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ABSTRACT 

Proprioception is the sense of body position, movement, force, and effort. Loss of 

proprioception can affect planning and control of limb and body movements, negatively 

impacting activities of daily living and quality of life. Assessments employing planar 

robots have shown that proprioceptive sensitivity is directionally dependent within the 

horizontal plane however, few studies have looked at proprioceptive sensitivity in 3d space. 

In addition, the extent to which proprioceptive sensitivity is modifiable by factors such as 

exogenous neuromodulation is unclear. To investigate proprioceptive sensitivity in 3d we 

developed a novel experimental paradigm employing a 7-DoF robot arm, which enables 

reliable testing of arm proprioception along arbitrary paths in 3d space, including vertical 

motion which has previously been neglected. A participant’s right arm was coupled to a 

trough held by the robot that stabilized the wrist and forearm, allowing for changes in 

configuration only at the elbow and shoulder. Sensitivity to imposed displacements of the 

endpoint of the arm were evaluated using a “same/different” task, where participant’s 

hands were moved 1-4 cm from a previously visited reference position. A measure of 

sensitivity (d’) was compared across 6 movement directions and between 2 postures. For 

all directions, sensitivity increased monotonically as the distance from the reference 

location increased. Sensitivity was also shown to be anisotropic (directionally dependent) 

which has implications for our understanding of the planning and control of reaching 

movements in 3d space.  

The effect of neuromodulation on proprioceptive sensitivity was assessed using 

transcutaneous electrical nerve stimulation (TENS), which has been shown to have 

beneficial effects on human cognitive and sensorimotor performance in other contexts. In 
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this pilot study the effects of two frequencies (30hz and 300hz) and three electrode 

configurations were examined. No effect of electrode configuration was found, however 

sensitivity with 30hz stimulation was significantly lower than with 300hz stimulation 

(which was similar to sensitivity without stimulation). Although TENS was shown to 

modulate proprioceptive sensitivity, additional experiments are required to determine if 

TENS can produce enhancement rather than depression of sensitivity which would have 

positive implications for rehabilitation of proprioceptive deficits arising from stroke and 

other disorders. 
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CHAPTER 1 INTRODUCTION 

Overview of Proprioceptive Function 

Proprioception comprises the senses of body position, movement, force, and effort. 

This sense is extremely important for typical functioning and movement. This sense greatly 

contributes to activities of daily living (ADLs) such as tying your shoes, walking without 

having to watch your feet, and picking up a glass of water among many, many other 

activities. 

Anatomy and Physiology 

Proprioceptors 

Any change in the configuration of a limb can activate proprioceptive receptors in 

joints, muscles, and skin. The main contributor towards proprioceptive sensation are the 

muscle spindles that are found in capsules within muscles although Golgi tendon organs as 

well as stretch receptors also contribute (Proske & Gandevia, 2012). There are different 

types of fibers within the capsule that are responsible for different components of the 

spindle response. A diagram of these fiber types can be found in Figure 1. Type 1a afferent 

fibers send signals related to the dynamic changes of the muscle as an indication of when 

muscle length is changing, and the rate of the discharge is correlated with the velocity of 

the change. These 1a fibers split within the capsule and form annulospiral endings around 

the centers of bag 1, 2 and chain fibers. Bag 1 and 2 fibers have a fusiform enlargement in 

the center that doesn’t contain any contractile units. Type 2 fibers also provide 

proprioceptive information but signal the length of the muscle. They produce flower like 

sprays in the bag 2 and chain fibers near the edge of the capsule and not around the fusiform 
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center of bag fibers as 1a fibers do. With type 1a afferents providing dynamic information 

about current movement and the type II afferents providing length information the current 

position and active motion of the muscle can be calculated. 

Another component of the muscle spindle is the gamma motor neuron enervation 

which helps to maintain a correct tautness in the spindle to provide continued sensitivity 

with muscle stretches and relaxations. The subtypes of gamma motor neurons are the 

dynamic and static. Dynamic gamma neurons enervate the Bag 1 fibers and, as the name 

states, provides dynamic input to tighten the fiber or allow it to relax to the have the correct 

tension for that moment. The static gamma neurons provide consistent firing to bag 2 fibers 

and chain fibers. These provide static input that provides some small amount of contraction 

and keeps the spindle taut with the muscle it is housed within but is not dynamically related 

to the activity of the muscle. 

The Golgi tendon organ, joint receptors, and skin stretch receptors also contribute 

towards an overall proprioceptive sense. A diagram of these receptors can be found in 

Figure 2. Specifically, Golgi tendon organs are responsible for providing information about 

the amount of tension acting on a muscle. A Golgi tendon organ has attachments to 

approximately 10 muscle fibers from different motor units attached near the tendon. 

Between these connections and multiple Golgi tendon organs information about the muscle 

tension can be gathered. 

Joint receptors contribution to large movements has been shown to be minimal and 

most likely act mostly as a limit detectors in joints. Although some evidence has shown 
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their role to be more important in some mid-range motion of finger joints (F. J. Clark, 

Grigg, & Chapin, 1989; Ferrell, Gandevia, & Mccloskey, 1987).  

Central Processing 

After proprioceptive signals have been generated in the lower part of the body by 

the receptors they travel to the spinal column where they synapse onto Clarke’s column 

(dorsal nucleus) in the spinal cord (Purves et al., 2012). Clarke’s column then projects 

through this dorsal spinocerebellar tract into the cerebellum but also send collaterals to the 

dorsal column nuclei. Proprioceptive signals from the upper body project similarly but 

travel upwards through the fascilus cuneatus in the dorsal columns of the spinal cord and 

synapse in the dorsal column nuclei. Both nuclei then project to the thalamus via the medial 

meniscus. The ventral posterolateral nucleus (VPL) of the thalamus has projections that 

relay these signals into the cortex, typically the somatosensory and association cortices. A 

diagram showing the pathways responsible for conscious perception of proprioception can 

be seen in Figure 3. The figure doesn’t include pathways to the cerebellum that project 

from the medullary nuclei into the cerebellum. 

The cerebellum is involved in many processes of which coordinated and smooth 

motor movements are required. The proprioceptive information from the muscle spindles 

and Golgi tendon organ receptors is believed to be used to correct errors detected by 

comparing the expected outcome from forward model predictions (G. A. Apker, Karimi, 

& Buneo, 2011; Carrozzo, McIntyre, Zago, & Lacquaniti, 1999; R. J. van Beers, Sittig, & 

Denier van der Gon, 1998). This information is typically unconscious activity that helps to 
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correct movement errors and adjust for perturbations caused by the outside world to more 

quickly adapt and reach intended goals.  

Proprioceptive Function During Skilled Motor Behavior 

Furthering our understanding of proprioception is important because of the 

ubiquitous use of proprioception in the performance of typical activities of daily living 

(ADLs), such as reaching, grasping, and manipulation, where it goes largely unnoticed.  

Proprioception is typically imperceptible but still contributes to the planning and 

initiation of appropriate actions, coordinates joint motions during these actions, and assists 

in adapting motor plans to account for external perturbations. For example, reaching in the 

dark to find a light switch, picking up a glass that’s out of view, or walking on an uneven 

surface requires proprioception to guide our movements and update our actions if the 

motion deviates from expectations (Park, Toole, & Lee, 1999; Scheidt, Conditt, Secco, & 

Mussa-Ivaldi, 2005). Impairment of our ability to feel the location of our body in space and 

the actions that we are taking dramatically impacts the planning and control of limb and 

body movement (Ghez, Gordon, & Ghilardi, 1995; Gordon, Ghilardi, & Ghez, 1995). In 

active reaching tasks it was shown that patients with large fiber sensory neuropathy, which 

results in a loss of sense of limb position, were unable to account for inertial aspects of 

limb motion and had difficulty coordinating activation between limb segments to smooth 

trajectories as well as to stop movement once a target had been reached. This resulted in 

inaccuracies in reaching a target location but also showed increased involvement of limb 

segment inertia in the final trajectory of the reaching motion (Gordon et al., 1995). Errors 

in this movement were also largely reduced by providing temporary vision of the arm to 
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participants with proprioceptive deficits. Complete vision of the arm during movements 

allows for compensation of the lack of proprioceptive information. If vision is removed 

then estimates of starting limb position begin to accumulate errors causing reaching 

movements to become less accurate over time (Ghez et al., 1995). Proprioception is 

demonstrated to be critical, in the absence of vision, in maintaining state estimates of arm 

configuration for movement planning as well as for online corrections.  

Contribution of Proprioception to Body Representations 

The deft performance of motor activities is thought to at least in part depend upon 

proprioceptive contributions to ‘embodiment’, a term originally described as “body 

schema” in 1911 as a bottom up, unconscious, dynamic representation using proprioceptive 

information from muscles, joints, and skin (Head & Holmes, 1911). Body schema has been 

adapted over time for use in describing sense of ownership for prosthetics and to 

distinguish between perceptions of self, ‘body image’, and sensorimotor representations of 

the body that facilitate movement, ‘body schema’ (Maravita & Iriki, 2004; Vignemont, 

2010). These terms still have overlap in use although there is evidence showing that 

disruption of one is possible without disruption of the other (Berti & Frassinetti, 2000). 

Embodiment is typically used as an extension of body schema that can extend or be altered 

with tool use, including prosthetics (Berti & Frassinetti, 2000; Garbarini et al., 2015). There 

is ongoing debate about the specific boundaries of these terms and the amount of overlap 

between them neurologically and functionally. Proprioception is specifically involved in 

body schema as it provides information about the configurations of joints in space which 

allows for planning of limb and body movements (Ghez et al., 1995; Gordon et al., 1995). 
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A classic experiment used to induce embodiment in an external object is the body 

transfer illusion or rubber hand illusion (Ehrsson, Spence, & Passingham, 2004). A rubber 

hand is laid out on a table while a participant puts one hand out of view, often behind a 

screen or in a box. The participant is asked to watch the rubber hand as an experimenter 

brushes the rubber hand and the participant’s hidden hand simultaneously on the same 

locations with a paint brush. When asked to point at their hand many people would point 

to the rubber hand (Botvinick & Cohen, 1998; Ehrsson et al., 2004). Embodiment can alter 

a person’s understanding of their body and seems to be a natural consequence of tool use. 

Even using a tool to extend the reach of an arm can lead to an overestimation of arm length 

(Garbarini et al., 2015). Incorporating external objects into our body schema, as shown by 

the rubber hand illusion, may allow for leveraging of predictive models. By incorporating 

proprioceptive information about changes in inertial as well as motor outcomes of actions 

while using those tools would allow for more accurate motor planning and compensation. 

Robotic Assessment of Proprioception 

Assessment of proprioceptive function in a clinical setting is still relatively crude 

despite it’s important for normal sensorimotor functioning. Methodologies for assessing 

proprioception in a more robust way have been developed through the use of planar robotic 

exoskeletons (Dukelow et al., 2010). By using the robot to passively drive one arm to a 

target location and having a subject actively match that location gives information about 

proprioceptive sensation. These experiments can be done with active or passive movements 

that further illustrates the differences in information provided by different modalities of 

motion. These types of studies have also been used to test stroke survivors to measure 
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movement detection threshold to robustly classify proprioceptive deficits (Simo, Botzer, 

Ghez, & Scheidt, 2014). Studies have also tested intact participants to better understand 

typical functioning and limits of proprioception (Cressman & Henriques, 2011; Dukelow, 

Herter, Bagg, & Scott, 2012; Dukelow et al., 2010; Fuentes & Bastian, 2010; Simo et al., 

2014). Most of these have focused on movements in a single horizontal plane and have 

shown that sensitivity is dependent upon the position of the arm and the direction of 

movement on that plane. Recently, proprioception of the wrist has been tested and 

quantified in 3 dimensions of movement (abduction/adduction, pronation/supination, and 

flexion/extension) however similar testing of full arm motion has not yet been conducted 

(Marini et al., 2017). Reaching studies have shown that movements in directions within the 

vertical plane have kinematics that appear to be optimizing for both gravitational and 

inertial forces (Berret et al., 2008; Gentili, Cahouet, & Papaxanthis, 2007; Le Seac’h & 

McIntyre, 2007; Papaxanthis, Pozzo, & Schieppati, 2003). Proprioception may play a key 

role in anticipating these gravitational effects (Dalecki & Bock, 2013; Proske, 2005; 

Soechting, 1982; Soechting & Ross, 1984; Street, Wt, Lemay, & Bertram, 2004; Swinnen, 

Jardin, Meulenbroek, Dounskaia, & Van Den Brandt, 1997; C. J. Worringham & Stelmach, 

1985; Charles J Worringham, Stelmach, & Martin, 1987). These studies suggest that 

proprioception may have different sensitivities to movement within the vertical plane 

which could be a function of movement in relation to a gravitational vector. The 

configuration of the arm may also play a large role in the sensitivity that can be achieved 

for specific movements and positions.  
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Modeling and simulation studies 

Reaching and pointing tasks are very commonly used in research to compare 

contributions of vision, movement control, and position sense to movement errors (G. A. 

Apker et al., 2011; Berkinblit, Fookson, Smetanin, Adamovich, & Poizner, 1995; Blouin 

et al., 1993; Darling & Miller, 1993; Flanders, Tillery, & Soechting, 1992; Ghez et al., 

1995; Goble & Brown, 2008; Gosselin-Kessiby, Kalaska, & Messier, 2009; McIntyre, 

Berthoz, & Lacquaniti, 1998; Sober & Sabes, 2003; Vindras & Viviani, 1998). Some 

studies have specifically examined the outcomes of eliminating visual feedback of reaching 

tasks (Gregory A Apker & Buneo, 2012; Gregory A Apker, Darling, & Buneo, 2010; 

Carrozzo et al., 1999; R. J. van Beers et al., 1998). A lot of information about differences 

between the roles of proprioceptive, visual, and motor function have been garnered by 

studies such as these. However, it is very difficult to complete dissociate these 

contributions in a reaching task where the individual components are so heavily 

intertwined. Any active reaching task is unable to eliminate the contribution of motor 

predictions produced by forward models from sensory components including 

proprioception. Some aspects can be isolated using modeling and simulation (Buneo, 

Boline, Soechting, & Poppele, 1995; Shi & Buneo, 2012; Robert J van Beers, Haggard, 

Wolpert, & Beers, 2004) but instrumented/robotic based assessment methods allow for 

passive movement of the limb which can provide experimental evidence to verify the 

veracity of simulation studies by eliminating motor factors as much as possible. 
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Proprioceptive Dysfunction 

Pathophysiology 

 Proprioceptive deficits can be caused by a wide range of conditions that can affect 

the central nervous system (CNS) and peripheral nervous system (PNS) including, but not 

limited to, stroke, Parkinson’s disease (PD), diabetes, traumatic brain injuries, some 

orthopedic injuries, and peripheral nerve or spinal injuries. For our purposes this discussion 

will be limited to large fiber sensory neuropathy and stroke survivors. These groups can 

suffer from proprioceptive deficits in position sense and kinesthesia as well as higher level 

disorders of body schema including neglect. 

An extreme disorder where embodiment is not intact is called body integrity 

identity disorder, also called somatoparaphrenia, where a person feels that a part of their 

body, typically a hand or foot, does not belong to them and can lead to them seeking 

unnecessary amputations (Brugger & Lenggenhager, 2014). Asomatognosia is another 

similar disembodiment syndrome where a person doesn’t recognize part of their body as 

themselves but the error can be temporarily corrected by presenting evidence that it is their 

own body (Feinberg, Venneri, Simone, Fan, & Northoff, 2010). Typically, embodiment is 

used to describe the sensation of something being part of your own body. A healthy person 

understands the boundaries of their own body and has a sense of ownership over their limbs 

and body which is heavily influenced by proprioceptive sensations. 

There have been cases where people with specific types of neurodegenerative disorders 

have lost nearly all proprioceptive ability without losing muscle control or other sensations. 

Several cases of this type of loss have been documented in Ian Waterman (IW) who lost 
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his sense of touch as well as proprioception from the neck down after a severe flu caused 

an autoimmune response that damaged those nerves but left his motor control intact and 

GL (patient name not disclosed) who also lost all of her proprioceptive function while 

maintaining muscle control (Lafargue, Paillard, Lamarre, & Sirigu, 2003; Rothwell et al., 

1982; Yousif, Cole, Rothwell, & Diedrichsen, 2015). This however is a very rare 

occurrence and more typically a loss of proprioception is one of multiple symptoms caused 

by an underlying disease or condition. People who have these disorders are of great interest 

in research into proprioceptive function because of intact motor control. This allows for 

experimentation of contributions proprioception to tasks when compared to healthy 

participants that would otherwise not be possible. Studies have shown that with 

proprioceptive loss vision is able to provide information for corrections to reaching 

movements however when vision is removed inability to detect arm configuration leads to 

errors in reaching the get worse over time (Ghez et al., 1995; Gordon et al., 1995). A loss 

of proprioception in this way appears to result in many compensatory mechanisms taking 

over to make accommodations that allow for at least some functional control. These 

accommodations can reduce errors caused by missing proprioceptive information. 

 People who have suffered a stroke will often have reduced motor function and some 

may suffer from proprioceptive loss although these deficits are not always comorbid 

(Dukelow et al., 2012). With proprioceptive loss motor functions may be left intact and 

could be functional with vision being able to provide feedback on movements. It may also 

be the case that proprioception is left intact while motor function is lost. Differences in 

functionality can be tested to see what deficits are occurring that could be leading to a loss 
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of ability to perform ADLs. Depending upon the sensation and/or motor function loss the 

type of rehabilitation used should be different to account for the specific deficits of the 

patient. 

Proprioceptive Assessment 

Typically, research into proprioceptive loss arising from central causes focuses on 

stroke patients. Understanding proprioceptive loss more fully could lead to better 

treatments leading to more complete recovery. According to the Center for Disease Control 

(CDC) approximately 795,000 people have a stroke each year and over half of stroke 

survivors have some form of reduced mobility (Benjamin et al., 2017). Approximately 60% 

of stroke survivors show at least some proprioceptive loss which is highly correlated with 

visuospatial neglect (Semrau, Wang, Herter, Scott, & Dukelow, 2015). Motor deficits and 

proprioceptive loss are largely independent after a stroke although proprioception plays a 

critical role in ADLs. The overall cost of care for people who have had a stroke is estimated 

at 34 billion per year in the United States and is the leading cause of serious long term 

disability (Benjamin et al., 2017). 

Research directed at quantifying proprioceptive loss and treatments to aid in 

recovery of proprioceptive function could provide massive quality of life impacts for the 

hundreds of thousands of people that have a stroke every year. Understanding how this loss 

occurs and the best ways to help recovery is critical to helping people with this deficit lead 

the most normal life possible. Although current rehabilitation approaches do attempt to 

address the deficits arising from proprioceptive loss, these efforts are hampered by 

difficulties in accurately and reliably assessing proprioception. Difficulties with current 
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clinical assessments of proprioception, as well as improved methods employing 

instrumented or robotic paradigms are discussed in detail below. 

Clinical Neuro Exam 

Typical proprioceptive assessment in a clinical setting can consist of something as 

simple as a thumb or big-toe localization test which consists of moving a toe and having 

the patient determine the direction of movement. An example of this assessment can be 

seen in Figure 4. This is a very coarse test used to quickly assess if there is a deficit as most 

people with typical functioning proprioception would have no problem correctly 

determining the direction of movement. However, this type of assessment is not easily 

repeatable making it difficult to measure small changes in proprioceptive sensitivity over 

time or with different rehabilitation programs. This type of assessment typically only 

classifies people as having intact proprioception, deficit proprioception, or lack of 

proprioception. Having only these course assessments of proprioception can be useful in a 

clinical setting to quickly determine if a problem exists for which more testing could be 

done. However, if researching the efficacy of different rehabilitation programs more 

precise data about sensitivity and how those may change over time is a necessity. When 

full recovery is not expected or possible then more thorough tests become necessary. 

Standardized tests of sensorimotor function  

Clinically, standardized tests of sensorimotor function are also used to indirectly 

assess proprioceptive function. For example, one commonly used test is the Fugl-Meyer 

(FM) which tests multiple dimensions of motor and sensory function, including 

proprioception, and gives an in-depth view of specific deficit types common in stroke 
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(Fugl-Meyer, Jääskö, Leyman, Olsson, & Steglind, 1975). The FM does take longer than 

some other more targeted assessments but gives a clearer picture of overall deficits that 

patients may have. With a more complete picture patients can get personalized sets of 

exercises to improve their specific deficits during rehabilitation. The FM test does take 

approximately 50-60 minutes to perform so other assessments such as the toe localization 

test are used to screen for gross deficits very quickly to determine if a more complete FM 

test would provide useful information. 

Although the FM is the most commonly used assessment of motor and 

proprioceptive function in the clinic, especially for post-stroke assessment, there are other 

measures that can be used. Other tests are often used in specific circumstances that may 

not be possible with the FM. For example, walking tests, such as the six-minute walk test 

(6MWT) measures the distance a person can walk within 6 minutes but gives a much 

different measure of functioning than the FM. People doing the test must be mobile and 

able to safely walk at least some small amount and can measure functional mobility while 

the FM measures balance and motor function separately. The Berg Balance Scale (BBS) 

also focuses on assessing balance during standing and measures functional ambulation 

which gives more information about a patients risk to fall when moving or standing. Some 

tests are specifically designed to test patients with large or small deficits which may lead 

to a floor or ceiling effect on the result. Any low functioning test designed for people who 

have lost some motor function because of a stroke will not give robust information about 

proprioceptive differences in the typical population because the test incorporates activities 

that any neuro-typical individual should be able to easily accomplish. Specific assessments 
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must be used in the right situation and for the studies presented in this dissertation clinical 

tests would have been ineffective because of the small differences being observed from a 

healthy population. 

Robotic Assessment – 2d 

Prior research has used 2d robotic setups to measure proprioception using many 

different tasks across many different populations (Adamo & Martin, 2009; Ghez et al., 

1995; Goble & Brown, 2008; Gordon et al., 1995; Proske & Gandevia, 2012; Sainburg, 

Ghilardi, Poizner, & Ghez, 1995; R. J. van Beers et al., 1998; Wilson, Wong, & Gribble, 

2010; Wrisberg & Winter, 1985). These tests are easily repeatable with a high reliability 

between experimenters and participants, helping to minimize any subjectivity in the 

assessments. Some studies use measurements of single joint movements, displacement 

detection, and many other proprioceptive tasks for assessment of the degree of 

proprioceptive loss. All these different approaches have their own pros and cons depending 

upon the specific aspect of proprioception being tested. Specifically, some of these tasks 

measure kinesthesia, sense of effort, or position sense and often focus on balance or other 

modalities where proprioception is important. This dissertation is primarily focused on 

upper limb position sense although other methodologies will be briefly discussed. 

A commonly used research robot for upper limb movement and proprioception uses a 

2d planar arm with a manipulandum (Dukelow et al., 2012, 2010; Kenzie, Semrau, Hill, 

Scott, & Dukelow, 2017; Simo et al., 2014; Wilson et al., 2010). They can be moved 

programmatically, be made compliant to the user’s movement, apply different force 

environments or perturbations during movements, and easily connects to control a cursor 
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on an attached screen to create “games” or tasks that are easily understood by participants. 

This allows for easy manipulation of vision during experiments to elucidate specific 

proprioceptive issues as well as visuomotor interactions during tasks. 

Robotic Assessment – 3d 

Some studies have assessed proprioceptive abilities in 3-dimensional (3d) space. An 

early assessment used one hand to set a location (criterion) and then the position had to be 

recreated with the same or opposite hand (Carson, Elliott, Goodman, & Dickinson, 1990). 

This was reproduced with and without having visual information available demonstrating 

that visual information and recreating the position with the same hand resulted in less error. 

Another measured active reaching to targets that had been presented either visually, 

passively by an experimenter moving their arm to the target, or with an active movement 

corrected by the experimenter to bring the finger to the target and then back to the starting 

position before having participant move to the target (Adamovich, Berkinblit, Fookson, & 

Poizner, 1998). This showed that active movements were the most accurately and precisely 

reproduced while passive motions resulted in the most variability. The effect on 

proprioception of having shoulder surgery has also been measured (Kasten et al., 2009). 

The most recent proprioception study quantified three-dimensional (3d) sensitivity of the 

wrist to rotational and angular changes for wrist flexion, extension, adduction, abduction, 

pronation, and supination (Marini et al., 2017). In 2D, differences in proprioception have 

been observed depending upon the location of the limb in the workspace and the direction 

of movement (Dukelow et al., 2012, 2010; Simo et al., 2014; Wilson et al., 2010). This 

begs the question if those results would extrapolate into a 3d space and show similar 
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differences depending on the direction of movement. The first two sets of experiments in 

this dissertation are directly related to expanding upon those studies and developing a more 

complete picture of proprioception than prior ones. 

Treatment and/or Management 

Current physical and occupational therapy for stroke survivors typically focuses on 

motor rehabilitation. Motor deficits are common among stroke survivors and do have a 

major impact on ADLs. Proprioceptive deficits are fairly common, effecting 34-64% of 

stroke survivors (Connell, Lincoln, & Radford, 2008) however less focus is given to these 

deficits despite their also large contribution to ADLs. Motor recovery is not a specific topic 

being discussed here; focus will be on neuromodulation approaches that target 

proprioceptive deficits in order to improve rehabilitation practices in the future. 

Peripheral Stimulation 

Transcranial Direct Current Stimulation 

Transcranial Direct Current Stimulation (TDCS) has been used in many different 

capacities and was an expansion of more invasive stimulation used to initially study muscle 

contractions that had previously been used in animal preparations (Parent, 2004). With 

such a long history of use, TDCS has been used to study or manipulate many different 

systems. Within a clinical setting these range from some of the earliest looking at major 

depression in a patient in 1801 (Parent, 2004), motor function (Santarnecchi et al., 2014), 

pain (Antal et al., 2008; Borckardt et al., 2012; Fregni, Gimenes, et al., 2006; Lefaucheur 

et al., 2017), PD (Benninger et al., 2010; Boggio et al., 2006; Fregni, Boggio, et al., 2006; 

Pereira et al., 2013), stroke (Baker, Rorden, & Fridriksson, 2010; Fregni et al., 2005; Jo et 
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al., 2009; Schlaug, Renga, & Nair, 2008), multiple sclerosis (MS) (Cuypers et al., 2013; 

Ferrucci et al., 2014; Mori et al., 2013), schizophrenia (Brunelin et al., 2012; Göder et al., 

2013; Smith et al., 2015; Vercammen et al., 2011), and many others. Although some studies 

have shown a lack of effect for treatment of some conditions so TDCS is not the panacea 

some have portrayed it to be (Volpato et al., 2013). A stimulation paradigm that is well 

known to the general public is electro-convulsive therapy (ECT) which has a terrible 

reputation but is still known to be very effective for intractable major depression. Less 

torturous options are available that have been shown to be effective include deep brain 

stimulation (DBS) which although does require a surgery could be argued is less invasive 

in terms of long term negative effects than ECT. Current research typically uses small 

amperage (1-2ma) to investigate effects of TDCS as well as probe the functions of 

stimulated structures. Small dosage TDCS is thought to be causing subthreshold alterations 

to resting potential depending on the current flow direction relative to the axons. 

Depending on the location and direction of current flow cortical circuits response can be 

enhanced or dampened (M. A. Nitsche & Paulus, 2001; Priori, Berardelli, Rona, 

Accornero, & Manfredi, 1998). This effect has been shown in motor cortex (Santarnecchi 

et al., 2014), somatosensory cortex (Matsunaga, Nitsche, Tsuji, & Rothwell, 2004), and 

visual cortex (Antal, Ambrus, & Chaieb, 2014). Although it is clear that this stimulation is 

reaching the brain and altering activity there is evidence that a large portion of the 

stimulation is not making it through the skull but is instead traveling through other tissues 

(Miranda, Lomarev, & Hallett, 2006; Underwood, 2016) and action potentials that are 

caused could be traveling outside of targeted brain structures to other neural circuits 
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(Overstreet, Klein, & Helms Tillery, 2013). Even with stimulation reaching the deep 

structures of the brain, as much as 90% of the current being applied is moving through 

surrounding tissue which may be causing stimulation on unintended targets such as cranial 

nerves that would also have downstream cognitive effects (Miranda et al., 2006; 

Underwood, 2016). 

This technology has also been shown to have benefits to working memory, 

attention, and perception (Coffman, Clark, & Parasuraman, 2014). Some of these studies 

have focused on enhancing functional tasks as well as decreasing learning time for those 

tasks with TDCS and have been very promising (V. P. Clark et al., 2012). More studies are 

being done to determine the safety and effectiveness of this stimulation for people who 

don’t need it for any type of medical intervention. However, some companies, such as 

foc.us, have even produced TDCS devices meant for neural enhancement for everyday life 

and not for any type of medical condition. These devices do have scientific backing for 

enhancing specific tasks but as with any consumer product the promises are often more 

than what has been rigorously tested scientifically. The use of these devices is very popular 

in biohacking and tech circles gaining attention with multiple articles being written about 

their use and effectiveness in the Guardian, Aeon, and Wired (Burkeman, 2014; Choi Mary 

HK, 2013; Christian, 2014). Thankfully these types of devices show little possibility of 

negative side effects for the general public even though stimulation could lead to long term 

changes which may or may not be beneficial (Davis & van Koningsbruggen, 2013). 

TDCS shows great promise for clinical applications, enhancement, and as a tool to 

probe neural circuitry function. With its fairly simple design and ability to be used outside 
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of clinical settings easily these types of stimulation paradigms have already found itself “in 

the wild” being used by biohackers and others for supposed neural enhancement and other 

off-label uses. With a large collection of people using this technology many new uses are 

being tested even if it’s not being done in the most scientifically sound way. The problem 

is that this technology exists and any type of stimulation of neural structures could cause 

long lasting changes and could cause harm to people sensitive to those disturbances. TDCS 

is explained as non-invasive but any type of stimulation that could cause changes may not 

be as harmless as some people think (Davis & van Koningsbruggen, 2013). Although the 

safety of TDCS is fairly well supported, use by individuals unfamiliar with limitations and 

safety parameters could unintentionally do harm.  

Transcutaneous Electrical Nerve Stimulation 

Transcutaneous Electrical Nerve Stimulation (TENS) has been used to treat some 

types of pain in athletic, medical, and dental settings. TENS being a more generic term 

which includes trigeminal, vagus, or other nerve stimulation. A growing body of work is 

increasing our understanding of the effects TENS has on task learning, memory, attention, 

pain, cortical circuitry effects and more. There is some evidence showing that, depending 

on the nerve stimulated, TENS can alter functioning of the ascending reticular activating 

system (ARAS) which has modulatory effects on many other cortical circuits (Dijk, 

Scherder, Scheltens, & Sergeant, 2002). The ARAS is mostly related to the norandrenergic 

system which regulates activation of the sympathetic nervous system and has wide 

reaching effects on many other cortical circuits as well as some influence over some viscera 

function (Dijk et al., 2002). Many reports of benefits in Alzheimer’s disease (Merrill et al., 
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2006; E.J.A. Scherder, Bouma, & Steen, 1995; Sjogren et al., 2002; Van Someren, 

Scherder, & Swaab, 1998), aging (Erik J.A Scherder, Van Someren, Bouma, & v.d. Berg, 

2000), stroke (Karnath, 1995; Lin, Sun, Wang, & Xie, 2018; Robbins, Houghton, 

Woodbury, & Brown, 2006), and depression (Cook et al., 2013; Schrader, Cook, Miller, 

Maremont, & DeGiorgio, 2011) may all be related to a general activation of the ARAS and 

activation of the noradrenergic system (Sara, 2009). 

Most of these prior experiments use different stimulation parameters which makes 

direct comparisons of any of the outcomes very difficult. Many studies using stimulation 

are open-label and participants are aware of the treatment they are receiving and no control 

group is included (Cook et al., 2013; Schrader et al., 2011; Trevizol et al., 2016). This is a 

good place to start and results are promising but for clinical use more studies using blinded 

controls are needed. The parameter space for TENS is very large and there doesn’t appear 

to be a clear, linear progression of effects. Dose response curves may be altered by a change 

in any parameter making the feature space multi-dimensional which requires a lot more 

data to be collected to develop an understanding of expected outcomes. Parameterization 

by different labs seems to be idiosyncratic to what they found to be beneficial early on. 

Parameters include the amplitude, pulse duration, inter-pulse interval, ratio of biphasic 

pulses if balanced stimulation is being used, and frequency which can all be changed and 

appear to alter the types of fibers within the nerve that are stimulated causing different 

downstream cortical changes (Chase, Nakamura, Clemente, & Sterman, 1967; Ruffoli et 

al., 2011). 

General effects of increased TENS dosage can lead to wildly different results 
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because of not well understood mechanisms of action that lead to different cortical circuits 

being activated downstream. Some work has been done to elucidate specific fiber types 

activated by different stimulation but with such a large feature space much more work will 

need to be done to map possible outcomes based on the parameters used. Promising results 

for many different ailments make this a promising area of study and a more complete 

understanding of these effects could lead to many new treatments for refractory ailments. 

Trigeminal Nerve Stimulation 

Trigeminal Nerve Stimulation (TNS) has become a topic of interest recently with 

more studies examining its effects and similarities between vagus nerve stimulation (VNS 

– discussed below) as well as TDCS. Trigeminal stimulation is an excellent target for 

therapeutic stimulation because the supraorbital branch, as well as other branches, are 

easily targeted with stimulation above the eye and on the forehead. This is similar to vagus 

nerve stimulation that can target the auricular branch that enervates a portion of the ear. 

Small battery powered devices can be easily kept on the body to power electrodes because 

of the small amount of power needed for vagus or trigeminal stimulation devices. TNS has 

been investigated as a possible treatment for depression (Degiorgio, Fanselow, Schrader, 

& Cook, 2011), migraines (J Schoenen et al., 2013; Jean Schoenen et al., 2013), and 

epilepsy (Cook et al., 2013; Degiorgio et al., 2011; C. M. DeGiorgio, Murray, Markovic, 

& Whitehurst, 2009; Christopher M. DeGiorgio, Shewmon, Murray, & Whitehurst, 2006; 

Christopher M DeGiorgio et al., 2013; Schrader et al., 2011; Soss et al., 2015). 

A lot of studies that have focused on TDCS may also have implications for TNS 

because in a cadaver study it was shown that most of the current applied that was thought 
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to stimulate cortical tissue is instead passed through the outer layers of soft tissue and may 

lead to stimulation of other structures, specifically cranial and facial nerves (Dijk et al., 

2002; Underwood, 2016). TNS may be able to produce more precise effects via stimulation 

of specific fiber types that TDCS may not be able to accomplish because of the constant 

stimulation applied. Nerve stimulation has been shown to be able to activate different 

subsets of nerve fibers that could lead to different downstream effects (Ruffoli et al., 2011). 

Although these studies have been done in the vagus nerve similar activation could also be 

achieved in the trigeminal nerve. 

Vagus Nerve Stimulation 

Vagus Nerve Stimulation (VNS), while sometimes more invasive requiring an 

implant around the vagus nerve but also transcutaneous stimulation, has been shown to be 

effective in reducing seizures (Fan, Hsu, Chang, Chen, & Tsai, 2018; Kulju, Haapasalo, 

Lehtimäki, Rainesalo, & Peltola, 2018), refractory migraines (Mauskop, 2005; Sadler, 

Purdy, & Rahey, 2002; Straube, Ellrich, Eren, Blum, & Ruscheweyh, 2015), cluster 

headaches (Gaul et al., 2016; Mauskop, 2005), heart failure (De Ferrari et al., 2011), 

Alzheimer’s disease (Merrill et al., 2006; Sjogren et al., 2002), anxiety (George et al., 

2008), depression (Nemeroff et al., 2006; Sackeim et al., 2001; Xiong et al., 2018), and 

obesity (Göbel, Tronnier, & Münte, 2017). Vagus cuff implants have risks of complications 

including infection, vocal cord paresis, and pharyngitis among others (Ben-Menachem, 

Revesz, Simon, & Silberstein, 2015). Many of these can be avoided by a skilled surgeon 

but reduced dependence upon implanted devices in favor of non-invasive stimulation is 

preferable to avoid many of these complications (Ben-Menachem et al., 2015). Even with 
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non-invasive stimulation there are still effects on the nervous system that are not well 

known. Especially for long-term stimulation over multiple sessions over weeks or even 

years. The assumption that stimulation that doesn’t require a surgical implant avoids any 

harmful effects could lead to unintended changes or damage to people participating in these 

studies even though we do our best to reduce those risks (Davis & van Koningsbruggen, 

2013). 

Non-invasive vagus nerve stimulation has become more common and has been 

shown to be viable for many of the same treatments as the implanted stimulator devices. 

Some of these devices stimulate the auricular branch of the vagus nerve and has been 

shown to help with otherwise intractable depression (Paulino Trevizol et al., 2015; Trevizol 

et al., 2016) and epilepsy which was otherwise resistant to more standard treatments (Fan 

et al., 2018; Kulju et al., 2018) as well as cognition enhancements (Steenbergen et al., 

2015). The move to stimulation which doesn’t require an implant can make the treatment 

more attractive to try without the risks of surgery or going through a procedure for a device 

that doesn’t improve outcomes for everyone. While many people see reduced symptoms 

and are helped by VNS others discontinue use or even report an increase in seizures with 

VNS devices (Ben-Menachem et al., 2015). By using non-invasive stimulation, the effects 

can be observed to see if the treatment is beneficial for the individual and use can be easily 

discontinued without the need for an explant surgery. Many of these stimulator devices 

have become quite small and easy to use. Some targeting the auricular branch of the vagus 

nerve look like an earphone and they fit inside the ear comfortably without using single 

use disposable electrodes or complicated electronics that would need a technician to set up. 
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These devices are shrinking and making it easier for patients to easily follow care plans at 

home. Overall non-invasive VNS is becoming more common and research being done into 

the specific benefits and disorders that can be treated with such devices is expanding. 

Approvals for common usage of these in clinics as well as at home requires more 

information about useful parameters, safety, and efficacy. 

Stochastic Resonance 

Stochastic Resonance (SR) has been used to enhance detection of sensorimotor 

functions but most typically has been used to enhance postural control during balance tasks. 

Applying a low level of noise via vibrotactile motors or electrical stimulation can improve 

detectability of balance signals in multiple clinical populations as well as normal 

functioning adults (Costa et al., 2007a, 2007b; Dettmer, Pourmoghaddam, Lee, & Layne, 

2015; Hijmans, Geertzen, Zijlstra, Hof, & Postema, 2008; Mulavara et al., 2011; A. A. 

Priplata, Niemi, Harry, Lipsitz, & Collins, 2003; A. Priplata et al., 2002; Ross, 2007). This 

simple addition of noise to a sensory system can lead to enhancement of specific function 

if the noise level is set appropriately. Other groups have shown the specific effects of 

differing levels of noise on specific mechanoreceptors that would be responsible for the 

perceptual enhancement seen in other studies using SR (Ivey, Apkarian, & Chialvo, 1998). 

Specifically, a noise stimulus that is too small will have little to no effect because it isn’t 

having enough of an effect on the targeted signal. Also, a noise signal that is too strong can 

overwhelm the targeted signal and remove any information the subject might be able to 

gain. Different studies accommodate for this fact in different ways but many use the 

subject’s own threshold of detection as the starting point for stimulation amplitude 
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(Hijmans et al., 2008) while others use standardized levels of stimulation with a repeated 

measures design (Ross, 2007). In systems that befit from small amounts of noise there is a 

goldilocks zone for stimulation where it enhances the endogenous signal just enough to 

make it reliability detectable without overpowering it. 

This technique can enhance the detection of signals and make them functionally 

useful however application of noise can reduce the precision in those signals. In most cases 

where this would be useful the precision is not as important as making the signal detectable, 

so it is at all useful instead of being below threshold for the individual. There is even 

evidence showing that these types of SR effects can be seen cross-modally leading to 

enhancement of one sensory modality when noise is provided for another (E. Lugo, Doti, 

& Faubert, 2008; J. E. Lugo, Doti, & Faubert, 2012). This effect is theorized to be caused 

by increased activation of sensory integration neurons that facilitate the enhancement of 

one sensory signal because of the noise being added via a different modality. 

Stochastic resonance has been shown to be useful in many different biological 

systems from vision (Simonotto et al., 1997), touch (Ivey et al., 1998; Moss, Ward, & 

Sannita, 2004), balance (Dettmer et al., 2015; Hijmans et al., 2008; Mulavara et al., 2011; 

A. A. Priplata et al., 2003; A. Priplata et al., 2002; Ross, 2007), hearing (Morse & Evans, 

1996; Zeng, Fu, & Morse, 2000), and is likely commonly present in endogenous systems 

(Moss et al., 2004). SR has been fairly well investigated in several different domains as a 

non-invasive paradigm that can lead to enhanced detectability of sub-threshold signals 

leading to increased efficiency of the entire system (Moss et al., 2004).  
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Transcranial Magnetic Stimulation 

Transcranial Magnetic Stimulation (TMS) is used to probe deeper structures of the 

brain with much higher precision that previously discussed techniques in this chapter. 

While others can provide specific stimulation, they are typically limited to nerves available 

with transcutaneous techniques. TMS allows for penetration of a very focal stimulation 

location through the skull. TDCS can provide general stimulation to large portions of the 

brain and can go very deep into the brain but it is not well targeted. TMS can target specific 

cortical structures by using a pre-existing structural MRI scan of the subject and subjective 

detection or motor outputs to locate regions of interest in individuals. The stimulation can 

penetrate through some layers of cortical tissue but does have a limited depth that it can 

target that prevents it from being used to probe deep brain structures such as the 

hippocampus or limbic system directly. By being able to isolate very small cortical 

structures very small areas of the brain can be probed for specific contributions in 

processing. 

Several different techniques for TMS exist that provide different outcomes for the 

targeted area. Online stimulation can directly disrupt activity during a task and has very 

little long term effect on outcomes while repetitive TMS (rTMS) including theta burst 

stimulation (TBS) can cause effects that last from minutes to days after stimulation ceases 

(Oberman, Edwards, Eldaief, & Pascual-Leone, 2011). This type of stimulation is the most 

promising for clinical effects or enhancement because of the long-lasting effects. 

Many TMS studies have also looked the effects on depression with promising 

results for people who have depression that isn’t helped with medication. With variations 

of stimulation type there have been many promising results (Chung, Hoy, & Fitzgerald, 
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2015; Yip et al., 2017). Although not all people had reduced symptoms after the stimulation 

the majority that did show that this is a treatment that would be worth trying if other 

treatments aren’t effective. With TMS being a non-invasive treatment that does not require 

surgery this is something that could be easily incorporated into other treatments such as 

counseling and medications. 

TMS has also been looked at as a treatment for Parkinson’s disease and many 

studies have shown that there is improvement of some aspects of PD with application of 

TMS (Moisello et al., 2015; Xue-fei ZHAO et al., 2015). Common targets for these studies 

include motor cortex, prefrontal cortex, and parietal cortex. 

Phosphenes can also be induced via TMS stimulation of the occipital lobe, 

specifically the visual cortex, and have been used to isolate components of the visual 

system that would be difficult to study without using TMS as a tool. Many studies have 

used phosphenes to bypass sections of visual processing to help elucidate the specific 

transformations occurring in different cortical circuits important for visual processing 

(Knight, Mazzi, Beck, & Savazzi, 2015; Rangelov, Müller, & Taylor, 2015)  

Direct, focused stimulation or inhibition of neural circuitry is another great tool to 

be used for clinical research as well as basic research to understand the underlying cortical 

circuits of the brain.  

Ultrasound Stimulation 

Ultrasound (US) has more recently been shown to be able to modulate neural 

activity. Previously US has been used for medical imaging and is used in small offices by 

technicians daily. The use of US for stimulation is newer than other types of stimulation 
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discussed before this, but it does show a lot of promise. With US stimulation, sometimes 

called focused ultrasound (FUS), a very small focal area can be stimulated in deep 

structures of the brain. While the specific cause of these effects is still not completely 

known the ability of US to effect cortical circuits is not in question (Fini & Tyler, 2017; 

W. Lee et al., 2016; Legon et al., 2014; Mueller, Legon, Opitz, Sato, & Tyler, 2014; Tyler, 

Lani, & Hwang, 2018). As with all stimulation technologies stimulation itself could have 

negative consequences (Davis & van Koningsbruggen, 2013) however some of the first 

uses of US for cortical alterations was showing that they could be used to produce lesions 

without the need to reach the location surgically or with an instrument in order to ablate it 

(Fry, Mosberg, Barnard, & Fry, 1954). Current US methods to induce cortical alterations 

use a much smaller amplitude signal to produce cortical changes which makes the much 

safer to use in human subjects. 

This technology, although newer than other stimulation techniques, can produce 

more focused stimulation in deep structures of the brain which gives researchers a better 

tool to use to probe neural circuits more precisely. TMS can stimulation shallow structures 

with small focal points while US can do the same but also target deep structures. TDCS 

has been shown to be effective at enhancing specific responses and helping with some 

medical conditions but it effects very large areas of cortex. US provides a great ability to 

target specific structures that previously hasn’t been possible. 

Enhancement vs Rehabilitation 

All the technologies that allow for peripheral stimulation of the nervous system can 

be used in multiple different ways. One such distinction that should be clear is that between 
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enhancement and rehabilitation. Removing peripheral stimulation from the discussion this 

is the difference between helping a person recover motor strength after an accident or stroke 

and someone without any type of deficit going to the gym to increase their strength by 

lifting weights. Both people may be lifting weights, but the end goals are different even if 

that line may occasionally be blurred. 

Rehabilitation practices aim to restore function back to levels before some negative 

event or at least recover them to a level where they are useful. Typically, the amount of 

recovery is dependent upon what is possible for that person as well as what their goals are. 

Rehabilitation must be done for everyone to help them as much as possible given the 

situation as well as what their goals are. Some people may not want or need to be able to 

run a mile while others want to go back to running marathons. Each person is unique, and 

the specific treatments will reflect that. There are many studies that have shown the effects 

of stimulation on different disorders which do show very promising results for 

rehabilitation as can be seen in specific sections under the peripheral stimulation heading 

in this chapter. 

Enhancement has garnered much more attention in the recent past and will probably 

continue to grow. There are countless articles discussing the possibilities of peripheral 

stimulation to enhance specific tasks. Most of these technologies are adapted from other 

uses and are not formally studied as often as the rehabilitative uses are. Many people have 

taken it upon themselves to look at these technologies and use them in non-prescribed and 

non-studied ways. These people are often referred to as bio-hackers and get a lot of 

attention for some of their more public uses of enhancement technology. There is evidence 
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that there may be benefits but nearly all the people using the technology are not doing it in 

a controlled, scientific way so most of their claims are dubious. A lot more controlled work 

needs to be done looking at these technologies, how they are being used, and what the 

actual effect is on performance. 

Using this technology for rehabilitation seems to have very little downside while 

enhancement can lead to discussions about a technological divide between people who can 

afford the technology and those that can’t as well as many other debates about the eventual 

outcomes and uses of the technology and what that will mean for societies in the future. 

This dissertation will not be discussing those ideas in depth as they have been covered in 

multiple other formats. 

Signal Detection Theory 

Signal Detection Theory (SDT) has been commonly used in electrical engineering, 

specifically for sensor quantification, as well as psychology, and economics. SDT is a more 

complete way of looking at data where a decision was forced between the detection of a 

signal or not. Some people use percent correct when looking at this type of data but that 

fails to capture some of the important aspects of decision making, especially when a system 

has unequal numbers of times when a signal is present versus not. If only percent correct 

is looked at with an unbalanced number of trials for each then bias can play a significant 

role in skewing the data. Instead of percent correct for these studies we used SDT measures 

of d’, which is the discriminability of a signal, and c, or bias, values which considers the 

strategy of the detector or, in the case of human research, the person making the decision. 

A diagrammatic view of basic SDT principles can be seen in Figure 5. Using SDT 
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techniques it’s necessary to collect hit rates (pH) and false alarm rates (pF) which are used 

to calculate d’. To find d’ the z score transformation of the pF is subtracted from the z score 

of pH. 

d’ = z(pH) – z(pF) 

Bias is another measure within SDT that was used. It can be calculated as the half of the z 

transform of the hit rate added to the z score of the false alarm rate. 

 c = -(z(pH) + z (pF))/2 

This essentially measures the likelihood of a response being the same which would be 

shown as positive values or different which would result in positive values as the output. 

By viewing both values together the discriminability of the signal can be determined, and 

an understanding of the limits and capabilities of whatever underlying detection method 

can be tested. Other measures can be found within the same framework of SDT however, 

the studies presented in this dissertation focus on D’ and c. In the case of this dissertation 

it is testing the functional limits of position proprioception while being able to effectively 

disregard some of the underlying mechanisms that have differing contributions. These 

functional outcomes are important in clinical settings where those are the end goal of 

therapies. Different strategies can be employed to alter the rates of misses and false alarms 

depending upon the severity of outcomes for those events. If it’s extremely critical that a 

specific form of cancer be found during a screening, then the test may be able to tolerate 

more false positives because the test could be administered multiple times to ensure 

accuracy. All these considerations can be explored with signal detection theory to identify 

what types of sensitivity and bias are best for a given situation. The experiments in this 
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dissertation don’t allow us to alter the discriminability of the signals and alter those 

parameters but instead seek to more fully quantify the inherit differences found within 

typical functioning proprioceptive systems. 

Aims of Research 

The first aim of the current research discussed in this dissertation is to quantify 

proprioceptive position sense in 3d space. Prior studies have used tests limited to the 2d 

plane (tabletop) but have thoroughly classified many aspects of proprioception within those 

constraints. These studies were meant to add to the body of knowledge about the ability 

and limitations of proprioception. The first two studies specifically measuring 

proprioception on three-dimensional space that had previously been unexplored and testing 

the effect of arm posture on sensitivity. These studies specifically studied position sense of 

proprioception based on the design of the experiment. Designing the paradigm based on 

the need to make assessment possible for any arbitrary angle and arm posture lead to the 

use of the 2AFC task forcing a choice between same or different position as previously 

presented. This new paradigm was used to test six different directions (up, down, left, right, 

forward, and backward) from a set starting location. Adducted and abducted arm postures 

were also tested to compare differences in sensitivity between left, right, forward, and 

backward. Predicted outcomes were that anisotropic effects would be present based on 

previous research but that depending upon direction and arm configuration differences in 

proprioceptive sensitivity may be altered from previously published data. 

The second portion of this dissertation was related to TENS and its ability to alter 

functional outcomes of proprioceptive function. The original intent was to explore the 
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ability of trigeminal nerve stimulation to affect function proprioceptive outcomes however 

testing of multiple peripheral locations lead to a broader understanding of the impacts of 

cranial nerve stimulation in general.  
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CHAPTER 2 MATERIALS AND METHODS 

Introduction 

Many studies of proprioceptive sensitivity have been conducted but have typically 

been limited in to movements in a 2-dimensional plane or single joint movements. 

Constraining the movements to 2 dimensions for research is convenient and eliminates 

unnecessary complexity from the experiment allowing for faster iteration around questions 

that don’t require the 3-dimensional capabilities. However, body motion is rarely ever 

constrained to 2 dimensions during natural use. For this reason, prior to this research, very 

few studies have measured proprioception within a 3d workspace. Among these are a study 

where proprioception was assessed before and after shoulder surgery to determine the 

amount of proprioceptive loss and the other was focused on finding differences in 

proprioception based on the way the presentation modality of targets (Adamovich et al., 

1998; Kasten et al., 2009). Expanding current proprioceptive assessment into 3d space is a 

necessary next step in gaining a fuller understanding of the proprioceptive system that 

hasn’t been done before. 

As there was not already a well-established paradigm for this type of assessment 

creation of a new protocol was a primary focus. Previous studies had used techniques that 

could be easily adapted for the new paradigm. The main difference in this task is using a 

2AFC (same-different) task that allowed for simplification of subject instructions. This 

chapter will outline the final general experimental paradigm, rational behind design 

decisions compared to early protocols, and data analysis methods used.  
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Experimental Apparatus 

Robotic Assessment 

A 7-DoF anthropomorphic robot arm (LWR4+, KUKA Inc.) was used for the 

robotic assessment. Typical participant configuration is shown in Figure 6. This robot has 

a maximum payload of 7 kg, a maximum reach of 1178 mm (when completely stretched), 

a maximum joint speed of 110-204º/sec (joint dependent) and a repeatability of +/- 0.05 

mm. The robot can be controlled in zero-impedance, i.e. completely compliant to user's 

motion, and is able to measure arm motion and human-robot interaction forces at a 

frequency of 1kHz. Subjects interacted with the robot while seated in a chair that could be 

locked in place and adjusted in height for comfort and easy placement of subject relative 

to the robot. The subject’s arm was coupled to the robot through an arm trough which was 

secured to the arm with a Velcro strap which also stabilized and controlled the forearm and 

wrist joint. In experiment 1 the elbow of the subject was left in an adducted posture next 

to the body. Experiment 2 altered the arm position to be abducted by using a custom-made 

sling attached to the ceiling. Excessive motion of the shoulder girdle and trunk were 

restricted by means of waist and shoulder straps that were attached to the chair. Earmuffs 

with audio input and microphones were worn by the subjects. By playing white noise and 

the passive noise cancelling of the ear muffs all outside distractions and noise from the 

robot were eliminated. The earmuffs were also used to present beeps as auditory cues 

during trials. An emergency stop button was provided for subjects that could be pressed to 

immediately stop all movement of the robot as a safety precaution. Subjects were also 

required to close their eyes during experiment to eliminate any visual feedback of their arm 
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so that the test relied on only their proprioception. Early versions of the experiment 

included blindfolding the participant but issues of drowsiness and the ability to easily take 

breaks became an issue which simply having people close their eyes easily remedied. 

Software Control 

This section will describe the various components that interact to allow for control 

of the robot, participant interaction, and stimulation control. 

The experiments were controlled via a Linux-based desktop computer running 

custom C programs for control of the Kuka robotic arm as well as for control of the 

participant cues and data collection. These programs were created by Bryan Whitsell and 

adapted by Josh Klein to allow for control of the stimulation in a way that ensure that the 

correct number of trials were performed for each stimulation location and distance. The 

program that controls the core operation of the robot, using custom trajectory files, and 

communicating with subroutine programs is the Robot & Experiment Control executable. 

The reason for breaking these programs out into separate executable files that use shared 

memory for communication. The purpose of having multiple programs to handle each 

component instead of a single program is because of a safety feature of the Kuka robot that 

causes it to lock itself in place if communication from the controlling computer is ever 

interrupted. By allowing the main program to continue executing while other programs 

handled tasks that would typically cause a delay prevented the robot from locking which 

would have made the experiment impossible to run. This also allowed for the subsidiary 

programs to be simpler and easier to understand if edits did need to be made in the future.  
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The main control program would also produce signals for the cue program to send 

auditory cues to the participant. This process was simplified as it was a one-way 

communication. This is similar to the way that the user input program functioned. At the 

end of a trial the main program would write the shared memory location to a value and wait 

for it to be changed by the user input program indicating that a user response (same or 

different) had been entered. During this time, it could maintain communication with the 

Kuka robot to ensure that the security measures weren’t inadvertently activated causing the 

robot to lock and requiring everything to be restarted in order to resume the experiment. A 

block diagram of the software used for the experiment can be seen below in Figure 10. 

Experimental Protocol 

Participants were brought into the lab for the experiment which was approved by 

the Arizona State University Institutional Review Board and all participants gave written 

informed consent in accordance with the Declaration of Helsinki. Participants were briefed 

on the experimental procedures and expectations for interacting with the robot and were 

aware that their position sense was being tested but were naïve to the specific purpose of 

the study. Participants would then have the task explained in more detail before being 

seated in a chair in front of the robot. The plane of robot motion was aligned with a 

parasagittal plane passing the shoulder joint. The reference location was then established 

by moving the subject to approximately 5˚ azimuth and 0˚ elevation relative to the 

estimated (average) center of rotation of the shoulder joint and at a distance from the 

shoulder that corresponded to ~80% of the subject’s total arm length. This position was 

comfortable for most participants with little to no shoulder fatigue over the course of the 
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experiment. During data collection participants were required to keep their eyes closed. 

Experiment 1 tested the arm in an adducted posture where the elbow was positioned 

comfortable at the side of the torso. In Exp. 2, data were collected for an additional 

abducted arm posture where the subject’s elbow was held nearly level with the shoulder 

and reference location by a sling hung from the ceiling. In experiment 3 the adducted arm 

posture was again used. An example of these postures can be seen in Figure 7. 

Task Paradigm 

A fixed one alternative forced (same/different) choice (1AFC) task was used for all 

experiments presented in this dissertation. A 1AFC task is simply a “go”/”no go” response, 

in this case “same” or “different”, that is required after the presentation of the two stimuli. 

Fixed in this context means that the reference location was not varied between trials but 

was held constant throughout the experiment. Common in the literature is the use of a 

2AFC task which typically requires a judgment of direction of change as opposed to a 

1AFC task which only requires detecting if a change has occurred. A 1AFC task is typically 

used when it may be difficult for subjects to learn the basis for discrimination as the 

responses are simplified no matter the direction of the movement or the posture of the arm. 

This apparatus could test along any arbitrary axis and the design needed to allow for those 

arbitrary paths to be tested in possibly future experiments. For this reason, these 

experiments used a 1AFC task that could be extended to those arbitrary angles and different 

arm postures which may not have been as easily described by subjects during the 

experiment. 

Stimuli (reference and test positions) were presented successively which allows for 
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all movements to be completed within the right arm. This design does introduce a memory 

component into the task by having subjects compare a currently felt position to a 

remembered position. Although, previous studies have shown that performance on tasks 

with a memory component is similar to tasks that do not require memory of the location 

such as position matching, posture matching, or reaching to marked locations (Wilson et 

al., 2010). 

During the instruction’s participants were told they should verbally respond “same” 

if the judgment position was the same as the test position or “different” if it was not. Before 

beginning data collection trials, the subjects performed 3-5 practice trials to ensure they 

understood the task and any misunderstandings were corrected at this point and the 

experiment only continued if they appeared to understand the task. If after 15 trials a subject 

still exhibited difficulty in understanding the task the subject was excused from the 

experiment and no further testing was conducted. If the subject had been performing the 

task but then informed the experimenters that they had been doing the task incorrectly the 

subject was also excused from the experiment and no further testing was conducted. 

Experiment 1 included testing six different directions (up, down, left, right, 

forward, and backward) at 4 distances (1, 2, 3, and 4cm) from the reference location. 

Experiment 2 using the abducted arm posture tested at the same distances but only for left, 

right, forward, and backward directions from the reference. This was limited to only these 

four directions because movements up/down in combination with the sling could have 

caused uncomfortable or painful positions of the participants’ arm. Experiment 3 tested all 

four distances as well but only in the down direction while the stimulation location and 
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frequency were varied. 

Single Trial Description 

A single trial consisted of the subject’s arm being held at the starting position for 2 

seconds before a movement to a distractor position would begin. The robot stopped at the 

distractor position for 250ms before moving back to either the same starting location or a 

different position. Two beeps through headphones would cue the subject to respond if the 

location was the “same” or “different” verbally. After the response the robot would move 

out to another distractor location, stop briefly again, and return to the starting position 

where a single beep would be played to the subject to indicate they were back at the 

reference location again. A diagram of an example trial can be seen in Figure 8and the 

layout of the block design can be seen in Figure 9. 

Movement parameters 

 The distractor position movements were meant to reduce cues that would have 

been provided by a direct movement of the robot from the reference location to the 

judgement position for that trial. These movements between points used curved paths with 

a radius of curvature that was randomized between 2.44 cm and 15.8 cm (mean: 9.52). A 

constant velocity was used and the total movement time was fixed to .5 seconds. These 

constraints caused velocities to range from 1.2 cm/s to 7.8 cm/s (mean: 3.7 cm/s). The total 

time between leaving the reference position and arriving at any subsequent judgment 

position was also fixed at 3.75s including the movement time as well as the short delay at 

the distractor position.  

In experiment 1 and 2 a single distance in one direction included 30 trials (15 same 
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and 15 different). Each direction was tested using four equally spaced distances of 1cm, 

2cm, 3cm, and 4cm from the reference location. In pilot testing of the paradigm there was 

little to no increase in sensitivity between 4 and 5cm distance so the experiment was limited 

to a maximum distance of 4cm. This helped keep the experiment within a two hour 

experimental window to avoid subject fatigue.  

Block Design 

On ‘same’ trials, the first and second stimuli were always the test position, while 

on ‘different’ trials, the first stimulus was always the test position and the second was one 

of the other judgment positions. Same and different trials were randomly selected but 

balanced over the course of the entire block. Testing four distances within a direction and 

two directions for each subject resulted in 240 total trials total which took about 1-1.5 hours 

to complete. Paperwork, explanation of the task, and example trials took approximately 

15-20 minutes resulting in approximately 2 hours in the lab for each participant. 

At the start of each block a set of criterion movements were performed to give 

information about the distance between the reference position and the ‘different’ position 

for that set of 30 trials. These movements allowed the participants to establish a criterion 

value between the same and different points that is used to make the judgement about if 

the position required for this task. These criterion movements consisted of three direct 

movements from the reference position to the ‘different’ position, a short delay, and then 

a direct return to the reference location. These movements were important to ensure they 

knew the magnitude of difference from the reference to the test position. If these 

movements weren’t included then the transition from a 4cm to a 1cm block could have 
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resulted in their criterion value not being updated correctly. These movements ensured that 

the participant was aware of this position difference being tested leading to a more accurate 

assessment of proprioceptive ability. 

Every 15 trials subjects were asked to take a short rest (5-60 seconds) to view their 

arm while moving and/or stretching it. This helped to minimize the possibility of 

proprioceptive drift as well as to reduce any fatigue or strain the subject was experiencing 

during the experiment (Wilson et al., 2010). After every rest participants replaced their 

hand on the trough of the robot and were asked to isometrically contract and relax their 

arm to reduced the possibility of thixitropy (Proske & Gandevia, 2012). The layout of this 

block experimental design can be seen below in Figure 10. 

During experiment 3 the extra step of placing electrodes at the appropriate locations 

was added. More detail on this will be discussed in Chapter 4. 

Data Analysis 

Subjects’ responses were analyzed in MATLAB (The Mathworks Inc.). The 

proportion of trials where subjects responded “different” when the stimuli were different 

(pH), aka probability hit or “hit rate”, and the proportion of trials where the subjects 

responded “different” when the stimuli were the same (pF), aka probability false or “false 

alarm rate”, were used to calculate d’, a measure of sensitivity derived from signal detection 

theory (Kingdom & Prins, 2016). This measure is preferred over percent correct (Pc) in 

most situations, as the latter can be greatly influenced by bias (i.e. a subject’s tendency 

toward “same” or “different” responses). d’ was calculated as: 

d’ = z(pH)-z(pF) (1) 



 

43 

 

where z() denotes a z-score transformation. For comparison we also report Pc, 

defined as: 

Pc = [pH+(1-pF)]/2 (2) 

Additionally, bias (c) was calculated for stimulation experiments to view any 

possible alterations to response bias. Positive values denote a conservative bias where 

participants more often responded “same” or, more generally, that a signal was not present. 

Negative values denote a liberal bias where “different” or, generally, that a signal was 

there. A conservative bias typically corresponds to a smaller hit rate and small false alarm 

rate while liberal bias corresponds to a high hit rate as well as an elevated false alarm rate. 

Bias (c) is calculated as:  

c = -.5 * (z(pH)+z(pF)) 

D’ calculated in MATLAB was used for all statistical analyses that were completed using 

SPSS. 

D’ was calculated for each distance and direction in both Exps. 1 and 2. For Exp. 

1, differences in d’ as a function of displacement distance and direction were assessed using 

a two-factor mixed ANOVA (within subjects factor: distance; between subjects factor: 

direction). Multiple comparisons were conducted using Tukey’s HSD procedure. Outliers 

were removed before statistical analysis by using the median absolute deviation (MAD) 

procedure with a scaling factor (b) of 3 (Leys, Ley, Klein, Bernard, & Licata, 2013).  

Experiment 2 was designed to investigate the effects of arm posture on sensitivity. 

Analyses focused on displacement distances that showed the most variation across 

directions in Exp. 1 (i.e. 2 and 3 cm). For each distance, independent t-tests were used to 
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compare sensitivity between arm postures for a given axis (forward/backward; 

leftward/rightward), as well as to compare sensitivity between axes for a given arm posture. 

We also combined data for the leftward-rightward directions and forward-backward 

directions to facilitate comparison with previous results (Wilson et al., 2010). 

Experiment 3 was looking at the effects of transcutaneous electrical nerve 

stimulation on sensitivity (d’) and bias (c) of the worst performing direction from 

experiment 1 to show possible enhancement of proprioceptive function if it was present. 

Analysis was done similarly to experiment one using a 4 x 3 x 2 mixed ANOVA (within 

subjects factors: distance (1, 2, 3, and 4cm) and stimulation location (forehead, neck, and 

shoulder), between subjects factor: stimulation frequency (30hz and 300hz)).  
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CHAPTER 3 ANISOTROPIC PERCEPTION OF LIMB ENDPOINT POSITION 

IN THREE-DIMENSIONAL SPACE 

Abstract 

Proprioception refers to the senses of body position, movement, force and effort. 

Previous studies have demonstrated workspace and direction-dependent differences in arm 

proprioceptive sensitivity within the horizontal plane. In addition, studies of reaching in 

the vertical plane have shown that proprioception plays a key role in anticipating arm 

configuration dependent effects of gravity. This suggests that proprioceptive sensitivity 

could vary with the direction of arm displacement relative to the gravitational vector, as 

well as with arm configuration. To test these hypotheses, and to characterize proprioception 

more generally, we assessed the direction-dependence and arm postural-dependence of 

proprioceptive sensitivity in 3D space using a novel robotic paradigm. 

A subject’s right arm was coupled to a 7 DOF robot through a trough that stabilized 

the wrist and forearm, allowing for changes in configuration largely at the elbow and 

shoulder. Sensitivity was evaluated using a “same-different” task, where the subject’s hand 

was moved 1-4 cm away from an initial “test” position to a 2nd “judgment” position. The 

proportion of trials where subjects responded “different” when the positions were different 

(“hit rate”), and where they responded “different” when the positions were the same, (“false 

alarm rate”), were used to calculate d’, a measure of sensitivity derived from signal 

detection theory. Initially, a single initial arm posture was used and displacements were 

performed in six directions: upward, downward, forward, backward, leftward and 
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rightward of the test position. In a follow-up experiment, data were obtained for four 

directions and two initial arm postures. 

As expected, sensitivity (d’) increased monotonically with distance for all six 

directions. Sensitivity also varied between directions, particularly at position differences 

of 2 and 3 cm. Overall, sensitivity reached near maximal values in this task at 2 cm for the 

leftward/rightward directions, 3 cm for upward/forward and 4 cm for the 

downward/backward directions. In addition, when data were grouped together for opposing 

directions, sensitivity showed a dependence upon arm posture. These data suggest arm 

proprioceptive sensitivity is both anisotropic in 3D space and configuration-dependent, 

which has important implications for sensorimotor control of the arm and human-robot 

interactions. 

Introduction 

Proprioception refers to the senses of body position (‘position sense’), movement 

(‘kinethesis’) and force/effort/heaviness (Proske & Gandevia, 2012). Loss or impairment 

of proprioception is a natural sequela of a host of conditions affecting both the central 

nervous system (CNS) and peripheral nervous system (PNS) including stroke, traumatic 

brain injury, Parkinson’s disease, diabetes and even certain orthopedic injuries. Loss of this 

‘sixth sense’ impairs perception of the relative configurations of body parts in space (“body 

schema”) and dramatically affects the planning and control of limb and body movement 

(Ghez et al., 1995; Gordon et al., 1995). This in turn has profoundly negative effects on the 

performance of essential activities of daily living, leading to reduced quality of life. 
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Despite its importance for normal sensorimotor functioning, proprioception 

remains enigmatic and its assessment in the clinic remains relatively crude. Robotic 

technologies have recently been employed in an attempt to improve the fidelity of clinical 

assessments of proprioception. For example, Scott and colleagues have developed a version 

of the classic position matching paradigm that employs the use of planar robotic exoskeletal 

arms (Dukelow et al., 2010). In this paradigm, one exoskeletal arm passively moves the 

test arm into a test position and the subject then attempts to actively match this position 

with the other arm. Analysis focuses on quantifying differences between the positions 

generated by the passively and actively moved arms. In experiments comparing the 

proprioceptive abilities of stroke survivors with age-matched controls, this method was 

found to have good interrater reliability and revealed that approximately one half of 

examined patients exhibited some degree of proprioceptive (position sensing) impairment 

(Dukelow et al., 2010).  

Other investigators have combined the use a planar robotic manipulandum with 

sensory psychophysical techniques to assess proprioception. For example, one recent study 

compared proprioceptive function between a group of neurologically intact human subjects 

and a group of stroke survivors (Simo et al., 2014). Proprioception was probed using both 

an arm movement detection and a hand force detection task. Subject performance was 

quantified using two parameters: detection threshold, which is the minimum magnitude of 

displacement or forces that can be reliably detected, and choice uncertainty, the variability 

in responses about the detection threshold. These measures were able to distinguish 
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between subjects with and without proprioceptive deficits and were found to be relatively 

reliable in repeated tests separated by a period of one week.  

Robotic devices have also been used to aid in understanding the proprioceptive 

abilities of neurologically intact subjects (Cressman & Henriques, 2011; Dukelow et al., 

2012, 2010; Fuentes & Bastian, 2010; Simo et al., 2014; Wilson et al., 2010). Most of these 

studies have focused on proprioceptive abilities within a single horizontal plane and have 

demonstrated (among other findings) that proprioceptive sensitivity depends on both the 

position of the arm and the direction of arm displacement within the 2D workspace. 

Although wrist proprioception has recently been characterized in 3D (Marini, Squeri, 

Morasso, Konczak, & Masia, 2016), similar tests for the proximal arm have yet to be 

conducted. However, recent studies have shown that arm kinematics vary for movements 

performed along different directions in the vertical plane (i.e. with and against the direction 

of the gravity vector) in a manner that is consistent with an optimization of both inertial 

and gravitational forces (Berret et al., 2008; Gentili et al., 2007; Le Seac’h & McIntyre, 

2007; Papaxanthis et al., 2003). Moreover, other work suggests that anticipating such 

gravitational effects on the arm depends strongly on input from the proprioceptive system 

(Dalecki & Bock, 2013; Proske, 2005; Soechting, 1982; Soechting & Ross, 1984; Street et 

al., 2004; Swinnen et al., 1997; C. J. Worringham & Stelmach, 1985; Charles J 

Worringham et al., 1987). This raises the possibility that proprioceptive abilities could also 

differ for movements performed along different directions in the vertical plane, more 

specifically as a function of direction with respect to the gravitational vector. By a similar 

logic, proprioceptive sensitivity could vary with changes in arm configuration.  
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Although previous work suggests that arm proprioceptive sensitivity could vary 

with direction and configuration in 3D space, a formal test of this hypothesis has yet to be 

conducted. Here we used a 7 degree of freedom robotic arm, a 1 AFC (‘same-different’) 

psychophysical paradigm and analysis techniques derived from signal detection theory 

(SDT) to perform such a test. In an initial experiment, sensitivity to differences in arm 

position was quantified and compared for arm displacements along six directions in 3D 

space: leftward, rightward, forward, backward, upward and downward with respect to a 

fixed reference position. In a 2nd experiment, sensitivity was compared for four directions 

(leftward/rightward, forward/backward) and two initial arm postures (adducted and 

abducted). Preliminary results of these experiments have previously been reported in 

abstract form (Josh Klein, Whitsell, Artemiadis, & Buneo, 2015, 2016, 2017). 

Materials and Methods 

Participants 

The experimental protocol was approved by the Arizona State University 

Institutional Review Board and all subjects gave written informed consent in accordance 

with the Declaration of Helsinki. Subjects were briefed on the experimental procedures and 

expectations for interacting with the robot and were aware that their position sense was 

being tested but were naïve to the specific purpose of the study. In an initial experiment 

(Exp. 1) examining the effects of displacement direction on proprioceptive sensitivity, 

seventy-eight (78) subjects (49 female, 29 male) were tested for two of the six displacement 

directions in a given session. Two subjects (one male, one female) were determined to be 

outliers in both tested directions based on their median absolute deviation and were 
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removed from further analysis. After outlier removal, the total number of subjects analyzed 

in each direction was as follows: Upward: 30; Downward: 27; Backward: 19; Forward: 15; 

Leftward: 18; Rightward: 17. In a follow-up experiment (Exp. 2) examining the additional 

effects of arm posture, 20 subjects (8 female, 12 male) were tested in two of four directions 

(Backward, Forward, Leftward, Rightward) in an abducted arm posture. One female 

subject was determined to be an outlier for both tested directions as was removed from 

further analysis. 

Apparatus 

A 7-DoF anthropomorphic robot arm (LWR4+, KUKA Inc.) was used for the 

robotic assessment (Fig. 1). This robot has a maximum payload of 7 kg, a maximum reach 

of 1178 mm (when completely stretched), a maximum joint speed of 110-204º/sec (joint 

dependent) and a repeatability of +/- 0.05 mm. The robot can be controlled in zero-

impedance, i.e. completely compliant to user's motion, and is able to measure arm motion 

and human-robot interaction forces at a frequency of 1kHz. Subjects interacted with the 

robot while seated in a chair that could be locked in place and adjusted in height for 

participant comfort. Human arms were coupled to the robot through an arm trough which 

was secured to the arm with a Velcro strap and which also stabilized and controlled the 

forearm and wrist. Excessive motion of the shoulder girdle and trunk were restricted by 

means of waist and shoulder straps that were attached to the chair. In addition, subjects 

were given a switch which could be pressed at any time to immediately stop motion of the 

robot.  
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In Exp. 1, a single “adducted” arm posture was employed. During an initial 

calibration procedure, the plane of robot motion was first aligned with a parasagittal plane 

passing the shoulder joint. The initial test position of the hand-robot coupling was then 

specified, which was located at approximately 5˚ azimuth and 0˚ elevation relative to the 

estimated (average) center of rotation of the shoulder joint and at a distance from the 

shoulder that corresponded to ~80% of the subject’s total arm length. In Exp. 2, data were 

collected for an additional “abducted” arm posture. This was achieved by rotating the upper 

arm about an axis connecting the shoulder to the hand and suspending the arm with a sling 

attached by ropes to the ceiling of the testing room. In this way the upper arm and forearm 

were contained in an approximately horizontal plane as shown in Fig. 2. 

Experimental Procedures 

Experimental Design 

Sensitivity to differences in limb position were evaluated using a fixed “AX” or 

“same-different” task (also referred to as a 1 alternative forced choice (AFC) same-

different task) (DeCarlo, 2013; Kingdom & Prins, 2010; Macmillan & Creelman, 2005; 

Micheyl, Kaernbach, & Demany, 2008). This is a discrimination paradigm involving the 

successive presentation of a pair of stimuli, with half the trials containing stimuli pairs 

that are the same and half the trials containing pairs that are different. Subjects are 

required to determine whether the pair presented in a given trial is the ‘same’ or 

‘different’ (Kingdom & Prins, 2010). The modifier ‘fixed’ refers to the fact that in this 

experiment the second stimulus was compared relative to a fixed, standard stimulus (the 

‘test position’), which differs from ‘roving’ designs where both stimuli are varied along a 
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continuum. The same-different task requires the detection of a change but not the 

identification of the direction of this change (Micheyl et al., 2008) and is preferred over 

the more standard 2 AFC task in situations where subjects would have difficulty learning 

the basis for discriminating stimulus pairs (Kingdom & Prins, 2010). This would very 

likely be the case for discriminating positions/directions along arbitrary, oblique axes in 

3D space. 

As shown in Fig. 3, our stimuli consisted of “judgment” positions that were 

located at different distances from the test position along a given direction. The spacing 

and orientation of the judgment positions could be easily manipulated in software, 

allowing for the testing of proprioception along any arbitrary direction/axis in 3D space. 

For a given movement direction, four judgment positions were used, which were spaced 

1 cm apart in one of the six directions. As noted above, on a given trial, the two stimuli 

pairs could be the same or different. On ‘same’ trials, the first and second stimuli were 

always the test position, while on different trials, the first stimulus was always the test 

position and the second was one of the other judgment positions. As illustrated in Fig. 4, 

each ‘different’ stimulus was tested in a separate block, and the order of these blocks 

differed for different directions. For a given block of same-different trials, 30 trials were 

conducted (15 same and 15 different). These trials were performed in blocks of 15, 

separated by a short (~ 20 second) rest period. Within each 15 trial block, the same and 

different positions were randomized on a trial-by-trial basis. During the intervening rest 

periods, subjects were encouraged to view their arm, in order to minimize the possibility 

of proprioceptive drift (Wilson et al., 2010).  
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Experimental Protocol 

Prior to performance of experimental trials, subjects performed 3-5 practice trials 

to ensure that they understood the task. Before each block of 30 trials subjects first 

experienced the robot moving their arm from the test position into the judgment position 

for that block in order to familiarize them with the testing environment and to ensure their 

comfort during the experiment. These “criterion” movements also provided subjects with 

information about the expected difference between positions in the given block. Subjects 

were instructed that on a given trial the robot would move their arm on a random path that 

would end either at the test position or the judgment position. Subjects were told that they 

should respond ‘same’ if the judgment position was the same as the test position or 

‘different’ if it was not. If after 15 trials a subject still exhibited difficulty in understanding 

the task the subject was excused from the experiment and no further testing was conducted. 

If the subject had been performing the task but then informed the experimenters that they 

had been doing the task incorrectly the subject was also excused from the experiment and 

no further testing was conducted. 

During blocks of experimental trials, subjects were instructed to remain as relaxed 

as possible and to avoid resisting or assisting motion of the robot. To minimize the 

possibility of muscular thixotropy on position sense (Proske & Gandevia, 2012), subjects 

were told to isometrically contract their arm muscles at the start of the experiment and 

before continuing after experimental breaks. This also served to reduce any fatigue or strain 

the subject was experiencing during the experiment. Figure 9 illustrates the sequence of 

events on a single trial. At the beginning of the trial the robot brought the arm to the test 
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position and a single auditory tone was delivered. After a delay of 2 s the robot then moved 

the arm away from the test position to a random via point (maximum distance from the test 

position: 10 cm; minimum distance: 2 cm). After stopping very briefly (250 ms) at the via 

point, the robot then moved the arm either back to the test position (‘same’ trials) or to the 

judgment position (‘different’ trials) for that block. This was followed by the presentation 

of two auditory tones indicating the end of the trial. The subject was then required to 

respond ‘same’ or ‘different’, indicating that the judgment position corresponded to either 

the original (test) position or the judgment position.  

Movements to and from the via points were used to minimize the possibility that 

movement-related cues could be used to infer hand position (Wilson et al., 2010). These 

movements involved paths with a radius of curvature that was randomized between 2.44 

cm and 15.8 cm (mean: 9.52). A linear velocity profile was used and the total movement 

time was fixed. As a result, peak velocities ranged from 1.2 cm/s to 7.8 cm/s (mean: 3.7 

cm/s). As a result of these constraints, the total time between leaving the test position and 

arriving at any subsequent judgment position was also fixed at 3.75 s.  

Data Analysis 

Subjects’ responses were analyzed in MATLAB (The Mathworks Inc.). The 

proportion of trials where subjects responded “different” when the stimuli were different 

(pH), aka “hit rate”, and the proportion of trials where the subjects responded “different” 

when the stimuli were the same (pF), aka “false alarm rate”, were used to calculate d’, a 

measure of sensitivity derived from signal detection theory (Kingdom & Prins, 2010). This 

measure is preferred over % correct (Pc) in most situations, as the latter can be greatly 
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influenced by bias (i.e. a subject’s tendency toward “same” or ‘different’ responses). d’ 

was calculated as: 

d’ = z(pH)-z(pF) (1) 

where z() denotes a z-score transformation. For comparison we also report Pc, 

defined as: 

Pc = [pH+(1-pF)]/2 (2) 

D’ was calculated for each distance and direction in both Exps. 1 and 2. In Exp. 2 

we also combined data for the leftward-rightward directions and forward-backward 

directions to facilitate comparison with previous results (Wilson et al., 2010). 

Statistical analyses on population data 

All statistical analyses were conducted in SPSS 25. For Exp. 1, differences in d’ as 

a function of displacement distance and direction were assessed using a two-factor mixed 

ANOVA (within subjects factor: distance; between subjects factor: direction). Multiple 

comparisons were conducted using Tukey’s HSD procedure.  

Experiment 2 was designed to investigate the effects of arm posture on sensitivity. 

Analyses focused on displacement distances that showed the most variation across 

directions in Exp. 1 (i.e. 2 and 3 cm). For each distance, independent t-tests were used to 

compare sensitivity between arm postures for a given axis (forward/backward; 

leftward/rightward), as well as to compare sensitivity between axes for a given arm posture. 
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Results 

Effects of displacement distance and direction 

As expected, proprioceptive sensitivity increased monotonically with distance from 

the test position. Figure 11 shows plots of % correct (A), hit rates/false alarm rates (B), and 

d’ (C) as a function of distance from the starting (“test”) position. Data for the upward and 

downward directions are shown for a single subject. The plots for % correct show that for 

this subject, performance improved with distance and for the downward direction this 

increase was fairly linear. However, for the upward direction, trends with distance were 

somewhat different. Here, performance did not differ appreciably from 1-2 cm but 

improved rapidly from 2-3 cm. As a result of these differing trends, performance exceeded 

75% correct (a standard threshold for discrimination) at 3cm for the upward direction and 

4 cm for the downward direction. Regardless of these differences, the overall trends with 

distance reflect the simple fact that discriminating between positions is more difficult when 

these positions are closer together than when they are spaced farther apart.  

The plots for d’ and hit rate/false alarm rate highlight additional subtleties in this 

subject’s performance. Similar to % correct, d’ increased monotonically with distance for 

both directions. However, for d’ sensitivity at 2 cm differed somewhat between directions 

though no such differences were apparent for % correct. Differences between d’ and % 

correct can be understood from the hit rates and false alarm rates which are used to calculate 

d’. Even though the hit rate for the upward direction was greater than the hit rate for the 

downward direction at 2 cm, this subject also produced more false alarms for the upward 

direction. In other words, a bias towards ‘different’ responses contributed strongly to the 
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increased number of hits, rather than simply an increased ability to discriminate the 

positions effectively. As a result, sensitivity (as defined by d’) was actually somewhat 

larger for the downward direction. This shows that at the single subject level, d’ provides 

additional insights into discrimination than % correct alone can provide. As a result, 

analyses of sensitivity at the population level were focused exclusively on d’. 

Effects of distance and direction were also evident at the population level. Figure 

12 shows hit rates/false alarm rates and sensitivity (d’) as a function of distance for all 

directions. Data for opposing directions are shown separately in different rows. As was 

observed at the single subject level, d’ generally increased with distance for the 

upward/downward directions (Fig. 7B). Greater sensitivity can be observed for the upward 

direction at 3 cm, with this difference appearing to arise from higher hit rates and somewhat 

lower false alarm rates for the upward direction. For the forward/backward directions (Fig. 

7D), sensitivity also increased with distance. Here differences between directions were 

more consistent, with sensitivity for the forward direction appearing greater than for the 

backward direction at all distances up to 3 cm. Again, those differences appeared to be due 

both to higher hit rates and lower false alarm rates, in this case for the forward direction. 

For the leftward/rightward directions (Fig. 7F), sensitivity only differed markedly at 2cm, 

with rightward being greater than leftward. Here, the greater sensitivity did not appear to 

arise at all from higher hit rates, instead the observed differences were due almost entirely 

to substantially lower false alarm rates in the rightward direction.  

Although Fig. 7 suggests that sensitivity was sometimes similar between opposing 

directions, isotropy was not a general finding. A two-factor ANOVA using data from all 
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distances and directions revealed significant main effects of both factors on sensitivity 

(Distance: F(3, 360) = 348.04, p<.001; Direction: F(5, 120) = 6.36, p<.001), as well as a 

significant interaction effect (F(15, 360) = 2.60, p<.01). Such trends are clearly discernible 

in Fig. 8. First, these boxplots illustrate that d’ values generally increased with distance for 

all directions. For example, for the downward direction mean d’ values for 1-4 cm were 

0.4, 1.31, 1.55, and 2.27 respectively. Although d’ varied with distance for the other 

directions as well, trends with distance were not identical across directions. At 1 cm, d’ 

values were relatively low in magnitude and virtually identical for all directions while at 4 

cm d’ was consistently larger but also comparable across directions. In contrast, clear 

differences in sensitivity across directions are apparent at the middle distances (2 and 3 

cm). As a result, trends with distance were direction-dependent, as suggested by the 

ANOVA. To better illustrate this, we computed an estimate of the maximum sensitivity in 

this task by taking the global median across all directions at 4 cm (gray horizontal line). 

For the leftward and rightward directions, sensitivity approached this estimate of maximum 

sensitivity at a difference in position of 2 cm. This same level of performance was not 

reached until 3 cm for the upward and forward directions and not until 4 cm for the 

downward and backward directions. This is largely consistent with the post-hoc Tukey 

tests, which showed that sensitivity for the downward (Mean = 1.29, SD = 0.98) and 

backward (Mean = 1.26, SD = 1.12) directions differed significantly from both the leftward 

(Mean = 1.83, SD = 0.94) and rightward (Mean = 2.05, SD = 0.95) directions (downward 

vs leftward: p < .01; backward vs leftward: p < .01; downward vs rightward: p < .001; 
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backward vs rightward: p < .001). Thus in this study the manner in which proprioceptive 

sensitivity improved with distance was anisotropic. 

Effects of arm configuration 

Previous studies of arm proprioception in the horizontal plane have also reported 

direction-dependent differences in sensitivity. In particular, Wilson et al. (2010) 

demonstrated that proprioceptive acuity was greater for positions along a forward-

backward axis than along a leftward-rightward axis. In contrast, in the present study, near 

maximal sensitivity was achieved at 2 cm for the leftward and rightward directions, with 

other directions (including forward and backward) reaching similar levels of performance 

only at 3 or 4 cm. This implies that in the present study, proprioceptive sensitivity was 

more acute for leftward/rightward directions than other directions, in apparent 

contradiction to the findings of Wilson and colleagues. However, an important 

methodological difference existed between these two studies. In Wilson et al. the arm was 

contained within the same horizontal plane in which hand position was varied. In the 

present study the shoulder was adducted; therefore the arm was rotated almost 90 out of 

the horizontal plane. To assess whether the apparent discrepancy between the two studies 

was due to the use of different initial arm configurations we conducted a follow-up 

experiment that assessed proprioceptive sensitivity along four directions using both 

adducted and abducted postures.  

Varying initial arm posture resulted in changes in proprioceptive sensitivity. We 

first compared sensitivity between opposing directions for each arm posture. As in Exp. 1, 

no significant differences were found between the leftward and rightward directions or 
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between the forward and backward directions for either arm posture. Therefore, to facilitate 

comparison with Wilson et al. (2010) data for opposing directions were grouped together 

for analysis. Figure 14 shows the mean (+/- SD) of the d’ values for each posture, grouped 

for the leftward/rightward and forward/backward directions. As expected given the results 

of Exp. 1, in the adducted posture sensitivity at 2 cm differed significantly between the 

leftward/rightward (Mean = 1.93, SD = 0.83) and forward/backward axes (Mean = 1.12, 

SD = 0.61; t-test, t (75) = 4.86, p<.001). At 3 cm, sensitivity also differed significantly 

between axes in this posture (leftward/rightward Mean = 2.26, SD = 0.62; 

forward/backward Mean = 1.86, SD = 0.99; t (79) = 2.20. p<.05). However, in the abducted 

posture no differences between axes were found (p=.07 and p=.4 for 2 and 3 cm, 

respectively). At least at 3 cm this lack of difference appeared to be due largely to a 

significant decrease in leftward/rightward sensitivity between adducted (Mean = 2.26, SD 

= 0.62) and abducted (Mean = 1.81, SD = 0.57) postures (t-test, t (58) = 2.64, p<.05). In 

contrast, no statistically significant differences were found between postures for the 

forward/backward axis. 

Discussion 

Several previous studies have characterized the proprioceptive abilities of human 

subjects within a horizontal plane. Among other findings, these studies have demonstrated 

that proprioceptive sensitivity varies with the direction of arm displacement as well as the 

position of the limb within the horizontal plane. Here we employed a 7-DoF robot arm and 

analysis techniques derived from signal detection theory to characterize proprioceptive 

abilities along several axes in 3D space, including opposing directions parallel to the 
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gravity vector (i.e. upward and downward), which have not previously been characterized. 

Although our task involved comparing a currently felt position with a remembered one, 

previous studies have shown that performance on such tasks is similar to tasks without a 

substantial memory period (Wilson et al., 2010). Overall we found that sensitivity 

depended on the distance between discriminated positions and, in agreement with previous 

findings, was also direction-dependent. The sensitivity profile for the upward direction was 

found to be similar to that of the forward direction and the profile for downward was similar 

to backward, with the latter two directions being the least sensitive overall at distances of 

2-3 cm. In addition, when data were grouped together for opposing directions, sensitivity 

showed a dependence upon arm posture. These results suggest that arm proprioceptive 

sensitivity is both anisotropic and configuration-dependent in 3D space.  

Relevance to clinical and laboratory assessment of proprioception 

Despite the importance of proprioception for normal perceptual and sensorimotor 

functioning, proprioception remains incompletely understood and its assessment in the 

clinic is primitive and limited in scope. One major factor contributing to the enigmatic 

nature of this “6th sense” is that there is no universally accepted method for assessing 

proprioception. In the clinic, assessment is performed in a relatively coarse manner and 

typically addresses only position sense. In one method, a patient’s joint (typically one of 

the digits of the foot or hand) is alternately moved in two opposing directions and the 

patient is asked to discriminate between these positions (e.g. “up or ‘down?”). A second 

commonly used method involves position matching, where the arm to be tested (‘test arm”) 

is passively moved into a test position and the subject is then asked to actively reproduce 
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that position with either the same arm (after moving the arm back to its starting position) 

or with the contralateral arm. Although these tests can be quickly administered and are easy 

for patients to understand they are also suffer from several disadvantages. For example, 

such tests provide only coarse, discrete measures of proprioceptive abilities, i.e. 

proprioception is typically classified only as impaired or absent (Simo et al., 2014). Such 

tests are also currently thought to be associated with poor (or at least questionable) inter-

rater (Lincoln et al., 1991) and/or intra-rater reliability (Carey, 1995; Dukelow et al., 2010; 

Lincoln et al., 1991; Simo et al., 2014). In addition, since these tests require physically 

guiding a subject through the required movement, proprioceptive estimates obtained this 

way can be contaminated by tactile, force and movement cues conveyed by the examiner 

(Simo et al., 2014). For these and other reasons, such methods are of limited usefulness in 

assessing proprioception outside of the clinical setting and were not employed in the 

present study.  

Errors in reaching and pointing have been used in the laboratory to infer the 

contribution of proprioception to position sensing and movement control in both 

neurologically intact subjects (G. A. Apker et al., 2011; Berkinblit et al., 1995; Darling & 

Miller, 1993; Flanders et al., 1992; Goble & Brown, 2008; McIntyre et al., 1998; Sober & 

Sabes, 2003; Vindras & Viviani, 1998) and patients (Blouin et al., 1993; Ghez et al., 1995; 

Gordon et al., 1995; Gosselin-Kessiby et al., 2009; Messier, Adamovich, Berkinblit, Tunik, 

& Poizner, 2003). Particularly relevant are studies involving movements without visual 

feedback of the moving hand (Gregory A Apker & Buneo, 2012; Gregory A Apker et al., 

2010; Carrozzo et al., 1999; R. J. van Beers et al., 1998). Although these and other studies 
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have provided a wealth of information about the relative roles of proprioception and vision 

in arm movement control, the active nature of reaching/pointing paradigms precludes 

isolation of the sensing aspect of proprioception from motor predictions derived from 

efference copy and an internal (forward) model. Although the contributions of sensory and 

motor processes can be partially disentangled using modeling and simulation techniques 

(Buneo et al., 1995; Shi & Buneo, 2012; Robert J van Beers et al., 2004), 

instrumented/robotic based assessment methods, which employ passive driving of the limb, 

can largely rule out the contribution of motor factors to proprioceptive function. 

In the present study an instrumented (robotic) paradigm was used to quantify 

proprioceptive abilities. Early attempts at instrumented assessment typically allowed 

testing at only a single joint and still required the subject to actively move their limb or 

required the examiner to manually place the limb in position (Carey, 1995; Goble & 

Brown, 2008; H.-M. Lee, Liau, Cheng, Tan, & Shih, 2003; Street & Wt, 2008). As a result 

of these limitations, several groups have recently employed the use of multijointed robots 

in proprioceptive assessment (Cressman & Henriques, 2011; Dukelow et al., 2010; 

Erickson & Karduna, 2011; Fuentes & Bastian, 2010; Simo et al., 2014; Wilson et al., 

2010). Robotic assessment has several advantages over traditional manual assessments and 

other instrumented tests. Typically several joints can be assessed at once and can be done 

so relatively quickly (Dukelow et al., 2010). In addition, the limb does not have to be 

manipulated by the examiner which, as previously noted, can often provide subtle 

movement related cues to the subject. Second, the high spatial precision of modern robots 

means that errors in repeated positioning of the limb are nearly non-existent relative to 
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manual positioning. Lastly, the ratio-level nature of the data that can be acquired using 

robots means that assessment can be more quantitative and more likely to reveal 

impairment (Dukelow et al., 2010; Simo et al., 2014). Thus, using a high precision device 

such as a robot can greatly improve the objectivity and reliability of proprioceptive 

assessments. 

One potential limitation of the approach used here was that subjects’ arms were 

passively driven between positions. Since proprioceptors are most often stimulated during 

active movements, the extent to which our measurements provide a complete picture of 

proprioceptive abilities is unclear. However, recent work by Henriques and colleagues 

(2011) suggests that passive assessments may generalize well to at least some active 

contexts. These investigators assessed changes in perceived hand position after subjects 

either a) actively moved the handle of a manipulandum along a constrained linear path or 

b) had the handle passively moved along the same linear path (Cressman & Henriques, 

2011). In both paradigms, once the hand reached the final position, subjects were required 

to make a two-alternative forced-choice (2 AFC) judgment about the position of their hand 

relative to a visual reference marker. Following adaptation to altered visual feedback of the 

hand, proprioceptive estimates were found to be biased in the same direction as 

corresponding reaching movements, regardless of the nature of hand displacement (i.e. 

active or passive). This suggests that passive driving of the limb, as employed in the present 

study, may provide a robust estimate of proprioceptive abilities under a variety of contexts 

(i.e. active and/or placement displacement of the limb).  
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Anisotropies in position estimation 

Several previous studies have reported directional and workspace dependencies in 

proprioceptive abilities within the horizontal plane. For example, van beers and colleagues 

studied the ability of human subjects to localize visual or proprioceptive targets at three 

positions in the horizontal plane (R. J. van Beers et al., 1998). They found that subjects 

were more precise when localizing positions along an anterior-posterior axis than along an 

azimuthal one. In addition, subjects were more precise when localizing positions closer to 

the body than farther away. Subsequent work employing visuomotor adaptation paradigms 

(Robert J. van Beers, Sittig, & Gon, 1999; Robert J van Beers, Wolpert, & Haggard, 2002) 

confirmed the direction-dependent precision of both proprioceptive and visual localization 

and described some of the basic rules underlying the integration of information derived 

from these senses. The findings for proprioception were largely confirmed by a study 

involving direct examination of proprioceptive abilities employing a planar robot (Wilson 

et al., 2010). Here, subjects were required to judge the position of their hand with respect 

to either a remembered proprioceptive reference position or a visual reference. Judgment 

positions were attained via passive movements of the robots end effector (handle), which 

was grasped by the subjects. Proprioceptive acuity (i.e. sensitivity to change in hand 

position) was found to be greater for hand positions closer to the body and for changes in 

hand position occurring along an anterior-posterior axis. In addition these investigators 

found limb-dependent differences in proprioceptive bias (perceived location of the hand) 

and also found that bias was reduced when the hand was closer to the body than farther 

away.  
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In previous studies, workspace and directional differences in proprioceptive 

abilities were explained by geometric factors. For example, identical changes in hand 

position performed at different locations in the workspace would be expected to result in 

different relative changes in joint angle, i.e. smaller changes in joint angle for positions 

further from the body and larger changes closer in (Wilson et al., 2010). As a result, muscle 

spindles would stretch to differing degrees at these locations, giving rise to the observed 

differences in proprioceptive abilities. A similar mechanism is thought to underlie 

directional differences in proprioceptive abilities. Although a geometric argument makes 

sense, in 2D experiments changes in limb geometry and changes in the position of the hand 

in the work space are naturally confounded. Thus, it’s unclear if the differences observed 

in 2D are entirely geometric in origin or if they arise in part from other factors, such as the 

frequency distribution of workspace positions naturally visited by the hand (Slijper, 

Richter, Over, Smeets, & Frens, 2009) or asymmetries in the distribution of preferred 

sensory directions of arm muscle spindles (Bergenheim, Roll, & Ribot-Ciscar, 2000; Roll, 

Bergenheim, & Ribot-Ciscar, 2000). In the present experiments however, hand position 

and arm configuration were not confounded. This lends support to the idea that geometric 

changes, including those that don’t alter the position of the hand in the workspace, are an 

important factor in determining arm proprioceptive sensitivity.  

Regarding performance for directions outside the horizontal plane, 

neurophysiological studies have reported that fewer neurons in the rat dorsal 

spinocerebellar tract (Bosco & Poppele, 2001; Valle, Casabona, Bosco, & Perciavalle, 

2007) and primate somatosensory cortex (Tillery, Soechting, & Ebner, 1996) are tuned to 
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movements/positions along the vertical axis than along other axes. This suggests that 

proprioceptive abilities should be diminished for arm displacements with substantial 

vertical components, a finding that was not generally observed here. That is, although 

sensitivity for the downward direction was poor relative to most other directions at 

intermediate distances, sensitivity for the upward direction was similar to the forward, 

leftward and rightward directions. The reasons for this discrepancy with 

neurophysiological studies are not immediately apparent. It should be noted however that 

some differences between the upward and downward directions were observed in this 

study. As mentioned previously, several studies have demonstrated robust differences in 

movement kinematics for upward vs downward arm movements (Berret et al., 2008; 

Gentili et al., 2007; Le Seac’h & McIntyre, 2007; Papaxanthis et al., 2003). Other work 

suggests these differences reflect the contribution of an internal model that is used in part 

to anticipate and exploit the anisotropic effects of gravity on the limb (Gaveau, Berret, 

Angelaki, & Papaxanthis, 2016). This model, presumably acquired during development, 

would depend in part on the perceived effort associated with moving in different directions 

in the vertical plane, information which the proprioceptive system is ideally suited to 

provide (Proske & Gandevia, 2012). Thus, in addition to the aforementioned factors, 

anisotropic perception of limb position in 3D space could partially reflect the influence of 

an internal model that incorporates the perceived effort associated with moving in different 

directions relative to the gravitational vertical. 
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CHAPTER 4 EFFECT OF TENS ON PROPRIOCEPTION SENSITIVITY 

Introduction 

Proprioception loss affects 60% of stroke survivors leading to problems performing 

activities of daily living (ADLs) which significantly reduces their independence and 

mobility (Benjamin et al., 2017; Semrau et al., 2015). The estimated cost of care for people 

who have had a stroke in the United States is $34 billion per year and is the leading cause 

of serious, long term disability (Benjamin et al., 2017). Proprioceptive dysfunction and loss 

can be caused by other disorders besides stroke, including, multiple sclerosis, spinal cord 

injuries, and diabetic neuropathy so the number of affected individuals is much higher than 

just those who have suffered a stroke. Therapies used in physical or occupational therapy 

can help ameliorate these deficits and help someone regain their independence and ability 

to perform ADLs. Neuromodulatory devices have shown to be extremely effective in some 

cases at altering neural functioning in very beneficial ways. For example, Deep brain 

stimulation (DBS), although extremely invasive and requiring neuro-surgery, is extremely 

effective at treating symptoms of Parkinson’s disease and major depression (R. J. Anderson 

et al., 2012; Limousin et al., 1995). The experiment presented here measures the effect of 

neuromodulation in the form of transcutaneous electrical nerve stimulation (TENS) via 

external electrodes on the forehead, neck, and shoulder. Prior evidence suggests that it may 

be possible to alter cognition, and by extension proprioceptive function. 

Stimulation techniques and clinical applications 

Effects seen with invasive technologies, such as DBS, have led to studies on the 

use of peripheral stimulation to treat disorders, which is much less invasive. Some 
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peripheral stimulation methods such as transcranial direct current stimulation (TDCS), 

transcutaneous electrical never stimulation (TENS), trigeminal nerve stimulation (TNS), 

vagus nerve stimulation (VNS), transcranial magnetic stimulation (TMS), and ultrasound 

stimulation (US) have been investigated for their ability to help with depression, motor 

dysfunction, pain, Parkinson’s disease, stroke, multiple sclerosis, schizophrenia, 

Alzheimer’s, migraines, epilepsy, seizures, anxiety, obesity, and even heart failure (Antal 

et al., 2008; Baker et al., 2010; Benninger et al., 2010; Boggio et al., 2006; Borckardt et 

al., 2012; Brunelin et al., 2012; Cook et al., 2013; Cuypers et al., 2013; De Ferrari et al., 

2011; Degiorgio et al., 2011; C. M. DeGiorgio et al., 2009; Christopher M. DeGiorgio et 

al., 2006; Christopher M DeGiorgio et al., 2013; Fan et al., 2018; Ferrucci et al., 2014; Fini 

& Tyler, 2017; Fregni et al., 2005; Fregni, Boggio, et al., 2006; Fregni, Gimenes, et al., 

2006; Gaul et al., 2016; George et al., 2008; Göbel et al., 2017; Göder et al., 2013; Jo et 

al., 2009; Karnath, 1995; Kulju et al., 2018; W. Lee et al., 2016; Lefaucheur et al., 2017; 

Legon et al., 2014; Lin et al., 2018; Mauskop, 2005; Merrill et al., 2006; Moisello et al., 

2015; Mori et al., 2013; Mueller et al., 2014; Nemeroff et al., 2006; Parent, 2004; Paulino 

Trevizol et al., 2015; Pereira et al., 2013; Robbins et al., 2006; Sackeim et al., 2001; Sadler 

et al., 2002; Santarnecchi et al., 2014; E.J.A. Scherder et al., 1995; Schlaug et al., 2008; J 

Schoenen et al., 2013; Jean Schoenen et al., 2013; Schrader et al., 2011; Sjogren et al., 

2002; Smith et al., 2015; Soss et al., 2015; Trevizol et al., 2016; Tyler et al., 2018; Van 

Someren et al., 1998; Vercammen et al., 2011; Xiong et al., 2018; Xue-fei ZHAO et al., 

2015). The ability to alter quickly alter neurological functioning to see if an individual does 

have clinical benefits without the need for surgery would give physicians more tools to 
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improve people’s lives. A more thorough breakdown of these technologies and their 

efficacy for specific diseases can be found in Chapter 1.  

Currently neurological disorders are most often treated with medications which can 

be very effective but also often produce side effects. More recently deep brain stimulation 

(DBS) has been very effective at treating Parkinson’s disease, epilepsy, and even 

depression. DBS is another tool that can be used when medications aren’t effective 

however it is very invasive, requiring neurosurgery. In contrast to these other treatments 

trigeminal and vagus nerve stimulation can modulate activity in the same areas without 

invasive neurosurgery or side-effects from off target effects. TNS provides another way to 

modulate the activity in these cortical structures that would likely have therapeutic effects. 

Other treatments that alter basal ganglia function are effective treatments and another tool 

that could modulate those same structures is very likely to provide another modality for 

delivering those effective treatments. Being able to produce even a subset of the beneficial 

effects in a controlled, reliable way, using TNS without the need for surgery or drugs would 

be an amazing new tool for clinicians. 

Stimulation for enhancement 

While some studies have investigated the use of TENS in altering proprioceptive 

function in the context of improving balance and postural stability in neurologically 

involved populations, no studies have looked at using TENS for enhancement of 

proprioceptive sensitivity within a typical population (Chang et al., 2013; Jung, In, & Cho, 

2017; Junhyuck, Dongkwon, Wonjae, & Seugwon, 2014; Shirazi, Shafaee, & Abbasi, 

2014; Tyson, Sadeghi-Demneh, & Nester, 2013). These studies also provided TENS 
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directly to peripheral, somatic nerves in regions of the body affected by the deficit 

including the bottom of the foot (through a conductive sock) (Tyson et al., 2013), the 

gastrocnemius (Chang et al., 2013; Junhyuck et al., 2014), medial quadriceps (Junhyuck et 

al., 2014), peroneal nerve (Jung et al., 2017), and the lower back from L1-L5 (Shirazi et 

al., 2014). More recently attention has turned toward exogenous, non-invasive stimulation 

with the goal of modulating cortical arousal systems to promote cortical neuroplasticity (V. 

P. Clark et al., 2012; Coffman et al., 2014; Kilgard, Rennaker, Alexander, & Dawson, 

2018; Trumbo et al., 2016). Using these methods to enhance proprioception has not 

previously been investigated. 

A different type of stimulation, transcranial direct current stimulation (TDCS), has 

been studied more heavily for enhancement. TDCS has shown to have benefits for working 

memory, attention, and perception (Coffman et al., 2014), increasing verbal fluency (Pisoni 

et al., 2018), and even accelerating the learning of complex tasks (V. P. Clark et al., 2012). 

Safety for use as an enhancement is very important because the interventions are not 

weighed against the negative impacts of allowing disease progression without treatment. 

TDCS as a technology appears to be safe, with very few documented side effects (Poreisz, 

Boros, Antal, & Paulus, 2007). It is clear from these studies that TDCS is producing results 

and causing some changes in cortical functioning. However, there is evidence that a large 

portion of the current being provided is staying in soft tissue around the head or traveling 

to other, unintended, targets and is not penetrating through the skull, as previously thought 

(Miranda et al., 2006; Underwood, 2016). TDCS and other types of stimulation may be 

having a similar effect because current may also be traveling to superficial branches of 
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cranial nerves. This suggests that direct targeting of these cranial nerves such as TNS or 

VNS could produce many of the same enhancement effects that have been shown with 

TDCS. TENS is specifically meant to target these nerves so it could be possible to see 

many of the same enhancement effects that have been shown with TDCS in experimental 

designs that use TENS, including trigeminal nerve stimulation (TNS) or vagal nerve 

stimulation (VNS). 

Proprioceptive Research 

Many studies have attempted to quantify proprioceptive function in stroke patients 

and in un-affected populations (Adamo & Martin, 2009; Ghez et al., 1995; Goble & Brown, 

2008; Gordon et al., 1995; Proske & Gandevia, 2012; Sainburg et al., 1995; R. J. van Beers 

et al., 1998; Wilson et al., 2010; Wrisberg & Winter, 1985). However, those studies did 

not test along a vertical axis and were limited to 2-dimensional testing. Recently, we 

developed a paradigm that allows testing of upper arm proprioception along arbitrary axes 

in 3d space and with different arm postures (Joshua Klein, Whitsell, Artemiadis, & Buneo, 

2018). In that study it was shown that discrimination was least sensitive between points 

located along a downward direction from a reference location. As a result, in the present 

study downward movements were chosen to measure the effect of TENS.  

Few studies have tested the effectiveness of TENS applied to cranial nerves for 

enhancement of cognitive or sensory functioning. Most previous studies targeted 

peripheral somatic nerves with the goals of enhancing balance, proprioception, or gait 

(Chang et al., 2013; Jung et al., 2017; Junhyuck et al., 2014; Shirazi et al., 2014; Tyson et 

al., 2013) Here we used a commercially available to stimulator (Digitimer, DS8R) to 
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deliver current at 30hz and 300hz to peripheral branches of the trigeminal nerve, with the 

goal of influencing upper limb proprioceptive sensitivity. 

Any observed enhancement could have implications for rehabilitation of upper 

extremity function following stroke and other disorders as well as for enhancing training 

or performance of tasks that demand high levels of proprioceptive sensitivity. 

Methods 

This experiment was conducted in the same way as Experiment 1 from Chapter 2 

and 3 with the exception that transcutaneous electrical nerve stimulation (TENS) was 

added. Thirty (30) and 300 Hz stimulation was used to test the impact on proprioceptive 

position sense ability. In this experiment the adducted arm posture was used and only the 

downward direction was tested. In previous studies of 3d proprioception it has been shown 

that downward movements did not achieve high levels of sensitivity until 4cm given an 

adducted arm posture (Joshua Klein et al., 2018). Down was chosen as it would give ample 

opportunity for enhancement to be shown at shorter distances from the reference location. 

Thus, this direction gave us the most opportunity to see improvements at multiple 

displacement distances. 

Stimulation Parameters 

The DS8R produced by Digitimer Ltd (Hertfordshire, UK) was used for these 

experiments and is approved for human research. For all stimulation experiments the 

parameters were as follows: 3ma amplitude, 350us pulse duration, biphasic ratio of 100%, 

and interpulse interval of 350us. These settings were the highest settings that consistently 

preserved participant comfort throughout the entire experiment with each electrode 



 

75 

 

configuration. The DS8R is triggered by the rising edge of a 5v square wave so an external 

function generator was used to set the frequency of stimulations. For these experiments a 

frequency of 30hz or 300hz were used. The D188 remote electrode selector, also produced 

by Digitimer, was used to select which electrode pair would receive the DS8R’s 

stimulation. 

Software 

The programs controlling the experiment communicated with an Arduino Nano 

(Arduino Board Nano, 2017) via serial connection which would select the appropriate 

electrode and trigger the function generator to start or stop stimulation from the DS8R to 

the chosen electrode pair at the appropriate time. 

This experiment used the same software and hardware setup from prior experiments 

with the addition of the stimulation. The same shared memory component was used to 

communicate to a new subsystem that would communicate with and control the stimulation 

output. This shared memory was then used to send information about the trial that was 

starting, causing randomization of the stimulation location and allowing for that 

communication to be sent back to the main program to be recorded. The trial information 

was used by the stimulation controller to ensure that the trials were balanced, i.e. generating 

the same number of trials of ‘same’ and ‘different’ for each of the 3 stimulation 

configurations. A serial command transmitted from the main program to the Arduino Nano, 

running custom software, was used to produce a 5v trigger on the wire connected to the 

function generator. This signal would cause the function generator to produce a square 

wave at a specified frequency that would in turn trigger the DS8R to produce the 
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stimulation output. At the same time the serial command from the main program also 

indicated which electrode pair should be selected. The Arduino set one of the controlling 

input lines to the D188 high (i.e. to 5v) which would select the specific channel that needed 

to be stimulated. These determinations by the stimulation control program were then 

relayed back to the main control program so that it could be written to the output file for 

later analysis. A diagram of this design and communication channels can be seen in Figure 

10. 

Electrode Placement 

All stimulation was provided via two round 1.25” self-adhesive electrodes 

(“Axelgaard PALS Electrodes,” 2018). Three electrode configurations were examined and 

a diagram of approximate electrode placements can be seen in Figure 15. Stimulation of 

the shoulder was done with the electrodes placed approximately 2-3 inches apart along and 

approximately 1 inch above the scapular spine. This placement was meant to avoid as many 

cranial nerves as possible while still providing an electro-tactile sensation the participant 

during stimulation. Two electrodes were also placed approximately 2-3 inches apart on the 

back of the neck near C2/C3 of the cervical spine meant to stimulate vagal nerve 

projections that enervate the back of the neck. Forehead stimulation was provided by 

placing one electrode near the right mastoid process and one on the right forehead above 

the eyebrow and lateral to the eye (close to the right temple). Typically, this last electrode 

was adjusted on a subject by subject basis to maximize comfort. These locations were 

chosen for their proximity to ophthalmic branch of the trigeminal nerve (forehead), vagus 

nerve as it leaves the jugular foramen (neck), and possibly the accessory nerve but was 
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originally meant to be used as a sham stimulation location (shoulder). Stimulation of 

forehead and neck locations has shown to be effective in eliciting cortical responses (Tyler 

et al., 2015). Although not many studies have examined these exact placements and 

stimulation parameters the theoretical outcomes of this type of stimulation warrant 

investigation. 

When participants arrived for the experiment they would complete their informed 

consent form and review the task before electrodes would be attached. These would then 

be tested for comfort starting with a single stimulation pulse then followed by a short (.25-

.5 second) higher frequency pulse using either the 30hz or 300hz frequency depending on 

the group to which the subject which group the subject. Finally, a ~3.5-4 second duration 

stimulation was given to ensure that the stimulation didn’t become uncomfortable because 

a full trial 3.75s in duration. If at any point during the setup (single pulse, short burst, or 

full trial length stimulation) the participant reported any sharp pains or discomfort then the 

electrode placement would be slightly adjusted, and the procedure restarted with single 

stimulations. Only one participant was unable to complete the experiment due to not being 

able to find a comfortable location for the electrodes. Once electrode placement was 

finalized athletic tape was used to secure the electrodes in place on the neck, forehead, and 

behind the ear. Typically, the electrodes placed on the shoulder were held on by the 

participant’s shirt or the shoulder straps of the chair. Electrodes were periodically checked 

throughout the experiment to ensure they were holding in place well and were re-taped if 

needed. 
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Statistical Analyses 

All statistical analyses were conducted in SPSS 25. D’ was calculated using the 

same procedure described in Chapters 2 and 3 (Joshua Klein et al., 2018). Bias (c) was also 

calculated as described in Chapter 2. Differences in d’ as a function of displacement 

distance was assessed using a three-factor mixed analysis of variance (ANOVA; within 

subjects factor: distance (1, 2, 3, and 4 cm) and stimulation location (forehead, neck, 

shoulder); between subjects factor: stimulation frequency (30hz and 300hz). Significant 

interactions were further analyzed using Tukey’s post hoc tests. 

Bias was analyzed similarly using a three-factor mixed analysis of variance 

(ANOVA; subjects factor: distance (1, 2, 3, and 4 cm) and stimulation location (forehead, 

neck, shoulder); between subjects factor: stimulation frequency (30hz and 300hz)]. 

Significant interactions were further analyzed using Tukey’s post hoc tests. 

Results 

As expected, proprioceptive sensitivity increased monotonically with distance from 

the reference location. Figure 16 shows the mean sensitivities for all the stimulation 

locations (forehead, neck, and shoulder) as well as the stimulation frequencies (30hz and 

300hz). A multi-factor ANOVA on distance, stimulation location, and stimulation 

frequency showed no main effects of stimulation location or stimulation frequency (Figure 

16). However, we observed a distance main effect [F(3, 102)=132.65, p<.001], as was 

expected. We also found a distance by stimulation frequency interaction [F(3, 102)=4.38, 

p<.01]. After collapsing data across the stimulation location variables because of no 

significant effect’s comparisons between 2cm and 3cm distances were made. At the 3 cm 

distance, performance was significantly higher for 300hz stimulated participants compared 



 

79 

 

to participants receiving 30hz stimulation (see Figure 17); significant with Bonferroni 

correction (t(29)=3.01. p<.01) while 2cm showed no significant differences. 

Figure 18 shows the bias changes as a factor of distance from reference location 

with all stimulation configurations and frequencies. This shows a peak of bias, c, at 2cm 

for all data points which then decreases monotonically to the 4cm distance. Bias was 

analyzed with a multi-factor ANOVA on distance, stimulation location, and stimulation 

frequency similar to sensitivity. This analysis showed no main effect of stimulation 

location or stimulation frequency at 30hz and 300hz. There was a main effect of distance 

[F(3,114)=19.19, p<.001] showing a difference in bias as the distance from the test position 

increased. Bias did increase from 1-2cm but then decreased monotonically beyond 2cm. 

Although direct, statistical comparisons are problematic when comparing this data 

set to the non-stimulation experiments (Exp. 1, Chapter 3), it should be noted that 

sensitivity during 300 Hz stimulation appeared qualitatively similar to sensitivity observed 

in Experiment 1 (Figure 19). Given lower sensitivity for 30hz stimulation at some distances 

the 30hz stimulation may have had a deleterious effect on proprioceptive sensitivity within 

this task. 

Discussion 

Several previous studies have used some form of exogenous stimulation to 

modulate cognitive function or perception. This study has demonstrated an effective 

modulation of proprioceptive sensitivity for movements down from a reference location. 

This direction of movement gave multiple distances at which improvement could be 

observed because of previously shown poor sensitivity (Joshua Klein et al., 2018). The 
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stimulation location showed no statistical effect on the sensitives of participants while there 

was significant interaction between the distance from the reference location and the 

stimulation frequencies used. Furthermore, analysis at individual distances showed a 

significant difference at 3cm between the 30hz and 300hz stimulation after eliminating 

stimulation location as a factor. This clearly shows some modulation of proprioceptive 

sensitivity. Bias was affected by the distance from the reference location but no effect of 

the stimulation frequency or the stimulation location was shown. Bias is unaffected by the 

stimulation but is influenced by the distance from the reference location. This is expected 

because the information available to the participants at each distance changes allowing 

them to make more decisions based on detectible differences and less on bias. These 

findings suggest that arm proprioceptive sensitivity can be modulated through the 

application of TENS targeting cranial nerves. 

Electrical stimulation of the nervous system has a long history and is well-known 

to alter the activation and functioning of cortical and spinal circuits. For example., 

Transcranial direct current stimulation (TDCS) has recently been used to enhance 

performance on many cognitive tasks (V. P. Clark et al., 2012; Coffman et al., 2014; Pisoni 

et al., 2018). Transcutaneous electrical nerve stimulation (TENS), which has typically been 

used to modulate pain or elicit muscle contraction has more recently been shown to be 

effective in altering firing patterns of superficially accessible somatic nerves and enhancing 

sensorimotor functions such as proprioception (Chang et al., 2013; Jung et al., 2017; 

Junhyuck et al., 2014; Shirazi et al., 2014; Tyson et al., 2013). TENS has more recently 

been used to investigate cortical modulation and has been effective at eliciting cortical 
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circuit activation (Hulsey et al., 2017; Tyler et al., 2015). With the connection from cranial 

nerves to the ARAS, long-lasting changes in proprioceptive function, relative to somatic 

stimulation, may be possible with this technique that could aid in task learning as well as 

rehabilitation. 

The trigeminal nerve as well as the vagus nerve connect with the locus ceruleus 

(LC), a component of the ARAS, which releases noradrenaline to many portions of the 

cortex via a wide array of synapses. This ARAS activation can lead to general enhancement 

of cognition and learning as shown through pharmaceutical studies (Sara, 2009). Anything 

that can cause a modulation of these brain structures could theoretically have the same or 

similar effects, including pharmaceuticals. However, increasing activation of these systems 

with pharmaceuticals can also alter functioning of brain areas other than those that are the 

targets of modulation, due to the systemic means of delivery for those agents. Cranial nerve 

stimulation may be able to more directly alter functioning of these areas, enabling similar 

enhancement effects without the systemic side-effects.  

Stimulation parameters 

Of the few studies using TENS on cranial nerves, such as the trigeminal (TNS) or 

vagus nerve (VNS), some have shown behavioral changes to stress responses although 

functional enhancements for an active, functional, task were not reported (Tyler et al., 

2015). As discussed in Chapter 1 many different methods exist for using TENS and most 

of these have focused on disruption of activity related to disease states. Currently, TENS 

is approved for use peripherally to help reduce muscle pain and devices for these treatments 

can be bought off the shelf at many stores. How TENS was used previously was shown to 
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be very effective at disrupting the peripheral pain signals however, the use of TENS on 

superficial cranial nerves is a somewhat new use of the technology and there are few 

publications focused on using it for enhancement as attempted in this study. Very recently 

it has been shown that VNS paired with tactile training helped to improve lost touch 

sensation in post-stroke patient (Kilgard et al., 2018). 

There is very little consensus on what parameters may produce desired effects and 

that feature space would likely be more limited than stimulation to create a disruptive 

effect. This study tested the effects of stimulation frequency while all other parameters 

(current, pulse length, biphasic pulse gap, and aspect ratio) were held constant in order to 

view the influence of only a differing rate of stimulation on proprioception. Implanted 

vagal stimulation devices have been approved by the FDA to use frequencies between 20 

and 30hz for clinical use (Groves & Brown, 2005). While the implanted nerve cuffs and 

TENS are quite different stimulation at this frequency could have promise because of it’s 

previously shown clinical effects. Other work has shown that higher frequency stimulation 

can have significant impacts on cortical processing, most profoundly the sympathetic 

nervous system (Tyler et al., 2015). A 300hz stimulation along with the 30hz stimulation 

was used while holding other parameters the same, importantly amplitude, to maintain 

comfort for participants during the experiment. Three milliamps of current produced by the 

DS8R was near the comfort threshold for nearly all participants with proper electrode 

placement. Only one participant did not complete the study because of aversion to the 

stimulation during the setup and initial testing of the stimulation. 
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Stimulation Locations 

Electrode placement were chosen to target the trigeminal nerves on the forehead 

and cranial nerves on back of the neck. Stimulation provided to the shoulder was meant to 

be a sham location that would not activate cranial nerves however the shoulder stimulation 

showed no significant difference to the other locations. The specific location of stimulation 

did not show any significant differences in proprioceptive sensitivity or bias. This may 

have been caused by the stimulation reaching targets that were unaccounted for that were 

as stimulation on the neck will also stimulate other spinal nerves and possibly the accessory 

nerve. Stimulation on the forehead traveled from the forehead to near the mastoid process 

which includes other cranial nerves (notably the facial nerve and the vagus nerve). This 

type of spread is common among stimulation paradigms as the current can easily spread 

through soft tissue (Miranda et al., 2006; Underwood, 2016).  

Many the nerves that were targeted, notably the trigeminal and vagal nerve project 

to the LC that controls noradrenergic release and contributes to the ARAS activity that 

leads to widespread arousal changes and more cortical activity. Prior work has shown the 

effectiveness of modulating stress response correlated to activation in these structures with 

vagal nerve stimulation (Tyler et al., 2015) and more recent work has shown that the LC 

activity can be driven by vagal stimulation (Hulsey et al., 2017). 

Limitations 

This study was limited in its ability to directly compare the data collected with 

stimulation to a sham location or data from non-stimulated participants however data 

from a previous study collected in the same way can provide information to inform future 

studies. While no statistically analysis was done a visual comparison of the data from the 
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non-stimulated paradigm and the data produced when 300hz and 30hz stimulation was 

applied (Figure 18). Non-stimulation data presented was first presented in (Joshua Klein 

et al., 2018). 

The testing of different stimulation parameters is a current limitation of our 

understanding of the effects this type of stimulation will cause at a functional level. There 

is activation of the ARAS in some way but the specific effects of the stimulation is still 

being explored. 

Future Directions 

Providing a control in TENS studies can be difficult because the stimulation can be 

felt and changes to parameters can be readily felt by participants. Simply reducing the 

amplitude of stimulation to a very low level may not be enough to completely blind the 

participants to the expected outcomes because it still provides different levels of sensation. 

A non-stimulated paradigm may be better suited for these types of studies as a between 

group comparison. This would blind participants to the stimulation, or lack thereof, they 

were receiving because they don’t have a reference for the sensations produced by 

stimulation. Future work could be done to produce a quality sham or non-stimulated group 

as a comparison to any stimulation parameters. 

Although some work has been done to quantify the effects of TENS when applied 

to cranial nerves there is still a lack of understanding of what stimulation parameters will 

be effective in eliciting modulation. With nerve cuffs it is much more well understood what 

fibers are being activated by different amplitude and frequency stimulations (Groves & 

Brown, 2005). This same type of understanding will be invaluable to future studies 
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attempting to find parameters of stimulation to produce specific, desirable effects and can 

only be done with many more studies to map the feature space of TENS. As of now the 

specific effects of altering any single stimulation parameter is unknown but developing an 

understanding of those effects would allow stimulation to provide a new pathway for 

psychiatric treatments while possibly avoiding unwanted side effects. Previous research 

has shown the effectiveness of modulating the activity of the ARAS and TENS provides 

an avenue to explore the possibility of doing just that without drugs. 

Stimulation was shown to cause a modulation in proprioceptive sensitivity through 

an interaction between distance and frequency. Specifically, at the 3cm mark there was a 

significant difference in sensitivity. The bias was unaltered by stimulation frequency but 

was influenced by the distance from the reference location. The effect of stimulation shows 

promising results in being able to modulate the activity of cortical structures to alter 

sensitivity of sensory systems. With more work optimal parameters could be uncovered 

which could result desired (positive) changes in sensitivity. This alteration could be done 

to enhance recovery of function after injury, or even athletic performance. 
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CHAPTER 5 DISCUSSION 

Studies conducted in 2d have shown that arm proprioception is both location and 

direction dependent. The experiments discussed in Chapter 2 and Chapter 3 further expand 

upon the current understanding of proprioception by characterizing this sense in a 3d 

workspace. A 7-DoF robotic arm was used to control the position, movement, and 

configuration of each participant’s arm to characterize differences in sensitivity and bias. 

Movements in the 2d plane (leftward/rightward, forward/backward) were examined in 

order to validate the task used here against those described in previous literature. In 

addition, upward and downward movements were also examined as they had not previously 

been characterized. Previous 2d experiments had constrained arm movement to the 

horizontal plane and had demonstrated specific dependencies as described above, but the 

generality of these findings could not be assessed due to the use of a single posture 

(Dukelow et al., 2010; Simo et al., 2014; Wilson et al., 2010). As a result, in the studies 

described here, sensitivity and bias were also tested with an adducted and abducted arm 

posture, the latter simulating conditions in previous 2d experiments. Differences in 

sensitivity were found between movement direction and arm posture that were consistent 

with previous 2d studies that used an abducted posture (Wilson et al., 2010). Experiments 

with an adducted posture showed differences in sensitivity that had not previously been 

explored in a passive task. Overall, arm proprioceptive sensitivity was shown to be both 

anisotropic and configuration-dependent in 3d space. 

Stimulation using electricity has long been known to cause modulation of nerve 

and cortical activation and has been used in a wide range of applications. The tools 
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available for assessment and modulation of nervous system activity have become more 

refined as technology advances. More recently, transcranial direct current stimulation 

(TDCS) has become a popular tool for modulating some cortical circuits and providing 

beneficial effects for conditions such as multiple sclerosis (MS), Parkinson’s disease (PD), 

and schizophrenia (Benninger et al., 2010; Boggio et al., 2006; Brunelin et al., 2012; 

Cuypers et al., 2013; Ferrucci et al., 2014; Fregni, Boggio, et al., 2006; Göder et al., 2013; 

Mori et al., 2013; Smith et al., 2015; Vercammen et al., 2011). TDCS has also been shown 

to be able to cause enhancement of some cognitive tasks although the precise method of 

action is unknown (V. P. Clark et al., 2012; Coffman et al., 2014; Pisoni et al., 2018). 

Although TENS has historically been used to modulate pain and to elicit muscle 

contractions (i.e. Functional Electrical Stimulation (FES)), it has also recently been used 

for sensorimotor enhancement by applying it to peripheral nerves responsible for sensory 

information transmission and has been shown effective in enhancing posture, balance, and 

proprioception (Chang et al., 2013; Jung et al., 2017; Junhyuck et al., 2014; Shirazi et al., 

2014; Tyson et al., 2013). Although TDCS and TENS deliver electricity to the nervous 

system differently, i.e. as continuous direct current or as pulsed, alternating current, both 

can alter functioning of the nervous system. A simulation study as well as a study on mice 

has also shown that little of the current from TDCS may actually be making it through the 

skull thus it has been suggested that this stimulation could be activating superficially 

available nerves such as the trigeminal or vagus nerve (Miranda et al., 2006; Vöröslakos et 

al., 2018). TENS as used in this study was used to target these cranial nerves. These nerves 

make connections to the ascending reticular activating system (ARAS) and based on 
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pharmaceutical studies (Sara, 2009), endogenous activation of these nerves could in 

principle modulate cortical activity to cause enhancement of cognitive functions. The 

modulation of the ARAS via cranial nerve activation the focus of many current 

neuromodulation techniques and could be a powerful tool for clinical treatments, cognitive, 

and sensorimotor enhancement (Groves & Brown, 2005; Hulsey et al., 2017; Kilgard et al., 

2018; Steenbergen et al., 2015; Yakunina, Kim, & Nam, 2017). 

The studies presented here clearly show an effect of direction of movement and arm 

posture on proprioceptive sensitivity as well as an effect of TENS on sensitivity. A more 

complete understanding of proprioceptive differences could help to better quantify deficits 

in clinical populations as well as provide a baseline from which to measure proprioceptive 

enhancement. TENS modulation of proprioceptive sensitivity may be an effect of ARAS 

activation via stimulation of cranial nerves and provides a foundation for future studies into 

enhancement of sensorimotor activities. 

Sensitivity anisotropies 

Using the 3d paradigm for proprioceptive assessment movements left and right 

from the starting location were the most sensitive approaching maximal sensitivity at 2cm, 

forward and upward were the next most sensitive approaching maximal sensitivity at 3cm, 

and downward and backward were the least sensitive requiring position change of 4cm to 

reach similar sensitivity. These anisotropies did not match previous literature which had 

shown forward and backward being more sensitive than left and right movements (Wilson 

et al., 2010). Also surprising was the sensitivity differences between upward and downward 

directions of movement with only downward movements showing significant reduction in 
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sensitivity. Previous studies have shown less representation of those directions in the cortex 

of non-human primates (Tillery et al., 1996). The low sensitivity seen for downward 

motion is expected given the previous studies, but upward sensitivities did not follow the 

same pattern of decreased sensitivity. In comparison to previous proprioceptive sensitivity 

studies one large difference between our methods was the posture of the arm during the 

testing, indicating further experiments using a more similar posture are needed to compare 

with previous test procedures. 

Posture dependence 

Arm configuration has been shown to be important for reaching tasks and in 

simulations of proprioceptive contributions to reaching (G. A. Apker et al., 2011; Gregory 

A Apker & Buneo, 2012; Gregory A Apker et al., 2010; Dukelow et al., 2010; Ghez et al., 

1995; Gordon et al., 1995; Sainburg et al., 1995; Shi & Buneo, 2012; Wilson et al., 2010). 

Within the 3d proprioception task, the anisotropies did not match with expected values 

based on previous literature which led us to question the effect of arm posture on these 

sensitivities. By creating a sling to support the arm of the participant during our task we 

could still measure passive proprioception while more closely matching previous testing 

conditions from prior studies. The resulting sensitivities were much more closely aligned 

to previous findings. Differences between the results showed that posture has a significant 

effect on the sensitivities of position sense. This had previously been hypothesized based 

on simulation and reaching experiments but had never been directly tested.  

The ability to change arm configuration during testing without altering the location 

of the workspace is also possible with this task. With 2d assessments the placement in the 
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workspace is naturally confounded with the posture of the arm because of the constraint 

that the arm must be held horizontally. By extending testing into 3d space with extra 

degrees of freedom the posture can be tested within the same locations in the workspace 

while altering the geometry of the arm during those movements. Evidence from this study 

suggests that sensitivity is related to the geometry of the arm and muscle spindle afferent 

differential activation within those different postures. 

Stimulation 

Stimulation frequency did affect sensitivity at 3cm however this appears to be 

caused by a decrease in sensitivity with the 30hz stimulation. This effect may have been 

caused by modulation of RAS via activation of cranial nerves, however, the stimulation 

was also suprathreshold and the participants were very able to feel the stimulation as it was 

occurring. This stimulation, as well as stimulation at 300hz, may have been providing 

another sensory signal to attend to that may have detracted from performance in the 

proprioceptive task. The parameter space for TENS is large and not well characterized, 

especially in the context of cognitive enhancement. Stimulation parameters that are sub-

threshold for sensation may be able to cause similar modulatory effects which would 

reduce distraction as a possible confounding effect of the stimulation used in these 

experiments. 

Bias did not show any changes between the stimulation frequencies or locations. 

Interestingly, the pattern of bias across distances for the down direction was similar in 

experiments with and without stimulation. However, in experiments without stimulation, 

bias did appear to vary across directions, implying that subjects used different strategies 
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for different directions in this task. When all directions and distances were considered there 

was a moderate negative correlation between sensitivity and bias (~ -0.5) meaning that as 

information about the position of their hand increased (as implied by greater sensitivity) 

their strategy changed from being slightly conservative (i.e. tending to respond ‘different’) 

to being relatively unbiased or slightly liberal.  

No effect was shown between the different stimulation locations tested (forehead, 

neck, and shoulder). Based on the locations of the stimulation we were using activation 

may have had many common targets. There are afferents of the vagus nerve in the ear lobe 

that could have been easily stimulated by the forehead stimulation. Stimulation on the neck 

could have activated spinal nerves which innervate some of the same brainstem targets as 

the vagus and trigeminal nerves including the trigeminocervical complex (Akerman, 

Holland, & Goadsby, 2011). Shoulder stimulation as initially expected to act as a sham 

stimulation site however there is evidence that the accessory nerve also has sensory 

components that may have been activated by the stimulation and project to similar 

structures as the vagus nerve (Bremner-Smith, Unwin, & Williams, 1999).  

Clinical Relevance 

3d proprioception 

Despite its importance in normal sensorimotor functioning, proprioception is often 

only assessed in a very coarse manner in clinical settings, typically assigning patients into 

categories of ‘intact’, ‘impaired’, or ‘absent’ (Simo et al., 2014). These types of 

assessments are done to quickly and broadly identify the deficits of a patient and doesn’t 

quantify the deficit very precisely. Typically, the assessment is either a single joint, 
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commonly a toe, being moved and having the patient determine the direction of movement 

or a position matching task where they are asked to match the position of their opposite 

arm that has been passively moved. This type of testing has been shown to have 

questionable inter and intra-rater reliability (Carey, 1995; Dukelow et al., 2010; Lincoln et 

al., 1991; Simo et al., 2014). Robotic assessment provides a more detailed view of 

proprioception allowing for quantification of deficits, or normal function, that can observe 

smaller changes in sensitivity, be more repeatable, and more reliable than traditional 

clinical assessment. Robotic assessments such as these can then be used to observe 

differences in experimental conditions for rehabilitation paradigms to determine recovery 

on a finer scale than typical, non-instrumented, assessments. Although these methods for 

assessing proprioception are more precise than some clinical assessments their usefulness 

in the clinic could be limited due to the somewhat longer period of time required for such 

assessments. 

Stimulation 

The trigeminal and vagus nerves have been shown to have modulatory effects on 

the LC and the noradrenergic pathways (Hulsey et al., 2017). This shows that 

hypothetically that exogenous stimulation of trigeminal and vagus nerves could have 

modulatory effects on ARAS and could be used as a treatment for some neurological 

disorders. Cervical spinal nerves have also been shown to have connections to the 

trigeminocervical complex that contains secondary connections to the LC and RAS system 

(Akerman et al., 2011). These pathways of activation could also be responsible for 

cognitive enhancement through modulation of the trigeminal, vagus, and cervical nerves 
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(Sara, 2009). Many studies have shown benefits of this type of stimulation on neurological 

symptoms although a direct link between the two is still untested (Benninger et al., 2010; 

Boggio et al., 2006; Cook et al., 2013; Cuypers et al., 2013; C. M. DeGiorgio et al., 2009; 

Christopher M DeGiorgio et al., 2013; Fan et al., 2018; Ferrucci et al., 2014; Fregni, 

Boggio, et al., 2006; Groves & Brown, 2005; Kulju et al., 2018; Mori et al., 2013; Nemeroff 

et al., 2006; Michael A Nitsche & Paulus, 2009; Paulino Trevizol et al., 2015; Sackeim et 

al., 2001; Sadler et al., 2002; Schrader et al., 2011; Soss et al., 2015). Non-invasive 

stimulation of these cranial nerves may provide an excellent clinical target for modulation 

of cortical circuits central to these debilitating diseases.  

Regarding enhancement of proprioception specifically, TENS has been used in the 

periphery to enhance proprioception but the stimulation was used on peripheral nerves or 

using a sock with embedded electrodes and wasn’t targeting cortical structures but instead 

the sensory signals being sent via those peripheral nerves (Chang et al., 2013; Jung et al., 

2017; Junhyuck et al., 2014; Shirazi et al., 2014; Tyson et al., 2013). The stimulation used 

in the present experiments wasn’t targeting the nerves of the upper limb to alter the signals 

from the proprioceptive receptors but instead was stimulating cranial nerves to modulate 

central nervous system activity. In this way, the stimulation is believed to be affecting the 

manner in which the cognitive system interprets incoming sensory signals. This change in 

targets away from peripheral nerves could be another channel that clinicians could use to 

ameliorate proprioceptive deficits. 

One large reason that TENS is an attractive target for clinical applications is that 

electrical devices like the ones discussed in this dissertation are very easy to use and test 



 

94 

 

for effectiveness on individuals as well as being much cheaper to develop. Often people 

seeking help for psychiatric disorders will need to try several different drugs and/or dosages 

before finding something effective. A small number of cases are even resistant to any type 

of drug treatment. Psychiatric drugs also tend to take time to reach an effective 

concentration and have a lot of negative side effects during that time. Many drugs 

commonly used for depression can cause or increase depressive symptoms or treat different 

subcomponents of the disorder at different rates leading to many negative consequences. 

It’s not clear that even if these devices prove their effectiveness for psychiatric disorders 

that their effects will be instantaneous, but they do avoid off-target effects of many of the 

commonly used medications today. A main target for the treatment of depression is 

serotonin using selective serotonin reuptake inhibitors (SSRIs) but it can also cause side 

effects because of serotonin receptors’ presence in the digestive tract. Oral medications 

will have a systemic effect that can cause these off-target consequences. Electrical devices 

to stimulate peripheral nerves are already available in many stores for the treatment of 

muscle pain. The cost to develop the same technology with different stimulation parameters 

will take time and money, but nothing compared to the time and money required to develop 

and test a new psychiatric medication. TENS usage could be another way of altering 

function if medications are ineffective for an individual or used in conjunction with 

medication to achieve more robust effects. 

Limitations 

The three-dimensional paradigm that was developed for these experiments to 

expand proprioceptive assessment does allow for arbitrary angles and postures of the arm 
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to be tested. In these experiments it was testing only four different distances (1-4 cm from 

the reference location). The experiment could be expanded to test positions between those 

distances, but the paradigm can only test at discrete distances rather than continuous results 

that can be gathered from arm matching or other tasks that allow participants to respond, 

or move, to any position within the workspace. Results from this discrete paradigm did 

align within expectations from previous literature that used a more continuous paradigm 

(R. J. van Beers et al., 1998), suggesting that the results may carry some validity and the 

paradigm has utility in certain contexts. 

This task also contains a memory component between the endpoint of the arm being 

at the reference position before moving to a distractor position and then back to the 

judgement position. Other studies have been conducted with similar memory components 

and shown that performance is similar between non-memory and memory required tasks 

(Wilson et al., 2010). If this test was conducted with stroke survivors, then it would be 

important to ensure that memory deficits were not a factor in performance for this 

assessment. 

The stimulation provided for the last experiment was limited in the range of 

parameters that were tested. There is some evidence for TNS being effective at producing 

modulatory effects on the noradrenergic system with a 7-11khz frequency and stimulation 

of 100 or 120hz has been effective in drug-resistant epileptic patients (Christopher M 

DeGiorgio et al., 2013; Tyler et al., 2015). Only using 30hz and 300hz stimulation does 

provide some information but other frequencies or parameter sets may have different 



 

96 

 

effects and may provide significantly different results even with minor changes to 

stimulation parameters. 

We theorized that modulation of cranial nerve activation would cause a modulation 

of the RAS. This may still be the case, but it seems that the locations we were stimulating 

may have all been having some impact on the RAS which may have led to the same effects 

on proprioceptive sensitivity regardless of the stimulation location. Trigeminal and vagus 

nerves have been shown to have connections to RAS and can cause modulatory effects 

(Tyler et al., 2015). Stimulation provided on the shoulder, while originally chosen to avoid 

sensory afferents, may have activated afferents of the accessory nerve which has some 

connections in common with the vagus nerve and could possibly cause modulation of 

cortical circuits via similar sensory pathways (Bremner-Smith et al., 1999). Overall the 

stimulation location as was used in these studies may have been activating overlapping 

systems that all had some influence over RAS activity leading to similar results across all 

locations. The specific pathway of modulation may be unimportant as activation of the 

RAS through any pathway may have indistinguishable but still beneficial effects. 

Future studies 

Using a discrete 2AFC task does provide quality information while eliminating 

many of the confounding aspects of other studies however other paradigms do allow for 

more robust data to be collected. Using a similar equipment set up it would be possible to 

alter some parameters and collect other data that may allow for more flexibility in response 

from the users. One such way to adapt the task would be with a passive task where the arm 

could be driven out to a passive position, brought back to the starting location, and then 
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slowly moved on a path through the target location. Participants could be asked to stop the 

robot at any point along the path when they felt like they had reached the target location. 

This would maintain the passive aspect of the task and provide more continuous results 

about position sense instead of only testing at discrete, 1-4cm from reference, locations.  

This entire task also eliminated any vision of the target throughout the experiment 

to make sure that position and arm configuration would not be influenced by it. Some 

technology pieces could be added to allow for a visual reference of the target location 

without the arm posture or position being directly visible. Using a VR system would allow 

for manipulation of the virtual environment to measure the effect of different visual 

components on proprioceptive sensitivity using this task. 2d tasks have used similar VR 

environments to measure differences before and expanding that into 3d could provide 

similar additions to our understanding of proprioception as the studies presented in this 

dissertation. 

In the development of this paradigm and deciding to explore 3d space it was 

necessary to limit the number of directions tested while also collecting data to fit with 

previous 2d studies. By duplicating 2d results and adding upward and downward motion 

the 3d aspects of the workspace could be compared to prior work. These cardinal directions 

are intuitively easy for participants to understand and establish good baseline 

measurements for future studies. A rotation of those directions could have been done 

instead, testing 45° oblique angles between the cardinal directions. This would be useful 

to do in the future as a way to produce a more complete understanding of proprioceptive 

sensitivity in different directions. Based on previous studies of visual as well as haptic 
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information processing it would be expected that there would be decreased sensitivity in 

these directions because of the oblique effect (Gentaz, Baud-Bovy, & Luyat, 2008; B. Li, 

2003). The oblique effect has been shown as a reduction in sensitivity for visual sensitivity 

as the movements vary away from cardinal directions. This has been argued to be produced 

by cortical representations of information that are influenced by using cardinal directions 

as a type of baseline to compare the oblique directions against (Gentaz et al., 2008). The 

same type of effects have been seen in haptic experiments however the information 

provided may be more related to the gravitational vector and torques providing information 

about the cardinality of those movements (Gentaz et al., 2008). A future experiment 

exploring the oblique angles could further explore this oblique effect in passive 

proprioceptive sensitivity to elucidate if the effect is still present in tasks that eliminate 

active reaching as a component. 

The paradigm developed for the experiments presented in this dissertation uses 

constrained movement to measure proprioceptive sensitivity. Some prior studies do study 

proprioception of individual joints which is more constrained than the position sense 

assessment here, but the movement still does eliminate the wrist as a location where 

movement could occur when using the trough in the experiments. A removal of the 

constraint on wrist movement may create a more natural motion for proprioception 

assessment. This would be easily adapted from the current study as all the current 

procedures could be used with the only change being removal of the trough and a bare 

handle being installed instead. This manipulation may result in increased sensitivity 

because of the ability to use more proprioceptive receptors in the assessment of position. 
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Although the signal produced may be less distinguishable from noise for an individual 

proprioceptor, they may allow for a more accurate estimate through integration of multiple 

signals. However, if those signals fall well within the noise limits of the receptors then it 

may result in a net loss of sensitivity because that noise could become a more dominant 

factor in position estimates even when accounting for more receptors being available. 

Determining the role of additional degrees of freedom of movement on proprioceptive 

sensitivity will be a focus of future investigations.  

Currently there are a lack of studies that have explored the full feature space that is 

possible with TENS of the trigeminal or vagus nerve. Many of the parameters that are 

starting to be used to modulate activity of sensory or cognitive functions are using 

parameters of stimulation from prior experiments that were very effective as a disruption 

of endogenous signals. Using these same types of signals will most likely result in 

disruption in the same way those studies did. Future studies should attempt to find 

alternative parameter sets that provide enhancement instead of disruption of performance. 

Activation of the ARAS may result in increased generalized arousal that can lead 

to better cognitive performance (Sara, 2009) and may be helpful in learning new 

sensorimotor tasks, as has been shown with TDCS and VNS (V. P. Clark et al., 2012; 

Kilgard et al., 2018). Proprioception may be affected in a similar manner, where sensitivity 

may be able to be trained more effectively with TENS or some other exogenous 

stimulation. The current experiments used a task that was performance based and did not 

assess learning. Performing a similar experiment where individuals practice over the course 

of several days with stimulation may show effects of stimulation on learning. During 
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learning tasks such as this it is typically accepted to provide feedback on correct or 

incorrect responses however a measurement of improvement without that feedback may 

also show learning effects simply because of practice of the paradigm and comfort of the 

task. 

Variability in the amplitudes, frequencies, biphasic ratios, and inter-pulse intervals 

between studies can all influence outcomes. A dose response curve has not been shown for 

TENS or TDCS. Some studies showed that different fibers are activated by differing 

amplitudes and frequencies of stimulation (Groves & Brown, 2005). This may result in a 

very complicated feature space that isn’t necessarily describable with dose response curves. 

The lack of dose response curves may simply be due to the scarcity of current literature on 

the subject. Producing knowledge about dose responses may be a difficult task, especially 

with individual differences in reaction to stimulation (L. M. Li, Uehara, & Hanakawa, 

2015). This becomes more difficult because some studies don’t report some key 

components of their stimulation parameters such as pulse duration, pulse phases (mono or 

biphasic), biphasic ratio, and inter-pulse intervals. Duration and frequency are typically 

reported, but that can only provide so much information about the specific waveform being 

used for stimulation. 

As enhancement becomes a larger field of study, the necessity to move away from 

previous parameter sets that were devised to cause disruption in favor of stimulation that 

has shown promise for enhancement will require a trial and error approach. The reporting 

of these parameters will be paramount in promoting replicable research and finding 

parameters that work to provide enhancement in the future. 
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The two topics explored in this dissertation work to understand the complex feature 

space that is sensorimotor activity and cortical modulation. The ability to more completely 

understand, and possibly manipulate, both could facilitate enhancement and recovery of 

proprioceptive function. The study of proprioception in 3d space is important, despite its 

challenges, as even marginal increases in rehabilitation success can have profound effects 

on recovery that may otherwise go unseen with current testing methodologies. Similar 

advances in the use of stimulation paradigms could also provide benefits to patients, even 

if only to reduce unintended effects of medications currently in use and provide another 

means of modulating activity therapeutically. 
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CHAPTER 6 FIGURES 

 

 

 
Figure 1 - Diagrammatic representation of mammalian muscle spindle. The intrafusal 

fibers include the large nuclear bag 1 and bag 2 fibers together with the smaller 

nuclear chain fibers. Ends of the bag fibers extend beyond the capsule while chain 

fibers lie within the limits of the capsule. Large, group Ia afferent fibers terminate as 

primary endings, making spiral terminations around the nucleated portions of all 

three intrafusal fiber types. Smaller, group II afferent fibers terminate as secondary 

endings, lying to one side of the primary endings and supplying bag 2 and chain fibers. 

Gamma dynamic (γ dynamic) fusimotor fibers innervate bag 1 fibers, while gamma 

static (γ static) fusimotor fibers innervate bag 2 and chain fibers. Figure adopted from 

(Proske & Gandevia, 2012) 
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Figure 2 - Diagrammatic representation of mammalian Golgi tendon organ. The 

Group Ib axon penetrates the receptor capsule and branches, each branch 

terminating on a tendon strand that is attached to a muscle fiber. A typical tendon 

organ has 10 or more muscle fibers attached to it, each fiber belonging to a different 

motor unit. Contraction of a motor unit supplying a tendon organ stretches the 

tendon strand to which its muscle fiber is attached, generating activity in the Ib axon. 

Figure adopted from (Proske & Gandevia, 2012). 
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Figure 3 - Pathways from somatosensory periphery to cortex. Afferent fibers at the 

periphery bundle in fascicles that join to form the nerves. Afferent cell bodies are 

gathered in the dorsal root ganglia (DRG). When entering the spinal cord through 

the dorsal root, afferent axons branch, sending one projection to the dorsal horn 

and one projection to the dorsal column nuclei (DCN) through the dorsal column. 

The DCN projects contralaterally through the medial lemniscus to the 

ventroposterior complex of the thalamus, which in turns relays the information to 

cortex. Abbreviations: Dorsal root ganglion (DRG); spinomedullothalamic (SM), 

and spinocervicothalamic (SC) tracts. Thalamus: ventral posterior (VP), 

posterolateral (VPL), posteromedial (VPM), posterior inferior (VPI) and posterior 

superior (VPS) nuclei, posterior division (VLp) of the ventral lateral nucleus (VL), 

lateral posterior nucleus (LP). 

Adopted from (Delhaye, Long, & Bensmaia, 2018) 

.  
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Figure 4 – An example of procedure for the big toe localization test. 

Patients must determine the direction of movement without the use 

of vision. 
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Figure 5 – Signal detection theory measures (A) Response matrix of all signal-

response combinations that can be made in a binary decision task. Green indicates 

correct decision, red indicates incorrect decision. (B) Proportions of hits and misses 

represented under the signal distribution. β reflects the subject criterion, c reflects 

bias, and d′ reflects sensitivity which represents the difference in position between 

the two distributions. (C) Proportions of false alarms and correct rejections 

represented under the noise distributions. Figure adopted from (N. D. Anderson, 

2015).  
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Figure 6 – Human-robot coupling at 

the reference position. Photograph 

used with permission of participant.  
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Figure 7 – Arm postures examined in 

experiments 1 & 2. Adducted was only 

posture used in experiment 3. 
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Figure 8 – Location of judgement positions and via 

points (i.e. distractor positions) with respect to 

reference position. An example path taken by the 

robot on a single trial is also shown (arrows). 

Target positions for all 6 directions tested shown. 

(hollow circles). Grey filled circles show some 

distractor positions. 
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Figure 9 – Experimental protocol. (A) Four distances were 

evaluated for each direction, with distance order 

randomized across directions. For simplicity, only two 

disatnces are shown. “S”: same; “D”: different. (B) 

Sequence of events for single trial. 
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Figure 10 – Block diagram of software and hardware experimental components  

including TENS stimulation. 
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Figure 11 – Single participant example data analysis comparison. Percent correct (A), hit 

rate and false alarm rate (B) and d’ (C) for a single subject. Data for the upward and 

downward directions are shown. 
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Figure 12 – Percent correct vs sensitivity group means. Mean (±SEM) hit rates, false 

alarm rates, and d’ values for all subjects. (A,B) Upward and downward directions. 

(C,D) Forward and backward directions. (E,F) Leftward and rightward directions. 
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Figure 13 – Boxplots of the sensitivities (d’) at each distance and direction for all 

subjects. Corresponding mean sensitivities (diamonds) are superimposed on each 

boxplot. Solid line represents grand median of all directions at the 4cm distance. 
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Figure 14 - Mean (±SD) sensitivities for the 

leftward/rightward and forward/backward axes in both 

arm postures. Data for all subjects at the 2 and 3 cm 

distances are shown. 
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Figure 15 –Approximate electrode placement locations. (A) forehead and behind 

ear, (B) neck, and shoulder.  
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Figure 16 - Sensitivities (D’) of downward movements at different distances, 

stimulation frequencies, and stimulation electrode configuration. 
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Figure 17 – Sensitivities (D’) of downward movements at different distances and 

stimulation frequencies stimulation location collapsed. 
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Figure 18 – Bias for all electrode configurations and stimulation frequencies shown. 

Significant difference of distance was shown statistically. 
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Figure 19 – Sensitivities (D’) of downward movements at different distances and 

stimulation frequencies. Non-stimulation data presented from chapter 1 for visual 

comparison. 
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List of abbreviations 

ADL – activity of daily living 

AFC – Alternative Forced Choice 

ARAS – Ascending Reticular Activating System 

D’ – (‘dee-prime’). Unitless measure of sensitivity using hit rate and false alarm 

rates. Calculated as Z(hit rate) – Z(false alarm rate). 

DoF – degrees of freedom 

fA – false alarm rate 

hR – hit rate 

MS – Multiple Sclerosis 

Pc – Percent correct 

PD – Parkinson’s Disease 

SR – Stochastic Resonance 

TDCS – Transcranial Direct Current Stimulation 

TENS – Transcutaneous Electrical Nerve Stimulation 

TNS – Trigeminal Nerve Stimulation 

TMS – Transcutaneous Magnetic Stimulation 

US - Ultrasound 

VNS – Vagus Nerve Stimulation 

Z(x) – z transform 
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