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Abstract: A demand-driven alternative to the conventional Solow-Swan growth 

model is analyzed. Its medium run is built around Marx-Goodwin cycles of demand and 

distribution. Long-run income and wealth distributions follow rules of accumulation 

stated by Pasinetti in combination with a technical progress function for labor 

productivity growth incorporating a Kaldor effect and induced innovation. An explicit 

steady state solution is presented along with analysis of dynamics. When wage income 

of capitalist households is introduced, the Samuelson-Modigliani steady state “dual” to 

Pasinetti’s cannot be stable.  Numerical simulation loosely based on US data suggests 

that the long-run growth rate is around two percent per year and that the capitalist share 

of wealth may rise from about forty to seventy percent due to positive medium-term 

feedback of higher wealth inequality into its own growth. 
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Introduction 

 What sets the long run growth path  of the economy? Following Robert Solow 

(1956) and Trevor Swan (1956) the conventional view is that growth is determined by 

factors contributing to aggregate supply -- capital deepening, population increase, and 

long-run growth of labor productivity. “Potential output” increases accordingly.1  

The obvious alternative is to analyze growth from the side of demand. How do 

effective demand, endogenous productivity growth, and shifting income and wealth 

distributions influence and constrain the economy in the present and over time? 

 In addressing this question, the model presented here has seven salient 

characteristics. 

 First, as in almost all growth theory, profit income is assumed to flow directly to 

households (ignoring interest, dividends, capital gains, and all the other channels via 

which households receive payments from business). Unlike mainstream models, our 

specification initially maintains a class distinction between “capitalists” who receive 

profits and “workers” who get both labor and capital income. Capitalists save at a higher 

rate than workers. Wages received by capitalists are briefly discussed toward the end of 

the paper. 

 Second, growth models distinguish between “fast” and “slow” (or “state”) 

variables. The former vary in a “short” to “medium” run. They include capital utilization 

(𝑢 in what follows), the profit rate (𝑟), the investment/capital ratio (𝑔), the employment 

rate relative to population (𝜆) etc. Time-derivatives of state variables such as the 

capital/population ratio (𝜅), endogenous labor productivity (𝜉), and the share of wealth 

                                                            
1  Similar comments apply to Ramsey-type models which basically add a fancier saving 
function to Solow-Swan. 
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held by capitalists (𝑍) are also determined in the short run. The state variables then 

cumulate over time. Contemporary mainstream models typically do not address 

dynamics of 𝜉 and 𝑍. 

 Third, in all time frames, mainstream models presuppose full employment of 

labor and capital and the existence of an aggregate production function with associated 

marginal productivity conditions which determine income distribution. In contrast, we 

assume that  𝑢, 𝑟,  and other fast variables are determined by interaction between  

functions 𝑢(𝑟 … ) for effective demand and 𝑟(𝑢 … ) for distribution. Both relationships 

have parameters included and also depend on 𝜅, 𝜉, and 𝑍. 

 Fourth, as opposed to the Solow-Swan assumptions the specifications of 𝑢(𝑟 … )  

and  𝑟(𝑢 … )  are based on observed business cycle behavior in rich economies. To 

reduce dimensionality, however, we suppress cyclicality in growth analysis and assume 

that levels of 𝑟 and 𝑢 are set by the joint solution of 𝑢(𝑟 … ) and 𝑟(𝑢 … ). 

Fifth, dynamics of aggregate capital 𝐾 (measured at cost) are driven by real net 

investment. At prevailing output levels, capital is not a scarce factor of production 

subject to decreasing returns. Rather, its level sets the scale of the macro system. Its 

growth stimulates technical change. 

 Sixth, even though we do not assume full employment or decreasing returns to 

capital, dynamics of 𝜅  drive the state variables toward a steady state at which their  

growth rates would be equal at a level largely determined by population and productivity 

growth. We maintain the standard assumption that the growth rate of population (𝑛) is 

exogenous. 
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Seventh, away from the steady state, levels of fast variables are determined by 

the demand and distribution functions with their associated parameters. If the system 

were at a steady state (which will not be attained in finite time), equalized growth rates 

would override the effects of some demand-side parameters on levels of  𝜅, 𝜉, and 𝑍. 

But demand does lead growth “all the way” toward the steady state. 

Finally, we are dealing here with a fairly complicated system. Its behavior will to a 

large extent be described in terms of diagrams and signs of partial derivatives. More 

detailed analysis in terms of equation specifications and parameters will be provided in 

footnotes as we proceed. 

Our specification draws freely on the works of several Keynesian economists, 

notably from the University of Cambridge. In the short run aggregate demand and 

distribution interact according to Richard Goodwin’s (and ultimately Karl Marx’s) model 

of cyclical growth in which a tighter labor market leads to a higher wage share and lower 

profit rate. Distribution influences demand via differential saving rates across classes 

and profitability figures in the determination of planned investment. 

Over time, Nicholas Kaldor’s technological progress function along with induced 

innovation describe how productivity growth responds to the installation of new capital 

and shifts in the income distribution. Luigi Pasinetti pioneered the theory of wealth 

inequality. We adopt his approach by working with two distinct classes and tracing their 

wealth holdings over time.  

There can be sustained growth satisfying Kaldor’s stylized facts (in many ways 

still the gold standard of growth theory) with the capitalists’ share of wealth settling 
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between zero and one. We present illustrative numerical simulations of how economic 

activity and wealth concentration may change over time en route toward a steady state. 

 

Kaldor’s and other stylized facts 

Sixty years ago, Nicholas Kaldor (1957) described six characteristics of economic 

growth. These “stylized facts” are still deemed the minimum requirement for any growth 

model.  Kaldor pointed out that “over long periods”: 

i. labor productivity, 𝜉, grows at a steady exponential rate 𝜉 = (𝑑𝜉 𝑑𝑡⁄ ) 𝜉⁄  (with 𝜉 =

𝑋 𝐿⁄   where 𝑋 is output and 𝐿 employment); 

ii. the ratio of capital to the population, 𝜅, grows at a steady rate 𝜅̂ (with 𝜅 = 𝐾 𝑁⁄ ); 

iii. the profit share 𝜋 is stable; 

iv. the profit rate 𝑟 is stable (with 𝑟 = 𝜋𝑋 𝐾 = 𝜋𝑢⁄ );  

v. the ratio of output to capital, 𝑢 = 𝑋 𝐾⁄ , is stable;  

vi. the real wage, 𝜔, grows at the same rate as labor productivity. 

We can add 

vii. the employment ratio, 𝜆 = 𝐿 𝑁⁄ , is stable in the long run;  

viii.     in national accounts  data, undistributed business profits and corporate taxes are 

major sources of saving (both at a rate of 100%); distributed profits as well as 

capital gains on equity flow predominantly to high income households who have 

substantially higher saving rates than those further down in the size distribution 

whose incomes mostly come from wages (and fiscal transfers); 
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ix.   In the (𝑢, 𝜋) plane for rich economies there is an observed clockwise business 

cycle around a stationary point with 𝜋 leading 𝑢 as the economy emerges from a 

trough or swings down from a peak. 

 

Model design 

 Stylized fact (ix) is the basis for a model of the medium run. The wage share 𝜓 =

1 − 𝜋 = 𝜔 𝜉⁄  falls as the economy emerges from a slump -- the real wage stagnates 

while productivity grows. If investment demand responds to higher profits, capital 

utilization 𝑢 and employment 𝐿 = 𝑋 𝜉⁄  rise. With 𝜋 and 𝑢 both increasing, 𝑟 goes up as 

well. A tighter labor market ultimately bids 𝜔 and 𝜓 up. Profits are squeezed and firms 

implement labor-saving technical change. A downswing or “crisis” ensues.2 

This cycle narrative appears in Marx’s Capital and Theories of Surplus Value, 

and was formalized by Goodwin (1967). For present purposes we suppress cyclicality 

and extend Goodwin’s relationships between income distribution and effective demand. 

Specifically, 𝑟 responds negatively to 𝜆 (high-employment profit-squeeze) and 𝑢 

responds positively to 𝑟 (profit-led demand). 

                                                            
2 The idea that the wage/profit distribution can influence effective demand traces back 
to the General Theory (John Maynard Keynes, 1936) and Josef Steindl (1952). 
Beginning with papers by Robert Rowthorn (1982) and Amitava Dutt (1984) the 
distribution vs demand linkage has been under active discussion. Amit Bhaduri and 
Stephen Marglin (1990) is an influential summary. Following Keynes’s (1939) 
repudiation of a counter-cyclical real wage, the mainstream version of dependence of 
distribution on the level of activity eventually emerged as a real wage Phillips curve. 
Econometric evidence about Marx-Goodwin cycles appears in Nelson Barbosa-Filho 
and Lance Taylor (2006), Peter Flaschel (2009), and David Kiefer and Codrina Rada 
(2015). 
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 Observations (i), (ii), (v), and (vii) all apply to real variables at a steady state. 

Three level  variables  evolve over time – the total capital stock 𝐾 (or alternatively the 

capital/population ratio 𝜅), the quantity of capital controlled by capitalists 𝐾𝑐, and labor 

productivity 𝜉. A steady state can be characterized by constant values of two ratio 

variables. One is 𝑍 = 𝐾𝑐 𝐾⁄  or the capitalists’ share of wealth. The other is  𝜁 = 𝜅 𝜉⁄ =

𝜆 𝑢⁄   or the ratio of capital “depth” to productivity which also equals the ratio of the 

employment rate to capital utilization. Constant 𝑍 and 𝜁 respectively imply that the pairs 

𝐾𝑐 and 𝐾, and 𝜅 and 𝜉 change at the same exponential rate. 

Growth of capital depth 𝜅̂ is driven by the investment/capital ratio 𝑔 = 𝐼 𝐾⁄  with 𝑔 

responding positively to 𝑟 and 𝑢. (In standard notation for any variable 𝑥, 𝑥̇ = 𝑑𝑥 𝑑𝑡⁄  and 

𝑥̂ = 𝑥̇ 𝑥⁄ .) 

Productivity growth 𝜉  can be modeled following Kaldor’s demand-side 

explanations. Over the years he introduced two versions of a “technical progress 

function.” In the first (Kaldor, 1957) 𝜉 is driven by 𝜅̂, with investment serving as a vehicle 

for more productive technology. The second (Kaldor, 1966) ties productivity growth to 

the output growth rate 𝑋̂ via economies of scale. To avoid too many logarithmic 

derivatives we follow the earlier variant. We also assume on Marxian lines that 

increasing tightness in the labor market will bid down the profit rate and induce 

innovation to speed productivity growth. 

On these assumptions, we show below that the ratio 𝜁 converges to a steady 

state with 𝜁̇ = 0. The long run investment rate 𝑔 is affected by income distribution à la 

Pasinetti and is not equal to an exogenously determined “natural” level as in supply-
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driven models. The employment rate and income distribution adjust to support the 

steady state so that observations (iii), (iv), (vi), and (vii) apply.  

 The stylized facts mentioned in (viii) are typically modeled in one of two 

ways. Following the traditional “Cambridge equation,” one approach is simply to assume 

that the saving rate from profit income exceeds the rate from wages. This version is 

relevant to determination of macro equilibrium and growth, but says nothing about 

accumulation of wealth.   

Pasinetti’s (1962, 1974) distinction between two classes of households shifts the 

focus to wealth.  In an initial specification, capitalists receive only profit income 𝑟𝐾𝑐 on 

their capital 𝐾𝑐; workers get the rest of income (𝑋 − 𝑟𝐾𝑐). The classes’ saving rates from 

income are 𝑠𝑐 and 𝑠𝑤 respectively, with 𝑠𝑐 > 𝑠𝑤. In an extension below, we allow 

capitalists to receive some wage income. 

These assumptions underlie dynamics of capital concentration 𝑍, with saving and 

investment setting the growth rates of 𝐾𝑐 and 𝐾.  Under appropriate assumptions 

discussed below 𝑍̇ will converge to zero with 𝑍 > 0, setting up a joint steady state with 

𝜁. There is also a possibility that it will diverge toward a maximum possible level 

discussed below, in an “anti-dual” solution noted by William Darity (1981). 

 In the next section we specify the short- to medium-run equilibrium of the 

economy in terms of the level of aggregate demand and the functional distribution of 

income. These expressions and their dependence on 𝑍 and 𝜁 then allow us to spell out 

the details of the two-dimensional (𝑍, 𝜁) long-run dynamical system.3  

                                                            
3 Amitava Dutt (1990) and Thomas Palley (2012) pointed out that variation in 𝑍 must 
play a role in long-run macroeconomic adjustment. This fact is not widely recognized, 
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Short and medium  term 

 The distributive side of temporary equilibrium can be set up in terms of either the 

profit share (𝜋) or profit rate (𝑟 = 𝜋𝑢). The latter gives more tractable short-run and 

steady state specifications so we opt for that. 

 A convenient formulation for gross investment is 

(1) 𝑔 = 𝐼 𝐾⁄ = 𝑔0 + 𝛼𝑟 + 𝛽𝑢 . 
 
Household saving per unit of capital is 
 

(2) 𝜎 = 𝑠𝑐𝑟𝑍 +  𝑠𝑤[(1 − 𝜋)𝑢 + 𝑟(1 − 𝑍)] = (𝑠𝑐 − 𝑠𝑤)𝑟𝑍 + 𝑠𝑤𝑢  . 
 
 Setting up macroeconomic balance just in terms of private investment and saving 

is traditional, but does not fit the data. Besides investment, exports and government 

purchases of goods and services are demand injections; imports and taxes are 

significant leakages.4 Let 𝜄 be a coefficient relating these injections to capital, with 𝜈 

scaling leakages to output. The macro balance condition becomes 

 (𝑔 + 𝜄) − (𝜎 + 𝜈𝑢) = 0     . 
 

To simplify algebra until we get to simulations below,, we hold  𝜄 = 𝜈 = 0. On this 

assumption, an expression for 𝑢 becomes 

(3) 𝑢 = [1 (𝑠𝑤 − 𝛽)]{𝑔0 + [𝛼 −⁄ (𝑠𝑐 − 𝑠𝑤)𝑍]r}  . 

An increase in 𝑟 raises 𝑔 by a factor 𝛼 and 𝜎 by a factor (𝑠𝑐 − 𝑠𝑤)𝑍 so that demand will 

be profit-led if 𝛼 > (𝑠𝑐 − 𝑠𝑤)𝑍 and the “Keynesian” stability condition for 𝑢,  𝑠𝑤 > 𝛽, 

applies.5 

                                                                                                                                                                                 

but is highly relevant to contemporary debate. As far as we know, the significance of 𝜁 

and its dependence on dynamics of 𝜅 and 𝜉 have not been noted. 
4 For details, see Taylor (2017). 
5  If 𝑠 is the overall saving rate, the standard Keynesian stability condition is 𝑠 > 𝛽. Data 

suggest that 𝑠𝑤 > 𝛽 also applies. 
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 On the distributive side, we formulate the Marx-Goodwin profit-squeeze 

distributive rule as a relationship between the profit rate and the employment ratio 

(4) 𝑟 = 𝜇0 −  𝜇1𝜆 = 𝜇0 − 𝜇1𝜁𝑢 

with 𝜆 = 𝜁𝑢, or employment is proportional to output, as the expression after the second 

equals sign shows.  If 𝜇0, 𝜇1 > 0 a higher level of 𝑢 or 𝜁 increases 𝜆, causing the rate of 

profit to fall: 𝑑𝑟 𝑑𝑢⁄ < 0 and 𝑑𝑟 𝑑𝜁⁄ < 0. 

 Equations (3) and (4) specify equilibrium relationships between demand and 

distribution. In a Marx-Goodwin cycle model, they would be “nullclines” (loci along which 

𝑢 ̇ = 0 and 𝑟̇ = 0) of a dynamical system in the (𝑢, 𝑟) plane.  The system would generate 

clockwise cycles around a stationary point. As discussed above, we suppress this 

cyclicality to concentrate on growth in the three-dimensional (𝜅, 𝜉, 𝑍) system with the 

joint solutions to (3) and (4) setting levels of 𝑢 and 𝑟.6 

Figure 1 is a graphical representation showing how  𝑢 and 𝑟 respond in the short 

to medium run to shifts in 𝑍 and 𝜁. Econometric results suggest that in high-income 

economies demand is weakly profit-led so the 𝑢(𝑟) schedule is relatively steep in the 

(𝑢, 𝑟) plane. The 𝑟(𝑢) curve shows more responsiveness. The intercepts on the 

horizontal and vertical axes follow from (3) and (4) with 𝑟 = 0 and 𝑢 = 0 respectively. 

Figure 1 

The point of intersection of the schedules, A, is the short to medium term 

equilibrium of the economy. Reduced form equations for 𝑢 and 𝑟 at point A are 

 

                                                                                                                                                                                 

 
6 Formal stability analysis of Marx-Goodwin cycles is readily available in the literature, 
e.g. Taylor (2004) and Flaschel (2009). 
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(5-u) 𝑢 =
𝑔0+(𝛼−𝑠̃𝑐𝑍)𝜇0

(𝑠𝑤−𝛽)+(𝛼−𝑠̃𝑐𝑍)𝜁𝜇1
     

and 

(5-r) 𝑟 =
(𝑠𝑤−𝛽)𝜇0−𝑔0𝜁𝜇1

(𝑠𝑤−𝛽)+(𝛼−𝑠̃𝑐𝑍)𝜁𝜇1
       

with 𝑠̃𝑐 = 𝑠𝑐 − 𝑠𝑤. 

 These expressions can be used to assess responses to shifts in 𝑍 and 𝜁. The 

formal algebra is messy but the intuition is clear from Figure 1. From (2) a higher value 

of 𝑍 shifts profit income from low-saving worker to high-saving capitalist households, 

lowering  demand 𝑢 for any given level of  𝑟: the 𝑢(𝑟) schedule becomes steeper. The 

new equilibrium point is B.  Using subscripts for partial derivatives, the outcome is 𝑢𝑍 <

0. Because of a weaker profit squeeze, the profit rate responds positively to 𝑍, 𝑟𝑍 > 0.  

With 𝜋 = 𝑟 𝑢⁄  we have 𝜋𝑍 > 0. The magnitude of 𝜋𝑍 is important in the analysis below of 

long-run stability of 𝑍. 

An increase in 𝜁 strengthens the profit squeeze for any given level of u, causing 

the 𝑟(𝑢) schedule to have a steeper negative slope so that  r  falls. Due to the profit-led 

demand regime, u also falls: 𝑢𝜁 < 0 and 𝑟𝜁 < 0. With a stable value of 𝑢, we get 𝜋𝜁 < 0. 

The new equilibrium point is C.7 

 

                                                            
7  An alternative medium-run model can be based on wage-led demand and a high 
employment wage-squeeze (decreasing returns to labor in a neoclassical specification 
or “forced saving” by workers in antique terminology). In a diagram like Figure 1, the 
slopes of  𝑢(𝑟, 𝑍) and 𝑟(𝑢, 𝜁) would be negative and positive respectively. An increase in 

𝑍 would reduce both 𝑢 and 𝑟, making 𝜋𝑍 > 0 if the slope of 𝑟(𝑢, 𝜁) is relatively shallow 
(the elasticity of substitution is high in a neoclassical version). Wage-led/wage-squeeze 

appears to fit the data less well than profit-led/profit-squeeze. If 𝜋𝑍 < 0, long-run 

dynamics of 𝑍 will be stabilized (see discussion of equation (20) below). 
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Dynamics of productivity and capital stock 

 Immediate interest lies with the growth rate of the capital stock. From (1)  𝑍 

affects  𝜅̂ ambiguously. Higher Z lowers u but raises r which decrease and increase 

investment respectively.  If output is relatively insensitive to distribution then 𝑔𝑍 > 0.8 

The shifts in 𝑟 and 𝑢 just noted imply that 𝑔𝜁 < 0. 

 Dynamics of the capital-population ratio 𝜅 = 𝐾 𝑁⁄  are the heart of all growth 

models. In growth rate form 𝜅 evolves over time according to 

(6) 𝜅̂ = 𝑔 − 𝛿 − 𝑛           

with 𝛿 as the rate of depreciation and 𝑛 as the exogenous population growth rate. 

 As discussed above, following Kaldor and Marx labor productivity growth can be 

assumed to respond to capital formation and distribution,9 

(7) 𝜉 = 𝛾0 + 𝛾1𝜅̂ − 𝛾2𝑟 

 Putting (6) and (7) together gives the growth rate equation for  𝜁:  𝜁 = 𝜅̂ − 𝜉 or  

(8) 𝜁̇ = 𝜁[(1 − 𝛾1)(𝑔 − 𝛿 − 𝑛) − 𝛾0 + 𝛾2𝑟]  . 

The equation shows a trade off between 𝑔 which boosts accumulation and 𝑟 which 

retards productivity growth – increases in both variables raise 𝜁̇. At a steady state with 

𝜁̇ = 0, if one rises, the other must fall. With 𝜁 > 0 the balancing condition is 

(9) 𝑔 = [𝛿 + 𝑛 + 𝛾0 (1 − 𝛾1)⁄ ] − [𝛾2 (1 − 𝛾1)]𝑟⁄ = 𝑔̅ − [𝛾2 (1 − 𝛾1)]𝒓⁄  . 

 

                                                            
8 If the model is set up with 𝜋 instead of 𝑟 responding to 𝜁 then 𝑔𝑍 > 0  unambiguously. 
 
9 The mainstream “induced innovation” literature beginning with John Hicks (1932) also 

points in the direction of a negative response of 𝜉 to 𝑟, consistent with microeconomic 
analysis of firm behavior. 
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Using boldface to signal variables at steady state we have 

 𝑔̅ = 𝒈 + [𝛾2 (1 − 𝛾1)]𝒓⁄  

in which 𝑔̅ = 𝛿 + 𝑛 + 𝛾0 (1 − 𝛾1)⁄   is the traditional long run investment/capital ratio, 

equal to the sum of rates of depreciation, population growth, and Kaldorian productivity 

growth 𝛾0 (1 − 𝛾1)⁄ .10 Along a trajectory toward the 𝜁̇ = 0 point, a higher profit rate 

boosts 𝜁 by cutting 𝜉.  At the steady state itself,  𝒓 and 𝒈 must adjust to the “natural rate” 

𝑔̅.  With 𝜅̂ = 𝜉, both variables can grow indefinitely at the rate 𝑔̅ − [𝛾2 (1 − 𝛾1)]𝒓⁄ < 𝑔̅. 

Simple closed-form expressions for 𝒈 and 𝒓  are provided in (22) and (23) below. 

 Because 𝑔𝜁 < 0 and 𝑟𝜁 < 0, (8) should be a stable differential equation with 

𝑑𝜁̇ 𝑑𝜁⁄ < 0 at the steady state. Figure 2 plots 𝜁 = 𝜅̂ − 𝜉. The slopes of the schedules 

show that an increase in 𝜁 cuts into investment but spurs productivity growth. A higher 

base rate 𝛾0 of productivity growth shifts the 𝜉(𝜁) locus upward, leading to a lower level 

of steady state  𝜁.̅  

 Figure 2 

 

Wealth dynamics  

 Capitalist households receive income on their wealth holdings (ignoring any 

wage income at this stage) so their capital stock evolves according to 

(10) 𝐾̂𝑐 = 𝑠𝑐𝑟 − 𝛿   

or 

 𝐾̇𝑐 = (𝑠𝑐𝑟 − 𝛿)𝐾𝑐    . 

                                                            
10 We ignore the potential equilibrium at 𝜁 = 0 which corresponds to the pre-capitalist 
state of zero employment and/or zero capital stock. 
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Because 𝑟𝑍 > 0, dynamics of 𝐾𝑐 are unstable. As will be seen, the instability can be 

offset by the evolution of 𝑍 and 𝜁. Meanwhile, along with (6) and (8), (10) describes our 

three-dimensional dynamical system.         

 Total capital stock grows at the rate of aggregate saving per unit of capital (2) 

minus depreciation, 

(11-𝜎) 𝐾̂ = 𝜎 − 𝛿 = (𝑠𝑐 − 𝑠𝑤)𝑟𝑍 + 𝑠𝑤𝑢 − 𝛿     . 

Alternatively, 

(11-𝑔) 𝐾̂ = 𝑔 − 𝛿 = 𝑔0 + 𝛼𝑟 + 𝛽𝑢 − 𝛿    . 

Stability of 𝑍 can be analyzed using either (11-𝑔) or (11-𝜎) for 𝐾̂.  Begin with the latter. 

 With 𝑍̂ = 𝐾̂𝑐 − 𝐾̂ we have the differential equation for 𝑍,  

 𝑍̇ = 𝑍{[(𝑠𝑐(1 − 𝑍) + 𝑠𝑤𝑍]𝑟 − 𝑠𝑤𝑢}.  

It is easier to conduct stability analysis in terms of 𝜋 = 𝑟/𝑢 instead of  𝑟 and 

𝑢 separately, so we rewrite this equation as 

(12) 𝑍̇ = 𝑍{[𝑠𝑐(1 − 𝑍) + 𝑠𝑤𝑍]𝜋 − 𝑠𝑤}𝑢 . 

From Figure 1, an increase in 𝑍 pushes up 𝜋. From (12), 𝑍̇ can go up, 

destabilizing dynamics around a Pasinetti steady state with 0 < 𝑍 < 1 if the difference 

between 𝑠𝑐 and 𝑠𝑤 is small. After a quick look at characteristics of a Pasinetti solution, 

we take up details of convergence below. 

 

Pasinetti steady state wealth 

For stock variables in a steady state, the ratios of their changes over time to their 

levels must all be equal. Combining the ratios for workers’ and capitalists’ capital gives 

the relationship 
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(13)   𝟏 − 𝒁 = [𝑠𝑤 (𝑠𝑐 − 𝑠𝑤)]⁄ [(𝟏 − 𝝅) 𝝅]⁄    . 

If 𝜋 < 1 and 𝑠𝑤 > 0, there will be some saving from wages. The workers’ share of 

capital, 𝟏 − 𝒁, has to be positive at steady state, setting an upper bound on 𝒁. 

 For capitalists’ gross saving, from (10) the change-to-level ratio is 

𝑠𝑐𝑟𝐾𝑐 𝐾𝑐 = 𝑠𝑐𝑟⁄ . It must be equal to the economy-wide ratio of gross investment to 

capital, setting up Pasinetti’s famous equation 

(14) 𝑠𝑐𝒓 = 𝒈    . 

This formula implies that Thomas Piketty’s (2014) 𝑟 > 𝑔 condition is a corollary of 

steady state accounting. It is not some new law of capitalism. 

 Finally, equating workers’ change-to-level capital ratio to overall capital stock 

growth gives an expression alternative to (13), 

 𝟏 − 𝒁 = 𝑠𝑤(𝟏 − 𝝅)𝒖 (𝒈 − 𝑠𝑤𝒓)⁄   . 

If 𝒖 and 𝒓 are relatively stable, then this expression shows that the investment/capital 

ratio and concentration of wealth are positively related from the side of saving. Steady 

states in mainstream and the demand-driven model at hand bear a strong family 

resemblance. 

 

Stability of the Pasinetti steady state 

 Returning to dynamics of 𝑍 and holding 𝜁 constant, define  

(15) 𝑓(𝑍) = [𝑠𝑐(1 − 𝑍) + 𝑠𝑤𝑍]𝜋 − 𝑠𝑤  = [𝑠𝑐𝜋 − 𝑠𝑤] − (𝑠𝑐 − 𝑠𝑤)𝜋𝑍   . 

The derivative of 𝑓 is 

(16) 𝑑𝑓 𝑑𝑍⁄ = 𝑓𝑍 = −(𝑠𝑐 − 𝑠𝑤)𝜋 + [𝑠𝑐(1 − 𝑍) + 𝑠𝑤𝑍]𝜋𝑍  

in which 𝜋𝑍 > 0.  From (12) we have 
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(17) 𝑍̇ = 𝑍𝑓𝑢     

and  

(18) 𝑑𝑍̇ 𝑑𝑍⁄ = 𝑍[𝑓𝑍𝑢 + 𝑓𝑢𝑍] + 𝑓𝑢     .  

For a Pasinetti steady state we need 𝑓(𝒁) = 0 in (17), or  

(19) 𝑠𝑐𝒓 = 𝑠𝑤[𝒓 + (𝟏 − 𝝅)𝒖/(𝟏 − 𝒁)]    .        

which states that the growth rates of the capital stocks of both household classes have 

to be equal. Capitalist households receive only capital income, while worker households 

have additional income from wages (the second term in brackets). Rearranging (19) 

gives the explicit solution for 𝒁 appearing in (13).  

 To check on stability of the Pasinetti solution, substitute (19) into (16) to get 

(20) 𝑓𝑍 = −(𝑠𝑐 −  𝑠𝑤)𝜋 + 𝑠𝑤(𝜋𝑍 𝜋)⁄             .       

The Pasinetti steady state will be locally stable if the right-hand side is negative, 

requiring 𝑠𝑤 to be well below 𝑠𝑐 and 𝜋𝑍 small (or negative if the medium run is wage-

led/wage-squeeze). If these conditions are not satisfied 𝑍 will diverge toward zero or the 

maximum level permitted by workers’ saving (i.e. the Samuelson-Modigliani dual 

analyzed below or the Darity anti-dual solution). The potential divergence arises from 

positive feedback. An increase in 𝑍 raises 𝜋 which from (16) can push up 𝑍̇ – this is the 

destabilizing linkage via workers’ saving noted above. On the other hand, higher 𝜋 

strengthens the stabilizing term −(𝑠𝑐 −  𝑠𝑤)𝜋, which can hold 𝑍 below one as in the 

simulation below. 

 If we use (11-𝑔) instead of (11-𝜎) to set 𝐾̂, working through similar analysis gives 

a stability condition as  

(21) (𝛼 − 𝑠𝑐)𝑟𝑍 > −𝛽𝑢𝑍         
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so we need a small 𝛽 (weak accelerator) and/or strongly profit-led demand with  

𝛼 > 𝑠𝑐  (recall that 𝑟𝑍 > 0 and 𝑢𝑍 < 0). 

 For either version, Figure 3 is a visualization of dynamics of 𝑍.  For stability, 𝐾̂ 

must respond more strongly than  𝐾̂𝑐 to an  increase in  𝑍.   

 Figure 3 

 

Explicit steady state solution 

 With productivity growth responding to 𝑟 in (7), Pasinetti’s formula (14) is a bridge 

between steady state solutions of 𝜁 and 𝐾𝑐. Substituting (14) into (9), letting   

𝐴 = 𝛾2 (1 − 𝛾1)⁄ , and solving gives values for 𝑟 and 𝑔,  

(22) 𝒓 = 𝑔̅ (𝑠𝑐 + 𝐴)⁄  

and 

(23) 𝒈 = 𝑠𝑐 𝑔̅ (𝑠𝑐 + 𝐴)⁄    . 
 

In practice 𝛾2 and 𝐴 will be small, but they create space for a long run investment rate 𝒈 

differing from 𝑔̅.  For the reasons discussed in connection with (9), 𝒈 < 𝑔̅. 

 Because 𝑔̅ = 𝛿 + 𝑛 + 𝛾0 (1 − 𝛾1)⁄ , a higher value of 𝛾0, the base rate of technical 

progress, leads to a higher long-term investment/capital ratio. The same is true of the 

Kaldor technical progress coefficient 𝛾1 if 𝛾2 is relatively small. A higher capitalist saving 

rate 𝑠𝑐 reduces the profit rate but stimulates capital formation. Animal spirits (and 

workers’ saving, etc.), on the other hand, do not affect 𝒓 and 𝒈  at a steady state. 

Imposing a given investment/capital ratio 𝒈 on equation (3) means that 𝒖 and 𝒓 would 

have to adjust if 𝑔0 were to increase. Such a response is a “theorem of accounting,” 

valid if the system is really at a steady state, but is not relevant in other circumstances.   
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Finally, one can plug (22) and (23) into the investment function (1) and solve for 

𝒖. The result turns out to be 

           𝒖 = [1 𝛽(𝑠𝑐 + 𝐴)][(𝛼 − 𝑠𝑐)𝑔̅ − 𝑔0(𝑠𝑐 + 𝐴)]⁄  . 

The condition  𝛼 > 𝑠𝑐 (with a strong inequality) discussed in connection with (21) is 

needed here to assure that 𝒖 > 0. 

 

Digression on capitalist wage income   

Before turning to long-run nullclines, it makes empirical sense to take a quick 

look at a specification in which capitalists receive wage income. The richest one percent 

of US households receive around seven percent of total labor compensation (largely 

through bonuses and stock options). How does this fact influence growth dynamics? 

 Equations (12) and (18) permit two well-known steady state solutions with 𝑍̇ = 0 

to exist, one with 𝒁 = 0 and the other with 𝑓(𝒁) = 0.  The former is the “dual” steady 

state proposed by Paul Samuelson and Franco Modigliani (1966). A simple example 

arises when 𝑠𝑐 = 𝑠𝑤 = 𝑠.  If saving rates are equal, workers are identical to capitalists, 

except for the fact that they also receive wages. Using this extra source of income, 

workers can outsave capitalists so that in the long run 𝑍 goes to zero.  In more detail, 

from (15), 𝑓(0) = 𝑠(𝜋 − 1) < 0.  At 𝑍 = 0, (18) becomes           

              𝑑𝑍̇ 𝑑𝑍 = 𝑠(𝜋 − 1)𝑢 < 0⁄  

so the dual equilibrium is stable. For uniform saving rates, Pasinetti apparently reduces 

to Solow-Swan. 

But in fact it is easy to show that even if saving rates are equal Solow-Swan 

breaks down if capitalists get wage income. Suppose that the capitalist class receives a 
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share 1 − 𝜃 of the wage bill (1 − 𝜋)𝑋. Their saving is 𝑆𝑐 = 𝑠𝑐[𝑟𝐾𝑐 + (1 − 𝜃)(1 − 𝜋)𝑋]. 

Workers’ saving is 𝑆𝑤 = 𝑠𝑤[𝑟(𝐾 − 𝐾𝑐) + 𝜃(1 − 𝜋)𝑋].  Using these expressions, an 

extended version of (12) is 

 𝑍̇ = 𝑍{[(𝑠𝑐(1 − 𝑍) + 𝑠𝑤𝑍]𝑟 − 𝑠𝑤𝑢 − [𝑠𝑐(1 − 𝜃) + 𝑠𝑤𝜃](1 − 𝜋)𝑢]} 

                  +𝑠𝑐(1 − 𝜃)(1 − 𝜋)𝑢. 

If  𝑍 = 0 then 𝑍̇ = 𝑠𝑐(1 − 𝜃)(1 − 𝜋)𝑢 > 0 so the Samuelson-Modigliani steady state is 

unstable when 𝜃 < 1. So long as capitalists receive some wage income, they can 

accumulate wealth at 𝑍 = 0. As noted in connection with (13), saving from workers’ 

wages means that 𝑍 cannot reach a value of one. Similarly, saving from capitalists’ 

wages can support a positive value of 𝑍 even if saving rates are equal. 

 

Accounting background for simulations 

 In annual data for the US economy, imports typically exceed exports so the rest 

of the world is a macroeconomic net lender. The sum of government current spending 

on goods and services, transfers to households, and net interest minus taxes is positive, 

making the sector a net borrower. The combined government and foreign sector is a net 

lender, meaning that it is accumulating wealth. Here is an explicit formulation. 

In the notation introduced in connection with (1) and (2), in current data we have 

𝜈𝑢 − 𝜄 > 0. Let 𝐾𝜙 be capital controlled by the foreign/government (FG) consolidated 

sector, and Φ = 𝐾𝜙 𝐾⁄ . Wealth accumulation is 

𝐾̇𝜙 = 𝜈𝑋 − 𝜄𝐾  

or 

 𝐾̂𝜙 = (𝜈𝑢 − 𝜄) Φ⁄    . 
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 There is no feedback from Φ to 𝑍 and 𝜁, so accounting consistency ensures that 

Φ will converge to a steady state with 𝐾̂𝜙 = 𝑔 if the other two state variables do so. Its 

steady state level will be  

 𝚽 = (𝜈𝒖 − 𝜄) 𝒈⁄      , 

or the ratio of FG net lending to overall gross investment. Levels of wealth held by the 

two classes and the FG sector must sum to 𝐾.11 It is possible for the FG sector to be a 

net debtor in steady state, i.e. 𝚽 < 0.  In that case, household wealth holdings would 

sum to 𝐾 − Φ, or capital plus consolidated foreign and government debt, as in standard 

national financial accounting. 

 

Nullclines 

 The next step is to assume that a Pasinetti steady state exists. We can examine 

slopes of its nullclines by using the derivatives of 𝜁̇ in (8) and 𝑍̇ in (12) with respect to 𝜁 

and 𝑍.  Pasinetti’s formula (14) is valid only at steady state, so we cannot employ it 

directly. 

At a Pasinetti equilibrium we get 𝜕𝑍̇ 𝜕𝜁⁄ < 0 from (12) because 𝜋𝜁 < 0. Equation 

(20) already shows when 𝜕𝑍̇ 𝜕𝑍⁄ < 0  near a Pasinetti steady state. The nullcline for 𝜁 is 

a bit trickier.  The discussion of (8) above suggests that 𝜕𝜁̇ 𝜕𝜁⁄ < 0. In (1) if 𝑢  is 

relatively insensitive to 𝑍 while 𝑟𝑍 > 0, then  𝜕𝜁̇ 𝜕𝑍⁄ > 0 via 𝑔𝑍 > 0 along with 𝑟𝑍 > 0. We 

end up with a Jacobian with the sign pattern 

 

 

                                                            
11 In (13) the workers’ share will now be 𝟏 − 𝒁 − 𝚽. 
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 𝑍 𝜁 

𝑍̇ − − 

𝜁̇ + − 

 

The signs say that in the vicinity of a steady state the 𝑍̇ = 0 nullcline will have a 

negative slope, with the 𝜁̇ = 0 locus sloping upward. The Routh-Hurwitz conditions for 

local stability (trace < 0, determinant > 0) are satisfied. 

 

Numbers 

 Figure 4 is a social accounting matrix (or SAM), very loosely based on US data, 

for an economy with a capital stock of 80 (trillion dollars). Output, defined as value-

added plus FG leakages, is 20.  To avoid a lot more algebra in the model, corporate 

sector accounts, capital wage income, and flows of fiscal and financial transfers 

(exceeding ten percent of GDP in the American economy) have been suppressed. The 

numbers in the matrix are not realistic in this sense. 

 Figure 4 

 Even so, they suggest three observations. 

 The profit rate is 7.5%, with capitalists receiving an income of 2.4 corresponding 

to a share of 40% in total wealth or capital. Their income of 13% of GDP (total demand 

minus FG income) approximates the share of the top one percent of households in the 

USA. Workers would outnumber capitalists by a factor of almost one hundred, so the 

discrepancy in incomes per household is vast. 

 Using their profit income, capitalists provide 42.5% of total saving. Implied saving 

rates are 𝑠𝑐 = 0.62 and 𝑠𝑤 = 0.117. 
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 Initially, net saving of the FG sector is set to zero (fiscal and foreign deficits are 

equal), but this condition does not have to hold over time in the simulations. 

 On the basis of the SAM, Figure 5 shows nullclines for the model. There is a 

unique Pasinetti equilibrium, with 𝒁 = 0.69 and 𝜻 = 2.42. 

 Figure 5 

 

Simulation results 

 Based on these numbers for a stylized US economy, we simulate our model to 

gauge whether current trends of increasing wealth and income  inequality may  persist 

and to demonstrate that long term growth projections can be derived from models of the 

demand side. Figure 6 presents simulation results from the model.12 Panels (a) and (b) 

show relatively slow convergence of GDP and the capital stock to approximately two 

percent growth, reflecting the intrinsic dynamics of the growth equation (6). The level of 

income per capita grows exponentially in panel (l). 

 Figure 6 

 Panel (d) shows a sustained increase in 𝑍. Panels (e) and (g) illustrate how the 

dynamics of  𝑍 incorporate positive feedback. The utilization rate 𝑢 declines and the 

profit rate 𝑟 goes up over time, in line with the description in Figure 1 of the effects of a 

higher level of 𝑍. Because 𝜋 = 𝑟 𝑢⁄ , the profit share in panel (h) rises steadily. Together 

with high capitalist saving, the shift in the income distribution toward profits sets up 

increasing 𝑍 from (13).  The shifts in saving in panels (i) and (j) mirror these trends. The 

higher profit rate spurs investment in panel (k). 

                                                            
12 We used Mathematica to generate the simulation runs. The notebook is available 
upon request. 
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  In panel (c) the auxiliary variable 𝜁 is fairly stable in the range between 2.0 and 

2.5 (with a steady state value of 2.42). With 𝜁 = 𝜆 𝑢⁄ , the decreasing utilization rate 

forces employment to drop off in panel (f). Finally, the evolution of FG net lending and 

wealth share in panels (m) and (n) reflects dynamics of 𝑢 and 𝑔. The FG sector 

switches from being a net lender to a borrower, but plays a secondary role in the overall 

dynamics of the model. 

Figure 7 shows the effects of a recession caused by an adverse demand shock 

in the year 2067 (five decades after the base year) to autonomous investment to 

produce an immediate six percent reduction in GDP, followed by gradual recovery. After 

the shock, variables revert toward the steady state with somewhat higher profits and 

investment (panels g, h, and k) than in the unshocked simulation. With lower 

employment in the recession (panel f) 𝑟  and 𝑔  jump above the unperturbed model’s 

trajectories toward the steady state and then slowly decline.  Capital utilization in panel 

(e) is lower and wealth concentration in panel (d) rises as saving by capitalists goes up 

in panel (i) and workers’ saving in panel (j) drops off. 

Figure 7 

In panel (c), 𝜁 =  𝜅 𝜉⁄  rises, in part due to faster growth of capital but also driven 

by a slower increase in productivity induced by the higher profit rate over time. Toward 

the end of the simulation, both productivity and income per capital fall by around one 

percent in comparison to the recession-free simulation. Deviations in trajectories toward 

the steady state are restrained, but visible. A favorable short-run demand shock would 

be beneficial for a long time. Demand does indeed drive growth all the way. 
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Final Thoughts 

 Drawing heavily on multiple strands within Post-Keynesian economics, we 

construct a heterodox model of economic growth which ties short run variables 

describing aggregate demand and the distribution of income to long run variables  

including the stock of capital, the distribution of wealth, and productivities of labor and 

capital. Our  alternative to the Solow-Swan model allows us to point to important 

similarities in steady state relationships as well as differences in the dynamics toward a 

steady state. In contrast to its neoclassical cousins, our demand-driven economy is 

prone to divergent instabilities. Even if conditions for stability are satisfied and variables  

such as the equilibrium rate of growth of capital are set by supply side parameters, 

demand and income distribution adjust and determine the equilibrium distribution of 

wealth.  

 Applying our model to a stylized data for the US economy, we find a rising 

concentration of wealth associated with a falling employment ratio and a more 

concentrated distribution of income. The reason is that via the paradox of thrift a higher 

level of 𝑍 cuts into effective demand. The resulting downward pressure on employment 

pushes up the profit rate and faster growth of wealth and income inequality. This 

narrative has a degree of verisimilitude in wealthy economies over recent decades. To 

retain analytic tractability, we assume no active policy in counteracting such 

developments and leave this important question for future research. 

  These results show that one does not need to rely solely on supply-side 

explanations for economic growth. Interactions between income distribution and 

effective demand, endogenous productivity change, and dynamics of wealth have their 
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own roles to play even in a model as simple as the one presented here. Important 

features of advanced capitalist societies, such an elaborate financial sector with multiple 

assets and independent dynamics of their prices, active fiscal and monetary policy, and 

open economy complications (as outlined in Foley and Taylor, 2006), allow for more 

realistic interactions and deserve further exploration. 

 

Appendix 

Parameters are scaled to match the US economy as represented in the SAM of 

Figure 5. In particular, parameter values are the following: 

Saving, Investment, and FG parameters 

𝑠𝑐 = 0.62, 𝑠𝑤 = 0.117, 𝑔0 = −0.015, 𝛼 = 0.6, 𝛽 = 0.059, 𝜈 = 0.1, 𝜄 = 0.025 

Distribution parameters 

𝜇0 = 0.225, 𝜇1 = 0.25 

Parameters for capital, labor productivity, and population (assumed to follow 

logarithmic growth) dynamics  

𝛿 = 0.025, 𝛾0 = 0.01, 𝛾1 = 0.5, 𝛾2 = 0.01, 𝑛2017 = 0.005, 𝐿∞ = 500 
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Figure 1: Short and medium run equilibrium as a function of Z and 𝜻. An increase 

in Z lowers u, raises r, and shifts the equilibrium to Point B. Higher 𝜻 lowers r and 

u and shifts the equilibrium to point C. 
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Figure 2: Dynamics of 𝜻. There is a steady state at 𝜻̅. 
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Figure 3: Dynamics of 𝒁 around a Pasinetti steady state at 𝒁̅ .       
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       Current spending             Demand injections  

  Worker uses 
of income 

Capitalist  
uses of 
income 

FG 
outlay   

Investment Row   
totals 

  13.588 0.912 2 3.5 20 

Worker     
wages 

12     15.6 

Worker 
profits 

3.6     

Capitalist 
wages 

0     2.4 

Capitalist 
profits 

2.4     

FG 
income 

2     2 

Macro 
balance 

 2.012 1.488 0 −3.5 0 

Column 
totals    

20 15.6 2.4 2 0  

 

Figure 4: Social accounting matrix for simulations (initial capital stock = 80). 
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Figure 5: Phase diagram based on Figure 4 data for Z and ζ.  
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Figure 6: Time-plots for simulation. 
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Figure 6 (cont’d): Time-plots for simulation. 
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Figure 7: Time-plots for baseline (solid) and shocked (dashed) simulations 
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Figure 7 (cont’d): Time-plots for baseline (solid) and shocked (dashed) 
simulations. 
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