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ABSTRACT

Excessive weight gain during pregnancy is a significant public health concern and has

been the recent focus of novel, control systems-based interventions. Healthy Mom Zone

(HMZ) is an intervention study that aims to develop and validate an individually tailored

and intensively adaptive intervention to manage weight gain for overweight or obese preg-

nant women using control engineering approaches. Motivated by the needs of the HMZ, this

dissertation presents how to use system identification and state estimation techniques to as-

sist in dynamical systems modeling and further enhance the performance of the closed-loop

control system for interventions.

Underreporting of energy intake (EI) has been found to be an important consideration

that interferes with accurate weight control assessment and the effective use of energy bal-

ance (EB) models in an intervention setting. To better understand underreporting, a variety

of estimation approaches are developed; these include back-calculating energy intake from a

closed-form of the EB model, a Kalman-filter based algorithm for recursive estimation from

randomly intermittent measurements in real time, and two semi-physical identification ap-

proaches that can parameterize the extent of systematic underreporting with global/local

modeling techniques. Each approach is analyzed with intervention participant data and

demonstrates potential of promoting the success of weight control. In addition, substantial

efforts have been devoted to develop participant-validated models and incorporate into the

Hybrid Model Predictive Control (HMPC) framework for closed-loop interventions. System

identification analyses from Phase I led to modifications of the measurement protocols for

Phase II, from which longer and more informative data sets were collected. Participant-

validated models obtained from Phase II data significantly increase predictive ability for

individual behaviors and provide reliable open-loop dynamic information for HMPC imple-

mentation. The HMPC algorithm that assigns optimized dosages in response to participant

real time intervention outcomes relies on a Mixed Logical Dynamical framework which can

address the categorical nature of dosage components, and translates sequential decision
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rules and other clinical considerations into mixed-integer linear constraints. The perfor-

mance of the HMPC decision algorithm was tested with participant-validated models, with

the results indicating that HMPC is superior to “IF–THEN” decision rules.
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Chapter 1

INTRODUCTION

1.1 Motivation

Obesity has become a worldwide health concern due to its high prevalence and related

adverse health consequences. According to the National Health and Nutrition Examination

Survey (NHANES) conducted in 2011–2012, the prevalence of being overweight (OW) or

obese (OB; defined as a body mass index [BMI] ≥ 25 kg/m2) is 68.5% among adults in the

US, including 34.9% of adults being considered as obese (fBMI ≥ 30 kg/m2) [Ogden et al.

(2014)]. High BMI is significantly associated with increased risks of cardiovascular diseases,

diabetes, and other clinical comorbidities [Bastien et al. (2014)]. Parental obesity may

also affect the offspring obesity through heredity [Wu and Suzuki (2006)]. The growing

prevalence of obesity and related health problems calls for effective clinical intervention

approaches to weight control.

Among the general OW/OB population, there is a specialized group which is of greater

risk of obesity-related health problems and requires immediate and deliberate attention:

pregnant OW/OB women. Studies have shown that maternal obesity and high gestational

weight gain (GWG) are strongly related to and independently predict adverse obstetric

outcomes (e.g., preterm delivery, gestational diabetes, hypertension, preeclampsia) and el-

evate negative risks for macrosomia and early onset of obesity in the offspring (Rasmussen

and Yaktine (2009)). Infants of OW/OB mothers are more likely to be preterm, large for

gestational age, and have an increased risk of developing obesity from infancy to adult-

hood (Gilmore et al. (2015); Schack-Nielsen et al. (2010)). GWG is a modifiable factor

that can be targeted to reduce these adverse risks, and managing it can impact the etiol-

ogy of obesity for offspring at a crucial time in the life cycle. In 2009, the US Institute

of Medicine (IOM) revised the recommendations for total and rate of GWG for pregnant
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women by different categories of pre-pregnancy BMI in order to optimize the health of the

mother and the welfare of the infant (Rasmussen and Yaktine (2009)). A 2014 study shows

that 71% of overweight women and 61% of obese women gained weight in excess of the

IOM recommendations (Haugen et al. (2014)). GWG higher than the IOM recommenda-

tions substantially increases the risk of gestational diabetes mellitus (Chu et al. (2007);

Carreno et al. (2012)), preeclampsia (Haugen et al. (2014)), emergency cesarean delivery

(Haugen et al. (2014)), and postpartum weight retention (Nehring et al. (2011)) in preg-

nant women. Therefore, there exists a great need to develop interventions which can help

pregnant women maintain weight gain within IOM guidelines and further improve maternal

and infant health.

Theoretical support for the success of such interventions to manage GWG is to consider

that pregnancy can be a powerful “teachable moment” for weight control, during which a

woman’s emotional responses due to the change of her personal and social roles to a mother

may provide her extra motivation to adopt healthy eating and activity behaviors for the

sake of the fetal health (Phelan (2010)). An intervention to avoid high weight gain during

pregnancy will be more likely to succeed in achieving desired maternal and infant outcomes

than in other times of life.

This work is motivated by such needs of an intervention study funded by the National

Heart, Lung, and Blood Institute (NHLBI; R01 HL119245). The Healthy Mom Zone pro-

gram (HMZ, Symons Downs et al. (2018)) being conducted at Pennsylvania State Univer-

sity aims to develop and validate an individually tailored, intensively adaptive intervention

involving healthy eating, physical activity, goal-setting, and self-monitoring to effectively

manage weight gain in pregnancy. The study relies on systems science concepts involving

dynamical systems modeling and control engineering approaches to optimize the adaptive

behavioral intervention, and the details of the study will be elaborated in the following

section.
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Table 1.1: Revised recommendations for total and rate of gestational weight gain by pre-
pregnancy BMI from Institute of Medicine in 2009.

Category

Prepreg BMI

(kg/m2)
GWG Range

(pounds)
Rates of GWG 2nd-3rd TRI
(M range in pounds/week)

Underweight < 18.5 28–40 1 (1–1.3)

Normal 18.5–24.9 25–35 1 (0.8–1)

Over weight 25.0–29.9 15–25 0.6 (0.5–0.7)

Obese ≥ 30.0 11–20 0.5 (0.4–0.6)

1.2 Description of the Healthy Mom Zone Intervention

Excessive gestational weight gain is a major contributor to adverse pregnancy and birth

outcomes (Baeten et al. (2001); Galtier-Dereure et al. (2000)). In 2009, the IOM report on

reexamining the GWG guidelines called for effective interventions to manage weight gain,

especially in OW/OB women who often gain more weight in pregnancy than is recommended

(see Table 1.1). However, there is currently no “gold standard” intervention to prevent high

GWG in OW/OB pregnant women. Past randomized interventions have shown that GWG

can be effectively managed when they “mirror” effective programs used in non-pregnant

adults (e.g., frequent contact, weight or dietary intake monitoring, engaging in exercise);

however, the effects have largely been limited to normal weight women (Polley et al. (2002);

Olson et al. (2004); Phelan et al. (2011)). Overweight or obese pregnant women may

require a more hands-on approach, like a program that helps an OW/OB pregnant woman

to control her GWG on a weekly basis and adapts to her unique needs over pregnancy.

In other words, an intervention strategy to vary the component dosages in response to an

individual’s needs may be more helpful for this special population (Kumar et al. (2013));

the intervention treatment of this kind is much like clinical practice. Such an intervention

has been developed, described below as Healthy Mom Zone, which used control systems

engineering to construct a comprehensive dynamical model to describe how changes in GWG

responds to changes in energy intake, exercise, and planned/self-regulatory behaviors for a

customized program for each woman. This novel intervention has the potential to shift the
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focus of weight management from a “one size fits all” method to an individually tailored and

intensively adaptive approach to effectively manage GWG and promote optimal maternal

and infant health.

The conceptual framework of the HMZ intervention (see Fig. 1.2) is based on a dynam-

ical model that describes how a behavioral intervention can influence GWG and relies on

integrating mechanistic energy balance and dynamical models of planned/self-regulatory

behaviors describing how internal psychological processes can reinforce positive program

outcomes (Dong et al. (2012, 2013); Dong (2014)). This model includes: (a) 2-compartment

energy balance model predicting changes in body mass as a result of energy intake and ex-

ercise, (b) two Theory of Planned Behavior (TPB; Ajzen (1991)) models describing how

energy intake and exercise are affected by behavioral variables (including women’s attitude,

social influences, perceived control and motivation), (c) a program delivery module relating

magnitude and duration of components to inflows of the TPB models, and (d) two self-

regulation units modeling how success expectancies in the intervention influence one’s goal

achievement motivation. A set of decision rules were developed based on the IOM (2009)

GWG guidelines, the prior research (e.g., Dong (2014); Thomas et al. (2012); Symons Downs

et al. (2014); Symons Downs (2016)), and clinical insights that inform when and how to

adapt the components. Decision rules define changes to the intervention and correspond

with altering the dosage (Collins et al. (2004)). The dosage level is based on variables that

are expected to impact the effect of the component (e.g., effect of exercise on GWG), called

tailoring variables, and the level of intervention required to address the needs of individuals

varies according to tailoring variables (e.g., GWG). In HMZ, GWG is evaluated weekly and

the collective weight gain is assessed over a 3–4 week period. If a woman is within her

GWG goal, she continues to receive the same level of dosage of the intervention. If she

exceeds her goal, her intervention dosage is adapted or “stepped up”. If she is under her

goal, we use clinical guidance to decide if and how the dosage change should be made. To

achieve optimal weight control, an advanced decision algorithm has been developed based
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Figure 1.1: Conceptual demonstration of the receding horizon control strategy in MPC,
contextualized for a GWG intervention.

on the Hybrid Model Predictive Control (HMPC) algorithm (Nandola and Rivera (2013)).

Comparing to the simple decision rules, the HMPC algorithm optimizes the intervention

dosage and shows better performance in terms of the intervention outcomes.

The HMPC algorithm is based on the same general principles as conventional Model

Predictive Control (MPC) but is extended to a hybrid system. The MPC controller can de-

termine optimal control actions based on model-predicted responses over a future horizon of

finite length (Camacho and Bordons Alba (2013)). Such optimization is implemented online

at each time point in a recursive manner by keeping shifting the prediction horizon forward

as shown in Fig. 1.1. Based on the consideration of the categorical (i.e., discrete) dosages

used for decisions, a hybrid system is used for describing intervention problems. Because

MPC allows for user-defined constraints, the sequential decision rules and other clinical

considerations can be converted into mixed integer constraints and further incorporated

into the MPC for optimization. This novel framework allows the user to have greater flexi-
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Figure 1.2: Block diagram depicting the closed-loop intervention for gestational weight
gain developed in the Healthy Mom Zone Study. Energy intake and maternal weight changes
can be used by a hybrid model predictive control (HMPC) algorithm to determine optimized
intervention dosages of intervention components (such as healthy eating active learning,
physical activity active learning, goal setting)

Table 1.2: HMZ intervention components and content description.

Component Content Description

Education

Appropriate GWG, risks of high GWG, principles of
energy balance, consuming a low energy dense diet, portion

size, meal preparation/planning, benefits/safety of
exercise, strategies to promote exercise in daily life, weekly
plans for tailored meals to meet caloric and exercise goals.

Goal-

Setting

Goal-setting principles (identifying where, when, how to

accomplish goals); goals are reviewed; feedback/encouragement
and problem-solving strategies to overcome barriers are

provided on weekly basis.

Self-

Monitoring

Participants use m-Health tools to self-monitor their behaviors:
Aria Wi-Fi scale to record weight on daily basis, MyFitnessPal
app to track dietary intake, Jawbone and Actigraph activity

monitors to track exercise; output is reviewed and feedback and
problem-solving strategies given on weekly basis to help

overcome barriers.

Active

Learning

Hands-on strategies: using a scale at home to weigh food,
meal preparation demonstrations, meal replacements led by

registered dietician; guided 30-min moderate-intensity
exercise sessions led by exercise specialist.

bility in the specification of different requirements in real-life clinical trials and to generate

the sequential decision policies with time-dependent relationships on manipulated variables,

which are usually addressed by temporal logic specification in the control engineering.

The HMZ intervention components (see Table 1.2) were informed by past research and

the data collected in the pilot study of the HMZ (Diabetes Prevention Program (DPP)

Research Group (2002); The Look AHEAD Research Group (2006); Dong (2014); Symons
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Adaptive Dosages 

Exercise Psychology Laboratory 

1R01HL119245-01 

Decision Rule: evaluate GWG every 4-weeks 
Adapt intervention (step-up) if > GWG goal 

Step-up 5 
+ 

Step-up 4 
+ 

Step-up 4 
+ 

Step-up 3 
+ 

Step-up 3 
+ 

Step-up 3 
+ 

Step-up 2 
+ 

Step-up 2 
+ 

Step-up 2 
+ 

Step-up 2 
+ 

Step-Up 1 
+ 

Step-Up 1 
+ 

Step-Up 1 
+ 

Step-Up 1 
+ 

Step-Up 1 
+ 

Baseline Baseline  Baseline Baseline  Baseline  Baseline  

More intensive 
as she is “less 
controlled” with 
managing GWG 

Figure 1.3: Illustration of dosage adaptations in the HMZ study.

	
Gestational	
Week	

Study		
Week	

Lesson	
#	

Adaptation	

8	 1	 BASELINE	ASSESSMENT	(Onsite	visit	+	home	surveys	and	GWG/HE/EX	monitoring)		

9	 2	 1	 BASELINE	INTERVENTION	
Education	Modules	[GWG,	HE/EX,	Self-Monitoring,	Goal-Setting;	Using	guideline	recommendations	(GWG,	HE,	EX)];	Focus	on	health	of	baby/weekly	“fun	facts”	
Encouraged	to	get	150	min	MVPA/week	[to	meet	goal,	promote	10,000	steps/day,	increase	intensity	(e.g.,	jogging/workout)	as	appropriate,	phone	call	with	
instructor	to	review	barriers/safety/concerns/goals];	GWG/EX/HE	education,	goal-setting,	self-monitoring	content	delivered	F2F	by	RD		

10	 3	 2	
11	 4	 3	
12	 5	 4	

GWG	Assessment	and	Decision	Rules	for	Adapting	Intervention		
13	(2nd	Tri)	 6	 5	 Baseline	

Intervention	
+	

STEP-UP	1:	Active	Learning	I	
HE	Active	Learning:	4	Pearls	Integrated	into	Cooking/Grocery	Store	Demo’s:	Reinforcing	Messages	+	Recipe	Booklet	
EX	Active	Learning:	1st	MVPA	Session	in	Lab	(combo	treadmill,	cycle,	low	impact	aerobics,	resistance	exercises)	in	addition	to	10,000	steps	
Self-Regulation	Active	Learninga:	If-Then	Action	Plans	(attach	mental	contrasting	and	implementation	intentions	to	goal-setting)		

14	 7	 6	
15	 8	 7	
16	 9	 8	

GWG	Assessment	and	Decision	Rules	for	Adapting	Intervention	
17	 10	 9	 Baseline	

Intervention	
+	

Step-Up	1	
+	

STEP-UP	2:	Active	Learning	II	
HE	Active	Learning:	Portion	Sizes	and	Containers	
EX	Active	Learning:	2nd	MVPA:	Choice	of	Lab	workout	or	walking	with	instructor	+	Workout	Booklet	&	10,000	steps	
Self-Regulation	Active	Learningb:	Women	chart	own	HE/EX	behaviors;	use	weight	data	to	regulate	eating	and	exercise	
behaviors;	tie	this	process	into	action	plans	

18	 11	 10	
19	 12	 11	
20	 13	 12	

GWG	Assessment	and	Decision	Rules	for	Adapting	Intervention	
21	 14	 13	 Baseline	

Intervention	
+	

Step-Up	1	
+	

Step-Up	2		
+	

STEP-UP	3:	Active	Learning	III	
HE	Active	Learning:	Grocery	store	receipt/pantry	analysis/tour/activities;	favorite	recipe	make-over	
EX	Active	Learning:	3rd	MVPA	session:	Onsite	in	lab	or	at	home	workout	+	Workout	Booklet	&	10,000	steps	
Self-Regulation	Active	Learning:	We	monitor	HE/PA	daily	and	provide	feedback	“check”	(EMA-I)	

22	 15	 14	
23	 16	 15	
24	 17	 16	

GWG	Assessment	and	Decision	Rules	for	Adapting	Intervention	
25	 18	 17	 Baseline	

Intervention	
+	

Step-Up	1	
+	

Step-Up	2	
+	

Step-Up	3	
+	

STEP-UP	4:	Active	Learning	IV	
HE	Active	Learning:	1	MR/day	for	7	days	(give	bulk	frozen	7	meals	for	either	lunch/dinner)	
EX	Active	Learning:	4th	MVPA	session:	Onsite	in	lab	or	at	home	workout	+	Workout	Booklet	
&	10,000	steps	
Self-Regulation	Active	Learning:	(1	x/week)	Text/Call/Email	Feedback	&	Encourage	

26	 19	 18	
27	 20	 19	
28	(3rd	TRI)	 21	 20	

GWG	Assessment	and	Decision	Rules	for	Adapting	Intervention	
29	 22	 21	 Baseline	

Intervention	
+	

Step-Up	1	
+	

Step-Up	2	
+	

Step-Up	3	
+	

Step-Up	
4	+	

STEP-UP	5:	Active	Learning	V	
HE	Active	Learning:	Same	as	step-up	4		
EX	Active	Learning:	Same	as	step-up	4		
Self-Regulation	Active	Learning:	(3	x/week)	Text/Call/Email	FB	&	Encourage	

30	 23	 22	
31	 24	 23	
32	 25	 24	
33	 26	 25	
34	 27	 26	
35	 28	 FOLLOW-UP	ASSESSMENT	(Onsite	visit	+	home	surveys	and	GWG/HE/EX	monitoring)	

	

a	=	Stadler	et	al.	(2009);	b	=	Wing	et	al.	(2006)		

	

Figure 1.4: Demonstration of intervention planning with step-up layout in the HMZ study
.

7



Downs and Hausenblas (2004); Symons Downs et al. (2010)); it has been shown that when

individuals are taught how to set appropriate goals, self-monitor, and effectively manage

their time, they are more likely to achieve their goals and see positive behavioral outcomes

(e.g., eating healthy, engaging in exercise, managing weight). All women start in HMZ with

the baseline intervention which includes standard prenatal care, education on GWG, healthy

eating, and exercise, and self-monitoring. The intervention adapts or “steps-up” based

on the GWG evaluation and decision rule criteria described above and includes different

variations of hands-on active learning strategies that are added to the baseline intervention

in a sequential order (e.g., step-up 1 = baseline intervention + active learning healthy eating

demonstrations + exercise session; step-up 2 = step-up 1 + second weekly exercise session

+ daily meal replacement (lunch or dinner), and so forth). Such sequential decision rules

are illustrated in Fig. 1.3 and 1.4. Self-monitoring of GWG, healthy eating, and exercise

behaviors includes the use of m-Health tools (e.g., Wi-Fi scale, dietary intake smartphone

app, activity monitors) to facilitate self-regulation, motivation, and behavior change.

Intensive longitudinal data is used in HMZ to assess the primary study outcome of GWG

and several biobehavioral/psychological secondary outcomes (see Table 1.3). Pre- and post-

intervention assessments are conducted at the Clinical Research Center in Pennsylvania

State University, and the secure data capture (RedCAP) system is used to collect electronic

survey data. Women use the Aria Wi-Fi scale (daily), Jawbone activity monitor (daily)

and MyFitnessPal smartphone app (weekly) at home to measure their weight, kcal activity

expenditure and intake respectively.

The HMZ involves two longitudinal studies: the pilot study in Phase I which is designed

as a feasibility test, followed by a Phase II study designed for proof of concept. The Phase I

study, as a trial study of the interventions, aims to establish the feasibility of the intervention

dosages and the intensive measurement protocols. Hence, the intervention is designed for

a shorter period of time with less participants recruited: each participant is only subject

to a six-week intervention between the 2nd and the 3rd trimester of gestation, resulting
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in smaller data sets. Despite the small sample being a strong limitation for the Phase I

data, some insights can still be gained on the dynamical characteristics of data, as well as

improvements on the model-based estimation techniques. The findings from Phase I study

can be used to inform any necessary modifications on the intervention design for Phase II.

The Phase II study is to establish proof of concept of the fully adaptive intervention,

including the criterion rule for making adaptive decisions. The target for the Phase II

study of the HMZ is 30 overweight and obese pregnant women (BMI>25; >40 with physi-

cian approval). Eligible participants (e.g., singleton pregnancies, ages 18–38 years, able

to read and understand English, no obstetric/medical complications limiting participation)

are screened, enrolled, and consented. They complete pre-intervention assessments both on-

site at the PSU Clinical Research Center (e.g., body composition, bloodwork) and at-home

(e.g., electronic surveys) and are then randomized to either the control condition (standard

of care) or treatment condition (HMZ intervention) from early (e.g., 6–12 weeks gestation)

through late pregnancy (e.g., 37 weeks gestation;). Hence in the Phase II study, the inter-

vention is delivered for a longer period of time with more data available. GWG is evaluated

in 3–4 week cycles and the intervention dosage is adapted as necessary to help women stay

within their GWG goals. To better understand how the interventions influences individual

participant, modeling of energy balance and individual behaviors, as well as control algo-

rithms, can be used to achieve the best intervention outcomes through system identification

and control engineering principles, which is the ultimate goal of the current work.

1.3 Research Goals

A comprehensive dynamical systems model has been previously postulated for GWG

adaptive interventions (Dong et al. (2012)), among which a first-principles maternal energy

balance model can accurately predict individual weight change given the changes in energy

intake and energy expenditure, while a TPB behavioral model integrated with a model for

intervention delivery dynamics is well established based on the concept of fluid analogies

for predictions of participant behaviors in response of dosage changes. This model has been
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Table 1.3: The variables and assessments involved in Heathy Mom Zone.

Variable Assessments

Weight and Height High Precision Stand-On Adult Scale (stadiometer for height)

Wi-Fi Smart Scale

Metabolism Mobile metabolism device

Biomarkers Blood, Urine

Adiposity Body composition

Healthy Eating Behaviors Smartphone dietary intake app (kcal intake)

Back-calculation method to estimate energy intake (kcal intake)

Eating inventory

Exercise Behaviors Activity monitors and survey (expenditure)

Exercise Log

Motivational Determinants Attitude, Subjective Norm, Perceived Behavioral Control, Inten-

tion Surveys

Self-Regulation Self-Regulation Index and Questionnaire

Socio-Demographic Health and History Questionnaire

illustrated with the conceptual diagram in Fig. 1.2.

The development of this model uses the fluid analogy from the production-inventory

systems, where the inventory is represented as a tank containing fluid, as shown in Fig. 1.5.

It can be considered that the tank is depleted by exogenous disturbances and is replenished

by the interventions. The goal then would be to manipulate the inflow to the production

node (represented by a pipe) in order to replenish an inventory that satisfies exogenous de-

mand. Here, the inflows to the GWG intervention system are the intervention components,

while the controlled output in this problem is inventory of maternal weight gain.

To achieve this goal of GWG control, a novel intervention decision paradigm using the

HMPC framework can be applied to generate sequential decision policies based on the

closed-loop responses. Clinical constraints and considerations were systematically taken

into account for the HMPC formulations through a user-specified dosage sequence table

10



EI(t)

PAL(t)

EI-TPB

I20
Intention

Behavior

ATT PBC

ζ5(t)

ζ1(t)

(η1)

(η4)

(η5)

η5(t)

SN

ζ2(t)

ζ3(t)(η2)

ζ4(t)

ξ1(t)

ξ2(t)
ξ3(t)

(η3)

GWGGWG 
Consumed 

by PA

FFM FM

Energy
Balance

HMPC

I1(t)

ζin
1 (t)

ζout
1 (t)

ξ1(t)

ζin
2 (t)

ζout
2 (t)

ξ2(t)

ξ2(t)

ξ2(t)

ζin
3 (t)

ξ3(t)

ζout
3 (t)

Intervention Delivery Dynamics

Dietary 
Record

I9(t)

Gestational 
Weight Gain 

Measurement

I8(t)

dEI(t)

+

+

ξ1(t) ξ2(t) ξ3(t)

I1(t)Intervention Components

Figure 1.5: Comprehensive fluid analogy and interrelationship between systems in GWG
Interventions; shown for the energy intake loop.

corresponding to the sequence rules.

The dynamical systems modeling, as well as the effectiveness of the control algorithms,

has only been tested in simulations with hypothetical participants under assumption of no

measurement noise or loss. Because data collection has been completed for both Phase I and

Phase II studies, we are able to re-evaluate the proposed theoretical models and the control

algorithms against real participant data. Specifically in the current work, the development

of participant-validated behavioral models from intervention data using semi-physical iden-

tification approach is possible. Once integrated with re-formulated energy balance model,

the “open-loop” dynamics for individual participants can be reliably provided, based on

which the closed-loop framework that has been developed before can be implemented and

validated.
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In the following, the research goals for current work are briefly introduced and detailed

efforts to achieve these goals will be elaborated in later chapters of this document.

1.3.1 Energy Intake Estimation

The energy balance model involved in the comprehensive model is originally developed

by Thomas et al. (2012). In this work, we reformulated the model into a closed-form

which is amenable to control purpose and favors the development of estimation methods

to address the issue of energy intake underreporting. The effectiveness of the reformulated

energy balance model is further evaluated against the measured data of the overweight or

obese pregnant women from the HMZ study. Theoretically, the model can provide accurate

prediction of maternal weight change based on reliable measurements of energy intake and

energy expenditure. However, bias between the measured weight and the model predicted

weight is observed in most intervention participants. This is assumed to be mostly due to

the underreporting of energy intake in participants using self-reported measures.

Underreporting of energy intake has been found to be an issue of most concern in

GWG interventions and is a commonly observed problem in weight interventions using self-

reported measures. This can affect participant self-monitoring process and is also disturbing

for clinicians to monitor the outcomes of interventions or provide informative health coun-

seling. More importantly to this study, energy intake as an input in the HMPC algorithm

determines the performance of the closed-loop control.

In addition to the self-reported measures of energy intake, most of the participant data in

the HMZ study is collected through self-reported and self-monitored measures. Practically,

self-reported data by participants through questionnaires or self-monitored via electronic

tracking devices usually contains significant noise in the data collection along with missing

data due to lack of participant adherence to interventions. This might create additional

issues if quantitative models are used for sequential weight prediction or real-time calculation

of caloric intake or expenditure change during an intervention.

Consequently in this work, we aim to develop estimation techniques that can address
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this issue of energy-intake underreporting and the presence of missing data and measure-

ment noise. In order to enable an continuously informative health guidance to participants

throughout an intervention, an on-line estimation algorithm that can address random loss of

measurements is particularly necessary. Because these issues of erroneous measurements or

noise and missingness in data are commonly seen in general intervention applications, any

developed methods will have the potential of being extended to the application of weight

interventions targeted for the general population as well.

1.3.2 System Identification of Participant-Validated Models

The theoretical energy balance model has been well-developed with categorical model

parameters (system gains) that are sufficiently accurate to predict maternal weight gain for

women with different levels of BMI or weights. However, the behavioral model based on TPB

and the intervention delivery dynamics are only provided with model structures, leaving the

model parameters undetermined or individualized. Hence, these model parameters need to

be identified for individual participants in order to be used for the design of adaptive

interventions, or more specifically, for control purpose.

In the HMZ study, longitudinal measurements of the variables in the TPB models have

been collected for individual participants, hence can be used to estimate these models

with a semi-physical identification approach. Once obtained, the accuracy of the model

prediction can be significantly improved to ensure the good performance of the control

algorithms. Yet efforts needs to be made to integrate with the energy balance model,

from which the measurements of the behavioral constructs can be used as input to predict

individual weight gain (output). Integration of the individual-based models is amenable for

the implementation of the advanced closed-loop decision rules, such as the Hybrid Model

Predictive Control (HMPC) which will be addressed in next section.
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1.3.3 Hybrid Model Predictive Control For Dosage Optimization

The obtained participant-validated models can reliably describe the “open-loop” dynam-

ics for individual participants, and the decision for dosage changes can be made based on the

predicted outcomes of the intervention, such as participant’s weight gain or energy intake.

From an engineering perspective to optimize an adaptive intervention, a controller can be

designed to assign optimized dosages of each intervention component to the participant as

dictated by model dynamics, problem constraints, and disturbances. In behavioral medicine

problem settings, the intervention components are usually delivered in pre-determined cat-

egorical (i.e., discrete) doses, and the decision is made in a discrete manner, which requires

us to consider the use of hybrid system. Hence an Model Predictive Control (MPC) algo-

rithm for linear hybrid systems with discrete inputs is a well suited option for this appli-

cation. Specifically, the Mixed Logic Dynamical (MLD) framework can be used to address

categorical intervention dosages and convert sequential decision policies and other clinical

considerations into mixed-integer linear constraints, In this way, various time-dependent

relationships between manipulated variables can be appropriately described.

In previous work, this novel HMPC framework was developed but only illustrated

with simulations based on hypothetical participant models and compared with standard

“IF–THEN” rules. In this work, we aim to test the designed closed-loop schemes using

participant-validated models, validate the proper generation of postulated dosage sequence,

and demonstrate the benefits of HMPC framework for optimized adaptive interventions in

contrast to adaptive intervention using simple decision rules. In addition, the HMZ study

has modified the “IF–THEN” rules based on clinical considerations. For example, due to

the length of the educating modules in the education component, intervals between decision

making for dosage changes are constrained to 3 to 4 weeks in the HMZ study, instead of

as frequent as two weeks proposed in previous work. In order to maintain the potency of

interventions, the decision rules were changed to allow for augmentation of both healthy

eating and physical activity active learning components at the same time to compensate the
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longer decision intervals. Forecast of participant future weight trajectory is also included in

HMZ IF–THEN decisions so that the interventions can respond ahead to any anticipated

excessive weight gain. Hence, it is useful to compare the HMPC algorithms with the HMZ

modified decision rules, and to examine how the different decision rules perform and respond

under difference circumstances or uncertainties.

1.4 Contributions of the Dissertation

This document presents new results from the evaluation of the models and the HMPC

framework against real participant data of the HMZ, from which some extensions beyond

the prior use of the model has been developed and the performance of the HMPC framework

has be validated. Because the Phase I Study of the HMZ and the Phase II feature different

measurement frequencies and lengths, most of the estimation or identification approaches

presented in this document are demonstrated with the data from both phases.

A summary of the contributions are listed below,

1. In the current work, we re-evaluate the energy balance model in the context of

the HMZ study and develop some extensions. Specifically, we start from the first-

principles model of Thomas et al. (2012) and reformulate the original energy balance

model as a parsimonious dynamical system with one output (maternal weight change)

and three inputs (energy intake, physical activity and resting metabolic rate). This

closed-form energy balance model is amenable to control analysis and compensates

for the limitations of the original model that did not explicitly include the impact of

changes in physical activity and resting metabolic rate on maternal weight change. If

used as tools to assist interventions, it can help with better assessing the outcomes of

weight regulation and foster patient adherence to diet or exercise plans. This reformu-

lated model also supports the development of methods for estimating underreporting

of energy intake.

2. A variety of model-based estimation approaches that can address missing data and
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measurement noise have been developed to estimate and correct energy intake un-

derreporting in real-time. Such approaches include (extended) Kalman filtering,

semi-physical identification approach, and non-linear estimator based on “Model-

on-Demand” concept. Estimates with developed approaches significantly enhanced

controller performance for closed-loop interventions and also assisted clinicians in pro-

viding appropriate counseling advice to participants, hence have demonstrated great

potential to assist real-time weight interventions.

3. Participant-validated behavioral models have been obtained using semi-physical iden-

tification approach. Estimation analyses from Phase I led to modifications of the

measurement protocols for Phase II, from which longer and more informative data

sets were collected and used for model estimation. The individualized model is inte-

grated with control-oriented energy balance model for implementations of closed-loop

interventions, and it significantly improves the predictive ability of participant behav-

iors and intervention outcomes.

4. A participant-validated model is incorporated into the HMPC formulations that can

assign optimized intervention dosages based on participant responses for real-time use.

The three-degree-of-freedom parametrization in the HMPC formulations that enables

the user to adjust the speed of setpoint tracking, measured disturbance rejection and

unmeasured disturbance rejection independently in the closed-loop system has been

further evaluated and shown both fundamental and practical appeal for achieving

robustness. The HMPC decision policy is compared with standard IF–THEN rules

and the IF–THEN rules used in the HMZ intervention study, results demonstrating

consistent superior performance of the HMPC framework over other decision rules

under different uncertainties.

The estimation approaches and the control engineering techniques that are developed

in this dissertation can be applied to other adaptive sequential behavioral interventions.
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1.5 Publications Summary

Research from this dissertation that has been published thus far as journal papers is

shown below.

[1] Guo, P., Rivera, D. E., Savage, J. S., Hohman, E. E., Pauley, A. M., Leonard,

K. S. and Symons Downs, D. (2018), “System identification approaches for energy intake

estimation: Enhancing interventions for managing gestational weight gain”, IEEE Trans-

actions on Control Systems Technology, published online, October, 2018, pp. 1–16, DOI:

10.1109/TCST.2018.2871871.

[2] Freigoun, M. T., Rivera, D. E., Guo, P., Hohman, E. E., Gernand, A. D., Symons

Downs, D., Savage, J. S. (2018), “A dynamical systems model of intrauterine fetal growth”,

Mathematical and Computer Modeling of Dynamical Systems, 24:6, 641–667, DOI:

10.1080/13873954.2018.1524387

[3] Pauley, A. M., Hohman, E. E., Savage, J. S., Rivera, D. E., Guo, P., Leonard, K. S.

and Symons Downs, D. (2018), “Gestational weight gain intervention impacts determinants

of healthy eating and exercise in overweight/obese pregnant women”, Journal of Obesity,

vol. 2018, Article ID 6469170, 12 pages, DOI: 10.1155/2018/6469170.

[4] Symons Downs, D., Savage, J. S., Rivera, D. E., Smyth, J. M., Rolls, B. J., Hohman,

E. E., McNitt, K. M., Kunselman, A. R., Stetter, C., Pauley, A. M., Leonard, K. S. and

Guo, P. (2018), “Individually tailored, adaptive intervention to manage gestational weight

gain: protocol for a randomized controlled trial in women with overweight and obesity”,

JMIR Research Protocols, 2018, vol. 7, no. 6, pp. e150.

Publications that have been published thus far as refereed conference papers are listed

below.

[5] Guo, P., Rivera, D. E., Pauley, A. M., Leonard, K. S., Savage, J. S., Symons Downs,

D. (2018), “A “Model-on-Demand” methodology for energy intake estimation to improve

gestational weight control interventions,” in Proceedings of 18th IFAC Symposium on System

Identification, 2018, Stockholm, pp. 144–149.
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[6] Guo, P., Rivera, D. E., Savage, J. S., Symons Downs, D. (2017), “State estimation

under correlated partial measurement losses: Implications for weight control interventions,”

in Proceedings of 20th IFAC World Congress, 2017, Toulouse, pp. 14074–14079.

[7] Guo, P., Rivera, D. E., Savage, J. S., Symons Downs, D. (2016), “Semi-physical

identification and state estimation of energy intake for interventions to manage gestational

weight gain,” in Proceedings of 2016 American Control Conference (ACC), Boston, pp.

1271–1276.

Papers that are currently in preparation or planned for future journal submission based

on this dissertation are included in the list below:

[8] Hybrid Model Predictive Control for optimizing adaptive behavioral interventions

for gestational weight gain using participant-validated models.

[9] Semi-physical identification of behavioral models based on Theory of Planned Be-

havior.

[10] Energy intake back calculation method to guide dietary recommendations in behav-

ioral interventions (paper for a behavioral audience).

[11] Proof of concept of using mHealth tools to manage gestational weight gain in over-

weight or obese pregnant women (paper for a behavioral audience).

1.6 Dissertation Outline

Following this introduction, this dissertation continues Chapter 2 with modeling overview

which presents how to develop the dynamical systems model for the GWG intervention

problem. The current work roots from a comprehensive dynamical system model that has

been established in previous study. The model comprises of three parts: a mechanistic

energy balance model from the literature (Thomas et al. (2012)), a behavioral model based

on TPB and the model for intervention delivery dynamics. The chapter focuses on the

introduction and development of each module which forms the basis of the work in later

chapters. Specifically, the developed structures of the TPB behavioral model and the model

for intervention delivery dynamics lead to the semi-physical identification work in Chapter
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5 to obtain participant-validated models for the implementation of the HMPC framework

in Chapter 6. The energy balance model is reformulated into a closed-form that is amenable

for control purpose and favors the development of the estimation approaches for the key

energy balance determinants in Chapter 3 and 4. At the end of this chapter, the issue

of energy intake underreporting that is commonly observed in participant self-reports is

introduced.

In Chapter 3 and 4, a series of estimation approaches are developed to address the

underreporting of energy intake. These include the Kalman filtering approach in Chapter

3 which can perform real-time estimation under intermittent measurements, and the semi-

physical approaches in Chapter 4 that can parameterize the extent of underreporting and

and make corrections based on future self-reports. Chapter 4 elaborates two approaches,

one features global estimation and the other local method that can address non-linearities

based on the concept of “Model-on-Demand”.

The goal of Chapter 5 is to participant-validated models using the semi-physicals iden-

tification approach with the developed model structures. Both the results using the small

data sets from Phase I study and the long data set from Phase II are presented. The results

from Phase I are used to inform the protocol changes that are introduced to Phase II. The

obtained participant-validated models are used to test and validate the HMPC algorithm

in Chapter 6.

Chapter 6 presents an MLD-based HMPC scheme that offers a valuable framework

to implement optimized adaptive sequential behavioral interventions. The unique clinical

considerations and constraints in behavioral health problem settings are summarized, and

are systematically addressed through mixed-integer linear constraints in MLD structure.

The simulation studies are shown to verify how HMPC-based intervention assigns the op-

timized discrete dosages, with its change following pre-defined dosage sequence, highlight

why HMPC-based intervention can adjust the dosages of the intervention components in a

timely manner through the comparison with adaptive intervention using decision rules.
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We conclude the dissertation in Chapter 7 with a summary of the important conclusions

and advances achieved in this study. This chapter also includes the direction and comments

for future work.
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Chapter 2

MODELING OVERVIEW

2.1 Overview

As introduced in Chapter 1, the primary goal of the behavioral interventions developed

in the Healthy Mom Zone Study is to manage gestational weight gain for overweight or obese

pregnant women. The intervention is implemented through the delivery of a variety of inter-

vention components to participants via an individually tailored and “intensively adaptive”

manner. Specifically, a closed-loop control strategy is employed to optimize the interven-

tion dosages (which dictate the intervention components and their magnitudes) based on

an individual participant’s intervention outcomes, including their physical activity/diet be-

haviors and weight changes. Hence, the customized intervention strategy can adapt to

individuals’ unique needs. The design of the closed-loop controller algorithms requires a

reliable mathematical model that can accurately describe and predict the dynamics of the

underlying system, which in this case, refers to individual participants. In this chapter, the

details of the dynamical modeling for the developed weight control intervention will be pre-

sented. This forms the basis of the work described in later chapters, for instance, the Hybrid

Model Predictive Control (HMPC) algorithms used for the closed-loop implementation as

elaborated in Chapter 6.

To build a useful model, it is necessary to understand how the intervention is expected

to affect participants. More specifically, we need to answer the questions: How does the

delivery of intervention components eventually achieve the internally goal of preventing

excessive gestational weight gain? As shown in Table 1.2, the intervention components

involve healthy eating, physical activity, goal-setting, self-monitoring, and other cognitive

behavioral strategies. It is believed that continuously exposing participants to intensive

information regarding the benefits and risks for appropriate and high GWG respectively as
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well as some useful skills to assist weight management can potentially increase their inten-

tions or motivations to adopt healthy eating and activity behaviors, which may facilitate

healthy diets among participants or observe an increase of their physical activities. The

observed changes in their behaviors will be directly reflected as the changes in their caloric

intake and expenditure, and this is likely to cause a deficit of energy balance that will

further lead to maternal weight gain or loss.

In fact, the described intervention process involves dynamical changes in participants

through three main steps: to invoke transitions in cognitions, to stimulate changes in be-

haviors, and eventually to expect changes in physiology (i.e., maternal weight gain or loss).

These three stages relate to each other in an intuitive way, and dynamical systems modeling

techniques can weigh in to explain how the changes in one step affect the other through the

use of certain functional relationships. Particularly, a behavioral model based on a well-

known psychological theory can be developed to explain and predict behavioral changes

from assessed changes in cognition. In this work, Theory of Planned Behavior (TPB, Ajzen

(1991)) is used to describe how the different behavioral constructs are internally related with

each other. For example, the theory explains the determinants of one’s attitude towards

healthy eating and also shows how it further determines participant actual dietary intake.

Based on the TPB, the behavioral model can be developed, and if the model parameters

are individualized, it is able to provide an accurate prediction of a participant’s dietary

intake or physical activity changes based on the changes of her cognitional measures. On

the other hand, how the intervention invokes the transitions in cognitions can be described

by the intervention delivery dynamics, which builds the bridge between intervention compo-

nents and magnitude and variables (constructs) in the TPB behavioral model. This model

makes it easy to implement the intervention, track its status, and quantify its outcome in

psychological view.

To enable the prediction of weight changes, models that relate dosage changes and

behavioral dynamics are not enough but need to be integrated with a physiological model
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which can output the behavioral outcomes of interest, i.e., maternal weight changes, as

a result of the fluctuations in maternal energy intake and energy expenditure. Here, a

first-principles energy balance model is involved, the details of which can be found later in

this chapter. To facilitate the understanding of the overall conceptual framework for this

gestational weight gain intervention, a block diagram for the comprehensive control system

has been shown in Fig. 1.2, where it can be found how the three modules (the behavioral

model based on TPB, the model for intervention delivery dynamics, and the energy balance

model) are related and how the control system is deployed. As shown in the figure, dietary

and physical activity behaviors serve as important links to connect the TPB behavioral

model and the energy balance model; energy intake is also used as controller input for

dosage optimization.

In this chapter, the presentation of the comprehensive dynamical systems modeling

is organized as follows. The development of the TPB behavioral model is described in

Section 2.2, followed by the description of the energy balance model and associated energy

intake underreporting issues which are elaborated in Section 2.4 and 2.5. Since the efficiency

of the dynamical models is critical in the design and evaluation of the intervention study,

the modeling work presented in this chapter is trying to be individualized or categorized

for different scenarios/populations while maintaining the model simplicity.

2.2 TPB Behavioral Model

In behavioral interventions, scientists are expecting to manipulate the behavioral out-

comes from participants by influencing their health behaviors. Thus, desirable behavioral

change is the key to the success and effectiveness of behavioral interventions, especially for

the current application where dietary and exercise behaviors directly reflect maternal en-

ergy intake and energy expenditure, which can be used to predict maternal weight change

by the principle of energy balance.

However, it is not an easy task to change human behaviors. Many contemporary psy-

chological theories have been well developed for scientists to interpret and predict human
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behaviors, as well as to determine effective strategies for behavioral changes, so it is useful

to apply the models of social cognition to intervene behaviors. Some popular psychological

models include Theory of Planned Behavior (TPB, Ajzen (1991)), Social Cognitive Theory

(Bandura (1986)), Goal Setting Theory (Locke and Latham (1994)), among which TPB is

perhaps the most influential model and has been widely used for developing behavior related

interventions, such as weight reduction (Schifter and Ajzen (1985)), low-fat diet (Armitage

and Conner (1999)), smoking cessation (Norman et al. (1999)), and abstinence and safer sex

HIV risk-reduction interventions (Jemmott III et al. (1998)). Therefore, the TPB is applied

in the development of the behavioral model for current weight control interventions. It has

to be noted that, however, unlike the physiological energy balance model, the measures

of psychological constructs need to be more carefully designed. This is due to the reason

that the reliability and validity of the measures are easily impaired, leading to inaccurate

behaviors prediction. This will be discussed in more detail in Chapter 5.

2.2.1 Theory of Planned Behavior

The precursor of TPB, the Theory of Reasoned Action (TRA; shown in Fig. 2.1 with

unshaded boxes), was first proposed in 1976. The core of the theory relies on the directly

predictive relation between behavioral intention and behaviors; intention is the most im-

portant predictor of behaviors. On the other side, the formation of intentions is lead from

the combination of attitude towards behaviors and subjective norms. The detailed defi-

nitions of these constructs are shown in Table 2.1. Further to the left, attitude towards

behaviors is determined by behavioral beliefs weighted by the evaluation of behavioral out-

comes; similarly, the subjective norm is determined by the normative beliefs of the attitudes

towards the behaviors from important others weighted by the motivation to comply with

these important other.

TPB is a modification of its precursor TRA and was proposed in 1985 (Ajzen (1985))

when Ajzen and Fisher realized the volitional control over the behavior can be impaired

from the environment or personal abilities. Therefore, the perceived behavioral control is
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Figure 2.1: The path diagram for Theory of Planned Behavior (TPB). It includes three
more constructs (shaded) in addition to the unshaded constructs original to the Theory of
Reasoned Action (TRA).

Table 2.1: Tabulation of TPB constructs with corresponding definitions.

Constructs Definition

Attitude (η1) Overall evaluation of the behavior

Subjective Norm (η2)
Belief about whether most people

approve or disapprove the behavior.

Perceived Behavioral Control (η3)
Overall measure of the perceived

control over the behavior.

Intention (η4) Perceived likelihood of performing the behavior

Behavioral Belief (b)
Belief that behavioral performance

is associated with certain attributes or outcomes

Evaluation of Outomes (e)
Values attached to a behavioral

outcome or attribute.

Normative Belief (n)
Belief about whether each referent

approves or disapproves of the behavior.

Motivation to Comply (m)
Motivation to do what
each referent thinks.

Control Belief (c)
Perceived likelihood of occurrence

of each facilitating or constraining condition.

Perceived Power (p)
Perceived effect of each condition in making

behavioral performance difficult or easy.
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included in the framework which is led by the control belief weighted by their perceived

power, as shown in the shaded box in Fig. 2.1. Since then, the conceptual framework in

Fig. 2.1 has been accomplished and adopted in various behavioral interventions.

2.2.2 Dynamical TPB Model Development

Originating from the classical TPB diagram as shown in Fig. 2.1, the two TPB models

for healthy eating and physical activity are described in this subsection. As we can see from

the path diagram of the TPB model for healthy eating in Fig. 2.2, some limit constructs are

included: limit attitude, limit subjective norm, limit perceived behavioral control, and limit

intention. These are the additional measures of attitude, subjective norm, perceived behav-

ioral control and intention towards not performing unhealthy eating behaviors. Including

the additional measures of these constructs enables capturing the meaningful variances of

these constructs more completely and further leads to more accurate predictions of connect-

ing constructs. Similarly, when a questionnaire is designed to measure certain construct,

the obtained measures would be more reliable and more valid by including more variables

that can capture that construct more completely.

In the following, the TPB dynamic modeling development will be presented for both the

healthy eating and physical activity side, starting from the static path diagram model to

a dynamical systems model. First, the TPB for healthy eating represented as a structured

equation model with a vector η of endogenous variables and a vector ζ of exogenous variables

is expressed as follows:
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Figure 2.2: Theory of Planned Behavior (TPB) path diagram for healthy eating, including
limit constructs.
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Figure 2.3: Theory of Planned Behavior (TPB) path diagram for physical activity.
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η︷ ︸︸ ︷

η1

η1l

η2

η2l

η3

η3l

η4

η4l

η5



=

Γ︷ ︸︸ ︷

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

β41 0 β42 0 β43 0 0 0 0

0 β41l 0 β42l 0 β43l 0 0 0

0 0 0 0 β53 β53l β54 β54l 0





η1

η1l

η2

η2l

η3

η3l

η4

η4l

η5



+

B︷ ︸︸ ︷

γ1b 0 0

γ1lb 0 0

0 γ2n 0

0 γ2ln 0

0 0 γ3c

0 0 γ3lc

0 0 0

0 0 0

0 0 0




b

n

c

+

ζ︷ ︸︸ ︷

ζ1

ζ1l

ζ2

ζ2l

ζ3

ζ3l

ζ4

ζ4l

ζ5


(2.1)

where Γ and B is a matrix of βij and γij regression weights, respectively, and ζ is a vector

of disturbance variables. Compared with the classical TPB model that is shown in Fig. 2.1,

the evaluation of the outcome (e), the motivation to comply (m), and perceived power of

the control factor (p) are treated as constants, which thereby are omitted in the equation

here.

Equation (2.1) represents a static (i.e., steady-state) system that does not capture any

changing behavior over time. To expand the TPB model to include dynamic effects, we

apply a fluid analogy that parallels the problem of inventory management in supply chains.

A system of differential equations based on (2.1) can then be obtained:
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τ1
dη1

dt
= γ1b b(t− θ1)− η1 + ζ1 (2.2a)

τ1l
dη1l

dt
= γ1lb b(t− θ1l)− η1l + ζ1l (2.2b)

τ2
dη2

dt
= γ2n n(t− θ2)− η2 + ζ2 (2.2c)

τ2l
dη2l

dt
= γ2ln n(t− θ2l)− η2l + ζ2l (2.2d)

τ3
dη3

dt
= γ3c c(t−−θ3)− η3 + ζ3 (2.2e)

τ3l
dη3l

dt
= γ3lc c(t−−θ3l)− η3l + ζ3l (2.2f)

τ4
dη4

dt
= β41 η1 + β42 η2 + β43 η3 − η4 + ζ4 (2.2g)

τ4l
dη4l

dt
= β41l η1l + β42l η2l + β43l η3l − η4l + ζ4l (2.2h)

τ5
dη5

dt
= β53 η3 + β53l η3l + β54 η4 + β54l η4l − η5 + ζ5 (2.2i)

where τi are time constants, θi are pure time delays, and ζi are disturbances. At steady-

state (i.e., when dηi
dt = 0), the dynamical model in (2.2) corresponds exactly to the TPB

SEM in (2.1) without approximation.

In the remainder of the dissertation, the following assumptions are considered:

1. All the pure time delays will be considered to be zero; this is for simplicity and clarity

of the results and is consistent with the data we have obtained.

2. Uncertainties ζi are represented as zero mean stochastic signals.

Under these two assumptions, the differential equations described above can be trans-

formed to the following state space representations of the model.

ẋ = A(φ)x(t) +B(φ)u(t) +G(φ)e(t) (2.3a)

y = C(φ)x(t) (2.3b)

where:
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x =

[
η1 η1l η2 η2l η3 η3l η4 η4l η5

]T
, which denotes a vector of dx = 9 state

variables;

u =

[
b n c

]T
, which denotes a vector of du = 3 input variables;

y =

[
η1 η1l η2 η2l η3 η3l η4 η4l η5

]T
, which denotes a vector of dy = 9 output

variables;

e =

[
ζ1 ζ1l ζ2 ζ2l ζ3 ζ3l ζ4 ζ4l ζ5

]T
, which are uncertainties associated to each

one of the states and outputs;

φ = [τ1, τ1l, τ2, τ2l, τ3, τ3l, τ4, τ4l, τ5, γ1b, γ1lb, γ2n, γ2ln, γ3c, γ3lc, β41, β42, β43, β41l, β42l,

β43l, β53, β53l, β54, β54l]
T , which denotes a vector of dφ = 25 unknown model parameters;

A =



− 1
τ1

0 0 0 0 0 0 0 0

0 − 1
τ1l

0 0 0 0 0 0 0

0 0 − 1
τ2

0 0 0 0 0 0

0 0 0 − 1
τ2l

0 0 0 0 0

0 0 0 0 − 1
τ3

0 0 0 0

0 0 0 0 0 − 1
τ3l

0 0 0

β41

τ4
0 β42

τ4
0 β43

τ4
0 − 1

τ4
0 0

0 β41l
τ4l

0 β42l
τ4l

0 β43l
τ4l

0 − 1
τ4l

0

0 0 0 0 β53

τ3
β53l
τ3l

β54

τ4
β54l
τ4l

− 1
τ5



;

B =



γ1b
τ1

0 0

γ1lb
τ1l

0 0

0 γ2n

τ2
0

0 γ2ln
τ2l

0

0 0 γ3c

τ3

0 0 γ3lc
τ3l

0 0 0

0 0 0

0 0 0



;

30



G =



1
τ1

0 0 0 0 0 0 0 0

0 1
τ1l

0 0 0 0 0 0 0

0 0 1
τ2

0 0 0 0 0 0

0 0 0 1
τ2l

0 0 0 0 0

0 0 0 0 1
τ3

0 0 0 0

0 0 0 0 0 1
τ3l

0 0 0

0 0 0 0 0 0 1
τ4

0 0

0 0 0 0 0 0 0 1
τ4l

0

0 0 0 0 0 0 0 0 1
τ5



;

C = I (9× 9).

The model per (2.2) represents a system of first-order differential equations, the capa-

bility of which to describe the dynamics is limited. If a more elaborate transient response is

required, the left hand of the equation can be augmented to the second order. The dynamics

of second order system with an inventory system can be conceptualized as being subject to

self-regulation.

The development of the system of equations for TPB model on physical activity behav-

iors is similar to the system equations for TPB model that are used to describe healthy

eating behaviors in (2.2), but with the limit constructs excluded as shown in the path di-

agram in Fig. 2.3. The TPB model on physical activity is simpler with less equations and

state variables involved. If represented with a system of differential equations, we have

τ1
dη1

dt
= γ1b b(t− θ1)− η1 + ζ1 (2.4a)

τ2
dη2

dt
= γ2n n(t− θ2)− η2 + ζ2 (2.4b)

τ3
dη3

dt
= γ3c c(t−−θ3)− η3 + ζ3 (2.4c)

τ4
dη4

dt
= β41 η1 + β42 η2 + β43 η3 − η4 + ζ4 (2.4d)

τ5
dη5

dt
= β53 η3 + β54 η4 − η5 + ζ5 (2.4e)

where τi are time constants, θi are pure time delays, and ζi are disturbances; same assump-
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tions for delays and uncertainties hold. Similarly, (2.4) can be transformed to the following

state space representations as,

ẋ = A(φ)x(t) +B(φ)u(t) +G(φ)e(t) (2.5a)

y = C(φ)x(t) (2.5b)

where:

x =

[
η1 η2 η3 η4 η5

]T
, which denotes a vector of dx = 5 state variables;

u =

[
b n c

]T
, which denotes a vector of du = 3 input variables;

y =

[
η1 η2 η3 η4 η5

]T
, which denotes a vector of dy = 5 output variables;

e =

[
ζ1 ζ2 ζ3 ζ4 ζ5

]T
, which are uncertainties associated to each one of the states

and outputs;

φ = [τ1, τ2, τ3, τ4, τ5, γ1b, γ2n, γ3c, β41, β42, β43, β53, β54]T , which denotes a vector

of dφ = 13 unknown model parameters;

A =



− 1
τ1

0 0 0 0

0 − 1
τ2

0 0 0

0 0 − 1
τ3

0 0

β41

τ4
β42

τ4
β43

τ4
− 1
τ4

0

0 0 β53

τ3
β54

τ4
− 1
τ5


;

B =



γ1b
τ1

0 0

0 γ2n

τ2
0

0 0 γ3c

τ3

0 0 0

0 0 0


;
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G =



1
τ1

0 0 0 0

0 1
τ2

0 0 0

0 0 1
τ3

0 0

0 0 0 1
τ4

0

0 0 0 0 1
τ5


;

C = I (5× 5).

2.3 Intervention Delivery Dynamics

The models for intervention delivery dynamics relate the magnitude and frequency of

intervention components to the input variables in the TPB models. Hence, it serves as a

connection between the HMPC controller and the TPB model. The development of the

model is similar to the TPB model, using the concept of fluid analogy and network of

production inventory systems in supply management, and the details of modeling will be

described in this section.

Intuitively, the model is supposed to use the magnitude of each intervention component

as inputs and the belief variable (b, n, and c) in the TPB model as outputs. The intervention

components as listed in Table 1.2, include education, goal setting, self-monitoring and active

learning, among which the first three components are all included in the baseline intervention

with no magnitude changes throughout the intervention, while active learning is not included

at baseline intervention, but is given only if a step-up intervention is necessary. As needs for

augmenting intervention dosages increase per Table 6.3, the number of step-ups for healthy

eating/physical activity active learning (or stated as the intensities of active learning) can

range from one to three respectively with one step-up at a time. Based on the different

delivery features of these intervention components, the four components can be categorized

and simplified into two inputs: one as baseline intervention (base), and one as intervention

step up (up). Given the proposed two inputs and three outputs, a path diagram can be

generated to illustrate the cross-relations among the model variables as shown in Fig. 2.4,

based on which a system of differential equations can be obtained using the fluid analogy:
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Figure 2.4: Path diagram for the model of intervention delivery dynamics using simplified
inputs.

τb
db(t)

dt
= γ11 base(t− θ11) + γ12 up(t− θ12)− b+ ζb (2.6a)

τn
dn(t)

dt
= γ21 base(t− θ21) + γ22 up(t− θ22)− n+ ζn (2.6b)

τc
dc(t)

dt
= γ31 base(t− θ31) + γ32 up(t− θ32)− c+ ζc (2.6c)

where τi are time constants, θi are pure time delays, and ζi are disturbances. Same as-

sumptions proposed for TPB model as zero delays and zero mean white noise signals for

disturbances still hold for this intervention delivery dynamics model. The model per (2.6)

represents a system of first-order differential equations. If a more elaborate transient re-

sponse is required but cannot be described by the first-order systems, the left hand of the

equation can be augmented to the second order. If (2.6) is transformed to the state space

representations, it gives,

ẋ = A(φ)x(t) +B(φ)u(t) +G(φ)e(t) (2.7a)

y = C(φ)x(t) (2.7b)

where:

x =

[
b n c

]T
, which denotes a vector of dx = 3 state variables;
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u =

[
base up

]T
, which denotes a vector of du = 2 input variables;

y =

[
b n c

]T
, which denotes a vector of dy = 3 output variables;

e =

[
ζb ζn ζc

]T
, which are uncertainties associated to each one of the states and

outputs;

φ = [τb, τn, τc, γ11, γ12, γ21, γ22, γ31, γ32]T , which denotes a vector of dφ = 9 unknown

model parameters;

A =


− 1
τb

0 0

0 − 1
τn

0

0 0 − 1
τc

;

B =


γ11

τb

γ12

τb

γ21

τn
γ22

τn

γ31

τc
γ32

τc

;

G =


1
τb

0 0

0 1
τn

0

0 0 1
τc

;

C = I (3× 3).

This developed model for intervention delivery dynamics by representations of either

(2.6) or (2.7) can be applied to integrate with TPB models for both healthy eating and

physical activity. The form of this delivery dynamics model and the TPB behavioral mod-

els is amenable in the design and analysis of GWG interventions and lends itself to system

identification. Once the model parameters are identified and validated based on the col-

lected data, a participant validated model can be formed by integrating these two models

with the reformulated EB model, as will be presented in the next section. Based on the

individualized comprehensive model, advanced decision algorithms such as HMPC can be

designed using control engineering approaches to optimize the intervention intensities in

response to individuals’ specific needs. Hence, the customized intervention strategy that

can adapt to individuals’ unique needs can be realized.
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2.4 Energy Balance Model

The basis for most of the work explored in this document relies on a closed-form EB

model which is reformulated from a maternal EB model developed by Thomas et al. (2012).

In this section, the original EB model will be reviewed, followed by a detailed description

of the development of the reformulated EB model. For simplicity and clarity, the original

EB model developed by Thomas et al. (2012) will be referred to as the initial EB model in

the remainder of the document. Based on the initial model, we formulate a Multiple Input

Single Output (MISO) dynamical system model in a closed form that is better suited for

control purposes.

The initial EB model from Thomas et al. (2012) to predict gestational weight gain

(GWG) based on gestational energy intake (EI) and energy expenditure (EE) relies on the

principle of energy conservation, which can be expressed as

ES(t) = (1− g)EI(t)− EE(t) (2.8)

where ES(t) is the daily energy stored at time t. The parameter g = 0.03 is the nutrient

partitioning constant. The excess energy is stored and converted into different body tissues

(e.g. body fat and muscle tissue), leading to a weight change of different body compositions.

Hence, ES can be constructed as a sum of the instantaneous rates of change of different

energy storage compartments during pregnancy. Here, a two-compartment model which

separates maternal materials into two components, fat free mass (FFM) and fat mass

(FM) is applied. The sum of FFM and FM represents the total maternal body weight

(W ) as

W (t) = FFM(t) + FM(t) (2.9)

Under this two-compartment model assumption, the ES term in (2.8) can be expanded

into the sum of the instantaneous weight change of the two components of FM and FFM ,

multiplied by their respective energy densities λFM and λFFM , leading to

λFFM
dFFM

dt
+ λFM

dFM

dt
= (1− g)EI(t)− EE(t) (2.10)
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where λFM = 9500 kcal/kg, λFFM = 771 kcal/kg. The resulting solution of the differential

equation in (2.10) predicts FFM and FM as a function of time.

In this model from Thomas et al. (2012), EE is estimated with a regression-based

function of maternal W . In the case of small W changes, the EE quantity remains relatively

constant. Despite the effectiveness and simplicity in the use of EE estimation functions

for weight gain predictions, this is not quite suited for an intervention application where

individual levels of PA can be significantly increased or adapted as a result of intervention

sessions, leading to a substantial change observed in total EE. This issue can also be

described (as noted in Sabounchi et al. (2014)) that the initial EB model estimates EE as

a monolithic quantity. Here modifications are made to compensate for limitations of the

modeling in Thomas et al. (2012) that the different components of maternal EE cannot be

adjusted individually.

EE is commonly considered to be composed of physical activity (PA), resting metabolic

rate (RMR), and the thermic effect of food (TEF ) (Ravussin and Bogardus, 1992). With

commercially available accelerometers, PA can be easily measured. RMR is the minimal

energy expenditure of a human at rest and is considered as dynamically changing throughout

gestation. This quantity can be obtained through estimation, or by measurement with a

metabolism device. TEF is usually expressed as a percentage of EI, ranging from 4.0% to

17.1% due to different diets (Westerterp, 2004). Regardless of intake nutrients, we assume

it to be approximately 7% of daily EI as measured in Piers et al. (1995). Thus, EE can be

expressed as,

EE(t) = PA(t) +RMR(t) + rTEFEI(t) (2.11)

where rTEF = 0.07. Substituting (2.9) and (2.11) into (2.10) gives,

λFFM
dFFM(t)

dt
+ λFM

d(W (t)− FFM(t))

dt
= (1− g − rTEF )EI(t)− PA(t)−RMR(t)

(2.12)

Instead of keeping two differential terms in (2.12), FFM can be expressed to relate

to W so that the derivative term is only with respect to W , and the equations become
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much easier to solve. To begin with, FFM can be considered to be the sum of total body

water (TBW ), total body protein (TBP ), and mass that stays constant during gestation

(constant massCM); this latter quantity includes bone mass for example. This leads to,

FFM(t) = TBW (t) + TBP (t) + CM (2.13)

where CM = FFM(0) − TBW (0) − TBP (0). TBW and TBP are linear functions of

simultaneously measured W based on a participant’s BMI, which can be expressed in a

generalized form as,

TBW (t) = aWW (t) + bW (2.14a)

TBP (t) = aPW (t) + bP (2.14b)

where aW , bW , aP , bP are the coefficients of the corresponding functions, the values of

which can be found in Table 2.2. Note that TBP and W are expressed in kg, TBW in

liters. Substituting (2.14) into (2.13) leads to,

FFM(t) = (aW + aP )W (t) + (bW + bP + CM) (2.15)

which if substituted into (2.12) gives the differential equation expressed in terms of the

derivative of W as,

dW (t)

dt
= K1EI(t) +K2PA(t) +K2RMR(t) (2.16)

where

K1 =
1− g − rTEF

(aW + aP )λFFM + (1− aW − aP )λFM
(2.17a)

K2 =
−1

(aW + aP )λFFM + (1− aW − aP )λFM
(2.17b)

K1 and K2 are system gain coefficients, expressed in kg/kcal/day. Table 2.3 shows the

values of K1 and K2 for different categories of BMI. Equation (2.16) forms the basis of the

work presented in this dissertation, from which we are able to predict the system output
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Table 2.2: Tabulation of the coefficients for the linear functions of total body water (TBW )
and total body protein (TBP ) with respect to maternal weight (W ).

BMI Category

(kg/m2) Weight Range (kg) aW bW aP bP

Low BMI
(≤ 19.8)

W ≤ 52

0.489 3.875

-0.04762 9.28

52 < W ≤ 57.7 0.105263 1.33

W > 57.7 0.075472 3.05

Normal BMI
(19.8–26)

W ≤ 60.2

0.4836 2.853

-0.667 47.533

60.2 < W ≤ 65.1 0.0204 6.17

W > 65.1 0.0724 3.05

High BMI
(≥ 26)

W ≤ 81.8

0.503 4.885

-0.03226 10.4387

81.8 < W ≤ 85.8 0.1 0.38

W > 85.8 0.098765 0.27407

W using the explicitly measurable inputs EI, PA and RMR. Written in discretized form

for daily sampling time T = 1, the EB model can be expressed as,

GWG(k + 1) = K1EI(k) +K2PA(k) +K2RMR(k) (2.18)

where GWG is defined by GWG(k + 1) = W (k + 1) −W (k). When written in deviation

variables and using Laplace transforms, (2.16) gives,

∆W (s) =
K1

s
∆EI(s) +

K2

s
∆PA(s) +

K2

s
∆RMR(s) (2.19)

As seen here, the reformulated EB model for GWG can be represented in terms of a simple

sum of integrators, each integrator defined by K1 or K2 (the system gain coefficients) with

respect to the three inputs.

One can notice that the constant term CM cancels out when substituting (2.15) into

(2.12) followed by the differentiation. In the case where FFM needs to be calculated using

(2.15), CM can be expressed as

CM = FFM(0)− TBW (0)− TBP (0) (2.20)
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Table 2.3: System gain parameters K1 and K2 for low, normal and high BMI.
BMI Category

(kg/m2)
Weight Range

(kg)

Gain K1 × 104

( kg
kcal·day )

Gain K2 × 104

( kg
kcal·day )

Low BMI
(≤ 19.8)

W ≤ 52 1.59 −1.77

52 < W ≤ 57.7 2.09 −2.32

W > 57.7 1.97 −2.19

Normal BMI
(19.8–26)

W ≤ 60.2 0.81 −0.90

60.2 < W ≤ 65.1 1.76 −1.96

W > 65.1 1.94 −2.15

High BMI
(≥ 26)

W ≤ 81.8 1.67 −1.85

81.8 < W ≤ 85.8 2.12 −2.36

W > 85.8 2.12 −2.35

where day 0 indicates the pre-gravid state of the variables. TPB(0) and TPW (0) may

be calculated using the functions in Table 2.2 based on the pre-gravid weight, W (0); But

it has to be noted that the functions in Table 2.2 might be less accurate when applied to

pre-gravid calculations. FFM(0) in (2.20) can be calculated from

FFM(0) = W (0)− FM(0) (2.21)

where FM(0) is obtained by solving (2.22) below. Here, age is expressed in years, height

in cm, W (0) and FM(0) in kg.

W (0) = 3.5× 10−7 × FM(0)4 − 0.187× 10−5 × height× FM(0)3 + 0.2291× 10−3

× FM(0)3 + 0.332× 10−4 × age× FM(0)2 + 0.2721× 10−3 × height× FM(0)2

− 0.0390627× FM(0)2 − 0.002296× age× FM(0)− 0.013308× height× FM(0)

+ 3.4837412× FM(0)− 0.038273× age+ 0.6555023× height− 72.055453

(2.22)

Formula (2.22) for body composition is obtained using the data from the National Health

and Nutrition Examination Survey (NHANES).
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From the derivations described in these sections, a control-oriented energy balance model

for gestational weight gain has been developed, starting from the first-principles model

of Thomas et al. (2012). As will be shown in this dissertation, this reformulated model

has been extremely useful in the intervention development and participant data analysis.

With the use of this reformulated model, it is easier to predict the trajectory of maternal

weights based on the longitudinal measurements of the model inputs (maternal EI, PA,

and RMR). Comparing the model predictions with the trajectory of weight measurements,

further analysis of the predictive model or measurement errors can be performed. This

is how it leads us to the exploration into the issues observed in the self-reported data.

In next section, the issue of energy intake underreporting will be described, and it will

be clearly explained why it is problematic for intervention assessments as well as for the

implementation of the closed-loop controller algorithms. Motivated from this need, a series

of estimation approaches to correcting self-reports have been developed to address this issue.

Further estimation related work is documented in Chapters 3 and 4.

2.5 Energy Intake Underreporting & Other Data Issues

2.5.1 Data Description

In this section, the reformulated energy balance model is evaluated against the actual

participant data from both the Phase I and Phase II studies of the HMZ intervention. In

the pilot HMZ intervention study (Phase I study), maternal EI, PA and W of 17 OW/OB

pregnant women (age mean: 28.9, standard deviation (SD): 5.1, and pre-pregnancy body

mass index (BMI) mean: 29.6, SD: 4.0) were measured for six weeks. For the measurement

of W , participants weighed themselves daily using Aria Wifi smart digital scales. Par-

ticipant EI was obtained from self-reports using two options: 1) A dietary intake phone

app MyFitnessPal (MFP) at the frequency of three days a week and 2) a weekly online

assessment through Automated Self-Administered 24-hour dietary recall system (ASA24,

Subar et al. (2007)). The daily measurements of PA were obtained using both a waist-worn
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activity monitor (ActiGraph wGT3X-BT) and a wrist-worn commercial monitor (Jawbone

UP). For the sake of clarity, only the results of the wrist-worn monitor are presented in

this work as they parallel those from the waist-worn device; another consideration about

PA data is that the measurements from the wrist-worn device were obtained for the entire

span of six weeks, while ActiGraph data were only available for two weeks. Likewise, only

EI self-reports from the dietary intake phone app are presented due to their parallel values

as ASA24. RMR was not measured in the pilot study, but was measured and objectively

assessed over pregnancy in the full trial in Phase II study using Breezing, a commercial

portable metabolism tracker device (Xian et al. (2015)). For both phases of the interven-

tion, estimated RMR has been used extensively: a good estimate of gestational RMR can

be provided with the quadratic function as shown below:

RMR = 0.1976W 2 − 13.424W + 1457.6 (2.23)

where W is the maternal weight expressed in kg. This regression formula is originally

proposed by Thomas (2009), who derived the equation by fitting the data from Butte et al.

(2004). This equation captures the slight increase of RMR as women gain weight during

gestation, and the values of the estimated RMR have been demonstrated to be comparable

with the measured RMR. For simplicity and other computational benefits, the estimated

RMR has been adopted for approach demonstration and other analysis instead of using the

less frequently measured RMR.

In the full HMZ intervention study (Phase II study), maternal W , EI and PA of 27

OW/OB pregnant women (age mean: 30.6; SD: 3.0, and pre-pregnancy body mass index

(BMI) mean: 31.6, SD: 7.1) were measured for 22-28 weeks. Similar as the Phase I study,

participant W is self-monitored every day using Aria Wifi smart digital scales. Self-reported

EI was obtained through MFP alone at the frequency of three days per week. This is based

on the practical assessment from Phase I study that MFP shows parallel values as ASA24,

and it is more user friendly and involves less participant burden. PA data were obtained

from Jawbone UP and Actigraph on a daily basis, but Actigraph was only collected for
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a couple of weeks. RMR was measured with Breezing on a weekly basis. As mentioned

previously, estimated RMR has been used for algorithm demonstrations in this work.

Some special considerations or manipulations of the participant data taken in this dis-

sertation are described here. The PA signal is considered as having negligible measurement

noise for purposes of this work. Since PA signals are relatively stationary, mean replacement

is employed to impute any missing data points for Phase II study: the mean of adjacent

three weeks of PA measurements (± 10 days) is used for missing data imputation. Note

that due to the much shorter intervention span in Phase I study, linear interpolation of PA

measurements is used for missing data replacement.

Considering the burden of recording their food consumption, participants are not re-

quired to report the energy intake every day. Because EI measurements were not obtained

daily as measured PA and W , or estimated RMR, this leads to a substantial number of

gaps in the self-reported EI. For any days when the self-reports are not available or miss-

ing, linear interpolation is one approach that can be used to impute the missing days so

that simulations can be performed. This can also apply to missing data that occurs during

the collection of participant W . The missingness rates for the measured EB variables are

tabulated for some selected participants in Table 2.4.

Table 2.4: Rates of missing measurements for the self-monitored or self-reported EB
variables for representative Phase II participants. Note: Missingness % is compute by
Number of missing measurements (days)

Total number of days for intervention × 100%.

Participant W PA EI

A 10% 11% 26%

B 16% 0% 59%

C 0% 1% 54%

D 26% 22% 55%

E 16% 1% 59%

F 11% 0% No MFP
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2.5.2 Energy Intake Underreporting

The energy balance model reformulated into the form of (2.16) is easier and more prac-

tical for use compared to the original energy balance model in Thomas et al. (2012). It

can provide an accurate weight prediction based on the actual values of the major deter-

minants of energy balance. In real life weight control interventions, however, it is difficult

to assure accurate measures of a participant’s actual energy intake, different energy expen-

diture components, and weight change from self-collected data. Among these, significant

underreporting in the self-reported measures of energy intake from MFP is the most prob-

lematic issue of concerns that interferes with accurate weight predictions, and this has been

observed for most participants.

Energy intake misreporting is prevalent in the general adult population, estimated at 40

to 50% for underreporting and 5 to 10% for overreporting (Johansson et al. (1998); Poslusna

et al. (2009)); the extent of underreporting can be as much as 59% of their total caloric intake

(Lichtman et al. (1992)). BMI has been found to be a significant independent predictor

of EI underreporting: higher extent of underreporting is observed with increasing BMI

(McGowan and McAuliffe (2012); Trabulsi and Schoeller (2001)). Hence, the participants

in the HMZ Study as OW/OB pregnant women are more likely to underreport their EI.

The high prevalence of EI underreporting among OW/OB pregnant women has also been

previously reported in Moran et al. (2018), Nowicki et al. (2011) and Mullaney et al. (2014).

Misreporting of EI may relate to participant education, age, psychological status such as

depression or poor body image (Poslusna et al. (2009)). It also might be due to recall

bias or memory lapses, poor awareness of quantities or types of foods eaten, inaccurate

portion size estimation, or the inconvenience of reporting (Lutomski et al. (2011)). Thus,

the measurement bias due to EI misreporting can be characterized as both systematic and

random and remains a challenging issue for EB model predictions.

To illustrate underreporting in EI self-reports and their influence on weight predic-

tions, Fig. 2.5 compares the measured weight from two representative participants from
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Phase II study of the HMZ with the EB model simulated weight using their self-reported

EI. Among this two selected participants, participant A (BMI = 28.6; age = 31; OW) is

from the intervention group and participant B (BMI = 25.3; age = 37; OW) from the control

group. The selection of these two participants aims to embrace the different characteristics

or aspects of the two study groups.As shown in the figure, the discrepancies between the

model predictions and weight measurements accumulate along the intervention weeks; sim-

ilar observations also exist with other participant data that have been collected in the HMZ

intervention. While multiple causes could explain this mismatch, the most significant is the

accumulation of errors resulting from underreported EI, which increases substantially over

time as a result of the integrating dynamics of the system. From a practical standpoint,

self-reported or self-monitored measurements are convenient to obtain from free-living par-

ticipants, yet found to contain bias and measurement noise, along with data missingness due

to lack of participant compliance with the monitors or adherence to interventions. These

issues with participant data all pose challenges to reliable model-based estimation and limit

the assessment of intervention outcomes.

Motivated from this standpoint, a series of estimation approaches that can address

measurement noise and measurement losses are developed in Chapter 3 and 4 to better un-

derstand the extent of energy intake underreporting. These include back-calculating energy

intake from the EB model per (2.18) for gestational weight gain prediction, Kalman filtering-

based approaches to recursively estimate energy intake from intermittent measurements in

real time, and approaches based on semi-physical identification principles which features

the capability of correcting future self-reported energy intake by parametrizing the extent

of underreporting. The development of these estimation approaches enables the accurate

weight control assessment, as well as the effective use of the EB model in an intervention

setting. Please refer to those chapters for the details of each listed approach.

45



80 100 120 140 160 180 200 220 240 260

140

160

180

W
 (l

b)

Participant A, BMI = 28.6, age = 31

Measured W
Predicted W with self-reported EI

80 100 120 140 160 180 200 220 240 260
0

2000

4000
EI

 (k
ca

l)

80 100 120 140 160 180 200 220 240 260
GA (days)

0

500

1000

1500

PA
 (k

ca
l)

(a)

80 100 120 140 160 180 200 220 240 260
120

140

160

180

W
 (l

b)

Participant B, BMI = 25.3, age = 37

Measured W
Predicted W with self-reported EI

80 100 120 140 160 180 200 220 240 260
0

1000

2000

3000

EI
 (k

ca
l)

80 100 120 140 160 180 200 220 240 260
GA (days)

0

500

1000

1500

PA
 (k

ca
l)

(b)

Figure 2.5: Weight predictions from the energy balance model according to (2.18) using
data from two representative participants in the Phase II study of the HMZ intervention.
These show evidence of significant underreporting of energy intake. Participant A is an
OW woman from the intervention group and Participant B (OW) from the control group.
The self-reported EI were obtained from a smartphone app (MyFitnessPal) and PA was
objectively monitored with a wrist-worn accelerometer (Jawbone).
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Chapter 3

ESTIMATION FOR UNDERREPORTING

As explained in Section 2.5.2, the use of the energy balance (EB) model per (2.18) for

weight gain prediction can be compromised in intervention practice, due to biased or noise-

corrupted input measurements; this has been found to be an issue of concern especially when

using self-reported energy intake (EI) from the HMZ intervention study for maternal weight

predictions. EI underreporting limits the use of EB model for accurate weight prediction,

but also creates barriers and challenges for effective interventions. The literature shows

that avoiding excessive maternal dietary intake is crucial for optimizing maternal and fetal

outcomes during pregnancy (IOM (2005)). Misreporting of food consumed and dietary

calories also makes it difficult for clinicians to determine if participants are meeting their

energy intake goals, and prevents appropriate health counseling advice to be provided.

Thus it can be seen that the issue of EI underreporting calls for effective estima-

tion/correction approaches to correct for participant misreports, and to effectively im-

plement intervention. If participant energy intake can be accurately estimated/corrected,

timely feedback can be provided to both participants and dietitians; consequently, nutrition

counseling as well as suggestions regarding how to adjust physical activity behaviors can be

tailored in order for intervention participants to manage their gestational weight gain in line

with clinical recommendations. In this particular aspect, real-time estimation approaches

that can address noise and measurement losses have significant appeal in real-world inter-

vention settings. However, there is a scarcity of literature enabling such implementation,

examining or identifying the characteristics of EI misreporting in pregnancy.

In this chapter, a series of estimation approaches are developed to better understand

the issue of EI underreporting. One approach from the literature is to back-calculate EI

from the EB model (Guo et al. (2016); Hall and Chow (2011)); this conventional approach,
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while simple to implement, suffers from a number of inherent limitations. To address this

problem, a Kalman filter-based approach that can estimate EI in real time from intermittent

and noise-corrupted measurements is developed (Guo et al. (2017)). The EB model is

the essential core for both these two approaches, and the implementations do not require

participant self-reported EI to provide a reliable estimate. In Chapter 4, two semi-physical

identification approaches that can systematically characterize the extent of underreporting

will be presented as additional approaches to the problem. There, a functional relationship

will be established between self-reported and actual EI. Once validated, it can be used to

correct participant self-reports, independent of any other measurements involved in the EB

model.

An important end-use application for EI estimation with any of the methods described

above is to improve the effectiveness of closed-loop interventions using control engineering

principles. A block diagram for a control system incorporating this functionality is shown

in Fig. 3.1. Here a hybrid model predictive control (HMPC) algorithm, as will be described

in Chapter 6, is used to specify the dosages of intervention components (e.g., healthy eating

active learning, physical activity active learning, goal setting) based on the assessments

of participant behavior outcomes in real time. EI, as an input to the internal controller

EB model, is critical to determine the appropriate control actions; consequently biased

EI self-reports will negatively influence controller performance. Therefore, estimated EI

measurements described in this work are essential for adequate performance of the closed-

loop control system for interventions.

3.1 Back-calculation Approach

As shown in Fig. 2.5, bias between the simulated and measured weight is mostly due to

the substantial under-reported EI. To test this hypothesis, we back-calculate EI using the

reformulated EB model based on the measured W , PA, and the estimated RMR. Numer-

ically approximating the derivative term in (2.16) using the 2nd order centered difference

formula and doing some algebra leads to the expression of the estimated EI (EIest) as
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Figure 3.1: Block diagram depicting a closed-loop intervention for gestational weight gain,
and how estimation approaches to energy intake as developed in this paper (indicated in
the blue box) can be incorporated within the system. Energy intake estimates as well as
the filtered weight measurements resulting from these estimators can be used by a hybrid
model predictive control (HMPC) algorithm to determine optimized intervention dosages
of intervention components.

shown below,

EIest(k) =
−W (k + 2T ) + 8W (k + T )− 8W (k − T ) +W (k − 2T )

12 TK1
− K2

K1
(PA(k) +RMR(k))

(3.1)

T is the sampling time, in this case, T = 1 day. The variables are indexed by k with

k = 1, 2, ..., N corresponding to day 1 to day N . If written in the convention used in system

identification, (3.2) can be represented as,

EIest(k) =
−W (k + 2) + 8W (k + 1)− 8W (k − 1) +W (k − 2)

12 K1
− K2

K1
(PA(k) +RMR(k)) (3.2)

The noise in W is considered small relative to the total W ; however the extent of this

noise can significantly affect the numerical calculation of the rate of weight gain per day.

Consequently, a 9-day (± 4 days) moving average filter is used to smooth the measured

W for Phase II participant data (for Phase I participant data, a 5-day (± 2 days) moving

average filter is used) before an estimate of the daily EI is obtained from (3.2). The selected

length of the smoothing window is in agreement with the experience of behavioral scientists

that a seven day window (or longer) is needed accurately reflect typical daily EI (Willett

(1990)).

A 95% confidence interval of EI estimation can be calculated with Monte Carlo simu-

lations or the technique of standard propagation of error, based on an assumed uncertainty
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Figure 3.2: The EI back-calculation results for the two representative participants from
the Phase II Study of the HMZ Intervention. The predicted W using back-calculated EI
follows the trajectory of the measured W , which provides support for the validity of the EI
estimates. BMI: body mass index; GA: gestational age.
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Figure 3.3: Simulations based on the reformulated EB model using self-reported and
back-calculated EI for two representative participants in the Phase I Study of the HMZ,
the accumulated bias between which is representative of the substantial EI underreporting
in self-reported measures. The error bars represent the 95% confidence intervals of the
estimates. BMI: body mass index; GA: gestational age at baseline.
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perturbation in the smoothed W measurement and an uncertainty perturbation in the sum

of PA and RMR. In this dissertation, we use the standard propagation of error technique

to compute the confidence interval. Generally, for a function of Q = f(x, y, z, ...) where

x, y, z and any other variables involved in the function f are independent variables, the

standard deviation of Q can be defined as,

sf =

√
(
∂f

∂x
)2s2

x + (
∂f

∂y
)2s2

y + (
∂f

∂z
)2s2

z + ... (3.3)

where sf , sx, sy, and sz represent the standard deviation of Q, x, y and z, respectively.

Applying this formula to (3.2) for EI back-calculation where EIest is determined from

multiple measurements of W and the sum of PA and RMR (which can be treated as a

single variable with respect to energy expenditure in the unit of kcal), gives the standard

deviation of estimated EI as,

EIstd(k) =

√
δ2(W (k + 2)2 +W (k − 2)2) + 64δ2(W (k + 1)2 +W (k − 1)2)

(12 TK1)2
+ (

K2

K1
)2ε2(PA(k) +RMR(k))2

(3.4)

where δ is the percentage uncertainty perturbation in W measurement, and ε is the uncer-

tainty perturbation in the sum of PA and RMR. Note that the sum of PA and RMR is

considered as a single variable in units of kcal in the calculation of the standard deviation

in (3.4), thus incorporating the existence of errors in both the measurement of PA and in

the estimation of RMR.

The back-calculation result is shown in Fig. 3.3 for the two Phase I participants and in

Fig. 3.2 for the two Phase II participants. For clarity, in the first demonstration for Phase I

participants where the set of measurements is relatively small, the confidence intervals are

calculated based on the assumption that δ = 0.3% and ε = 5%, that is, an error of 0.3 lb in

a measured W = 100 lb, and 100 kcal perturbation for a measured energy expenditure in

total of 2000 kcal. In these results, the backtracked EI is generally higher than the reported

EI measurements. The difference between the back-calculated EI and the self-reported EI

is quantified using the mean and its standard deviation (SD). The mean ± SD of the EI
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estimate for participant A is 2787 ± 617 kcal; the mean± SD for participant B is 3353 ±

1025 kcal. Similarly, the mean±SD of the EI estimate for participant C is 2660 ± 570 kcal

and 2617 ± 434 kcal for participant D. One can also notice that the predicted W using the

back-calculated EI follows closely with the measured W , which also provides support for

the accuracy of the EI back-calculation from this method.

The method of using algebraic back-calculation for EI is the simplest and quickest ap-

proach to implement, and repeated EI estimates can be generated without requiring any EI

measurements. Since estimation with this method is sensitive to noise in the weight mea-

surements, pre-processing of measured weight data with techniques such as moving average

filters is necessary to reduce variability in the estimates. It is also observed that, while the

standard deviation can be significantly reduced by increasing length of the moving average

window, the average of the estimates is not affected. The selection of the moving average

window is an important adjustable parameter for smoothing, and needs to be determined

based on the variance and length of the intervention.

3.2 Classical Kalman Filtering Approach for EI Estimation

Kalman filtering (KF) is an important approach to state estimation and is usually ap-

plied for estimating states that cannot be measured directly the majority of the time. A

system state refers to a variable that can represent certain aspect of the dynamic charac-

teristics of the system at any given time. By measuring the output instead, which is a

function of the states but corrupted by noise, inference can be made about the dynamical

system. Kalman filtering approach can produce states for linear dynamical systems in the

presence of noise by propagating the mean and covariance of the probability distribution

function of the model state in an optimal (minimum mean square error) manner (Chen

(1995); Jazwinski (1970)). It is convenient and practical for use due to its property as a

recursive filter. In the case where an estimate is required every time that a measurement is

received, this recursive filtering approach can process the received data sequentially instead

of per batch; hence it is not necessary to store the complete data set or to reprocess existing
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data if a new measurement becomes available (Gordon (1996)). This property is beneficial

in practice both from the point of view of storage costs as well as for rapid adaptation to

changing signal characteristics (Arulampalam et al. (2002)).

As demonstrated in the previous subsection, back-calculation is simple to implement, but

the variation in the estimates is largely due to the noise in the measured GWG (GWGmeas).

In this section, we develop a recursive method based on KF to sequentially estimate EI

in real time and filter out the noise in GWGmeas simultaneously. In this method, we do

not need the self-reported EI measurements, but a state-space model that describes the

dynamics of the system is required before the KF can be applied. The variable we aim to

estimate, i.e., EI in this application, is viewed as the “state” of a system. To establish the

model, we treat this “state” invariant in time but affected by noise, which leads to the state

equation expressed as,

EI(k + 1) = EI(k) +$(k + 1) (3.5)

where the random variable $(k) represents the process noise. The discretized EB model

equation in (2.18) is used as the measurement equation but with PA and RMR as system

inputs. If the state of this system is denoted by x = [EI], the input by u = [PARMR]T

and the output y = [GWG] respectively, we can write the dynamics of this discrete system

by coupling (3.5) with (2.18) as,

x(k + 1) = A x(k) +B u(k + 1) +$(k + 1) (3.6a)

y(k + 1) = C x(k + 1) +D u(k + 1) + ν(k + 1) (3.6b)

where A = I, B = 0, C = [K1], and D = [K2 K2]. The random variable ν(k) represents

the measurement noise.

As shown in the system equations per (3.6), both the model prediction and the measure-

ment are subject to noise. We assume these two noise terms, $(k) and ν(k) are independent

and identically distributed (i.i.d.) over time, zero mean Gaussian signals with variance ϑ2

and σ2 respectively, that is, $(k) ∼ N(0, ϑ2) and ν(k) ∼ N(0, σ2) for all k.
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Kalman filtering, or any other recursive filtering technique involves two steps: “Predict”

and “Update”. The “Predict” step generates the a priori estimates of the states based on

the known system model, while the “Update” step makes modification to the priori estimates

according to the latest measurement and gives a new estimate, called the a posteriori

estimate. This correction step is also called the innovation process. The detailed KF

algorithm is described below, where “hat” denotes the estimate, P the error covariance,

and K the Kalman gain.

1. Initialize:

Set x̂(0|0) = EI0, P (0|0) = I. EI0 is the initial value of EI, calculated using the

regression formula which fits the baseline energy expenditure EE0 data using the

doubly labeled water (DLW) method from the IOM/National Academy of Sciences

(NAS) database (IOM (2005)), as shown below,

EI0 = EE0 = 0.278W 2
b + 9.2893Wb + 1528.90 (3.7)

2. Predict: The prediction stage is independent of the update stage and can be ex-

pressed as:

x̂(k + 1|k) = Ax̂(k|k) +Bu(k + 1); (3.8)

P (k + 1|k) = AP (k|k)A′ +Q(k + 1); (3.9)

3. Update: The model estimates from ”Predict” step is corrected base on measure-

ments:

K(k + 1) = P (k + 1|k)C ′[CP (k + 1|k)C ′ +R(k + 1)]−1; (3.10)

x̂(k + 1|k + 1) = x̂(k + 1|k) +K(k + 1)[y(k + 1)− ŷ(k + 1|k)]; (3.11)

P (k + 1|k + 1) = (I −K(k + 1)C)P (k + 1|k). (3.12)

where Q(k+ 1) is the covariance for process noise $(k+ 1) with Q(k+ 1) = ϑ2; R(k+ 1) is

the covariance for measurement noise ν(k + 1) with R(k + 1) = σ2. Q and R can be used

as adjustable parameters to influence the performance of the KF estimation algorithm.
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Figure 3.4: Performance of the KF algorithm, illustrated using a hypothetical participant.
RMSE stands for Root Mean Square Error.

For performance evaluation, we use the Root Mean Square Error (RMSE) as the metric,

which is defined as,

RMSE =

√√√√ 1

Tspan

Tspan∑
k=1

(ŷ(k)− y(k))2 (3.13)

Tspan = 1 when calculating the running RMSE.

To test the performance of the algorithm, we create the input data, output data, as

well as noise with known statistics for a hypothetical participant. A simulation result using

the hypothetical data is presented in Fig. 3.4; Q = ϑ2 = 10000, R = σ2 = 0.1. It can be

seen that the EI “adapts” from a given initial value and keeps tracking the true EI closely

despite the presence of noise during the KF algorithm. The algorithm also produces better

weight gain predictions than the noise corrupted measurements.

The results of the two simulations using actual participant data from Phase I Study are

presented in Fig. 3.5, where Q = ϑ2 = 100000, R = σ2 = 0.2 are set for both participants. It

can be seen that the estimates of the true EI using this algorithm lie above the self-reported
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measures of EI, which is consistent with what we find using the two estimation approaches

presented in the preceding sections. From the simulation result, the ME ± SD of the EI

estimate is 2711 ± 568 kcal for participant A, and 3198 ± 784 kcal for participant B.

For these two estimation methods, we are assuming both the measured physical activity

and the estimated resting metabolic rate are accurate, so they can serve as inputs in the KF

model per (3.6). While the measurements of energy intake from self-reports are usually more

biased from the actual values and uncertain due to the considerable noise, the measurements

of resting metabolic rate and physical activity are also subject to measurement error or noise.

This can be caused, for example, by occasional misuse of the Breezing device against the

correct protocol, or overreporting physical activity by recording the movement of the arms

only with a wrist accelerometer. Hence, a KF algorithm that can filter out the noise in

either or both of the other key determinants of the energy balance model will be useful in

real-life weight control interventions.

Motivated from this standpoint, some extensions of the KF approach are demonstrated

below for the application of multiple state estimation during weight interventions. To

include more than one state in the systems model, we re-write our systems equations in the

form of (3.6) by reallocating the states to estimate and the state matrices. For two-state

systems, EI remains as the first state to be estimated, and either RMR or PA can be

used as the second state that needs to be estimated from noisy measurements. For the

case of estimating EI and RMR from noise-corrupted measurement of GWG and RMR,

the system can be written as: x = [EI RMR]T , y = [GWG RMR]T , u = [PA], where

PA measurement can be treated as a noise-free input; For estimating EI and PA from

uncertain measurement of GWG and PA and noiseless measurement of RMR, the system

is x = [EI PA]T , y = [GWG PA]T , u = [RMR]. That is, one of the two signals of RMR

and PA is used as a noise-corrupted output, while the other used as a noise-free input. For

either of these two models, system matrices can be derived as: C =

[
K1 K2

1 0

]
, A = I.

With the established models, standard KF algorithm can be applied to these systems to
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Figure 3.5: Performance of the KF algorithm for estimating EI evaluated using two
participants from the Phase I Study of the HMZ.
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Figure 3.6: The performance of the KF algorithm for the two-state system (x =
[EI RMR]T with noise-free input of PA) illustrated using hypothetical data.

realize state estimation. Here, hypothetical participant data with averaged EI underreport-

ing of 1000 kcal is used for performance demonstration. For this hypothetical participant

who has the same system gains as Participant A (K1 = 1.94×10−4 and K2 = −2.15×10−4),

two simulation examples based on the listed two models are shown in Fig. 3.6 and 3.7 re-

spectively. All the measurements are assumed to be obtained daily. For both the two cases,

it is assumed that Q =

[
10000 0

0 10000

]
, R =

[
0.01 0

0 10000

]
. As we can see from the results, KF

algorithm can successfully filter out the noise in the measurement of the outputs and return

a good estimation of the EI regardless of the underreporting in the energy intake.

For three-state systems, both the RMR and PA are treated as states in addition to EI.

The corresponding system is formulated as x = [EI RMR PA]T , y = [GWG RMR PA]T
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Figure 3.7: The performance of the KF algorithm for the two-state system (x = [EI PA]T

with noise-free input of RMR) illustrated using hypothetical data.

with C =

[
K1 K2 K2

0 1 0

0 0 1

]
, A = I, where all the measurements of GWG, RMR, and PA are

assumed to be noisy. Standard KF algorithm can be applied to this three-state system, and

the performance is demonstrated with the same hypothetical data that is used to illustrate

the two-state systems. With Q =

[
10000 0 0

0 10000 0

0 0 10000

]
, R =

[
0.01 0 0

0 10000 0

0 0 10000

]
, the estimation

results are simulated and shown in Fig. 3.8. It can seen that computational error arises

from the estimation with the state estimates diverging from the true values.

To explain the errors, observability analysis is re-examined. Observability refers to the

property of the system that is used to determine whether the states of the system can

be inferred based on the measured output. In order to be able to use Kalman filter for
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state estimation, the model set up for the KF algorithm has to be observable, which can

be determined by examining whether the rank of the observability matrix of the model

O = [CT ATCT · · · (AT )(n−1)CT ] equal to n, where n is the number of estimated states.

In the state space model for EI estimation with Kalman filtering algorithm per (3.6), for

example, it is easy to confirm that the rank of the observability gramian matrix O = [K1]

equals 1, which corresponds to the number of the estimated system states. Thus, the model

is fully observable and applicable for Kalman filtering.

For the three-state system, the observability matrix can be obtained as below,

O =


K1 1 0 K1 1 0 K1 1 0

K2 1 0 K2 1 0 K2 1 0

K2 0 1 K2 0 1 K2 0 1

 (3.14)

With the pre-determined system gains K1 = 1.94 × 10−4 and K2 = −2.15 × 10−4, this

observability matrix has a rank of 3 but condition number of 5154.6. The condition number

should ideally be close to unit. Hence, with technically full rank, O is an ill-conditioned

matrix due to the small values of K1 and K2. Once this kind of model is applied with

the KF algorithm, it is likely to result in computation error as show in Fig. 3.8 where the

system cannot converge. To overcome the observability issue, EI has to be set as one of

the outputs for the three-state system, reformulating the system as x = [EI RMR PA]T ,

y = [GWG EI RMR PA]T . This means, the measurement of EI is required for the

implementation of the algorithm and cannot be significantly biased/underreporting from

the true EI, assuming there is only noise existed in the EI measures.

Therefore, due to the inherent observability problem of the model, one needs to be care-

ful when setting up the system for the KF approach to be applied. For the current maternal

energy balance model for gestational weight gain interventions, estimation of EI underre-

porting is only possible for the one/two-state system, while three-state system requires

un-biased EI measures. If more than two variables need to be estimated simultaneously,

EI measurement needs to be unbiased so that it can be used as one of the outputs in order

for KF estimation to be implemented.
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Figure 3.8: The performance of the KF algorithm for the three-state ill-conditioned system
illustrated using hypothetical data.

Note that data missingness is not considered in this section. In real-life weight inter-

ventions, however, measurement loss is common in data collection. An inevitable partial

or complete loss of measurements may also occur when a participant forgets to take any

of those self-measures occasionally. For example, a participant might forget to record W

and EI on a certain day, while PA is still recorded by wearing the tracking device. This

is more common with long-duration interventions, in which the measurements can be lost

in a random fashion. Also note that, if one component is not measured on a given day,

the measurements of other components are likely to be missing for that same day as well.

So the probability of measurement loss for individual components may be correlated with

each other. All these flaws in the measured data can impact the accurate assessment of

the effectiveness of the intervention, especially when a quantitative energy balance model is

involved. Hence, an on-line algorithm that can address the issue of missing data to realize

real-time estimation can be useful for the success of weight interventions. In next section,
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a Kalman filter-based algorithm for intermittent measurements is developed and demon-

strates significant potential for real-time use. The observability analysis for the current

maternal energy balance model will be useful for the system set-up when illustrating the

algorithm with numerical examples.

3.3 Kalman Filtering Approach Under Partial Measurement Losses

It has been pointed out in the previous section that data imputation techniques, such

as linear interpolation, are still required to address the issue of missing data during the

implementation of the classical Kalman filtering approach. In real-life behavior weight

management interventions, however, the data available for modeling and estimation is cor-

rupted not only by measurement noise, but also with possible missingness. If a measurement

is determined to be physiological implausible due to significant error, it has to be discarded

for assessment, resulting in additional data missingness. The classical Kalman filtering

approach is technically not realizable for on-line estimation at the presence of data miss-

ingness. Based on the nature of this problem, an optimal recursive estimator that allows

on-line estimation in the presence of inevitable random measurement losses would be the

most suitable option for this application.

In this section, we present a filtering approach with time-varying Kalman gains to cope

with intermittent observations. The problem of Kalman filtering with intermittent mea-

surements has been examined in many recent papers. In the study by Sinopoli et al. (2004),

the random arrival of measurements is modeled as a Bernoulli process, which is character-

ized by an independent probability parameter λ (bounded between 0 and 1). Compared

to the classical Kalman filtering formula, the Algebraic Riccati Equation (ARE) used for

the iteration of the error covariance matrix becomes stochastic due to the random observa-

tion losses. The boundness of the convergence of the iteration proves to be ensured if λ is

greater than the critical arrival rate λc. The results in Sinopoli et al. (2004) are based on

the assumption that each set of measurements at a sampling time is either obtained in full

or lost completely. Liu and Goldsmith (2004) generalize the analysis by allowing partial loss
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of observations, where the measurement loss of each output element needs to be considered

separately. However, the derivation of the Kalman filter updates with partial measurement

losses in Liu and Goldsmith (2004) is limited to a system with only two output elements.

In weight interventions, there are at least three key energy balance components that can

be measured separately (W , EI and EE related terms as shown in (2.16)), and sometimes

even more than three if any of the components is divided into and measured in multiple

sub-components, such as EE being divided into PA, RMR and TEF as noted in Chapter 2.

Thus, a general formula of the recursive algorithm needs to be developed to accommodate

an arbitrary system with multiple output elements. Additionally, the analysis in Liu and

Goldsmith (2004) assumes the probability distributions of the measurement losses to be in-

dependent with each other, that is, the intermittent measurements are described with two

i.i.d. Bernoulli variables. In this work, the observation losses among different components

can be mutually correlated instead of independent. For example, if one component is not

measured on a given day, the measurements of other components are likely to be missing for

that same day also. So the probability of measurement loss for individual components may

be correlated with each other. Consequently, the correlation of observation losses needs

to be incorporated in the problem formulation and can be reflected with the joint prob-

ability density functions. Such settings have been established and studied by Deshmukh

et al. (2014), where the convergence can also be ensured and the bounds on λc can also be

computed by adding constraints from the joint probability density functions. In addition to

the work mentioned above, similar derivation and analysis recently have been extended to

non-linear systems for which the extended Kalman filtering with intermittent observations

is investigated (Ahmad and Namerikawa (2013); Hu et al. (2012)).

Inspired from these papers, we develop a recursive algorithm based on Kalman filtering

with correlated measurement losses as an extension to the two element study in Liu and

Goldsmith (2004), and also provide an EKF-based algorithm to enable a broader applica-

tion. Such exploration has been published in Guo et al. (2017). The presented algorithms
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differ from the classical KF mainly by defining stochastic updates of the innovation process

which is dependent on the random arrivals of measurements. The random measurement loss

is modeled as a Bernoulli process with binary sequences taking values of 0 or 1. When it

comes to a missing data point, the estimator treats it as receiving a measurement consisting

of noise alone. Partial data loss is considered in the derivation of the Kalman filter updates

where the availability of measurements of individual components is modeled separately. In

practice of long-duration interventions, it is common that the participant may forget to

complete measures of a single or multiple determinants of the EB model on the same day

occasionally. For example, a participant might forget to record W and EI on a certain

day, while PA is still recorded by wearing the tracking device. Hence, partial random data

loss is considered and incorporated in the formulation of the algorithm for enhancement.

Simulation studies are presented to illustrate the performance of the algorithms and the

potential benefits of this technique in real-life interventions.

3.3.1 Linear System With Measurement Losses

Algorithm

The detailed development of this Kalman filter-based algorithm for intermittent measure-

ments based on linear systems is elaborated in this section. Consider a multiple-input

multiple-output (MIMO) discrete time linear system model with three output elements.

The state and measurement equations of the system are defined as follows:

xk+1 = A xk +B uk +$k (3.15a)
y1,k

y2,k

y3,k


︸ ︷︷ ︸

yk

=


C1

C2

C3


︸ ︷︷ ︸
C

xk +


ν1,k

ν2,k

ν3,k


︸ ︷︷ ︸

νk

(3.15b)

where k is the sampling time; xk, $k ∈ Rn are the state and noise of the system, respectively;

uk ∈ Rp is the system input; yk, νk ∈ RΣ3
i=1mi are the measurement and measurement noise
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with elements yi,k, νi,k ∈ Rmi , respectively; A, B, and C are the system matrices with

appropriate dimensions. We assume that $k and νi,k are uncorrelated zero-mean Gaussian

white noise with covariances of Q ≥ 0 and Rii > 0, respectively, that is $k ∼ N (0, Q) and

νi,k ∼ N (0, Rii); R is the block-diagonal covariance matrix for νk with the matrices Rii on

the diagonal, written as R = diag{R11, R22, R33}. For the system described per (3.15), we

also assume that (A,B) is completely stabilizable and (A,C) completely detectable so that

the error covariance of Kalman filter converges to a unique value in case of no measurement

loss.

To incorporate measurement loss in the algorithm, we use the Bernoulli variable γi,k

to model the random arrivals of the measurements: γi,k taking the value of 1 indicates

the measurement of the corresponding element, yi,k, has been successfully received at time

k, whereas its value of 0 indicates a measurement loss. γi,k is assumed to have known

probability distributions. Here, in order to simulate real-life intervention conditions, we

assume correlation exists among γ1,k, γ2,k, and γ3,k. Thus, the joint probability density

function of Pr(γ1,k, γ2,k, γ3,k) is used. Note that γi,k assumes to be independent of γj,l if

k 6= l.

The loss of a measurement can be treated equivalently as receiving a measurement with

infinite noise variance. In the presence of measurement loss, the statistical characteristics of

measurement noise will change accordingly and cannot be fully described with νi,k in (3.15b).

Thus, a second measurement noise term ν ′i,k is introduced and defined with ν ′i,k ∼ N (0, R′ii),

with R′ii → ∞. ν ′i,k has the same structure and dimensions as νi,k. Similarly, we have

ν ′k = [ν ′1,k
T ν ′2,k

T ν ′3,k
T ]T ∼ N (0, R′) with R′ = diag{R′11, R

′
22, R

′
33}.

With the augmentation of the variables γi,k and ν ′i,k, the measurement equation per

66



(3.15b) can be redefined for a general case with observation losses as
y1,k

y2,k

y3,k

 =


γ1,k(C1xk + ν1,k)

γ2,k(C2xk + ν2,k)

γ3,k(C3xk + ν3,k)

+


(1− γ1,k)ν

′
1,k

(1− γ2,k)ν
′
2,k

(1− γ3,k)ν
′
3,k



=


γ1,kC1

γ2,kC2

γ3,kC3


︸ ︷︷ ︸

C̃k

xk +


γ1,kν1,k + (1− γ1,k)ν

′
1,k

γ2,kν2,k + (1− γ2,k)ν
′
2,k

γ3,kν3,k + (1− γ3,k)ν
′
3,k


︸ ︷︷ ︸

ν̃k

(3.16)

Note that the measurement equation per (3.16) now becomes time-varying and stochastic

in nature, due to the time-varying matrix C̃k being a function of the random variables γi,k.

The elements of the new noise vector follow ν̃i,k ∼ N (0, R̃ii) with R̃ii = γi,kRii+(1−γi,k)R′ii,

leading to ν̃k ∼ N (0, R̃) with R̃ = diag{R̃11, R̃22, R̃33}. From here, we re-derive the Kalman

filter algorithm based on the time-varying system as described per (3.15a) and (3.16).

Following the Kalman filtering approach, we define,

x̂k|k , E [xk| yk0 , uk0, γk0 ]

Pk|k , E [(xk − x̂k|k)(xk − x̂k|k)T | yk0 , uk0, γk0 ] (3.17)

x̂k+1|k , E [xk+1| yk0 , uk0, γk0 ]

Pk+1|k , E [(xk+1 − x̂k+1|k)(xk+1 − x̂k+1|k)
T | yk0 , uk0, γk0 ]

where xk, x̂k|k, and x̂k+1|k represent the true state, the a posteriori and a priori state

estimate; P̂k|k and P̂k+1|k denotes the a posteriori and a priori error covariance matrix;

γk = [γ1,k γ2,k γ3,k]
T , γk0 = {γ0, · · · , γk}, and yk0 = {y0, · · · , yk}.

The prediction step of this KF based algorithm to compute x̂k+1 and Pk+1|k uses the

information from the state equation only, so it remains deterministic as in the classical
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Kalman filter:

x̂k+1|k = A x̂k|k +B uk +$k

Pk+1|k = AP̂k|kA
T +Q

(3.18)

However, the correction step becomes stochastic due to its dependence on the observa-

tion process:

x̂k+1|k+1 = x̂k+1|k +Kk+1(yk+1 − C̃k+1x̂k+1|k)

Pk+1|k+1 = Pk+1|k −Kk+1C̃k+1Pk+1|k

(3.19)

where Kk+1 = Pk+1|kC̃
T
k+1(C̃k+1Pk+1|kC̃

T
k+1 + R̃)−1 is the optimal Kalman gain computed

by minimizing Pk+1|k+1, that is, Kk+1 given by the solution to the following equation:

∂Pk+1|k+1

∂Kk+1
= 0 (3.20)

Given the random set of γk at each sampling time k, we can expect that there exists 23 = 8

possible scenarios for measurement loss: Specifically, the number of missing elements can

range from 0 to 3, with 0 as the measurement set being completely received and 3 indicating

completely lost. The probability of each combination can be calculated from the joint

probability function Pr(γ1,k, γ2,k, γ3,k). In the following, the Kalman filter update equations

based on four possible scenarios is discussed.

Scenario 1: No Observation Loss

This is the case where γk = [1 1 1]T . The measurement equation per (3.16) becomes the

same as (3.15b) with C̃k = C and ν̃k = νk, so the system becomes completely observable

with the measurement noise covariance of R. Hence, the corrector equations remain the

same as in the standard Kalman filter formulation, expressed as:

x̂k+1|k+1 = x̂k+1|k + Pk+1|kC
T (CPk+1|kC

T +R)−1 × (yk+1 − Cx̂k+1|k)

Pk+1|k+1 = Pk+1|k − Pk+1|kC
T (CPk+1|kC

T +R)−1 × CPk+1|k

(3.21)
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Scenario 2: Complete Observation Loss

The complete observation loss is mathematically modeled by γk = [0 0 0]T , leading to the

description of the system per (3.16) simplified as yk = ν ′k. The corrector equations are

equivalent to (3.21) by assigning C = 0 and replacing R with R′ →∞, which gives

x̂k+1|k+1 = x̂k+1|k

Pk+1|k+1 = Pk+1|k

(3.22)

Equation (3.22) shows that the corrector updates the state estimate by directly propa-

gating the a priori estimate when the system is completely unobservable.

Scenario 3: Single Observation Loss

There are three possible cases to be discussed when a single observation is lost. Because of

space limitations, only the derivation for the case of γ1,k = 0, γ2,k = γ3,k = 1 is described in

detail here. Before using (3.19), note that the following holds:

C̃Tk (C̃kPk+1|kC̃
T
k + R̃)−1C̃k

= C̃Tk (C̃kPk+1|kC̃
T
k +R+ diag{(R′11 −R11), 0, 0})−1C̃k

= C̃Tk


0 0 0

0 M22 −M21M−1
11M12 M23 −M21M−1

11M13

0 M32 −M31M−1
11M12 M33 −M31M−1

11M13

 C̃k

= C̃Tk


0 0

0 (

C2

C3

Pk+1|k

C2

C3

T +

R22 0

0 R33

)−1

 C̃k

=

C2

C3

T (

C2

C3

Pk+1|k

C2

C3

T +

R22 0

0 R33

)−1

C2

C3



(3.23)

69



where (C̃kPk+1|kC̃
T
k + R)−1 =

[
M11 M12 M13

M21 M22 M23

M31 M32 M33

]
. By combining (3.23) with (3.19), the

update step for this case becomes

x̂k+1|k+1 = x̂k+1|k + Pk+1|k

C2

C3

T (

C2

C3

Pk+1|k

C2

C3

T +

R22 0

0 R33

)−1(

y2,k

y3,k

+

C2

C3

 x̂k+1|k)

Pk+1|k+1 = Pk+1|k − Pk+1|k

C2

C3

T (

C2

C3

Pk+1|k

C2

C3

T +

R22 0

0 R33

)−1

C2

C3

Pk+1|k

(3.24)

The mathematical analysis for the other two cases is quite similar. For an arbitrary case

of single observation loss, the update step can be generalized as:

x̂k+1|k+1 = x̂k+1|k + Pk+1|k

Cj
Cl

T (

Cj
Cl

Pk+1|k

Cj
Cl

T +

Rjj 0

0 Rll

)−1(

yj,k
yl,k

+

Cj
Cl

 x̂k+1|k)

Pk+1|k+1 = Pk+1|k − Pk+1|k

Cj
Cl

T (

Cj
Cl

Pk+1|k

Cj
Cl

T +

Rjj 0

0 Rll

)−1

Cj
Cl

Pk+1|k

(3.25)

Scenario 4: Two Observation Losses

Similar derivation of the correction step for this scenario can be listed as shown in (3.23),

leading to the update equations below,

x̂k+1|k+1 = x̂k+1|k + Pk+1|kC
T
i (CiPk+1|kC

T
i +Rii)

−1 × (yi,k+1 − Cix̂k+1|k)

Pk+1|k+1 = Pk+1|k − Pk+1|kC
T
i (CiPk+1|kC

T
i +Rii)

−1 × CiPk+1|k

(3.26)

Generalized Formulation for an Arbitrary System

Based on the detailed derivations of this Kalman filter based algorithm for a three-sensor

system, it is possible to extend it to an arbitrary MIMO system with q separate output
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sensors, as described below:

xk+1 = A xk +B uk +$k (3.27a)

y1,k

y2,k

...

yq,k


︸ ︷︷ ︸

yk

=



γ1,kC1

γ2,kC2

...

γq,kCq


︸ ︷︷ ︸

C̃k

xk +



γ1,kν1,k + (1− γ1,k)ν
′
1,k

γ2,kν2,k + (1− γ2,k)ν
′
2,k

...

γq,kνq,k + (1− γq,k)ν ′q,k


︸ ︷︷ ︸

ν̃k

(3.27b)

where ν̃k ∼ N (0, R̃) with R̃ = diag{R̃ii = γi,kRii + (1 − γi,k)R
′
ii, i = 1, 2, · · · , q}. The

hypothesis of (A,B) being completely stabilizable and (A,C) completely detectable still

holds for this system. It can be expected that there are 2q possible scenarios for observation

loss. Here, we define a notation of X−Z1,Z2
as a sub-matrix of X ∈ Rq1×q2 by deleting the rows

of X as indexed in Z1 and the columns indexed in Z2, respectively. For an arbitrary sequence

of measurements defined by Z = {n1, n2, · · · } or {φ}, where n1, n2, · · · ∈ {1, 2, · · · , q}, the

generalized formulation for the update equations is expressed as below,

x̂k+1|k+1 = x̂k+1|k + Pk+1|k{C−Z,φ}
T ({C−Z,φ}Pk+1|k{C−Z,φ}

T

+R−Z,Z)−1({yk+1}−Z,φ − {C
−
Z,φ}x̂k+1|k)

Pk+1|k+1 = Pk+1|k − Pk+1|k{C−Z,φ}
T ({C−Z,φ}Pk+1|k{C−Z,φ}

T

+R−Z,Z)−1{C−Z,φ}Pk+1|k

(3.28)

Numerical Examples

To illustrate the KF-based algorithm with intermittent measurements, two simulation stud-

ies using hypothetical participant data are presented in this section. The first example is

based on the reformulated energy balance model which has been used in the HMZ study

for maternal weight gain prediction. This example aims to test how the algorithm works

for gestational weight gain interventions. To demonstrate the potential of the algorithm

to be used for general weight interventions, the energy balance model which is designed in
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Thomas et al. (2009) to predict weight change for general populations is used for purpose

of broader applications. The algorithm shows good performance in both simulation studies,

and can be potentially used in actual intervention therapies.

Simulation Based on Maternal Energy Balance Model

Based on the reformulated maternal energy balance per (2.16), a system for algorithm im-

plementation can be set up. Due to the inherent observability problem of the model as

illustrated in previous section, we cannot test for the three-state estimation unless unbi-

ased EI measurement is available. Instead, a two-state estimation case is presented in a

hypothetical context similar to the HMZ intervention. For a hypothetical participant with

pre-pregnancy weight of 75 kg and BMI of 21.5 kg/m2, the gains according to Table 2.3

are K1 = 1.92 × 10−4, K2 = −2.15 × 10−4. It is assumed that the measurement of W

and PA is obtained daily but corrupted with noise; since RMR is relatively stable, it can

be measured less frequently as a weekly variable using a portable sensing device (Breezing,

Xian et al. (2015)). As a result of the relatively high accuracy of Breezing device, RMR can

be defined as a noise-free input with zero-order hold performed between weekly measures.

To estimate the underreporting of EI from the noise-corrupted measures of W and PA,

a two-state system can be configured as: x = [EI PA]T , y = [GWG PA]T , u = [RMR].

The corresponding system matrices for the state space representation is A =

[
1 0

0 1

]
; B = 0;

C =

[
K1 K2

0 1

]
; D =

[
K2

0

]
. (A,B) and (A,C) are checked to confirm stabilizability and

detectability respectively in case of no observation losses.

A simulation example based on the proposed system is presented in Fig. 3.9 with the

hypothetical data to test the performance of the algorithm. Here, the noise covariances

is predetermined as Q =

[
10000 0

0 10000

]
, R =

[
0.01 0

0 10000

]
. The arrival rates of the output

measurements are defined with the joint probability function as shown in Table 3.1, where

γ1 and γ2 indicate the arrivals of the measurements for GWG and PA, respectively. It can

be seen from the results that the state estimation of PA and EI follows the true values
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closely despite the presence of noise and missing data with the developed KF algorithm.

Compared with the noise corrupted measurement of GWG, an accurate prediction of weight

gain is obtained from the algorithm as well. Underreporting of EI can be well identified

from the estimation results.

Table 3.1: The joint probabilities of the measurement loss for a hypothetical participant
used for the illustration based on maternal energy balance model. γ1 and γ2 indicate the
arrivals of the measurements for ∆W and PA, respectively.

Scenarios γ2 = 0 γ2 = 1

γ1 = 0 0.1 0.05

γ1 = 1 0.05 0.8

To extend the evaluation of the effectiveness of this method in real applications, inter-

vention participant data with under-reported EI measures from the HMZ study is used. A

real-time estimation of EI can be performed despite the presence of missing data. The re-

sults for the four representative participants used in back-calculation are shown in Fig.3.10

and 3.11, where the prediction bias is demonstrated with root mean square error (RMSE).

For these participants, Q = [100000] and R = [0.5] are used for obtaining the presented

results. It can be seen from the results that state estimation of EI generally keeps above the

self-reported EI despite the presence of noise and missing data. When missingness in the

measured output GWGmeas occurs repeatedly, bias in EIest is inevitably observed, since it

is propagated from the previous measurement available. Compared with the noise corrupted

GWGmeas, an accurate prediction of GWG is obtained from the algorithm as well. Under-

reporting of EI can be well identified from the estimation results. The mean±SD of the EI

estimate for Phase II participant A is 2721 ± 911 kcal; the mean±SD for participant B is

2676 ± 997 kcal. For Phase I participants, the mean±SD of the EI estimate for participant

C is 2701 ± 711 kcal; the mean±SD for participant D is 3126 ± 797 kcal.The estimated EI

is comparable to back-calculation approach while pre-processing of data to remove missing-

ness or reduce noise is not required. A comparison between the back-calculation method

and the Kalman filtering approach based on the estimation results for the two representa-
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Figure 3.9: Performance of the KF algorithm illustrated using a hypothetical participant
with correlated partial measurement losses during a gestational weight control intervention.
RMSE stands for the root mean square error.

tive participants is tabulated in Table 3.2, where it can be seen that the back-tracked EI

is similar for the two approaches.

In addition, this approach can be applied to the alternative system models proposed in

previous section if necessary. An example of the two state estimation with the data from

Participant B is presented below where the PA measurements are considered to be noise-

corrupted and need to be estimated in addition to the EI. The results are shown in Fig. 3.12

where the selected covariance matrices are Q =

100000 0

0 100000

, R =

0.5 0

0 1000000

.

The mean ±SD of the EI estimate for participant B is 2323 ± 434 kcal, while the PA
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Figure 3.10: Results of estimating the EI using Kalman filtering for two HMZ Phase
II participants. The results indicate that underreporting of EI can be identified for most
of the time; however, estimates accuracy is compromised when the weight measurement
is missing for multiple consecutive days. The prediction bias is indicated with root mean
square error (RMSE). Vertical black lines in the GWG plot indicate the days of missing
GWG measurements.
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Figure 3.11: The performance of the KF algorithm with intermittent measurements for
estimating EI evaluated using two intervention participants from the Phase I Study of the
HMZ.
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Table 3.2: Estimation results of EI for Participant A and B with back-calculation method
and Kalman filtering approach.

EIest (kcal)

Phase Participant Back-calculation Kalman filtering

I
A 2677±607 2721±911

B 2611±443 2676±997

II
C 2787±617 2701±711

D 3353±1025 3126±797

estimates are 165.5 ± 55 kcal. It has to be noted that for more than one state estima-

tion, convergence is a common issue if multiple variables are missing at the same time

continuously, leading to instability. Since there is no missing data in PA measurements for

this participant, instability issue is not a concern here. Otherwise, data imputation such

as linear interpolation can be employed to mitigate missingness. Similar analysis can be

extended to three state estimation cases, for example, including both PA and RMR as

states to be estimated. However, one needs to be careful about system observability when

applying Kalman filtering in this case.

Simulation Based on Energy Balance Model For General Population

Another simulation study to illustrate the KF-based algorithm with hypothetical data is

presented based on an energy balance model for a general population. The energy balance

model is based on the work in Thomas et al. (2009), and is designed to predict weight

change for a general population. We reformulate the model into the form as following:

∆Wk = K1EIk +K2PAk +K2RMRk (3.29)

where ∆W is the body weight change; EI is the energy intake; PA is the physical activity;

RMR is the resting metabolic rate; K1 and K2 are the system gain parameters, the values

of which can vary by gender and other factors. Here, all participants are assumed to be
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Figure 3.12: KF performance for Participant B from Phase II study for two-state esti-
mation. In this case, the estimation of the EI is implemented simultaneously with noise
filtering for the PA measurements. Vertical black lines in the GWG plot indicate the days
of missing GWG measurements. RMSE stands for root mean square error.

females, leading to K1 = 1.67× 10−4 and K2 = −1.8× 10−4. The derivation for the values

of the two gain parameters is similar as in Section 2.4 in Chapter 2, but applied to the

general female population. The details of the derivation are elaborated below.

The main differential equation for the two-compartment energy balance model from

Thomas et al. (2009) is expressed as

λFFM pFFM
dFFM(t)

dt
+ λFM

dFM(t)

dt
= EI(t)− EE(t) (3.30)

where EE is the energy expenditure; FFM and FM represent the fat free mass and fat

mass, respectively; these two body mass compositions have their respective energy densities

of λFFM = 955.384 kcals/kg and λFM = 7165 kcals/kg; pFFM is the proportion of FFM(t)

being muscle tissue available for energy reserve, ranging from 0.3 to 0.5. Here, we pick the

value of pFFM as 0.4. A linear approximation of the relationship between total body weight

(W ) and FM was given in Thomas et al. (2009), where W = α FM + β with α = 1.32 for
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female. Combining this relationship with W = FFM + FM and substituting into (3.30)

gives an expression of the model with respect to W alone, as shown below:

K
dW (t)

dt
= EI(t) + EE(t) (3.31)

where K = λFM+λFFM pFFM (α−1)
α . We consider EE comprised of three major components:

physical activity (PA), resting metabolic rate (RMR), and thermic effect of food (TEF ),

with TEF = δEI, δ = 0.08. Then EE can be represented as EE = PA + RMR + δ EI,

if combined with the original energy balance model per (3.31), leading to the reformulated

model as:

dW (t)

dt
= K1EI(t) +K2PA(t) +K2RMR(t) (3.32)

where K1 = 1.67 × 10−4 and K2 = −1.8 × 10−4. Discretizing (3.32) gives the equation in

(3.29). Note that the non-volitional physical activity in the original energy balance model

is neglected here for simplicity.

With this model, a Kalman filtering problem with correlated partial measurement losses

is formulated for an intervention designed for a general female population. In this hypothet-

ical intervention, all the measurements are assumed to be self-reported or self-monitored.

For the measurement of ∆W , it is assumed that the participants weigh themselves daily

using smart digital scales. The measurement of EI is obtained daily from self-reported

questionnaires: Automated Self-Administered 24-Hour Dietary Recall (ASA-24), where EI

underreporting is present. PA is measured daily with a wrist-worn accelerometer (Jawbone).

RMR is measured daily with an affordable device subject to significant noise. Compared

to other variables, PA measurement is more accurate and can be used as a noise-free input.

This can accommodate a situation where the measurement noise in PA can be neglected,

while the noise and data missingness in RMR measurement is more significant. With these

assumptions, W and RMR are set as system outputs while PA as the noise-free input;

EI and RMR are defined as the states to be estimated. For this case, the state space

representation of the system can be formulated with A =

[
1 0

0 1

]
, B = 0, C =

[
K1 K2

0 1

]
and
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D =

[
K2

0

]
.

To test the algorithm on a hypothetical participant with frequent measurement losses,

it is assumed that the output measurements for this participant are missing for one fifth of

the intervention (80% availability only); Correlation exists in the loss of data as shown by

the pre-defined arrival rates of the two output measurements (Table 3.3). The steps for the

KF-based algorithm are summarized as below:

1. Initialize: Set x̂(0|0) = [EI0 RMR0]T , P (0|0) = I. EI0 and RMR0 are baseline

measurements.

2. Predict: The prediction stage is independent of the update stage and can be ex-

pressed as:

x̂k+1|k = Ax̂k|k; (3.33)

Pk+1|k = APk|kA
′ +Q; (3.34)

3. Update: The model estimates from ”Predict” step is corrected base on measure-

ments:

x̂k+1|k+1 = x̂k+1|k + Pk+1|k{C−Z,φ}
T × ({C−Z,φ}Pk+1|k{C−Z,φ}

T +R−Z,Z)−1

({yk+1}−Z,φ − {C
−
Z,φ}x̂k+1|k)

Pk+1|k+1 = Pk+1|k − Pk+1|k{C−Z,φ}
T ({C−Z,φ}Pk+1|k × {C−Z,φ}

T +R−Z,Z)−1{C−Z,φ}Pk+1|k

(3.35)

With pre-determined noise covariances as Q =

[
10000 0

0 10000

]
, R =

[
0.01 0

0 10000

]
, the per-

formance of the algorithm for this hypothetical participant is presented in Fig. 3.13, where

good estimates of EI and RMR are provided based on data with noise and missingness.

Underreporting of EI can be calculate from the estimation as well. The algorithm also

produces good weight gain predictions compared with the noise corrupted measurements.

Note that the high arrival rates are required for the estimation error to remain bounded,
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which is illustrated using the root mean square error (RMSE) for EI estimates as shown by

the bottom plot in Fig. 3.13. With a low arrival rate, the boundedness of the error cannot

be guaranteed, resulting in the estimation error to be divergent (shown in Fig. 3.14).

Table 3.3: The joint probabilities of the measurement loss for a hypothetical participant
used for the illustration based on the energy balance model for general populations. γ1 and
γ2 indicate the arrivals of the measurements for ∆W and RMR, respectively.

Scenarios γ2 = 0 γ2 = 1

γ1 = 0 0.05 0.05

γ1 = 1 0.1 0.8

3.3.2 Extended Kalman Filtering With Partial Measurement Losses

Algorithm

In case of a non-linear system, the extended Kalman filter needs to be considered. Here,

we define a MIMO non-linear discrete-time system with q output sensors as described with

the following equations:

xk+1 = f(xk, uk) +$k (3.36a)

y1,k

y2,k

...

yq,k


︸ ︷︷ ︸

yk

=



g1(xk, uk)

g2(xk, uk)

...

gq(xk, uk)


︸ ︷︷ ︸

g(xk,uk)

+



ν1,k

ν2,k

...

νq,k


︸ ︷︷ ︸

νk

(3.36b)

where the deterministic nonlinear functions f(xk, uk) : Rn,Rp → Rn, and h(xk, uk) :

Rn,Rp → Rq are continuously differentiable at every xk and uk. Linearizing the model

in (3.36) gives Ak = ∂f(xk,uk)
∂xk

|x̂k−1|k−1,uk , and Ck = ∂g(xk,uk)
∂xk

|x̂k|k−1,uk . For this system,

(Ak, Q) is completely stabilizable and (Ak, Ck) completely detectable. The prediction step
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Figure 3.13: Performance of the KF algorithm illustrated using the hypothetical data
with correlated partial measurement losses during a general weight control intervention.
The arrival rates of the output measurements are high enough to ensure the boundness of
the estimation error. RMSE stands for the root mean square error.

is the same as in the classical EKF:

x̂k+1|k = f(x̂k|k, uk)

Pk+1|k = AkP̂k|kA
T
k +Q

(3.37)

There are 2q possible scenarios for observation losses. For an arbitrary sequence of

measurement losses defined by Z = {n1, n2, · · · } or {φ}, where n1, n2, · · · ∈ {1, 2, · · · , q},

the generalized formulation for the EKF updates can be derived and it is described as
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Figure 3.14: Simulation results with low arrival rates are shown to be divergent and stable.

follows,

x̂k+1|k+1 = x̂k+1|k + Pk+1|k{C−kZ,φ}
T ({C−kZ,φ}Pk+1|k{C−kZ,φ}

T

+R−Z,Z)−1({yk+1}−kZ,φ − {C
−
kZ,φ
}x̂k+1|k)

Pk+1|k+1 = Pk+1|k − Pk+1|k{C−kZ,φ}
T ({C−kZ,φ}Pk+1|k{C−kZ,φ}

T

+R−Z,Z)−1{C−kZ,φ}Pk+1|k

(3.38)

This is the same as (3.28) except for matrix C replaced with Ck. With this generalized

formulation, state estimation based on an arbitrary non-linear system is enabled in the

presence of intermittent measurements.

Numerical Example

To illustrate the performance of the EKF-based algorithm, an example based on the re-

formulated maternal energy balance model per (2.16) is presented. The reformulation of

the model and the derivation for the system gain coefficients K1 and K2 has been shown

in Chapter 2 where K1 and K2 are categorized by maternal BMI and weight. Here, we

assume a participant with pre-pregnancy weight of 95 kg and BMI of 31 kg/m2. For this

participant, the gains according to Table 2.3 are K1 = 2.119 × 10−4, K2 = −2.35 × 10−4.

To generate hypothetical data, it is assumed that physical activity and maternal weight are

self-monitored, and energy intake measurement is unbiased. Considering the cost and par-
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ticipant burdens for measuring RMR, a quadratic regression formula proposed in Thomas

(2009) to dynamically model RMR as a function of W is used throughout the intervention.

The empirical function is written as:

RMRk = aW 2
k + bWk + c (3.39)

where a = 0.1976; b = −13.424; c = 1457.6. This quadratic function fits the data from the

study in Butte et al. (2004) and it brings non-linearities into the energy balance model if

combined with (3.39). Note that (3.39) uses total weight W (k) instead of weight change

∆W (k). Defining ∆W (k) = W (k) − W (k − 1), the nonlinear model by combining the

discretized maternal EB in the form as shown in (3.29) with the equation of RMR in (3.39)

is described as below,

xk+1 =

f1(xk, uk)

f2(xk, uk)

+$k (3.40a)

yk = xk + νk (3.40b)

where x = [W EI]T ; y = x; u = [PA+ c];

f1(xk, uk) = K2ax
2
1,k + (K2b+ 1)x1,k +K1x2,k +K2u

f2(xk, uk) = x2,k (3.41)

After the linearization of the model, the algorithm specified in Section 3.3.2 can be

applied. Baseline weight and energy intake are used for initialization. Simulation results

are presented in Fig. 3.15 to test the performance of the algorithm, where Q =

[
0.1 0

0 10000

]
,

R =

[
0.1 0

0 10000

]
. It can be seen that given the probability of arrival for EI is 0.5, the state

estimation of EI keeps tracking the true values closely despite the presence of noise and

measurement loss with the EKF-based algorithm. Note that the estimation error remains

bounded for the high arrival rate as shown in Fig. 3.15.
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Figure 3.15: Performance of the EKF-based algorithm illustrated using a hypothetical
participant in a pregnancy intervention.

3.4 Summary of Proposed Estimation Approaches

In this chapter, energy intake is estimated with a back-calculation method, followed by

a Kalman filtering approach which can provide real-time estimation while addressing the

problem of measurement noise and data missingness simultaneously. From the literature

and HMZ pilot data, it has been clearly shown that misreporting is commonly observed

in self-reported measures, especially significant in self-reported energy intake. To better

characterize reporting accuracy for individual participant, we developed two model-based

approaches originating from state estimation techniques to estimate the actual energy intake
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based on measured W , PA and estimated RMR. Methods were demonstrated with both

hypothetical participants and actual intervention participants from the Phase I and II study

to validate their effectiveness. In this section, a summary of the advantages and disadvan-

tages of these two methods are provided for the purpose of comparison; some limitations in

our modeling and estimation work are also listed for the guidance of future applications.

The first approach of algebraic back-calculating EI from the EB model is the easiest

to implement and understand compared to the other approaches, and may be favored by

users seeking low computational complexity. With this method, intensive EI estimates can

be generated without requiring any EI measurement; confidence intervals can be computed

from standard error propagation methods or Monte Carlo simulations. However, it requires

a priori data smoothing and imputation or interpolation approaches to address data miss-

ingness. Specifically, due to the intrinsic property of this approach, the estimation with

this method is sensitive to the noise in weight measurements; thus, pre-processing of mea-

sured weight data with techniques such as moving average filter is necessary to reduce the

variation in the estimates. It has been observed that the average of the estimates is not af-

fected by the selected moving average window, while the standard deviation is significantly

affected, which produces an adjustable parameter for this method.

The second category of approaches based on Kalman filtering enables real-time estima-

tion of EI in the absence/presence of missing data, without demanding a priori smoothing.

The time-varying Kalman filter gains can accommodate missing data in the output, giv-

ing more flexibility than the classical Kalman filtering method. These Kalman filter based

estimates can be interpreted as a refined way of back-calculating EI, which improves the

model-predicted estimates by filtering out the noise in the intermittent weight measure-

ments; confidence intervals can be calculated from the covariance matrix. It must be noted

that the estimation results will depend on the values of the covariance parameters, Q and

R, which may be viewed as adjustable parameters. In this work, the conventional approach

for specifying Q and R is used for simplicity. However, algorithms that can adaptively
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adjust Q and R may be used to improve filtering performance; such methods have been

explored in Akhlaghi et al. (2017). Alternatively, a time-varying Kalman filter that includes

an auxiliary state estimator (so-called double Kalman filtering) is also a possible option to

adjust noise covariance based on the change in the system dynamics (Johansen and Fossen,

2016). Yet, the performance of these algorithms under intermittent measurements remains

unclear and needs to be examined; this remains a topic for future research that is worth

further exploration.

To enable the use of any of these estimation methods, linear interpolation of weight

and physical activity measurements is required to replace any missing data; for the missing

data beyond the available data points for measured physical activity, mean replacement is

performed. It should be noted that the data imputation might introduce errors into the

estimation.

It also should be pointed out that, the simulation and the results of energy intake estima-

tion demonstrated in this chapter are based on the assumption that the theoretical energy

balance model is built accurately with reliable model parameters. The system gains of the

energy balance model are categorized by maternal pre-pregnancy BMI, which takes into

account the distinction between underweight, normal-weight, overweight or obese pregnant

populations; nevertheless, it still lacks adaption to individual differences. In addition, both

methods rely on the assumption that the measured physical activity and estimated resting

metabolic rate are without noise or bias in order to realize the estimation of energy intake.

But in real-life settings, the measurement or empirical estimation of physical activity and

resting metabolic rate are inevitably subject to noise and bias. These all form the limita-

tions of the use of the model. Therefore, when applying the proposed estimation methods

in actual intervention, researchers should be aware of these assumptions and be careful in

the analysis of the estimates.

Another issue that can be examined in the future is the stability analysis. In the current

demonstration of the algorithms, we only use an example to show that low arrival rates of
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the output measurement can result in divergence in the estimates (Fig. 3.14). However, sys-

tematic stability analysis is not performed yet to prove our observations. Hence, it can be

proposed as one of the future research directions for further examination. In addition, ap-

proaches that can deal with the observability problem resulted from ill-conditioned systems

is also an interesting topic for future work.
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Chapter 4

CORRECTION FOR UNDERREPORTING THROUGH SEMI-PHYSICAL

IDENTIFICATION

As highlighted in previous chapters, energy intake underreporting is a widespread prob-

lem for interventions relying on self-reported measures of EI; this is reflected in our ex-

perience from the Healthy Mom Zone intervention. To address this issue in the context

of a gestational weight control intervention, a series of estimation approaches that address

measurement noise and measurement losses were developed in Chapter 3. These include

back-calculating energy intake from the reformulated energy balance model and a variety of

Kalman filtering-based approaches to recursively estimate energy intake from interpolated

or intermittent measurements. Evaluated with hypothetical data or actual participant data

obtained through the HMZ intervention study, these approaches have demonstrated the

potential to promote the success of weight control. We have analyzed the pros and cons of

the presented approaches to provide insights for users in future applications.

It is important to note that the back-calculation method and those Kalman filtering-

based estimates are capable of providing estimates of EI only when the measures/estimation

of W , PA and RMR are available. This means that, repeated data collection of W and

PA is always necessary for these estimation approaches to be implemented. In this chapter,

we aim to develop a method that can systematically characterize the extent of energy

intake underreporting. The idea behind this method is to enable the correction of future

self-reported EI that contains potential misreporting, but without the need to require for

intensive data collection of W and energy expenditure terms (PA and/or RMR). Such

goal can be realized by building models that can describe the quantitative relationships

between the actual energy intake (EIactual) and the EI self-reports (ẼIrept, or other input

variables if absolutely necessary, such as participant weight (Wactual)). When a self-report
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is available, the model is able to predict EIactual. Fig. 4.1 depicts such relationships for

modeling purposes, where EIactual is a function of ẼIrept and Wactual, denoted as

EIactual = f(ẼIrept,Wactual) (4.1)

Here the functional relationship f can be structured differently at the users’ request. For

simplicity, we only focus on linear or quadratic relationships in this work. However, f is

allowed to be time-invariant (fixed) or dynamically changing with respect to time due to

the characteristics of the data. To obtain a time-invariant f , a global modeling approach

based on semi-physical identification principles (linear regression from past collected data)

is developed to parametrize the extent of underreporting for future self-reports adjustment.

As a counterpoint for this global estimation approach, a local modeling technique based

on the concept of Model-on-Demand is applied to identify time-varying parameters for the

correction models; as will be demonstrated, comparable performance can be achieved with

less engineering effort and a priori information required. Cross-validation procedures are

applied to test the performance of both approaches, and the resulting performance is re-

lied on for selecting parsimonious yet accurate models with good predictive ability. The

established model is useful to further understand the percentage of EI that is systemati-

cally under-reported, enabling health providers to deliver informative health guidance for

participants.

This chapter is organized as below: a global modeling approach is developed in Section 4.1,

where the results and model selection using cross-validation is presented and followed by a

prediction error analysis. In Section 4.2, the Model-on-Demand approach to estimating the

energy intake from the self-reports is developed and compared with the global method. Sec-

tion 4.3 gives a summary of our conclusions. As will be shown, the proposed approaches for

estimating energy intake are helpful for accurate intervention assessment, and also promote
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Figure 4.1: Block diagram of the regression model used for the development of the semi-
physical identification approach. nW , nEIrept and nEIest indicate the noise in the measured
W , self-reported EI, and estimated EI, respectively.

the success of weight control.

4.1 Semi-Physical Estimation

In this section, a semi-physical identification approach based on linear regression from

past collected data is developed to obtain the functional relationship f as indicated in

Fig. 4.1. Since EI self-reports or weight measurements are usually corrupted by noise, the

data used as inputs are noise-corrupted signals: EIrept and measured weight (Wmeas). Ac-

curately estimated EI (EIest) from either back-calculation or Kalman filtering can be used

to approximate EIactual and to serve as regression outputs. Once the model is identified, it

can be used to to adjust future self-reports. The effectiveness of this approach is assessed

with participant data evaluated on multiple model structures, demonstrating the ability of

correcting biased EIrept in the future.

4.1.1 Method Description

A variety of model structures can be proposed to predict the actual EI from self-reported

EI, that is, to correct the self-reported EI from misreporting. For example, a linear formula

can be assumed to describe the relationship between EIactual (model output) and ẼIrept
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(model input); this follows according to (4.2).

EIactual(k) = α1 ẼIrept(k) + ξ (4.2)

For clarification, ẼIrept represents the nominal values of self-reported EI without noise

corruption. This linear relationship describes the deterministic portion of underreporting,

which tends to be systematically observed in one’s behaviors. For example, an individual

may mistake a 320 kcal bagel to be 250 kcal, or repeatedly forgets to report calories from

snacks. This consistent behavioral pattern is the target that the proposed relationship tries

to capture and model. A challenging aspect of underreporting is associated with possible

random variations in the EI self-reports. The effect of such variations can be treated as an

input noise signal (nEIrept) added to ẼIrept:

EIrept(k) = ẼIrept(k) + nEIrept(k) (4.3)

where EIrept is the reported EI from the smartphone app; nEIrept ∼ N (0, σ2
nEIrept

) and

σ2
nEIrept

is the variance of the white noise nEIrept in self-reports. To form the output of the

regression problem, EIactual(k) can be approximated from the model-based back-calculation

or Kalman filtering approaches described in Chapter 3. For simplicity, EIactual(k) values

computed directly from the EB model in (2.18) are used here, leading to,

EIactual(k) ∼=
(GWG(k + 1)−K2(PA(k) +RMR(k)))

K1
(4.4)

In the HMZ intervention study, all measurements/estimates are subject to noise, but the

noise in GWGmeas (nGWG) is relatively more predominant than in other signals, considering

daily weight changes that result from the individuals’ varying hydration status. Hence,

nGWG cannot be neglected and its presence corrupts the model-based estimates of EIactual,
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leading to the expression of EIest as,

EIest(k) =
GWGmeas(k + 1)−K2(PA(k) +RMR(k))

K1

=
GWG(k + 1)−K2(PA(k) +RMR(k))

K1
+
nGWG(k + 1)

K1

= EIactual(k) + nGWG(k + 1)/K1

= EIactual(k) + nEIest

(4.5)

where nGWG ∼ N (0, σ2
nGWG

). Since the magnitude of the noise term nGWG(k)
K1

tends to be

quite large compared to EIest, smoothing techniques can be used to reduce variability in

the estimation.

With the constructed input and output of the correction model, the model parameters

α1 and ξ in (4.2) can be estimated by solving a regression problem formulated based on

measurements as shown below,

Z = R θ

EIest(k1)

EIest(k2)

...

EIest(kN )


=



EIrept(k1) 1

EIrept(k2) 1

...
...

EIrept(kN ) 1


α1

ξ

 (4.6)

where Z ∈ RN is the output vector based on EIest obtained from (4.5); R ∈ RN×2 is the

regressor that stores input measurements; θ ∈ R2 is the parameter vector that needs to be

estimated; k1, k2,..., kN are the intermittent days at which the involved measurements are

taken. Since EIrept is not obtained daily (in order to minimize participant burden during

intervention), the time index of the measurements involved in the regressor is not necessarily

consecutive in terms of gestational age (days).

To identify the parameter vector θ, a least squares cost function is considered:

J(k) = min
θ̂

{
1

2

[
Z −Rθ̂

]2
}

(4.7)
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Table 4.1: Summary of the proposed structures to correct self-reported EI. Each structure
is characterized by the number of model parameters and the number of pieces of required
information (longitudinal measurements of EB variables). The estimator corresponding to
each regression model is a subset of [α1, ξ, α2, β].

Model Structure Para # Info #

A EIest(k) = ξ 1 0

B EIest(k) = α1 EIrept(k) 1 1

C EIest(k) = ξ + α1 EIrept(k) 2 1

D EIest(k) = α1 EIrept(k) + α2 EIrept(k)2 2 1

E EIest(k) = ξ + α1 EIrept(k) + α2 EIrept(k)2 3 1

F EIest(k) = ξ + α1 EIrept(k) + β Wmeas(k) 3 2

G EIest(k) = ξ + α1 EIrept(k) + α2 EIrept(k)2 + β Wmeas(k) 4 2

Identification of this model will give the estimates of θ, from which α1 and ξ, the

coefficients used to model the under-reported EI in (4.2) can be calculated. This allows us

to estimate the actual EI from the EIrept as shown below,

ÊIest(k) = α̂1 EIrept(k) + ξ̂ (4.8)

where “hat” denotes the estimate. Besides the linear structure as shown in (4.2), other

structures that directly relates the EIrept with the output of regression model, EIest, can

be considered. These structures may involve different number of parameters or different

polynomial orders. Table 4.1 summarizes all the evaluated structures in this paper for

this approach. For each model structure, the regressor R and the estimator θ should

change accordingly. As seen from this table, nonlinear aspects are incorporated by including

quadratic terms with respect to EIrept, while computational complexity is not elevated by

maintaining a linear regression solution. It might be noted that, structure F and G use

maternal weight as one of the system inputs. During pregnancy, intervention compliance

might change as gestation advances to a later stage. Hence, a gestational time dependency

or maternal weight dependency might be a potential factor to improve the prediction of

women’s underreporting behaviors.
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Models A to G in Table 4.1 involve increasing number of model parameters, as well as

requiring additional pieces of information relevant to the EB model. For example, Model G

contains four parameters to be identified, and once estimated, participant weight measure-

ment is required in addition to the EIrept. In comparison, Model A, with one parameter to

be identified, needs no measurements. The comparison of how different structures perform

in terms of their predictive ability will be discussed in the next section.
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Figure 4.2: Results of semi-physical identification approach for two HMZ participants. (a)
Estimation results based on Model C for an intervention Participant A on validation data set
only. (b) Results for a control Participant B based on Model C (residual demonstrating non-
stationarity). (c) Results based on Model F for the control Participant B (non-stationary
trend in the residuals is successfully removed).
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4.1.2 Results From Cross-Validation

In this section, the semi-physical approach is evaluated against participant data from

the HMZ intervention study, and cross-validation techniques are used to test their perfor-

mance. Cross-validation is a common test procedure in system identification to examine

how accurately this predictive model performs on an independent data set. Different pro-

cedures for assigning data to estimation and validation sets can be used. Considering the

characteristics of the data collected during gestation intervention, an interspersed way of

data partitioning is applied by choosing one data point for estimation and every other point

for validation. In this manner, the estimation and validation data sets each occupy half of

the entire data set respectively, but are spread out uniformly over the intervention span.

For each model structure, estimation based on the assigned data set is performed fol-

lowed by the validation on the remaining independent data set. To evaluate the performance

of model prediction, multiple criteria are examined, including comparing the ÊIest and an-

alyzing the residual from regression. Specifically, the mean and SD of ÊIest as well as the

root mean square (RMS) of the residuals are used for analysis. Based on these evaluation

criteria, the best model with a good fit can be selected while maintaining a parsimonious

structure with minimum inputs. Other measures, such as the Akaike Information Theoretic

Criterion (AIC) or Rissanen’s minimum description length (MDL) principle can also be

considered but are not as critical in this case where a cross-validation data set is available.

In Figs. 4.2a and 4.2b, the results of ÊIest calculated for the two representative study

participants are presented based on the model structure C. For Participant A, the residuals

remain random and stationary while an increasing drift in the residuals is observed for

Participant B. This is caused by the substantial increase observed in the regression output

EIest towards late pregnancy due to the increasing rate of maternal weight change. While

the increase in the regression output is observed, the regression input EIrept does not reflect

such trend of increase but remains stationary. This issue is also found among some of the

other participants from the control group, for whom substantial maternal weight gains are
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observed along with a causal substantial increase in their dietary intake. If this is the case,

the relationship between EIrept and EIest cannot be described as linear without introducing

other variables. The literature also provides evidence of the time-varying characteristics of

EI underreporting status across pregnancy: The level of under reporting was higher in late

pregnancy in comparison to early pregnancy Moran et al. (2018). For participants with

such characteristics, a time-dependent input such as gestational age or maternal weight, as

shown in model structures F and G, will improve the estimates significantly. Fig. 4.2c shows

the estimation results for Participant B using Model F, where the non-stationary trend in

the residuals are successfully removed. However, this additional input does not change the

results as much for the participants for whom such discrepancy in the increase of EIest and

EIrept is not observed.

The estimated results for the two participants using different model structures are tab-

ulated in Table 4.2. From analyzing the ÊIest time series and the RMS of the residuals

(on estimation and validation data sets), the best model for each individual participant can

be selected. It should be noted that moderate variation in ÊIest is preferred, as opposed

to stationary/“static” estimates. Among all the examined model structures, Model A is

the most parsimonious but with the most stationary estimates, while Model B gives the

most variable yet least reliable estimates. Therefore, Model C to G are among the best

informative models, with a fair balance between the residual RMS and the number of pa-

rameters. Estimates from Model C and E show similar RMS magnitudes, but Model C only

involves two parameters instead of Model G with three. Hence, Model C is preferred over

E. Similarly, Model F produces comparable RMS as Model G but using less parameters, so

Model F is preferable to G. This analysis concludes that Model C and F are the best two

options for the majority of participants, without overparametrizing the model structures.

Depending on the data characteristics for individual participants, these two models can be

selected one over the other based on whichever minimizes the averaged RMS. It can be

concluded from the results that when there is no substantial increase in the EIest, the 1st
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Table 4.2: Estimation Results for Participants A and B using the global semi-physical
approach for all the proposed model structures (A to G in Table 4.1). RMS represents the
root mean square of the residuals.

Model
Structure

Participant A Participant B

Estimation Validation Estimation Validation

ÊIest RMS ÊIest RMS ÊIest RMS ÊIest RMS

A 2665±3E-12 654 2665±3E-12 675 2671±1E-12 503 2671±1E-12 483

B 2455±699 1008 2257±771 1160 2592±500 648 2628±410 577

C 2665±39 653 2676±43 673 2671±90 495 2677±74 477

D 2594±457 769 2540±536 938 2646±289 549 2680±98 470

E 2665±91 648 2677±69 687 2671±90 495 2677±79 478

F 2665±50 652 2674±50 665 2671±198 463 2674±183 409

G 2665±95 647 2675±74 680 2671±203 460 2678±189 406

order model with two parameters and the 2nd order model with three parameters provide

the best (and comparable) estimation results. When substantial increases in the estimates

are observed due to dramatic gestational weight gain (e.g., Participant B), the dynamics in

the energy intake cannot be fully captured with correction models that are only dependent

on EIrept Augmentation of a time-dependent variable in the models, e.g., gestational age

or weight, will significantly improve the predictive performance as shown in the residual

analysis. It is important to note that the noise (as shown in Fig. 4.1) poses a challenge

for this estimation problem due to the errors-in-variables problem Söderström (2012, 2018).

This issue is part of current research and will be elaborated in the next section.

4.1.3 Prediction Error Analysis For Semi-physical Estimation

Semi-physical identification approach can estimate the extent of systematic underre-

porting and can be used for the prediction and correction of individuals’ underreporting.
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Table 4.3: Estimated parameters and energy intake under different scenarios. Note: %

error is compute by (True Value - Estimated Value)
True Value × 100%.

Scenarios

µ
ẼIrept

2500 kcal 4500 kcal

σ2
nEIrept

σ2
n
ẼIrept

1
9

9
1

1
9

9
1

True Estimated True Estimated True Estimated True Estimated

θ1 (α1) 1.1 0.1 (-90%) 1.1 1.0 (-10%) 1.1 0.1 (-90%) 1.1 1.0 (-10%)

θ2 (ξ) 400 2875 (619%) 400 675 (69%) 400 4854 (1114%) 400 895 (124%)

EI (kcal) 3150±110 3150±35 3150±330 3150±313 5350±110 5350±35 5350±330 5350±313

The method requires EIrept, leading to point-wise estimates available only at the days with

EI self-reports. From the structure of the regression model in Fig. 4.1, it can be seen

that both the input and output signals are corrupted by noise. Traditional system iden-

tification considers only noise in the output, treating the input signals as perfectly known

and noiseless. The model that we are trying to identify here, however, corresponds to an

errors-in-variables (EIV) problem with both uncertain output and input, the noise in the

input being unknown and unneglectable.

This estimation can be further understood with the prediction error analysis in the

frequency domain. For the example of Model C, the prediction error in time domain can

be written as,

epred(t) =
GWGmeas(t)−K2(PA(t) +RMR(t))

K1
− ÊIest(t|t− 1)

=(θ1 − θ̂1)ẼIrept(t) + (θ2 − θ̂2)− θ̂1nEIrept(t) +
nGWG(t)

K1

(4.9)

where the estimated parameters α1 and ξ are represented as θ1 and θ2 for simplicity. From

Parseval’s theorem, the following relationship between the variance of the prediction error

and its power spectrum can be obtained.

lim
N→∞

N∑
i=0

e2
pred(t) =

1

2π

∫ π

−π
Φe(ω)dω (4.10)

Suppose ẼIrept ∼ N (µEIrept , σ
2
n
ẼIrept

) by assuming ẼIrept being a stationary signal com-

posed of a mean (µ
ẼIrept

) and an additive white noise (n
ẼIrept

) with variances σ2
n
ẼIrept

.
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Φe(ω) can then be derived as,

Φe(ω) =|θ1 − θ̂1|2Φ
ẼIrept

(ω) + |θ̂1|2σ2
nEIrept

+ |θ2 − θ̂2|2 + 2Re{(θ1 − θ̂1)(θ2 − θ̂2)∗µ
ẼIrept

}

+
σ2
nGWG

K2
1

=Φ
ẼIrept

(ω)(|θ1 − θ̂1|2 + |θ̂1|2
σ2
nEIrept

Φ
ẼIrept

(ω)
) +

σ2
nGWG

K2
1

+ 2Re{(θ1 − θ̂1)(θ2 − θ̂2)∗µ
ẼIrept

}

+ |θ2 − θ̂2|2

(4.11)

where Φ
ẼIrept

(ω) = µ2
ẼIrept

+σ2
n
ẼIrept

. The detailed derivation for (4.11) is presented below.

Given (4.9), the covariance of the prediction error can be derived as,

Repred =Ē{epred(t)2}

=Ē{((θ1 − θ̂1)ẼIrept(t) + (θ2 − θ̂2)− θ̂1nEIrept(t) +
nGWG(t)

K1
)2}

=Ē{(θ1 − θ̂1)2EI2
rept(t) + 2(θ2 − θ̂2)

nGWG(t)

K1
+ 2(θ1 − θ̂1)(θ2 − θ̂2)ẼIrept(t)

− 2θ̂1(θ1 − θ̂1)ẼIrept(t)nEIrept(t) + (θ2 − θ̂2)2 + 2(θ1 − θ̂1)ẼIrept(t)
nGWG(t)

K1

− 2θ̂1nEIrept(t)
nGWG(t)

K1
− 2θ̂1(θ2 − θ̂2)nEIrept(t) +

n2
GWG(t)

K2
1

+ θ̂2
1n

2
EIrept(t)}

(4.12)

from which the power spectrum analysis of the prediction error can be derived below,

Φe(ω) =|θ1 − θ̂1|2Φ
ẼIrept

(ω) + |θ2 − θ̂2|2 + |θ̂1|2σ2
nEIrept

+
σ2
nGWG

K2
1

+ 2Re{(θ1 − θ̂1)(θ2 − θ̂2)∗µEIrept}+ 2Re{(θ1 − θ̂1)(−θ̂1)∗µ
ẼIrept

µnEIrept}

+ 2Re{(θ1 − θ̂1)µ
ẼIrept

µnGWG/K1}+ 2Re{(θ2 − θ̂2)µnGWG/K1}

+ 2Re{−θ̂1µnEIreptµnGWG/K1}+ 2Re{(θ2 − θ̂2)(−θ̂1)∗µnEIrept}

=|θ1 − θ̂1|2Φ
ẼIrept

(ω) + |θ2 − θ̂2|2 + |θ̂1|2σ2
nEIrept

+ 2Re{(θ1 − θ̂1)(θ2 − θ̂2)∗µ
ẼIrept

}

+
σ2
nGWG

K2
1

(4.13)
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This is the final expression as shown in (4.11) under the assumption that all the signals are

uncorrelated with noise terms being zero mean, and θ1 and θ2 are independently parame-

terized. Note that n
ẼIrept

indicates the variations in the noiseless signal of ẼIrept, while

nEIrept corresponds to the noise and random errors in EIrept. The variance of the prior is

expressed with σ2
n
ẼIrept

and the latter with σ2
nEIrept

.

As shown in (4.11), the estimated parameters are affected by multiple coefficients that

are determined by the mean and variance of the signals involved. In the case of the ẼIrept

signal being zero mean, that is, when µ
ẼIrept

= 0, the expression of Φe(ω) simplifies to,

Φe(ω) =σ2
n
ẼIrept

(ω)(|θ1 − θ̂1|2 + |θ̂1|2
σ2
nEIrept

σ2
n
ẼIrept

) + |θ2 − θ̂2|2 +
σ2
nGWG

K2
1

(4.14)

which shows that the presence of bias in θ1 is influenced by the ratio of
σ2
nEIrept

σ2
n
ẼIrept

, while the

estimates of θ2 should be unbiased. When
σ2
nEIrept

σ2
n
ẼIrept

� 1, the bias in the estimate of θ1 will

be negligible. For the case of ẼIrept with non-zero mean (which corresponds to real life

conditions), bias in the estimation of both parameters can be observed and is affected by the

magnitude of the mean and the variance of the signals involved. Despite knowing the fact

that removing the mean in EIrept can reduce the bias in θ2, the strategy of mean removal

is difficult to implement in real data, because most of the model structures proposed in this

paper contain a constant term, ξ. Removing the mean of ẼIrept results in the removal of

one of the to-be-estimated parameters.

In support of this error analysis, simulations with hypothetical yet representative data

are run under the condition of 107 samples to test against such observations in asymptotic

condition. Stationary ẼIrept signals are generated with mean µ
ẼIrept

and additive white

noise signals n
ẼIrept

with variances of σ2
n
ẼIrept

. Four different scenarios are created by ad-

justing the ratio of
σ2
nEIrept

σ2
n
ẼIrept

and µ
ẼIrept

. Specifically, two representative µ
ẼIrept

are selected

to simulate the real-life conditions: 2500 kcal and 4500 respectively; the ratio of
σ2
nEIrept

σ2
n
ẼIrept

are manipulated to be 1/9 or 9/1 with σ2
n
ẼIrept

to be 100 or 900. The estimated parameters
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under different conditions are tabulated in Tables 4.3.

It is shown from the simulated cases that bias in the estimation of parameter θ1 always

exists, but the extent of the bias can be manipulated by the ratio of
σ2
nEIrept

σ2
n
ẼIrept

. When the

ratio decreases to 1/9, bias in θ1 is negligible. On the other hand, bias in the estimation

of the other parameter θ2 is readily observed and affected by the magnitude of the mean

and the variance of the signals involved, largely dependent on the magnitude of the mean

of ẼIrept. The bias in θ2 decreases with a lower µ
ẼIrept

, while increasing µ
ẼIrept

makes the

bias in θ2 more significant. This is also consistent with the prediction error analysis. Even

though bias can be observed in both estimated parameters θ1 and θ2 regardless of the ratio

of the noise variances, the mean of the estimated EI remains unbiased, indicating that the

ÊIest obtained from this semi-physical approach is reliable. The standard deviation of the

estimates will vary and is dependent on the ratio of the variances, but as long as the ratio

is modest, the variability in the estimates is close to the true signals.

Considering the EIV problem inherent to this system, pursuing approaches developed for

EIV model identification is appealing. Unfortunately, the traditional maximum-likelihood

approach (or a maximum-likelihood approach with Gaussian latent variables) is not effective

for solving the proposed EI correction model, as large errors will result from the estimation

Risuleo (KTH Royal Institute of Technology, Sweden) (2017). The problem lies in that

the relationship between intake and gestational weight gain is modeled as instantaneous,

leading to one effective measurement for each unknown value; for any additional data point,

there is an additional parameter to be estimated. As noted in Söderström (2012, 2018), such

static errors-in-variables models are among the most difficult to solve. Other approaches,

such as Total Least Squares, require the noise variance ratio between the input and output

measurements to be known a priori, or the availability of multiple experiments from the

same participant; these are challenging experimental conditions that are not experienced in

our study.
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4.2 Model-on-Demand Approach

The semi-physical approach described previously was illustrated on a variety of model

structures that are characterized by different inputs or polynomial orders; confidence in-

tervals for the estimates are possible by bootstrapping the residues. The accuracy of this

approach suffers from the intrinsic errors-in-variables problem due to input noise, but a sim-

ulation study showed that when the variance of the input noise is modest, this semi-physical

approach is still accurate and reliable in terms of estimating the EI.

This semi-physical identification approach falls in the category of global parametric

modeling methods, where all the available data points are used for batch estimation, leading

to a single estimator for every operating condition. The model obtained with this global

approach is assumed to be valid over the entire regressor space. Considering the dynamical

changes in both physiological and psychological status during gestation, it may not be

sensible to use a fixed model to describe the maternal energy intake behaviors by averaging

the data collected in different gestational stages. Hence, the usefulness of this approach is

limited.

Alternatively, local modeling techniques such as the Model-on-Demand (MoD) predictor

use only portions of the data, relevant to the region of interest, to determine a model as

needed (Braun et al., 2001). In MoD estimation all observations are stored on a database,

and a local regression is performed using an “on demand” linear or quadratic model to

estimate the system output at each time step. Hence, a model/prediction is obtained

“on demand” and the data used for every iteration is selected independently, making this

estimator capable of coping with nonlinearities presented in the model. This data-centric,

nonlinear estimation method substantially enhances the classical local modeling problem.

Since the MoD technique is data-driven, the user can dedicate less time making decisions

regarding model structure; the requirement, however, is an informative database.
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4.2.1 Method Description

Consider a SISO system with nonlinear ARX structure

y(t) = m(ϕ(t)) + e(t) (4.15)

where m(·) is an unknown nonlinear mapping and e is an error term modelled as i.i.d.

random variables with zero mean. The regressor space ϕ(t) is of the same form as an ARX

model:

ϕ(t) = [y(t− 1), · · · , y(t− na), u(t− nk), · · · , u(t− nb − nk)]T (4.16)

where na, nb and nk denote the number of previous outputs, inputs and delays in the model.

The MoD algorithm is designed to provide an estimate of ŷ(t) based on local neighborhood

of ϕ(t), denoted as ϕ(k). Considering computation complexity and efficiency, a local linear

or quadratic relationship is proposed to approximate m(·) for further optimization. For

example, a local linear structure with respect to estimator β = [β0, β1] can be assumed as

below,

m̂(ϕ(k), β̂) = β̂0 + β̂T1 (ϕ(k)− ϕ(t)) (4.17)

The estimates of β is computed from the following objective function:

β̂ = min
β̂

N∑
k=1

`(ŷ(k)− m̂(ϕ(k), β̂)) W

(
||ϕ(k)− ϕ(t)||M

h

)
where `(·) is the function for computing quadratic norm; ||u||M is a scaled distance function,

defined as ||u||M =
√
uMTu. The bandwidth parameter h is used to control the size of the

local neighborhood and is computed adaptively for each prediction with a localized version

of the Akaike Information Criterion (AIC) method. The selection of the bandwidth reflects

the trade-off between the bias and variance of the estimate errors. W (·) is the kernel

function to assign weights to every data point within the selected neighborhood window.

The weight for each point is determined based on its distance from the operating condition

with the goal of minimizing the point-wise mean square error of the estimate. Specifically,
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a tricube window function is used in lieu of the typical bell-shaped function, to improve

computational tractability (Braun et al., 2001).

In contrast to the global semi-physical identification approach which leads to a fixed esti-

mator from batch estimation, the MoD algorithms re-perform the optimization problem for

each operating condition with newly computed weighting values. These iterations provide

dynamically changing estimators/predictions corresponding to the local data characteris-

tics. In a user-friendly MoD software package 1 , the only user decision required is the choice

of regressor vector parameters na, nb and nk, local model order (linear or quadratic), and

a lower bound on the number of data the bandwidth selector can use (readily determined

by validation in a few iterations). This greatly enhances ease of use and acceptance of the

technique.

From our experience from the global semi-physical approach, the output, y, of the MoD

predictor corresponds to EIactual in the semi-physical model while ŷ corresponds to EIest.

The input to the predictor u can be combinations of the signals EIrept, EI
2
rept, and Wmeas

(per Table 4.1). To construct the regressor, na = 0, nb = 1, and nk = 0.

4.2.2 Estimation Results Compared With Semi-physical Approach

In this section, the MOD approach will be evaluated against the same HMZ participant

data (participant A and B) used for the global method. Similarly, cross-validation tech-

niques with intersperse data partitioning are used to test the performance of the models.

The examined criteria for analyzing the performance of model prediction are the same,

including the mean and standard deviation of ÊIest as well as the computed root mean

square (RMS) of the residuals from regression.

In Fig. 4.3 and 4.4, the results of EIest calculated for the two representative study

participants (A and B) using the MoD approach are presented and compared with the best

model structures, e.g., Model C and F in the global approach. The mean and SD of the

1http://csel.asu.edu/MoDMPCtoolbox
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estimates as well as the RMS of the residuals using MoD approach is tabulated in Table

4.4. The horizontal comparison between the two approaches can be found in Table 4.5 for

cases with different number of inputs and model structures.

As demonstrated in previous section, the residuals for participant B using both Model

C and F in global method remain random and stationary. With an additional input in

Model F, the model prediction does not improve significantly compared with Model C, and

the estimates for both structures are quite static with low variances. Model B gives more

variable estimates with an expense of increasing residuals. On the other hand, the MoD

approach can provide good estimates for this participant with lower residuals and moderate

variances. To be parallel with the semi-physical approach, one input case with the MoD

approach is compared with the one-input structures in Model B and C as shown in Fig. 4.4.

The analysis for participant A is even more interesting. Section 4.1.2 has described an

increasing drift observed in the residuals for this participant when using Model C. This is due

to the significant increase in EIest towards late pregnancy while the model input signals

(self-reports) remaining stationary synchronously. Such observations in maternal weight

gains can lead to a nonlinear relationship between EIrept and EIest. For participants with

such characteristics, a time-dependent input such as gestational age or maternal weight

(as shown in Model Structure F) can improve the estimates significantly. MoD approach

can successfully remove the drift in the residuals by capturing the unmodeled dynamics

without requiring any extra piece of time-dependent information, as seen from Fig. 4.3.

For a parallel comparison, one input case with the MoD approach is compared with the

one-input structure in Model C, while two-input case in MoD is used to compare with

the two-input Model F. Furthermore, Table 4.5 shows that MoD approach can achieve

better prediction by requiring less pieces of information/measurements from participants

by comparing the RMS for each estimator. This advantage from MoD approach can reduce

participant burdens and contribute to the success of future intervention.

In summary, when significant increases in self-reports are observed due to dramatic

106



Table 4.4: Estimation Results for Participants A and B using Model-on-Demand (MoD).

Inputs

Participant A Participant B

Estimation Validation Estimation Validation

ÊIest RMS ÊIest RMS ÊIest RMS ÊIest RMS

[EIrept] 2666±172 642 2696±203 671 2699±144 458 2678±147 404

[EIrept, EI
2
rept] 2648±210 610 2696±246 709 2718±183 447 2747±246 449

[EIrept, Wmeas] 2696±203 671 2659±235 616 2681±211 440 2654±239 389

[EIrept, EI
2
rept]

2625±145 614 2666±156 674 2704±199 436 2704±237 380
Wmeas]

weight gain (e.g., Participant A), the dynamics in the energy intake cannot be fully cap-

tured with correction models that are only dependent on EIrept (which are usually being

stationary signals). Augmentation of a time-dependent variable in the models, e.g., ges-

tational age or weight, will improve the predictive performance as shown in the residual

analysis. The MoD approach, on the other hand, can achieve comparable and even better

prediction performance, while requiring less information of the energy balance system from

participants, as well as involving reduced engineering effort. When there is no significant

increase in EIrept, the MoD approach can still achieve comparable or better estimation re-

sults (in terms of residuals) compared with the best model options in the global approach.

In addition, the MoD estimates are showing more variances than the ones from the global

approach.

Above all, both approaches described here can correct for future participant self-reported

energy intake which contains potential underreporting. The estimated models are useful

in determining the portion of energy intake that is systematically underreported, enabling

health providers to deliver informative health guidance for participants, and allowing energy

balance models to be more accurately used in intervention settings.
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Table 4.5: Comparison of estimation results for the two approaches for Participants A and
B. Note: model structure A of the semi-physical approach is not included in the comparison.

Participant A Participant B

MoD Method Semi-physical Approach MoD Method

Inputs RMS RMS Model Structure RMS RMS Inputs

[EIrept] 671
1160 B 577

404 [EIrept]
673 C 478

[EIrept, EI
2
rept] 709

938 D 470
449 [EIrept, EI

2
rept]

687 E 478

[EIrept, Wmeas] 616 665 F 409 389) [EIrept, Wmeas]

[EIrept, EI
2
rept,

674 680
G

406 380
[EIrept, EI

2
rept,

Wmeas] Wmeas]

4.3 Summary of Proposed Correction Approaches

From past literature and our experience from HMZ, it is evident that misreporting is a

common problem in self-reported measures, and especially significant in self-reported energy

intake. To address this issue, we extended our exploration in the estimation approaches and

developed another category of estimating methods in this chapter, which is based on system

identification principles to correct biased self-reported measurements of EI in the future.

Specifically, efforts have been made to obtain a functional relationship between actual EI

and self-reports, leading to two approaches that both feature the ability to parametrize the

extent of EI underreporting: a global estimation approach and a local non-linear estimator

based on ”Model-on-Demand” concept.

If compared between these two semi-physical methods, they feature different pros and

cons. The identified model from the global semi-physical approach remains fixed over the

entire span of interest. It may be good to use the fixed model to average the dynamics of the

underreporting behaviors, especially in weight control interventions for general populations,
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but the fixed model may not be accurate enough to describe the potentially time-varying

functional relationships between actual EI and self-reports for pregnant women in different

stages during gestation. In addition, the global approach has to require a priori information

to make sensible decisions of model structures. Nevertheless, this method can still generate

moderate estimates with less computational effort.

In contrast, the Model-on-Demand approach can obtain time-varying models that cap-

ture nonlinearities observed in the data, and it can achieve comparable and even better

prediction performance, while requiring less information of the energy balance system from

participants, as well as involving reduced engineering effort. Even though this local method

requires reduced engineering effort from users and can be implemented via user-friendly

software, it still involves higher complexity in the computation. When applying these illus-

trated approaches in various settings, the features of each method need to be considered

and examined carefully for the interests of different applications. As a future research di-

rection, it may be worthwhile to explore the contributions of certain maternal psychological

factors to the underreporting correction models from either approach by using the longi-

tudinal measurements of maternal depression, anxiety, visual perception of body image in

pregnancy as model inputs.

In contrast with the estimation approaches developed in Chapter 3, intensive measure-

ments of the EB variables (W , PA and RMR) may not be necessary for these two methods

once a correction model is estimated. With this being said, less information from partici-

pant measurements is required to realize future estimation. However, unlike the estimation

approaches in Chapter 3, these methods do require self-reported EI, leading to point-wise es-

timates available only at EI measurements. It is also important to note that the input noise

poses a challenge for both estimation methods due to the problem of errors-in-variables, as

shown in Fig. 4.1. Usually, the system identification problems only consider the noise in

the output, treating the input signals as perfectly known and noiseless. The model that we

are trying to identify in this chapter, however, is a model with both uncertain output and
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input, with the noise in the input unknown and unneglectable. The models of this kind is

categorized as the errors-in-variables (EIV) models, which are more complicated to identify

than the models subject to output noise only. It requires additional assumptions on the

noise in the input measurements or the input signal itself in order to be able to identify

this class of models; otherwise, the EIV is intrinsically unidentifiable. The EIV problem has

been a growing interest in recent research and multiple estimation approaches have been

developed with different levels of computation efforts and complicity. Further exploration

on this topic can be interesting for future work.

So far, we have demonstrated a diverse set of approaches for energy intake estimation

that feature varying levels of complexity, novelty, and usefulness. Each approach has pros

and cons, and features advantages over the other approaches based on user requirements

or data characteristics; decisions of which approach to be used need to be made carefully

considering different circumstances. Ultimately, approaches presented in this work have

played (and will continue to play) an important role in Healthy Mom Zone, and related

weight control interventions resulting from this research that require judicious determination

of energy intake.

In the following chapters, the use of the Hybrid Model Predictive Control (HMPC)

schemes based on participant validated models will be demonstrated to show how the in-

dividually tailored intervention strategies developed for the HMZ Study are implemented

and superior to the traditional ”If-Then” rules. Since participant energy intake serves as

one of the tailoring variables that the HMPC algorithm uses to determine the optimized

intervention dosages, the accuracy of the assessments of this element is crucial. As pointed

out in previous contents, substantially biased EI self-reports will deter the purpose of the

controller design. Therefore, the estimation approaches developed in the current and pre-

vious chapters is necessary for the good performance of the closed-loop control system for

interventions. Chapter 5 describes how the participant validated models are obtained, and

Chapter 6 details the HMPC controller design and feedback strategy of the intervention.
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Figure 4.3: Estimate comparison on validation data set with the two approaches for
Participant A (an intervention participant) from HMZ Study. One input case was used for
MoD approach in Figure (a), where Model structure C (also using one input) was used with
the semi-physical approach. Figure (b) compares the two input case with MoD approach
(EIrept and Wmeas) and Model F (two inputs as well) with the semi-physical approach.
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Figure 4.4: Estimate comparison on validation data set with the two approaches for
Participant B (a control participant) from HMZ Study. One input case was used for MoD
approach in both figures, while Model B and C (both using one input) from the semi-physical
approach were used in Figure (a) and (b) respectively.
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Chapter 5

SEMI-PHYSICAL IDENTIFICATION OF PARTICIPANT VALIDATED MODELS

The individually tailored and intensively adaptive intervention approach developed for

the Healthy Mom Zone study considers a closed-loop design that can be achieved with either

IF–THEN decision rules or the Hybrid Model Predictive Control (HMPC). HMPC decision

policies can assign optimized intervention dosages based on real-time measures of participant

weight gain and energy intake. In this way, a customized intervention that can adapt to

individuals’ unique needs can be provided for each participant, and the effectiveness of any

intervention efforts can be maximized.

Considering HMPC being a model-based control algorithm, the accuracy of the mod-

els that HMPC uses for the prediction of participant behaviors and behavioral outcomes

(maternal weight gain) is crucial in the optimization of the intervention dosages. As shown

in Fig. 1.2, output of the HMPC controller is the magnitude and frequency of intervention

components determined based on participant responses in real-time. How the different inter-

vention components dictated by HMPC eventually affect participant behaviors/behavioral

outcomes need to be accurately described in order for a good performance of the HMPC

controller. In Chapter 2, the development of a behavioral model based on the Theory of

Planned Behavior (TPB), an energy balance model for maternal weight prediction and a

model for intervention delivery dynamics have been presented. Once integrated, these three

models comprise a comprehensive model that can be used for the implementation of the

HMPC. The first-principles energy balance model has been well-developed with categorical

system gains that are accurate enough to predict maternal weight gain for women with

different levels of BMI/weights. However, the TPB model and the intervention delivery

dynamics are only provided with model structures, leaving the model parameters undeter-

mined. In the HMZ study, measurements of the variables in the TPB models have been

113



collected for individual participants, hence can be used to obtain and individualize the

model parameters for HMPC implementation.

The goal of the work presented in this chapter is to obtain participant-validated models

that can be used for control purposes, as will be shown in Chapter 6. Semi-physical iden-

tification techniques will be used to estimate the model parameters involved in the TPB

model. Results based on the small data sets collected in the feasibility study in Phase I

will be used to inform Phase II study. However, clinical constraints such as participant

burden and compliance need to be considered in the design or modification of the inter-

vention/measurement protocols. These constraints limit the size of the collected data sets,

and further limit the identification work based on the data available. More details will be

provided in ensuing sections. Despite the challenges proposed by the issues in participant

data, this work still provides an informative insight for related intervention design in the

future.

5.1 Modeling and Measures

Behavioral
 Belief (b)

Normative 
Belief (n)

Control 
Belief (c)

Attitude
(η1)

Perceived 
Behavioral 
Control (η3)

Behavior 
(η5)

Subjective 
Norm (η2)

Intention 
(η4)

Figure 5.1: Standard Theory of Planned Behavior (TPB) path diagram for physical ac-
tivity.

The parameters in the comprehensive model that need to be estimated include the TPB

behavioral model and the model for intervention delivery dynamics. The TPB model that

includes two independent modules to dynamically model physical activity (PA) and healthy

eating (HE) behaviors has been developed in Chapter 2. The path diagrams for the two
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Behavioral 
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Limit 
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Figure 5.2: TPB path diagram for healthy eating, including limit constructs.

modules with the variable representation for each construct are shown in Fig. 5.1 and 5.2,

from which two sets of differential equations for the behavioral system are established. The

system of differential equations used to describe the PA module is expressed below,

τ1
dη1(t)

dt
= γ1b b(t)− η1(t) (5.1a)

τ2
dη2(t)

dt
= γ2n n(t)− η2(t) (5.1b)

τ3
dη3(t)

dt
= γ3c c(t)− η3(t) (5.1c)

τ4
dη4(t)

dt
= β41η1(t) + β42η2(t) + β43η3(t)− η4(t) (5.1d)

τ5
dη5(t)

dt
= β54η4(t) + β53η3 − η5(t) (5.1e)

The differential equations described above can be transformed to the following state space
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representations of the TPB model on PA.

ẋ = A(φ)x(t) +B(φ)u(t) (5.2a)

y = C(φ)x(t) (5.2b)

where: x =

[
η1 η2 η3 η4 η5

]T
, which denotes a vector of dx = 5 state variables;

u =

[
b n c

]T
, which denotes a vector of du = 3 input variables;

y =

[
η1 η2 η3 η4 η5

]T
, which denotes a vector of dy = 5 output variables;

φ = [τ1 τ2 τ3 τ4 τ5 γ1b γ2n γ3c β41 β42 β43 β53 β54]T , which denotes a vector of dφ = 13

unknown model parameters;

A =



− 1
τ1

0 0 0 0

0 − 1
τ2

0 0 0

0 0 − 1
τ3

0 0

β41

τ4
β42

τ4
β43

τ4
− 1
τ4

0

0 0 β53

τ3
β54

τ4
− 1
τ5


;

B =



γ1b
τ1

0 0

0 γ2n

τ2
0

0 0 γ3c

τ3

0 0 0

0 0 0


;

C = I (9× 9).

The system of differential equations for the HE module with limit constructs are shown
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in (5.3).

τ1
dη1(t)

dt
= γ1bb(t)− η1(t) (5.3a)

τ1l
dη1l(t)

dt
= γ1lbb(t)− η1l(t) (5.3b)

τ2
dη2(t)

dt
= γ2nn(t)− η2(t) (5.3c)

τ2l
dη2l(t)

dt
= γ2lnn(t)− η2l(t) (5.3d)

τ3
dη3(t)

dt
= γ3cc(t)− η3(t) (5.3e)

τ3l
dη3l(t)

dt
= γ3lcc(t)− η3l(t) (5.3f)

τ4
dη4(t)

dt
= β41η1(t) + β42η2(t) + β43η3(t)− η4(t) (5.3g)

τ4l
dη4l(t)

dt
= β41lη1l(t) + β42lη2l(t) + β43lη3l(t)− η4l(t) (5.3h)

τ5
dη5(t)

dt
= β54η4(t) + β54lη4l(t) + β53η3(t) + β53lη3l(t)− η5(t) (5.3i)

The differential equations described above can be transformed to the following state space

representations of the TPB model on HE.

ẋ = A(φ)x(t) +B(φ)u(t) (5.4a)

y = C(φ)x(t) (5.4b)

where: x =

[
η1 η1l η2 η2l η3 η3l η4 η4l η5

]T
, which denotes a vector of dx = 9

state variables;

u =

[
b n c

]T
, which denotes a vector of du = 3 input variables;

y =

[
η1 η1l η2 η2l η3 η3l η4 η4l η5

]T
, which denotes a vector of dy = 9 output

variables;

φ = [τ1, τ1l, τ2, τ2l, τ3, τ3l, τ4, τ4l, τ5, γ1b, γ1lb, γ2n, γ2ln, γ3c, γ3lc, β41, β42, β43, β41l, β42l,

β43l, β53, β53l, β54, β54l]
T , which denotes a vector of dφ = 25 unknown model parameters;
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A =



− 1
τ1

0 0 0 0 0 0 0 0

0 − 1
τ1l

0 0 0 0 0 0 0

0 0 − 1
τ2

0 0 0 0 0 0

0 0 0 − 1
τ2l

0 0 0 0 0

0 0 0 0 − 1
τ3

0 0 0 0

0 0 0 0 0 − 1
τ3l

0 0 0

β41

τ4
0 β42

τ4
0 β43

τ4
0 − 1

τ4
0 0

0 β41l
τ4l

0 β42l
τ4l

0 β43l
τ4l

0 − 1
τ4l

0

0 0 0 0 β53

τ3
β53l
τ3l

β54

τ4
β54l
τ4l

− 1
τ5



;

B =



γ1b
τ1

0 0

γ1lb
τ1l

0 0

0 γ2n

τ2
0

0 γ2ln
τ2l

0

0 0 γ3c

τ3

0 0 γ3lc
τ3l

0 0 0

0 0 0

0 0 0



;

C = I (9× 9).

The path diagram for the model for intervention delivery dynamics is shown in Fig. 5.3

and if represented using a systems of differential equations, the system can be written as:

τb
db(t)

dt
= γ11base(t) + γ12up(t)− b (5.5a)

τn
dn(t)

dt
= γ21base(t) + γ22up(t)− n (5.5b)

τc
dc(t)

dt
= γ31base(t) + γ32up(t)− c (5.5c)
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Figure 5.3: Path diagram for the model of intervention delivery dynamics using simplified
inputs.

and if transformed to the state space representations gives,

ẋ = A(φ)x(t) +B(φ)u(t) (5.6a)

y = C(φ)x(t) (5.6b)

where:

x =

[
b n c

]T
, which denotes a vector of dx = 3 state variables;

u =

[
base up

]T
, which denotes a vector of du = 2 input variables;

y =

[
b n c

]T
, which denotes a vector of dy = 3 output variables;

φ = [τb, τn, τc, γ11, γ12, γ21, γ22, γ31, γ32]T , which denotes a vector of dφ = 9 unknown

model parameters;

A =


− 1
τb

0 0

0 − 1
τn

0

0 0 − 1
τc

;

B =


γ11

τb

γ12

τb

γ21

τn
γ22

τn

γ31

τc
γ32

τc

;

C = I (3× 3).
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In (5.1), (5.3) and (5.5), τi are time constants; γi and βi are system gains. For simplicity,

no pure time delays or parameter uncertainties are considered in the equations.

The data used to identify the parameters of the behavioral model are measured from

the HMZ study. The behavioral constructs involved in the model are self-reported by par-

ticipants using a well-designed questionnaire on a weekly basis. Each construct is evaluated

based on 3 to 10 questions; the score of each question is scaled from 1 to 7, with 1 as the

lowest intensity and 7 as the highest; the final score of each construct is computed from the

average score of the set of the questions. The PA behavior is measured daily with Jawbone

device as mentioned in Chapter 3; when used with the weekly behavioral data for semi-

physical identification, the average of the PA data from Jawbone is computed per week to

represent the PA behaviors. The HE behavior is represented with the weekly average of

energy intake; since significant under-reporting of EI is identified in the self-measurements

from MFP , the weekly average of EI back-calculated with the back-calculation method in

Chapter 3 is used instead.

It has to be noted that the HMZ involves two longitudinal studies: a Phase I which is

designed as a feasibility test, followed by a Phase II study designed for proof of concept.

The Phase I study, as a trial study of the interventions, aims to establish the feasibility

of the intervention dosages and the intensive measurement protocols. Hence, the interven-

tion is designed for a shorter period of time: each participant is only subject to a six-week

intervention between the 2nd and the 3rd trimester of gestation, resulting in six measure-

ments of behavioral variables. Despite the small sample being a strong limitation for the

identification work, some insights can still be gained on the dynamical characteristics of the

behavioral variables, as well as improvements on the identification techniques. The findings

from Phase I study can be used to inform any necessary modifications on the intervention

design for Phase II.

The Phase II study is to establish proof of concept of the fully adaptive intervention,

including the criterion rule for making adaptive decisions. In the Phase II study, the inter-
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vention is delivered for a longer period of time: Participants are recruited into the program

from the 6∼12 weeks gestation (1st trimester), and are engaged in the intervention until

37 weeks towards the delivery. The data is collected and monitored along the 26∼31 weeks

of intervention. Hence, more data is possible from Phase II study which is beneficial for

model identification work. However, efforts still need to be made to minimize the burden

for participants in order to improve their adherence. We need to modify the frequency of

the measurements based on our conclusions from Phase I study and selectively increase the

measurement frequency of the more significant constructs.

In the following sections, the results of our proof-of-concept identification work are

presented based on the data from the Phase I or II Studies, from which we learned some

lessons that can be used to modify the intervention and measurement protocols. Any other

improvements for Phase II Study will also be summarized from the results in Phase I study

in Section 5.2. The results based on the data from the on-going Phase II study will be

presented in Section 5.3.

5.2 Results From Phase I Study

The measured data from individual participants of the Phase I study (17 participants)

are used to individually estimate the model parameters from the theoretical TPB model

structure. The model parameters are estimated by a grey-box system identification proce-

dure which relies on two sources of information: prior knowledge of the system (i.e., the

TPB dynamical model), and the measured data. In this data-based analysis, the purpose

is to explain the effects of three inputs over six (or nine) outputs in the context of the TPB

model as shown in the path diagrams in Fig. 5.1 and 5.2. The search of parameters will

keep the defined model structure. The number of data points is limited to six in Phase I

study due to the measurements of behavior variables on a weekly basis over the period of

six weeks of the intervention. For any missing data, mean replacement is performed to

maintain enough data for identification.

Based on the dynamic characteristics of the measured behavioral variables and other
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model limitations, we made several changes to the semi-physical identification procedures

as described in the following.

Variable Scaling :

The final output of our model is behavioral kcal, that is the average weekly physical ac-

tivity (kcal) measured by Jawbone, or energy intake (kcal) estimated using the first method

(back-calculation method) in Chapter 3. These final outputs of behaviors in kcal are scaled

to similar magnitudes as behavioral variables, which can give better fit between the esti-

mated and real data. All constructs including “Beh (kcal)” plot in the figures are mean

subtracted for identification purposes.

Model Reduction:

To ensure that the data, especially the data as input or intermediate constructs that

was used for identification shows enough variation, we checked the coefficient of variation

(COV) of the data from Phase I study. COV, also known as relative standard deviation, is

a standardized measure of dispersion of a probability distribution or frequency distribution.

It shows the extent of variability in relation to the mean of the data. It is often expressed

as a percentage, and is defined as the ratio of the standard deviation of the data to the

mean. As shown in the tabulated COV of the constructs for four selective participants in

Table 5.1, belief variables generally show less variation within the span of the intervention.

Therefore, we decide to collect the belief variables on a monthly basis for Phase II Study,

as well as eliminate from our identification framework. In addition, the relative importance

of attitudes, subjective norms and perceived behavioral control in terms of intentions can

vary for different behaviors of interest and for different population. Attitude is showing

less significance in the context of the HMZ study. Further analysis is performed to remove

Attitude from the framework, due to the high burden in the measurement of that variable.

Similar model reduction is adopted for TPB models on both PA and HE side, with TPB for

HE behaviors further reduced by removing non-limit constructs from the structure. Non-

limit constructs in the TPB model for HE behaviors demonstrate similar dynamics as the
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limit constructs, while the limit constructs also favor more variations in the collected data.

Based on this analysis, a decision to change the measurement protocols was made to

favor the identification work: the measurement frequency for the constructs that remain

in the reduced model structures will be increased to a weekly basis. In this way, the size

of the data sets used for semi-physical identification will be increased, ranging from 20

to 30 data points available. The measurements of the constructs that are removed from

identification will be collected on a monthly basis, to ensure that the participant burden

will not be substantially increased. Since the change of measurement protocols occurred

after the start of Phase II study, two participants have completed the intervention using the

old measurement protocols. As a result, a smaller data set with 7 data points is available

for their analysis. Six participants went through the transitions between two measurement

frequencies. The number of data points for these six participants is slightly higher, but the

resulted data are severely subject to the issues of unevenly spaced sampling time, hence

unfavored by identification protocols.

With such changes in the TPB model, the model for intervention delivery dynamics

need to be changed accordingly: instead of connecting with the three belief variables in the

full TPB model, the outputs for intervention delivery dynamics are changed to subjective

norm (SN) and perceived behavioral control (PBC) in order to connect with TPB model on

PA, and changed to limit SN and lim PBC for HE. The resulted path diagrams are shown

in Fig. 5.4.

Constraints:

Initially, constraints were only added on the time constants of the model. With further

analysis of the model, it was recognized that constraints may also be added to the paths

leading from subjective norm, perceived behavioral control towards intention. This is be-

cause the change in the former two constructs can be expected to be in the same direction

as the change in intention in general. For example, an increase in the attitude measure-

ment means the overall evaluation of a participant’s behavior is elevated, an increase of the
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Table 5.1: The coefficient of variation (COV) of the measured TPB constructs collected
for the four representative participants in Phase I Study.

Constructs
COV

PID1010 PID1013 PID1019 PID1041 Average

PA BB 0% 6% 1% 4% 3%

HE BB 0% 3% 1% 8% 3%

PA NB 0% 5% 14% 7% 7%

HE NB 0% 5% 3% 4% 3%

PA CB 13% 14% 15% 14% 14%

HE CB 21% 6% 13% 14% 13%

PA ATT 0% 3% 3% 17% 6%

HE ATT 2% 6% 3% 8% 5%

HE LIM ATT 1% 6% 6% 15% 7%

PA SN 0% 15% 4% 8% 7%

HE SN 0% 13% 2% 7% 5%

HE LIM SN 0% 19% 4% 10% 8%

PA PBC 2% 14% 14% 14% 11%

HE PBC 3% 25% 5% 9% 11%

HE LIM PBC 6% 23% 8% 9% 11%

PA INT 1% 10% 18% 28% 14%

HE INT 2% 10% 6% 12% 7%

HE LIM INT 2% 9% 9% 19% 10%
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Figure 5.4: Updated path diagrams for intervention delivery dynamics to integrate with
reduced TPB models (left: to integrate with TPB model for PA; right: for HE).

perceived likelihood of performing that behavior is more likely occur, with less possibility

to see the opposite. In this way, the identified parameters can be more physically meaning-

ful. Similarly for the gains in the intervention delivery dynamics, where an increase of the

attitude or other TPB variables will be expected following an augmentation of intervention

dosage.

However, such decisions for adding constraints are subject to scrutiny. It is possible that

increasing the dosages or an increase in one of the TPB constructs might not necessarily

lead to a positive gain in the connected constructs, but possibly in a contradicting way.

For example, requesting participants to exercise more by adding a 30 min physical activity

session on site that a participant does not like might lead to a decrease in the intention for

PA. Such adverse intervention outcomes might also result in a decrease of participant com-

pliance, reflected as more data missingness in the following measurements. Therefore, such

negative gains and corresponding dynamics need to be forecasted by the model, in which

case any unnecessary constraints on gains should be removed. Based on this consideration,

constraints or partial constraints on the gain parameters will be evaluated with intervention

participants, but will not be added in the estimation of participant-validated models used

for closed-loop implementation.

An illustration of using the partial constraints added for the semi-physical identification

on TPB for PA behaviors is shown in Fig. 5.5, where we have positive (“+”) constraint
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for subjective norm (SN) and perceived behavioral control (PBC) to intention (INT), but

no constraint on CB/INT/PBC to Behavior. Similarly in Fig. 5.6 for TPB model on HE

behaviors, it shows that constraints for limit subject norm, limit perceived behavioral control

to limit intention are imposed.

Model Order Augmentation:

The model per (5.1) or (5.3) consists of a system of first-order differential equations, but

to describe a more elaborate transient response (such as overdamped, critically damped or

underdamped responses), a second order system could be used (Navarro-Barrientos et al.

(2011)). If second order dynamics are present, these can be conceptualized as being part

of an inventory system that is subject to self-regulation. This will be illustrated with an

example considering only one inventory as a reference: To represent behavior kcal (η5) as a

system with two poles, the equation with respect to η5 in (5.3) can be rewritten as:

τ2
5

d2η5

dt2
+ 2ζτ5

dη5

dt
= β54 η4 + β54l η4l + β53 η3 + β53l η3l − η5 (5.7)

which yields to the transfer function:

η5(s) =
β54 η4(s) + β54l η4l(s) + β53 η3(s) + β53l η3l(s)

(τ2
5 s

2 + 2ζτ5s+ 1)
(5.8)

For simplicity in the semi-physical identification on reduced TPB models, only the

equation to describe the dynamic behaviors for η5 is augmented to second order, while

the other output of η4 remains first order. The model structure with constraints that is

adopted for semi-physical identification framework is shown in Fig. 5.5 and 5.6, where the

most significant inputs in terms of input variation and the contribution of input dynamics to

output are included. After examining the variation in the dynamics of the TPB constructs,

it was decided to increase the measurement frequency of SN, PBC, and INT from monthly

to weekly for Phase II Study.

With model structure reduction and order augmentation, the differential equations for
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the TPB model on PA side can be re-written as,

τ2
4

d2η4(t)

dt2
+ 2ζ4τ4

dη4(t)

dt
= β42 η2(t) + β43 η3(t)− η4(t) (5.9a)

τ2
5

d2η5(t)

dt2
+ 2ζ5τ5

dη5(t)

dt
= β53 η3(t) + β54 η4(t)− η5(t) (5.9b)

The differential equations described above can be transformed to the following state space

representations of the TPB model on PA.

ẋ = A(φ)x(t) +B(φ)u(t) (5.10a)

y = C(φ)x(t) (5.10b)

where: x =

[
η4 η5

dη5

dt

]T
, which denotes a vector of dx = 3 state variables;

u =

[
η2 η3

]T
, which denotes a vector of du = 2 input variables;

y =

[
η4 η5

]T
, which denotes a vector of dy = 2 output variables;

φ = [τ4 τ5 β42 β43 β53 β54 ζ5]T , which denotes a vector of dφ = 7 unknown model

parameters;

A =


− 1
τ4

0 0

0 0 1

−β54

τ2
5
− 1
τ2
5
−2ζ
τ5

;

B =


β42 β43

0 0

β53

τ2
5

0

;

C =

1 0 0

0 1 0

.

Similarly, the system of differential equations with order augmentation for the TPB

model for HE can be written as,

τ2
4l

d2η4l(t)

dt2
+ 2ζ4lτ4l

dη4l(t)

dt
= β4l2lη2l(t) + β4l3lη3l(t)− η4l(t) (5.11a)

τ2
5l

d2η5l(t)

dt2
+ 2ζ5lτ5l

dη5l(t)

dt
= β5l3lη3l(t) + β5l4lη4l(t)− η5l(t) (5.11b)
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and the state-space representation for (5.11) can be rewritten with,

x =

[
η4l η5

dη5

dt

]T
, which denotes a vector of dx = 3 state variables;

u =

[
η2l η3l

]T
, which denotes a vector of du = 2 input variables;

y =

[
η4l η5

]T
, which denotes a vector of dy = 2 output variables;

φ = [τ4l τ5 β4l2l β4l3l β53l β54l ζ5]T , which denotes a vector of dφ = 7 unknown model

parameters;

A =


− 1
τ4l

0 0

0 0 1

−β54l

τ2
5
− 1
τ2
5
−2ζ
τ5

;

B =


β4l2l β4l3l

0 0

β53l

τ2
5

0

;

C =

1 0 0

0 1 0

;

All the parameters to be estimated are incorporated in the variable φe. To estimate φe,

the well-known prediction-error identification methods (PEM) will be used. The prediction

error of the system is:

ε(t, φe) = y(t)− ŷ(t, φe) (5.12)

where ŷ(t, φe) is the estimated output.

Computations are executed in MATLAB using the commands idgrey and greyest from

the System Identification Toolbox based on PEM methods. One criterion to evaluate the

results from semi-physical identification is to compute and compare the goodness of fit for

system outputs. The percentage of fit between the measured signal and model prediction

is calculated using the following formula:

fit % = 100

(
1− ‖y − ŷ‖2
‖y − ȳ‖2

)
(5.13)

where ȳ represents the mean of the measured signal. The goodness of fit can be significantly
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improved by adjusting the initial conditions of the models or by trying higher order models

with more parameters involved.

Phase I participants are randomly assigned to six dosages with baseline only or baseline

plus different levels of intervention steps-up. Due to the short span of intervention and

the resulted small data sets, only the identification for the TPB model will be tested and

presented. The identification results on TPB model for PA behaviors for two selected

participants are shown in Fig. 5.7 and 5.8. The identification results on TPB model for

HE behaviors for two selected participants are shown in Fig. 5.9 and 5.10. The identified

parameters are tabulated in Table 5.2 and 5.3. Seen from the results, the goodness of fit is

significantly improved by the modification we made to the models. However, it is important

to note that with only six weeks of data points for the TPB variables and no validation

data, the estimation of the model parameters is limited. The more comprehensive modeling

procedure requires more data points. The goodness of fit is generally not bad with the

simplified model in this case, but more data points are needed to validate predictive ability

of the identified models for individual participants.

Subjective 
Norm (η2)

Perceived 
Behavioral 
Control (η3)

Intention 
(η4)

Behavior 
(η5)

+

+

No Constraint

No Constraint

Figure 5.5: A constrained and simplified structure of the TPB model for PA behaviors for
identification purpose.

5.3 Results From Phase II Study

In this section, the results for three representative Phase II participants will be presented

and discussed. The first two participants are the ones recruited at the beginning of Phase
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Figure 5.6: A constrained and simplified structure of the TPB model for HE behaviors
for identification purpose.
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Figure 5.7: Identification results with the goodness of fit for PID 1041 based on the reduced
TPB model for PA behaviors. Solid line: measured data; Dashed line: model prediction.
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Figure 5.8: Identification results with the goodness of fit for PID 1013 based on the reduced
TPB model for PA behaviors. Solid line: measured data; Dashed line: model prediction.

Table 5.2: The identified parameters for the reduced TPB model on PA behaviors for the
two illustrative participants (PID 1041 and 1013) collected in Phase I Study.

TPB model on PA

PID 1041 1013

τ4 0.2623 1.00E-12

τ5 0.05277 0.7048

ζ 35.74 0.08519

β42 0.1754 0.6965

β43 0.2335 3.06E-01

β53 -0.694 -0.3959

β54 0.2541 0.03992
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Figure 5.9: Identification results with the goodness of fit for PID 1041 based on the reduced
TPB model for HE behaviors. Solid line: measured data; Dashed line: model prediction.

Table 5.3: The identified parameters for the reduced TPB model on HE behaviors for
Participants 1041 and 1013 collected in Phase I Study.

TPB model on HE

PID 1041 1019

τ4l 1.00E-12 1.00E-12

τ5 0.9412 1.193

ζ 1.614 0.2878

β4l2l 0.1379 0.8015

β4l3l 0.6328 1.00E-12

β53l -6.126 0.8456

β54l 14.25 -1.427
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Figure 5.10: Identification results with the goodness of fit for PID 1019 based on the
reduced TPB model for HE behaviors. Solid line: measured data; Dashed line: model
prediction.

II study. The data of these two participants can be used to validate the characteristics of

the participant data or other lessons that we have learned from Phase I participants. Once

their intervention was completed and their data was cleaned and available for analysis, any

changes of measurement protocols can be finalized and given to other Phase II participants.

The third participant for analysis in this document is an intervention participant from later

stage of Phase II study. The data from this participant is more consistent and shows least

data missingness.

For the two participants (one from the control group, the other from the intervention

group) before protocol changes, their measurements of the constructs of SN, PBC, and INT

were obtained monthly, leading to 7 measurements for each construct available for individual

participant. COV among all the constructs in the original TPB model are checked, with
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results shown in Table 5.4. As we can see from the COV analysis, the constructs that we

eliminated from the model structure are showing low COV, indicating less variation in the

data dynamics, while higher COV are observed in the constructs that are determined to

keep. This analysis of the COV on Phase II data supports our decision on the identification

work. The identification results for these two participants on the TPB model in PA/HE

sides are shown from Fig. 5.11 through 5.14, with the corresponding identified parameters

tabulated in Table 5.5.
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Figure 5.11: Identification results for TPB model for PA behaviors for PID 2002.

The third participant is from the intervention group who was given two steps-up based

on the measured weight gain during intervention. As described in the previous section,

the modifications on the identification procedures as well as on the measurement protocol

were adopted. All the measurements of TPB variables were collected on a weekly basis.

From initial identification results and other consideration for HMPC implementation, some

further manipulations that might improve the identification results are provided.

Add Time-Dependent Input :
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Table 5.4: Tabulation of the coefficient of variation (COV) for the TPB constructs for
Participant 2002 and 2005 collected in Phase II Study.

Constructs
COV

Intervention Participant Control Participant Average

PA BB 7% 8% 7%

HE BB 8% 7% 7%

PA NB 3% 3% 3%

HE NB 5% 5% 5%

PA CB 5% 7% 6%

HE CB 4% 5% 5%

PA ATT 4% 4% 4%

HE ATT 5% 4% 5%

HE LIM ATT 4% 4% 4%

PA SN 8% 8% 8%

HE SN 5% 9% 7%

HE LIM SN 6% 8% 7%

PA PBC 13% 15% 14%

HE PBC 12% 11% 12%

HE LIM PBC 11% 10% 11%

PA INT 9% 11% 10%

HE INT 6% 3% 5%

HE LIM INT 11% 13% 12%
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Figure 5.12: Identification results for TPB model for PA behaviors for PID 2005
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Figure 5.13: Identification results for TPB model for HE behaviors for PID 2002.
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Figure 5.14: Identification results for TPB model for HE behaviors for PID 2005.

Table 5.5: Tabulation of the identified parameters for Participant 2002 and 2005 collected
in Phase II Study.

TPB model on PA TPB model on HE

τ4 10−12 0.1482 τ4l 10−12 10−12

τ5 0.1851 0.2281 τ5 3.861× 106 0.08999

ζ 0.05375 0.2499 ζ 1.05× 106 0.6396

β42 0.09055 10−12 β4l2l 10−12 10−12

β43 0.316 0.01046 β4l3l 0.3073 10−12

β53 -5.018 0.7387 β53l 5.406× 105 -0.04388

β54 6.41 4.598 β54l −9.688× 105 3.172
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A decrease in SN/PBC was observed in this participant as she advanced into later ges-

tational stages. Similar decreases have also been found for some of other participants in

SN and/or PBC, especially the ones who need augmentation of intervention dosages. If the

relationship between such decreases in SN/PBC and the dosage increases (from baseline

to one or more steps-up) is modeled using the structures proposed in Fig. 5.4, the gains

for the step-up input (up) will be very likely to be negative. Mathematically, these nega-

tive gains are reflected as negative effects of the intervention components (HE/PA active

learning) on the corresponding TPB constructs, which does not make sense physically. As

a matter of fact, such decreases are more likely to be caused by advanced gestation in-

stead of by intervention components, hence the effects of increasing gestational age on the

TPB variables need to be factored out before the real effects of any intervention component

can be accurately described or analyzed. Based on this consideration, one possible way to

separate this decreasing trend is to introduce an additional input that is preferably to be

time-dependent. Once introduced, we might be able to attribute the decrease tail in the

output to this time-dependent input, and to leave the gains for intervention inputs being

positive, or at least largely reduce the negativities of those gains.

For this purpose, the gestational trimester can be used and formulated as a step input

to the model for intervention delivery dynamics, or using gestational age in term of days

as a ramp input (preferred). To give the time-dependent input a magnitude comparable

to other inputs, the slope for the ramp is given as 3/280, so that at the end of gestation,

the gains for this input (gestational age, represented as ga) reaches 3. If using a step input

with gestational trimesters, each trimester advance introduced as a step change is assigned

to be 1. The gains for the additional time-dependent input (always being unconstrained

regardless of the constraints for other gains) are more likely to be negative at the presence of

prominent decrease in model outputs (SN/PBC), as will be shown later for PID 2072. With

the additional time-dependent input, the negative gains previously obtained for intervention

components are relaxed with smaller absolute values (i.e., moving towards positive direction)
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or even become positive.

Integrating Models Before Identification:

Since the goodness of fit into TPB model outputs (for example the behavior variables

of EI/PA kcal) is not 100%, the daily weight gain predicted from the model output EI/PA

kcal cannot be exact as the actual daily weight gain, resulting in prediction errors for energy

balance model. Similar modeling errors might be introduced when using the outputs from

the model for intervention delivery dynamics to introduce into the TPB models. It can

be easily envisioned that such errors will accumulate and become worse when integrating

the two models that were identified separately. Hence, it is more efficient to integrate the

dynamics from the two separate models and form a single comprehensive model before

performing the semi-physical identification. The path diagrams of the integrated models

are presented in Fig. 5.15 and 5.16. The resulted model uses intervention treatment (base,

up and time-dependent variable ga) as inputs and participant behaviors of EI/PA kcal (η5)

as output. The system of differential equations for the integrated model can be written as

below,

τ1
dη2(t)

dt
= γ11 base(t) + γ12up(t) + γ13ga(t)− η2(t) (5.14a)

τ2
dη3(t)

dt
= γ21 base(t) + γ22up(t) + γ23ga(t)− η3(t) (5.14b)

τ3
dη4(t)

dt
= γ31η2(t) + γ32η3(t)− η4(t) (5.14c)

τ4
dη5(t)

dt
= γ42η3(t) + γ43η4(t)− η5(t) (5.14d)

The differential equations described above can be transformed to the following state space

representations:

ẋ = A(φ)x(t) +B(φ)u(t) (5.15a)

y = C(φ)x(t) (5.15b)

where: x =

[
η2 η3 η4 η5

]T
, which denotes a vector of dx = 4 state variables;

u =

[
base up ga

]T
, which denotes a vector of du = 3 input variables;
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y =

[
η2 η3 η4 η5

]T
, which denotes a vector of dy = 4 output variables;

φ = [τ1 τ2 τ3 τ4 γ11 γ12 γ21 γ22 γ31 γ32 γ42 γ43]T , which denotes a vector of dφ = 12

unknown model parameters;

A =



− 1
τ1

0 0 0

0 − 1
τ2

0 0

γ31

τ3
γ32

τ3
− 1
τ3

0

0 β42

τ4
β43

τ4
− 1
τ4


;

B =



γ11

τ1
γ12

τ1
γ13

τ1

γ21

τ2
γ21

τ2
γ23

τ2

0 0 0

0 0 0


;

C = I (4× 4).

The identification results based on the listed model representations with the first or-

der structure is presented in this work. Higher orders of model can also be structured if

necessary. It is also noted that the PA behaviors seem quite stationary/static for some

participants. In order to avoid overfit into noise, a smoothing window of 10 data points is

used to filter the measurements before the identification is implemented. With such mod-

ification, the results from semi-physical identification by integrating the two models are

shown in Fig. 5.17, with the corresponding identified parameters tabulated in Table 5.6.

For the purpose of complete demonstration, identification results for another participant

can be found in Fig. 5.18, with identified parameters tabulated in Table 5.7.

The individual-parametrized model for each participant can be used for the design of

the closed-loop control algorithm, and will significantly increase the accuracy of the model

prediction and further enhance the performance of the controller. This is addressed in the

work of Chapter 6. However, a few limitations in the identification work need to be noted

and they are summarized below:

1. Uneven sampling of the data:

All the questionnaires used to collect the TPB data are completed by individual partici-
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Figure 5.15: Path diagram for integrating the model for intervention delivery dynamics
with reduced TPB model for HE.
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Figure 5.16: Path diagram for integrating the model for intervention delivery dynamics
with reduced TPB model for PA.

Table 5.6: Tabulation of the identified parameters for the integrated model based on the
models of intervention delivery dynamics and the TPB models for Phase II participant 2072.

Integrated model for PA Integrated model for HE

τ1 9.74E+05 γ21 0.3589 τ1 1.00E-12 γ21 -0.2844

τ2 1.00E-12 γ22 0.4358 τ2 1.228 γ22 0.2568

τ3 1.00E-12 γ23 -0.8444 τ3 3.49 γ23 -0.1818

τ4 1.00E-12 γ31 0.1364 τ4 1.00E-12 γ31 0.9092

γ11 0.3347 γ32 0.3325 γ11 0.3125 γ32 0.203

γ12 -0.2413 γ42 0.4358 γ12 0.03866 γ42 -0.9465

γ13 0.5278 γ43 6.609 γ13 0.3549 γ43 0.5715
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Figure 5.17: Identification results for integrating the models for the intervention delivery
dynamics and the TPB model for PID 2072.
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Figure 5.18: Identification results for integrating the models for the intervention delivery
dynamics and the TPB model for PID 2062.
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Table 5.7: Tabulation of the identified parameters for the integrated model based on the
models of intervention delivery dynamics and the TPB models for Phase II participant 2062.

Integrated model for PA Integrated model for HE

τ1 0.7922 γ21 1.511 τ1 1.00E-12 γ21 0.6091

τ2 5.298 γ22 0.3936 τ2 2.226 γ22 -0.6566

τ3 0.2961 γ23 -1.417 τ3 0.3265 γ23 0.681

τ4 4.448 γ31 0.111 τ4 1.681 γ31 3.516

γ11 0.8424 γ32 1.294 γ11 -0.04014 γ32 2.242

γ12 0.04916 γ42 33 γ12 0.03474 γ42 -0.435

γ13 -0.04248 γ43 -20.1 γ13 -0.1174 γ43 0.4044

pants during an on-site intervention session. Even though the TPB data for each participant

is designed to be collected weekly/monthly, it is hard to schedule the on-site appointment

on the exact dates with even intervals between every two measurements. For example of

PID 2072, the sample intervals observed in the measurements of this participant range from

3 to 23 days. This is a common issue for both Phase I and Phase II participants. Such un-

even spaced measurements will result in inaccurate identified models for future predictions.

Semi-physical identification with uneven sampling of the data is an interesting topic that

has been extensively examined in the literature. Approaches to address this issue can be

examined further in the future study.

2. Lack of validation data set:

In order to accurately assess each construct of the TPB models, multiple questions for

each construct are designed and have to answered completely. This creates a significant

burden for the participants in real practice. Considering the feasibility of the intervention

and measurement protocols, limited number of data points are available. With the weekly

measurement in Phase I and the monthly measurement in Phase II, only 6 to 7 data points

are available for TPB identification. This is a huge barrier for the identification analysis,

without validation data set.
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3. Different options for model estimation:

Variables used in estimation process are usually in a deviation form. Deviation can be

generated by subtracting baseline or mean of the data set. This will lead to different sets of

identified parameters, and the corresponding goodness of fit varies across participants. Both

ways of generating deviation variables can be tried for individual participants before deciding

the best option. Similarly, the options for using the gestational trimester as a ramp or step

input can lead to different results. For the selected participants, the goodness of fit into the

measured data and the signs of the gains for this additional input are comparable/same, so

we only show the results for ramp inputs in this document.
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Chapter 6

HYBRID MODEL PREDICTIVE CONTROL IN OPTIMIZING INTERVENTION

DOSAGES

The Healthy Mom Zone study for maternal weight gain management features individu-

ally tailored and intensively adaptive behavioral interventions that are time-varying in terms

of the frequency or intensity of intervention dosages in order to better respond to individ-

ual’s real-time need (Symons Downs et al., 2018). Conceptually, this can be automated with

a closed-loop framework using an appropriate decision algorithm. For example, a decision

for dosage change can be made based on whether the participant stays within or exceeds

the IOM guidelines for weight gain or energy intake: if she goes above the guidelines, intu-

itively dosages need to be augmented, otherwise decremented or kept the same. Such simple

“IF–THEN” rules do not account for individual dynamics, usually resulting in delayed or

aggressive interventions that lead to undesired or suboptimal participant responses. Such

circumstances from the simple intervention schemes can be improved by adding a model-

based controller that can optimize behavioral-related responses with participant-validated

model as developed in previous chapter. However, multiple clinical constraints need to be

considered for actual implementations.

In behavioral medicine settings, intervention components cannot be given arbitrarily.

For example, some components need to be introduced to participants before or after the

others have been given, or certain intensities of one intervention component cannot be

changed until the intensity of the other has reached certain levels. Such requirements

necessitate a formulation of decision rule that dictates the proper dosage sequence in which

the order for component augmentations or decrements are specified. In addition, patient-

friendly adaptive interventions in clinical settings require no more than one component to

be altered at each intervention decision.
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Other considerations or constraints also include the fixed time frame between decision

making (can be interpreted as the intervals between participant visits to clinics), and the

upper and lower bounds for assigned dosages and other behavior variables. The simple IF–

THEN rules or simplistic control algorithms apparently cannot guarantee a good system

response while satisfying all of these listed constraints.

Motivated by such needs, Mixed Logical Dynamical (MLD) framework-based Hybrid

Model Predictive Control (HMPC) schemes have been developed in prior work (Dong et al.

(2013); Dong (2014)), to address the discrete dosage inputs while enabling sequential de-

cision framework for adaptive interventions and accounting for other clinical constraints.

This control algorithm makes use of feedback and feedforward control action by online op-

timization of a cost function using a receding horizon strategy. This is the same as how

conventional MPC works except for operating on a linear hybrid system (Borrelli et al.

(2017)). This novel and appealing framework allows the user to have greater flexibility

in the specification of different requirements in real-life clinical trials, and to generate the

sequential decision policies with time-dependent relationships on manipulated variables,

which are usually addressed by temporal logic specification in the control engineering.

In this chapter, the HMPC framework for sequential decision policies under other clinical

requirements will be explained, and simulations using such HMPC-based algorithm with

participant-validated models for individual participants will be presented and compared

with results relying on simple IF–THEN decision rules. Specifically, a set of standard IF–

THEN rules based on the same decision logics and time frame as the HMPC will be used.

In addition, the set of IF–THEN rules as used in the HMZ study will be evaluated and

compared with HMPC to examine the performance of HMPC in real-life settings.

6.1 Hybrid Model Predictive Control Formulations

Model Predictive control (MPC, Camacho and Bordons Alba (2013)) is an advanced

control algorithm in which the optimization of the manipulated variables (closed-loop in-

puts) is not only computed for the current time point, but expanded over a finite time
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horizon to take into account the prediction of future responses. A predetermined system

model with exactly known parameters is required to solve the optimization problem for

optimal control moves. The MPC controller is implemented by recursively determining the

optimal control action at each time point by keeping shifting the prediction horizon for-

ward; due to the feature of this strategy, MPC is also called a receding horizon control as

illustrated in Fig. 1.1.

In behavioral medicine problem settings, the intervention components are usually de-

livered in pre-determined categorical (i.e., discrete) doses, and the decision is made in a

discrete manner, which requires us to consider the use of hybrid system. A hybrid dynami-

cal system considers discrete and continuous events simultaneously and the description of its

dynamics consists of both differential equations and logical conditions (categorical/binary).

A system of this kind is referred to as Mixed Logical Dynamical (MLD, Bemporad and

Morari (1999); Borrelli et al. (2017)) systems (relying on which the HMPC controller can

incorporate the constraints into the problem formulation). A hybrid linear system with real

and integer states, inputs and constraints can be described with a MLD representation with

the following linear relations. as:

x(k + 1) =Ax(k) +B1u(k) +B2δ(k) +B3z(k) +Bdd(k) (6.1a)

y(k + 1) =Cx(k + 1) + d′(k + 1) + v(k + 1) (6.1b)

E2δ(k) + E3z(k) ≤E5 + E4y(k) + E1u(k)− Edd(k) (6.1c)

where the system state is x = [xTc x
T
d ]T , with continuous state xc ∈ Rn

c
x and discrete state

xd ∈ {0, 1}ndx ; the system input is u = [uTc uTd ]T with continuous element uc ∈ Rn
c
u and

discrete element ud ∈ {0, 1}n
d
u ; y is the system output; d, d0 and v represent measured dis-

turbances, unmeasured disturbances and measurement noise signals, respectively. δ ∈ {0, 1}

and z ∈ Rncz are discrete and continuous auxiliary variables that are introduced in order to

convert logical/discrete decisions into their equivalent linear inequality constraints. A, B1,

B2, B3, Bd, C, E1, E2, E3, E4, E5 and Ed are the matrices used to describe the MLD

system; particularly, the logical constraints incorporated into the system are manipulated
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through E matrices. The dimension of these auxiliary variables and the number of lin-

ear constraints in (6.1c) depend on the specific character of the discrete logical/discrete

decisions that would be enforced in the particular hybrid system.

With the system represented in MLD form per (6.1c), the HMPC problem can be

formulated to optimize the sequence of control actions u(k), · · · , u(k+m−1), δ(k), · · · , δ(k+

p−1) and z(k), · · · , z(k+p−1). The objective is to minimize the cost function J as shown

below,

min
Θ

J =

p∑
i=1

‖y(k + i)− yr‖2Qy +

m−1∑
i=0

‖∆u(k + i)‖2Q∆u
+

m−1∑
i=0

‖u(k + i)− ur‖2Qu (6.2)

+

p−1∑
i=0

‖δ(k + i)− δr‖2Qδ +

p−1∑
i=0

‖z(k + i)− zr‖2Qz (6.3)

subject to the mixed integer constraints described in (6.1c) and various process constraints:

ymin ≤ y(k + i) ≤ ymax , 1 ≤ i ≤ p (6.4a)

umin ≤ u(k + i) ≤ umax , 0 ≤ i ≤ m− 1 (6.4b)

∆umin ≤ ∆u(k + i) ≤ ∆umax , 0 ≤ i ≤ m− 1 (6.4c)

Here, Θ = {[u(k + i)]m−1
i=0 , [δ(k + i)]p−1

i=0 , [z(k + i)]p−1
i=0 }; p is the prediction horizon and m

is the control horizon; yr, ur, δr, and zr are the references for output, input, discrete and

continuous auxiliary variables respectively; Qy, Q∆u, Qu, Qδ and Qz are penalty weights

on the control error, move size, control signal, auxiliary binary variables and auxiliary

continuous variables, respectively. The first term in the cost function J is used to minimize

the prediction error; the second term is the move suppression, the third to the fifth terms

are to keep control signal, auxiliary binary variables and auxiliary continuous variables at

their setpoint, respectively. Details of the controller formulation can be found in Nandola

and Rivera (2013). Based on the objective in (6.3) and the constraints in (6.4c), the MPC

problem can be defined into a standard mixed integer quadratic program (miqp) problem,

and solvers, such as the IMB™ILOG™CPLEX optimization studio can be used to solve the
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resulting miqp optimization problem. The following sections will mainly focus on the design

procedure for how to handle the logical specifications associated with sequential decision

policies and other clinical constraints relying on MLD structure.

The aim of the adaptive intervention is to prevent excessive gestational weight gain

(GWG) among the OW/OBPW. Therefore, GWG is the primary controlled variable in

addition to energy intake (EI) in this design problem. The overall goal is to support the

participant to meet the IOM guidelines for GWG and EI(setpoints) by appropriately ad-

justing the intensities of the intervention components (manipulated variables). The adaptive

intervention of the HMZ study features multiple intervention components which can be used

to influence health eating (HE) and physical activity (PA) behaviors. Hence, the intensity

of the intervention dosage can be adjusted by augmenting or reducing the components on

healthy eating or physical activity active learning (u2 for PA and HE). The decision rules

used in the HMPC formulations for changing or maintaining the dosage level are shown in

Table 6.1. For example, uPA2 will be augmented from its base dose only after uHE2 reaches

its maximum doses, while uHE2 will not be reduced from full dosage until uPA2 returns back

to its base dose (augmentation and reduction sequence above baseline). Such dosage se-

quences can also be illustrated with the following: single meal replacement is designed to

be a more intense component on HE, and if necessary, can be provided on certain number

of days during intervention in addition to the regular healthy eating demonstration; on-site

instructed PA training session is an example of the intense physical activity active learning

strategies, only provided for higher dosages.

Such clinically designed sequence rules have to be incorporated in the controller design

for correct decision policies. These sequential decision policies restrict how the dosages

of intervention components can change over time. The underlying logical specification

can be converted into linear inequalities relying on the generation of a sequence table.

Table 6.1 is the sequence table derived from pre-determined augmentation/reduction rules.

It summarizes the proposed dosage sequence according to the earlier description, which
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specifies how the dosages will change during the intervention. For instance, if the participant

is currently receiving the intervention with dosage sequence 2, then in the next decision point

(two weeks later), there are three intervention options for this participant: (1) it can be

augmented to sequence 3, 4, or 5 based on the move size ∆uHE2 (k); (2) it can get reduced

to sequence 1 or 0 according to the move size ∆u1(k); or (3) it can remain unchanged. The

HMPC controller should be able to determine the optimized discrete dosages according

to the participant’s response and the user-specified objective function, and subject to the

general process constraints and the clinical constraints associated with the dosage sequence.

With the help of information in Table 6.1, the following logical conditions are generated

and embedded into the dynamical model using binary variables (δ(k)) in MLD model, so

that only the dosage combinations in Table 6.1 are selected,

Ω = (δ1 ∧ δ5 ∧ δ10)⊕ (δ1 ∧ δ5 ∧ δ11)⊕ (δ2 ∧ δ5 ∧ δ11)⊕

(δ2 ∧ δ6 ∧ δ11)⊕ (δ3 ∧ δ6 ∧ δ11)⊕ (δ4 ∧ δ6 ∧ δ11)⊕

(δ4 ∧ δ7 ∧ δ11)⊕ (δ4 ∧ δ8 ∧ δ11) (6.5)

where (δ1 ∧ δ5 ∧ δ10) stands for dosage sequence 0 in Table 6.1 (u1 = uHE2 = uPA2 = 0),

in which δ1 = 1 means uHE2 = 0 is selected, δ5 = 1 means uPA2 = 0, and δ10 = 1 means

u1 = 0; (δ1 ∧ δ5 ∧ δ11) represents dosage sequence 1 in Table 6.1; (δ2 ∧ δ5 ∧ δ11) represents

dosage sequence 2 in Table 6.1; and the like. The 8 combinations in (6.5) above are the

8 dosage sequences in Table 6.1. Ω in (6.5) can be expressed in the linear inequalities in

(6.1c). This limits the possibilities of the dosage combinations to 8 instead of a possible(
4
1

)
×
(

4
1

)
×
(

2
1

)
= 32 combinations. For problems with larger dimensions than those shown

in this example, the generation of Table 6.1 and its corresponding logical conditions in (6.5)

can be efficiently automated.

It has to be pointed out that in prior work (Dong, 2014), the start of intervention not

only contains baseline intervention, but also includes first augmentation of active learning

for both HE and PA (Dosage 3 in Table 6.1). When the participant responds favorably

during the intervention, the intervention can also be reduced from Dosage 3, with uPA2 first,
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Table 6.1: Dosage sequence table employed by HMPC for adaptive GWG intervention.

Dosage Active Learning Baseline Description Propositional

Sequence uHE
2 uPA

2 u1 Logic

0 0 0 0 Initialized δ1 ∧ δ5 ∧ δ10

1 0 0 1 Baseline Intervention δ1 ∧ δ5 ∧ δ11

2 1 0 1 1st augmentation of uHE2 δ2 ∧ δ5 ∧ δ11

3 1 1 1 1st augmentation of uPA2 δ2 ∧ δ6 ∧ δ11

4 2 1 1 2nd augmentation of uHE2 δ3 ∧ δ6 ∧ δ11

5 3 1 1 3rd augmentation of uHE2 δ4 ∧ δ6 ∧ δ11

6 3 2 1 2nd augmentation of uPA2 δ4 ∧ δ7 ∧ δ11

7 3 3 1 3rd augmentation of uPA2 δ4 ∧ δ8 ∧ δ11

followed by uHE2 and baseline u1 and it allows for Dosage 0; the augmentation sequence

for the components will be in the opposite order, with u1 added first, followed by uHE2 and

uPA2 . But in the HMZ study, active learning components (uHE2 and uPA2 ) serve as step-up

for intervention, only available after baseline intervention has been assigned. The minimum

dosage level once the intervention start is Dosage 1 in Table 6.1, with baseline alway kept

during intervention. In addition, the highest intensity for PA active learning is 3 in the

HMZ study instead of 4 from prior work.

6.1.1 Selection of Single Input in Multi-Input Scenario

In adaptive interventions, at each decision point, there is usually only one component

being altered due to patient-friendly requirement and the change of the selected component

cannot be too aggressive. This is necessary, because it can prevent the participant from

being uncomfortable due to any dramatic intervention adaptation and hence unable to

follow up with the pace of the intervention. This basically implies that the controller can

choose only one input among all and incur only one step change of the selected input at each
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decision point, and this change also has to follow the logic in the sequential decision policies

described earlier. Such constraints can be enforced by the use of move size constraints, and

the high and low limits on manipulated variables. The move size constraints for individual

components can be expressed as

− 1 ≤ ∆uj(k) ≤ 1, j ∈ {1, 2} (6.6)

For reasons of simplicity and easy implementation, constraints in (6.7) or (6.8) are used to

handle logic specification associated with sequential decision policies under the assumption

that the dosage change can take place only one step at a time (Dong et al. (2013)).

∆u1(k)2 + ∆uHE2 (k)2 + ∆uPA2 (k)2 ≤ 1 (6.7)

| ∆u1(k) | + | ∆uHE2 (k) | + | ∆uPA2 (k) | ≤ 1 (6.8)

In order to incorporate these constraints into the problem formulation, additional binary

variables ρ and its associated logical specifications are introduced to the MLD equation to

generate corresponding constraints on the basis of the sequence table. They are converted

into linear inequalities, and are implemented by either appending them to (6.1c) or by over-

writing the move size constraints in (6.4c). The number of the additional binary variables

corresponds to the number of the manipulated inputs.

In the GWG intervention illustrated above, three binary variables (ρ1, ρ2 and ρ3) are

augmented into the vector of binary variables δ in (6.4c). The selection of one input change
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can be logically expressed as follows,

ρ1(k) = 1⇔


| ∆u1(k) |> 0,

∆uHE2 (k) = ∆uPA2 (k) = 0

(6.9)

ρHE2 (k) = 1⇔


| ∆uHE2 (k) |> 0,

∆u1(k) = ∆uPA2 (k) = 0

(6.10)

ρPA2 (k) = 1⇔


| ∆uPA2 (k) |> 0,

∆u1(k) = ∆uHE2 (k) = 0

(6.11)

ρ(k)�∆u(k)min ≤ ∆u(k) ≤ ρ(k)�∆u(k)max (6.12)

ρ1(k) + ρHE2 (k) + ρPA2 (k) ≤ 1 (6.13)

where ρ(k) = [ρ1(k) ρHE2 (k) ρPA2 (k)]T (6.14)

∆u(k) = [∆u1(k) ∆uHE2 (k) ∆uPA2 (k)]T (6.15)

∆u(k)max = [∆u1(k)max ∆uHE2 (k)max ∆uPA2 (k)max]T (6.16)

∆u(k)min = [∆u1(k)min ∆uHE2 (k)min ∆uPA2 (k)min]T (6.17)

and � is the Hadamard product, k is the sampling time. In (6.9), the selection of ρ1(k)

means u1(k) will be altered, while uHE2 (k) and uPA2 (k) remain unchanged; (6.10) and (6.11)

have the similar logical meaning. (6.12) redefines the move size constraints at each decision

point, and (6.13) makes sure that only one binary variable from ρ1(k), ρHE2 (k) and ρPA2 (k)

will be selected if it is necessary. The logical specifications in (6.9) - (6.12) can be expressed

as linear inequalities related with initial control effort u(k0), u(k) over the m control horizon,

and ρ(k) over the p prediction horizon; (6.13) is augmented after the linear inequalities of

binary variables δ(k) in (6.4c) over the p prediction horizon. Please note that the move size

constraints in (6.16) and (6.17) are defined as time-varying vectors in order to maintain

generality, and this can also help address the fact that the decision to assign the dosage is

made on a bi-weekly basis versus the daily sampling time of output measurement through

self-monitoring process, which is to be discussed in the ensuing subsection.
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6.1.2 Fixed Time Frame For Decision Making

Due to clinical and resource considerations, it is often desirable to make decisions at

frequencies other than the regular sampling interval. For example the participant visits the

clinic on a weekly basis, and however the measurements are still taken on a daily basis.

Therefore, it is necessary for the controller to understand at which point the intervention

can be adapted, and at which time frame the intervention has to stay the course. In other

words, the control decisions are required to be made at an a priori known integer multiple

TD (time frame for decision; for example, 14 in case of making decisions every two weeks)

of the system sample time Ts in addition to the previously discussed constraints. This can

be achieved by enforcing control move size constraints ∆u(k) to be zero over the control

horizon except when decisions have to be made. This leads to another set of time-dependent

linear equality constraints: ATD
(k)u(k) = 0, i ∈ {0, 1, ... , m − 1}. The matrix ATsw(k)

has a block-diagonal structure, for example,

?

? ?

? ?

0

? ?

? ?

? ?

. . .

0

? ?

? ?





u(k)

u(k + 1)

...

u(k +m− 1)


=



?

0

...

0


(6.18)

where rows with ? entries and 0 are assigned by the algorithm. The rest of the entries in

the matrix are zero. This matrix is generated dynamically at each sampling instant k using

the following steps:
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1. Given the control horizon m and the time frame for decision TD(≤ m), calculate the

number of blocks numblocks = bm−1
Tsw
c + 1. If the numblocks ≥ 3, define number of

block excluding the first and last block: midblocks = numblocks− 2. The control is

allowed to change its value only at the time points for decisions, which are the integer

multiples of Tsw, i.e., iff rem( k
Tsw

) = 0, where rem is the remainder.

2. The matrix ATD
(k) is populated by 0, 1 or −1 to implement the move size restriction,

and its size is determined by length of control horizon and size of numblocks:

ATsw(k) ∈ R(Tsw+midblocks×(Tsw−1)+rem(m−1
Tsw

)+1)×m.

3. The rows in ATsw(k) corresponding to decision time points will be set to zero; otherwise

the rows will be populated to implement ∆u(k + i) = 0.

4. Finally, the first sample u(k) is assigned the previously calculated optimal value i.e.

u(k) = u∗ when k is not at the time points allowed for decisions (as per the receding

horizon framework).

6.1.3 Three Degree of Freedom (3 DoF)

The developed HMPC framework uses three-degree-of-freedom (3 DoF) approach to

tune the controller, which is illustrated in Fig. 6.1. It allows the user to adjust the speed of

setpoint tracking, measured and unmeasured disturbance rejection independently (Nandola

and Rivera (2013)) in the closed-loop system by varying parameters αr, αd and fa respec-

tively. These parameters can be adjusted between values 0 and 1, and they in turn alter

the response of the Type I (f1(q, αr,d)) or Type II filter (f2(q, αr,d)) in (6.19) - (6.22) which

supplies a filtered signal to the controller for setpoint tracking and measured disturbance

rejection,
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Figure 6.1: Three-Degree-of-Freedom (3 DoF) controller formulation of MPC (Nandola
and Rivera, 2013).

f1(q, αr)=
(1− αr)q
q − αr

(6.19)

f2(q, αd)=(β0 + β1q
−1 + · · ·+ βωq

−ω)× (1− αd)q
q − αd

(6.20)

βk=
−6kαd

(1− αd)ω(ω + 1)(2ω + 1)
(6.21)

β0=1− (β1 + · · ·+ βω) (6.22)

or adjust the observer gain for unmeasured disturbance rejection as Kf = [0 (fa)
2 fa]

T

(Type I) or Kf = [0 (fa)
2/(2 − fa) fa]

T (Type II). This 3 DoF tuning adjustment is

more intuitive and convenient than the traditional MPC tuning rules which are determined

by prediction horizon, control horizon and move suppression weights in the objective func-

tion that directly affect the manipulate variables and consequently, the effect on a specific

controlled variable response is more difficult to predict.

6.2 HMPC With Participant-Validated Models

The previous section introduces three specific concepts: the generation of a sequence

table, selection of one-at-a-time inputs in a multi-input scenario and a fixed time frame

for decision making. In the context of an intervention, the control design problem can

be formulated based on practical operational constraints and clinical considerations. The

intervention components are delivered in pre-determined discrete doses, with HE active
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learning (uHE2 ) in {0, 1, 2, 3}, PA active learning (uPA2 ) in {0, 1, 2, 3}, and other baseline

components (u1) in {0, 1}. With the participant validated models obtained in Chapter 5,

the HMPC algorithm can be applied to determine the optimal categorical dosages of the

intervention components based on participant behaviors (EI kcal)/behavioral outcomes

(GWG) in real-time, and the assigned dosage sequence should be proper as described above

in Table 6.1.

The obtained participant validated models in Chapter 5 can be used to describe in-

dividual behavioral dynamics in response to dosage changes. Once integrated with the

reformulated energy balance model as developed in Chapter 2, a comprehensive model that

relates dosage inputs to weight changes can be formed for individuals. To test the accuracy

of the comprehensive model that integrates the different modules together, Fig. 6.2 shows

the model predicted responses using as inputs the actual dosage changes assigned to this

participant during HMZ intervention. The blue markers are the actual participant data and

the black dashed curve is the model prediction. Note that the errors in the identified param-

eters for behavioral dynamics will result in a bias between the measured behavioral kcal and

the model prediction using the actual intervention dosages given in the HMZ study. Due to

the integrating dynamics from the energy balance module, the bias due to modeling errors

will accumulate over time. Hence, the prediction from the participant validated models

using the actual intervention components assigned during interventions will not agree with

the measured weight/behaviors. Since the extent of the bias shown in the figure is moderate

and acceptable, this participant-validated model will be used for the HMPC demonstration

as will be shown later in this section.

To assess how adaptive interventions with sequential decision policies using HMPC

framework assign the optimized dosages with the changes following the proposed dosage se-

quence, the illustrations of HMPC-based interventions will be presented and compared with

adaptive interventions using other simple decision rules, for example, the IF–THEN rules.

Considering the modeling errors as shown in Fig. 6.2, the results using the HMPC controller
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as decision policies will not be compared directly with the actual measured weight/behaviors

for Phase II participants, but will be compared with model predicted weight and EI/PA

kcal using other decision rules.

6.2.1 HMPC versus Standard IF–THEN Rules

A standard IF–THEN rule follows the same dosage augmentation sequence as HMPC

(shown in Table 6.1). Specifically, if the participant exceeds the upper bound of the IOM

guidelines for weight gain, a more intensive dosage to increase the potency of the intervention

is necessary for this participant; if her weight gain is below the IOM lower bound, the dosage

should be decremented; or otherwise, the intervention dosage will be sustained. This can

be mathematically represented as below,

Decision(∆u(k)) =



+1, if GWG > GWGIOM−high

−1, if GWG < GWGIOM−low

0, otherwise

where standard IF–THEN rules assign values to the decision for dosage change based on

participant GWG; values of +1, -1 and 0 indicate a dosage augmentation, decrement and

unchanged, respectively. In addition, the time interval between decision making using IF–

THEN rules are set the same as the HMPC formulation of two weeks. In the following

section, HMPC results under different scenarios will be presented and compared with such

IF–THEN rules. The participant-validated model for PID 2072 from Chapter 5 will be used

for detailed demonstration first, followed by demonstration using model for PID 2062.

Scenario 1: Fastest Responses

Since IF–THEN rules only use weight gain signals for decision making, we only add weights

on controlled variable of weight gain (GWG) and assign zero weight to energy intake (EI)

in this scenario, i.e., penalty weight Qy = [QEI , QGWG] where QEI = 0. Only noise-free

signals were included: neither measurement noise or unmeasured signals. In addition, αr
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Figure 6.2: Prediction from estimated models using actual intervention dosages as inputs
is compared with measured data for participant 2072 in (a) and 2062 in (b).
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Figure 6.3: HMPC results comparison with standard IF–THEN rules for PID 2072 from
Phase II study. (HMPC: noise-free signals only; Qy = [0, 10]; αr = αd = 0; fa = 1; p = 25,
m = 20.

and αd was set to 0 indicating fastest set point tracking, and fastest measured disturbance

rejection. The HMPC results compared with standard IF–THEN rules for PID 2072 are

presented in Fig. 6.3, where HMPC exhibits superior performance than standard IF–THEN

rules. Despite QEI = 0, the response of EI is still within acceptable ranges given by

the IOM guidelines. As seen later in Fig. 6.4 where weights are assigned to both controlled

variables, the errors between predicted EI and the guidelines are reduced, but with a trade-

off that predicted weight diverges from the nominal values of the guidelines. Considering

it is more critical for participants to follow the weight guidelines and also more beneficial

for maternal health during gestation, weights assigned to EI will be kept as zero for the

subsequent scenarios.
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Figure 6.4: HMPC results comparison with standard IF–THEN rules for PID 2072 from
Phase II study. (HMPC: noise-free signals only; Qy = [0.1, 10]; αr = αd = 0; fa = 1;
p = 25, m = 20.

Scenario 2: Slow Setpoint Tracking

Similar as Scenario 1, weights on controlled variable of GWG only; only noise-free signal

were included; αd is set to 0 indicating fastest measured disturbance rejection. But αr is set

to 0.7 for slow set point tracking. The results of comparison with standard IF–THEN rules

for the same participant PID 2072 are shown in Fig. 6.5, where a slow set-point tracking

setting will not evidently affect the controller performance.

Scenario 3: Slow Measured Disturbance Rejection

The measured disturbance signals play an important role in the GWG intervention sys-

tem and cannot be neglected. If not well addressed, it will significantly affect the control

performance. The measured disturbance signal for EI output is mostly attributed from

the time-dependent input (u3) in the model of intervention delivery dynamics. Since this

input cannot be manipulated or changed by the intervention, it is not included in the two-
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Figure 6.5: HMPC results comparison with standard IF–THEN rules for PID 2072 from
Phase II study. (HMPC: noise-free signals only; Qy = [0, 10]; αr = 0.7; αd = 0; fa = 1;
p = 25, m = 20.

input comprehensive participant-validated models that are used for control implementation.

However, the effects of this input on system outputs need to be accounted before comparing

the controlled outputs with the reference signals. The dynamical responses of EI resulted

from u3 can be forecasted using the identified model parameters and used as a feed forward

signal introduced into HMPC.

The measured disturbance for GWG is a somewhat subtle. The reference signal used

for the control system is the daily maternal weight gain, GWG, which is the first derivative

of maternal weight. However, the controlled output provided by the integrated partici-

pant validated model is the change of GWG (∆GWG), that is, the second derivative of

weight. Therefore, before compared with the set-point, the actual model output in terms

of ∆GWG needs to be added with the baseline GWG that incurs without the presence

of the intervention. This is resulted from the baseline EI, PA and instantaneous RMR.
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Figure 6.6: Measured disturbance signals in the controlled outputs that will be introduced
in feedforward fashion into the HMPC (for PID 2072).

In addition, the changes in EI and PA kcal resulted from u3 also need to be taken into

account here. Once these kcal values are introduced into the energy balance model, they

will lead to an weight gain accumulated over time. This accumulated weight gain and the

EI change that is mentioned earlier due to u3 are plotted for PID 2072 from Phase II

study in Fig. 6.6 and will be used as measured disturbance signals to improve the HMPC

performance. The measured disturbance signals are varying across different participants.

Hence, the signals demonstrated in Fig. 6.6 will only be used for PID 2072 when applying

closed-loop implementation with HMPC specifically for this participant.

For the case in Scenario 3, all the adjustable parameters are set to the same values

as in Scenario 1, except for αd set to 0.9, indicating slow measured disturbance rejection.

The results of comparing HMPC with standard IF–THEN rules for PID 2072 are shown in

Fig. 6.7.

Note that the disturbance signal for weight gain output does not become ramp until mid

stage of gestation (around day 150). Hence, Type I filter is adequate for good disturbance

rejection until day 150, after which the filter is still good enough for the purpose despite a

small bias from the target as can be seen from the results. The performance of Type II filer
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Figure 6.7: HMPC results comparison with standard IF–THEN rules for PID 2072 from
Phase II study. (HMPC: noise-free signals only; Qy = [0, 10]; αr = 0; αd = 0.9, Type I
filter for measured disturbance rejection; fa = 1; p = 25, m = 20.

(αd = 0.9 and ω = 10) for disturbance rejection for PID 2072 is shown in Fig. 6.8 where it

gives better performance than Type I with no offset.

Scenario 4: Unmeasured Disturbance Rejection

In this case, measurement noise in weight will be manually introduced to simulate a practical

setting. The performance of the controller will be affected by adjusting the tuning parameter

fa as described in 6.1.3, which ranges from 0 to 1. The controller performance compared to

standard IF–THEN rules with fa = 1, 0.1 for PID 2072 are presented in Fig. 6.9 and 6.10

respectively. Here, the covariance of the white noise signal is set to 0.5 and the same seed

for noise signals is used in Fig. 6.9 and 6.10.

As seen from the results, the HMPC reacts to the participant intervention outcomes

much faster than standard IF–THEN rules to successfully control the weight within the

guidelines, while the decision of stepping up the dosages from standard IF–THEN is appar-
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Figure 6.8: HMPC results comparison with standard IF–THEN rules for PID 2072 from
Phase II study. (HMPC: noise-free signals only; Qy = [0, 10]; αr = 0; αd = 0.9; ω = 10,
Type II filer for measured disturbance rejection; fa = 1; p = 25, m = 20.
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Figure 6.9: HMPC results comparison with standard IF–THEN rules for PID 2072 from
Phase II study. (HMPC: noise signal included (covariance R = 0.5); Qy = [0, 10]; αr =
αd = 0; Type I filer for measured disturbance rejection; fa = 1; p = 25, m = 20.
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Figure 6.10: HMPC results comparison with standard IF–THEN rules for PID 2072
from Phase II study. (HMPC: noise signal included (covariance R = 0.5); Qy = [0, 10];
αr = αd = 0; Type I filer for measured disturbance rejection; fa = 0.1; p = 25, m = 20.
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Figure 6.11: HMPC results comparison with standard IF–THEN rules for PID 2072 from
Phase II study. (HMPC: noise signal included (covariance R = 0.5); Qy = [0, 10]; αr = 0.9;
αd = 0; Type I filer for measured disturbance rejection; fa = 1; p = 25, m = 20.
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Figure 6.12: HMPC results comparison with standard IF–THEN rules for PID 2062 from
Phase II study. (HMPC: noise-free signals only; Qy = [0, 10]; αr = 0.9; αd = 0.9; Type I
filer for measured disturbance rejection with; fa = 1; p = 28, m = 25.
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Figure 6.13: HMPC results comparison with standard IF–THEN rules for PID 2062 from
Phase II study. (HMPC: noise signal included (covariance R = 0.5); Qy = [0, 10]; αr = 0.5;
αd = 0.5; Type I filer for measured disturbance rejection; fa = 0.5; p = 28, m = 25.
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ently too late to achieve the weight goal. The speed of unmeasured disturbance rejection

is proportional to fa. As fa approaches zero, the state estimator increasingly ignores the

prediction error correction, and the control solution is mainly determined by the determin-

istic model and the feedforward anticipation signal. On the other hand, the state estimator

tries to compensate for all prediction error as fa approaches 1, and consequently the con-

troller might become extremely aggressive. Thus, by adjusting fa, the user can directly

influence unmeasured disturbance rejection, which is more intuitive than tuning with move

suppression in the traditional MPC formulation. In Fig. 6.9 when fa = 1, the controller

relies more on measurements, leading to higher norm than using the same noise signals but

with fa = 0.1 as in Fig. 6.10. The performance of the HMPC with fa = 1 can alternatively

be improved by detuning the speed of reference tracking by increasing αr to 0.9 as shown

in Fig. 6.11.

Thus far, the comparison of HMPC versus standard IF–THEN has been illustrated with

single participant-validated model for PID 2072. The norms from HMPC and IF–THEN

rules for the scenarios discussed above are tabulated in Table 6.2, which clearly shows

that the norm from standard IF–THEN is generally greater than HMPC. In Fig. 6.12

and 6.13, the participant-validated model for PID 2062 was used for further demonstration

of these two closed-loop algorithms, where a noise-free case and a noise-corrupted scenario

are shown respectively to illustrate that HMPC can achieve superior performance than

simple IF–THEN rules.

6.2.2 HMPC versus HMZ IF–THEN Rules

The demonstration of the standard IF–THEN rules in previous section is mostly for the

purpose of parallel comparison with HMPC decision rules. In the HMZ study, the IF–THEN

rules that were used for actual interventions are different from the standard IF–THEN rules

presented previously due to practical considerations. The differences in the two IF–THEN

decision frameworks are reflected in the following aspects. First of all, HMZ intervention

sessions were planned in a four-weeks cycle, during which dosage dosage changes were not
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Table 6.2: Tabulation of adjustable parameters and norms from HMPC and norms from
standard IF–THEN rules for different scenarios involved in Section 6.2.1.

HMPC IF–THEN

PID
Noise

αr αd ω fa p m Qy
norm norm

R = 0.5 GWG EI GWG EI

2072

N

0 0 – 1 25 20 [0,10] 2.7 1498 21 2246

0 0 – 1 25 20 [0.1,10] 11.2 1104 21 2246

0.7 0 – 1 25 20 [0,10] 2.8 1595 21 2246

0 0.9 – 1 25 20 [0,10] 5.4 1225 21 2246

0 0.9 10 1 25 20 [0,10] 5.1 1643 21 2246

Y

0 0 – 1 25 20 [0,10] 18 1775 46 2449

0 0 – 0.1 25 20 [0,10] 8.8 1531 46 2449

0.9 0 – 1 25 20 [0,10] 10.3 1773 46 2449

2062
N 0.9 0.9 – 1 28 25 [0,10] 4.4 4310 24 5401

Y 0.5 0.5 – 0.5 28 25 [0,10] 14.2 4581 26 4397

allowed once a decision had been given and delivered. This is different from the two-weeks

timeframe for decision making employed in the standard IF-THEN. One reason for the

HMZ intervention being set up with a four-weeks cycle is that some of the intervention

components, for example, the active learning component for healthy eating was designed in

modules that included four classes for each module; participants took one class every week

when they visited the clinics. Hence, the active learning session cannot be completed in less

than four weeks.

In addition, there was a one-week delay between decision making and actual imple-

mentation of dosage changes in the HMZ IF–THEN. If it is determined that a participant

needs dosage increase and extra sessions accordingly, this would involve scheduling efforts

between a participant and clinical staff (fitness instructors for example): the participant

needs to coordinate time with instructors and adjust her schedules to accommodate for the
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Table 6.3: Summary of dosage augmentations rules for HMZ intervention.

Options Adaptation

Baseline Base dose for all components

Step up 1 First augmentation of healthy eating and physical activity active learning

Step up 2 Second augmentation of healthy eating and physical activity active learning

Step up 3 Third augmentation of healthy eating and physical activity active learning

additional sessions. Hence, this needs to be planned ahead if an extra intervention session

is necessary. Based on this consideration, decision making for dosage changes in the HMZ

study is pushed back a week earlier before an actual implementation starts, i.e., the decision

making occurs at the end of the third week to prepare for an implementation of any dosage

changes for next intervention cycle.

Furthermore, the decision rules only allow for dosage augmentation without recommend-

ing decreasing intervention potency, which is different from the original HMPC setting and

standard IF-THEN. It also needs to be noted that an augmentation of two components (uHE2

and uPA2 ) is implemented at the same time in HMZ if a dosage increase is necessary. This

leads to a new sequence table as shown in Table 6.3, which contrasts with the sequential

rules that HMPC decision policy and standard IF–THEN rules follow (as specified in Table

6.1). The reduced speed in responding to intervention outcomes due to longer time frame

for decisions in HMZ IF–THEN rules hopefully can be compensated by higher intervention

intensities through two steps-up at the same time.

What also makes the two IF-THEN decision rules different is that HMZ IF–THEN

incorporates anticipation of future weight gain into decision making. Participant GWG is

evaluated weekly; if her weekly GWG from the past two weeks is over the IOM recommended

weekly GWG at the time for decisions, the dosage will be augmented even if her total weight

is still within upper bounds of the IOM recommended total weight.

All these intervention settings employed in the HMZ study, such as the delay between

decision making and actual step-up implementation and other constraints are incorporated
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in HMZ IF–THEN rules to ensure that it is representative of real cases. For the purpose

of parallel comparison, the HMPC decision policy is slightly modified to only recommend

dosage augmentations when compared with the HMZ IF–THEN rules. This indicates that,

for scenarios in need of dosage reductions to achieve optimal responses, the intervention

components remain unchanged for HMPC simulations in stead of getting decremented.

Hence, a decrease in controller performance will be expected if compared to the original

HMPC formulation. The “augmentation only” setting for HMPC can be implemented by

modifying the move-size constraints to 0 ≤ ∆uj(k) ≤ 1 for j ∈ {1, 2}. Other constraints

in the HMPC formulations are kept the same: these include the two-weeks time frame for

decisions and using the same sequential decision rules following Table 6.1.

The results of comparing HMPC with HMZ IF–THEN decision rules for PID 2072 are

presented in Fig. 6.14 to Fig. 6.19: Fig. 6.14 shows the results with noise-free signals, while

the other figures present the results with measurement noise added in GWG output to

simulate real-life setting (covariance of GWG noise R = 0.5). Note that the noise sequence

is the same in Fig. 6.15 and 6.16, while Fig. 6.17, 6.18 and 6.19 use a different realization

of noise signal.

Fig. 6.15 and 6.16 compare the HMPC results using different values of adjustable pa-

rameters. The performance of HMPC in Fig. 6.15 with fa = 1 can be improved by detuning

fa and other parameters as shown in Fig. 6.16. To examine the performances of these two

decision rules under different uncertainties, another set of noise sequence is introduced and

the results are shown in Fig. 6.17, 6.18 and 6.19.

From comparing the HMPC and HMZ IF–THEN under different circumstances, it

should be noted that, the HMPC provides a good performance at the early stage of in-

tervention, but it is likely to observe accumulated control errors at the end (more often

to observe simulated weight lower than guidelines). This is because the HMPC optimizes

control actions in response to real-time need by augmenting dosages at the beginning, but

when dosage reductions are needed in later stage, it is not implementable due to the fact
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that the controller has been modified to only allow for dosage augmentations. It inevitably

results in accumulated control errors. This can be interpreted in a more intuitive way: when

participant actual GWG has met the recommended GWG, she no longer needs such intense

interventions. If the intervention intensity is still kept at a high level, her weight gain is

low, leading to a total weight below guidelines.

Alternatively, detuning the controller by slowing down the speed of set-point tracking

and disturbance rejections would be a good solution for this situation. Slowing down the

response of the controller to the need of more intense interventions from the beginning

of the intervention can push back dosage augmentations, which significantly reduce the

accumulated errors and improve the performance. The benefits from controller detuning

is more significant when using the participant-validated model obtained for PID 2062, the

second participant demonstration in Chapter 5.

Fig. 6.20 and 6.21 compare the fastest response and the detuned actions from HMPC

implementation using noise-free signals respectively, where the norm inW was brought down

from 15 to 5.1 by pushing back the first augmentation of PA active learning by 6 decision

cycles (12 weeks). For the cases with the addition of noise as shown in Fig. 6.22 and 6.23,

detuning the controller successfully improves the closed-loop performance by delaying the

augmentations of both HE and PA active learning.

From Fig. 6.20 to 6.23, one might also question the superiority of HMPC over HMZ IF–

THEN from the presented closed-loop responses for this participant, because the norm from

HMPC is not necessarily as low as HMZ IF-THEN but seems to be completely depending

on the tuning of the controller. However, Fig. 6.20 where another realization of noise

sequence is used for simulation clearly shows that the HMZ IF–THEN cannot ensure a

good performance under certain circumstances while HMPC is absolutely more stable.

The tabulation of the adjustable parameters and the norm from HMPC and the norm

from HMZ IF–THEN rules can be found in Table 6.5. From the demonstrations above, it can

be concluded that HMPC can achieve better intervention outcomes than HMZ IF–THEN
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Table 6.4: Summary of dosage augmentations rules for HMZ intervention.

Options Adaptation

Baseline Base dose for all components

Step up 1 First augmentation of healthy eating and physical activity active learning

Step up 2 Second augmentation of healthy eating and physical activity active learning

Step up 3 Third augmentation of healthy eating and physical activity active learning
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Figure 6.14: HMPC results comparison with HMZ IF–THEN rules for PID 2072 from
Phase II study. (HMPC: noise-free signals only; Qy = [0, 10]; αr = αd = 0; Type I filer for
measured disturbance rejection; fa = 1; p = 25, m = 20.

rules in general, and the adjustable parameters from the 3DoF tuning framework provide

us the flexibility to accommodate variability of implementation due to real-life constraints.

The interventions given by IF–THEN rules are usually delayed or too aggressive, and the

decision from IF–THEN is also substantially subject to measurement noise. On the other

hand, the performance of HMPC is more consistent under a variety of uncertainties.
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Figure 6.15: HMPC results comparison with HMZ IF–THEN rules for PID 2072 from
Phase II study. (HMPC: noise signal included (covariance R = 0.5); Qy = [0, 10]; αr =
αd = 0; Type I filer for measured disturbance rejection; fa = 1; p = 25, m = 20.
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Figure 6.16: HMPC results comparison with HMZ IF–THEN rules for PID 2072 from
Phase II study. (HMPC: noise signal included (covariance R = 0.5); Qy = [0, 10]; αr =
αd = 0.3; Type I filer for measured disturbance rejection; fa = 0.3; p = 25, m = 20.
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Figure 6.17: HMPC results comparison with HMZ IF–THEN rules for PID 2072 from
Phase II study. (HMPC: noise signal included (covariance R = 0.5); Qy = [0, 10]; αr =
αd = 0; Type I filer for measured disturbance rejection; fa = 1; p = 25, m = 20.

0 50 100 150 200 250 300

70

75

80

W (kg)

HMPC (norm = 14.3)

HMZ IF-THEN rules (norm = 32)

IOM guidelines

0 50 100 150 200 250 300

2000

2500

3000

EI (kcal)

HMPC (norm = 2125)

HMZ IF-THEN rules (norm = 2121)

IOM guidelines

0 50 100 150 200 250 300

390

392

394

396
PA (kcal)

HMPC

HMZ IF-THEN rules

0 50 100 150 200 250 300

GA (days)

0

1

2

3
HE Active Learning

HMPC

HMZ IF-THEN rules

0 50 100 150 200 250 300

GA (days)

0

1

2

3
PA Active Learning

HMPC

HMZ IF-THEN rules

0 50 100 150 200 250 300
0

0.5

1
Baseline

HMPC

HMZ IF-THEN rules

Figure 6.18: HMPC results comparison with HMZ IF–THEN rules for PID 2072 from
Phase II study. (HMPC: noise signal included (covariance R = 0.5); Qy = [0, 10]; αr =
αd = 0; Type I filer for measured disturbance rejection; fa = 0.5; p = 25, m = 20.
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Figure 6.19: HMPC results comparison with HMZ IF–THEN rules for PID 2072 from
Phase II study. (HMPC: noise signal included (covariance R = 0.5); Qy = [0, 10]; αr =
αd = 0.3; Type I filer for measured disturbance rejection; fa = 0.1; p = 25, m = 20.
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Figure 6.20: HMPC results comparison with HMZ IF–THEN rules for PID 2062 from
Phase II study. (HMPC: Qy = [0, 10]; αr = αd = 0; Type I filer for measured disturbance
rejection; fa = 1; p = 28, m = 25.
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Figure 6.21: HMPC results comparison with HMZ IF–THEN rules for PID 2062 from
Phase II study. (HMPC: Qy = [0, 10]; αr = αd = 0.9; Type I filer for measured disturbance
rejection; fa = 0.9; p = 28, m = 25.
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Figure 6.22: HMPC results comparison with HMZ IF–THEN rules for PID 2062 from
Phase II study. (Noise signal included (covariance R = 0.5, realization 1); HMPC: Qy =
[0, 10]; αr = αd = 0; Type I filer for measured disturbance rejection; fa = 1; p = 28,
m = 25.
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Figure 6.23: HMPC results comparison with HMZ IF–THEN rules for PID 2062 from
Phase II study. (Noise signal included (covariance R = 0.5, realization 1); HMPC: Qy =
[0, 10]; αr = αd = 0.9; Type I filer for measured disturbance rejection; fa = 0.5; p = 28,
m = 25.

6.3 Conclusions

In this chapter, an appealing HMPC framework based on MLD structure for the de-

sign of optimized behavioral interventions is presented. It has been demonstrated that the

design of such an HMPC controller can systematically assign the dosages of intervention

components in a pre-determined sequenced manner. Specifically, relying on the additional

constraints using binary variables in the MLD structure, the logical specifications associated

with the sequential decision policies in adaptive interventions can be easily addressed, and

embedded into HMPC formulation. The very common clinical requirement that the inter-

vention decisions are made less frequently than the sampling interval is also systematically

taken into account by adding extra constraints to allow for dosage changes only at fixed

time frames.

In prior work, the developed HMPC algorithms have only been tested with hypothetical
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Figure 6.24: HMPC results comparison with HMZ IF–THEN rules for PID 2062 from
Phase II study. (Noise signal included (covariance R = 0.5, realization 2); HMPC: Qy =
[0, 10]; αr = αd = 0.5; Type I filer for measured disturbance rejection; fa = 0.7; p = 28,
m = 25.

participants based on assumed parameter values. Now with the participant data avail-

able from Phase II study of the HMZ, the control problems can be reformulated based on

participant-validated models as presented in Chapter 5. To represent actual circumstances

in the HMZ study, the developed HMPC framework can be adjusted to accommodate real-

life settings, in order for a parallel comparison with different IF–THEN rules.

Two simulation studies using the integrated participant-validate models are presented

in this chapter: one study to compare HMPC with standard IF–THEN rules that follow

the same sequence rules as proposed for the HMPC, and one study to compare with HMZ

IF–THEN rules that is more close to actual interventions in HMZ study. Both studies

demonstrate the superior performance of the HMPC to the simple IF–THEN rules. The

performance of HMPC can be tuned with a set of adjustable parameters which can inde-

pendently change the speed of set-point tracking and the speed of measured/unmeasured

disturbance rejection. If the control action is too aggressive, the performance can be im-
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Table 6.5: Tabulation of adjustable parameters and norms from HMPC and norms from
HMZ IF–THEN rules for different scenarios involved in Section 6.2.2.

HMPC HMZ IF–THEN

PID Noise αr αd ω fa p m Qy
norm norm

GWG EI GWG EI

2072

N 0 0 – 1 25 20 [0,10] 3 1267 36 2135

Y1
0 0 – 1 25 20 [0,10] 10.4 1939 37 2135

0.3 0.3 – 0.3 25 20 [0,10] 9.8 1609 37 2135

Y2

0 0 – 1 25 20 [0,10] 18.2 2138 32 2121

0 0 – 0.5 25 20 [0,10] 14.3 2125 32 2121

0.3 0.3 – 0.1 25 20 [0,10] 10.5 1410 32 2121

2062

N
0 0 – 1 25 20 [0,10] 15 4037 8 4281

0.9 0.9 – 0.9 28 25 [0,10] 5.1 4002 8 4281

Y
0 0 – 1 28 25 [0,10] 17.1 4037 12 4275

0.9 0.9 – 0.5 25 20 [0,10] 10.8 4264 12 4275

proved by detuning the controller, and vice versa. Hence, it can properly adjust participant

responses under a variety of uncertainties.

In addition, it has been found that HMPC with setpoints on GWG and EI is less

preferable to a setpoint-only on GWG (assigning zero weight on EI tracking), especially

considering the ballpark values used for EI guidelines. This work further proves the poten-

tial that HMPC-based intervention can better improve the participant’s response, increase

the effectiveness of the intervention and enable less waste of resource relying on the dynam-

ical model, measured outcomes, and predicted measured disturbance (if applicable).
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Chapter 7

SUMMARY, CONCLUSIONS AND FUTURE DIRECTIONS

7.1 Conclusions

This dissertation has demonstrated how system identification, state estimation ap-

proaches can be used to assist in dynamical systems modeling, and further enhance the

performance of the closed-loop control system for interventions. Excessive maternal weight

gain during pregnancy represents a major public health concern that calls for novel and ef-

fective gestational weight management interventions. Healthy Mom Zone study (HMZ) aims

to develop and validate an individually tailored intensively adaptive intervention, and has

demonstrated significant potential in effectively managing gestational weight gain (GWG)

for overweight or obese pregnant women (OW/OBPW).

Prior work by Dong (2014) proposed a comprehensive dynamical systems model for

GWG behavioral interventions, and a closed-loop framework based on Hybrid Model Pre-

dictive Control (HMPC) algorithm designed for adaptive interventions. This model and

control system were only tested with hypothetical data. In this work, the model and con-

trol algorithm have been re-evaluated with participant data from the HMZ study, and efforts

have been made to address issues of erroneous self-report, missing data and measurement

noise that are commonly observed in real-life interventions.

From the evaluation of the energy balance (EB) model against participant data in the

HMZ study, it has been found that underreporting of energy intake is a significant issue of

concern for the use of EB model as well as for the implementation of closed-loop control sys-

tems. This issue is common in weight interventions relying on self-reports, and introduces

significant error in the input measurements. To understand the extent of underreporting,

algebraic estimation of energy intake for participants are obtained by back-calculation from

a discretized version of the reformulated EB model. Furthermore, the formulation of a
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semi-physical identification problem using batch data to estimate the extent of systematic

underreporting is proposed; a global estimation approach is applied to solve the identifica-

tion problem and contrasted with a local modeling technique based on “Model-on-Demand”

concept. To better address the issue of noise in the measurements, a recursive method based

on Kalman filtering is also developed to enable sequential estimation of energy intake in

real time. All the three methods for estimating energy intake have been compared across

participants and the pros and cons for each method have been analyzed comprehensively.

From the estimation results, it has been realized that understanding energy intake un-

derreporting is an important consideration in a gestational weight control intervention for

overweight or obese pregnant women, which must be recognized in order to obtain meaning-

ful weight predictions from energy balance models. The identification and characterization

of energy intake underreporting is helpful in providing informative guidance to participants

in the course of the intervention, and also improves the usefulness of energy balance mod-

eling as part of an intensively adaptive intervention. From the examination of the three

developed methods, it is shown that all are amenable for use in real-time clinical settings,

which remains a topic for further study.

In the addition to the estimation work using the energy balance model, substantial

efforts have also been dedicated to semi-physical identification of a behavioral model. The

behavioral model, as described in Chapter 2, incorporates some well-accepted concepts in

psychology and behavioral science, such as the Theory of Planned Behavior (TPB), self-

regulation theory and intervention delivery dynamics. However, the parameters involved in

the theoretical model need to be identified for individual participants in order to be used

for the design of adaptive interventions, or more specifically, for control purpose.

System identification analyses based on HMZ Phase I participants were useful to learn

how to modify the intervention and measurement protocols and how to make other im-

provements for Phase II Study. Specifically, after examining the variation, correlation and

dynamics of the TPB constructs, it was decided to only keep the subjective norm (SN),
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perceived behavioral control (PBC), and intention (INT) in the model structure and to in-

crease the measurement frequency of these constructs from monthly to weekly for Phase II

study while measuring the other constructs less frequently on a monthly basis. The modi-

fied identification techniques and model structures are tested on Phase II participants, from

which participant-validated models are obtained and used for closed-loop implementation

and demonstration.

The HMPC algorithm to assign optimized dosages in response to participant real time

intervention outcomes is designed based on a Mixed Logical Dynamical framework which

can address the categorical dosage components, and convert sequential decision rules and

other clinical considerations into mixed-integer linear constraints. The time-varying adap-

tive framework developed based on HMPC algorithm has been tested with participant-

validated models in this work and compared to different “IF–THEN” rules, one of these

patterned after the decision rules used in HMZ Phase II study. The three degree of freedom

parametrization displays ease of tuning that is amenable to robust performance in closed-

loop systems. The HMPC shows consistent superior performance than “IF–THEN” rules

under different uncertainties.

In this work, substantial research has been conducted based on the participant data from

HMZ study, from which we have developed multiple estimation algorithms that are able to

address the issues of observation loss and measurement noise in the collected data. The

estimation approaches and the control algorithms designed in this study have demonstrated

the potential of increasing intervention effectiveness and improving participant response.

Focus of our work can be extended to the generalization of the developed algorithms for

broader applications in the future.

7.2 Future Research Directions

As this dissertation presents an initial demonstration of the potential for real-world

applications of adaptive sequential behavioral interventions and provides a plausible “proof

of concept” of the approach, there are several interesting directions for future work.
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7.2.1 Gain-Scheduling Parameter Varying Control for GWG Intervention

In the work so far, it has been assumed that the comprehensive model for individual

participants is a linear time-invariant model. However, the variations of participant’s atti-

tude and behavior during pregnancy indicate the potential parameter changes in the model

in real life, especially for pregnant women from different stages of gestation, leading to a

linear time-varying model. Therefore, instead of using a single participant-validated model

by averaging the dynamics of individual woman over the span of entire gestation, two or

more models can be obtained by partitioning the collected data set into different stages in

gestation for semi-physical identification analyses. The intervention problems with time-

varying models can be addressed using gain scheduling parameter varying control, which

will help better improve the prediction of controlled variables over the receding horizon

using an HMPC strategy.

This model scheduling strategy for HMPC control algorithm has been proposed in pre-

vious work (Dong (2014)) and tested with hypothetical participants. Re-evaluating the

algorithm with HMZ participant data will provide valuable insights into the design. It has

to be noted that such exploration is subject to the limitations in the size of the available

data set.

7.2.2 HMPC applied in real-life intervention settings

System identification of the participant-validated models and the ensuing implementa-

tion of the closed-loop control schemes in this work are performed after the actual inter-

ventions and data collection are completed for Phase II study. Hence HMPC-based control

was not performed online, i.e., the HMPC was not used to determine dosage changes during

the Phase II HMZ intervention. As a direction for future research, it would be useful to

examine how models could be obtained for the intervention in practice.

For the purpose of closed-loop implementation, a model that describes behavioral dy-

namics for individual participants during gestation is necessary but will not be available for
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women going through first pregnancy. Hence, model estimation might need to be performed

before or at the same time with control implementation for real-life settings. Regardless

of what strategy to be used for addressing such problems, intensive data collection may

be necessary. However, it is difficult to obtain intensive measurements that favors online

identification during pregnancy. Considering intervention participants as a special group of

populations (OW/OBPW), the risks of pregnancy and participant burden are important

issues to be accounted for the design of measurement protocol. These issues bring further

challenges to the success of real-life implementations.

With these considerations in mind, two options that might be feasible for this problem

are listed below:

1. Develop a model to describe the averaged behavioral dynamics for women from differ-

ent sub-populations, for example, by BMI, or age. Such a model can be obtained by

performing semi-physical identification over grouped participant data, leading to an

averaged model suited for corresponding populations. Hence, parts of the model can

be specified before an intervention starts based on the category a participant belongs

to.

2. Develop an initial model and recursively adapt the model parameters based on new

measurements as the intervention moves along. The initial model can be either an

averaged model proposed above, or an individualized model based on measurements

from baseline of the intervention. For the latter option of obtaining an individualized

model from start, a more intensive measurement schedule needs to be planned at the

early stage of interventions in order to make the initial model estimation possible,

but it can be less intensive during the model update phase. As mentioned earlier,

participant burden and the risks of pregnancy have to be taken into account carefully

if data needs to intensively collected. In addition, if such a time varying model is

used, the HMPC needs to be revised to incorporate adaptive control performance.
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7.2.3 Incorporate developed estimation approaches for energy intake into HMPC frame-

work

As described in earlier chapters, the HMPC algorithm relies on energy intake (one of

the inputs the controller uses) to determine the optimal control action. The self-reported

energy intake during interventions are subject to underreporting issue, hence cannot be

used for control purpose. Chapter 3 and 4 present a variety of estimation methods with

the ultimate goal to provide a reliable energy intake estimate to enhance the performance

of closed-loop control.

The estimation methods developed in this work have not yet been tested in real in-

tervention applications or used in collaboration of HMPC framework. Among these three

methods, the first method of using algebraic back-calculation is the easiest and quickest

to implement and might be better of practical use for behavioral scientists. However, this

method cannot provide estimates instantaneously but has to wait for a few days. In addition

to the delay, its use is substantially subject to noise and missing data. The semi-physical

identification methods estimate systematic underreporting using self-reported energy in-

take and can provide point-wise estimates as long as the self-reports are available. But this

method is sensitive to noise as well, and significant input noise can generate biased esti-

mates. From this standpoint, the Kalman filtering approach is a more rigorous approach

to the other two methods, and gives real-time estimation of energy intake in the presence

of measurement loss.

Based on these pros and cons for each method, the Kalman filtering approach that can

address intermittent measurements is the most suitable option to combine with the HMPC

for online optimization. It will be useful to evaluate the algorithm in practice and further

assist the interventions for real.
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