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Abstract

Let G be a finite graph with µ as an eigenvalue of multiplicity k. A star
set for µ is a set X of k vertices in G such that µ is not an eigenvalue of
G−X. We investigate independent star sets of largest possible size in
a variety of situations. We note connections with symmetric designs,
codes, strongly regular graphs, and graphs with least eigenvalue −2.
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1 Introduction

Let G be a finite simple graph of order n with µ as an eigenvalue of multi-
plicity k, and let t = n − k. Thus the corresponding eigenspace E(µ) of a
(0, 1)-adjacency matrix of G has dimension k and codimension t. We call t
the co-multiplicity of µ. A star set for µ in G is a subset X of the vertex-set
V (G) such that |X| = k and the induced subgraph G−X does not have µ
as an eigenvalue. In this situation, G−X is called a star complement for µ
in G. We use the notation of [11], where the fundamental properties of star
sets and star complements are established in Chapter 5. Recall that µ is said
to be a main eigenvalue if E(µ) is not orthogonal to the all-1 vector in IRn,
and that in an r-regular graph, all eigenvalues other than r are non-main.

It is well known that if µ 6= −1 or 0 and G 6= K2 or 2K2 then |X| ≤
(t
2

)
;

moreover, |X| ≤
(t
2

)
− 1 when µ is not a main eigenvalue [3]. We shall soon

see that if further X is an independent set then |X| ≤ t, while |X| ≤ t − 1
when µ is non-main. In Section 2 we investigate graphs with an independent
star set X of size t, and note the role of symmetric 2-designs in an extremal
configuration. In Section 3 we determine all the graphs that occur when
|X| = t and µ = −2. In Section 4 we see how independent star sets of size
t− 1 (for a non-main eigenvalue) can arise from strongly regular graphs. In
Section 5 we show how smaller upper bounds for |X| apply when a particular
star complement is used to determine an error-correcting code.

The special case of an independent star set of size t for the non-main
eigenvalue −1 features in [1, Proposition 4.2] (see also Proposition 2.1(ii)
below). The authors of [2] investigate graphs in which every star set for
every eigenvalue is independent; such graphs are called galaxy graphs [4]. In
contrast, our approach here is to explore how a single independent star set
can arise. Note that if S is a star set for µ in G and if U is a proper subset of
S then (by interlacing) S \U is a star set for µ in G−U . We deduce that if
the subset X of S is independent, then by removing from G the vertices of S
outside X, we obtain a graph with X as an independent star set. Note also
that we may confine our attention to maximal independent star sets; here
we consider independent star sets of largest size in a variety of situations.

We shall require the following properties of star sets. For any X ⊆
V (G), we write GX for the subgraph of G induced by X. We take V (G) =
{1, . . . , n}, and write u ∼ v to mean that vertices u and v are adjacent. An
all-1 vector is denoted by j, its length determined by context.

Theorem 1.1 [11, Theorem 5.1.7] Let X be a set of k vertices in G and

suppose that G has adjacency matrix

(
AX B>

B C

)
, where AX is the adja-

cency matrix of GX . Then X is a star set for µ in G if and only if µ is not
an eigenvalue of C and

µI −AX = B>(µI − C)−1B. (1)

In this situation, E(µ) consists of the vectors

(
x

(µI − C)−1Bx

)
(x ∈ IRk).
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Writing H = G −X, we see that the columns bu (u ∈ X) of B are the
characteristic vectors of the H-neighbourhoods ∆H(u)={v ∈ V (H) : u ∼ v}
(u ∈ X). Thus G is determined by µ, a star complement H for µ, and the
H-neighbourhoods ∆H(u) (u ∈ X). Moreover, when µ 6∈ {−1, 0}, these
neighbourhoods are non-empty and distinct because Eq. (1) shows that

b>u (µI − C)−1bv =


µ if u = v
−1 if u ∼ v

0 otherwise.
(2)

From the description of E(µ) in Theorem 1.1, we have the following
result.

Proposition 1.2 [10, Proposition 0.3] With the notation above, µ is a
non-main eigenvalue if and only if

b>u (µI − C)−1j = −1 for all u ∈ X. (3)

2 First observations

Let G be a graph with µ as a non-zero eigenvalue of co-multiplicity t, and
suppose that X is an independent star set for µ in G. We use the notation
of Theorem 1.1: from Eq.(1) we have I = B>(µ2I−µC)−1B, whence |X| ≤
rank(µ2I − µC) = t.

We investigate the case |X| = t. In this situation, µ is an integer,
for otherwise it has an algebraic conjugate which is a second eigenvalue of
multiplicity t; but by [11, Theorem 3.3.5] each component of a graph with
just two distinct eigenvalues is complete, giving a contradiction. We see also
that the coclique on X is another star complement for µ, and we may apply
Theorem 1.1 to the adjacency matrix

A∗ =

(
C B
B> O

)

to obtain BB> = µ2I − µC. Thus if V (H) = {t + 1, . . . , 2t} and B> =
(q1| · · · |qt) then

q>i qj =


µ2 if i = j
−µ if t+ i ∼ t+ j

0 otherwise.
(4)

By interlacing, µ is either the smallest or the largest eigenvalue of G. In
the latter case, G has at least t components, by [11, Corollary 1.3.8]. On the
other hand, each vertex in X is adjacent to a vertex of H [11, Proposition
5.1.4], and so G = tK2, µ = 1.

If µ is a non-main eigenvalue of G then by Proposition 1.2, each q>i j is
equal to −µ. Since q>i j = q>i qi = µ2, we have µ = −1. Now −1 is the
smallest eigenvalue of G, and so each component of G is complete. (Since
I+A is expressible in the form M>M , ‘equality or adjacency’ is a transitive
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relation on V (G).) Thus again G = tK2. Accordingly, we exclude the graph
tK2 from our considerations. So far, we have shown:

Proposition 2.1 Let G be a graph with µ as a non-zero eigenvalue of co-
multiplicity t, and suppose that X is an independent star set for µ in G. We
have (i) |X| ≤ t, (ii) if µ is non-main and G 6= tK2 then |X| ≤ t− 1.

We give an example to show that the first bound in Proposition 2.1 is
sharp. Sharpness of the second bound will follow from results in Section 4.

Example 2.2 For a design D, let G(D) denote the graph obtained from the
incidence graph of D by adding edges between all blocks. If D is the comple-
ment of the Fano plane thenG(D) is non-regular with spectrum−2(7), 1(6), 8;
see [12, Chapter 2], where this graph is illustrated in Fig. 2.1.2. The points
of D form an independent star set for −2, and the clique on the blocks of D
is the corresponding star complement. 2

Theorem 2.3 Let G be a graph with µ as a non-zero eigenvalue of co-
multiplicity t, and suppose that G has an independent star set X for µ. If
|X| = t and G 6= tK2 then µ is a negative integer, µ is a main eigenvalue,
and t ≥ −µ3 + µ + 1; moreover, t = −µ3 + µ + 1 if and only if G = G(D)
where D is a symmetric 2-(q3 − q + 1, q2, q) design with q = −µ.

Proof. Our remarks above show that µ is a main eigenvalue and that µ is a
negative integer. If H = G−X and ν is an eigenvalue of H, we write βν for
the main angle of H corresponding to ν, and Pν for the orthogonal projection
of IRt onto the eigenspace of ν. Thus βν = ‖Pνj‖/

√
t and

∑
ν β

2
ν = 1, where

the sum is taken over the distinct eigenvalues of H. From Eq.(4) we see
that each column of B> has precisely µ2 entries equal to 1, and so Bj = µ2j.
Since µI = B>(µI − C)−1B, we have

µt = µj>j = µ4j>(µI − C)−1j = µ4
∑
ν

j>Pνj

µ− ν
,

whence

1 = −µ3
∑
ν

β2ν
ν − µ

≥ −µ3
∑
ν

β2ν
t− 1− µ

=
−µ3

t− 1− µ
. (5)

The inequality follows. If equality holds in (5) then t − 1 is the largest
eigenvalue of H, while βν = 0 for all ν < t−1. Hence Cj = (t−1)j and H =
Kt. From Eq.(4) we see that q>i qj = −µ whenever i 6= j. Now, there are t
neighbourhoods ∆X(i) = {j ∈ X : j ∼ i} (i ∈ V (H)), each has size µ2, and
any two intersect in −µ vertices. It now follows from [9, Theorem 1.52] that
these neighbourhoods form a symmetric 2-(−µ3 + µ + 1, µ2,−µ) design D.
Hence G = G(D), a non-regular graph with spectrum µ(t),−µ− 1(t−1),−µ3
(see [12]). Conversely, G(D) satisfies the required conditions. 2

As noted in [12], a symmetric 2-(q3− q+ 1, q2, q) design exists whenever
q is a prime power and q − 1 is the order of a projective plane (see [5]);
moreover there are exactly 78 such designs with q = 3 [13]. When µ = −2,
the only graph that arises when t = 7 is that in Example 2.2 because there
is just one symmetric 2-(7, 4, 2) design [5]. In the next section, we give a
complete analysis of the case µ = −2.
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3 The case µ = −2
Here we assume that the graph G has −2 as an eigenvalue of co-multiplicity
t, and that G has an independent star set X for −2 of largest possible size
t. By Theorem 2.3, we have t ≥ 7. If G has components G1, . . . , Gm then
X = X1 ∪̇ · · · ∪̇ Xm, where Xi is a star set for µ in Gi (i = 1, . . . ,m). If
G − Xi has order ti then |Xi| ≤ ti by Proposition 2.1. Since

∑m
i=1 |Xi| =

t =
∑m
i=1 ti, we have |Xi| = ti for each i. Accordingly it suffices to deal with

a connected graph G. Since −2 is the least eigenvalue of G, G is either a
generalized line graph or an exceptional graph (see [10]). Since −2 is a main
eigenvalue, we know that G is not a line graph; in fact, we have:

Lemma 3.1 G is not a generalized line graph.

Proof. Suppose by way of contradiction that G = L(K; a1, . . . , an),
where

∑n
i=1 ai 6= 0, and that X contains edges from precisely s blossoms in

K(a1, . . . , an). Then X includes at most 2 edges from each of these blos-
soms, while the remaining edges in X are distributed among n− s vertices
of K. Hence |X| ≤ 2s+ 1

2(n− s).
Let m be the number edges in K, so that G has order

2t = m+ 2
n∑
i=1

ai,

and by [10, Theorem 2.2.8], −2 has multiplicity

t = m− n+
n∑
i=1

ai.

We deduce that m = 2n and t = n +
∑n
i=1 ai ≥ n + s. Now we have

n + s ≤ |X| ≤ 2s + 1
2(n − s), and so n ≤ s. Hence n = s =

∑n
i=1 ai and

G = L(K; 1, . . . , 1). Moreover, G − X = L(K). Since the least eigenvalue
of L(K) is greater than −2, each component of K is either a tree or an odd
unicyclic graph [10, Theorem 2.3.20]. In particular, m ≤ n, a contradiction.

2

It follows that G is an exceptional graph. By [10, Theorem 5.3.1], G has
an exceptional star complement H ′. By [10, Theorem 2.3.20], H ′ has order
at most 8, and so t ∈ {7, 8}. We have seen that when t = 7, G is the graph
of Example 2.2, and that this graph arises precisely when H is complete.

We now consider the case t = 8, where we exploit Eq.(4). If u, v are
non-adjacent vertices of H and w ∈ V (H) \ {u, v} then |∆X(u)∩∆X(w)| =
|∆X(v)∩∆X(w)| = 2, whence u ∼ w ∼ v. It follows that H can be obtained
from K8 by removing 1, 2, 3 or 4 independent edges. In particular, each
vertex of H has degree 10 or 11 in G, and so X is the unique independent
set of size 8 in G.

Let δ be the least degree of a vertex in X, and let u, v be non-adjacent
vertices in H. We may take ∆X(u) = {1, 2, 3, 4} and ∆X(v) = {5, 6, 7, 8},
where vertex 1 has degree δ. To within permutations of 2,3,4 and 5,6,7,8
the following are the possible X-neighbourhoods of the remaining 6 vertices
of H:
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δ = 1
2356
2378
2457
2468
3458
3467
(1)

δ = 2
1258
2356
2378
2457
2468
3467
(2)

δ = 2
1258
2356
2378
2457
2468
3458
(3)

δ = 2
1268
2356
2378
2458
3457
3468
(4)

δ = 3
1256
1278
2357
2368
2458
2467
(5)

δ = 3
1256
1278
2357
2368
2458
3456
(6)

δ = 3
1256
1278
2357
2458
3456
3478
(7)

δ = 3
1256
1278
2357
2368
3456
3478
(8)

δ = 3
1257
1358
2356
2378
2458
2467
(9)

δ = 3
1268
1358
2356
2378
2458
3457
(10)

δ = 3
1268
1367
2356
2378
2458
3457
(11)

δ = 3
1258
1356
2357
2456
2478
3458
(12)

δ = 3
1267
1356
2357
2456
2478
3458
(13)

δ = 3
1267
1378
2357
2456
2478
3458
(14)

δ = 3
1258
1356
2456
2478
3458
3467
(15)

δ = 4
1256
1278
1357
2468
3456
3478
(16)

δ = 4
1256
1357
1458
2367
2468
3478
(17)

δ = 4
1256
1357
1467
2358
2468
3478
(18)

Now the permutations (146837)(2)(5), (1)(2)(375)(486), (1653784)(2),
(1724368)(5), (1)(253)(467)(8) transform cases (6), (7), (11), (13), (16) to
cases (9), (8), (14), (15), (17) respectively. Recall that G is determined
by the X-neighbourhoods of vertices in H: the possible graphs are labelled
G1, . . . , G13 in Table 1. They are pairwise non-isomorphic, and most can be
distinguished by their degree sequences; where these sequences coincide, it
suffices to inspect the intersection numbers |∆H(j) ∩∆H(k)| (j, k ∈ X) as
shown. We summarize our conclusions as follows:

Theorem 3.2 Let G be a connected graph with −2 as an eigenvalue of
co-multiplicity t, and let X be an independent star set for −2 in G. Then
|X| ≤ t, and if |X| = t then either
(a) t = 7 and G = G(D), where D is the complement of the Fano plane, or
(b) t = 8 and G is one of the graphs G1, . . . , G13 constructed above.

graph case(s) degree sequence |∆H(j) ∩∆H(k)|
G1 (1) 11(6), 10(2), 5(3), 4(4), 1

G2 (2) 11(4), 10(4), 6(3), 4(6), 2

G3 (3) 11(6), 10(2), 6, 5(2), 4(2), 3(2), 2

G4 (4) 11(6), 10(2), 5(3), 4(3), 3, 2

G5 (5) 11(6), 10(2), 7, 4(4), 3(3)

G6 (6),(9) 11(4), 10(4), 6, 5, 4(3), 3(3)

G7 (7),(8) 11(2), 10(6), 5(2), 4(4), 3(2) 1(13), 2(10), 3(5)

G8 (10) 11(4), 10(4), 5(4), 3(4)

G9 (11),(14) 11(2), 10(6), 5(2), 4(4), 3(2) 0(2), 1(7), 2(16), 3(3)

G10 (12) 11(6), 10(2), 6, 5, 4(3), 3(3)

G11 (13),(15) 11(2), 10(6), 5(2), 4(4), 3(2) 0, 1(10), 2(13), 3(4)

G12 (16),(17) 10(8), 4(8) 1(12), 2(12), 3(4)

G13 (18) 10(8), 4(8) 0(4), 2(24)

Table 1: the graphs from Theorem 3.2(b)
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4 Strongly regular graphs

In a 5-cycle, an eigenvalue µ = 1
2(−1 ±

√
5) has multiplicity 2, while any

pair of non-adjacent vertices is a star set for µ. Thus the bound in Propo-
sition 2.1(ii) is sharp for t = 3. Here we show how less trivial examples
of independent star sets of largest possible size arise from other strongly
regular graphs: as we noted in Section 1, it suffices to show that a star set
has an independent subset of the appropriate size. Recall that a strongly
regular graph G is said to be primitive if both G and G are connected. We
write m(µ) for the multiplicity of µ in G, and {e1, . . . , en} for the standard
orthonormal basis of IRn. Our starting point is a result from [8]:

Theorem 4.1 [8, Theorem 9.4.1] Let G be a primitive strongly regular
graph of order n with eigenvalues r, µ, λ, where λ < µ < r. Let X be an
independent set in G. Then
(i) |X| ≤ m(λ);
(ii) |X| ≤ nλ/(λ− r);
(iii) if |X| = m(λ) = nλ/(λ− r) then G−X is strongly regular with eigen-
values λ+µ, µ, r+λ of multiplicities m(λ)−1,m(µ)−m(λ)+1, 1 respectively.

We refer to the graphs in part (iii) of this theorem as coclique-extremal
graphs; examples include the complements of the line graphs L(Km) (m ≥
4). Part (i) says thatG has independence number α(G) ≤ t−1, where t is the
co-multiplicity of the (positive) eigenvalue µ. Thus if X is an independent
subset of a star set S for µ then

|X| ≤ α(GS) ≤ α(G) ≤ t− 1. (6)

We shall be interested in the case of equality throughout in (6), but first we
prove:

Theorem 4.2 Let G be a primitive strongly regular graph with parameters
n, r, e, f and eigenvalues λ, µ, r (λ < µ < r). Let X be an independent set
of size m in G. Then X is contained in a star set for µ if and only if
m 6= 1 + r(−λ− 1)/f .

Proof. If G has adjacency matrix A then the orthogonal projection of IRn

onto E(µ) has matrix

P =
1

(µ− r)(µ− λ)
(A− rI)(A− λI).

Thus the principal submatrix of (µ − r)(µ − λ)P determined by X is the
matrix M = f(J−I)+rI+rλI. Now X is contained in a star set for µ if and
only if the vectors Pei (i ∈ X) are linearly independent [11, Proposition 5.1].
Since P is symmetric, the columns Pei (i ∈ X) are linearly independent if
and only if M is invertible [11, Lemma 5.1.5]. The eigenvalues of M are
f(m− 1) + r(1 + λ) and r(1 + λ)− f (a negative eigenvalue of multiplicity
m − 1). Therefore X is contained in a star set for µ if and only if m 6=
1 + r(−λ− 1)/f . 2

Invoking Theorem 4.2 with m+ 1 and m− 1 in place of m, we deduce:
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Corollary 4.3 Let G be a primitive strongly regular graph with parameters
n, r, e, f and eigenvalues λ, µ, r (λ < µ < r). Let X be an independent
set of size m in G. If X is not contained in a star set for µ, then m =
1 + r(−λ − 1)/f , X is a maximal independent set and every proper subset
of X is contained in a star set for µ.

For the next result we invoke Theorem 4.2 in the case that m takes the
largest possible value.

Corollary 4.4 Let G be a primitive strongly regular graph with a positive
eigenvalue µ of co-multiplicity t, so that α(G) ≤ t − 1. Suppose that G
contains an independent set X of size t− 1. Then X is contained in a star
set for µ if and only if G is not coclique-extremal.

Proof. Again suppose that G has parameters n, r, e, f . We have µ 6= r
for otherwise |X| = n − 2 and G is a 4-cycle. By Theorem 4.2, X is not
contained in a star set for µ if and only if

m(λ) = 1 +
r

f
(−1− λ), (7)

where λ is the negative eigenvalue of G. By Theorem 4.1, X is coclique-
extremal if and only if

m(λ) =
nλ

λ− r
. (8)

Now in any primitive strongly regular graph, we have [11, Theorem 3.6,4]:

f = r + λµ, n =
(r − µ)(r − λ)

r + λµ
.

It follows that

1 +
r

f
(−1− λ) =

λ(µ− r)
r + λµ

=
nλ

λ− r
.

Hence conditions (7) and (8) are equivalent, and the result follows. 2

Examples 4.5 (i) In the Petersen graph G = L(K5), a largest independent
set X has size 4, and for any such X we have G −X = 3K2. Thus X is a
star set for the eigenvalue −2. By Corollary 4.4, it is not contained in a star
set for the eigenvalue 1 because G is coclique-extremal.

(ii) Let Sch10 denote the unique strongly regular graph with param-
eters 27, 10, 1, 5 and spectrum −5(6), 1(20), 10 [9, p.22]: in the literature,
both Sch10 and its complement are referred to as the Schläfli graph. We
write McL112 for the McLaughlin graph, the unique strongly regular graph
with parameters 275, 112, 30, 56 and spectrum −28(22), 2(252), 112 [16]. Both
Sch10 and McL112 are extremal strongly regular graphs but they are not
coclique-extremal. As noted in [17], Sch10 has an independent set X1 of size
6 = m(−5), and McL112 has an independent set X2 of size 22 = m(−28).
By Corollary 4.4, X1 lies in a star set for 1, and X2 lies in a star set for
2. We deduce that the bound of Proposition 2.1(ii) is sharp for t = 7 and
t = 23. 2
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5 A connection with codes

Here we confine our investigations to star complements of a specific type. We
have seen that if X is an independent star set for the non-zero eigenvalue µ
of G, and if G−X ∼= Kt, then t is a sharp upper bound for |X|. As we point
out below, whenever G has a star set S for µ such that G−S ∼= Kt (t > 1),
µ is necessarily a main eigenvalue. However, for a non-main eigenvalue µ,
the case G−S ∼= sKt (s > 1, t > 1) turns out to be of interest in relation to
codes. (In this situation, µ has co-multiplicity st.)

We first assume that µ is a non-zero eigenvalue of G, and that a star
complement H for µ has the form G − S = H1 ∪̇ · · · ∪̇ Hs, where each Hi

is complete of order t (s ≥ 1, t > 1). Thus µ 6= t − 1 or −1. For distinct
vertices u, v ∈ X, we denote the characteristic vectors of ∆Hi(u),∆Hi(v) by
ui,vi respectively, and we write ui = j>ui (= ui

>ui), vi = j>vi (= vi
>vi)

(i = 1, . . . , s).
We use the notation of Theorem 1.1. The matrix (µI − C)−1 is block

diagonal, with each of the s diagonal blocks equal to

1

µ+ 1
I − 1

(µ+ 1)(t− µ− 1)
J,

where I, J are the identity and all-one matrices of size t × t. From Eq. (2)
we have

1

µ+ 1

s∑
i=1

ui −
1

(µ+ 1)(t− µ− 1)

s∑
i=1

u2i = µ (9)

(with a similar relation for the vi) and

1

µ+ 1

s∑
i=1

u>i vi −
1

(µ+ 1)(t− µ− 1)

s∑
i=1

uivi =

{
−1 if u ∼ v

0 if u 6∼ v. (10)

Lemma 5.1 If µ is a non-main eigenvalue of G then

s∑
i=1

ui = t− µ− 1,
s∑
i=1

u2i = (t− µ− 1)(t− (µ+ 1)2). (11)

Proof. From Eq. (3) we have

1

µ+ 1

s∑
i=1

ui −
1

(µ+ 1)(t− µ− 1)

s∑
i=1

uit = −1,

whence
∑s
i=1 ui = t − µ − 1. Substituting for

∑s
i=1 ui in Eq.(9), we obtain

the second assertion in (11). 2

Henceforth we assume µ is non-main. If s = 1 then u1 6= 0 (since µ 6= 0);
in this case, Eq.(11) yields t− (µ+ 1) = u1 = t− (µ+ 1)2, whence µ = −1,
a contradiction. Hence s > 1.

It follows from Eq.(11) that µ is an integer and t ≥ µ2 + 2µ + 2. The
connection with codes arises when G is connected and t = µ2 + 2µ+ 2: this
is the case we address here.
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From Eq.(11) we have
∑s
i=1(u

2
i − ui) = 0, and so each ui is 0 or 1;

moreover, exactly t− µ− 1 of the ui are equal to 1. The same is true of the
vi, and so

∑s
i=1 uivi ≤ t − µ − 1. By Eq. (10), t − µ − 1 divides

∑s
i=1 uivi,

and so
∑s
i=1 uivi is either t− µ− 1 or 0. In the latter case,

∑s
i=1 u

>
i vi = 0

and so u 6∼ v; moreover, ui or vi is zero for each i. Since G is connected, it
follows that s = t − µ − 1 = µ2 + µ + 1, and

∑s
i=1 uivi = t − µ − 1 for all

u, v ∈ X.
We now label the vertices of each Kt by 0, 1, 2, . . . , t − 1, so that each

neighbourhood ∆H(u) (u ∈ S) can be specified by a t-ary codeword cu
of length s. In this situation we say that S is represented by the code
{cu : u ∈ S}. The (Hamming) distance between codewords cu, cv is denoted
by h(cu, cv).

Lemma 5.2 For distinct vertices u, v ∈ S, we have

h(cu, cv) =

{
µ2 + µ if u 6∼ v

(µ+ 1)2 if u ∼ v. (12)

Moreover, µ < 0 when S is not an independent set.

Proof. From Eq. (10) we have

s∑
i=1

u>i vi =

{
1 if u 6∼ v
−µ if u ∼ v. (13)

Thus µ < 0 when S contains adjacent vertices, while Eq. (7) follows from
the observation that h(cu, cv) = s − |∆H(u) ∩ ∆H(v)| = µ2 + µ + 1 −∑s
i=1 u

>
i vi. 2

An (n,M, d)q code is a q-ary code of length n, cardinality M and min-
imum distance at least d. As usual we write Aq(n, d) for the maximum
possible number of codewords in an (n,M, d)q code. It follows from Lemma
5.2 that if |S| = k then G can be constructed from H by adding k vertices
represented by a (µ2 + µ + 1, k, µ2 + µ)t code or an appropriate
(µ2 + µ + 1, k, (µ + 1)2)t code. Moreover, existence of an independent star
set X of size k is equivalent to the existence of a (µ2 + µ + 1, k, µ2 + µ)t
code. Thus we have the following:

Theorem 5.3 Let G be a connected graph with an independent star set X
for the non-zero non-main eigenvalue µ. If G − X ∼= sKt (s > 1, t > 1)
then µ is an integer and t ≥ µ2 + 2µ+ 2; moreover, if t = µ2 + 2µ+ 2 then
s = µ2 + µ+ 1 and |X| ≤ At(s, s− 1).

As observed in [6], a good upper bound for At(s, s − 1) can be found
from the following result:

Theorem 5.4 [7, Theorem 3] If there exists an (n,M, d)q code then

M(M − 1)d ≤ 2n
q−2∑
i=0

q−1∑
j=i+1

MiMj ,

where Mi = b(M + i)/qc.
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We conclude with examples which illustrate the extremal case t = µ2 +
2µ+ 2 of Theorem 5.3. As usual, we write H for G−X.

Examples 5.5 (i) When µ = −2 we have s = 3, t = 2 and A2(3, 2) = 4.
The Petersen graph can be constructed from the star complement 3K2 by
adding 4 (independent) vertices represented by the code {000, 011, 101, 110}.
(ii) When µ = 1, we have s = 3, t = 5, H = 3K5 and A5(3, 2) = 5. When G
is maximal, the possible codes are (without loss of generality)
{000, 011, 101, 110} and {000, 011, 022, 033, 044}. These determine graphs
of order 19 and 20 with an independent star set for 1 of size 4 and 5 respec-
tively.

(iii) When µ = −3, we have s = 7, t = 5, H = 7K5 and A5(7, 6) =
15 (see [6]). Indeed A5(7, 6) ≤ 15 by Theorem 5.4, while A5(7, 6) ≥ 15
because a (7, 15, 6)5 code can be constructed from a resolution of a 2-(15, 3, 1)
design, that is, a Kirkman triple system on 15 points; in fact, every (7, 15, 6)5
code arises in this way [18], and there are exactly seven essentially different
resolutions of a 2-(15, 3, 1) design [15, Table 6.15]. The first such design in
[14, Table 17.2] gives the following code, which determines a graph of order
50 with an independent star set for −3 of size 15:

0421010 0040441 0102234 1032112 1143023
1414201 2111342 2204413 2323131 3241104
3312420 3430333 4003300 4220222 4334044

(iv) When µ = −4, we have H = 13K10 and then |X| ≤ A10(13, 12) ≤ 40
by Theorems 5.3 and 5.4. 2

Acknowledgement The author is indebted to P. R. J. Österg̊ard for
references [15] and [18].
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(κ, τ)-regular sets and star complements, Czech. Math. J. 63
(2013), 73-90.

[2] S. Akbari, E. Ghorbani and A. Mahmoodi, On graphs whose star
sets are (co-)cliques, Linear Algebra Appl. 430 (2009), 504-510.

[3] F. K. Bell and P. Rowlinson, On the multiplicities of graph eigen-
values, Bull. London Math. Soc. 35 (2003), 401-408.
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