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Abstract 1 

We investigated the relationships between microscale distribution of soil organic matter 2 

(SOM) features and their stability by combining optical microscopy, SEM-EDS analysis and 3 

NaClO oxidation of soil thin sections on five soils from Harwood Forest in Northumberland 4 

(UK) differently affected by water stagnation.  5 

Plant organs at different stages of decomposition and amorphous organic matter were 6 

observed by optical microscopy in all samples. SOM microfeature distribution, size of SOM 7 

features and the relation with the C-to-N ratio suggested that amorphous features could be the 8 

end-products of organ transformation. SEM-EDS elemental analysis showed that amorphous 9 

material had higher Si:C, Al:C and Fe:C molar ratios than organs, clearly pointing to 10 

interactions with the soil inorganic phases, which contributed to SOM stabilisation. Soil 11 

porosity coupled with water stagnation seemed to affect the Fe-SOM interactions as a greater 12 

proportion of small water retention pores (10-50 µm) was associated with higher abundance 13 

of Fe-rich amorphous organic features. The higher chemical stability of amorphous features 14 

was confirmed by oxidation. After NaClO treatment organs were almost totally removed, 15 

while amorphous organic material was less affected both morphologically and chemically.  16 

Our results demonstrate that in water-affected soils local environment defined by the 17 

pore system affects the distribution of SOM microfeatures and that the highest resistance to 18 

oxidation of the amorphous features is attributable to the formation of organic-inorganic 19 

associations. The proposed combined approach seems to be a promising means to investigate 20 

SOM dynamics by relating features to stability.  21 

22 
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Introduction 1 

The capacity of soil to act as a carbon sink and counteract the increasing concentration of 2 

CO2 in the atmosphere is widely recognized. In soil, fresh organic material is stabilized at 3 

varying rates and to a varying degree, thus organic C mineralization is limited and various 4 

pools of soil organic matter (SOM) accumulate. SOM biodegradation is strongly dependent 5 

upon the  interactions between the microbial community and its local environment that 6 

regulate many of the soil functions carried out by microorganisms (Hassink 1992; Strong et 7 

al. 2004; Chaparro et al. 2012). In particular, adequate quantities of available water and 8 

oxygen are required to optimize the process of SOM transformation. Since the pore space and 9 

the pore distribution of the soil matrix control the availability of fluids, soil architectural 10 

properties exert a control over SOM decomposition and mineralization (Baldock and 11 

Skjenstad 2000). The interactions between organic matter and inorganic soil components 12 

further alter the rate of decomposition, as the associations with the inorganic soil phase 13 

increase the energy required to break chemical bonds (Sollins et al. 1996). On the other hand, 14 

C stabilisation is also linked to SOM quality and to the presence of primary or secondary 15 

recalcitrant substances that contribute to active and passive pools of SOM (von Lützow et al. 16 

2008).  17 

Detailed analysis and micromorphological description of soil thin sections can allow 18 

the direct study of different features of SOM in undisturbed soil samples at microscopic scales 19 

(Stolt and Lindbo 2010). According to Babel (1975), the organic constituents visible in soil 20 

thin sections can be categorized as either organ, tissue or amorphous in form. SOM fragments 21 

can be further described according to the extent of their decomposition following 22 

FitzPatrick’s classification (1984) or based on their colour (Bullock et al. 1985). The 23 

micromorphological classification of organic components is based solely on the morphology 24 

of the particles and ignores other criteria such as chemistry. However, the combination of 25 
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micromorphological observations with other techniques may be useful for developing 1 

functionally different morphologic classes of soil C characterized by different turnover times 2 

(Blazejewski et al. 2005).  3 

In disturbed soil samples, several methods have been used to fractionate or isolate 4 

SOM into functionally different pools. Among the oxidative methods, the use of NaClO was 5 

proposed to remove younger SOM and to leave behind the stable residue (as reviewed by von 6 

Lützow et al. 2007). Recently, Mikutta and Kaiser (2011) suggested that the C fraction that 7 

resisted to abiotic oxidation consisted of the organic compounds with greater affinity for 8 

mineral surfaces. By treating the samples with NaClO, Bonifacio et al. (2013) indeed found 9 

an increasing trend in the interactions between surfaces and organo-metallic associations with 10 

increasing podzolisation. 11 

To the best of our knowledge, NaClO has never been employed on thin sections to 12 

specifically isolate and study stable SOM, although it has been used as an effective bleaching 13 

agent to distinguish brown-dark amorphous organic materials from other amorphous 14 

constituents in micromorphological studies (Babel 1964). Furthermore, Glab (2007) applied 15 

NaClO treatment during soil section preparation in order to increase the image contrast.  16 

Babel (1975) stated that in 20 to 30 μm thick sections the organic parts were nearly 17 

completely decolorized by NaClO treatment at room temperature.  18 

In this paper, we investigate the relationships between microscale distribution of SOM 19 

features and their stability in undisturbed soil samples through the combination of optical 20 

microscopy, SEM-EDS analysis and NaClO oxidation of soil thin sections. More specifically 21 

we discussed the suitability of morphologically defined SOM fractions to describe functional 22 

SOM pools and tested the suitability of this new methodological approach by evaluating if; a) 23 

the resistance to NaClO oxidation differed among SOM features, and b) SOM features and 24 

stability were linked to interactions with the mineral soil phases. We also tried to relate 25 

 4 



morphologically defined SOM features to the soil pore system as an indicator of the complex 1 

environment in which SOM degradation occurs.  2 

 3 

Materials and Methods 4 

 5 

Soil samples 6 

The study area is located in the Harwood Forest in Northumberland (55°12’N, 02°01’W, UK). 7 

Depending on geomorphological position, the soils differently suffered from water saturation,  8 

which is expected to influence soil C dynamics. Soils on gentle slopes (<10°) were water 9 

saturated at surface (down to +40 cm) because of a stagnant perched water table, while those 10 

located in a geomorphological basin were saturated with a seasonal groundwater and the 11 

topsoil was less affected by water saturation, as the upper limit of saturation was at least 20 12 

cm below the surface (Payton and Palmer 1990). Soils on gentle slopes showed a stagnic 13 

colour pattern, while those located in the basin showed a gleyic colour pattern and, 14 

consequently, both Stagnosols and Gleysols (IUSS Working Group WRB 2006) occurred. 15 

Three Histic Stagnosols (P2, P4 and P5) and two Haplic Gleysols (P7 and P9) were selected. 16 

The soil pits for each soil type were dug at a distance of around 10-20 m, and the two soil 17 

types were 4.5 km apart.  Both soil types developed in  glacial till deposits overlying 18 

Carboniferous sandstone, mudstone and limestone belonging to the Alston Formation (British 19 

Geological Survey 2012) within grassy clearances in mature (>40 year) Sitka spruce (Picea 20 

sitchensis (Bong.) Carr.) plantations, thus the sites were dominated by low-growing 21 

vegetation of grasses, mosses and herbs. Soil texture was sandy loam in the surface horizons, 22 

whereas in the deeper horizons the amount of silt increased and soil texture was silt loam. 23 

Undisturbed soil samples of A surface horizons were taken from each soil profile at a 24 

depth of 5-15 cm from the mineral soil surface. Bulk samples for soil characterization were 25 
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taken from alongside the undisturbed samples (Smith 2010), and their main chemical 1 

properties are reported in Table 1. As evident from the Al and Fe fractionation, in the 5-15 cm 2 

layer of Stagnosols poorly crystalline Al and Fe forms (AlO and FeO) constitute almost the 3 

totality of the pedogenic oxides (AlD and FeD) further supporting the differentiation between 4 

saturated and unsaturated conditions at soil surface.  5 

From intact soil blocks, two thin sections of approximately 7x5 cm were produced at 6 

the University of Stirling following a modified protocol (Murphy 1986). Water was removed 7 

from the soil samples by freeze-drying under vacuum conditions to avoid C losses during the 8 

acetone replacement drying process. No accommodating crack voids were identified in the 9 

vacuum dried thin sections, suggesting that shrinkage and cracking during the drying process 10 

had been minimal. Epoxy resin was used for soil sample impregnation. Epoxy resin cures at 11 

normal laboratory temperatures, reducing the danger of reaction between resin and the organic 12 

components of the sample due to heating (López-Buendía 1998). 13 

 14 

Micromorphology observations, image analysis of soil pores and organic components 15 

Soil thin sections were observed using a polarizing microscope (Olympus BX50) under plane 16 

(PPL), crossed polarized light (XPL) and oblique incident light (OIL). Conventional 17 

descriptions of thin sections were made at 40x following the guidelines of Stoops (2003).  18 

High resolution mosaic images were captured at 40x using a three-chip video camera 19 

(HV-C10, Hitachi Densai, Japan) and a motorized stage (Lang, Hüttenberg). Two images 20 

were stitched using the multiple image alignment function of the AnalySIS software (Soft 21 

Imaging System, Münster) as described in Adderley et al. (2002). Mosaic images were 22 

produced to form a contiguous area of interest (AOI) of 12 mm2 as required to meet the 23 

representative elemental area (REA; VandenBygaart and Protz 1999). To determine the size 24 

of the REA, a preliminary investigation was carried out by measuring the pore area and 25 
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perimeter in three successive areas of different size and verifying that the parameters did not 1 

change ±10% relative to the next greater area of measurement. For each thin section, at least 2 

two AOI were studied. 3 

Binary pore images were obtained based on the RGB threshold, with pores represented 4 

by white and soil matrix by black pixels. The minimum size for pore detection was set at 100 5 

µm2. Pore distribution was measured according to pore shape and equivalent diameter. Pore 6 

shape was expressed by a shape factor, calculated as (perimeter2/4π x area) and pores divided 7 

into rounded (shape factor 1-2), irregular (shape factor 2-5) and elongated (shape factor >5) as 8 

proposed by Pagliai et al. (2003). Pores of each shape group were further subdivided into 9 

equivalent diameter classes (Greenland 1977).  10 

The soil organic components were classified using the procedure described in Smith 11 

(2010). Briefly, once organic features were classified according to their form following the 12 

recommendation of Babel (1975), the extent of their decomposition was identified using the 13 

classification proposed by FitzPatrick (1984). Dark organic features and other dark 14 

components, typically rich in Fe or Mn oxides, were distinguished by the elemental 15 

composition obtained using the SEM-EDS. No charcoal or coal fragments were detected 16 

during optical observations.  17 

On the same AOI studied for soil porosity, image analysis was used to manually 18 

delimit the different SOM features within PPL images. Organic fragments were selected, and 19 

the frequency and area of classes of organic fragments were measured. By exporting images 20 

into an image manipulation program (GIMP 2.6) each organic feature was represented by 21 

differently coloured pixels and stacked upon the binary pore image thereby forming a map 22 

showing the distribution of organic matter in relation to soil pores (electronic supplement 1a-23 

b). 24 

 25 
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SEM and EDS analysis 1 

Soil thin sections were analyzed using an environmental scanning-electron-microscope 2 

(ESEM) and elemental data were collected by energy-dispersive spectroscopy (EDS) detector 3 

using ZEISS SEM systems (EVO MA15) linked to an Oxford Instruments INCA X-max 4 

detector with a 80 mm2 SDD. Since C was the principal element of interest, low vacuum 5 

conditions (>30 kPa) were used to control charging without C coating the sample. The 6 

obtained backscattered electron scanning images (BESI) were of mediocre quality, therefore 7 

the location of features was checked using OM-pore maps generated by image analysis. 8 

Optimal C detection was ensured using an accelerating voltage of 5-15 keV (Goldstein et al. 9 

2003), a working distance of 8.5 mm, and a probe current of ~ 700 pA. To minimize any 10 

topographic effects impairing X-ray detection, the thin sections were polished (Goldstein et 11 

al. 2003) and EDS analysis was performed at high magnifications (500-1000x). Data were 12 

normalized to 100% giving a semi-quantitative measure of elemental concentrations, thus 13 

elemental ratios are discussed in this paper rather than absolute concentrations. To verify the 14 

absence of any resin effect on the sensitivity to oxidation of organic matter, the elemental 15 

composition of five organs and six dark organic features was measured by point analysis close 16 

to the feature edge (where the resin effect should be the greatest) and inside, approximately in 17 

the feature core. The measurement was then repeated after the NaClO treatment. Both before 18 

and after NaClO treatment, each pair of measurements had similar values of O:C ratio (see 19 

electronic supplement 2). Overall no relation between the variation of O:C value after the 20 

NaClO treatment and the distance from the feature edge was found. This preliminary data 21 

confirmed the absence of resin-organic matter interactions at the edge of organic features and 22 

that any effect on the response to NaClO treatment was avoided.  23 

 24 

NaClO treatment 25 
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We applied the standardized NaClO treatment for disturbed soil samples (i.e. sieved) 1 

suggested by Siregar et al. (2005) to thin sections.  Babel (1964) suggested 90 minutes of 2 

NaClO treatment for bleaching thin sections, while Siregar et al. (2005) treated sieved soil 3 

samples for 6 hours for three times, thus different treatment durations were previously tested 4 

to check and optimize the efficiency of organic C removal by NaClO on  two test thin 5 

sections collected from soils different in texture (electronic supplementary material 3).  After 6 

90 minutes, decolourisation of slightly decomposed organs was already visible by 7 

microscopic observation. After repeating the treatment for longer periods (4.5, 12 and 18 8 

hours) some additional C removal occurred, as clearly visible (especially for strongly 9 

decomposed organs) checking from morphological changes. However, prolonged treatment 10 

time did not further affected the SOM features. Therefore, we fixed the treatment time to 18 11 

hours (i.e., 6 hours for three times).  12 

As a consequence of the preliminary tests, the following routine procedure was 13 

applied: after microscopic observation of the soil thin sections, the samples were immersed in 14 

a beaker containing 6% NaClO solution (wt/wt) adjusted at pH 8 and stirred for 6 hours. The 15 

amount of solution was sufficient to cover completely the surface of the thin section. The 16 

treatment was repeated two additional times. After the last treatment, the soil thin sections 17 

were removed from the beakers, washed until electrical conductivity was lower than 40 µS 18 

cm-1 and air dried.  19 

 20 

Results and Discussion 21 

 22 

Micromorphology and image analysis 23 

Pore shape and equivalent diameter distribution measured by image analysis are reported in 24 

Figure 1. Water saturated soil samples, especially P4 and P5, had a high amount of rounded 25 
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and irregular pores ranging from 10 to 50 µm. They act as a water reservoir for plants and 1 

microorganisms according to Greenland (1977). In contrast the samples less affected by water 2 

saturation, especially P7, had a high proportion of large elongated pores (>200 µm). These are 3 

transmission pores, important in maintaining good soil structure conditions and in soil 4 

drainage (e.g. Greenland 1977; Pagliai et al. 2003). Therefore, in P4, P5 and P7 especially, the 5 

pore distribution further emphasized the different water flow and saturated conditions already 6 

discriminated by the occurrence of water saturation. The contrasting pore distribution could 7 

affect the processes of transformation of organic C because with increasing water content 8 

water becomes more available to decomposer organisms, but oxygen availability decreases 9 

(Smiles 1988; Baldock and Skjemstad 2000). This means that in P4 and P5, but also in P7, 10 

although for opposite reasons in pore distribution that could cause an unbalance between 11 

oxygen and water availability, the process of decomposition and mineralization of organic C 12 

may not be optimized, slowing down the turnover of SOM.  13 

Plant materials showed evidence of decomposition through the loss of cell structure 14 

and the fragmentation, ranging from slightly to strongly decomposed organs of size >100 μm 15 

(Figure 2). The amorphous components were present as separated aggregates in a dense 16 

groundmass or within the void spaces between coarse grains (Figure 2). These organic 17 

features were identified by their isotropism and strong brown or red colour. Both brown- and 18 

red-coloured amorphous organic matter had smooth surfaces and ranged in size from 20 to 50 19 

μm. They corresponded to the organic masses described by Blazejewski et al. (2005). 20 

The slightly decomposed organs were present in all the samples, with the exception of 21 

P9 (Figure 3). However, this sample (P9) showed the highest content of strongly decomposed 22 

plant residues matching the organ content of the other samples. Black amorphous organic 23 

material was more frequent in the samples less affected by water, i.e. P7 and P9 samples; 24 
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while the reddish amorphous organic matter was the dominant feature in P5, but lower 1 

amounts were also observed in P4 and P7.  2 

The occurrence of both organs and amorphous organic matter in the same samples 3 

suggested that the latter could be the end-product of transformation processes of SOM and 4 

therefore, it should likely be less labile than the initial C forms. A common origin of organs 5 

and amorphous material was indicated also by their size (always >20 μm), in fact  the sand-6 

silt fractions of temperate soils are dominated by SOM deriving from plant material, in 7 

contrast to the clay fraction which is dominated by microbially derived metabolites (von 8 

Lützow et al. 2007). The C:N ratio is a simple and rather common indicator of the whole 9 

SOM pool turnover (Bronick and Lal 2005), and showed a positive relationship with the ratio 10 

between the area occupied by organs and that by amorphous C features (TOC/TN vs. area 11 

organs/amorphous C, rs=0.975, p=0.005; Figure 3). P4, P5 and P7 had a lower 12 

organs/amorphous features area ratio corresponding to lower TOC/TN ratio than P2 and P9. 13 

This means that in P4, P5 and P7 SOM is more transformed and that a greater accumulation 14 

of transformed or partly transformed organic compounds (i.e. amorphous) occurred than in P2 15 

and P9. However, even if the TOC content (Table 1) was rather similar and the soil samples 16 

were collected under similar vegetation cover, we cannot exclude that other factors, such as 17 

different amounts of root derived C or physical disconnection between decomposers and 18 

organic matter (Schmidt et al. 2011), could contribute to the high proportion of organs in P2 19 

and P9. 20 

As SOM decomposes, it becomes depleted in labile fractions, and the most recalcitrant 21 

C remains, therefore we expect a variation in C stability related to organic features 22 

discriminated through micromorphology (Blazejewski et al. 2005).  23 

 24 

SEM and EDS analysis 25 
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The backscattered electron scanning images (BESI) were compared to the OM-pore maps 1 

generated by image analysis to verify the location of organic features (electronic 2 

supplementary material 2). The elemental analysis showed that neither the O:C nor the Si:C 3 

molar ratios of each organic feature differed between soil water saturation conditions or soil 4 

samples (ANOVA p level always >0.10; Table 2). The elemental data allowed instead the 5 

separation of the SOM and resin as the O:C molar ratio was significantly lower in the resin 6 

than in any other organic component (Table 2). Using the OM-pore maps and checking the 7 

O:C ratio, we can be confident that an organic feature other than resin has been analyzed.  8 

Slightly and strongly decomposed organs had similar mean O:C ratios of 0.30-0.29 9 

(Table 2). Amorphous red organic matter had a similar O:C ratio to organs while black 10 

amorphous features had a higher mean O:C ratio, though not significantly different from the 11 

reddish features. Therefore, this criterion (O:C ratio) appeared to be too weak to discriminate 12 

among organic features. Higher values of the O:C ratio were expected in the amorphous 13 

features as a result of SOM transformation processes. However, besides being influenced by 14 

the increase in oxidation of organic matter during decomposition and humification processes, 15 

the O:C ratios also strongly depend on the source of the organic residues. For instance, the 16 

O:C ratio reported for lignin and cellulose, two of the most abundant biopolymers in soil 17 

(Kögel-Knabner 2002), were 0.37 and 0.83 (Stoffyn-Egli et al. 1997). Differences in their 18 

proportion in slightly and strongly decomposed OM could strongly affect the O:C ratio of the 19 

derived organic features.  20 

In contrast to O:C ratio, significant differences in mean Si:C molar ratio were found, 21 

providing a differentiation between organs and amorphous features which was related neither 22 

to the soil water saturation condition nor to the soil sample (Table 2). Amorphous features 23 

also showed the highest Al:C and, as visible in Figure 4a, strong significant correlations 24 

between Al:C and Si:C ratios were found for amorphous black and red organic matter (r= 25 
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0.743 and 0.794, respectively), but not for resin and organs. These data suggested that some 1 

interactions between amorphous features and mineral particles, likely Al-silicates, have 2 

occurred. Consequently, these organic features could be further stabilized due to binding to 3 

minerals and organic-inorganic interactions, in addition to the transformations of organic 4 

compounds depicted by morphological evaluation. 5 

No relationship between Si:C and Fe:C ratio was found (Figure 4b), suggesting that 6 

low amounts of Fe-bearing silicates occurred and that Fe was concentrated in (hydr)oxides. 7 

Moreover, in contrast to Si:C, in the Fe:C molar ratio significantly varied among the soil 8 

samples with P4 and P5 having the highest Fe:C ratio for black and red amorphous materials, 9 

respectively (Figure 5a). The Fe-enrichment of amorphous SOM features in P4 and P5 10 

suggested that the soil water conditions affected the Fe-SOM interactions. However, water 11 

stagnation did not seem to be the only factor affecting Fe-SOM interactions. In fact,  the 12 

amorphous SOM features of P2 were not Fe-enriched and no relationships were found 13 

between the Fe:C molar ratios and the content of poorly crystalline Fe (hydr)oxides of the 14 

bulk soil (FeO; Table 1). Several mechanisms may  be responsible for Fe-SOM interactions. 15 

The importance of sorption of SOM on poorly crystalline Fe (hydr)oxides in soils with stagnic 16 

and gleyic colour patterns has been suggested by Wiseman and Püttmann (2005), and a large 17 

adsorption, and consequent stabilisation,  of organic matter on iron (hydr)oxides is indeed 18 

expected at the acidic pH of the investigated soils (Table 1) as stated by Schwertmann and 19 

Taylor (1989). Co-precipitation of organic matter and Fe can also occur especially if 20 

interchanging redox conditions prevail (Schwertmann et al. 2005; Kalbitz and Kaiser 2008). 21 

Reduction processes require access to surface sites on the oxide; therefore, binding of ligands 22 

to Fe(III) oxides can potentially decrease the rate of Fe(II) production by limiting access to 23 

surface sites (O’Loughlin et al. 2010). Adsorption and co-precipitation therefore may on one 24 

side stabilize organic matter through the increase of the energy required to break chemical 25 
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bonds, on the other hand, the presence of organic coverings on oxide surfaces may make them 1 

inaccessible to microorganisms,  thus preserving Fe(III) even in water saturated soils. Under 2 

reducing conditions at more neutral pH values than those found in our samples, Henneberry et 3 

al. (2012) motivated the lack of release of dissolved organic matter from organo-Fe 4 

complexes by a re-conformation of OM around the positively charged Fe. A mutual 5 

stabilisation process may therefore act between organic matter and Fe oxides also in our 6 

samples.  7 

Iron mobilization was expected to be more intense in the water saturated samples 8 

because of oxygen deficiency resulting from stagnating water at the soil surface. In P4 and 9 

P5, water stagnation was coupled with a high proportion of water retention pore class (i.e. 10-10 

50 μm) thus affecting redox processes (e.g., Taina et al. 2010). Therefore, only upon the 11 

simultaneous presence of water stagnation and a high amount of small-sized pores could Fe 12 

dynamics be affected and the mutual preservation of both inorganic and organic phases be 13 

enhanced.  14 

However, independent of the specific mechanism, the stabilisation of SOM by 15 

interaction with the mineral-metal phase should contribute to preserve it against the NaClO 16 

treatment. Differences in the resistance to chemical oxidation between organs and amorphous 17 

features were therefore expected as a result of both the selective preservation of recalcitrant 18 

compounds due to the SOM transformation process, and the interaction with the inorganic 19 

phase.  20 

 21 

Analysis on NaClO-treated thin sections  22 

After treating with NaClO all the organs, both slightly and strongly decomposed, were almost 23 

totally bleached (Figure 2d-e and electronic supplement 2) without any visible effect on the 24 

soil groundmass. In contrast, the effect of the NaClO on the amorphous features was clearly 25 
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less marked. Only a slight fading of the contour of some amorphous black organic masses was 1 

noticed, while the most part of both black and red amorphous featues did not shown any 2 

differences before and after the NaClO treatment (Figure 2d-e and electronic supplement 1).  3 

Optical observations were confirmed by the SEM-EDS analysis. The organic material 4 

was removed from organs and the O:C molar ratio following treatment no longer 5 

discriminated between the bleached features and resin (Table 3). Conversely, organic matter 6 

of the amorphous features still showed a significantly higher O:C molar ratio than resin.  7 

Although the amorphous organic features were only very slight affected by the NaClO 8 

treatment, and indeed the ratio between O and C did not change, the range of this molar ratio 9 

was much wider (Tables 2 and 3), particularly with respect to the maximum values. This 10 

finding suggests that, within the amorphous compounds some parts may be slightly affected 11 

by NaClO treatment, in agreement with the contour fading identified by optical investigations 12 

that could represent transformation in more oxidized compounds. The alkaline pH of NaClO 13 

treatment could have induced a partial desorption of SOM from mineral surfaces in our 14 

undisturbed soil samples. However, amorphous features were generally a chemically stable C 15 

pool, and this was confirmed by the values of the Si:C and Fe:C ratios, which were little 16 

affected by the NaClO treatment (Table 2 vs 3 and Figure 5a vs 5b, respectively). 17 

Mikutta and Kaiser (2011), studying some preparations of organic-mineral 18 

associations, observed that the NaClO labile organic C did not represent the SOM available 19 

for microbial degradation, and that the NaClO oxidation resulted in an enrichment of C bound 20 

to the mineral phase. Our results confirmed this observation and indicated the suitability of 21 

the oxidation treatment to isolate stabilized SOM in undisturbed samples. Furthermore the 22 

lack of variations in the Si:C and Fe:C molar ratios points to the importance of the organo-23 

mineral interactions as an important SOM stabilisation mechanisms in the studied soils. 24 

 25 
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Conclusions 1 

The micromorphological observations of SOM indicated that various mechanisms must be 2 

considered for C stabilisation, such as the transformation process of SOM and/or the 3 

formation of organic-inorganic associations. The NaClO treatment enabled us to relate 4 

differences in C stability to SOM features, and to assess that the highest resistance to 5 

oxidation of soil carbon in the amorphous features was related to organo-mineral interactions. 6 

At microscopic scales of investigation, the expression of water saturation conditions indicated 7 

by the morphological characteristics of soil horizons is insufficient to predict C dynamics, 8 

whereas porosity data contributed to a better understanding of the distribution of stabilized 9 

SOM features, particularly when interactions with Fe forms are considered. The proposed 10 

combined procedure seems to be a very promising approach to investigate soil C dynamics in 11 

undisturbed samples,  isolating SOM stabilized by the interactions with the mineral soil 12 

phases, and in future research it could provide new insights into the complexity of soil 13 

physical, chemical and biological processes. 14 
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