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EIGENVALUE BOUNDS
FOR THE SIGNLESS LAPLACIAN

Dragoš Cvetković, Peter Rowlinson, and
Slobodan K. Simić

Abstract. We extend our previous survey of properties of spectra of signless
Laplacians of graphs. Some new bounds for eigenvalues are given, and the
main result concerns the graphs whose largest eigenvalue is maximal among
the graphs with fixed numbers of vertices and edges. The results are presented
in the context of a number of computer-generated conjectures.

1. Introduction

LetG be a simple graph with n vertices. The characteristic polynomial det(xI−
A) of a (0,1)-adjacency matrix A of G is called the characteristic polynomial of G
and denoted by PG(x). The eigenvalues of A (i.e., the zeros of det(xI−A)) and the
spectrum of A (which consists of the n eigenvalues) are also called the eigenvalues
of G and the spectrum of G, respectively. The eigenvalues of G are real because
A is symmetric, and the largest eigenvalue is called the index of G.

Together with the spectrum of an adjacency matrix of a graph we shall consider
the spectrum of another matrix associated with the graph.

Let n,m,R be the number of vertices, the number of edges and the vertex-edge
incidence matrix of a graph G. The following relations are well-known:

(1) RRT = D +A, RTR = A(L(G)) + 2I,

where D is the diagonal matrix of vertex degrees and A(L(G)) is the adjacency
matrix of the line graph L(G) of G.

Since the non-zero eigenvalues of RRT and RTR are the same, we deduce from
the relations (1) that

(2) PL(G)(x) = (x+ 2)m−nQG(x+ 2),

where QG(x) is the characteristic polynomial of the matrix Q = D +A.
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The polynomial QG(x) will be called the Q-polynomial of the graph G. The
eigenvalues and the spectrum of Q will be called the Q-eigenvalues and the Q-
spectrum respectively.

The matrix L = D − A, known as the Laplacian of G, features prominently
in the literature (see, for example, [5] and [18]). The matrix D + A is called
the signless Laplacian in [16], and it appears very rarely in published papers (see
[5]), the paper [13] being almost the only relevant research paper published before
2003. Only recently has the signless Laplacian attracted the attention of researchers
[4, 8, 11, 10, 16, 26]. The present paper extends the survey [8] by providing
further comments, proofs and conjectures. The new results include some bounds
for the eigenvalues of D+A. The starting point is a series of conjectures that were
formulated using a computer program called AutoGraphiX (AGX). This program,
which was developed to find extremal (or near-extremal) graphs with respect to
certain properties, is described in [2]. That paper was the first of a sequence of
articles, including [1], which feature results obtained with the assistance of AGX.

As usual, Kn, Cn and Pn denote respectively the complete graph, the cycle and
the path on n vertices. We write Kn + e for the graph obtained from Kn by adding
a pendant edge, and Km,n for the complete bipartite graph with parts of size m
and n. The graph Kn−1,1 is called a star and is denoted by Sn. The double star
DS(m,n) is obtained from two disjoint stars Km−1,1, Kn−1,1 by adding an edge
between their central vertices. The double comet DC(n, r, s) is the graph of order
n obtained from two disjoint stars Kr−1,1, Ks−1,1 by adding a path (of length
n− r − s+ 1) between their central vertices.

A unicyclic graph containing an even (odd) cycle is called even-unicyclic (odd-
unicyclic). The union of disjoint graphs G and H is denoted by G ∪̇ H, while mG
denotes the union of m disjoint copies of G.

We write Γ(v) for the neighbourhood of v, and we call {v} ∪ Γ(v) the closed
neighbourhood of v. Vertices with the same neighbourhood are called duplicate
vertices; they necessarily induce a co-clique. Vertices with the same closed neigh-
bourhood are called co-duplicate vertices; they necessarily induce a clique.

A complete split graph with parameters n, q (q � n), denoted by CS(n, q), is a
graph on n vertices consisting of a clique on q vertices, a co-clique on the remaining
n− q vertices, and all q(n− q) possible edges between the clique and the co-clique.
(In the notation of [6], CS(n, q) is the join Kq∇Kn−q.)

The vertex-set of a nested split graph G has a partition U ∪̇ V1 ∪̇ · · · ∪̇ Vk

with the following properties:

(i) U induces a clique, and V1 ∪̇ · · · ∪̇ Vk induces a co-clique;
(ii) U has subsets U1, . . . , Uk such that U1 ⊃ U2 ⊃ · · · ⊃ Uk and the neigh-

bourhood of each vertex in Vi is Ui (i = 1, . . . , k).

The rest of the paper is organized as follows. Section 2 elaborates results from
the survey paper [8] which will be required later. Section 3 contains the list of
conjectures on Q-eigenvalues which have been formulated using the system AGX.
Section 4 contains comments on the conjectures and their relation to known results.
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Those conjectures related to the largest Q-eigenvalue are investigated in Section 5,
while other conjectures are considered in Section 6.

2. Basic properties of Q-spectra

Let G be a graph with Q-eigenvalues q1, q2, . . . , qn (q1 � q2 � · · · � qn). The
largest eigenvalue q1 is called the Q-index of G.

When applying the Perron–Frobenius theory of non-negative matrices (see, for
example, Section 0.3 of [5]) to the signless Laplacian Q, we obtain the same or
similar conclusions as in the case of the adjacency matrix. In particular, in a
connected graph the largest eigenvalue is simple with a positive eigenvector. The
Q-index of any proper subgraph of a connected graph is smaller than the Q-index
of the original graph, an observation which follows from Theorems 0.6 and 0.7 of
[5].

The interlacing theorem holds in a specific way, namely the interlacing of the
Q-eigenvalues of a graph with the Q-eigenvalues of an edge-deleted subgraph. This
can be seen by considering the corresponding line graph, for which the ordinary
interlacing theorem holds, and shifting attention to the root graph. In fact, we
have the following theorem.

Theorem 2.1. Let G be a graph on n vertices and m edges and let e be an edge
of G. Let q1, q2, . . . , qn (q1 � q2 � · · · � qn) and s1, s2, . . . , sn (s1 � s2 � · · · � sn)
be Q-eigenvalues of G and G− e respectively. Then

0 � sn � qn � · · · � s2 � q2 � s1 � q1.

Proof. We shall prove the assertion in the case that both G and G − e are
connected and m � n + 1. In other cases the argument remains valid with some
technical modifications.

By formula (1) the eigenvalues of L(G) and L(G−e) are q1−2, q2−2, . . . , qn −
2,−2(m−n) and s1 − 2, s2 − 2, . . . , sn − 2,−2(m−1−n) respectively. Since L(G − e)
is an induced subgraph of L(G) the interlacing theorem yields

q1 − 2 � s1 − 2 � q2 − 2 � s2 − 2 � · · · � qn − 2 � sn − 2 � −2

and the result follows. �

The following proposition has been proved in [8].

Proposition 2.2. Let q1 be the largest Q-eigenvalue of a graph G. The fol-
lowing statements hold:

(i) q1 = 0 if and only if G has no edges;
(ii) 0 < q1 < 4 if and only if all components of G are paths;
(iii) for a connected graph G we have q1 = 4 if and only if G is a cycle or K1,3.

In virtue of (1), the signless Laplacian is a positive semi-definite matrix, i.e.,
all its eigenvalues are non-negative. Concerning the least eigenvalue we have the
following proposition (see [8, Proposition 2.1] or [13, Proposition 2.1]).
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Proposition 2.3. The least eigenvalue of the signless Laplacian of a connected
graph is equal to 0 if and only if the graph is bipartite. In this case 0 is a simple
eigenvalue.

Corollary 2.4. For any graph, the multiplicity of 0 as an eigenvalue of the
signless Laplacian is equal to the number of bipartite components.

For a subset S of the vertex set V = V (G) of a graph G, let 〈S〉 be the subgraph
of G induced by S. Let emin(S) be the minimum number of edges whose removal
from 〈S〉 results in a bipartite subgraph of 〈S〉. Let cut(S) be the set of edges with
one vertex in S and the other in its complement V � S. Thus |cut(S)|+ emin(S) is
the minimum number of edges whose removal from E(G) disconnects S from V �S
and results in a bipartite subgraph induced by S. For any graph G let ψ = ψ(G)
be the minimum over all non-empty proper subsets S of V (G) of the quotient

|cut(S)| + emin(S)
|S| .

The parameter ψ was introduced in [13] as a measure of non-bipartiteness. It is
shown that the least eigenvalue qn of the signless Laplacian Q is bounded above
and below by functions of ψ. In particular, it is proved that, for a connected graph,

(3)
ψ2

4∆
� qn � 4ψ,

where ∆ is the maximal vertex degree.

Remark. In general, the Q-polynomial of a graph does not tell us whether or
not the graph is bipartite. It does if the graph is connected but we cannot recognize
a connected graph by its Q-polynomial. It is interesting to note that if we know
the number of components we can determine from the Q-polynomial whether the
graph is bipartite and if we know that the graph is bipartite we can determine the
number of components. Therefore it was suggested in [4, 8] that, when handling
graphs by means of Q-spectra, we should assume or require that in addition to the
Q-eigenvalues, the number of components is also prescribed.

The proof of the following proposition can be found in many places in the
literature (see, for example, [19]).

Proposition 2.5. The Q-polynomial of a graph is equal to the characteristic
polynomial of the Laplacian if and only if the graph is bipartite.

Regular graphs can be recognized, and the degree of regularity and the number
of components calculated, from QG(λ), as noticed in [10]. In particular, we have
the following proposition [8].

Proposition 2.6. Let G be a graph with n vertices and m edges and let q1
be its largest Q-eigenvalue. Then G is regular if and only if 4m = nq1. If G is
regular, then its degree is equal to q1/2 and the number of components is equal to
the multiplicity of q1.
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The proof is carried out in the same way as in the case of the adjacency matrix
(cf. [5, Theorems 3.8, 3.22 and 3.23]): one compares q1 with the value of the
Rayleigh quotient for the all-1 vector.

In regular graphs it is not necessary to give explicitly the number of compo-
nents since it can be calculated from QG(x) using Proposition 2.6. Of course, for
regular graphs the whole existing theory of spectra of the adjacency matrix and
the Laplacian matrix is transferred directly to the signless Laplacian by a translate
of the spectrum. In particular, we have:

Proposition 2.7. Let G be a regular bipartite graph of degree r. Then the
Q-spectrum of G is symmetric with respect to the point r.

This symmetry property is an immediate consequence of the well-known sym-
metry about 0 of the adjacency eigenvalues in bipartite graphs. Thus q is a Q-
eigenvalue of multiplicity k if and only if 2r−q is also a Q-eigenvalue of multiplicity
k; moreover, the eigenvalues 0 and 2r are always present.

Let G be a connected graph with n vertices, and let

QG(x) =
n∑

j=0

pj(G)xn−j = p0(G)xn + p1(G)xn−1 + · · · + pn(G).

A spanning subgraph of G whose components are trees or odd-unicyclic graphs
is called a TU-subgraph of G. Suppose that a TU -subgraph H of G contain c
unicyclic graphs and trees T1, T2, . . . , Ts. Then the weight W (H) of H is defined
by W (H) = 4c

∏s
i=1(1+|E(Ti)|). Note that isolated vertices in H do not contribute

to W (H) and may be ignored.
We shall express coefficients of QG(x) in terms of the weights of TU -subgraphs

of G (cf. [12], [8]).

Theorem 2.8. We have p0(G) = 1 and

pj(G) =
∑
Hj

(−1)jW (Hj), j = 1, 2, . . . , n,

where the summation runs over all TU -subgraphs of G with j edges.

Note that the new proof of this theorem from [8] is formulated for technical
reasons for graphs in which the number of edges is not smaller than the number
of vertices. However, the result holds also for trees since by Proposition 2.5 the
statement is reduced to the known result for the Laplacian matrix.

The following formula appears implicitly in the literature (see e.g., [5, p. 63]
and [25]):

PS(G)(x) = xm−nQG(x2),

where G is a graph with n vertices and m edges, and S(G) is the subdivision graph
of G. Together with (2), this formula provides a link to the theory of the adjacency
spectra. While formula (2) has been used to some effect in this context (cf. [8]),
the connection with subdivision graphs remains to be exploited.
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3. AGX Conjectures

The following 30 conjectures related to the Q-eigenvalues of a graph have been
formulated after some experiments with the system AGX. Almost all the conjectures
are in the form of inequalities which provide upper or lower bounds for spectrally
based graph invariants. The notation is as follows.

As above, Q denotes the signless Laplacian of a graph G and (q1, q2, . . . , qn)
the spectrum of Q, where the eigenvalues are such that q1 � q2 � · · · � qn.

Let P denote the Laplacian of a graph G and (µ1, µ2, . . . , µn) the spectrum of
P , where the eigenvalues are such that µ1 � µ2 � · · · � µn.

Let A denote the adjacency matrix of a graph G and (λ1, λ2, . . . , λn) the spec-
trum of A, where the eigenvalues are such that λ1 � λ2 � · · · � λn.

Sometimes we shall use the notation qi = qi(G), i = 1, 2, . . . , n. Also, we write
a for µn−1, called the algebraic connectivity of G (see [5, p. 265]).

The conjectures apply to graphs with at least 4 vertices, and they are clas-
sified according to the graph invariants involved. For some conjectures we have
indicated that they are, at least partially, resolved (previously in the literature or
in this paper). The letters C,L,U with a superscript + or − indicate that the
whole conjecture, or the lower bound, or the upper bound, has been confirmed or
refuted respectively. In addition we refer to the section of this paper where relevant
information or proof is given.

3.1. Conjectures on the largest eigenvalue.

Conjecture 1 (L+, U+, Section 4). If G is a connected graph of order n � 4,
then

2 + 2 cos
π

n
= q1(Pn) � q1(G) � q1(Kn) = 2n− 2

with equality if and only if G is the path Pn for the lower bound, and if and only if
G is the complete graph Kn for the upper bound.

Conjecture 2 (L+, U+, Section 5). If T is a tree of order n � 4, then

2 + 2 cos
π

n
= q1(Pn) � q1(T ) � q1(Sn) = n

with equality if and only if T is the path Pn for the lower bound, and if and only if
T is the star Sn for the upper bound.

Conjecture 3 (L+, U+, Section 5). Let S+
n denote the graph consisting of a

star and an additional edge. If G is a unicyclic graph of order n � 4, then

4 = q1(Cn) � q1(G) � q1(S+
n )

with equality if and only if G is the cycle Cn for the lower bound, and if and only
if G is S+

n for the upper bound.

Conjecture 4 (C+, Section 5). If G is a connected graph of order n � 4 and
maximum degree ∆, then

q1 � ∆ + 1
with equality if and only if G is the star Sn.
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Conjecture 5 (L+, U+, Section 4). If G is a connected graph of order n � 4,
with minimum, average and maximum degree δ, d and ∆ respectively, then

2δ � 2d � q1 � 2∆

with equality in any instance if and only if G is regular.

Conjecture 6. If G is a connected graph of order n � 4 and average degree
d, then

q1 − 2d � n− 4 + 4/n

with equality if and only if G is the star Sn.

Conjecture 7 (L+, Section 5). If G is a connected graph of order n � 5 and
average degree d, then

2 � q1 − d � n− 1

with equality if and only if G is the cycle Cn for the lower bound, and if and only
if G is the complete graph Kn for the upper bound.

Conjecture 8 (L+, Section 5). If G is a connected graph of order n � 4,
index λ1 and average degree d, then

0 � q1 − d− λ1 � n− 2 + 2/n−√
n− 1

with equality if and only if G is regular for the lower bound, and if and only if G is
the star Sn for the upper bound.

Conjecture 9 (L+, Section 5). If G is a connected graph of order n � 4,
index λ1 with maximum Laplacian eigenvalue µ1, then

1 � µ1 + λ1 − q1 �
√

�n/2�	n/2

with equality if and only if G is the complete graph Kn for the lower bound, and if
and only if G is the complete bipartite graph K�n

2 �,�n
2 � for the upper bound.

Conjecture 10 (L+, Section 4). If G is a connected graph of order n � 4
with maximum Laplacian eigenvalue µ1, then

0 � q1 − µ1 � n− 2

with equality if and only if G is bipartite for the lower bound, and if and only if G
is the complete graph Kn for the upper bound.

Conjecture 11 (L+, Section 4). If G is a connected graph of order n � 4 and
index λ1, then

0 � q1 − 2λ1 � n− 2
√
n− 1

with equality if and only if G is regular for the lower bound, and if and only if G is
the star Sn for the upper bound.
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3.2. Conjectures on the second largest eigenvalue.

Conjecture 12 (C+, Section 4). If G is a connected graph of order n � 4,
then

q2 � 1,

with equality if and only if G is the star Sn.

Conjecture 13 (C+, Section 4). Over all trees on n � 4 vertices, q2 is
maximum for the graphs DS(1

2n,
1
2n) and DC(n, 1

2n − 1, 1
2n − 1) if n is even (in

which case q2 = 1
2n), and for the graph DC

(
n, 1

2 (n− 1), 1
2 (n− 1)

)
if n is odd.

Conjecture 14. If G is a connected graph of order n � 7, then

−1 � q2 − d � n− 6 + 8/n

with equality if and only if G is the complete graph Kn for the lower bound, and if
and only if G is the complete bipartite graph Kn−2,2 for the upper bound.

Conjecture 15. If G is a connected graph of order n � 7, then

−1 � q2 − δ � n− 3

with equality if and only if G is the complete graph Kn for the lower bound, and if
and only if G is Kn−1 + e for the upper bound.

Conjecture 16. If G is a connected graph of order n � 4, then

∆ − q2 � n− 2,

with equality if and only if G is the star Sn.

Conjecture 17. Over all connected graphs on n � 4 vertices, the graph H,
described below, minimizes ∆ − q2.

If n is even, H is constructed as follows from two copies of Kn
2
. Delete an edge

uv from one copy and an edge u′v′ from the other; then add the two edges uu′ and
vv′.

If n is odd, H is constructed as follows from two copies of Kn−1
2

and an isolated
vertex w. Delete an edge uv from one copy of Kn−1

2
and an edge u′v′ from the other;

then add the four edges uw,vw, u′w and v′w.

Conjecture 18. If G is a connected graph of order n � 9, then

1 −√
n− 1 � q2 − λ1 � n− 2 −√

2n− 4

with equality if and only if G is the star Sn for the lower bound, and if and only if
G is the complete bipartite graph Kn−2,2 for the upper bound.

Conjecture 19. If G is a connected graph of order n � 9 and algebraic
connectivity a, then

q2 − a � −2

with equality if and only if G is the complete graph Kn.
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Conjecture 20. If G is a connected graph and not complete of order n � 9
and algebraic connectivity a, then

q2 − a � 0.

The bound is attained by the star Sn, by the complement of a matching of 	n/2

edges and, if n is even, by the complete bipartite graph Kn

2 , n
2
.

Conjecture 21. Over all connected graphs on n � 4 vertices, the graph K,
described below, maximizes q2 − a.

If n is even, K is obtained from two copies of Kn
2

by adding a single edge
connecting the two cliques.

If n is odd, K is obtained from two copies of Kn−1
2

and an isolated vertex w by
adding two edges between w and each clique Kn−1

2
.

Conjecture 22. If G is a connected graph of order n � 4, then

q1 − q2 � n

with equality if and only if G is the complete graph Kn.

Conjecture 23. If T is a tree order n � 4, then

q1 − q2 � n− 1

with equality if and only if T is the star Sn.

3.3. Conjectures on the least eigenvalue.

Conjecture 24. If G is a connected and not bipartite of order n � 4, then

qn � qn(E3,n−3)

where Ee,f is a unicyclic graph with e + f vertices obtained by a coalescence of a
vertex in Ce with an endvertex of Pf+1.

Conjecture 25. Over the set of all connected graphs of order n � 6, q1 − qn
is minimum for a path Pn and for an odd cycle Cn, and is maximum for the graph
Kn−1 + e.

Conjecture 26. For any connected graph G of order n � 4 with independence
number α,

q1 + qn + 2α � 3n− 2

with equality if and only if G is a complete split graph CS(n, n− α).
If G has m edges then q1 + q2 + · · · + qn = 2m, and so the conjecture is equivalent
to:

n−1∑
i=2

qi � 2(m+ α+ 1) − 3n

with equality if and only if G is a complete split graph CS(n, n− α).
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3.4. Conjectures related to the multiplicities of eigenvalues.

Conjecture 27 (C+, Section 6). Let e(Q) denote the number of distinct eigen-
values of the matrix Q and m(qi) the multiplicity of the eigenvalue qi. Then

e(Q) = 2 ⇔ m(q2) = n− 1 ⇔ G ≡ Kn .

In this case, q2 = n− 2.

Conjecture 28 (C+, Section 6). If G has k duplicate vertices (k > 1), with
neighbourhood of size d, then d is an eigenvalue of Q with m(d) � k − 1.

Conjecture 29 (C+, Section 6). If G has k co-duplicate vertices (k > 1), with
closed neighbourhood of size d, then d−1 is an eigenvalue of Q with m(d−1) � k−1.

Conjecture 30 (C−, Section 6). If G is a connected graph of order n � 4
with at least two dominating vertices, then q2 = ∆ − 1 = n− 2 with multiplicity at
most �n/2� − 2.

4. Comments on the conjectures

In this section, we identify conjectures in Section 3 that are confirmed by
simple results already recorded in the literature, explicitly or implicitly. Some of
the remaining conjectures can also be resolved by elementary observations; these
and other new results are presented in the following two sections. The conjectures
left unresolved appear to include some difficult research problems.

Several elementary inequalities for Q-eigenvalues are given in [3]. Among other
things, it is proved that the Q-index q1 of a connected graph on n vertices satisfies
the inequalities

2 + 2 cos
π

n
� q1 � 2n− 2.

The lower bound is attained in Pn, and the upper bound in Kn.
This double inequality is the content of Conjecture 1, which is therefore con-

firmed.
The following theorem is a direct reformulation of a well known theorem from

the Perron–Frobenius theory of non-negative matrices (cf. [14, Vol. II, p. 63] or [5,
p. 83]).

Theorem 4.1. Let G be a graph on n vertices with vertex degrees d1, d2, . . . , dn

and largest Q-eigenvalue q1. Then

2δ = 2min di � q1 � 2max di = 2∆.

If G is connected, then equality holds in either of these inequalities if and only if G
is regular.

However, stronger inequalities can be derived using the very same result from
the theory of non-negative matrices, as indicated in [8]:

Theorem 4.2. Let G be a graph on n vertices with vertex degrees d1, d2, . . . , dn

and largest Q-eigenvalue q1. Then

min(di + dj) � q1 � max(di + dj),
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where (i, j) runs over all pairs of adjacent vertices of G. If G is connected, then
equality holds in either of these inequalities if and only if G is regular or semiregular
bipartite.

Now let d be the mean degree of G, and recall that

(4) q1 = sup
x∈Rn�{0}

xTQx
xT x

= sup
‖x‖=1

xTQx,

with equality if and only if x is an eigenvector of G corresponding to q1 (see, for
example, [6]). Taking x to be the all-1 vector, we see that q1 � d, with equality if
and only if G is regular. In conjunction with with Theorem 4.1, this observation
confirms Conjecture 5.

The following theorem was proved implicitly in [22].

Theorem 4.3. For a graph G, let µ1 and q1 be the largest eigenvalues of the
Laplacian and the signless Laplacian, respectively. We have µ1 � q1 with equality
if and only if G is bipartite.

This inequality confirms the lower bound in Conjecture 10.
The lower bound in Conjecture 11 is confirmed by Theorem 3.4 of [3].
Conjecture 12 is verified by Theorem 3.2 of [3]. Note that equality holds also

for the graph K3. (Theorem 3.2 of [3] contains also the inequality q2 � n− 2 with
equality if the graph is complete. Theorem 3.7 of [3] provides an upper bound for
q2 in the case of bipartite graphs, namely again n− 2, which is attained solely for
K2,n−2).

Conjecture 13 is resolved by results of [21](see also references cited therein).
The result is obtained in the context of the Laplacian spectrum but in view of
Proposition 2.5 it can be immediately reformulated for the signless Laplacian. It
turned out that there are three extremal graphs for n even.

5. The largest eigenvalue

Our main goal in this section is to prove Theorem 5.6, which describes the form
of graphs with maximal Q-index among graphs with given numbers of vertices and
edges. This will resolve two of the AGX conjectures. We also deal with other
conjectures related to the largest Q-eigenvalue.

First we consider how q1 changes when some edges of G are relocated. For any
modification G′ of G, let Q′ be the corresponding signless Laplacian A′ +D′, with
largest eigenvalue q′1. If x is a unit eigenvector corresponding to q1 then from (3)
we obtain:

(5) q′1 − q1 = max
‖y‖=1

yTQ′y − xTQx � xT (A′ −A)x + xT (D′ −D)x,

with equality if and only if x is an eigenvector of Q′ corresponding to q1(= q′1).
When G is connected, we can take x to be the principal eigenvector of G (that is,
the unit positive eigenvector corresponding to q1). Then we can prove (cf. [17]):
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Lemma 5.1. Let G′ be a graph obtained from a connected graph G (of or-
der n) by rotating the edge rs (around r) to a position of the non-edge rt. Let
x = (x1, x2, . . . , xn)T be the principal eigenvector of G. If xt � xs, then q′1 > q1.

Proof. From (4) we immediately obtain

(6) q′1 − q1 � (xt − xs)(2xr + xs + xt).

Since xr, xs and xt are positive and xt � xs we obtain q′1 � q1. Equality holds only
if x is an eigenvector of G′ for q′1 = q1. But then, from the eigenvalue equations
applied to the vertex t in G′ and G we find (q′1 − q1)xt = xr + xt, and this is a
contradiction.

This completes the proof. �
Assume now that G is a graph whose Q-index is maximal among all graphs

with n vertices and m edges (m > 0).

Lemma 5.2. Under the above assumptions, either G is a connected graph or G
has exactly one non-trivial component.

Proof. Let C be a component of G with index µ1 = µ1(G). Suppose, by the
way of contradiction, that G has another non-trivial component C ′. Then G has
an eigenvector x = (x1, x2, . . . , xn)T corresponding to µ1 such that xi > 0 for all
i ∈ V (C) and xi = 0 for all i �∈ V (C).

Now let t be a vertex of C and let rs be an edge in C ′. Consider the graph G′

obtained from G by replacing rs with the edge rt. Since xt > 0 and xr = xs = 0,
Equation (5) shows that q1(G′) > q1, a contradiction. �

In view of this lemma, it suffices to consider the unique non-trivial component
of G, and so we now assume further that G is connected.

Lemma 5.3. The graph G does not contain P4, 2K2 or C4 as an induced sub-
graph.

Proof. Suppose, by the way of contradiction, that G contains a graph F ∈
{P4, 2K2, C4} as an induced subgraph. Let x be the principal eigenvector of G, and
let r, s, t, w be the vertices of F . Without loss of generality, xs = minv∈V (F ) xv.
Additionally, the structure of F allows us to assume that r is a neighbour of s but
not of t. Now let G′ be the graph obtained from G by rotating the edge rs (around
r) to the non-edge position rt. By Lemma 5.1, we have q1(G′) > q1(G). If G′ is
connected, this is a contradiction and we are done.

Accordingly, suppose that G′ is not connected. Then rs is a bridge in G,
F �= C4, and G− rs has the form Gr ∪̇ Gs, where r, t ∈ V (Gr) and s ∈ V (Gs).

We first observe that xv < xs for any vertex v ∈ V (Gs) � {s}, for otherwise
the Q–index of G is not maximal by Lemma 5.1. Similarly, xu < xr for any vertex
u ∈ V (Gr) � {r}. Recall next that xs � xr. If deg(s) > 1, there exists a vertex
v in Gs adjacent to s. In this case, we may replace the edge vs with vr to obtain
a connected graph with larger Q-index. Thus it remains to deal with the case
deg(s) = 1. Then either F is the path srut or F consists of the independent edges
rs, tu. In the former case we may replace ru with rt to obtain a connected graph
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with larger Q-index. In the latter case, interchanging t and u if necessary, we may
replace tu with ru to obtain a connected graph with larger Q-index. This final
contradiction completes the proof. �

From the above considerations, we arrive at the following result (announced in
[8]).

Theorem 5.4. Let G be a connected graph of fixed order and size, with maximal
Q-index. Then none of the graphs 2K2, P4, C4 is an induced subgraph of G.

The graphs without 2K2, P4, C4 as an induced subgraph are precisely those
with a stepwise adjacency matrix, as defined in [6, Section 3.3]. This assertion is
equivalent to the following result proved in [23].

Proposition 5.5. To within isolated vertices, the graphs without 2K2, P4, C4

as an induced subgraph are precisely the nested split graphs.

From Theorem 5.4 we therefore have:

Theorem 5.6. Among the graphs of prescribed order and size, a graph with
maximal Q-index is, to within isolated vertices, a nested split graph.

In particular, a graph with maximal Q-index among the connected graphs of
prescribed order and size is a nested split graph. We can now use Theorem 5.6 to
confirm two of the AGX conjectures.

Theorem 5.7. Let G be a graph with maximal Q-index among connected graphs
with n vertices and m edges.

(i) If m = n− 1 then G is the star Sn = K1,n−1.
(ii) if m = n then G is the graph S+

n obtained from Sn by adding an edge;
(iii) if m = n+1 then G is the graph obtained from Sn by adding two adjacent

edges.

Thus Theorem 5.7 identifies the trees, the unicyclic graphs and the bicyclic
graphs of order n with maximal Q-index. In particular, we can confirm the upper
bounds in Conjectures 2 and 3: the only tree which is a nested split graph is a
star and the only unicyclic graph which is a nested split graph is a star together
with an additional edge. The lower bounds in Conjectures 1 and 2 are confirmed by
Proposition 2.2: the graphs with minimal Q-index among trees and among unicyclic
graphs are the path and the cycle respectively.

Next we confirm Conjecture 4. We label vertices of G so that vertex 1 has maxi-
mal degree ∆, and vertices 2, . . . ,∆+1 are the neighbours of vertex 1. Now consider
the Rayleigh quotient xT ((D+A)x)/xT x, where x = (∆, 1, . . . , 1, 1, 0, . . . , 0)T , with
∆ entries equal to 1. Since each vertex has degree at least 1, this quotient is at
least (∆(∆2 + ∆) + ∆(∆ + 1))/(∆2 + ∆) = ∆ + 1. When equality holds, vertices
2, . . . ,∆ + 1 have degree 1 and so G is a star.

Alternatively, we can confirm Conjecture 4 by citing Theorem 4.3 and the
following result from [19] concerning the largest eigenvalue µ1 of the Laplacian
matrix: µ1 � ∆ + 1, with equality if and only if ∆ = n− 1. We note that the case
of equality for the signless Laplacian is more restrictive than that for the Laplacian.
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Concerning Conjecture 7, the lower bound holds for graphs which are not trees
because we can take the all-1 vector in a Rayleigh quotient forQ to obtain q1 � d+2.
In fact, for d � 2 by Conjecture 5 (already confirmed) we have q1 � 2d � d+2 and
equality holds if and only if G is regular of degree 2. For trees of order n � 5 we
use Conjecture 1 (already confirmed) to obtain q1 � 2 + 2 cos π

n > 4− 2/n = d+ 2.
The upper bounds in Conjectures 6 and 7 may be regarded as upper bounds for

q1 as a function of m and n, where m is the number of edges; in view of Theorem
5.6, it suffices to verify the bounds for nested split graphs.

The lower bound in Conjecture 8 is also verified using Conjecture 1 (already
confirmed): we have q1 � 2λ1 � λ1 + d, with equality if and only if G is regular.

The lower bound in Conjecture 9 follows from the lower bound in Conjecture
10 (already confirmed), since 1 � λ1 for graphs with at least one edge. We note
that the upper bound holds for bipartite graphs, because then µ1 = q1 by Propo-
sition 2.5.

6. Other conjectures

We may confirm Conjecture 16 as follows. Suppose first that ∆ � n− 2. Since
q2 � 0, we have ∆− q2 � n− 2, with equality if and only if q2 = 0 and ∆ = n− 2.
However, if q2 = 0 then Proposition 2.3 provides a contradiction. It remains to deal
with the case ∆ = n − 1, when the Conjecture reduces to: q2 � 1 with equality if
and only if G is a star. This is just Conjecture 12, confirmed above.

A few of the conjectures are related to the least Q-eigenvalue, and among them
is Conjecture 24. According to this conjecture, the minimal value of the least Q-
eigenvalue among connected non-bipartite graphs of prescribed order is attained
for the odd-unicyclic graph obtained from a triangle by appending a path. By the
Interlacing Theorem such an extremal graph is an odd-unicyclic graph, and so we
discuss the least eigenvalue in odd-unicyclic graphs. Our investigations provide
supporting evidence for Conjecture 24.

We use the notation of Sections 1 and 2, and write Ue,f for the set of unicyclic
graphs on e+ f vertices with a cycle of length e.

By the Interlacing Theorem we have

0 = qn(Pn) � qn(Ee,n−e) � qn−1(Pn), e = 3, 5, . . . , emax � n.

Hence
0 � qn(Ee,n−e) � 2

(
1 − cos

π

n

)
= 4 sin2 π

2n
.

For an odd-unicyclic graph we have ψ = 1/n and so we obtain the following
double inequality from Equation (3):

1
12n2

� qn(Ee,n−e) � 4
n
.

We conclude that
1

12n2
� qn(Ee,n−e) � 4 sin2 π

2n
≈ π2

n2
,

i.e., n2qn(Ee,n−e) = O(1).
The following proposition is easily obtained from Theorem 2.8.
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Proposition 6.1. For a graph G on n vertices, with girth g, we have:

pn(G) = 0, (−1)n−1pn−1(G) = ng

if G is an even-unicyclic graph, and

(−1)npn(G) = 4, (−1)n−1pn−1(G) = ng + 4
∑

ti

if G is an odd-unicyclic graph, ti being the number of vertices of the tree obtained
by deleting an edge i outside the cycle.

We mention in passing that the girth can be determined from the Q-eigenvalues
in the case of even-unicyclic graphs but not in the case of odd-unicyclic graphs. For
(adjacency) eigenvalues we have exactly the opposite situation. However, Laplacian
eigenvalues perform best: the girth of a unicyclic graph can be determined in all
cases. (Then the coefficient of the linear term in the characteristic polynomial is
equal to −n times the number N of spanning trees, and for unicyclic graphs, N
is equal to the girth. Note that results concerning such coefficients for some other
classes of graphs, in particular for trees, have been obtained in [20].)

The following lemma is a straightforward consequence of Proposition 6.1.

Lemma 6.2. Let G be an odd-unicyclic graph on n vertices. Let u be a vertex
of degree at least 3 and v a vertex of degree 1 in G. Let T be the tree attached at
u. Let G′ be the graph obtained by relocating the tree T from u to v. Then

(−1)n−1pn−1(G′) > (−1)n−1pn−1(G).

Using Lemma 6.2 repeatedly, we obtain:

Proposition 6.3. For G ∈ Ue,f , e odd, and G �= Ee,f we have

(−1)n−1pn−1(Ee,f ) > (−1)n−1pn−1(G),

where n = e+ f .

In addition, we have the following observation.

Proposition 6.4. For n odd and e = 5, 7, . . . , n we have

(−1)n−1pn−1(E3,n−3) > (−1)n−1pn−1(Ee,n−e).

Proof. From Proposition 6.1 we have

(−1)n−1pn−1(Ee,n−e) = ne+4((n−e)+(n−e−1)+· · ·+1) = 2e2−(3n+2)e+2n2+2n,

and the maximum value of this function is attained when e = 3. �

Now, for sufficiently small x, the equation QG(x) = 0 can be reduced to
pn−1(G)x + pn(G) = 0, whose solution −pn(G)/pn−1(G) could be considered as
an approximation for qn(G). By Propositions 6.1, 6.3 and 6.4, this approximation
value is minimal for the graph E3,n−3. These arguments support Conjecture 24.

We note in passing that extremal results concerning the coefficients pi(T ) for a
tree T have been obtained in [26]. In particular, it is proved that for i = 3, 4, . . . ,
n− 1 the coefficient (−1)ipi is minimal in paths and maximal in stars.
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Conjecture 25 seems to be interesting and difficult to resolve. It is related
to the difference between the largest and the least eigenvalue which is known as
spectral spread (for any matrix). The corresponding conjecture for eigenvalues
of the adjacency matrix is identified in [1] as a hard conjecture (also produced
by AGX). It seems that we have enough evidence that system AGX can produce
difficult conjectures.

In contrast, we can deal easily with the conjectures concerning eigenvalue mul-
tiplicities. First, one can confirm Conjecture 27 as follows. If e(Q) = 2 then the
minimal polynomial of Q has the form x2 + ax+ b, and so A2 +AD+DA+D2 +
aA + aD + bI = O. For distinct i, j this gives a(2)

ij + (dj + di + a)aij = 0, and so
there are no vertices i, j at distance 2. Conjecture 27 has also been confirmed in
[9].

More generally, as in [5, Theorem 3.13], the diameter of G is bounded above
by e(Q) − 1, since (in the terminology of [8]), the (i, j)-entry of Qk is the number
of semi-edge walks from i to j [8, Theorem 4.1].

Conjecture 28 is true, because Q− dI has k repeated rows, and Conjecture 29
is true, because Q− (d−1)I has k repeated rows. The validity of these conjectures
follows also from a remark in [24].

Conjecture 30 is false, withKn (n > 5) a counterexample since then d−1 = n−2
with multiplicity n − 1. (Note that the hypotheses are a special case of those of
Conjecture 29.)

Remark. Together with some colleagues we continue to consider conjectures
presented in this paper. In particular, we expect results related to Conjectures 6,
7, 22, 23 and 24.
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