، پاییز ۱۳۹۳

مجله علوم و فنون دریایی

شبیه سازی طوفان حاره ای گونو با استفاده از مدل Advanced Hurricane WRF: حساسیت به طراحی محدوده ها، آشیانه سازی، تفکیک افقی و زمان شروع

حسین ملکوتی*، مهریار علی محمدی

گروه هواشناسی، دانشکده علوم وفنون دریایی و جوی، دانشگاه هرمزگان

چکیدہ

محدوده ی انتخابی، زمان های متفاوت شروع و آشیانه سازی ثابت و قابل حرکت به طور جداگانه در داخل محدوده ی بزرگتر، در کنار طرح واره های مختلف فیزیکی می توانند نقش مهمی را در کیفیت پیش بینی طوفان های حاره ای ایفا کنند. طوفان حاره ای گونو (۲۰۰۷) تشکیل شده در شمال اقیانوس هند (دریای عرب) و مدل AHW جهت مطالعه حساسیت شبیه سازی به موارد فوق انتخاب شده اند. شرایط اولیه و مرزی از داده های FNL و اطلاعات بهترین مسیر جهت راست آزمایی از IMD دریافت گردیده بود. نتایج نشان داد که از بین محدوده های انتخابی، موردی که به سمت شرق گسترش بیشتری داشته و ناحیه کمتری از خلیج فارس را شامل می شود در پیش بینی مسیر دارای بهترین عملکرد و در پیش بینی شدت طوفان در زمان های رسیدن به سواحل عمان و ایران دارای عملکرد قابل قبول بوده است. اگر چه این محدوده در پیش بینی نقطه اوج شدت طوفان دارای عملکرد بهتری از سایر محدوده های انتخابی بود، اما بطور کامل رضایت بخش بنظر نرسید. به همین منظور محدوده های داخلی با تفکیک سه برابر بطور ثابت و قابل حرکت به طور جدا گانه داخل این محدوده در نظر گرفته شد و نتایج نشان داد که افزایش تفکیک افقی، علی رغم بهبود نسبی پیش بینی شدت، از کیفیت پیش بینی مسیر کاسته ش است. همچنین نتایج نشان می دهد که محدوده ی داخلی ثابت نسبت به محدوده داخلی قابل حرکت از عملکرد بهتری برخوردار می باشد. در ادامه، حساسیت شبیه سازی به زمان های شروع متفاوت برای بهترین محدوده ی انتخابی مطالعه گردید و نتایج نشان داد که شبیه سازی با زمان شروع ۴۸ الی ۶۰ ساعت قبل از وقوع اوج طوفان (زمانی که فشار مرکزی طوفان تقریباً ۱۰۰۰ هکتو پاسکال بوده) دارای عملکرد بهتری در نتایج مسیر و شدت طوفان می باشد. طراحی محدوده ها و زمان شروع مناسب برای طوفان گونو، در شبیه سازی طوفان حاره ای فت (۲۰۱۰) تشکیل شده در همین ناحیه، مورد آزمایش قرار گرفت و نتایج رضایط بخش بودند.

واژگان کلیدی:AHW، گونو، طوفان، شدت، مسیر

۱. مقدمه

حدود ۷٪ طوفان های حاره ای تشکیل شده در سرتاسر جهان در محدوده شمال اقیانوس هند (شامل دریای عرب و خلیج بنگال) رخ می دهند و حدود ۲٪ طوفان های حاره ای فقط در منطقه دریای عرب تشکیل می شوند (گزارش سازمان جهانی هواشناسی، ۲۰۰۸).

با توجه به ماهیت (بادهای خیلی قوی و بارندگی سنگین) طوفان های حاره ای، می توانند اثرات زیان بار و مخربی در محدوده های تحت نفوذ خود ایجاد کنند. از این رو پیش بینی مسیر و شدت طوفان های حاره ای می تواند نقش مهمی در کاهش خسارت جانی و مالی ایفا کند. در این تحقیق از مدل

۲۰۰۸ توصیف شده توسط دیویس و همکاران (۲۰۰۸) که مدل پشرفته^۲WRF با هسته مرکزی^۳ARW می باشد، به عنوان یک مدل پر قدرت برای پیش بینی مسیر و شدت طوفان حاره ای گونو^۴ (۲۰۰۷، دریای عرب) استفاده گردید.

پیش بینی مسیر و شدت طوفان گونو با استفاده از مدل های پیش بینی در سال های اخیر مورد تحقیق تعدادی از دانشمندان قرار گرفته بود که از این جمله می توان به مطالعه موهانتی و پاتانایاک (۲۰۰۸) که مقایسه ای بین عملکرد دو مدل ^۵ MM5 و MRF(ARW برای شبیه سازی طوفان های تشکیل شده در شمال اقیانوس هند می باشد، اشاره کرد. مطالعه مذکور نشان داد که مدل (WRF(ARW در مقایسه با مدل SMRF(ARW در پیش بینی مسیر و شدت طوفان دارای عملکرد مناسب تری می باشد و در خصوص طوفان گونو، پیش بینی تقریباً خوبی از مسیر تا لحظه رسیدن به سواحل شمال شرقی عمان داشته است، ولی در پیش بینی مسیر طوفان به سمت ایران

- 1- Advanced Hurricane WRF
- 2- Weather Research and Forecasting
- 3- Advanced Research WRF

5- Fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model

همکاران (۲۰۱۱) جهت تعیین حساسیت مدل WRF(ARW) به انتخاب طرح واره های فیزیکی برای لایه مرزی سیاره ای و همرفت کومولوس در طوفان حاره ای گونو مطالعه ای انجام دادند که نتایج آن در بهترین حالت نشان می دهد که پیش بینی مسیر در زمان رسيدن به سواحل جنوب شرقى ايران عملكرد مناسبی را دارد اما پیش بینی آن برای مسیر عبوری از شمال شرقی عمان ضعیف بوده است. در دو تحقیق مذکور مدل در پیش بینی مقدار اوج شدت طوفان و زمان رخ داد آن دارای عملکرد ضعیفی بوده است. کومار (۲۰۱۱) برای اولین بار از مدل AHW در منطقه شمال اقيانوس براى شبيه سازى طوفان سیدر (۲۰۰۷، خلیج بنگال) استفاده کرده بود و نتايج تحقيق او به بهبود نتايج پيشين از قبيل پاتاناک (۲۰۰۸) و باسکار (۲۰۱۰) در خصوص همین طوفان منجر گردید. در این تحقیق سعی شده است که با استفاده از مدل AHW و با تحقیق حساسیت مدل به موقعیت محدوده ی انتخابی، تفکیک افقی با قرار دادن آشیانه های ثابت و متحرک در محدوده ی بزرگتر و زمان شروع شبیه سازی ها به بهبود نتایج پیشین برای شبیه سازی طوفان گونو پرداخته و در نهایت با ارتقای پیکر بندی، نیل به پیش بینی قابل اعتماد از اوج شدت هر طوفان تشکیل شده در این منطقه و مسیر آن حاصل گردد. مطالعه حساسیت مدل به موقعیت محدوده ی انتخابی از تحقیق کومار (۲۰۱۱)، مطالعه حساسیت مدل به تفکیک افقی از تحقیق دیویس (۲۰۱۰) و مطالعه حساسیت مدل به زمان شروع شبیه سازی از تحقیق کومار (۲۰۱۱) و کانسه (۲۰۱۱) برگرفته شده است. در ادامه، شبیه سازی با بهترین پیکربندی بدست آمده برای طوفان فت (۲۰۱۰، دریای عرب) انجام گردید و نتایج آن در ادامه ارائه شده است.

> ۲. مواد و روش ها ۲-۱ مورد انتخابی: طوفان گونو

⁴⁻ Gonu

طوفان گونو قویترین چرخند حاره ای است که تاکنون در دریای عرب و حتی در شمال اقیانوس هند رخ داده است. بطور معمول طوفان هایی که در دریای عرب شکل می گیرند، ضعیف و دارای دوره زندگی کوتاه مدت هستند. طوفان گونو در میان طوفان های دریای عرب یک استثنا بوده است و علت آن حرکت غیر عادی به سمت دریای عرب و سواحل کشور عمان در شمال غربی اقیانوس هند بوده است. به گزارش سازمان هواشناسی هند (۲۰۰۸) ('IMD) این طوفان در اول ژوئن ۲۰۰۷ با فشار مرکزی ۱۰۰۲ هکتو پاسکال در موقعیت ۱۵ درجه شمالی و ۶۸ درجه شرقی تشکیل و در هفتم ژوئن ۲۰۰۷ هنگام عبور از سواحل جنوب شرقی ایران و در طول جغرافیای ۵۸ درجه شرقی از شدت آن کاسته و رو به افول گردید. لشکری و کیخسروی (۱۳۸۹) به شرایط همدیدی شکل گیری طوفان گونو پرداخته اند. طوفان گونو در اوج شدت خود کمترین فشار مرکزی حدود ۹۲۰ هکتو پاسکال و حداکثر سرعت باد ۱۲۷ نات را تجربه کرد. میزان خسارت وارده این طوفان در کشور عمان ۴/۲ میلیارد دلار با ۵۰ نفر کشته و در کشور ایران حدود ۲/۵ میلیون دلار با ۳۲ نفر کشته گزارش شده است (گزارش سازمان هواشناسی هند، ۲۰۰۸).

AHW :مدل عددی انتخابی: ۲-۲

سازمان های پشتیبانی کننده WRF مانند^۲ NCEP و NCAR^۳ به NCAR^۳ با استفاده از ساختار کلی مدل WRF به مطراحی مدل هایی پرداختند که بتواند مسیر، شدت و ساختار یک طوفان را به بهترین نحو ممکن پیش NCEP و ممکن پیش مدل MRF توسط NCEP و ممکن پیش مدل WRF توسط محال مدل ها می باشند. مدل پیش بینی طوفان های حاره ای می باشد که در این مطالعه به کار گرفته شده است. از

ویژگی های منحصر به فرد آن می توان به موارد زیر اشاره کرد: قابلیت استفاده از آشیانه های قابل حرکت با روش آشیانه سازی دو سویه بمنظور پیگیری طوفان با موش آشیانه سازی دو سویه بمنظور پیگیری طوفان با موش آشیانه سازی دو سویه بمنظور پیگیری طوفان با موش آشیانه سازی دو سویه بمنظور پیگیری طوفان با موش آشیانه مازی دو سویه ما مدل های اقیانوسی دریا های امیخته اقیانوسی و کاهش دما با عمق در زیر لایه آمیخته اقیانوسی

طرح واره های اختصاصی برای ارتقای تبادل
اندازه حرکت، حرارت و رطوبت بین سطح اقیانوس و
جو خصوصاً در شرایط باد سطحی زیاد

 دارا بودن چندین تکنیک برای ارتقای شرایط اولیه (مانند ابزار tc.exe) که موقعیت دقیق مرکز طوفان و شدت آن در زمان شروع شبیه سازی با استفاده از اطلاعات ماهواره ای و مشاهدات محلی برای شبیه سازی و پیش بینی می تواند در نظر گرفته شود.

۲-۳ پیکربندی های استفاده شده

برای تعیین طرح واره های فیزیکی مناسب، ضمن بررسی و آزمایش طرح واره های فیزیکی متفاوت و معمول برای شبیه سازی طوفان های حاره ای در نهایت از طرح واره های فیزیکی آزمایش شده در مطالعه کومار و همکاران (۲۰۱۱) استفاده گردید که جدول ۱ طرحواره های فیزیکی و سایر پیکر بندی مدل را نشان می دهد.

به منظور مطالعه حساسیت شبیه سازی ها به طراحی محدوده، سه محدوده انتخابی به طور جدا گانه با تفکیک افقی ۲۷ km که دارای ۱۱۰ × ۱۴۵ نقاط شبکه⁵ در راستای محورهای x و y می باشد در نظر گرفته شد. جدول ۲ و شکل ۱ مشخصات و مختصات محدوده های انتخابی در این تحقیق را معرفی می کنند. مراکز هر سه محدوده در عرض جغرافیایی ۱۰ درجه اما در طول جغرافیایی متفاوت ۵۲، ۵۰ ۸ و

¹⁻Indian Meteorological Department

²⁻National Centers for Environmental Prediction

³⁻National Center for Atmospheric Research

⁴⁻Hurricane WRF

⁵⁻Sea Surface Temperature

⁶⁻ Grind Points

هفت شبیه سازی برای طوفان گونو انجام پذیرفت که ششم و هفتمین آن به منظور مطالعه حساسیت به زمان شروع شبیه سازی ها بر روی محدوده ی انتخابی سوم می باشد که شبیه سازی به ترتیب با شروع زمانی ساعت ۰۰ روز سوم ژوئن به مدت چهار روز روز و ساعت ۰۰ روز چهارم ژوئن به مدت چهار روز انجام پذیرفته است. اطلاعات بهترین مسیر حرکت و شدت طوفان گونو به منظور راست آزمایی شبیه سازی های انجام گرفته در این تحقیق از سازمان هواشناسی هند (IMD) دریافت شده است. دوم و سوم قرار دارند. سه شبیه سازی اول بر روی این سه محدوده انتخابی انجام گرفت. جدول ۳ مشخصات هفت شبیه سازی انجام گرفته در این تحقیق را ارائه می کند. به منظور مطالعه حساسیت شبیه سازی ها به قدرت تفکیک، آشیانه های ثابت (دارای ۲۰۰ × ۲۰۰ نقاط شبکه) و قابل حرکت (دارای ۴۵ × ۴۵ نقاط شبکه) به طور جداگانه داخل محدوده ی انتخابی سوم در نظر گرفته شد که شبیه سازی چهارم و پنجم به ترتیب برای این آشیانه ها می باشد. ینج شبیه سازی اول از شروع زمان ساعت ۰۰ روز دوم ژوئن به مدت شش روز انجام پذیرفت. در مجموع

جدول ۱. نمای کلی از طرح واره های فیزیکی و پیکر بندی مدل AHW

AHW					
3rd order Runga-Kutta scheme					
6th order center differencing					
WSM 6 (Hong,2004)					
RRTM (Mlawer, 1997)					
Dudhia (Dudhia,1989)					
Thermal diffusion scheme					
YSU (Noh,2003)					
Kain-Fritsch					
NCEP FNL (Global analysis)					
\ (Donelan,2004)					
40m					
0.14 k/m					
42 levels					
2000 p					

بی استفاده شده در تحقیق موجود	جدول۲. محدوده های انتخا
-------------------------------	-------------------------

محدوده های انتخابی	مركز	نقاط شبكه	تفكيك افقى
محدوده ی اول	ΕΔΥ ^ο °Ν , ۱۰	140 × 11.	۲۷ km
محدوده ی دوم	$E {\boldsymbol{\lambda}} \boldsymbol{\cdot} . \boldsymbol{\Delta}^{\circ \circ} N \; , \; \boldsymbol{1} \boldsymbol{\cdot}$	140 × 110	۲۷ Km
محدوده ی سوم	EAT. 0° 'N , 1 ·	140 × 110	۲۷ Km
آشیانه ثابت داخل محدوده ی سوم	EFT $^{\circ}$ $^{\circ}$ N , T \cdot	$\cdots \times \cdots$	۹ Km
آشیانه قابل حرکت داخل محدوده ی سوم	E۶Y.۵°°N , ۱۵	$\mathfrak{F} \mathfrak{d} \times \mathfrak{F} \mathfrak{d}$	۹ Km

نامگذاری	محدوده ی انتخاب شده	زمان شروع شبيه سازي ها	مدت شبیه سازی ها
شبيه سازي اول	محدوده ی اول	0000utc/02/june/2007	۶ روزه
شبیه سازی دوم	محدوده ی دوم	0000utc/02/june/2007	۶ روزه
شبیه سازی	محدوده ی سوم	0000utc/02/june/2007	۶ روزه
سوم شبیه سازی مدارد	آشیانه ثابت داخل محدوده ی	0000utc/02/june/2007	۶ روزه
چهارم شبیه سازی	سوم آشیانه قابل حرکت داخل	0000utc/02/june/2007	۶ روزه
پنجم شبيه سازی ش	محدوده ی سوم محدوده ی سوم	0000utc/03/june/2007	۵ روزه
سسم شبیه سازی هفتم	محدوده ی سوم	0000utc/04/june/2007	۴ روزه

جدول۳. شبیه سازی های انجام گرفته در تحقیق موجود

شکل ۱. محدوده های انتخابی الف: محدوده ی اول (D1)، ب: محدوده ی دوم (D2)، ج: محدوده ی سوم (D3)، د: انتخاب آشیانه ثابت داخل محدوده ی سوم (Fixed nest) و ه: انتخاب آشیانه قابل حرکت داخل محدوده ی سوم (Moving nest)

۳. نتایج ۱-۳ نتایج حساسیت شبیه سازی به موقعیت محدوده ی انتخابی(سه شبیه سازی اول) پیش بینی مسیر برای محدوده ی اول (شبیه سازی اول) در زمان برخورد به سواحل عمان دارای کمترین اشتباه، اما دارای تاخیر زمانی ۲۴ ساعت نسبت به IMD می باشد (شکل۲). طوفان در راه رسیدن به ایران انحراف بیشتری به سمت غرب پیدا کرده و به سواحل ایران نمی رسد. برای محدوده ی دوم (شبیه سازی دوم) مسیر طوفان دارای انحراف بیشتری می باشد به طوریکه در مسیر عبوری خود از سواحل عمان عبور نمی کند و با تاخیر زمانی ۱۵ ساعت و اخـتلاف ۱۰۰ کیلـومتر از IMD بـه سـواحل جنـوب شرقی ایران برخورد می کند. پیش بینی مسیر برای محدوده ی سوم (شبیه سازی سوم) از کیفیت مناسب تری برخوردار است به طوریکه پیش بینی مدل از مسیر در زمان برخورد به سواحل شرقی عمان با تاخیر زمانی ۱۸ ساعت، دارای اختلاف ۹ کیلومتر از IMD می باشد و در ادامه، طوفان با تاخیر زمانی ۱۵ ساعت و اختلاف ۴۰ کیلومتر از IMD خود را به سواحل جنوب شرقى ايران رسانده است. همانطور كه از شکل ۳ مشخص است ییش بینے شدت طوفان برای محدوده ی اول و سوم در زمان برخورد به عمان به ترتیب مقدار ۹۷۲ و ۹۷۳ هکتو پاسکال برای فشار مرکزی، ۶۰ و ۶۵ نات برای بیشینه سرعت باد ۱۰ متری می باشد که اختلاف آن با IMD مقدار ۲ و ۳ هکتو پاسکال بیشتر برای فشار مرکزی، ۱۷ و ۱۲ نات کمتر برای بیشینه سرعت باد ۱۰ متری می باشد.

پیش بینی شدت طوفان برای محدوده ی دوم و سوم در زمان برخورد به ایران به ترتیب مقدار ۹۷۵ و ۹۸۸ هکتو پاسکال برای فشار مرکزی، ۴۵ و ۴۹ نـات بـرای بیشینه سرعت باد ۱۰ متری می باشد کـه نسبت بـه IMD مقدار ۱۳ و صفر هکتو پاسکال بیشتر بـرای فشار مرکزی، صفر و ۴ نات بیشتر برای بیشینه سرعت بـاد ۱۰ متـری می باشـد. اوج شـدت طوفـان بـرای محدوده ی اول، دوم و سوم به ترتیب با تـاخیر زمانی ۱۰ ۶ و ۱۵ ساعت، مقـدار ۵۵۵، ۵۹ و ۹۷ نـات بـرای پاسکال برای فشار مرکـزی، ۵۵، ۵۷ و ۹۷ نـات بـرای بیشینه سرعت باد ۱۰ متری می باشد کـه نسبت بـه پاسکال برای فشار مرکـزی، ۵۵ هکتو پاسکال بیشتر بـرای فشار مرکزی، ۲۲ و ۲۵ هکتو پاسکال بیشتر بـرای فشار مرکزی، ۲۰ ۶۲ و ۳۰ نات کمتر بـرای بیشـینه

محدوده ی سوم در پیش بینی مسیر دارای بهترین عملکرد و در پیش بینی شدت طوفان در زمان های رسیدن به سواحل عمان و ایران دارای عملکرد قابل قبول می باشد. اگر چه این محدوده در پیش بینی اوج شدت طوفان دارای عملکرد بهتری از سایر محدوده های انتخابی است، اما قابل ارتقا نسبت به مشاهدات (IMD) می باشد. در ادامه به منظور بهبود این نتایج و مطالعه حساسیت شبیه سازی به قدرت تفکیک و با در نظر گرفتن تحقیقات دیویس و مکاران (۲۰۱۰)، آشیانه های ثابت و قابل حرکت به طور جدا گانه داخل این محدوده (محدوده ی سوم) در نظر گرفته شده است.

شکل۲. مسیرهای پیش بینی شده برای سه محدوده ی انتخابی اول

شکل۳. شدت پیش بینی شده در عبارت های بیشینه سرعت باد ۱۰متری (الف) و فشار مرکزی طوفان (ب) برای سه محدوده ی انتخابی اول

۱۰ هکتو پاسکال بیشتر برای فشار مرکزی، ۹ و ۱۲ نات کمتر برای بیشینه سرعت باد ۱۰ متری می باشد. علی رغم این که مقدار شدت طوفان را در زمان اوج با کمترین اختلاف نسبت به IMD پیش بینی شده، ولی از کیفیت پیش بینی مسیر به خصوص در زمان برخورد به عمان، در مقایسه با شبیه سازیی که برای محدوده ی سوم (شبیه سازی سوم) داشتیم کاسته شده است. همچنین از شکل ۴ پیداست که حالت آشیانه ثابت نسبت به آشیانه قابل حرکت در پیش بینی مسیر از عملکرد بهتری برخوردار است. ۳–۲ نتایج حساسیت به تفکیک افقی و آشیانه سازی با قرار دادن آشیانه های ثابت و متحرک داخل محدوده ی سوم قدرت تفکیک را با سه برابر افزایش و به ۹ کیلومتر رساندیم (شکل۱) که شبیه سازی های چهارم و پنجم بر روی این آشیانه ها صورت گرفته چهارم و پنجم بر روی این آشیانه ها صورت گرفته نابت و متحرک(شکل۵) به ترتیب با تاخیر زمانی ۱۵ ثابت و متحرک(شکل۵) به ترتیب با تاخیر زمانی ۱۵ فشار مرکزی، ۱۱۸و ۱۹۵ و ۹۳۰ هکتو پاسکال برای فشار مرکزی، ۱۸ و ۱۹۵ نات برای بیشینه سرعت باد فشار متری می باشد که اختلاف آن با IMD مقدار ۵ و

شکل۴. مسیر های پیش بینی شده برای حالت بدون آشیانه، آشیانه سازی ثابت و آشیانه سازی متحرک داخل محدوده ی سوم

شکل۵. شبیه شکل ۳ برای حالت بدون آشیانه، آشیانه سازی ثابت و آشیانه سازی متحرک

دوم، روز سوم و روز چهارم ژوئن نشان می دهد. همانطور که از شکل ۷ پیداست هر چقدر شروع زمان شبیه سازی شبیه سازی به نقطه اوج شدت طوفان نزدیک باشد مدل در پیش بینی شدت طوفان در نقطه اوج بسیار ضعیف عمل می کند و همچنین در پیش بینی مسیر، طوفان از سواحل عمان عبور نمی کند و در مسیر عبوری خود با اختلاف زیادی به سواحل جنوب شرقی ایران می رسد(شکل۶). ۳-۳ نتایج حساسیت به زمان شروع شبیه سازی شروع زمانی ساعت ۰۰ روز سوم ژوئن به مدت پنج روز (شبیه سازی ششم) و ساعت ۰۰ روز چهارم ژوئن به مدت چهار روز (شبیه سازی هفتم) انتخاب و نتایج آن با شبیه سازی سوم که بر روی محدوده ی سوم و شروع زمانی ساعت ۰۰ روز دوم ژوئن به مدت شش روز انجام شده بود مقایسه شد. IMD مقدار ۹۹۸، و ۹۹۰ و ۸۰۰ هکتو پاسکال را برای فشار مرکزی طوفان به ترتیب برای شروع زمانی ساعت ۰۰ روز

شکل۷. شبیه شکل(۵) برای شروع زمان های متفاوت

۴- نتایج آزمایش پیکربندی بر روی طوفان فت (۲۰۱۰)

پیکربندی شبیه سازی سوم (شکل۱، جدول۱) برای شبیه سازی طوفان فت (۲۰۱۰، دریای عرب) مورد آزمایش قرار گرفت. زمان شروع شبیه سازی از تاریخ فشار) در نظر گرفته شده است و شبیه سازی برای فشار) در نظر گرفته شده است و شبیه سازی برای مدت ۱۵۰ ساعت انجام گردید. همانطور که از شکل ۸ پیداست، مسیر پیش بینی شده طوفان فت از عمان عبور نمی کند و نزدیک ترین فاصله ای که از سواحل شرقی عمان عبور می

ترین فاصله ای که از سواحل سرفی عمان عبور می کند ۹۵ کیلومتر می باشد. طوفان در ادامه مسیر خود با پیش زمانی ۹ ساعته و اختلاف حدود ۸۰ کیلومتر

به سواحل پاکستان می رسد. مسیر IMD وشبیه سازی شده نشان می دهد که طوفان فت از شروع زمانی شبیه سازی تا زمان برخورد به سواحل پاکستان دارای تغییر جهت حدود ۱۳۰ درجه می باشد. پیش بینی مدل از شدت طوفان در نقطه اوج با تاخیر ۶ ساعته مقدار ۲۰ نات برای بیشینه سرعت باد ۱۰ متری و ۹۶۸ هکتو پاسکال برای فشار مرکزی طوفان می باشد و این در حالی است که IMD مقدار ۸۵ نات می برای ماکزیمم سرعت باد ۱۰ متری و ۹۶۴ هکتو پاسکال برای فشار مرکزی طوفان را نشان می دهد(شکل ۹). در کل این نتایج برای پیش بینی یک طوفان حاره ای رضایت بخش به نظر می رسد.

شکل۸. مسیر پیش بینی شده طوفان فت برای محدوده ی سوم(D3)

شکل۹. شبیه شکل (۳) برای طوفان فت و برای محدوده ی سوم(D3)

سواحل عمان و ایران دارای عملکرد قابل قبول می باشد. ارتقای شبیه سازی و حساسیت به زمان شروع شبیه سازی قبل از عمیق شدن کم فشار با نتایج کانسه (۲۰۱۱) دارای انطباق کامل می باشد. اگر چه این محدوده (محدوده ی سوم) در پیش بینی مدل از شدت طوفان در نقطه اوج دارای عملکرد هر چند بهتر از سایر محدوده های انتخابی است، اما در مقایسه با IMI همچنان قابل ارتقا می باشد و قرار دادن آشیانه های ثابت و متحرک به طور جداگانه در دادن آشیانه های ثابت و متحرک به طور جداگانه در داخل محدوده ی بزرگتر و بالا بردن تفکیک افقی تا داخل محدوده ای زکیفیت ویش بینی مسیر می

۴. بحث و نتیجه گیری

بعد از آزمایشات صورت گرفته، به وضوح حساسیت شبیه سازی ها به موقعیت محدوده ی انتخابی، تفکیک افقی و همچنین شروع زمان شبیه سازی در پیش بینی مسیر و شدت طوفان های حاره ای مشاهده گردید .شبیه سازی ها با انتخاب محدوده ای که در جهت شرق گسترش داشته و شروع شبیه سازی در زمان قبل از عمیق شدن کم فشار یا به عبارتی دیگر، زمانی که فشار مرکزی سیستم کم فشار تقریباً مقدار ۱۰۰۰ هکتو پاسکال را نشان می دهد، در پیش بینی مسیر طوفان دارای نتایج رضایت بخش و در پیش بینی شدت طوفان دارای نتایج رضایت ب

کاهد. همچنین نشان داده شد که آشیانه ثابت نسبت به آشیانه قابل حرکت از عملکرد با کیفیت تری برخوردار می باشد ولی در عمل، آشیانه سازی متحرک با توجه به حجم پردازش کمتر و قرار گرفتن مرکز طوفان در مرکز آشیانه در خلال شبیه سازی مزیت هایی دارد. بطور کاربردی می توان از نتایج شبیه سازی های محدوده های اولیه برای پیش بینی مسیر و از نتایج شبیه سازی محدوده های داخلی برای پیش بینی شدت استفاده نمود. حساسیت شبیه سازی به محدوده ی انتخابی می تواند به علت سازی به محدوده ی انتخابی می تواند به علت ماند تراز ۵۰۰ هکتوپاسکال) در محدوده های مختلف باشد (کومار،۲۰۱۱). همچنین تفاوت در فرارفت های افقی رطوبت و دمایی در محدوده های

سازی طوفان به محدوده ی انتخابی باشد. فشار مرکزی ۱۰۰۰ هکتو پاسکال برای زمان شروع شبیه سازی زمانی می باشد که کم فشار شکل گرفته با توجه به شرایط همدیدی موجود با شدت بیشتری می تواند عمیق شود، به عبارتی وقتی شبیه سازی بعد از این زمان یعنی بعد از شدت گرفتن طوفان آغاز شود، مدل توانایی شبیه سازی فرآیندهای دینامیکی و مدل توانایی شبیه سازی فرآیندهای دینامیکی و در این تحقیق به وضوح مشاهده گردید. بمنظور ارائه در این تحقیق به وضوح مشاهده گردید. بمنظور ارائه در پیش بینی مسیر، فشار مرکزی و بیشینه سرعت باد ۱۰ متری طوفان در نزدیکی ساحل ایران، عمان و نقطه اوج شدت طوفان و همچنین خطای زمانی دهد.

جدول۴. برای ۷ حالت آزمایش شده در این تحقیق، خطای پیش بینی مسیر طوفان در لحظه ی برخورد به عمان و ایران (^۱LFPE) بر حسب کیلومتر، خطای زمانی پیش بینی برخورد طوفان به این مناطق (^۲LFTE) بر حسب ساعت، خطای پیش بینی بیشینه سرعت باد ۱۰ متری و کمینه فشار مرکزی طوفان در این مناطق (^۲LFCPE^۴، LFMWE) به ترتیب بر حسب نات و هکتو پاسکال، خطای پیش بینی بینی بیشینه سرعت باد ۱۰ متری و کمینه فشار مرکزی طوفان در نقطه ی اوج شدت طوفان (^۵PIMWE^۴ , PICPE^۴) به ترتیب بر حسب نات و هکتو پاسکال، خطای پیش بینی بینی بیشینه سرعت باد ۱۰ متری و کمینه فشار مرکزی طوفان در نقطه ی اوج شدت طوفان (^۵PIMWE^۴ , PICPE^۴) به ترتیب بر حسب حسب نات و هکتو پاسکال و خطای زمانی پیش بینی این نقطه (^۳PITE) بر حسب ساعت در این جدول نشان داده شده اند. – و + برای خطای زمانی به ترتیب عقب و جلو بودن زمان پیش بینی شده و برای خطا در فشار و سرعت باد به ترتیب مقدار کمتر و بیشتر پیش بینی

	ايران			عمان			نقطه اوج شدت طوفان				
آزمايشات	LFP	LFT	LFC	LFM	LFPE	LFT	LFC	LFM	PIT	PIC	PIM
D1	E NO L.F	E -	PE -	wE -	•	е -۲۴	ΡΕ -Δ	WE -19	-1Δ	PE +۳۵	WE -47
D2	١٠٠	-۱۵	-13	•	NO L.F	-	-	-	-9	+۴۵	-۵۲
D3	۴.	-10	•	+۴	٩	-١٨	+٣	-17	-10	+۲۵	-۳۰
Moving nest in D3	۳۰	-۲۱	- ۲۱	+1٣	17.	-۱۸	-۲۰	+۲۳	-٩	+١٠	-17
Fixed nest in D3	•	-۱۵	-71	+77	٩٠	- ۶	۵۲–	+۲۳	-۱۵	+Δ	_٩
0000utc/03/june/07 for D3	٧٠	-18	•	+۴	NO L.F	-	-	-	-	-	-
0000utc/04/june/07 for D3	٩۵	۸۱ –	•	+۴	NO L.F	-	-	_	-	-	-

1- Land fall position error(km)

۲- Land fall time error(hour)

^r- Land fall max wind 10m error(knot)

⁺- Land fall center pressure error(hp)

Δ- Peak of intensification time error(hour)

⁷- Peak of intensification max wind 10m error(knot)

Y- Peak of intensification center pressure error(hp)

2008, Cyclone e-Atlas published by IMD., New Delhi.

Indian Meteorological Department (IMD) report, 2008. Report on cyclonic disturbances over north Indian Ocean during 2007, New Delhi.

Kanase, R. D., and Salvekar, P. S., 2011. Numerical simulation of severe cyclonic storm LAILA (2010): Sensitivity to initial condition & cumulus parameterization scheme. Disaster Risk Vulnerablity Conference. Germany, March 12–14.

Krishna, K.O., Mohanty, U.C., Routray, A., Makarand, A.K., Mohapatra, M., 2012. Customizaton of WRF-ARW model with physical parameterization schemes for the simulation of tropical cyclones over North Indian Ocean. Nat. Haz. 63: 1337-1359.

Kumar, A., Done, J., Dudhia, J., 2011. Simulations of Cyclone Sidr in the Bay of Bengal with a high-resolution model: sensitivity to large-scale boundary forcing. Meteorol. Atmos. Phys. DOI 10.1007/s00703-011-0161-9.

Mlawer, E.J., Taubman, S.J., Brown, P.D., Lacono, M.J., Clough, S.A., 1997. Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the long-wave. J. Geophys. Res. 102: 16663– 16682.

Noh, Y., Cheon, W.G., Hong, S.Y., Raasch, S., 2003. Improvement of the k-profile model for the planetary boundary layer based on large eddy simulation data. Bound. Layer Meteo. 107: 401–427.

Pattanayak, S., Mohanty, U.C., 2008. A comparative study on performance of MM5 and WRF models in simulation of tropical cyclones over Indian seas. Curr. Sci. 95: 923-936.

World Meteorological Organization technical document, 2008. Tropical cyclone operational plan for the Bay of Bengal and the Arabian Sea. Document No. WMO/TDNo. 84, 1. منابع لشکری، ح.، کیخسروی، ق.، ۱۳۸۹. تحلیل

سینوپتیکی توفان گنو و اثرات آن بر جنوب شرق ایران، مجله جغرافیا و برنامه ریزی محیطی، شماره ۳، صفحه ۲۰-۱.

Bhaskar Rao, D.V., Srinivas, D., 2010. Realtime prediction of SIDR Cyclone over Bay of Bengal using high-resolution mesoscale models. Indian Ocean Trop Cyclones Clim Chang. 3:159–167. doi:10.1007/978-90-481-3109-9_20.

Davis, C., Wang, W., Chen, S.S., Chen, Y., Corbosiero, K., DeMaria, M., Dudhia, J., Holland, G., Klemp, J., Michalakes, J., Reeves, H., Rotunno, R., Snyder, C., Xiao, Q., 2008. Prediction of land falling hurricanes with the Advanced Hurricane WRF model. Mon. Weather Rev. 136:1990–2005.

Davis, C., Wang, W., Dudhia, J., 2010. Does Increased Horizontal Resolution Improve Hurricane Wind Forecasts?. Wea. Forecas. 25: 1826–1841.

Donelan, M.A., Haus, B.K., Reul, N., Plant, W.J., Stiassnie, M., Graber, H.C., Brown, O.B., Saltzman, E.S., 2004. On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Letts. 31: 1-5.

Dudhia, J., 1989. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci. 46: 3077-3107.

Hong, S.Y., Dudhia, J., Chen, S.H., 2004. A revised approach to ice microphysical processes for the bulk parameterization of cloud sand precipitation. Mon. Weather Rev. 132:103–120

Indian Meteorological Department (IMD) technical document, 2008. Track of storm and depressions over the Indian Seas during 1891–

منابع

Simulation of Cyclone Gonu using the Advanced Hurricane WRF: Sensitivity to Domain Coverage, Nesting, Resolution and Starting Time

Abstract

Domain design, different starting times and applying internal fixed and moving domains within the coarser simulation domain similar to different physical options can play important roles in the results of numerical models in order prediction of tropical cyclones. In this study, Gonu Tropical Cyclone (2007) that it was formed in the northern Indian Ocean (Arabian Sea) and Advanced Hurricane WRF Model (AHW) have been selected to demonstrate this sensitivity. Initial and boundary conditions, and the best track data in order to comparison was received from NCEP Final Analyses (FNL) data and the IMD (Indian Meteorological Department), respectively. The simulation results in domain design sensitivity showed, the domain that was extended more to the east and was included a lower coverage of the Persian Gulf had more accuracy in predicting of track and the best performance and also had an acceptable performance in predicting of hurricane intensity at the time to reach the coast of Oman and Iran. Although this domain in predicting the intensity peak of cyclone is better than other domain designs, but has weaker track than the available reality (IMD). Then, internal fixed and moving domains to separate within this domain is considered and the results showed that despite some improvement in simulated intensity error, there was a reduction of simulated cyclone track. Generally, the results showed that internal fixed domain rather than internal moving domain has the better performance in selected cases. Thereafter, different starting times were tested and the results showed that the simulation starting time, 48 to 60 hours before maximum intensity of storm or in other words, when the central pressure of system shows about 1000 hPa has the better performance in simulation of cyclone track and intensity. Finally, the best configuration is tested for Phet tropical cyclone (2010) that was formed in the same area. The results of this testing were satisfactory.

Keywords: AHW, Gonu, Cyclone, Intensity, Track