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Abstract: The Euclidean distance between the eigenvalue sequences of graphs G and H, on the same number
of vertices, is called the spectral distance between G and H. This notion is the basis of a heuristic algorithm
for reconstructing a graph with prescribed spectrum. By using a graph Γ constructed from cospectral graphs
G and H, we can ensure that G and H are isomorphic if and only if the spectral distance between Γ and
G+K2 is zero. This construction is exploited to design a heuristic algorithm for testing graph isomorphism.
We present preliminary experimental results obtained by implementing these algorithms in conjunction with
a meta-heuristic known as a variable neighbourhood search.

Key Words: Spectral distance, graph angles, graph isomorphism, variable neighbourhood search.

Acknowledgments: This work is supported by the Serbian Ministry for Education, Science and Technolog-
ical Development, Grants ON174033, F-159 and NSERC (Canada).

Parts of this paper have been presented at the conference on Applications of Graph Spectra in Computer
Science, Barcelona, Spain, July 16–20, 2012, at the Combinatorics 2012 Conference, Perugia, Italy, September
10–15, 2012, and at the XL Symposium on Operations Research, Zlatibor, Serbia, September 8–12, 2013.



Les Cahiers du GERAD G–2013–73 1

1 Introduction

The paper [8] surveys spectral recognition problems for graphs. Among the topics discussed are the spectral

reconstruction problem, based on spectral distances between graphs, and the problem of defining a spectral

distance between cospectral graphs.

The present paper offers an optimization approach to spectral distance between cospectral graphs and a

heuristic algorithm for testing graph isomorphism. This algorithm and the spectral reconstruction problem

are treated here in conjunction with a meta-heuristic known as a variable neighbourhood search (briefly,

VNS). We present the first experimental results obtained by using AutoGraphiX (AGX), a programming

package for finding graphs with extremal values of a graph invariant chosen by the user.

The rest of the paper is organized as follows. Section 2 discusses the spectral reconstruction problem.

Some basic results on graph angles are presented in Section 3, while the graph isomorphism problem is treated

in Section 4. Section 5 is devoted to experimental results and Section 6 contains tentative conclusions.

2 Spectral reconstruction

The Euclidean distance between the eigenvalue sequences of graphs G and H, on the same number of vertices,

is called the spectral distance between G and H. Other spectral distances have also been considered, notably

the Manhattan distance (the sum of absolute values of differences between ordered eigenvalues). Usually the

eigenvalues are taken to be those of the adjacency matrix, but other graph matrices (such as the Laplacian

or signless Laplacian) can be used.

Some mathematical results on the Manhattan spectral distance have been obtained in [16]. An interesting

observation from that paper is that the Manhattan distance arises in connection with graph energy, a graph

invariant much studied in the literature (see [17]). The energy of a graph is the sum of absolute values of

its eigenvalues. Thus the energy of a graph is the Manhattan spectral distance of the graph from a graph

without edges.

Use of the Laplacian and the signless Laplacian matrix in conjunction with the Manhattan distance seems

to be very appropriate when considering subgraphs. By the interlacing theorems for these matrices (see [8,

Section 5]), all eigenvalues decrease or remain the same when an edge is deleted from the graph. Hence the

Manhattan distance between a graph and any of its edge-deleted subgraphs is equal to the decrement in the

trace of the matrix. Since for both matrices the trace is equal to the sum of vertex degrees, we conclude

that the distance is equal to the twice the number of deleted edges. None of these properties holds for the

adjacency matrix.

If two graphs are at zero distance, they are not necessarily equal (i.e. isomorphic); they are merely

cospectral. In the next section we introduce a metric which in some cases can distinguish cospectral graphs

because the (new) distance between them is positive.

For several reasons it is of interest to construct or generate a graph with prescribed spectrum: see [5],

where an algorithm for such a spectral graph reconstruction is presented. Given the spectrum of a graph,

the algorithm starts from a random graph and uses the tabu search to reduce the Euclidean spectral distance

between the given and the current spectrum. Both the metric and the meta-heuristic can be varied. One could

use the Manhattan distance based on the adjacency matrix or on the signless Laplacian. The tabu search

can be replaced by a variable neighbourhood search (see, for example, [3]) or by some other meta-heuristic.

The variable neighbourhood search is exploited in AGX for finding graphs with extremal values of a graph

invariant chosen by the user. The system starts from a random graph or from a graph given by the user. This

graph is perturbed to some extent using a variable neighbourhood search and a new graph is chosen which

optimizes the invariant in question. The system AGX is very useful in formulating conjectures which are

treated later by theoretical means. For example, it has generated several conjectures concerning the energy
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of a graph [3] and thirty conjectures concerning signless Laplacian eigenvalues [12]. See also [1]. It would be

interesting to use AGX to treat some conjectures from [16] concerning spectral distances between graphs.

The system AGX is used here for the spectral reconstruction of graphs. It is sufficient to require that the

system minimizes the distance (of any kind) between the current graph and a fixed graph. One could compare

the speed of convergence for several distances and for several meta-heuristics. (We do not give running

times here since they are not directly relevant to our investigation.) More generally, computer programs for

the spectral reconstruction of graphs can be used to generate examples of graphs with prescribed spectral

properties.

3 The use of graph angles

Cospectral graphs are at spectral distance 0 and if we wish to define some kind of positive distance between

them we can turn to graph invariants other than eigenvalues. Since eigenvectors are not graph invariants it is

reasonable to extend eigenvalue based techniques by certain invariants of the eigenspaces called graph angles.

Let G be a graph on n vertices with distinct eigenvalues µ1, µ2, . . . , µm (µ1 > µ2 > · · · > µm) and let

S1, S2, . . . , Sm be the corresponding eigenspaces. Let {e1, e2, . . . , en} be the standard (orthonormal) basis

of Rn. The numbers αpq = cosβpq (p = 1, 2, . . . ,m; q = 1, 2, . . . , n), where βpq is the angle between Sp
and eq, are called graph angles. The sequence αpq (q = 1, 2, . . . , n) is called the eigenvalue angle sequence

corresponding to the eigenvalue µp (p = 1, 2, . . . ,m). We also define the angle matrix of G as the m × n
matrix (αij): here columns are ordered lexicographically, so that the matrix is a graph invariant. The rows

of the angle matrix are called the standard eigenvalue angle sequences.

Let xi = (xi1, xi2, . . . , xin) (i = 1, 2, . . . , n) be orthonormal eigenvectors of G. Define Mp = {j | Axj =

µpxj}. We have α2
pq =

∑
j∈Mp

x2
jq for squares of angles ofG, and this formula holds for any choice of orthonormal

eigenvectors of G (cf. [11], p. 76). The angles between the vector (1, 1, . . . , 1)> ∈ Rn and the eigenspaces

S1, S2, . . . , Sm are called the main angles of the graph. Graph angles, like graph eigenvalues, can be computed

in polynomial time. An overview of results on graph angles, and their relation to graph structure, is given in

[11]. In particular, the number c4(G) of 4-cycles in G is given by

c4(G) =
1

8

m∑
i=1

n∑
j=1

α2
ijµ

3
i (µ

2
i + 1− 2

m∑
h=1

α2
hjµ

2
h). (1)

It was suggested in [7] that cospectral graphs can be ordered by graph angles, in particular, lexicograph-

ically by their standard eigenvalue angle sequences. The paper provides an example of 21 cospectral graphs

(on 10 vertices with 20 edges) ordered by the first standard eigenvalue angle sequences.

In defining a spectral graph distance we use differences between corresponding eigenvalues of two graphs.

For each spectral graph distance we can define a corresponding cospectral graph distance by using differences

between the corresponding entries of the angle matrix instead of differences between corresponding eigen-

values. For example, the Manhattan cospectral graph distance is the sum of absolute values of differences

between the corresponding entries of the angle matrices of the graphs [8].

An alternative approach to distances between cospectral graphs will be described in the next section.

4 An optimization approach

Here we use network alignment techniques to define a distance between cospectral graphs. We note first

that one can characterize graph isomorphisms in terms of eigenvalues. To be precise, let θ be a bijection

V (G) → V (H), where G,H are disjoint finite graphs and V (G) denotes the vertex-set of G. We define the

recognition graph Γ(G, θ,H) as the graph consisting of G,H and the edges {v, θ(v)} (v ∈ V (G)). (The
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terminology is suggested by a graph-theoretical model for pattern recognition formulated in [2].) With a

suitable ordering of vertices, Γ(G, θ,H) has adjacency matrix

(
A I
I B

)
, where A,B are adjacency matrices

for G,H respectively. If θ is an isomorphism then A = B and Γ(G, θ,H) has characteristic polynomial

det((x+ 1)I −A) det((x− 1)I −A);

hence if λ1, . . . , λn are the eigenvalues of G then those of Γ(G, θ,H) are λ1 ± 1, λ2 ± 1, . . . , λn ± 1. The

converse holds for cospectral graphs G,H: a proof of the following result from [19] is reproduced in [11, pp.

52-54].

Theorem. Suppose that G,H are cospectral graphs, with common eigenvalues λ1, . . . , λn, and let θ be

a bijection V (G) → V (H). Then θ is an isomorphism if and only if the eigenvalues of Γ(G, θ,H) are

λ1 ± 1, . . . , λn ± 1.

Of course, if G and H are not cospectral then there is no isomorphisim θ : V (G) → V (H). We note in

passing that if θ is an isomorphism then Γ(G, θ,H) is a NEPS (more precisely, the sum of graphs) as defined

in [11].

It follows that if θ is “close” to an isomorphism then the spectral distance between Γ and G+K2 is “small”

because eigenvalues are perturbed. Now we can define the cospectral distance cospd(G,H) between cospectral

graphs G and H as the minimum over all bijections θ of the spectral distance between Γ(G, θ,H), G) and

G+K2, i.e.

cospd(G,H) = min
θ
d(Γ(G, θ,H), G+K2).

Here we can use any “ordinary” spectral graph distance and for each of them we have a cospectral distance

cospd(G,H) between cospectral graphs G and H.

A disadvantage of this definition is that one should solve an optimization problem in order to determine

the distance. However, one can use meta-heuristics, and the situation is similar to that in the spectral

reconstruction problems described in Section 2. In particular, if the distance cospd(G,H) is equal to 0, the

graphs are isomorphic. Hence we have a heuristic algorithm for checking graph isomorphism.

The algorithm

Given graphs G and H:

– check whether they are cospectral,

– if no, they are non-isomorphic,

– if yes, with eigenvalues λ1, . . . , λn, form the recognition graph Γ(G, θ,H) with a random bijection

θ, compute its spectrum and the spectral distance from λ1 ± 1, λ2 ± 1, . . . , λn ± 1,

– using a meta-heuristic repeatedly change θ to diminish the distance d(Γ(G, θ,H), G+K2) until it becomes

0 or the program has to be stopped.

We may refine the algorithm by inserting an additional step to confine the heuristic to cospectral graphs

with a common angle matrix. In this case, G and H have the same number of edges, say e, while Equation

(1) shows that they have the same number of 4-cycles, say c. Note that if Z is a 4-cycle in Γ(G, θ,H) which

does not lie in G or H then Z has two vertices in each of G and H. It follows that the number cθ of 4-cycles

in Γ(G, θ,H) is at most 2c+ e, with equality if and only if θ is an isomorphism. Now we have the option of

maximizing cθ by a variable neighbourhood search, calculating each cθ from the angles of Γ(G, θ,H). The

parameter 2c+ e−maxθ cθ is an alternative measure of the “closeness” of G and H.
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5 Experimental results

5.1 Spectral reconstruction

The package AGX was used for the reconstruction problem, the objective function being the distance between

the spectrum of the current graph and the desired spectrum. The optimization algorithm used in AGX

is based upon the VNS metaheuristic [15, 18]. The strategy of VNS is to alternate local searches and

perturbations of variable magnitude; however, in AGX the local search is replaced by a learning descent that

adapts the neighbourhoods used within the optimization algorithm according to the problem under study [4].

Let G∗ be a graph with eigenvalues λ∗i (i = 1, . . . , n) in non-increasing order. The spectral reconstruction

problem is to find a graph G with eigenvalues λ1, . . . , λn such that λ∗i = λi (i = 1, . . . , n). It may be

formulated in AGX as :

Min d(G∗, G) = (

n∑
i=1

|λ∗i − λi|p)
1
p , (2)

where p is the Minkowski parameter; thus p = 1 for the Manhattan distance and p = 2 for the Euclidean

distance.

Let M be a symmetric matrix (mij) with zero diagonal, and let Φ(M) = diag(φ1, . . . , φn), where φi =∑
jmij . We call Φ(M)−M the Laplacian of M , and Φ(M) +M the signless Laplacian of M . The Laplacian

(or signless Laplacian) matrix of a graph G is just the Laplacian (or signless Laplacian) of the adjacency

matrix of G. The distance matrix of G is the matrix D = {dij}, where dij is the geodesic distance between

vertices i and j. The eigenvalues λi of G are most commonly computed from the adjacency matrix A,

the Laplacian matrix L or the signless Laplacian matrix SL. We may also use the distance matrix D, its

Laplacian LD or its signless Laplacian SLD.

The algorithm was tested using each of the aforementioned matrices, and with both Euclidean and

Manhattan distances, for the graphs described in Table 1. Here, m is the number of edges, δ the minimum

degree, ∆ the maximum degree, and D the diameter. The path, cycle and star of order n are denoted by Pn,

Cn and K1,n−1 respectively. Other graphs are: a cubic graph on 12 vertices (Cu12), a 4-regular circulant

graph on 12 vertices (R12C4), the hypercube on 16 vertices (H16), a cubic graph on 18 vertices (Cu18), a

4-regular circulant on 18 vertices and degree 4 (R18C4), three random graphs on 10 vertices (G10-1,G10-2,

G10-3) and three random graphs on 12 vertices (G12-1, G12-2, G12-3). The lower triangular parts of the

adjacency matrices of these random graphs are given in Table 2.

Table 1: Description of the graphs used.

n m δ ∆ D

P10 10 9 1 2 9
K1,9 10 9 1 9 2
C10 10 10 2 2 5

G10-1 10 25 4 6 2
G10-2 10 23 3 6 3
G10-3 10 19 1 7 4
Cu12 12 18 3 3 3

R12C4 12 24 4 4 3
G12-1 12 28 2 8 3
G12-2 12 36 3 10 3
G12-3 12 35 3 8 3
H16 16 32 4 4 4
Cu18 18 27 3 3 5

R18C4 18 36 4 4 5
P20 20 19 1 2 19
K1,19 20 19 1 19 2
C20 20 20 2 2 10
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Table 2: Description of the random graphs used.

Graph Adjacency matrix

G10-1 0 11 110 0011 11001 100001 1110101 11101000
000111110

G10-2 1 01 001 1100 01011 101010 0010011 00101011
010101101

G10-3 1 10 001 1010 10001 110000 0000000 10101000
110011111

G12-1 0 01 010 0000 11110 001001 0101100 00111010
100001010 1111011100 00100000101

G12-2 0 10 001 0110 00011 111010 1000010 10110001
110011001 1110100010 11101111111

G12-3 1 11 000 1011 11110 111110 1101110 01010101
000011011 0010101001 10000100100

Table 3: Results with AGX on the spectral reconstruction problem with Euclidean distance.

Euclidean A L SL D LD SLD

P10 100 100 100 100 100 100
K1,9 98 100 100 82 100 100
C10 90 100 100 100 100 51

G10-1 96 25 98 81 96 90
G10-2 45 27 80 27 100 34
G10-3 63 97 100 85 73 90
Cu12 5 29 47 8 64 55

R12C4 41 89 100 9 97 78
G12-1 0 1 0 0 0 0
G12-2 0 1 0 0 0 0
G12-3 0 0 0 0 0 0
H16 0 0 20 0 0 0
Cu18 0 0 7 0 0 6

R18C4 0 2 2 0 30 29
P20 100 100 100 100 100 100
K1,19 80 100 100 36 35 59
C20 15 100 100 25 3 7

One hundred runs were undertaken, involving 100,000 evaluations of the objective function and starting

from a random graph. The number of successes is given in Tables 3 and 4.

5.2 Graph isomorphism

A routine based upon VNS was implemented within AGX to verify isomorphism.

After an appropriate permutation of rows and columns, the adjacency matrix of Γ(G, θ,H) can be written

as MΘ =

(
A Θ

ΘT B

)
, where Θ is a permutation matrix. The use of the matrix Θ instead of I is a means

of reducing the computations.

The graphs G and H, each with spectrum λ1, . . . , λn are isomorphic if and only if there exists a per-

mutation matrix Θ such that the matrix MΘ has eigenvalues λi + 1, λi − 1 (i = 1, . . . , n). We order these

eigenvalues as λ∗1 ≥ · · · ≥ λ∗2n and denote this sequence by Λ∗. Thus G and H are isomorphic if and only

if there exists a permutation matrix Θ such that MΘ has eigenvalue sequence Λ∗. Thus the optimization

problem can be formulated as:

Min Z = (

2n∑
i=1

|λ∗i − λi(MΘ)|p)
1
p . (3)
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Table 4: Results with AGX on the spectral reconstruction problem with Manhattan distance.

Manhattan A L SL D LD SLD

P10 100 100 100 100 100 100
K1,9 100 100 100 100 100 82
C10 100 100 100 100 100 74

G10-1 98 83 11 100 83 97
G10-2 44 29 69 44 94 40
G10-3 68 100 100 87 90 88
Cu12 2 16 79 1 81 47

R12C4 11 88 99 2 100 56
G12-1 0 0 0 0 0 0
G12-2 0 2 1 0 0 4
G12-3 0 0 0 0 0 0
H16 0 0 18 0 1 1
Cu18 0 0 4 0 0 2

R18C4 0 1 0 0 20 12
P20 100 100 100 100 100 100
K1,19 92 100 100 30 31 8
C20 9 96 97 25 4 0

Problem (3) mirrors Problem (2), except that the optimization does not apply to the graph, but to

the permutation matrix Θ. To take advantage of this matrix, the transformations to be considered in the

optimization need to preserve the structure of a permutation matrix.

We used a local search which implements a variable neighbourhood descent (VND) with the transformation

of the matrix Θ to a matrix in one of the ‘neighbourhoods’ Nh(Θ) (h = 1, 2, 3, 4) obtained as follows. Each

Nh(Θ) consist of all matrices obtained from Θ by applying a permutation of a certain form πh to the columns.

We take π1 to be a transposition, π2 to be the product of two disjoint transpositions. π3 to be a 3-cycle, and

π4 to be a 4-cycle.

The rules of the routine VND(Θ) are as follows.

Routine VND(Θ)

Initialization:

Take Θ = I.

Let Nh(Θ) (h = 1, 2, 3, 4) be the set of neighborhoods of the solution Θ as defined above.

Main Step:

Set h = 1 and imp = FALSE (improvement indicator);

Until h = 4, repeat the following steps :

(a) Find the best neighbour Θ′ of Θ in Nh(Θ).

(b) If Θ′ is better than Θ,

set Θ← Θ′ and imp = TRUE.

Otherwise set h← h+ 1;

(c) if h = 4 and imp = TRUE

set h = 1 and imp = FALSE.

The VND algorithm may converge to a local optimum. To escape a local optimum, VND is used within a VNS

scheme. The VNS implementation used was the following, where the perturbation routine PERTURBk(Θ)

applies k random transpositions of columns of Θ.
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VNS implementation of the isomorphism algorithm

Initialization

Let Θ = I be the initial solution.

Let Z∗ the best known objective function, and let Θ∗ be the best known solution.

Let k = 1, set kmax = 10.

Let c = 0.

Repeat:

Θ← PERTURBk(Θ∗)

Apply VND(Θ)

Let Z be the value of the objective function after VND and let Θ be the solution.

If Z < Z∗

If Z = 0 STOP: the graphs are isomorphic

Z∗ ← Z,

Θ∗ ← Θ,

k ← 1

else

k ← k + 1

If k ≥ kmax
k ← 1

c← c+ 1

Until c = 10.

A maximum number of evaluations of the objective function is given, so that the algorithm is terminated

when the graphs are found to be isomorphic (the objective function value is 0), or when the maximum number

of evaluations of the objective function is reached (100,000), or when c = 10.

For each graph G from Table 1 the algorithm was applied 100 times on graphs G and H, where H is a

random relabelling of G. The results obtained with the algorithm are presented in Table 5. For each graph

the number of successful detections of isomorphism is given.

Table 5: Results with AGX on the graph isomorphism problem.

Graph Successes Graph Successes Graph Successes

P10 64 Cu12 87 Cu18 13
K1,9 100 R12C4 100 R18C4 74
C10 100 G12-1 25 P20 0

G10-1 70 G12-2 31 K1,19 100
G10-2 50 G12-3 5 C20 6
G10-3 84 H16 29

The algorithm was also tested, using Manhattan distance, on pairs of non-isomorphic cospectral graphs

G1, G2 described in [10] (with labels 164a, 164b etc.), and on pairs of isomorphic graphs (G1, G
′
1). Here G′1

is constructed from G1 by randomly relabelling vertices (or swapping rows and columns of the adjacency

matrix). For each test, the best objective function value (Value) was recorded, together with the number of

evaluations of the objective function required to obtain this value. As there is an element of randomness in

the algorithm, it was run 100 times on each pair of graphs. The results of these tests are reported in Table 6.

The first two columns indicate the reference graphs used, columns 3 to 5 indicate the minimum, average and

maximum number of evaluations of the objective function in the case that the test succeeded, and columns 6

to 8 indicate these values in the case of failure of the procedure. In all cases, the best objective function value



8 G–2013–73 Les Cahiers du GERAD

proved to be the cospectral distance between the two graphs, i.e. cospd(Graph1, Graph2). Accordingly, the

numbers of successes and failures among the 100 runs used are not provided.

Table 6: Results on isomorphic graphs and non-isomorphic cospectral graphs

Graph 1 Graph 2 Min S Avg S Max S Min F Avg F Max F Value

164a 164b - - - 0 37.25 234 1.55088
164a 164a 9 9408.71 48091 - - - 0
165a 165b - - - 9 4401.09 33358 1.94835
165a 165a 14 5527.18 39993 - - - 0
166a 166b - - - 3 6813.39 43627 2.14076
166a 166a 19 7836.97 62036 - - - 0
167a 167b - - - 16 11772 72180 1.68145
167a 167a 12 4098.77 22782 - - - 0
168a 168b - - - 0 247.91 896 2.0721
168a 168a 8 5927 29491 - - - 0

The graphs used for these tests are pairs of cospectral graphs described in [10]. They are listed in Table 7,

the first column providing the name of the graph, the second specifying the lower triangular part of the

adjacency matrix, and the remaining columns giving the spectrum.

Table 7: Description of the graphs used for the results from Table 6.

Graph Adjacency matrix Spectrum

164a 1 10 010 1010 01110 101110 1111011 4.6458 1.7321 0.0000 0.0000
164b 1 10 010 1010 01110 111101 1110110 −0.6458 −1.7321 −2.0000 −2.0000
165a 1 10 010 0010 10110 111101 1111111 5.0884 1.0883 0.2467 0.0000
165b 1 10 010 1000 10111 111101 1111011 −1.0000 −1.6693 −1.7451 −2.0000
166a 1 10 010 1010 01110 101110 1111111 4.9095 1.6093 0.0000 0.0000
166b 1 10 010 1010 11010 111110 1011111 −1.0000 −1.5188 −2.0000 −2.0000
167a 1 10 010 0010 10110 111111 1111111 5.2588 1.0000 0.2518 0.0000
167b 1 10 010 1000 10111 111101 1111111 −1.0000 −1.5106 −2.0000 −2.0000
168a 1 10 010 1011 01110 111111 1111111 5.6056 1.0000 0.0000 0.0000
168b 1 10 010 1011 11011 111110 1111111 −1.0000 −1.6056 −2.0000 −2.0000

6 Conclusions

The tests for spectral reconstruction tend to show that the performance of the adjacency or the distance

matrices is rather poor. It seems that the signless Laplacian matrix performs better than the Laplacian

matrix, but the Laplacian of the distance matrix performs better than the signless Laplacian of the distance

matrix, and the overall best matrix seems to be the Laplacian of the distance matrix. However these

conclusions are tentative because results vary from graph to graph. As the complexity of building the

distance matrix is higher than that for the adjacency matrix, a reasonable choice for spectral reconstruction

seems to be the use of the signless Laplacian matrix. For this matrix, Euclidean distance appears to perform

slightly better than Manhattan distance. It is interesting to note that the path Pn and the star K1,n−1 seem

rather easy to reconstruct, while this is not the case for other graphs.

The results for isomorphism testing are more encouraging. Indeed, in the case of isomorphic graphs,

an isomorphism was found in about 5,000–10,000 evaluations of the objective function, and this compares

favourably with the 40,320 possible permutations for graphs on 8 vertices, even though the algorithm was

not designed to avoid multiple evaluations of the same configuration. We are not surprised to see that graphs

with higher symmetry, such as the star K1,n−1, are easier to test, since the search space is smaller in this

case.

These conclusions are tentative. One should explain theoretically some of the results obtained, and also

perform additional experiments.
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[16] Jovanović I., Stanić Z., Spectral distances of graphs, Linear Algebra Appl., 436 (2012), 1425–1435.

[17] Xueliang L., Yongtang S., Gutman I., Graph Energy, Springer, New York, 2012.
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