

Available online at www.sciencedirect.com



LINEAR ALGEBRA AND ITS APPLICATIONS

Linear Algebra and its Applications 429 (2008) 2168-2179

www.elsevier.com/locate/laa

# Graphs for which the least eigenvalue is minimal, $II^{\ddagger}$

Francis K. Bell<sup>a,1</sup>, Dragoš Cvetković<sup>b</sup>, Peter Rowlinson<sup>a</sup>, Slobodan K. Simić<sup>c,\*</sup>

<sup>a</sup> Department of Computing Science and Mathematics, University of Stirling, Stirling FK9 4LA, Scotland, United Kingdom

<sup>b</sup> Department of Mathematics, Faculty of Electrical Engineering, University of Belgrade, P.O. Box 35-54, 11120 Belgrade, Serbia

<sup>c</sup> Mathematical Institute SANU, Knez Mihailova 35, 11001 Belgrade, Serbia

Received 14 November 2007; accepted 9 June 2008 Available online 8 August 2008 Submitted by R.A. Brualdi

Dedicated to Michael Doob on his 65th birthday.

### Abstract

We continue our investigation of graphs G for which the least eigenvalue  $\lambda(G)$  is minimal among the connected graphs of prescribed order and size. We provide structural details of the bipartite graphs that arise, and study the behaviour of  $\lambda(G)$  as the size increases while the order remains constant. The non-bipartite graphs that arise were investigated in a previous paper [F.K. Bell, D. Cvetković, P. Rowlinson, S.K. Simić, Graphs for which the least eigenvalue is minimal, I, Linear Algebra Appl. (2008), doi:10.1016/j.laa.2008.02.032]; here we distinguish the cases of bipartite and non-bipartite graphs in terms of size. © 2008 Elsevier Inc. All rights reserved.

AMS classification: 05C50

Keywords: Bipartite graph; Graph spectrum; Largest eigenvalue; Least eigenvalue

\* Corresponding author.

0024-3795/\$ - see front matter  $_{\odot}$  2008 Elsevier Inc. All rights reserved. doi:10.1016/j.laa.2008.06.018

<sup>\*</sup> Research supported by EPSRC Grant EP/D010748/1 and by the Serbian Ministry for Science Grant 144015G.

*E-mail addresses:* ecvetkod@etf.bg.ac.yu (D. Cvetković), p.rowlinson@stirling.ac.uk (P. Rowlinson), sksimic@mi.sanu.ac.yu (S.K. Simić).

<sup>&</sup>lt;sup>1</sup> Died 19 December 2006.

#### 1. Introduction

Let  $G = (V_G, E_G)$  be a simple graph, with vertex set  $V_G$  and edge set  $E_G$ . Its *order* is  $|V_G|$ , denoted by n, and its *size* is  $|E_G|$ , denoted by m. We write  $u \sim v$  to indicate that vertices uand v are adjacent, and we write  $A_G$  for the (0, 1)-adjacency matrix of G. The characteristic polynomial det $(xI - A_G)$  is denoted by  $\phi_G(x)$ . The zeros of  $\phi_G(x)$  are called the *eigenvalues of* G; recall that they are real since  $A_G$  is symmetric. We write  $\lambda(G)$  for the least eigenvalue of G,  $\rho(G)$  for the largest eigenvalue (the *index*) of G, and  $\lambda_i(G)$  for the *i*th largest eigenvalue of G(i = 1, 2, ..., n). The degree of a vertex v is denoted by deg(v).

In a previous paper [1] we investigated the graphs G for which  $\lambda(G)$  is minimal among the connected graphs of prescribed order and size. We showed that if G is not complete then  $\lambda(G)$  is a simple eigenvalue and G is either bipartite or a join of two graphs of a simple form. In this paper, we provide structural details of the bipartite graphs that arise, and study the behaviour of  $\lambda(G)$  as the size increases while the order remains constant.

The main structural result in [1] is Theorem 3.7 which reads:

**Theorem 1.1.** Let G be a connected graph whose least eigenvalue is minimal among the connected graphs of order n and size  $m\left(0 < m < \binom{n}{2}\right)$ . Then G is either

- (i) a bipartite graph, or
- (ii) a join of two nested split graphs (not both totally disconnected).

A graph *G* is called a *nested split graph* if its vertices can be ordered so that  $jq \in E_G$  implies  $ip \in E_G$  whenever  $i \leq j$  and  $p \leq q$ . The nested split graphs are the graphs without  $2K_2$ ,  $P_4$  or  $C_4$  as an induced subgraph (cf. [5]); they are precisely the graphs with a stepwise adjacency matrix (see [4, Section 3.3]). For subsequent reference we provide further details from [1] of the graphs that arise in case (ii) of Theorem 1.1. Here, let  $\mathbf{x} = (x_1, \ldots, x_n)^T$  be an eigenvector corresponding to  $\lambda(G)$ , and let  $V^- = \{u \in V_G : x_u < 0\}$ ,  $V^0 = \{u \in V_G : x_u = 0\}$ ,  $V^+ = \{u \in V_G : x_u > 0\}$ . Let  $H^-$ ,  $H^+$  be the subgraphs of *G* induced by  $V^-$ ,  $V^+$ , respectively. By [1, Proposition 3.5], if  $H^-$ ,  $H^+$  are not both totally disconnected then every vertex in  $V^-$  is adjacent to every vertex in  $V^+$ . Otherwise,  $V_0 \neq \emptyset$  (since *G* is non-bipartite), and each vertex v in  $V^- \cup V^+$  has a neighbour outside  $V_0$  (by consideration of the corresponding eigenvalue equation  $\lambda(G)x_v = \sum_{u \sim v} x_u$ ). Recall also that each vertex in  $V^0$  is adjacent to all other vertices [1, Lemma 3.1]. Accordingly we can deduce the following:

**Proposition 1.2.** In case (ii) of Theorem 1.1, G has an edge e = vw such that  $x_v x_w \ge 0$ ,  $x_v \ne 0$  and G - e is connected.

For a bipartite graph G, we have  $\lambda(G) = -\rho(G)$ , and so in Section 2 we determine the structure of connected bipartite graphs with maximal index for prescribed n and m. Here,  $m \leq \lfloor \frac{n}{2} \rfloor \lceil \frac{n}{2} \rceil$ , with equality if and only if  $G = K_{\lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil}$ . In Section 3, we investigate how the minimal least eigenvalue of bipartite graphs varies with m when n is fixed, while in Section 4 we use these results to study the same question for all connected graphs; in particular, we are in a position to distinguish cases (i) and (ii) of Theorem 1.1 when m varies.

# 2. The structure of extremal bipartite graphs

Before we state our main result in this section we need a definition.

Let *G* be a bipartite graph with colour classes *U* and *V*. We say that *G* is a *double nested graph* if there exist partitions  $U = U_1 \cup U_2 \cup \cdots \cup U_h$  and  $V = V_1 \cup V_2 \cup \cdots \cup V_h$ , such that the neighbourhood of each vertex in  $U_1$  is  $V_1 \cup V_2 \cup \cdots \cup V_h$ , the neighbourhood of each vertex in  $U_2$  is  $V_1 \cup \cdots \cup V_{h-1}$ , and so on. If  $|U_i| = m_i$   $(i = 1, 2, \dots, h)$  and  $|V_i| = n_i$   $(i = 1, 2, \dots, h)$  then *G* is denoted by  $D(m_1, m_2, \dots, m_h; n_1, n_2, \dots, n_h)$ .

**Theorem 2.1.** If G is a graph for which  $\lambda(G)$  is minimal (equivalently,  $\rho(G)$  is maximal) among all connected bipartite graphs of order n and size m, then G is a double nested graph.

Thus double nested graphs play the same role among bipartite graphs (with respect to the index) as nested split graphs among non-bipartite graphs. The proof of Theorem 2.1 is based on the following lemmas, the first of which is taken from [6]. Recall that the index  $\rho$  of a connected graph G is a simple eigenvalue, and that there exists a unique unit eigenvector corresponding to  $\rho$  having only positive entries; this eigenvector is called the *Perron eigenvector* of G.

**Lemma 2.2.** Let G' be the graph obtained from a connected graph G by rotating the edge  $r_i s$  around  $r_i$  to the non-edge position  $r_i t$  for each  $i \in \{1, ..., k\}$ . Let  $\mathbf{x} = (x_1, x_2, ..., x_n)^T$  be the Perron eigenvector of G. If  $x_t \ge x_s$  then  $\rho(G') > \rho(G)$ .

The next lemma will be very helpful when we encounter a bridge in a graph whose index is assumed to be maximal. Given two rooted graphs  $P(=P_u)$  and  $Q(=Q_v)$  with u and v as roots, let G be the graph obtained from the disjoint union  $P \cup Q$  by adding the edge uv. Let G' be the graph obtained from the coalescence of  $P_u$  and  $Q_v$  by attaching a pendant edge at the vertex identified with u and v.

**Lemma 2.3.** With the above notation, if P and Q are two non-trivial connected graphs then  $\rho(G) < \rho(G')$ .

**Proof.** Let  $(x_1, x_2, ..., x_n)^T$  be the Perron eigenvector of *G*. Without loss of generality, we may suppose that  $x_u \leq x_v$ . Let  $\Delta$  be the neigbourhood of *u* in *P*; since *P* is non-trivial,  $\Delta \neq \emptyset$ . Now *G'* is obtained from *G* by replacing the edges uw ( $w \in \Delta$ ) by the edges vw ( $w \in \Delta$ ), and so  $\rho(G) < \rho(G')$  by Lemma 2.2, as required.  $\Box$ 

In what follows we assume that G has maximal index among the connected bipartite graphs of fixed order and size.

**Lemma 2.4.** Let G be a graph satisfying the above assumptions, and let  $\mathbf{x} = (x_1, x_2, ..., x_n)^T$  be the Perron eigenvector of G. If v, w are vertices in the same colour class such that  $x_v \ge x_w$  then deg $(v) \ge deg(w)$ .

**Proof.** Let U, V be the colour classes of G and suppose, by way of contradiction, that v, w are vertices in V such that  $x_v \ge x_w$  and  $\deg(v) < \deg(w)$ . Then  $\deg(w) > 1$  and there exists

 $u \in U$  such that  $v \not\sim u \sim w$ . By Lemma 2.1, we may rotate uw to uv to obtain a graph G' such that  $\rho(G') > \rho(G)$ . If uw is a bridge then deg(u) = 1 by Lemma 2.3, and so G' is necessarily connected; but now the maximality of  $\rho(G)$  is contradicted, and the proof follows.  $\Box$ 

From now on we take the colour classes to be  $U = \{u_1, u_2, \ldots, u_p\}$  and  $V = \{v_1, v_2, \ldots, v_q\}$ , with  $x_{u_1} \ge x_{u_2} \ge \cdots \ge x_{u_p}$  and  $x_{v_1} \ge x_{v_2} \ge \cdots \ge x_{v_q}$ . By Lemma 2.4, this ordering coincides with the ordering by degrees in each colour class, and in the next lemma we note some consequences.

**Lemma 2.5.** Let G be a graph satisfying the above assumptions including those on vertex ordering. Then

- (i) the vertices  $u_1$  and  $v_1$  are adjacent;
- (ii)  $u_1$  is adjacent to every vertex in V, and  $v_1$  is adjacent to every vertex in U;
- (iii) if the vertex u is adjacent to  $v_k$  then u is adjacent to  $v_j$  for all j < k, and if the vertex v is adjacent to  $u_k$  then v is adjacent to  $u_j$  for all j < k.

**Proof.** First we consider bridges in G: by Lemma 2.3, all bridges are pendant edges. By Lemma 2.2, all pendant edges are attached at the same vertex, and this vertex w is such that  $x_w$  is maximal. Without loss of generality,  $x_{u_1} \ge x_{v_1}$  and  $w = u_1$ . It follows that the result holds if G is a tree, for then G is a star. Accordingly, we suppose that G is not a tree.

To prove (i), suppose by way of contradiction that  $u_1 \not\sim v_1$ . Then  $v_1$  is adjacent to some vertex  $u \in U$ , and  $uv_1$  is not a bridge. By Lemma 2.2, we may rotate  $v_1u$  to  $v_1u_1$  to obtain a connected bipartite graph G' such that  $\rho(G') > \rho(G)$ , contradicting the maximality of  $\rho(G)$ .

To prove (ii), suppose that u is a vertex of U not adjacent to  $v_1$ . Then  $u \neq u_1$  by (i), uv is not a bridge, and u is adjacent to some vertex v in V other than  $v_1$ . Now we can rotate uv to  $uv_1$  to obtain a contradiction as before. Secondly, suppose that v is a vertex of V not adjacent to  $u_1$ . Then  $v \neq v_1$  by (i), again  $vu_1$  is not a bridge, and a rotation about v yields a contradiction.

To prove (iii), suppose that  $u \in U$ ,  $u \sim v_k$  and  $u \not\sim v_j$  for some j < k. Now  $u \neq u_1$  by (ii), and so  $uv_k$  is not a bridge. Then we can rotate  $uv_k$  to  $uv_j$  to obtain a contradiction. Finally, suppose that  $v \in V$ ,  $v \sim v_k$  and  $v \not\sim u_j$  for some j < k. In this case,  $vu_k$  is not a bridge because k > 1, and the rotation of  $vu_k$  to  $vu_j$  yields a contradiction.

This completes the proof.  $\Box$ 

The proof of Theorem 2.1. follows now directly from Lemma 2.5 and the definition of a double nested split graph.

We conclude this section with two remarks.

First, with the notation of Lemma 2.5, let  $d_i = \deg(u_i)$  (i = 1, ..., p) and  $e_j = \deg(v_j)$  (j = 1, ..., q). Let  $\Pi_U$  be the integer partition  $m = d_1 + d_2 + \cdots + d_p$ , and let  $\Pi_V$  be the integer partition  $m = e_1 + e_2 + \cdots + e_q$ . We have  $d_1 \ge d_2 \ge \cdots \ge d_p$  and  $e_1 \ge e_2 \ge \cdots \ge e_q$ ; moreover, the structure of a double nested graph ensures that  $\Pi_U$  and  $\Pi_V$  are conjugate, i.e. the Ferrers diagram for  $\Pi_U$  is the transpose of the Ferrers diagram for  $\Pi_V$ .

Secondly, we can give an algorithm for constructing the double nested graphs of order *n* and size *m*. For each integer partition  $\Pi : m = d_1 + d_2 + \cdots + d_p$  with  $d_1 \ge d_2 \ge \cdots \ge d_p$  and  $d_1 + p = n$ , we can construct the double nested graph with  $U = \{u_1, u_2, \ldots, u_p\}$ ,  $V = \{v_1, v_2, \ldots, v_q\}$ ,  $q = d_1$  and  $\Pi_U = \Pi$  as follows. Considering the vertices  $u_1, u_2, \ldots, u_p$  in succession, we join  $u_k$  to the first  $d_k$  of the vertices  $v_1, v_2, \ldots, v_q$ .

#### 3. The behaviour of the least eigenvalue of extremal connected bipartite graphs

We may summarize the results of this section as follows.

**Theorem 3.1.** For fixed  $n \ge 7$ , let  $G_m$  be a graph whose least eigenvalue is minimal (equivalently, whose index is maximal) among the connected bipartite graphs of order n and size  $m < \lfloor \frac{n}{2} \rfloor \lceil \frac{n}{2} \rceil$ . Then

- (i) if  $m \neq t(n-t)$  for all  $t \in \{1, 2, ..., \lfloor \frac{n}{2} \rfloor 1\}$  then  $\rho(G_m) < \rho(G_{m+1})$ ;
- (ii) if m = t(n-t) for some  $t \in \{1, 2, ..., \lfloor \frac{n}{2} \rfloor 1\}$  then  $\rho(G_m) > \rho(G_{m+1})$  unless  $G_{m+1}$  has the form D(p, q; r, s), where

 $\{t, n-t\} = \{p+q, r+s\}, t(n-t) = pr + ps + qr - 1 \leq pqrs.$ 

The proof follows from sequence of lemmas in which we discuss how  $\rho(G_m)$  varies with (for fixed *n*).

**Lemma 3.2.** Under the above assumptions we have:

- (i) ρ(G<sub>m</sub>) ≤ √m, with equality if and only if G<sub>m</sub> is a complete bipartite graph K<sub>t,n-t</sub>, for some t ∈ {1, 2, ..., ⌊n/2⌋};
- (ii)  $\rho(G_m) < \rho(G_{m+1})$  whenever  $t(n-t) + 1 \le m < (t+1)(n-t-1)$ , where  $t \in \{1, 2, \dots, \lfloor \frac{n}{2} \rfloor 1\}$ .

**Proof.** Let  $\lambda_1 > \lambda_2 \ge \cdots \ge \lambda_{n-1} > \lambda_n$  be the eigenvalues of a connected bipartite graph *G*. Since *G* is bipartite we have

$$m = \sum_{i=1}^{\lfloor \frac{n}{2} \rfloor} \lambda_i^2.$$
<sup>(1)</sup>

It follows that  $\rho(G_m) \leq \sqrt{m}$ , with equality if and only if  $\lambda_1^2 = m$  and  $\lambda_2^2 = \cdots = \lambda_{\lfloor \frac{n}{2} \rfloor} = 0$ . In this case,  $G_m = K_{t,n-t}$  for some *t* (see, e.g. [2, Theorem 6.5]), and this completes the proof of (i).

In (ii),  $m \neq t(n-t)$  for all t, and so  $G_m$  is not a complete bipartite graph. Thus  $G_m$  is a proper spanning subgraph of some complete bipartite graph K (of order n). Accordingly we may add to G some edge of K to obtain a connected bipartite graph G' of order n for which  $\rho(G_m) < \rho(G')$ . Since  $\rho(G') \leq \rho(G_{m+1})$ , the proof of (ii) is complete.  $\Box$ 

**Remark.** Computational data obtained by F. Marić shows that if m = t(n - t) for some  $t \in \{1, 2, ..., \lfloor \frac{n}{2} \rfloor - 1\}$  then both possibilities (namely  $\rho(G_m) < \rho(G_{m+1})$  and  $\rho(G_m) > \rho(G_{m+1})$ ) can arise. For n = 9 we have the situation presented in Fig. 1, where points at which m = t (n - t) + 1 for some t are indicated by vertical lines.

In considering the situation left unresolved by Lemma 3.2, we let m = t(n - t) for some  $t \in \{1, 2, ..., \lfloor \frac{n}{2} \rfloor - 1\}$ . Then  $G_m = K_{t,n-t}$ , while  $G_{m+1}$  is a double nested graph  $D(m_1, m_2, ..., m_h; n_1, n_2, ..., n_h)$ .

2172



In the next two lemmas and Theorem 3.1, we assume that  $n \ge 7$ ; when n < 7, we may refer to the tables of eigenvalues in [2,3].

**Lemma 3.3.** Suppose that m = t(n-t) and  $n \ge 7$ . If  $h \ge 3$  then  $\rho(G_m) > \rho(G_{m+1})$ .

**Proof.** We write  $G = G_m$  and  $G' = G_{m+1}$ . Let  $\lambda_1 > \lambda_2 \ge \cdots \ge \lambda_{n-1} > \lambda_n$  and  $\lambda'_1 > \lambda'_2 \ge \cdots \ge \lambda_{n-1}$  $\dots \ge \lambda'_{n-1} > \lambda'_n$  be the eigenvalues of G and G', respectively.

From (1) we have immediately:

$$\sum_{i=1}^{\lfloor \frac{n}{2} \rfloor} (\lambda'_i)^2 - \lambda_1^2 = 1.$$

From this it follows that

$$\rho(G)^2 - \rho(G')^2 = \sum_{i=2}^{\lfloor \frac{n}{2} \rfloor} (\lambda'_i)^2 - 1.$$
<sup>(2)</sup>

In considering the relation (2), we distinguish two cases.

Case 1:  $h \ge 4$ . In this case, G' has an induced subgraph  $D_1$ , where  $D_1 = D(1, 1, 1, 1, 1, 1, 1, 1)$ , and we have  $\lambda'_2 \ge \lambda_2(D_1)$ . But  $\lambda_2(D_1) > 1$ , and so  $\rho(G)^2 > \rho(G')^2$  by (2).

Case 2: h = 3. In this case, G' contains, as an induced subgraph, one of the graphs  $D_2 =$  $D(1, 1, 1; 1, 1, 2), D_3 = D(1, 1, 1; 1, 2, 1)$  and  $D_4 = D(1, 1, 1; 2, 1, 1)$ . Since  $\lambda_2(D_i) > 1$  (i = 02, 3, 4), we have  $\rho(G)^2 > \rho(G')^2$  as before.

This completes the proof.  $\Box$ 

**Remark.** Note that the graphs  $D_i$  (i = 1, 2, 3, 4) appearing in the above lemma are not the smallest induced subgraphs which can be used to obtain the required inequality.

When h = 1,  $G_{m+1}$  is itself a complete bipartite graph, n = 2t + 2 and  $\rho(G_m) < \rho(G_{m+1})$ . The next lemma deals with the remaining case, h = 2.

**Lemma 3.4.** Suppose that m = t(n - t) and  $G_{m+1} = D(p, q; r, s)$  (so that m + 1 = pr + ps + qr). Then we have:

(i)  $\rho(G_m) < \rho(G_{m+1})$  if m > pqrs; (ii)  $\rho(G_m) = \rho(G_{m+1})$  if m = pqrs; (iii)  $\rho(G_m) > \rho(G_{m+1})$  if m < pqrs.

**Proof.** We write  $G = G_m$ ,  $G' = G_{m+1}$  as before, and we use the divisor technique (see [2, Chapter 4]) to compute the eigenvalues of G'. Note that  $V_{G'}$  has  $U_1 \cup U_2 \cup V_1 \cup V_2$  as an equitable partition, and the corresponding divisor has adjacency matrix

$$A_D = \begin{pmatrix} 0 & 0 & r & s \\ 0 & 0 & r & 0 \\ p & q & 0 & 0 \\ p & 0 & 0 & 0 \end{pmatrix}.$$

We find easily that  $\phi_{A_p^2}(x) = (x^2 - m'x + pqrs)^2$ , where m' = m + 1.

The vertices in each of the four cells of the equitable partition are duplicate vertices of G', and together they give rise to n - 4 eigenvalues equal to 0. We deduce that there are just four non-zero eigenvalues in G', namely  $\pm \lambda'_1, \pm \lambda'_2$  where

$$\lambda_{1,2}^{\prime 2} = \frac{1}{2} \left( m' \pm \sqrt{m'^2 - 4pqrs} \right).$$

Now the result follows from (2).  $\Box$ 

On the basis of Lemmas 3.3 and 3.4 the proof of Theorem 3.1 readily follows.

In case (ii) of Theorem 3.1, we can use a program written in *Mathematica* to check, for each 4-tuple (p, q, r, s), whether the corresponding graph exists. If at least one such graph exists then  $\rho(G_m) \leq \rho(G_{m+1})$  by Lemma 3.4. We show that, in this situation, at least two of the parameters p, q, r, s are subject to an absolute bound.

By Lemma 3.4, we have the following basic requirement:

$$pr + ps + rq \ge 1 + pqrs. \tag{3}$$

In addition to this, we can assume

$$p+r \ge 3, \quad r \ge p.$$
 (4)

The first condition in (4) follows from the fact that D(p, q, r, s) is not a tree, while the second follows from the fact that we may interchange U and V if necessary. We consider the following three cases:

(a) ps = 1 (equivalently, p = s = 1); (b) qs = 1 (equivalently, q = s = 1); (c)  $ps \neq 1$  and  $qs \neq 1$ .

Note that  $rq \neq 1$ , by (4).

2174

In cases (a) and (b), respectively, we obtain immediately:

(a')  $p = 1, q \ge 1, r \ge \max\{2, p\}$  and s = 1; (b')  $p \ge 1, q = 1, r \ge \max\{2, p\}$  and s = 1.

In case (c) we can prove the following:

**Proposition 3.5.** If (c) holds, then p, q and s are bounded above; indeed, we have

(c')  $p \leq 2, q \leq 2, r \geq p$  and  $s \leq 3$ .

Additionally, if s = 1 then  $q \leq 2$ ; and if  $2 \leq s \leq 3$  then q = 1.

**Proof.** We can rewrite (3) in the form

$$\frac{1}{qs} + \frac{1}{ps} + \frac{1}{rq} \ge 1 + \frac{1}{pqrs}.$$
(5)

If q is not bounded, then by letting  $q \to +\infty$  we see that  $ps \leq 1$ , a contradiction to (c). Similarly, s is bounded, for otherwise rq = 1. Next, if p (and hence also r) is unbounded, then by letting  $p, r \to +\infty$  we find that  $qs \leq 1$ , contradicting (c) again.

We now determine the upper bounds for p, q and s. First, if s = 1 then from (5) we obtain

$$q \leqslant \frac{1}{r} + \frac{p}{p-1} \leqslant \frac{5}{2}.$$

Here the second inequality holds because  $p \ge 2$  (by (c)), while  $r \ge 2$  (by (4)). Thus q = 2 (by (c)). Now from (4) and (3) (with q = 2 and s = 1) we find that p < 3, and hence that p = 2.

Secondly, if  $s \ge 2$ , we first use the relation

$$\frac{1}{qs} + \frac{1}{ps} + \frac{1}{rq} > 1$$
(6)

to obtain

$$s < \frac{1 + \frac{1}{p}}{1 - \frac{1}{rq}} \leqslant 4.$$

Thus  $s \in \{2, 3\}$ , as required. From (6) we find that

$$q < \frac{1+\frac{s}{r}}{s-\frac{1}{p}} < 2.$$

Thus q = 1. If s = 2, then from (4) and (3) (with q = 1, s = 2), we find that  $p \leq 2$ . Similarly, if s = 3 then we find that p = 1.

This completes the proof.  $\Box$ 

# 4. The behaviour of the least eigenvalue of extremal connected graphs

In this section, we establish several propositions which serve to prove the following theorem.

**Theorem 4.1.** Let G be a graph whose least eigenvalue is minimal among the connected graphs of order n and size m. Then



Fig. 2. The behavior of  $\rho$  ( $H_m$ ) when n = 9.

- (i) if  $n 1 \le m \le \lfloor \frac{n}{2} \rfloor \lfloor \frac{n}{2} \rfloor$  and  $m \ne t(n t) + 1$  for all  $t \in \{1, 2, ..., \lfloor \frac{n}{2} \rfloor 1\}$ , then G is bipartite and hence a double nested graph;
- (ii) if m ≤ ⌊n/2 ⌋ ⌈n/2 ⌉ and m = t (n − t) + 1 for some t ∈ {1, 2, ..., ⌊n/2 ⌋ − 1}, then G is either bipartite or the non-bipartite graph K<sub>t,n−t</sub> + e, where e is an edge joining two vertices of degree min{t, n − t} in K<sub>t,n−t</sub>;
- (iii) if  $\lfloor \frac{n}{2} \rfloor \lceil \frac{n}{2} \rceil < m < \binom{n}{2}$  then G is non-bipartite and hence the join of two nested split graphs.

The bipartite graphs which appear in the case (ii) of Theorem 4.1 are more precisely described in Theorem 3.1(ii); see also Lemma 3.4 and Proposition 3.5.

We fix *n* and take  $H_m$  to be a graph whose least eigenvalue is minimal among the connected graphs of order *n* and size *m*. Fig. 2 shows the behaviour of  $\lambda = \lambda(H_m)$  for n = 9 (obtained by direct calculation).

It was observed that, for  $m \le 20$ ,  $H_m$  is always a bipartite graph; of course, for m > 20 this is impossible. In the following proposition, we give a partial result which explains this phenomenon in a more general setting.

**Proposition 4.2.** If  $m \leq \lfloor \frac{n}{2} \rfloor \lceil \frac{n}{2} \rceil$  and  $m \neq t(n-t) + 1$ , where  $t \in \{1, 2, ..., \lfloor \frac{n}{2} \rfloor - 1\}$ , then  $H_m$  is a bipartite graph.

**Proof.** Assume the contrary, and let  $H = H_m$  where *m* is the least integer for which the assertion is false. Let  $\mathbf{x} = (x_1, x_2, \dots, x_n)^T$  be a unit eigenvector of *H* corresponding to  $\lambda(H)$ . From Proposition 1.2, we know that *H* contains an edge e = vw such that  $x_v x_w \ge 0$  and H - e is connected. Writing  $H^* = H - e$ , we have

$$\lambda(H^*) \leqslant \mathbf{x}^{\mathrm{T}} A_{H^*} \mathbf{x} = \mathbf{x}^{\mathrm{T}} A_H \mathbf{x} - 2x_{\nu} x_w \leqslant \mathbf{x}^{\mathrm{T}} A_H \mathbf{x} = \lambda(H).$$
(7)

Now  $H_{m-1}$  is bipartite (by the choice of *m*), and so we have

$$\lambda(G_{m-1}) = \lambda(H_{m-1}) \leqslant \lambda(H^*) \leqslant \lambda(H) \leqslant \lambda(G_m).$$

On the other hand, since  $m - 1 \ge s(n - s) + 1$ , we have  $\lambda(G_m) < \lambda(G_{m-1})$  by Lemma 3.2. This contradiction completes the proof.  $\Box$ 

**Remark.** Note that the arguments in the above proof cannot always be used when m = t(n - t) + 1 for some t, since then we may have  $\lambda(G_{m-1}) < \lambda(G_m)$  (see Lemma 3.4).

When n = 9, we can see that, for m > 20,  $\lambda(H_m)$  increases strictly with m (up to -1). This property is easily established in the general case:

**Proposition 4.3.** For fixed n, and for  $m > \lfloor \frac{n}{2} \rfloor \lceil \frac{n}{2} \rceil$ ,  $\lambda(H_m)$  increases strictly with m (to a maximum of -1).

**Proof.** We use the notation of Proposition 4.2, with  $H = H_m$ ,  $H^* = H - e$ , e = vw and **x** a unit eigenvector of H corresponding to  $\lambda$ . By Proposition 1.2 we may choose v, w such that  $x_v x_w \ge 0$  and  $x_v \ne 0$ . Now Eq. (7) holds, and we deduce that  $\lambda(H^*) \le \lambda(H)$ . If  $\lambda(H^*) = \lambda(H)$  then **x** is an eigenvector of  $H^*$  corresponding to  $\lambda$ ; but then the eigenvalue equations for w in H and  $H^*$  are inconsistent since  $x_v \ne 0$ . Thus  $\lambda(H^*) < \lambda(H)$ , and since  $\lambda(H_{m-1}) \le \lambda(H^*)$ , the proof is complete.  $\Box$ 

**Remark.** Let  $\hat{H}_m$  be a graph whose least eigenvalue is minimal among the connected non-bipartite graphs of order *n* and size *m*. If *n* is fixed and  $m \leq \lfloor \frac{n}{2} \rfloor \lceil \frac{n}{2} \rceil$  then  $\lambda(\hat{H}_m)$  does not necessarily increase with *m*.

Finally, we resolve the situation not covered by Proposition 4.2.

**Proposition 4.4.** If  $m \leq \lfloor \frac{n}{2} \rfloor \lceil \frac{n}{2} \rceil$  and  $H_m$  is a non-bipartite graph, then m = t(n-t) + 1 for some  $t \in \{1, 2, ..., \lfloor \frac{n}{2} \rfloor - 1\}$  and  $H_m = K_{t,n-t} + e$ , where *e* is an edge joining two vertices of degree min $\{t, n-t\}$  in  $K_{t,n-t}$ .

**Proof.** First, by Proposition 4.2 we have m = t(n-t) + 1 for some  $t \in \{1, 2, ..., \lfloor \frac{n}{2} \rfloor - 1\}$ . On the other hand, from Theorem 1.1 we know that  $H_m$  has a complete bipartite graph  $B = K_{u,n-u}(u \leq \lfloor \frac{n}{2} \rfloor)$  as a proper spanning subgraph. Thus  $u \leq t$ , and it suffices to show that u = t. We suppose by way of contradiction that u < t.

Let  $H = H_m$ , and let **x** be a unit eigenvector for  $\lambda(H)$ . Then we have

$$\lambda(H) = \mathbf{x}^{\mathrm{T}} A_H \mathbf{x} = 2 \sum_{vw \in E_H} x_v x_w \ge 2 \sum_{vw \in E_B} x_v x_w \ge \lambda(B).$$

Now consider a graph  $K = K_{t,n-t} + e$ , where *e* is an edge joining two vertices in a colour class. We obtain the contradiction  $\lambda(K) < \lambda(H)$  by showing that  $\lambda(K) < \lambda(B)$ . Note that  $\lambda(B) \ge -\sqrt{c}$  where c = (t - 1)(n - t + 1).

First we compute the spectrum of a graph  $G = K_{a,b} + e$ , where *e* is added to the colour class of size *b*. Counting the number of duplicate and co-duplicate vertices of *G*, we see that at least

a + b - 3 eigenvalues are equal to 0 or -1. On the other hand, if b > 2, three eigenvalues can be determined from the divisor with adjacency matrix

$$A_D = \begin{pmatrix} 0 & b-2 & 2\\ a & 0 & 0\\ a & 0 & 1 \end{pmatrix}$$

Thus the three remaining eigenvalues are the solutions of f(x) = 0, where

$$f(x) = x^3 - x^2 - abx + a(b-2).$$

If b = 2 then  $A_D = \begin{pmatrix} 0 & 2 \\ a & 1 \end{pmatrix}$ , and again the least eigenvalue is a solution of f(x) = 0. Taking a = t, b = n - t, we have

$$f(-\sqrt{c}) = \sqrt{c}(n-2t+1) + (n-4t+1) > (t-1)(n-2t+1) + (n-4t+1) \ge 0.$$

Hence  $\lambda(K) < -\sqrt{c} \leq \lambda(B)$ , and so  $\lambda(K) < \lambda(H)$  as required.

Finally, suppose that a > b. If we interchange a and b above, f(x) is replaced by g(x), where g(x) = f(x) + 2(a - b). Since g(x) > f(x), the smallest root of g(x) is less than the smallest root of f(x). Accordingly,  $\lambda(K)$  is minimal when e joins two vertices of smaller degrees.

This completes the proof.  $\Box$ 

**Remark.** We give an example due to F. Marić which illustrates Proposition 4.4. If n = 12 and m = 21 then  $H_m = K_{2,10} + e$ , where e is an edge joining two vertices of degree 2 in  $K_{2,10}$ . Actually, now  $\lambda(H_m) = -4.38835...$ , while any connected bipartite graph of order 12 and size 21 has all eigenvalues greater than -4.37228..., as required. Among all graphs G of order 12 and size 21 (not necessarily connected), the minimal value of  $\lambda(G)$  is not attained by  $H_{21}$  because  $\lambda(K_{3,7} \cup 2K_1) = -\sqrt{21} = -4.58275...$ 

In view of Theorem 1.1 and Propositions 4.2, 4.4, the proof of Theorem 4.1 clearly follows.

**Remark.** Let  $\mathscr{G}(n, m)$  be the set of graphs of order n and size m, and define

$$f(n, m) = \min\{\lambda(G) : G \in \mathcal{G}(n, m)\},\$$
  
$$g(n, m) = \min\{\lambda(G) : G \in \mathcal{G}(n, m) \text{ and } G \text{ is connected}\}.$$

We noted in [1] that  $f(n, m) = \min\{g(k, m) : k \le n \text{ and } \mathscr{G}(k, m) \text{ contains at least one connected graph}\}$ . Since  $k - 1 \le m \le k(k - 1)/2$ , we have

$$\frac{1}{2}(1+\sqrt{1+8m}) \leqslant k \leqslant \min\{n, m+1\}.$$

To find the value of k for which the minimum of g(k, m) is attained, we need to know the behaviour of min{ $\lambda(G) : G \in \mathcal{G}(k, m)$ } as a function of k when m is constant. In principle, this can be deduced from Theorem 4.1 but we do not attempt an explicit formulation.

#### Acknowledgement

The authors are grateful to Filip Marić for undertaking some calculations used in the preparation of this paper.

2178

# References

- F.K. Bell, D. Cvetković, P. Rowlinson, S.K. Simić, Graphs for which the least eigenvalue is minimal, I, Linear Algebra Appl. (2008), doi:10.1016/j.laa.2008.02.032.
- [2] D. Cvetković, M. Doob, H. Sachs, Spectra of Graphs, third ed., Johann Ambrosius Barth, Heidelberg, 1995.
- [3] D. Cvetković, M. Petrić, A table of connected graphs on six vertices, Discrete Math. 50 (1984) 37-49.
- [4] D. Cvetković, P. Rowlinson, S. Simić, Eigenspaces of Graphs, Cambridge University Press, Cambridge, 1997.
- [5] S.K. Simić, E.M. Li Marzi, F. Belardo, Connected graphs of fixed order and size with maximal index: structural considerations, Le Matematiche LIX (2004) 349–365.
- [6] B.F. Wu, E.L. Xiao, Y. Hong, The spectral radius of trees on k pendant vertices, Linear Algebra Appl. 395 (2005) 343–349.