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ABSTRACT

Statistical model selection using the Akaike Information Criterion

(AIC) and similar criteria is a useful tool for comparing multiple and

non-nested models without the specification of a null model, which has

made it increasingly popular in the natural and social sciences. De-

spite their common usage, model selection methods are not driven by a

notion of statistical confidence, so their results entail an unknown de-

gree of uncertainty. This paper introduces a general framework which

extends notions of Type-I and Type-II error to model selection. A theo-

retical method for controlling Type-I error using Difference of Goodness

of Fit (DGOF) distributions is given, along with a bootstrap approach

that approximates the procedure. Results are presented for simulated

experiments using normal distributions, random walk models, nested

linear regression, and nonnested regression including nonlinear mod-

els. Tests are performed using an R package developed by the author

which will be made publicly available on journal publication of research

results.
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1 Introduction

The merits of hypothesis testing are many; it is well suited to making

inferences about associative, and in certain situations causal, relation-

ships between observable quantities. The use of known distributions in

testing allows for analytic solutions for the construction of test rejec-

tion regions with desirable, provable properties. A class of tests can

be constructed with a specified rate of Type-I error, the probability of

obtaining false positives, and among such a class, tests can be often

be identified with optimized power, the probability of obtaining true

positives. However, the rich and rigorous underpinnings of hypothesis

testing come at a cost. Though well-developed and widely effective,

these methods are limited in the types of conclusions they can draw

and the types of questions they can address (Spanos 2010, Burnham

and Anderson 2002).

Hypothesis testing uses known distributions to make binary deci-

sions between rejecting null and alternate hypotheses with a quantifi-

able degree of certainty. As such, test results are clear and commini-
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cable, but their implications are less so. Hypothesis testing cannot

prove that a distribution speficied by the alternative hypothesis is true;

to do so would be to commit a“fallacy of acceptance” (Spanos 2010).

The constructs of null and alternative hypotheses also do not permit

comparisons between two disparate, plausible models. This is limiting

when investigating phenomena with competing explanations. The abil-

ity to evaluate such structural explanations, and indeed to make claims

about their validity, is of central importance in fields characterized by

quantitative theory and noisy data, such as biology, psychology, and

sociology (Ullman and Bentler 2012). These shortcomings have moti-

vated the devlopment and adoption of new statistical paradigms such

as information-theoretic model selection.

There are certainly cases in which statisticans have been able to an-

alytically compute likelihood ratio distributions for non-nested models,

but this is not possible in general. As such, even these tractable cases

provide only a limited and specialized extension to the families and pairs

of distributions that characterize most of hypothesis testing. It was not

until the development of the Akaike Information Criterion (AIC) that
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disparate models could be compared easily and generally (Akaike 1974,

Shmueli 2010). Though derived as an estimator for a given model’s

“distance” from a true data generating process (K-L Divergence), the

AIC can be seen as a modified likelihood function that penalizes mod-

els for their intrinsic complexity (Burnham and Anderson 2010). The

AIC is widely used for selecting and constructing predictive models be-

cause its basis in information theory makes it effective at minimizing

predictive loss (Shmueli 2010). It can be used to construct weighted

averages of models which can outperform their individual components

(Burnham and Anderson 2002, Posada and Buckely 2004).

In the context of predicting new data based on past observations,

the AIC has considerable justification and proven performance (Akaike

1974). In identifying a true model from a set of candidates, it lacks

such justification. It is shown that even as sample size approaches

infinity, the the probability that the AIC identifies a true model, as-

suming the true model is in the set of candidates, does not converge to

1 in general (Bozdogan 1987). Moreover, the AIC cannot be used to

make decisions based on allowable degrees of error, the very foundation
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of classical hypothesis testing. In spite of these facts, the objections of

some statisticians, and indeed the recommendations of those who pop-

ularized its use (e.g. Burnham and Anderson 2002), the AIC is often

employed with the aim of selecting a single, correct (i.e. “true”) model

(Spanos 2010, Shmueli 2010, Bozdogan 1989). While alternatives to the

AIC have been developed, such as the Bayesian Information Criterion

(BIC), which does consistently identify true models (Schwarz 1978),

they still do not enable testing at specified error levels.

Information-theoretic methods remedy some of the limitations of

classical hypothesis testing at the expense of control over error rates.

In light of these discrepancies, this paper introduces a framework for

model selection with error control as well as an easy to implement

computational method which selects models with approximate error

bounds. In doing so, this paper aims to reconcile the evident needs of

statistical practitioners with the valid complaints raised against model

selection.
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2 Background

2.1 Classical Hypothesis Testing

The origins of “classical” testing in use today can be traced back to

(Fisher 1924) on “significance testing,” and a more generalized formu-

lation by (Neyman and Pearson 1933) on hypothesis testing.

(Fisher 1925) introduced the notion of statistical significance and

its use in decision-making. The text does not provide a concise, for-

mal definition of significance, but uses the term widely when describing

decision-making processes which use as evidence the probability of re-

sults being generated by a null distribution. This formulation of testing

is concerned primarily with testing the differences of sample means and

thus employs the t and z statistics stemming from the t and normal

distributions.

The test statistic is then used to generate p-values, given for example

by p = P (t > t∗|H0), the probability that a random sample from the

statistic’s associated distribution would be greater than (similarly, less

than or with absolute value greater than) the test statistic. These values
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are used in two ways in the text. (Fisher 1924) suggests that p-values

can be compared to certain benchmarks, and gives as an example the

familiar 0.05 “significance level,” though it is noted that these values

should be selected depending on the context of an experiment. In

addition to this type of decision-making, p-values are used by Fisher to

report degrees of evidence against the null hypothesis.

Neyman and Pearson (1933) introduced a refinement of this testing

procedure. Neyman-Pearson-style testing aimed to formalize Fisher’s

tests of significance in a more mathematically rigorous manner, ex-

panding the types of tests that can be performed while also restrict-

ing the ways in which results are meant to be interpreted. Neyman

and Pearson also introduced the “alternative hypothesis,” and from

the two-hypothesis formulation they introduced the concepts of Type-I

and Type-II error as well as statistical power. The fundamentals of

Neyman-Pearson testing are encoded in the Neyman Pearson lemma,

stated below.
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Neyman-Pearson Lemma: Assume X is a random sample X =

x1, x2, . . . , xn generated by a distribution parametrized by Θ. Then,

construct a likelihood ratio test with hypotheses

H0 :Θ = Θ0

Hα :Θ = Θα

and rejection region C determined by the critical value k defined by

some α ∈ [0, 1], i.e. k is a constant for which

L(θ0|X)

L(θα|X)
≤ k inside C and

P (
L(θ0|, X)

L(θα|X)
≤ k) = α for θ = θ0

Then, the Neyman-Pearson Lemma concludes that the test determined

by the rejection region C is the most powerful test for this set of hy-

potheses.

While the Neyman-Pearson lemma applies to a specific test statistic

and set of hypotheses, it was the foundation for the goal of construct-

ing tests to attain maximum power for a given α, and more broadly
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for emphasizing the relationship between error and power in testing.

Based on this emphasis, one can see how simply reporting p-values as

quantifiers of evidence can be seen as an abuse of testing (Wagenmak-

ers 2007). If a researcher desired to report results for a test with an

α level of 0.01 for instance, they should not, according to Neyman-

Pearson principles, simultaneously allow for results using an α value of

0.05. The more rigorous results stemming from a test with α = 0.01

depend not on the observed p-value, which is itself a random variable,

but on the underlying probability that the test should be accepted or

rejected. A p-value below 0.01 has different implications for α = 0.01

and α = 0.05, because the primary result according to this method of

testing should be the decision between rejecting and failing to reject

the null hypothesis.

The misuse of test results is one of several complaints raised against

hypothesis testing. The process is subject to both the “fallacy of re-

jection” and “fallacy of acceptance,” the former of which states that

failure to reject the null hypothesis can be misinterpreted as evidence in

support of it (Spanos 2010). Perhaps a more nuanced point is that the
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fallacy of acceptance describes how rejecting the null hypothesis can

be conflated with accepting the alternative hypothesis as true. This is

especially problematic for experiments comparing explanatory models

for real-world processes. Comparing explanatory models is common

practice in fields such as psychology and sociology, and in these fields

is referred to as Structural Equation Modeling (Hox and Bechger 1998,

Ullman and Bentler 2012). An NP test is useful for detecting the pres-

ence of an effect between treatments, but is not meant for conclusions

that the alternative hypothesis defines a model that contains the un-

derlying truth.

Hypothesis tests also limit the types of statistical tests that can be

performed and the types of conclusions that can be drawn. Testing be-

tween nested null and alternative models means that a practitioner can-

not easily compare the relative evidence for two disparate explanatory

models. Moreover, there are some cases in which a null model describes

a result which would be qualitatively important. One such example in

paleobiological studies of evolutionary rates and directions is noted in

(Hunt 2015). In this line of research, practitioners are particularly in-
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terested in whether fossil data exhibits evidence for evolutionary stasis,

or if it resembles a directed or undirected random walk. Hunt notes

studies which posit as null models either stasis or undirected walks. In

either of these cases, the null models describe results which would be

biologically relevant to the field.

The specification of scientifically relevant explanations as null mod-

els has led to a misuse of the hypothesis testing framework in biol-

ogy and psychology (Bausman 2018). Bausman (2018) notes that it

is common in these fields to use the more simple of two explanations

as a null hypothesis, and upon failing to reject the null hypothesis,

concludes that there is support for the null. This practice is justified

on the grounds that the more simple explanation should be used until

an explanation outperforms it, but such a justification is not rooted in

the principles which drive hypothesis testing. Instead, it results in an

”epistemological privilege” for the null model, which can lead to un-

substantiated support for the null. This misuse of hypothesis testing

points not only to a larger misunderstanding of the role of statistics

in scientific study, but to the need for statistical methods which more
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appropriately address the types of inquiry that comprise scientific prac-

tice.

These limits of hypothesis testing provide substantial motivation for

statistical methods that allow for the comparison of multiple and dis-

parate models, and with more interpretable notions of evidence in the

contexts of the experiment being performed. One such school of sta-

tistical decision-making with these motivations is based on information

criteria methods, described in the next section.

2.2 Model Selection

Akaike (1974) formally introduced “an Information Criterion,” later to

be recognized as the Akaike Information Criterion (AIC), as an estima-

tor of the relative expected KL Divergences among a set of statistical

models and an underlying true distribution. The AIC was groundbreak-

ing in relating KL Divergence to Fisher’s maximized likelihood to create

a simple, tractable measure of relative information loss that could be

used to compare multiple models simultaneously, as well as non-nested

models with disparate functional forms (Burnham and Anderson 2002).
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The formula for the AIC of a model gi with K parameters, given ob-

served data x = x1, x2, . . . , xn, is given by

AIC(gi|x) = −2L(gi|x) + 2K.

Because it is a function of the negative likelihood, the best AIC

score among a set of models is the minimum score. Then, the quantity

2K in the AIC function can be said to penalize a model with more pa-

rameters. The AIC is therefore useful for protecting against overfitting

models. According to the AIC, the increased likelihood from increas-

ing complexity must outweigh the penalty associated with increasing

complexity. In the context of linear regression, for example, including

an additional covariate will always decrease the error sum of squares,

and thus increase goodness-of-fit. If the additional covariates are fitting

observational error, however, predictions made using the more complex

model will be inferior to those made by the simple model. information-

theoretic methods are commonly used for selecting which variables to

use in a linear model and which to leave out.

Making accurate predictions is a key goal of statistics, and was the
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orginally intended application of the AIC (Shmueli 2010). However, the

AIC is sometimes used in other contexts, for different research goals,

and thus has different implications. It is then important to elucidate

the differences in types of statistical modeling, and of particular interest

is the difference between predictive and explanatory modeling.

Predictive and Explanatory Modeling

The AIC’s basis in information theory, and effectiveness minimizing

information loss, have made AIC-based practices popular for predictive

modeling, both for selecting a best singular model and for creating

weighted ensemble models (Shmueli 2010). However, in some scientific

fields, predicting future data can be less informative than finding a

model with an interpretable functional form (Hox 1998, Wagenmakers

2007).

Models in psychology, for example, are often used to develop the-

ories of the characteristics of human behavior. The intent of such re-

search is not to predict future human behavior, but to fit into a larger

context of psychological theory. Similarly, one could imagine a social
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scientist using census data to identify demographic factors that lead to

homelessness or poverty. Conclusions made by this research would be

used to make claims about larger sociological and economic structures.

As noted above, these examples would be referred to in these fields

as structural equation modeling, used to investigate abstract theoreti-

cal constructs which “describe a pheonomenon of theoretical interest”

(Hox 1998, Edwards and Bagozzi 2000). Because of their use in com-

municating real world structures, it is desirable for these models to

contain a relatively small number of covariates (Vandekerchkove 2015).

Such models are called parsimonious, meaning that they describe a

phenomenon with as few predictors as possible. The motivation for

parsimonious models is well summarized by Occam’s razor —given two

plausible explanations, the simpler one is usually better.

Explanatory modeling also plays a large role in the biological sci-

ences. A study in cell biology might aim to compare two possible

biological mechanisms to attain a better understanding of how cells

function (Williams 1970). Candidate models in this case would be ap-

proximations of physical or chemical processes. These models would
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have functional forms that try to adequately describe real world pro-

cesses.

Critically, explanatory models offer causal explanations as opposed

to associative relationships (Shmueli 2010). Statistical theory would

state that many testing contexts, such as observational studies, are not

amenable to making conclusions about causal relationships, but this

distinction is often ignored in scientific practice (Shmueli 2010).

As stated above, the AIC was not intended for use in explanatory

modeling, but its ease of use in comparing multiple and non-nested

models has led to its widespread application in explanatory setting

(Shmueli 2010, Ullman and Bentler 2012). A naive use of the AIC

for this application would be to select and report the model which ob-

tains the best AIC score for given data. However, to do so is to ignore

the principle of ”model selection uncertainty”, and can lead to unpre-

dictable conclusions (Wagenmakers et al. 2004). The AIC is, after all,

a modified likelihood function, and thus AIC rankings are a random

variable of the data. Thus, the observed best model can vary consid-

erably with sampling fluctuation (Preacher and Merkle 2012). The use
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of the AIC and other information-theoretic criteria requires a more nu-

anced framework than simply reporting the best model. Guidelines for

use of AIC, with an emphasis in the natural sciences, are laid out in

(Burnham and Anderson 2002) and have been widely used, if at times

misused.

Model Selection Methods

Burnham and Anderson (2002) situates model selection not as a re-

placement to classical statistical testing, but as a supplement to it,

especially for observational data and exploratory analysis. According

to Burnham and Anderson (B-A) hypothesis tests based on observa-

tional data often overlook important assumptions made for those tests,

and can often lead to a sort of “false significance.” Observational data

can contain biases due to sampling methods, and thus are not often

representative of the populations they describe. Applying N-P testing

to these data is then violating assumptions of the underlying statistical

principles (Wagenmakers 2007). Moreover, due to sampling noise, and

because of the common interpretation of p-values, exploratory analyses
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using N-P testing and p-values can easily overfit a model, for example

including erroneous variables in a linear regression analysis.

It is noted in (Burnham and Anderson 2002) that the AIC is not a

statistical test and does not entail notions of confidence or error. Thus,

the methods they provide are intended for assessing relative evidence

for each model, and not for making definitive conclusions regarding

models. The foundations of this method are as follows.

For given data X, obtain AIC scores for each model M given X.

Then, record the minimum AIC score as AICmin. Using the minimum

AIC, one computes the AIC differences ∆i,

∆i = AICi − AICmin

In the B-A paradigm, score differences allow a practitioner to appraise

the level of support for a given model as compared to the best fitting

model. The text recommends a loose set of guidelines as a tool to drive

further testing, and so do not immediately seek to discount models that

do not perform best. As such, AIC differences are compared to a table

of benchmark rules of thumb for relative evidence as follows:
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∆i Level of Empirical Support of Model i
0-2 Substantial
4-7 Considerably less
≥10 Essentially none.

Table 1: Proposed values for classifying relative support between mod-
els based on AIC differences, taken from (Burnham and Anderson 2002)

Burnham and Anderson employ AIC differences as a clear descrip-

tion of relative model fits, or in information-theoretic terms, relative

expected information loss. It should be noted that the B-A threshold

values are not selected arbitrarily, but have a further justification in

terms of each model’s likelihoods given the observed data. Burnham

and Anderson show that this conditional likelihood, denoted L(gi, x)

is proportional to the quantity exp(−1
2∆i). This property is then used

to describe model support in two ways: using normalized values which

are termed Akaike weights and using ratios of exp(−1
2∆i) for differing

models, which are termed evidence ratios.
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Akaike Weights Given observed data x and modelsM1,M2, . . . ,MR,

construct the normalized terms

wi =
exp(−1

2∆i)∑R
r=1 exp(−1

2∆r)

The interpretation of the wi is given as follows: “A given wi is consid-

ered as the weight of evidence in favor of model i being the actual K-L

best model for the situation at hand given that one of the R models

must be the K-L best model of that set of R models” (Burnham and

Anderson 2002). Under this interpretation, the Akaike weights can be

a useful tool for appraising the degree of support for the best model

as compared to the entire model set. Moreover, these weights have

been shown to be useful for constructing weighted ensemble models for

predictive modeling (Burnham and Anderson 2002, ).
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Evidence Ratios In addition to the overall weights of conditional

likelihoods, define the evidence ratios between the conditional likeli-

hoods for two given models Mi,Mj as

exp(−1
2∆i)

exp(−1
2∆j)

.

This quantity is of particular interest when model i is the model which

obtained the minimum AIC. In this case, because exp(−1
2∆i) = 1 for

model i, the evidence ratio is a function of ∆j. (Burnham and Ander-

son 2002) gives the following values of this function for some values of

∆j:

∆j Evidence ratio
2 2.7
4 7.4
8 54.6

10 148.4
15 1808.0
20 22026.5

Table 2: Selected AIC difference values and associated evidence ratios
from (Burnham and Anderson 2002). According to the table, if model
j has an AIC score 2 points higher than the best fitting model, its
likelihood is lower than the best model’s by a factor of 2.7.
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These evidence ratio values do not give a strict interpretation for

decision-making, but are shown in the text to illustrate the nonlinear-

ity between the score differences and the evidence ratios. It is claimed

that “this information helps to justify the rough rules of thumb given

for judging the evidence for models being the best K-L model in the

set” (Burnham and Anderson 2002).That a score difference of 10 cor-

responds to the a the best model being 148.4 greater in relative likeli-

hood than model j does provide evidence against model j. However,

the choice of the specifc cutoff points between the classifications are

not derived from any underlying principle.

The AIC was not originally developed for the sake of decisively

choosing among statistical models, and neither were the methods de-

scribed in (Burnham and Anderson 2002), which warns against the

equating of their methods to testing:

“Information-theoretic criteria such as AIC, AICc, and QAICc are not
a ‘test’ in any sense, and there are no associated concepts such as test
power or P-values or α−levels. Statistical hypothesis testing represents
a very different, and generally inferior, paradigm for the analysis of data
in complex settings. It seems best to avoid use of the word ‘significant’
in reporting research results under an information-theoretic paradigm”
(Burnham and Anderson 2002, p. 84).

That these two paradigms are different is clear; that hypothesis test-
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ing is “generally inferior,” as claimed above, is less so. Crucially, the

popular practice of information-theoretic model selection differs from

the intended use, much like the combined use of Neyman-Pearson test-

ing and Fisher’s p-values. While p-values take on the role of quantifying

evidence, as opposed to determining test outcomes, the AIC is used for

classification and selection, as opposed to quantifying evidence.

Complaints against AIC selection Insofar as information-theoretic

selection procedures are used to report a single “best” model, a prac-

tice not entirely consistent with their intended use, it has been shown

that these procedures can produce results which are less interpretable

and less reliable than results obtained from hypothesis testing. As

stated in (Spanos 2010), “Akaike-type procedures are often unreli-

able because their minimization of a normed-based function is tanta-

mount to comparisons among the models within the prespecified family

Mi(z), i = 1, 2, ...m, based on Neyman-Pearson (N-P) hypothesis test-

ing with unknown error probabilities.” Spanos presents one such ex-

ample, summarized below:
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Example: Consider the following models M1 and M2 for observed

data y1, . . . yn and predictors x1, . . . , xn, where

M1 : yi = β0 + β1xi + β2x
2
i + β3x

3
i + εi,

M2 : yi = α0 + α1xi + εt.

For the case in which the true model is M1, Spanos (2010) demonstrates

that selecting M2 based on the best AIC can be described equivalently

as a likelihood ratio test. Moreover, it is shown that the error attained

by this test varies with n. For n = 35, this test has a Type-I error rate

of α = 0.180.

This example shows a clear incompatibility between the notions

of evidence used in hypothesis-testing procedures and in information-

theoretic procedures. According to (Spanos 2010), this incompatability

is problematic in the context of a larger scientific practice. Despite this

incongruence, the benefits of AIC model selection, such as the ability

to test between multiple and non-nested models, cannot be overlooked,

especially in fields such as biology, which rely on descriptive modeling.
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A key aspect of N-P style testing is the availability of solutions to

the distribution of test statistics, made possible by the relationships

between null- and alternate distributions. Analytical solutions to dis-

tribution functions are, in general, not accessible when considering a set

of two non-nested models (Wagenmakers et al. 2004). This means, for

instance, that the construction of a likelihood ratio test with an analyt-

ically determined critical value is generally not possible. Vuong (1989)

has made use of asymptotic approximations to likelihood ratio distribu-

tions between non-nested models, but which do not allow for multiple

model comparisons. Attempts have been made to approximate these

distributions computationally, for the purpose of refining selection pro-

cedures beween non-nested models (Williams 1970, Wagenmakers et al.

2004, Preacher and Merkle 2012).

Williams (1970a) described a method in which likelihood ratios are

generated for synthetic, parametrically bootstrapped data originating

from the MLEs of each model with respect to the data. These are used

to generate approximate distributions of the LR under each assumption,

which are then used to determine critical values for making conclusions
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between the two models, given the data. Given that an LR is equivalent

to the difference of log-likelihoods, this is cited in (Wagenmakers et

al. 2004) as the first use of “Differences in Goodness-of-Fit” (DGOF)

distributions under competing assumptions of two models being the

true generating process for observed data.

Williams’ method is built upon the idea of likelihood ratio tests, but

makes a significant departure in including two competing hypotheses

as opposed to the classical null and alternative hypotheses. In short,

according to this method, a decision can be made to favor either candi-

date model, or can conclude that the models both perform too poorly

or too similarly to choose one.

The method suggested in (Williams 1970a) is developed further and

tested in (Williams 1970), using two disparate models of regression. For

observed data yi observed at time ti, the first model, referred to as the
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“Segmented Model,” is shown below:

yi = f(Θ, ti) + εi,Θ = (α, β1, β2, β3, T1, T2), where

f(Θ, t) = α + β1t for t ≤ T1

= α + β1T1 + β2(t− T1) for T1 ≤ t ≤ T2

= α + β1T1 + β2(T2 − T1) + β(t− T2) for T2 ≤ t,

and εi ∼ N(0, σ2f) and independently distributed.

The fit for this model is compared to a “Smooth Model,” given by

yi = g(Ψ, ti) + εi, Ψ = (a, b, c),

where g(Ψ, t) = a + b exp(ct) and εi ∼ N(0, σ2f) and independently

distributed.

In this experiment, the models represent differing qualitative hy-

potheses for modeling the patterns of synthesis of various enzymes in

bacterial cells. Both regression models describe patterns of synthesis

which approximate real world processes, and both models are of distinct

interest to the field of research. As such, it would be less informative to
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perform a hypothesis test associated with either model than to compare

them outright.

The likelihood ratio λ used in this test is given by the ratio of the

residual sum of squares for the segmented model to those of the smooth

model. (Williams 1970) states that “to use this criterion knowledge is

needed of the distributions of λ under the assumption in turn that

each of the two models is true.” These distributions are dependent on

unknown model parameters, which are estimated by the MLEs of each

model, given data.

The likelihood difference distributions are approximated using para-

metric bootstrap resampling (James et al. 2013), as there is no ana-

lytical solution for them. As previously stated, the lack of solutions

for likelihood ratios of disparate distributions has prevented their use

in classical tests, so estimating them with parametric bootstrap is in-

novative. Despite an innovative sampling method, what follows in the

decision process lacks a clear statistical foundation. With regard to the

decision regions, Williams (1970) states that “no justification of this

rule in terms of misclassification probabilities is claimed, for the form
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of the distributions of the conditional likelihood ratios are not known.”

Despite its shortcomings, this method approaches a problem in sta-

tistical model selection distinct from the problem of intrinsic model

complexity. Where the AIC is used to penalize models that are more

complex in general, based on numbers of parameters, (Williams 1970)

considers models’ ability to fit data generated by other models, a prop-

erty given the term model mimicry (Wagenmakers et al. 2004).

The motivation for decision procedures that take into account model

mimicry is clear. Suppose one is comparing fits of two models, A and B,

where A is relatively inflexible and unable to fit data from B, but B is

able to fit well to data generated by A. Even if A has more parameters,

and thus more complexity according to the AIC, this complexity does

not lead to increased GOF in the case where B is true.

Wagenmakers et al. (2004) Wagenmakers et al. (2004) also uses

a bootstrap procedure to estimate distributions of relative goodness

of fit functions for model selection. The text describes these distri-

butions as “Difference in Goodness of Fit” distributions, which use

log-likelihoods (or in this case, AIC scores) to convert the likelihood

28



ratio into a difference. In AIC-based selection between two non-nested

models, model mimicry can lead to unequal misclassification probabil-

ities. It is claimed that if these probabilities are mismatched, e.g. if

data generated from model A is more likely to be attributed to model

B than vice versa, the procedure exhibits a type of bias toward model

B.

To combat this phenomenon, Wagenmakers’ procedure uses approx-

imate DGOF distributions to move the decision criterion away from

zero (i.e. simply choosing the best fitting model) and to a point “that

maximizes the probability of a correct binary classification.” This pro-

cedure is outlined below:

For two models A and B and observed data X, estimated param-

eters and goodness-of-fit values are obtained for each model based on

X. This gives fitted parameter values Θ̂A and Θ̂B for models A and

B, and an observed difference in goodness-of-fit ∆GOFAB given by

GOFA −GOFB.

Under competing assumptions that each model is true, approximate

distributions (∆GOF ∗AB|A is true) and (∆GOF ∗AB|B is true) are com-
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puted via bootstrap. The densities of these distributions are denoted by

PA(x) and PB(x), respectively. Then, an observed ∆GOFAB is more

likely to have come from the assumption that model A is true when

PA(x)/PB(x) > 1 for x = ∆GOFAB.

From PA(x) and PB(x), (Wagenmakers et al. 2004) constructs a

decision criterion which differs from the usual interpretation of the AIC,

in which the best model is that which obtains the lowest score. In this

procedure, the decision criterion is set to the point denoted (opt) at

which PA(x)/PB(x) = 1. The relationships between the distributions

and the decision criterion is best depicted graphically:
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Figure 1: Model Mimicry: example DGOF distributions conditional on
the true model. A line has been drawn at −1.5, marking the optimized
decision threshold between the two models.

In the plot above, the two density curves intersect at the value

∆GOFAB = −1.5. This represents a case in which model A exhibits

greater mimicry than model B. The distribution for ∆GOFAB|B is true

has a mean value closer to zero compared to the mean of the distribution

of ∆GOFAB|A is true. This means model A is observed best more often

when B is true than vice versa. Thus, the decision threshold (opt) =

-1.5 gives equal classification error, while a threshold of 0 would result

in greater error in the case that model A is true.
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Wagenmakers’ procedure differs from Williams’ in two critical ways.

Firstly, it relates the decision criterion to misclassification error, which

was thought to be inaccessible to Williams. However, the Wagenmak-

ers procedure has only two possible decisions: a conclusion in favor of

each model. Thus, Wagenmakers’ procedure serves only to optimize

decision-making within the current standard of AIC-based model se-

lection. It falls short of addressing complaints leveraged against model

selection such as those in (Spanos 2010): that model selection amounts

to statistical testing with undefined and unmeasured degrees of error.

This paper aims to adapt and extend ideas from (Williams 1970)

and (Wagenmakers et al. 2004) to define a model selection procedure

driven by the notion of error control. This will involve defining a gen-

eral, functional framework for decision-making in model selection that

permits notions of Type-I and Type-II error, as well as a theoretical

procedure which uses conditional DGOF distributions to bound Type-I

error. I will then present a bootstrap method for approximating the

necessary functions for the decision procedure along with results on

simulated i.i.d. and time series data.
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3 A Framework for Model Selection

Toward a Translatable Standard of Evidence Motivated by the

gap in evidence between classical hypothesis testing and model selec-

tion, as well as the increased generality and flexibility of information-

theoretic model selection, we aim to develop a procedure by which

model selection can be performed with a standard of evidence com-

parable to that of hypothesis testing. In particular, we will define a

general theoretical framework for model selection which allows us to ex-

tend the notions of Type-I and Type-II Errors to information-theoretic

procedures. Moreover, we will propose and demonstrate a procedure

which uses this framework to perform AIC model selection with speci-

fied maximum Type-I error rate α.

Given dataD ∈ D and candidate model setM = {M1,M2, . . . ,Mk},

specify

1. A criterion function f : M× D → R, which assigns a score to

each model Mi based on the observed data.

• Let F denote the vector of criterion values =
(
f(Mi, D) :
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i = 1, . . . , k
)
.

2. A preference function g : Rk → M, which selects a best model

from the candidate model set given the model score vector.

• For observed F as above, let Mb = g(F ). In other words,

denote the best model according to g by Mb.

3. A decision function h : M× Rk → {0, 1}, which is equal to 1 if

the specified model is chosen to be correct, and 0 otherwise.

• Generally, we will take h(Mi, ·) = 0 when i 6= b. This means

that in general, only the observed best model can be chosen

as correct.

3.1 Example: Simple AIC-based selection

This model selection framework permits a standard use of the AIC

for selecting a correct model according to best-fit. For data D and

candidate model set M = {M1,M2, . . . ,Mk}, define

1. f(M,D) = AIC(M,D) = 2k− 2L̂(M ;D), where k is the number

of parameters for M and L̂(M ;D) is log-likelihood evaluated at
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the maximum likelihood estimator.

2. g(F (D)) = arg minM(F (D)). Here we report the model with the

lowest AIC as best.

3. h(Mb, ·) = 1. The observed best model is automatically reported

to be correct.

3.2 Example: Changing the Decision Function

Reporting the best-fitting model as correct can lead to a high rate of

misclassification error, a commonly raised complaint against information-

theoretic selection methods (Spanos 2010). With this in mind, many

have specified rules-of-thumb for quantifying evidence in support of the

best model (Burnham and Anderson 2003). In the case of Burnham and

Anderson, alternative models are said to attain relatively no support

given data compared to the best model when they attain AIC scores at

least 10 points above that of the best model.

Along these lines, we can encode a decision function which reports

the best model as correct if its score is at least 10 points less than all

other model scores. We define the criterion and preference functions as
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above. Letting Mb be the model which attains the best AIC score, as

above, define

∆f = Fb −min{Fi : i 6= b}

but now define the decision function as follows.

h(Mb, F (D)) =


1 if ∆f < −10

0 otherwise
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4 Error Rates and the Confusion Matrix

In adapting error rates to a general information-theoretic model selec-

tion context, we must consider what constitutes a Type I or Type II

error. These terms typically refer to conclusions about the null hypoth-

esis in classical hypothesis testing, while our framework doesn’t include

the specification of a null model. As such, there is no null hypothe-

sis to be rejected, but rather the difference is between selecting or not

selecting one of the candidate models as correct.

When performing error controlled model selection, we assume that

the model set contains the true generating process for the data. Under

this assumption, we can define errors based on reporting a false model

as correct or on failing to identify the true model. The latter case

is more complex, and to examine it further we consider the possible

outcomes of the model selection procedure. Suppose that among the

model set M = {M1, . . . ,Mp} and for some t ∈ {1, . . . , p}, model Mt

is the true generating process. Then according to our framework, the

possible outcomes for the preference and decision functions are
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1. Mb = Mt & h(Mb, F (D)) = 1 : The true model is observed best,

and we conclude that it is correct. This is a “true positive.”

2. Mb 6= Mt & h(Mb, F (D)) = 1 : An incorrect model is observed

best, and we conclude that it is correct. This is a “false positive.”

3. Mb = Mt & h(Mb, F (D)) = 0 : The true model is observed best,

and we fail to conclude it is correct. This is a “false negative.”

4. Mb 6= Mt & h(Mb, F (D)) = 0 : An incorrect model is observed

best, and we fail to conclude it is correct. This is a “true nega-

tive.”

In separating cases three and four, we recognize case three as a

shortcoming of the error control process and case four as a feature. We

say that a Type II error occurs under case three, but not case four.

To evaluate and compare decision procedures we consider their Type

I error rates as well as their sensitivity, given by the ratio of the num-

ber of true positives to the number of true positives and false negatives.

Thus, a decision function in which the output of the preference function

is always reported (e.g. always choosing the model with the best AIC),
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the sensitivity is 100%, but there is no control on the error rate. Sensi-

tivity leads to a salient interpretation of the amount of signal lost due

to error control, and also could be used to compare decision procedures

across multiple score and preference functions.

The Confusion Matrix Suppose that we have p different mod-

els. We define the confusion matrix M to be the p × p matrix where

each element Mij corresponds to the probability of reporting model Mi

as true when Mj is the true model. The elements of the confusion

matrix are given by

Mij = p(M |Tj = 1)p(h = 1|Bi = 1, Tj = 1) (1)

The term p(B = i|Tj = 1) is the probability that model i will be

chosen as best while assuming that model j is the true generating mech-

anism. The term p(h = 1|Mj, B = i) is the probability of obtaining a

decision that model i is correct, assuming that model j is true.

Thus, for i = j, i.e. the diagonal elements of M describe the proba-

bility of recovering the true model, given the data. The elements where
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i 6= j describe the probability of false positives, i.e. for concluding that

model i is true when the data was actually generated by model j.

Thus, if we have models M1, . . . ,Mp, with true model MT , the value

MTT gives the power of the test, and the value Mij gives the probability

of committing a Type-I error under the condition that Mi is observed

best and Mj is the true distribution.

The advantage of situating model selection within our general frame-

work, i.e. using preference and decision functions, is that it gives us

a means of comparing model selection procedures similarly to how we

compare statistical tests. For instance, since we can define the type I

error rate α, we might approach the choice of a model selection proce-

dure similarly to identifying a uniformly most powerful statistical test

—by choosing an acceptable error rate and then seeking to maximize

statistical power.

This thesis defines a class of decision functions hτ motivated by the

elements of the confusion matrix and a bootstrap-based approach for

estimating the tuning parameter τ to bound the error rate at a specified

value. In doing so, we hope to work toward facilitating the translation
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or comparison between standards of evidence for model selection.

5 A Class of Decision Functions hτ

Recall that the element Mij of confusion matrix M is given by Mij =

p(Bi = 1|Tj = 1)p(h = 1|Bi = 1, Tj = 1).

A decision function with error rate α would output h = 1 in such a

manner that all Mij = p(Bi = 1|Tj = 1)p(h = 1|Bi = 1, Tj = 1) = α for

i 6= j, j = t. Note that the probability term p(Bi = 1|Tj = 1) does not

depend on the choice of h. Suppose that for a given experiment, model

Mj is the true model, and model Mi is observed best. Suppose further

that we could compute the true value of p(Bi = 1|Tj = 1). Then,

suppose that for a given τ ∈ [0, 1], we could define a function hτ such

that the event (hτ(. . . ) = 1|Bi = 1|Tj = 1) occurs with probability τ .
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Then, for α ∈ [0, 1], define α′ = α
p(Bi=1,Tj=1) . Then, let τ = α′ we have

Mij = p(Bi = 1|Tj = 1)p(hα′ = 1|Bi = 1|Tj = 1)

= p(Bi = 1|Tj = 1)
α

p(Bi = 1|Tj = 1)

= α

Toward a tractable form of hτ We have specified a class of func-

tions of the form hτ such that given models Mi and Mj, score function

f , and preference function g, P (hτ = 1|Bi = 1, Tj = 1) = τ . Suppose

that f was the AIC and g selected the model with the lowest AIC.

Then, to approach an hτ which relates to the probability that model

Mi is chosen as best when model Mj is the true generating mechanism,

we consider the statistic

∆AICi = AIC(D,Mi)−min{AIC(D,Mj)}i 6=j,

which gives the difference between the AIC for the first- and second-

ranked models. Recall that this statistic is used by Burnham and An-

derson to describe evidence in support of the observed best model based
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on rules-of-thumb, e.g. report the best model if ∆AICi < 10. Instead

of using a preordained value, suppose instead that we could access the

conditional distribution of (∆AICi|Bi = 1, Tj = 1). For τ ∈ [0, 1],

define qτ to be the τth percentile of this distribution. Then, define hτ

to be

hτ =


1 if ∆AICi < qτ

0 otherwise

By definition of percentile, P (hτ = 1|Bi = 1, Tj = 1) = τ . Thus,

supposing we can access the distribution of (∆AICi|Bi = 1, Tj = 1),

we can define a function hτ that attains type-I error rate of p(Bi =

1|Tj = 1)p(h = 1|Bi = 1, Tj = 1) = α by setting τ = α′. Note that τ

varies with ij, i.e. that each pair of models will have a different decision

function with differing thresholds, but indices are suppressed here for

convenient notation.

In practice, we do not have access to the threshold values qτ , because

we do not have advance solutions for the probabilities p(Bi = 1|Tj =

1) or the conditional distributions of (∆AICi = 1|Bi = 1, Tj = 1).
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We cannot generally expect to find analytic solutions based on the

distributions of the models and the functions used in the model selection

procedure. This issue is prevalent in model selection - the flexibility

afforded in comparing multiple and non-nested models using e.g. the

AIC comes at a cost.

In light of the unavailability of analytic solutions, we opt for com-

putational methods to estimate the necessary components to produce

approximate functions ĥτ for hτ . However, the parametric bootstrap

has been shown to be effective in estimating quantiles (Falk 1989), and

my method will make use of this parametric resampling to construct

approximate DGOF distributions to estimate quantiles.

6 BITSEC - A Bootstrap Procedure for

Approximating the Decision Function

As above, suppose that we have data D, candidate model set M =

{M1, . . . ,Mp}, and true model Mt ∈ M. Moreover, assume we have

chosen a score function f and a preference function g. Given a de-
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sired Type I error rate α, I introduce a bootstrap method, abbrevi-

ated BITSEC (Bootstraped Information-Theoretic Selection with Error

Control), which implements a decision function ĥ with estimated error

rate α̂.

Given the data, the model set, and the score and preference func-

tions, we are able to determine the best performing model with respect

to the preference function. This gives us Bk = 1, i.e. that model Mk is

the observed best. At this point, we now seek to estimate α′ and use

it to estimate hα′

Estimating p(Bi = 1|Tj = 1) We use parametric bootstrap sam-

pling to estimate the probabilities p(Bi = k|Tj = 1) for each j 6= k:

Let M̂j be the maximum likelihood estimated fit of model Mj. For

each j 6= k, generate N1 new datasets from M̂j and record the frequency

with which Mk is observed best. This is an estimate of p(Bi = k|Tj = 1)

because it assumes that the data was generated by Mj and uses the

MLE M̂j as the estimated true distribution corresponding to model

Mj.
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Specifying the Decision Function As previously mentioned, we

now seek a function h which, conditioning on Bk = 1 and Tj = 1, is

equal to 1 with probability α
P (Bk=1|Tj=1) . To do so, we first record the

observed score delta for the experiment:

∆AIC = AIC(Mk)−min{AIC(Mj)}j 6=k

To use this value as the basis for our decision function, we use a para-

metric bootstrap to estimate the conditional distribution ∆AIC|Tj = 1.

After fitting the model Mj, we parametrically sample from it to create

N new datasets of length n, each of which gives Bi = 1. We compute

the score differences ∆∗1, . . . ,∆
∗
N . Finally, we select the order statistic

∆∗(k) where k is the largest integer in 1, . . . , N for which k/N ≤ α′. For

example, with N = 1000 and α′ = 0.1525, we select ∆∗(152) to approxi-

mate the α′ percentile. Define the quantity q̂j = ∆∗(k). We perform this

sampling and threshold estimation for each candidate model Mj and

obtain qj for all j 6= i.

Finally, we have a set of threshold values {qj}j 6=i corresponding to

conditional probabilities of observing various differences in AIC scores.
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We use these analogously to critical values in a hypothesis test. For

instance, because the threshold {qj} approximates the α percentile of

the distribution of (∆AIC|Bi = 1, Tj = 1), if the observed score dif-

ference ∆AICobs < qj, then there is less than an α percent probability

that ∆AICobs could have occurred under the assumption that model

Mj was true.

Multiple Decision Thresholds Because the BITSEC procedure

has been designed with the preference of obtaining an error rate less

than α, we take the minimum of all τα′ values as the decision thresh-

old that the observed score difference is compared to. An alternative

to choosing the minimum threshold might be choosing between the

thresholds randomly, but this would result in cases for which too lax

of a threshold is used for the decision. This procedure may be more

appropriate in cases where data is assumed to come from a mixture of

true generating distributions.

As such, we set h = 1 when ∆AICobs ≤ min{qj}j 6=k. This means

that we only accept the observed score difference ∆AICobs if it is suf-

ficiently unlikely to have come from any of the alternate assumptions
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of models Mj, being true, j 6= i. Thus we have approximated a deci-

sion function with an estimated maximum Type I error rate α̂. Shown

below is a visualization of two distributions of ∆AIC|Tj = 1 and the

associated α = 0.05 decision thresholds. In this example, the model

M3 has been observed best, so thresholds are computed under the as-

sumptions T1 = 1 and T2 = 1. The leftmost threshold value of −5.48

is used for the procedure’s decision. Also shown below is a flow chart

summarizing the entire BITSEC procedure.
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Figure 2: Error Control: Conditional DGOF distributions and α level
thresholds. Model M3 has been observed best, and thresholds are com-
puted for the assumptions that each of the other two models is true.
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Data

MLEs

Bias Corrected MLEs

Observed Scores

Best Model Bi = 1

pij = Pij(Bi = 1|Tj = 1)

α′ij = α
p1ij

τij ∈ [0, 1] such that P (hτij = 1|Bi = 1, Tj = 1)

h = 1 if ∆AICobs < min(τij)

Figure 3: The full BITSEC procedure: First, MLEs are fit to the
observed data, resulting in observed scores and observed best model.
Then, a bias correction is performed on the parameter estimates, and
the new values are used to estimate the probabilities Pij(Bi = 1|Tj = 1.
These probabilites are used to determine the proper quantile of the
DGOF distribution which will be approximated by the bootstrap to
give a decision threshold. After performing this step for all models other
than the observed best, the minimum threshold is taken and compared
to the observed score differnce. If the observed score is less than the
given threshold, the best model is declared to be correct. Otherwise a
“null decision” is given.
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7 Results

7.1 Bias in MLEs

Our model selection procedure depends on parametrically sampling

from the MLE for the observed data to estimate the conditional proba-

bility of each model attaining the lowest AIC score as well as the score

difference distributions which determine the decision thresholds. For

the model N(µ, σ), the MLE given by µ̂ = µ̂, σ̂ = s is unbiased overall,

but loses this property when conditioning on the observed best model,

which the BITSEC procedure cannot avoid.

Example For the case in which the candidate model set is N0 =

N(0, 1), N1 = N(µ, 1), N2 = N(µ, σ), consider the effect of conditioning

on N0 attaining the best AIC score. It is clear to see that B0 = 1 occurs

for samples in which µ̂ and σ̂ are suitably close to 0 and 1 respectively.

As such, we can see how the average MLE, conditional on N0, denoted

by (µ̂, σ̂)|B0 = 1, will be biased toward (0, 1). Shown below are the

results of conditioning on each of the three models, where the MLE’s
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shown are averaged over 10,000 runs.

B0 = 1 B1 = 1 B2 = 1
Parameter µ̂ σ̂ µ̂ σ̂ µ̂ σ̂

n = 25 0.08169 1.0777 0.4104 1.0603 0.2671 1.2882
n = 50 0.07806 1.0749 0.3258 1.0560 0.2425 1.2342
n = 100 0.0688 1.0659 0.2617 1.0502 0.2225 1.1790

Table 3: Estimation of (µ, σ), true values = (0.214, 1.124) when sam-
pling from N(µ, σ) and conditioning on the observed best model under
the AIC. These parameter values have been selected such that each
model attains the best AIC with nearly equal probability when n = 50,

It should be noted that as the amount of data increases, the effects

of conditioning are different among the different models. We see that

the conditional MLEs for (µ, σ) get closer to the true parameter values

when B1 = 1 or B2 = 1, but farther away when B0 = 1. This stands to

reason because with more data, the parametric models continue to fit

the data better while the fixed model stays the same. Moreover, as the

amount of data increases, the penalty for complexity plays less of a role

in choosing the best model. As such, we observe that the data must

give an MLE increasingly close to (µ, σ) = (0, 1) for N0 to be observed

best.
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The effects of conditioning on observed best model and of increasing

sample size are summarized below. For N = 1000 samples at each size

of n = 25, 50, 100, observed parameter estimates are recorded and coded

by the best observed model. The bottom-right plot shows the trends

displayed by the mean MLEs after conditioning on each model.

Figure 4: Visualizations of classifiaction regions as a function of sample
size, true model N2 with (µ, σ) = (0.214, 1.124) Bottom left: mean pa-
rameter estimates conditional on the observed best model as a function
of sample size. Parameter estimates for N1 and N2 improve, while those
for N0 worsen.
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7.2 Bias Correction

To combat the effect of the bias on the MLEs resulting from condition-

ing on Bi = 1, we estimate the conditioning affect and correct for it.

The bias correction procedure proceeds as follows:

• Observe Bi = 1 and the MLE Θ̂

• Parametrically sample ~X∗1 , . . . ~X
∗
N from the assumed true model

Mj(Θ̂), where Bi = 1 for each X∗k .

• Obtain Θ̂∗1, . . . , Θ̂
∗
N from the simulated data, compute

Θ̂′ = mean (Θ1∗, . . . , Θ̂∗N).

• Estimate bias B using B̂ = Θ̂−Θ

• Corrected estimate of Θ is given by Θ̂C = Θ− B̂

In general we cannot assume that B̂ = B, but the bias correction results

in estimated parameter values that are closer to the true parameters,

which results in better downstream estimates in the model selection

procedure.
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Example Once again we consider the candidate models N0, N1, N2

with true model N2 = N(µ, σ). Shown below are corrected estimates

of µ, σ when Bi = 1.

B0 = 1 B1 = 1 B2 = 1
Parameter µ̂ s µ̂ s µ̂ s

n = 25 0.134 1.118 0.323 1.098 0.251 1.200
n = 50 0.117 1.101 0.270 1.086 0.230 1.177
n = 100 0.110 1.093 0.236 1.076 0.219 1.144

Table 4: Bias corrected estimates of (µ, σ), true values = (0.214, 1.124),
when sampling from N(µ, σ) and conditioning on the observed best
model under the AIC.
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Figure 5: Plots of the absolute value of the bias when estimating (µ, σ),
given that each model is true. In every case, the bias correction method
reduces the bias.
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8 Results

8.1 3 Nested Normal Models

Finally, we test the full selection procedure using N2 as the true model,

with (µ, σ) = (0.214, 1.124), across α = 0.01, 0.05, 0.10 and n = 25, 50, 100.

The values for (µ, σ) have been selected attain nearly equal probability

for each model being observed best when n = 50. Equal selection prob-

abilities pose a considerable problem in model selection, and provide

an opportunity to demonstrate the potential strengths of BITSEC. To

attain approximate error rates, we use the proportion of decisions ob-

tained from running the procedure 1000 times on simulated data, and

perform this simulation multiple times to obtain an average error rate.

We compare these proportions to those obtained by selecting the model

with the best AIC or using Burnham and Anderson’s decision threshold

of 10.
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N0 N1 N2 No Decision Total Error Sensitivity

n = 25

Best AIC 499 313 188 0 0.812 1

∆ = −10 Rule 0 0 3 997 0 0.016

Error Controlled 0 5 28 967 0.005 0.149

n = 50

Best AIC 343 336 321 0 0.679 1

∆ = −10 Rule 0 0 10 990 0 0.031

Error Controlled 1 3 74 922 0.004 0.231

n = 100

Best AIC 143 331 526 0 0.474 1

∆ = −10 Rule 0 0 29 971 0 0.055

Error Controlled 1 4 162 833 0.005 0.308

N0 N1 N2 No Decision Total Error Sensitivity

n = 25

Best AIC 512 285 203 0 0.797 1

∆ = −10 Rule 0 0 2 998 0 0.001

Error Controlled 25 15 117 843 0.04 0.576

n = 50

Best AIC 349 328 323 0 0.677 1

∆ = −10 Rule 0 0 9 991 0 .028

Error Controlled 22 24 200 754 0.046 0.619

n = 100

Best AIC 136 308 556 0 0.444 1

∆ = −10 Rule 0 0 37 963 0 .067

Error Controlled 3 13 388 596 .026 0.698

N0 N1 N2 No Decision Total Error Sensitivity

n = 25

Best AIC 513 289 198 0 0.802 1

∆ = −10 Rule 0 0 1 999 0 0.005

Error Controlled 51 53 173 717 0.11 0.874

n = 50

Best AIC 351 351 298 0 .702 1

∆ = −10 Rule 0 0 9 991 0 0.009

Error Controlled 25 59 258 658 0.084 0.866

n = 100

Best AIC 130 342 528 0 0.472 1

∆ = −10 Rule 0 0 44 956 0 .009

Error Controlled 10 49 473 468 .059 0.896

Table 5: Results: Error and Sensitivity, Normal Models
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As we predicted above, the observed error rates decrease well below

α as n increases due to increased bias in the conditional MLEs, and thus

in the estimates of α′. While an improved bias correction to the MLEs

could result in an improved estimator for α′, we note that increasing

n still results in increased sensitivity, from which we conclude that the

procedure continues to improve with increased data.

8.2 Random Walks

Earlier in this paper I mentioned the question of comparing rates and

modes of evolution in fossil data, a problem described in Hunt (2015).

One question of interest is in distinguishing between data depicting

stasis and data depicting unbiased or biased random walks. This line of

questioning is not suited to hypothesis testing, because the indication of

any model as correct would be have a relevant biological interpretation.

However, stasis has been commonly used as a null model, and has been

used in the manner of accepting the null model when failing to reject

it (Hunt 2015, Bausman 2018).

This experiment uses the model set M = {M1,M2,M3}, where
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M1 denotes stasis, M2 denotes an undirected random walk, and M3

denotes a directed random walk. The stasis model is given by N(µ, σ),

and the random walk models are given as follows: for observation yt

and predictor variable xt taken at time t, yt is given by

yt = β0 + yt−1 + εt,

with the εts independently distributed as N(0, σ) and β0 = 0 for the

undirected random walk.

Using data generated by true model M3 parametrized by β0 =

0.1, σ = 1.1, chosen to assign the best AIC to M2 with much greater

frequency than M3, sample sizes n = 15 and confidence levels α =

0.01, 0.05, 0.10, shown below is a summary of error rates and sensi-

tivities using basic AIC model selection, the Burnham and Anderson

threshold of a score difference less than −10, and the BITSEC proce-

dure:
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M1 M2 M3 No Decision Total Error Sensitivity
Best AIC 2 737 261 0 0.739 1
∆ = −10 Rule 0 0 0 1000 0 0
BITSEC (α = 0.01) 0 12 32 717 0.012 0.123
BITSEC (α = 0.05) 0 48 129 717 0.048 0.494
BITSEC (α = 0.1) 1 94 169 717 0.095 0.643

Table 6: Simulation results for random walk models with true model
M3 with parametrized by β0 = 0.1, σ = 1.1

8.3 Nested Linear Regression Models

(Spanos 2010) raises an example for which the simple AIC procedure

can be represented as a hypothesis test, one with an implicit Type-I

error rate of 0.180. Not only is this error rate relatively high compared

to typical benchmarks, but is dependent on the amount of data in

the test. In this section we apply the error controlled model selection

method to the models used in this example.

Let M be the candidate model set M = M1,M2, with

M1 : yt = β0 + β1xt + β2x
2
t + β3x

3
t + εt,

M2 : yt = α0 + α1x1 + εt

and suppose that data X = x1, x2, . . . , x35 is generated from M2, with
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parameters

a0 = 167.115

a1 = 1.907

σ = 1.77

as presented in Spanos (2010) and originally seen in Spanos (2000).

We simulate 1000 datasets from the true distribution and apply the

error controlled selection method with α = 0.05. A table of decisions

is shown below:

M1 M2 No Decision Total Error Sensitivity

n = 25

Best AIC 166 834 0 0.166 1

∆ = −10 Rule 0 0 1000 0 0

Error Controlled 44 82 874 0.044 0.098

Table 7: Simulation results for nested linear regression models with
true model M2 and α = 0.05.

Thus, using the error controlled procedure, we conclude the exper-

iment in Spanos (2010) can be performed successfully with an approx-

imate maximum error rate of α = 0.05. The sensitivity of this test
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is considerably low, which attests to the difficulty in discriminating

between these two models.

8.4 Nonlinear Nonnested Regression Models

We compare the AIC model selection methods to simplified versions

of the models described in (Williams 1970). These models have been

simplified for ease of computation, as the goal of the experiment was

to assess how the procedures perform in choosing between the differing

functional forms of the models. Thus, the breakpoints in the piece-

wise model were assumed to be known, as was the term inside the

exponential function in the smooth model. This allowed for fitting the

piecewise model without considering all breakpoints, and linearized the

smooth model. The models are given as follows, where M1 denotes the

segmented model and M2 denotes the smooth model.

yi = α + β1t for t ≤ 10

= α + 10β1 + β2(t− 10) for 10 ≤ t ≤ 20

= α + 10β1 + 10β2 + β(t− 20) for 20 ≤ t,
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and εi ∼ N(0, σ2f) and independently distributed. Then, the smooth

model is given by

yi = a+ b exp(0.2t) + εi

with εi ∼ N(0, σ2f) and independently distributed. Data of sample size

n = 25 was sampled from M2 with parameters chosen such that the

correct model was selected by the AIC with approximate probability

0.80. As in previous experiments, a simulation was performed on 1000

samples from the true distribution to obtain approximate decision fre-

quencies for specified error rate α = 0.05, summarized below:

M1 M2 No Decision Total Error Sensitivity

n = 25

Best AIC 198 802 0 0.198 1

∆ = −10 Rule 0 0 1000 0 0

Error Controlled 53 446 501 0.053 0.556

Table 8: Simulation results for nonnested regression models, α = 0.05

As expected, the true model is identified by the AIC approximately

80% of the time. The rule of thumb method fails to choose a model in al-

most every run. The attained error rate for α = 0.05 was slightly above
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the desired α. This experiment may have benefitted from improved pa-

rameter estimation or an increased number of bootstrap samples, but

the results still corroborate the notion that error can be controlled in

a setting such as the one specified in (Williams 1970).

8.5 Summarized Results

In the experiments presented above, common AIC-based methods pro-

vided unpredictable results for explanatory modeling, and lead to con-

clusions without a clear degree of confidence. In particular, reporting

the observed best model as correct leads in all cases to high degrees of

Type-I error, and reporting a model based on the rule of thumb from

(Burnham and Anderson 2002) leads in all cases to poor performance

in terms of sensitivity. Either choice of fixed decision thresholds ignores

the fact that AIC differences lack a uniform scale across different ex-

periments and model sets. Thus, along with undesirable performance

in terms of error and sensitivity, the standard of evidence employed by

these methods is inconsistent among different statistical contexts.

The error controlled method introduced in this paper improves upon
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the constant threshold methods in all of the cases shown. Across many

types of data and models, the method succeeded in setting approximate

error bounds and achieving relatively high degrees of sensitivity. More-

over, sensitivity is seen to increase as the allowable error rate increases

and as the amount of data increases. By reducing model selection un-

certainty, this method leads to a standard of evidence better suited to

descriptive modeling and causal inference. This is especially useful in

applications to natural sciences, where model selection is already widely

employed.

The analyses given above were performed using an R package de-

veloped as part of this paper. The ICError package is currently under-

going error handling and documentation and will be released for public

use.

9 Software Package

As part of this paper I developed an R package which provides simple

functions for implementing the BITSEC procedure. It contains func-

tions for generating data, estimating parameters, and computing AIC
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scores for specified models. Familiar models and families of models

are supported, including linear regression models, nonlinear regression

models using the nonlinear least squares package nls, segmented regres-

sion using the segmented package, random walks, as well as standard

distributions. The package will be extended to support users with mod-

els that are not included, by letting users specify generating, fitting, and

scoring functions as needed.

In developing and improving the BITSEC functions, I took many

steps to improve runtime. The package has an option for parallel pro-

cessing, which can greatly improve speed relative to the number of cores

on the user’s computer. The package also heavily implements vectorized

functions such as apply as opposed to iterative loops, which conserve

memory and greatly decrease runtime. Moreover, for models whose

MLEs or score functions have analytic solutions, direct computations

are used whenever possible. For instance, when obtaining scores for

linear regression models, sums-of-squares are computed using matrix

forms instead of referencing R’s lm package.
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10 Discussion

Despite its original intention of predictive modeling, the AIC is widely

used in many scientific fields for explanatory modeling and structural

equation modeling (Shmueli 2010). As a result, the validity and in-

terpretation of these results has been contested (Spanos 2010). Even

though commonly acknowledged rules of thumb for safeguarding against

choosing between highly competitive models, the constant values used

in these rules lead to unpredictable results, because pairwise score dif-

ferene distributions vary greatly based on the the choice of models as

well as the true data generating process. This is clear for the rule of

adopting the model with the minimum AIC as well as using the (Burn-

ham and Anderson 2002) recommended threshold of −10, as evidenced

by (Spanos 2010) and the results of this paper. The use of these con-

stant rules, then, creates a non-uniform standard of evidence across the

practice of information-theoretic model selection. Moreover, this non-

uniformity, as well as the statistical justifications for model selection as

compared to those for hypothesis testing, lead to a discrepancy in the
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implications of the results of these methods.

Attempts have been made to improve model selection by computa-

tionally estimating distributions of differences of model scores (Williams

1973, Wagenmakers et al. 2004). However, in (Williams 1973), the

resulting estimates of difference distributions were not used in a princi-

pled manner, leading to an ambiguous interpretation of results of this

method. The basis for setting decision thresholds in (Wagenmakers et

al. 2004) claims to achieve equal error rates between two models, but it

should be noted that the method in this paper actually stems from sta-

tistical classification instead of testing. While optimizing a confusion

matrix in classification settings is a relevant problem, an underlying

assumption in this context is that observed data is drawn from dif-

fering sub-populations, i.e. has been generating by differing processes

(James, Witten, Hastie, and Tibshirani 2013). The experiment per-

formed in (Wagenmakers et al. 2004) sought to compare competing

theories of perception, results which would be generalized to the entire

population. Using classification principles in this context has, at best,

unclear motivation, and at worst questionable validity and interpreta-
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tion.

This paper has presented a general framework for model selection

with notions of Type-I and Type-II error, and thus for selecting deci-

sion functions based on controlling error. These decision functions may

be compared using statistical sensitivity, which factors out the error

inherent in the score function in the procedure. Moreover, a bootstrap

implementation of a decision function with approximate maximum er-

ror rate α) has been introduced and demonstrated on multiple use cases

and data types. It was seen in these experiments that the desired error

rate was approximately obtained in all cases, and that when fixing α,

the decision function has the desirable property of increased sensitivity

as sample size increases. A demonstrable, easy to implement method

for error controlled model selection has wide application in the natu-

ral sciences, and provides an opportunity for reexamining past studies

under a new standard of evidence.

Following the results of the error controlled model selection pro-

cedure, one is motivated to examine the individual elements of the

procedure. The general model selection framework gives the benefit of
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distinctly separate steps which can be substituted in a modular fashion.

Alternative Score Criteria While the BITSEC has employed the

AIC, there are a number of information criteria available for use that,

depending on context, possess desirable properties as compared to the

AIC. For instance, there exists a modified AIC intended for small sam-

ple sizes (AICc). In addition, one might consider the Bayesian Informa-

tion Criterion (BIC), which adjusts its complexity penalty with sample

size, or the Extended Information Criterion (EIC), which estimates a

complexity penalty through the use of the bootstrap. More work is

needed for comparing the relative merit of these criteria with respect

to the error controlled framework, and they are likely dependent on the

models and sample size used in an experiment.

Parameter Estimation The use of parametric bootstrap for resam-

pling data allows for easy application to non i.i.d. data, but relies on

estimated model parameters that have been shown to be biased by con-

ditioning on the observed best fitting model. While a method for reduc-

ing this bias has been implemented, it was not shown or demonstrated
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to remove bias completely. This indicates future work in improved

parameter estimation in the model selection context. The problem of

parameter estimation is not restricted to this application however. It

should be noted that practitioners of model selection often wish to

report not only the correct model, but approximate parameters corre-

sponding to a real-world process. Thus, if these estimates are biased

by observing a model as best, theoretical conclusions drawn from them

can be inaccurate. Even if a score criterion can be shown to asymp-

totically attain a 100% probability of selecting the true model, bias in

finite samples carries strong implications, especially for fields such as

paleobiology in which research depends on small populations.
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Smoothing the Bootstrap The bootstrap method used by BIT-

SEC gives an empirical distribution as an approximation of the true

distribution. Methods have been shown for fitting a curve to this dis-

crete distrubtion, giving a smoothed bootstrap (Efron 1979, Silverman

1987). The relative efficiency of nonsmoothed and smoothed bootstrap

estimates of quantile functions is examined in (Falk and Reiss 1989).

Conclusion While improvements could potentially be made to the

BITSEC procedure, the results in this paper suggest that achieving er-

ror controlled model selection is plausible, a goal which would be appli-

cable to many scientific fields. The principles behind an error controlled

framework improve the standard of evidence, and thus strengthen the

conclusions drawn from the results of model selection analyses. Be-

cause the BITSEC procedure is designed in a flexible, computational

manner and can be implemented through an R package, it has an ease-

of-use which lends itself to being adopted by scientists and statistical

practitioners. Thus, a transition to error controlled model selection for

explanatory and structural equation modeling is not only desirable, but

plausibly attainable.
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Luningham, and Stéphanie M. Van Den Berg. Assessing model selec-
tion uncertainty using a bootstrap approach: An update. Structural
Equation Modeling: A Multidisciplinary Journal, 24(2):230–245, 2017.

Deborah Mayo. Experimental practice and an error statistical account
of evidence. Philosophy of Science, 67(3):S193–S207, 2000.

74



Deborah G. Mayo. An error-statistical philosophy of evidence. In The
Nature of Scientific Evidence. University of Chicago Press, 2004.

David Posada and Thomas R Buckley. Model selection and model
averaging in phylogenetics: advantages of akaike information criterion
and bayesian approaches over likelihood ratio tests. Systematic biology,
53(5):793–808, 2004.

Kristopher J. Preacher and Edgar C. Merkle. The problem of model
selection uncertainty in structural equation modeling. Psychological
Methods, 17(1):1–14, 2012.

Gideon Schwarz et al. Estimating the dimension of a model. The annals
of statistics, 6(2):461–464, 1978.

Galit Shmueli. To explain or to predict? Statistical Science, 25(3):289–
310, 2010.

BW Silverman and GA Young. The bootstrap: To smooth or not to
smooth? Biometrika, 74(3):469–479, 1987.

Aris Spanos. Akaike-type criteria and the reliability of inference: Model
selection versus statistical model specification. Journal of Economet-
rics, 158(2):204–220, 2010.

Jodie B Ullman and Peter M Bentler. Structural equation modeling.
Handbook of Psychology, Second Edition, 2, 2012.

J Vandekerckhove, D Matzke, and EJ Wagenmakers. Model comparison
and the principle of parsimony. Oxford Handbook of Computational and
Mathematical Psychology, 2015.

Quang H Vuong. Likelihood ratio tests for model selection and non-
nested hypotheses. Econometrica: Journal of the Econometric Society,
pages 307–333, 1989.

75



Eric-Jan Wagenmakers. A practical solution to the pervasive problems
ofp values. Psychonomic bulletin & review, 14(5):779–804, 2007.

Eric-Jan Wagenmakers and Simon Farrell. Aic model selection using
akaike weights. Psychonomic bulletin & review, 11(1):192–196, 2004.

Eric-Jan Wagenmakers, Roger Ratcliff, Pablo Gomez, and Geoffrey J.
Iverson. Assessing model mimicry using the parametric bootstrap.
Journal of Mathematical Psychology, 48(1):28–50, 2004.

D A Williams. Discrimination between regression models to determine
the pattern of enzyme synthesis in synchronous cell cultures. Biomet-
rics, 26(1), 1970.

76


