
Trajectory Modeling, Estimation and Interception of a Thrown Ball using a Robotic

Ground Vehicle

by

Nirangkush Das

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved November 2018 by the
Graduate Supervisory Committee:

Armando A. Rodriguez, Co-Chair
Spring Berman, Co-Chair

Panagiotis Artemiadis

ARIZONA STATE UNIVERSITY

December 2018

ABSTRACT

Toward the ambitious long-term goal of developing a robotic circus, this thesis

addresses key steps toward the development of a ground robot that can catch a ball.

Toward this end, we examine nonlinear quadratic drag trajectories for a tossed ball.

Relevant least square error fits are provided. It is also shown how a Kalman filter

and Extended Kalman filter can be used to generate estimates for the ball trajectory.

Several simple ball intercept policies are examined. This includes open loop and

closed loop policies. It is also shown how a low-cost differential-drive research grade

robot can be built, modeled and controlled. Directions for developing more complex

xy planar intercept policies are also briefly discussed. In short, the thesis establishes

a foundation for future work on developing a practical ball catching robot.

i

TABLE OF CONTENTS

Page

LIST OF FIGURES . iv

CHAPTER

1 INTRODUCTION . 1

1.1 Introduction and Motivation . 1

1.2 Literature Survey . 2

1.3 Contributions: Critical Questions to be addressed 4

1.4 Outline of Thesis . 5

1.5 Summary and Conclusions . 6

2 TRAJECTORY MODELING . 7

2.1 Introduction and Overview . 7

2.2 Parabolic Spherical Particle Trajectories: No Drag 8

2.3 Spherical Particle Trajectories: Including Linear Drag 9

2.4 Spherical Particle Trajectories: Including Quadratic Drag and Ap-

proximations . 12

2.5 Summary and Conclusions . 29

3 TRAJECTORY ESTIMATION . 30

3.1 Introduction and Overview . 30

3.2 Kalman Bucy Filtering (KBF) . 30

3.3 Extended Kalman Filter (EKF) . 34

3.4 Comparisons: KBF vs EKF . 35

3.5 Summary and Conclusions . 37

4 DIFFERENTIAL DRIVE GROUND ROBOTIC MODELING AND CON-

TROL . 38

4.1 Introduction and Overview . 38

ii

CHAPTER Page

4.2 Description of Hardware . 38

4.3 Description of Model . 39

4.4 Speed Control of the Ground Vehicle . 43

4.5 Summary and Conclusions . 44

5 CONTROL LAWS FOR GROUND ROBOT INTERCEPTING A BALL 45

5.1 Introduction and Overview . 45

5.2 Interception Control Laws . 46

5.3 Robot Intercepting Ball: Simulation Results . 48

5.4 Stability Proof . 54

5.5 Summary and Conclusions . 57

6 SUMMARY, CONCLUSIONS AND DIRECTIONS FOR FUTURE RE-

SEARCH . 58

6.1 Summary of Work . 58

6.2 Directions for Future Research . 59

REFERENCES . 60

APPENDIX

A MATLAB CODE . 63

iii

LIST OF FIGURES

Figure Page

2.1 Variation of Cd with the Reynold’s number for a sphere [28] 11

2.2 Range vs Initial Velocity: Golf Ball, Quadratic Drag Model 17

2.3 Range vs Initial Velocity, Golf Ball, Quadratic vs No Drag Model 18

2.4 Range vs Initial Angle: Golf Ball, Quadratic Drag Model 19

2.5 Range vs Initial Angle: Golf Ball, Quadratic vs No Drag Model 20

2.6 Quadratic Least Squares Fit of Range vs Initial Velocity 21

2.7 Quadratic Least Squares Fit of Range vs Initial Angle 22

2.8 Quadratic Least Squares Coefficients (v0 fit) vs initial angle 23

2.9 Quadratic Least Squares Coefficients (θo fit) vs initial velocity 24

2.10 Quadratic LS Fit of Coefficients (v0 fit) vs initial angle 25

2.11 Quadratic LS Fit of Coefficients (θo fit) vs initial velocity 26

2.12 Range vs Initial velocity: Original vs coefficients from vo − θo fits 27

2.13 Range vs Initial velocity: Original vs coefficients from θo − vo fits 28

3.1 x-displacement: Actual vs Estimated (KBF) . 35

3.2 x-displacement: Actual vs Estimated (EKF) . 35

3.3 y-displacement: Actual vs Estimated (KBF) . 36

3.4 y-displacement: Actual vs Estimated (EKF) . 36

3.5 Estimation Errors (KBF) . 36

3.6 Estimation Errors (EKF) . 36

4.1 The Differential Drive Ground Robot and model [1] 38

4.2 Outer-Loop Position-Direction Control System [1] . 43

4.3 Inner-Loop Speed (v, ω) Speed Control System [1] . 43

5.1 Diagram depicting the ball position A(xb, yb) and car position C(xc, 0).

α is the elevation angle while φ is the line of sight angle. 47

iv

Figure Page

5.2 Car acceleration profile for xc(0) ranging from 0 to 50 m. 49

5.3 Car velocity profile for xc(0) ranging from 0 to 50 m. Velocity increases

as car approaches the range. 49

5.4 Car position for xc(0) ranging from 0 to 50 m. Intercept occurs for any

xc(0). In practice, acceleration would be constrained. 50

5.5 Ball trajectory for Vo = 10 m/s and θo = 45o with no drag and

quadratic drag with β = 0.0085. Range and Time of flight are R =

9.55 m and tR = 1.416 s. 50

5.6 Horizontal displacement of ball with time. 51

5.7 Horizontal velocity of ball with time. 51

5.8 Vertical displacement of ball with time. 51

5.9 Vertical velocity of ball with time. 51

5.10 Car accelerations for various xc(0) for ideal xc equation 52

5.11 Car accelerations for various xc(0) for OAC control law 52

5.12 Car velocities for various xc(0) for ideal xc equation 53

5.13 Car accelerations for various xc(0) for OAC control law 53

5.14 Car positions for various xc(0) for ideal xc equation 53

5.15 OAC Car Positions: Final % Error wrt half car length. T = 10−6s 53

5.16 Error wrt half car length for various xc(0) for ideal xc equation 54

5.17 Error wrt half car length for various xc(0) for OAC control law 54

5.18 φ vs time for various initial positions of car (from Stability eqn 5.25) . . 56

5.19 φ vs time for various initial positions of car (90-α) . 56

5.20 φ vs time for various initial positions of car (via inverse tangent) 56

5.21 α vs time for various initial positions of car . 56

v

Chapter 1

INTRODUCTION

1.1 Introduction and Motivation

Robotics and Autonomous systems are a burgeoning filed. With the tremendous

progress made in the field of Autonomous Vehicles, Reusable Rockets etc, it is imper-

ative that control system design has to be almost perfect so that the systems are safe

for use and also give us predictable results. Humans have been doing ballistic studies

since many years ago. But the most progress to understand ballistics has only hap-

pened in the last 30 years [2] [3]. One example of ballistics is the missile technology

where a missile successfully follows and intercepts a target with tremendous preci-

sion. Not much different from this problem is the ball catching problem. Humans

have been catching balls since ages. It is most commonly seen in sports like Baseball

and Cricket where the outfielders have to catch a strongly hit ball with bare hands. It

is imperative that the catchers have to know where to detect the ball, how to follow a

path to successfully intercept and ultimately grasp the fast moving ball. Researchers

have tried to come up with numerous frameworks to properly understand how an

expert outfielder actually catches the ball [4] [5] [6]. Many control design methods

were explored [7] [8] [9] [10] [11] [12] [13] [14] [15]. This work is a sincere attempt in

laying the foundations for building a low cost ground vehicle to successfully intercept

and catch a tossed ball.

1

1.2 Literature Survey

There is a tremendous amount of literature for solving the ball catching problem.

Various approaches were taken such as visual systems for a 3D catch [2], catching with

a robotic arm [16], nonprehensile catching [17], catching complex nonspherical objects

[18]. In an effort to shed light on the state of research on modeling ball trajectories,

estimation and their interception, the following topically organized literature survey

is offered. An effort is made below to highlight what technical papers/works are

most relevant to this thesis. In short, the following works are most relevant for the

developments within this thesis:

• [19] is the paper where the author tried to find analytical closed form solution

to the motion of a particle with Quadratic Air Drag. Approximate expressions

for low trajectories, short time, long time and exact implicit solutions were

provided.

• The Exact time implicit solution to the Problem of a Projectile moving in a

Medium with Quadratic Drag is given in terms of parametric description of

the particle motion in [20].Both One dimensional and two dimensional motions

were considered. An Exact Analysis of the maximum range of the projectile is

provided and general properties of the exact parametric solution is discussed.

The time Implicit Solution has quadratures of limited practical applicability.

Ideal Projectile Trajectory can be approximated by a quadratic polynomial.

This paper claims a Quadratic Drag Projectile can be approximated close to

a Cubic Polynomial. Approximate solution while approximating with a Cubic

Law is presented and validated.

• [21] uses Lambert W function to find the range of a projectile subject to lin-

2

ear resistant medium. It also derives projectile motion equations in quadratic

resistant medium with low angle trajectories via Lambert W Function. [22] de-

rives projectile motion equations in quadratic resistant medium with low angle

trajectories, nonzero height via Lambert W function.

• Homotopy Analysis method applied to a projectile motion in a quadratic re-

sistant medium to approach to a general analytical solution is shown in [23].

Solution is given in terms of Power Series. The Solution is compared with

simulation results from Range-Kutta method for various angles of throw.

• [24] incorporated effects of Spin along with identifying other aerodynamic pa-

rameters of the projectile subject to a quadratic resistant medium. [25] gave

analytical expressions in the form of a ratio of two series expansion. Reducing

Coupled Nonlinear Differential equations to manageable ones are discussed. Ef-

fect of Side wind also added into the dynamics and precise parametric equations

were developed in [26].

• Analytical explicit expressions are derived in [27] that accurately predict the

maximum height, its arrival time as well as the flight range of the projectile at

the highest ascent. The most significant property of the proposed formula is

that they are not restricted to the initial speed and firing angle of the object,

nor to the drag coefficient of the medium. In combination with the available

approximations in the literature, it is possible to gain information about the

flight and complete the picture of a trajectory with high precision, without

having to numerically simulate the full governing equations of motion.

• This NASA web article [28] provides insights into how the Drag Coefficient of

a Smooth and Rough Sphere varies with Reynold’s Number.The flow patterns

3

vary from ideal attached flow to separated turbulent flow for specific thresholds

of the Reynold’s Number.

• All the parameters of a flight in a resistant medium eg. lift force, drag, force of

buoyancy and coefficient of restitution are considered and an algorithm devel-

oped for a realistic simulation are shown in [29].

• [4] established the Linear Optical Trajectory (LOT) theory for a successful

interception of the ball by a baseball outfielder in 3D. This paper also laid

down the flaws in the previous Optical Angular Cancellation (OAC) law.

• [30] used OAC law to implement it on a ground vehicle with a ball dropped

vertically down and got successful interception

1.3 Contributions: Critical Questions to be addressed

Within this thesis, the following fundamental questions are addressed. When

taken collectively, the answers offered below, and details within the thesis, represent

a useful contribution to researchers in the field. Moreover, it must be emphasized

that answers to these questions are critical in order to move substantively toward the

longer-term goal of designing a Robotic Ball catcher.

1. Modeling the Drag. How can we model trajectories subjected to Quadratic

Drag reasonably and efficiently? Can such models be useful for catching a ball?

2. Estimating the trajectory. What methods can be used to effectively estimate

ball trajectories for catching purposes?

3. Catcher/Robot Design. How can we build a low-cost research grade vehicle

that can catch a ball?

4

4. Catching Theories. What are good catching strategies? What are their

limitations?

5. Catch Zone. How can we quantify what a tough catch is? Can we effectively

compute the catch zone?

6. Control Law for Interception. How can we effectively devise a Control

law along with our knowledge of catching strategies to effectively intercept and

catch a ball?

In short, this work provides a systematic approach to a learn, design and build a

robotic ball catcher.

1.4 Outline of Thesis

The remainder of the thesis is organized as follows. In Chapter 2, we lay the

foundation for modeling the trajectory of the projectile under various conditions of the

medium. We start from the simple no drag model and gradually move to linear drag

model culminating in the nonlinear quadratic drag model. In Chapter 3, we describe

the estimation techniques and under what conditions each estimator is sufficient. We

start with a simple linear Kalman Bucy estimator to a more complicated nonlinear

discrete time Extended Kalman Filter. Chapter 4 contains an illustrative hardware

description followed by control design of a differential drive ground robotic vehicle or

our probable catcher. Chapter 5 proposes open loop and closed loop ball interception

control policies to successfully intercept the ball. The results are illustrated with pros

and cons of each control law. Finally, Chapter 6 summarizes the thesis and presents

directions for future research.

5

1.5 Summary and Conclusions

In this chapter, an overview of the work presented in this thesis and the major

contributions have been provided. A central contribution of the thesis is laying the

foundation and theoretical frameworks for building a low cost research grade ground

vehicle that can catch a tossed ball.

6

Chapter 2

TRAJECTORY MODELING

2.1 Introduction and Overview

Trajectory modeling is the first and foremost step of learning about the trajectory

of a tossed ball. Trajectories of the ball has been considered in ideal drag conditions

first that lays the foundations for better understanding the behavior of the ball in

linear drag as well as the more complicated quadratic drag model. The quadratic drag

model is considered closest to the realistic scenario of ball trajectories [19]. From here

onwards, we will be studying the properties of a tossed ball in a resistant medium

[19]-[31]. The following properties of the medium are considered:

ρ = 1.2041 kg/m3 (Density of Air, STP at Sea Level) (2.1)

g = 9.81 m/s2 (Acceleration due to Gravity) (2.2)

That being said, we consider the following parameters for the tossed ball. These

parameters resemble that of a golf ball in normal atmospheric conditions.

m = 0.045 kg (Mass of Sphere, Golf Ball) (2.3)

r = 0.02 m (Radius of Sphere, Golf Ball) (2.4)

A = πr2 (Frontal Area of the Ball) (2.5)

The projectile is considered to be tossed either by a thrower on the ground or by

a human subject from a height. But for reasons of simplicity, we have considered all

throws from the ground level. The following launch conditions are considered:

θo = 45◦ (Inital Launch Angle (degrees)) (2.6)

vo = 10 m/s (Inital Launch V elocity (m/s)) (2.7)

7

2.2 Parabolic Spherical Particle Trajectories: No Drag

Projectile motion in a resistant medium subjected to a no drag force is considered

now. The following assumption is made.

FD = 0 (2.8)

The force balance in the x-axis yields

max = 0 (2.9)

ax = 0 (2.10)

The force balance in the Y-axis yields

may = −mg (2.11)

ay = −g (2.12)

From the equations above, we get

ax =
dvx
dt

= 0 (2.13)

ay =
dvy
dt

= −g (2.14)

Let us consider the following states

x1 = x x2 = ẋ

x3 = y x4 = ẏ
(2.15)

Writing the state space equations give

ẋ1 = x2 (2.16)

ẋ2 = 0 (2.17)

ẋ3 = x4 (2.18)

ẋ4 = −g (2.19)

8

ẋ = Ax+Bu y = Cx+Du (2.20)

with scalar input u, state vector x = [x1 x2 x3 x4]T , and scalar output y.

A =



0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0


B =



0

0

0

−g


C =

 1 0 0 0

0 0 1 0

 D = 0 (2.21)

2.3 Spherical Particle Trajectories: Including Linear Drag

Before diving into incorporating linear drag in the resistant medium, we need to

have basic ideas about the Reynold’s number. This section will also give an idea

about when the linear drag model suffices in estimating the trajectory of a tossed ball

correctly. It will also provide a substantial motivation on incorporating the quadratic

drag model into our calculations.That being said, we will talk a little bit about the

Reynold’s number, then move onto defining the drag force and finally the drag co-

efficient. We will also talk about how to model the drag coefficient correctly, since

that is of paramount importance in getting the drag models working perfectly. The

reynold’s number, also called particle reynold’s number is “a dimensionless quantity

that characterizes the nature of the surrounding medium when an object is moving

through it” [32]. It is defined as the “ratio of inertial forces (resistant to change

of motion) of the moving object to the viscous forces (heavy or gluey forces) of the

fluid medium” [32]. “It quantifies the transition from laminar flow to turbulent flow

9

around the moving object” [32].

Re =
Inertal Forces

Viscous Forces
(2.22)

Re =
ρvl

µ
(2.23)

where Re is the Reynold’s number, ρ is density of air (Kg
m3), v is the velocity of the

golf ball (m
s

) l is the characteristic length (m) and µ is the dynamic viscosity (Pa.s).

A high value of Reynold’s Number (105) indicates that inertial forces dominate the

viscous forces resulting in turbulent flow patterns. A low value of reynold’s number

(< 10) indicates that viscous force is in abundance and keeps the flow attached and

Laminar.

That being said, we can now comfortable move onto understanding the drag force.

The drag force is defined as a resistant force acting opposite to the direction of motion

of an object moving in a fluid medium [28]

FD =
1

2
CDρAv

2 = βv2 (2.24)

where FD is the drag force, CD is the drag coefficient of the ball, ρ is the density of

air (Kg
m3), v is the velocity of the ball (m

s
) and A is the projected area of the ball (m2)

As evident from the drag force equation, the drag coefficient is the most important

parameter that needs to be computed correctly to estimate the ball trajectories cor-

rectly. The drag coefficient CD is a dimensionless number that characterizes all of the

complex factors that affect Drag [28]. The drag coefficient depends on the reynold’s

number and the shape of the object [28]. The drag coefficient is mostly determined

experimentally in a wind tunnel via the drag force equation [28]. Drag Coefficient of

a Golf Ball is 0.45 [28].

The drag coefficient of a sphere varies with reynold’s number as shown in the

figure below Figure 2.1 [28].

10

Figure 2.1: Variation of Cd with the Reynold’s number for a sphere [28]

Figure 2.1 shows that around Re = 102

CD ∝
1

Re

∝ 1

v
(2.25)

We would want to know under what conditions the model works and more im-

portantly, when it doesn’t. That being said, we computed the maximum velocity

of the projectile under which the linear drag model is valid. The underlying idea is

that withing the range of Reynold’s Number when linear drag model is valid, we will

find out the maximum velocity allowed. That would give us a fair idea about the

advantages and limitations of the linear drag model.

Re =
ρvl

µ
(2.26)

where Re is the Reynold’s number, ρ is the density of air (Kg
m3), v is the velocity of

the ball (m
s

), l is the characteristic length (m) and µ is the dynamic viscosity (Pa.s)

11

ρ = 1.225(
kg

m3
) at sea level (2.27)

Re = 102 for attached flow (2.28)

ρ = Density of air (
Kg

m3
) (2.29)

l = 0.04277(m) (2.30)

µ = 18.37× (10−6)(Pa.s) (2.31)

solving the equation,

100 =
1.225 ∗ v ∗ 0.04277

18.37(10−6)
(2.32)

v = 0.035 ms−1 or v = 0.115 ft.s−1 (2.33)

As evident, we are dealing with velocities varying from 5 m/s to 20 m/s . The

linear drag model ceases to work at a meager velocity of 0.035 m/s. Hence, the linear

drag model is insufficient in properly estimating the trajectory of a ball in a resistant

medium.

2.4 Spherical Particle Trajectories: Including Quadratic Drag and Approximations

Projectile motion in a resistant medium subjected to a quadratic drag force. We

make the following assumption [19].

FD ∝ −v2 (2.34)

FD = −βv2 (2.35)

12

Force balance in the x-axis gives:

max = −βv2 cos θ (2.36)

ax = − β
m
v2 cos θ (2.37)

ax = − β
m
v(v cos θ) (2.38)

ax = − β
m
vvx (2.39)

Force balance in the y-axis gives:

may = −mg − kv2 sin θ (2.40)

ay = −g − β

m
v2 sin θ (2.41)

ay = −g − β

m
v(v sin θ) (2.42)

ay = −g − β

m
vvy (2.43)

Considering both the axes together gives:

ax =
dvx
dt

= − β
m
vvx (2.44)

ay =
dvy
dt

= − β
m
vvy − g (2.45)

Let us consider the following states:

x1 = x x2 = ẋ

x3 = y x4 = ẏ
(2.46)

Writing the State Space Equations gave:

ẋ1 = x2 (2.47)

ẋ2 = − β
m

√
(x22 + x24) x2 (2.48)

ẋ3 = x4 (2.49)

ẋ4 = − β
m

√
(x22 + x24) x4 − g (2.50)

13

As is evident we get a system of coupled nonlinear differential equation which as

of yet, doesn’t have an analytical solution [23].

To override this problem, a simple combination of horizontal and vertical toss is

merged along with quadratic drag to come up with a closed form analytical solution

[33]. The concept of terminal velocity is introduced to help with the analytical solution

[33]. The terminal velocity is essentially the state at which the weight and drag of

a ball cancels out and the ball attains a steady speed. Henceforth, considering the

vertical descent of our ball,

a = 0 (2.51)

Weight(W) = Drag Force(FD) = mg (2.52)

W = FD = mg (2.53)

FD = CdρAv
2
t (where vt is the terminal velocity) (2.54)

vt =

√
2mg

CdρA
(2.55)

Let us consider the ascent trajectory now

Initial vertical velocity = vy0 (2.56)

Initial horizontal velocity = vx0 (2.57)

Fnet = −W − FD (2.58)

a = −g
(

1 +
v

v2t

)
(2.59)

v

vt
=

vy0 − vx0 tan(gt
vt

)

vt + vy0 tan(gt
Vt

)
(2.60)

y =
v2t
2g

ln

(
v2y0 + v2t
v2 + v2t

)
(2.61)

14

Now let us consider the horizontal aspect of the trajectory

Fnet = ma = −FD (2.62)

a =
−CdρAuv2

2m
(2.63)

a = −gv
2

v2t
(2.64)

u =
v2t vx0

v2t + gvx0t
(2.65)

x =
v2t
g

ln

(
v2t + gvx0t

v2t

)
(2.66)

From the equations above, we get analytical expressions for the horizontal dis-

placement x and the vertical displacement y [33].

15

Least Square fit to Quadratic Drag model. Since no analytical closed form

approximation is available in literature, we need suitable approximations to the prob-

lem of a ball trajectory in a quadratic resistant medium. In this section, we will be

looking at suitable least square fits that would give us the best approximations. We

approach this problem in two distinct pathways. The first is referred to as the vo− θo

least square fit while the second pathway is referred to as the θo− vo least square fit.

The steps are outlined to give an idea of what lies ahead.

vo − θo LS fit

• R(vo, θo) : We plot Range vs vo with θo as a parameter.

• We do LS quadratic fits for each θo

• The coefficients that we get depend on θo

• R(vo, ai(θo)) = a2(θo)v
2
o + a1(θo)vo + a0(θo)

θo − vo LS fit

• R(θo, vo) : We plot Range vs θo with vo as a parameter.

• We do LS quadratic fits for each vo

• The coefficients that we get depend on vo

• R(θo, bi(vo)) = b2(vo)θ
2
o + b1(vo)θo + b0(vo)

16

Range vs Initial Velocity. The following plot show how the range varies with the

initial velocities for three initial launch angles θ = 30o, θ = 45o, θ = 60o.

5 6 7 8 9 10 11

Initial Velocity (V) in m/s

2

3

4

5

6

7

8

9

10
R

an
ge

 (
X

d
)in

 m
et

er
Range vs Initial velocity: Golf Ball, Quadratic Drag Model

Figure 2.2: Range vs Initial Velocity: Golf Ball, Quadratic Drag Model

• Number of velocity points taken was 60000

• The initial velocity vo was chosen to lie in [5,11] m/s

• MATLAB ode45 solver used to solved the 4 nonlinear differential equations

arising from considering the Quadratic Drag Model of the Golf Ball.

• Step Size of Ode45 Solver considered = 0.0001. With this particular step size

and 60000 Velocity points, time taken is around 30 mins.

• As expected, Range increases with higher Initial Velocity for a particular θo

• It should be noted that the observed (small) oscillations can be reduced by

taking more points

17

Range vs Initial Velocity: Quadratic vs No Drag Model. We try to make

necessary comparisons on how the trajectory changes with ideal drag to Quadratic

drag.

5 6 7 8 9 10 11

Initial Velocity (V)in m/s

2

3

4

5

6

7

8

9

10

R
an

ge
 (

X
d
)in

 m
et

er

Range vs Initial velocity for No Drag and Quadratic Drag Model

Figure 2.3: Range vs Initial Velocity, Golf Ball, Quadratic vs No Drag Model

• For Lower Initial Velocities e.g. at 5 m/s, Range is almost the same for both

Quadratic and No Drag Model

• For Higher Initial Velocities e.g. at 10 m/s, Range is more for the No Drag

Model.

18

Range vs Initial Angle: Quadratic Drag Model. We plot to understand how

the range varies with the initial angle of launch for three particular velocities.

30 35 40 45 50 55 60

Initial Angle () in degrees

0

5

10

15
R

an
ge

 (
X

d
)in

 m
et

er
Range vs Initial Angle, Golf Ball, Quadratic Drag Model

Figure 2.4: Range vs Initial Angle: Golf Ball, Quadratic Drag Model

• Number of angle points taken was 60000

• Range of initial angles were chosen to be [30◦, 60◦]

• MATLAB ode45 solver used to solved the 4 nonlinear differential equations

arising from considering the Quadratic Drag Model of the Golf Ball.

• Step Size of Ode45 Solver considered = 0.0001. With this particular step size

and 600 Velocity points, time taken is around 30 mins.

• For a particular Initial velocity, Range peaks at θ = 45◦.

• This peaking is more prominent at Higher Initial velocities e.g. at 10 m/s where

we see a significant curvature than at 5 m/s

19

Range vs Initial Angle: Quadratic vs No Drag Model. We try to make

necessary comparisons on how the trajectory changes with ideal drag to Quadratic

drag.

30 35 40 45 50 55 60

Initial Angle () in degrees

0

5

10

15

R
an

ge
 (

X
d
)

in
 m

et
er

Range vs Initial Angle for No Drag and Quadratic Drag Model

Figure 2.5: Range vs Initial Angle: Golf Ball, Quadratic vs No Drag Model

• Variation of Range is almost same for both Quadratic and No Drag Model, for

low Initial Velocities e.g. 5m/s

• At Higher Velocities, Range is more for No Drag for any Initial Angle.

• The Curvature remains the same for both Quadratic and No Drag Model for

Each Velocities.

20

Quadratic Least Squares Fit of Range vs Initial Velocity. We fit quadratic

least sqaure curves on the range vs initial speed plot.

5 6 7 8 9 10 11

Initial Speed (m/s)

2

3

4

5

6

7

8

9

10
R

an
ge

 (
m

et
er

)
Quadratic LS Fit of Range vs Initial Speed

Figure 2.6: Quadratic Least Squares Fit of Range vs Initial Velocity

• Most of the fit curves overlap the original curves

• R̂(vo, ai(θo)) = a2(θo)v
2
o + a1(θo)vo + a0(θo)

• The Maximum Error is 1.36%

21

Quadratic Least Squares Fit of Range vs Initial Angle. We fit quadratic least

sqaure curves on the range vs initial angle plot.

30 35 40 45 50 55 60

Initial Angle (degrees)

0

5

10

15
R

an
ge

 (
m

et
er

)
Quadratic Least Squares Fit of Range vs Initial Angle Curves

Figure 2.7: Quadratic Least Squares Fit of Range vs Initial Angle

• Most of the fit curves overlap the original curves

• R̂(θo, bi(vo)) = b2(vo)θ
2
o + b1(vo)θo + b0(vo)

• The Maximum Error is 1.48%

22

Least Square fit: Coefficient Analysis. The coefficients that we got from fitting

the quadratic drag plots are used for a second round of approximations. We follow

the similar two approaches mentioned earlier, namely vo−θo coefficients fit and θo−vo

coefficients fit. In the former we plot the coefficients as a function of θo while in the

latter we plot the coefficients with vo.

Quadratic Least Squares Coefficients (v0 fit) vs initial angle. We plot the

coefficients of the range vs initial velocity plot to see how they vary with the initial

angle parameter.

30 35 40 45 50 55 60

Initial Angle (degrees)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

C
oe

ffi
ci

en
ts

Quadratic LS Coefficients (V
0
 fit) vs Initial Angle

Figure 2.8: Quadratic Least Squares Coefficients (v0 fit) vs initial angle

• The plot shows how the v0 fit coefficients change as we vary the initial angle

• The uneven jumps in the curve can be minimized by either approximating with

a an LS fit or increasing the number of data points.

• We will be doing fits for these coefficient curves

23

Quadratic Least Squares Coefficients (θo fit) vs initial velocity. We plot the

coefficients of the range vs initial angle plot to see how they vary with the initial

velocity parameter.

5 6 7 8 9 10 11

Initial Speed (m/s)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

C
oe

ffi
ci

en
ts

Quadratic LS Coefficients (fit) vs Initial Speed

Figure 2.9: Quadratic Least Squares Coefficients (θo fit) vs initial velocity

• The plot shows how the θo fit coefficients change as we vary the initial velocity.

• We will be doing fits for these coefficient curves to properly understand whether

they are quadratic or cubic in nature

• The coefficient b2 seems to be zero for all initial velocities. Upon closer inspec-

tion its not.

24

Quadratic LS Fit of Coefficients (v0 fit) vs initial angle. We perform a second

quadratic least squares fit over the coefficient curve to model the behavior.

30 35 40 45 50 55 60

Initial Angle (degrees)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
C

oe
ffi

ci
en

ts
Quadratic LS Fit of Coefficients (V

0
 fit) vs Initial Angle

Figure 2.10: Quadratic LS Fit of Coefficients (v0 fit) vs initial angle

a0 = 0.0110 θ2o − 0.1936 θo + 0.3454 (2.67)

a1 = −0.0040 θ2o + 0.0701 θo − 0.1310 (2.68)

a2 = −0.0011 θ2o + 0.0174 θo + 0.0172 (2.69)

• The Quadratic Least Squares Fit gave a good approximation of how the v0 fit

coefficients vary with θo

25

Quadratic LS Fit of Coefficients (θo fit) vs initial velocity. We perform a

second quadratic least squares fit over the coefficient curve to model the behavior.

5 6 7 8 9 10 11

Initial Velocity (m/s)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
C

oe
ffi

ci
en

ts
Quadratic LS Fit of Coefficients (fit) vs Initial Velocity

Figure 2.11: Quadratic LS Fit of Coefficients (θo fit) vs initial velocity

b0 = −0.0014 v2o − 0.2051 vo + 0.5500 (2.70)

b1 = 0.0039 v2o + 0.0156 vo − 0.0431 (2.71)

b2 = −0.000045 v2o + 0.00016 vo + 0.00044 (2.72)

• The Quadratic Least Squares Fit gave a good approximation of how the θo fit

Coefficients vary with vo

• As evident, b2 is very close to 0 for any initial velocities. Hence it looks like

Range is almost linearly dependent on the Initial Angle for a golf Ball with

quadratic drag.

26

Range vs initial velocity: Original vs coefficients from vo − θo fits

5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

Initial Velocity (m/s)

2

3

4

5

6

7

8

9

10

R
an

ge
 (

m
)

Range vs Initial Velocity: Original vs Coefficients from (V
o
-

o
) fits

Figure 2.12: Range vs Initial velocity: Original vs coefficients from vo − θo fits

• ˆ̂
R(vo, θo) = â2(θo)v

2
o + â1(θo)vo + â0(θo)

• The maximum error is 1.38%

27

Range vs Initial velocity: Original vs coefficients from θo − vo fits

30 35 40 45 50 55 60

Initial Angle (
o
) in degrees

0

2

4

6

8

10

12

14

16

18

R
an

ge
 (

m
)

Range vs Initial Angle: Original vs Coefficients from (
o
-V

o
) fits

Figure 2.13: Range vs Initial velocity: Original vs coefficients from θo − vo fits

• ˆ̂
R(θo, vo) = b̂2(vo)θ

2
o + b̂1(vo)θo + b̂0(vo)

• The maximum error is 1.29%

28

2.5 Summary and Conclusions

We modeled the trajectories using various models of drag i.e. the ideal drag or

no drag model, the linear drag model and finally concluding it with the quadratic

drag model. We estimated the probable trajectories under each conditions. There is

no analytical closed form solution for solving the coupled and nonlinear dynamical

equations that we get when considering quadratic drag. Based on NASA archives, we

find out suitable approximations for quadratic drag using vertical toss and horizontal

toss. Finally, we approximated the quadratic drag trajectories using least squares fits

and got very good approximations.

29

Chapter 3

TRAJECTORY ESTIMATION

3.1 Introduction and Overview

In this chapter, we estimate the trajectory of the model that we built in the

last chapter. We start with the basics involving linear estimators like Kalman Bucy

filtering and proceed to more complicated Extended Kalman Filters. We try to answer

the essential questions like how perfect is the estimation, what is the cost associated

and under what conditions do the Estimators fail.

3.2 Kalman Bucy Filtering (KBF)

In this section we motivate and precisely formulate the Kalman-Bucy Filtering

problem, the ideas which are laid out comprehensively in [34].

System Dynamics. We begin by considering an LTI MIMO plant having the following

dynamical model

ẋ = Ax+Bu+ Lξ x(to) = xo (3.1)

y = Cx+Du+ θ (3.2)

subject to three sources of uncertainty:

• Initial Condition. xo is an uncertain initial condition. It is not known. Only a

priori first and second order statistics are assumed to be available:

E(xo) = mo (3.3)

E((xo −mo)(xo −mo)
T) = Σo Σo = ΣT

o ≥ 0 (3.4)

30

• Process Noise. ξ is called the process noise. It is not accessible. It is assumed

to be a WSS stochastic process. Only a priori first and second order statistics

are assumed to be available:

E(ξ) = mξ (3.5)

Σξ(τ) = I δ(τ) (3.6)

• Measurement Noise. θ is the measurement noise or sensor noise. It is not

accessible. It is assumed to be a WSS stochastic process. Only a priori first

and second order statistics are assumed to be available:

E(θ) = mθ (3.7)

Σθ(τ) = Θ δ(τ) Θ = ΘT > 0 (3.8)

Goal. The goal is to develop a state estimation structure to estimate the state x

of the system given access to the input u, the output y, and statistical information

regarding the three sources of uncertainty: the initial condition xo, the process noise

ξ, and the measurement noise.

State Estimation Error. We define the state estimation error as follows:

x̃
def
= x− x̂. (3.9)

The immediate goal is to formulate an optimization problem that will result in a filter

gain matrix H that will ensure stable state estimation error x̃ dynamics. Toward this

end, we consider minimizing the following quadratic (rms state estimation error) cost

functional:

J(x̂)
def
= lim

to→−∞

√
E(x̃(t)T x̃(t)) (3.10)

where the limit implies that we have infinite past measurements. This is analogous

to the infinite planning horizon (infinite upper limit) in the LQR problem.

31

Design Parameters. The matrices L and Θ are analogous to the matrices M and R

in the LQR problem. L and Θ should be viewed as design parameters that we use

to achieve design specifications; i.e. to obtain an acceptable filter gain matrix H .

The following assumption will be made. The KBF problem and its solution are now

provided.

KBF Problem Statement:

min
x̂(u,y)

J(x̂)
def
= lim

to→−∞

√
E(x̃x̃) (3.11)

Solution: The solution to this problem is provided by the following model based state

estimation/observer structure:

˙̂x = Ax+Bu+ Lmξ +H(y − ŷ) x̂(to) = mo (3.12)

ŷ = Cx̂+Du+mθ (3.13)

where

• x̂ is the optimal estimate of the state x;

• ŷ is an estimate of the (known) output y;

• mo is the mean of the initial condition xo; it represents our best a priori esti-

mate for xo;

• mξ is the mean of the process noise ξ; it represents our best a priori estimate

for ξ;

• mθ is the mean of the measurement noise θ; it represents our best a priori es-

timate for θ;

• the term H(y − ŷ) provides a feedback mechanism which will keep x̂ close to

x. The matrix H ∈ Rn×p is called the filter gain matrix. It is analogous to the

32

control gain matrix G in the LQR problem .

where the filter gain matrix H ∈ Rn×p is given by

H = ΣCTΘ−1 (3.14)

and Σ is the unique symmetric (at least) positive semidefinite solution of the following

Filter Algebraic Riccati Equation (FARE):

0 = AΣ + ΣAT + LLT − ΣCTΘ−1CΣ. (3.15)

Nominal Stability: The state estimation error x̃ dynamics, defined by

˜̇x = (A−HC)x̃+ L(ξ −mξ) +H(θ −mθ) (3.16)

are exponentially stable; i.e. all eigenvalues of (A-HC) have negative real parts.

33

3.3 Extended Kalman Filter (EKF)

The Extended Kalman filter is widely used in controls related applications, es-

pecially in missile technologies. Since many of the real world systems are nonlinear,

the Kalman Bucy filter discussed in the previous section fails to address the inherent

nonlinearities. That being said, the Extended Kalman filter is the nonlinear compan-

ion of the Kalman Bucy filter that takes into account the inherent nonlinearities. It

essentially takes a linearized estimate of the states at every step of the filter. The

equations for EKF has been taken from [35]. We used a discrete time Kalman Filter

to estimate the states of our projectile subjected to nonlinear quadratic drag force.

Consider the nonlinear discrete time model of any system being

xk = f(xk−1, u, k) + wk−1 (3.17)

yk = h(xk, uk, k) + vk (3.18)

Here, k denotes a discrete point in time, uk is a vector of inputs, xk is a vector of the

actual states, which may be observable but not measured, yk is a vector of the actual

process outputs, wk and vk are process and output noises respectively; assumed to

be zero mean Gaussian with covariance Qk and Rk respectively. For the Extended

Kalman Filter, the predictor step is given by

x̂k
− = f(x̂k−1, uk, k) (3.19)

Pk
− = Fk−1Pk−1F

T
k−1 +Qk (3.20)

and the corrector step is given by,

Kk = P−k H
T
k (HkP

−
k H

T
k +Rk)

−1
(3.21)

x̂k = x̂−k +Kk(ỹk − h(x̂−k , uk, k)) (3.22)

Pk = (I −KkHk)P
−
k (3.23)

34

3.4 Comparisons: KBF vs EKF

The KBF and EKF simulations were used to estimate the x-displacement and y-

displacement of the ball trajectory in ideal medium and quadratic resistant medium

respectively, over a period of 2 seconds. The following initial conditions were chosen

for both the filters. xinitial = 8 and yinitial = −8. Please note that in both the filters

Θ and Rk, also called the measurement noise covariances are the design parameters

and has been chosen as 0.02 I2x2. We try to choose this parameter small to get faster

convergence, but at the cost of an expensive sensor. For our launch conditions of

Vo = 10 m/s and θo = 45o, we get the time of flight tR = 1.416 s. Therefore, we would

like a convergence to happen around 1/10th the flight time tR i.e. 0.14 seconds. To

achieve this, Θ, Rk = 0.02 I2x2 has been chosen. Figure 3.1 and Figure 3.2 shows the

tracking of the x-displacement of the ball. We get convergence in around 0.15 seconds

which is a fairly good convergence time. Another thing to notice is that the EKF

filter does and overshoot before it converges to the actual trajectory.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

t (sec)

-2

0

2

4

6

8

10

12

14

x-
di

sp
la

ce
m

en
t (

m
)

x-displacement: Actual and Estimated (KBF)

Figure 3.1: x-displacement: Actual vs
Estimated (KBF)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time (sec)

-2

0

2

4

6

8

10

12

14

x-displacement: Actual and Estimated (EKF)

Figure 3.2: x-displacement: Actual vs
Estimated (EKF)

35

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

t (sec)

-10

-8

-6

-4

-2

0

2

4

6

8

10

y-
di

sp
la

ce
m

en
t (

m
)

y-displacement: Actual and Estimated (KBF)

Figure 3.3: y-displacement: Actual vs
Estimated (KBF)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time (sec)

-10

-8

-6

-4

-2

0

2

4

6

8

10
y-displacement: Actual and Estimated (EKF)

Figure 3.4: y-displacement: Actual vs
Estimated (EKF)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

t (sec)

-10

-8

-6

-4

-2

0

2

4

6

8

10
Estimation Errors (KBF)

Figure 3.5: Estimation Errors (KBF)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time (sec)

-10

-8

-6

-4

-2

0

2

4

6

8

10
Estimation Errors (EKF)

Figure 3.6: Estimation Errors (EKF)

Figure 3.3 and Figure 3.4 shows the tracking of the y-displacement of the ball.

We get convergence in around 0.1 seconds. As in the previous plot, EKF filter does

an overshoot before it converges to the actual trajectory. Finally, Figure 3.5 and

Figure 3.6 shows the state estimation errors. The state estimation error converge to

zero at approximately 0.10 s and 0.15s for the KBF and EKF respectively.

36

3.5 Summary and Conclusions

We used Linear model based and nonlinear model based trajectory estimation

filters to estimate the projectile in a quadratic resistance medium. We started with

the linear Kalman Bucy Filter and proceeded to the nonlinear discrete Extended

Kalman Filter. These estimate errors go to zero faster than the system. These

estimates are essential to account for any noises that might be present during sensing

the ball, e.g. the camera sensing the ball might have some error. These filters help us

clean up the noises and give us a correct idea about the trajectory of the ball. These

estimation data will be used in properly understanding catching laws and coming up

with an intercept control law in later chapters.

37

Chapter 4

DIFFERENTIAL DRIVE GROUND ROBOTIC MODELING AND CONTROL

4.1 Introduction and Overview

In this chapter, we will be discussing the modeling and control of a Differential

Drive Ground Robot and it possibilities to become a catcher robot for our ball pro-

jectile. Trade studies and Control issues will be discussed in detail. The limitations

will also be put forth. The hardware details will be discussed first, followed by the

modeling of the vehicle. The chapter will be concluded with control design trade

studies. In this chapter, the differential drive ground robot developed within [1] are

used.

4.2 Description of Hardware

Figure 4.1: The Differential Drive Ground Robot and model [1]

The components of our differential drive ground robot [1] are as follows: 1) a

vehicle frame with acrylic sheet on top and bottom which are connected by screws

38

with dimensions (0.28 m long, 0.28 m wide, 0.20 m high), 2) two brush DC motors

having encoders in them (12V, 5 A stall, 1.2 N-m stall, 200 max rpm, 3200 counts

per revolution), 3) one Arduino Mega microcontroller with one motor shield (20 kHz

max PWM frequency, 12 A per channel) for inner-loop speed control, 4) an NVIDIA

TX2 board for on-board high speed computations such as image processing and some

outer loop functions, 5) an Intel real Sense Camera, 6) an inertial measurement unit

(IMU) with 3 accelerometers and 3 gyros (16-bit digital output per axis, max 8000

samples per sec ADC sampling rate, 3.3V, 3.2 mA), 7) a lithium polymer battery to

power the Nvidia TX2, Arduino Mega and all the sensors (18000 mAh), 8) a lithium-

ion battery to power the motors (9800 mAh). 9) the vehicle weighs 3.4 kg, with an

average acceleration of about 32 m/sec2 and can achieve a top speed of about 1.6

m/sec in approximately 0.05 seconds.

4.3 Description of Model

Nonlinear Dynamical Model. In this thesis, it has been assumed that the vehicle

is symmetrical about the longitudinal centerline (body x axis). This basically means

that the axes of the 2 wheels pass through the vehicle’s midpoint (l
2
, body y axis)

along length l of vehicle. Each wheel is assumed to be driven by identical dc motors.

Throughout the thesis, we will use a nonlinear vehicle-motor-kinematic model. Each

component of the model is now described.

39

Nonlinear Dynamical Vehicle Model. The following nonlinear dynamical model has

been taken from [1] and is used in this thesisIw + r2

d2w

(
1
4
md2w + I

)
r2

d2w

(
1
4
md2wI

)
r2

d2w

(
1
4
md2wI

)
Iw + r2

d2w

(
1
4
md2w + I

)

ω̇r
ω̇l

 =

 0 − r2

dw
mcdω

r2

dw
mcdω 0


ωr
ωl

+

τr
τl

 (4.1)

Here, ωr,l are the wheel angular speeds, v is the vehicle speed (along the vehicle

centerline or the body axis), τr,l are the applied torques to the wheels by the motors,θ

is the angle that the vehicle centerline makes with the horizontal; and ω = θ̇ is

the angular speed of the vehicle. Here, m is the vehicle mass, mc is the vehicle

chassis/platform mass (base plus components, excluding wheels and motors), I is the

moment of inertia of the vehicle about its c.g., Iw is the moment of inertia of the

wheel-motor combination about the wheel axle, r is the wheel radius, l is the vehicle

length, w is the vehicle width, dw is the distance between the two wheels and d is

the distance along the vehicle centerline that the vehicle c.g lies in front of the wheel

axles. Also, the vehicle mass is given by m = mc + 2mw where mc = mb +mcomp, mb

is the mass of the vehicle base, mcomp is the mass of the components on the base and

mw is the mass of the wheel-motor combination. The vehicle moment of inertia is

given by I = Ic +mcd
2 + 1

2
mwd

2
w + Iw where Ic is the moment of inertia of the vehicle

chassis/platform (base plus components, excluding wheels and motors). Since we have

assumed a rectangular vehicle chassis/platform, it follows that Ic = 1
12
mc(l

2 + w2).

This model has the applied torques on each wheel (τr, τl) as inputs and the wheel

angular speeds (ωr, ωl) as states. It should be noted that the model is nonlinear (with

nonlinear ωωr and ωωl product terms) if and only if the vehicle center of gravity (c.g.)

does not lie on the wheel axle (d 6= 0); i.e. the model is linear when d = 0 [1]. The

40

impact of this and other parameters are examined below.

Nonlinear Speed-Force-Torque Model. We can rewrite the nonlinear model with

aggregate force F = τr+τl
r

and torque τ = dw
(τrτl)
2r

as inputs and wheel angular speeds

(ωr, ωl) as states. This makes the model discussed above better to visualize:(
m+

2Iw
r2

)
v̇ −mcdω

2 = F

(
I +

d2w
2r2

Iw

)
ω̇ +mcdωv = τ (4.2)

Here F and τ are control inputs for v and ω, respectively. Upon simple look the

nonlinearities of ω2 and ωv are observed. here also, it is pretty obvious that the model

is nonlinear when d 6= 0. This model possesses the following equilibria: Feq = mcdω
2
eq,

τeq = −mcdveqωeq. From this, it follows that to maintain a constant speed veq (with

ωeq = 0) requires Feq = τeq = 0.

Kinematic Model. The following Kinematic model can be simply visualized [1].

vx = ẋ = v cos θ is the horizontal speed of the vehicle, vy = ẋ = v sin θ is the vertical

speed of the vehicle and θ̇ = ω is the angular speed of the vehicle. In most of the

literature that models mobile robot, this simple kinematic model is assumed to be

sufficient to model the mobile robot.

Linear Speed-Force-Torque Model. The following linear speed-force-torque equa-

tion is obtained P[F,τ]→[v,ω] (linearization done with (veq, ωeq)):

v̇
ω̇

 =


0 2mcdωeq

m+ 2Iw
r2

−mcdωeq

I+ 1
2(dw

r)
2
Iw

−mcdveq

I+ 1
2(dw

r)
2
Iw


v
ω

+

[
1

m+ 2Iw
r2

,
1

I + d2wIw
2r2

]F
τ

 (4.3)

Here, we can see that if d = 0, then the system “A matrix” is zeroed and the model

becomes a gain-integrator model. If d 6= 0 and weq = 0, then the model is observed

to possess an integrator along with a real pole.

Identical Motor Models. In this thesis, it is assumed that the torques on each

wheel (τr, τl) are created by similar or identical brushed DC motors with input voltages

41

(ear , eal). The motor model to be used is as follows:

ear,l = la
dia
dt

+ raia + eb (4.4)

eb = kbkgωr,l (4.5)

τr,l = ktkgia (4.6)

Iwω̇r,l + βωr,l =
τr,l
k2g
, (4.7)

where ear,l are the motor input voltages, ia denotes armature current, eb denotes back

emf, ωr,l are the angular wheel speeds, τr,l are the torques applied to the wheels.

State Space TITO Model. The following two-input two-output fourth order state

space model P[e→ωr,l] describes our differential drive vehicle near (veq, ωeq):

ẋ = Ax+Bu y = Cx+Du (4.8)

where u = [ear eal]T , x = [v ω iar ial]T , y = [ωr ωl]T ,

A =



−2βk2g
mr2+Iw

2mcωeqd2

m̂

ktkg
larm̂

ktkg
larm̂

−mcωeqd

Î

(
−mcveqd

Î
− d2wk

2
gβ

2r2(Î)

)
ktkgdw

2larÎ
−ktkgdw

2larÎ

−kbkg
r

−kbkgdw
2r

− ra
la

0

−kbkg
r

kbkgdw
2r

0 − ra
la


(4.9)

B =

02×2

I2×2

 C =

[
M−1 02×2

]
D = 02×2 M = r

0.5 0.5

1
dw

1
dw

 (4.10)

42

4.4 Speed Control of the Ground Vehicle

Figure 4.2: Outer-Loop Position-Direction Control System [1]

Figure 4.3: Inner-Loop Speed (v, ω) Speed Control System [1]

In the Figures 4.2-4.3, there is an inner-loop (v, ω) speed control system and

an outer loop position control system. This refers to the map from commanded or

desired speeds (vr, ωr) to actual speeds (v, ω) (Fig. 4.3). This refers to the map from

commanded planar positions and direction (xr, yr, θr) to actual planar positions and

direction (x, y, θ) (Fig. 4.2). The inner loop speed control system is much faster than

the outer loop position control system, typically by an order of magnitude of 5.

Let us suppose that we want our differential drive ground robot to follow reference

commands (xr, yr, θr) with a maximum frequency ωo. Given this, we require the outer-

loop (x, y, θ) position-direction control system to have a bandwidth of roughly 5ωo or

43

faster and an inner-loop bandwidth of approximately 25ωo or faster in order to get

acceptable command following.

Inner Loop Speed Control. As discussed in [1], when the plant P[e→ωr,l] is nearly

decoupled, we can use a decentralized controller K = kI2×2 where k = g(s+z)
s

[
b
s+b

]
is

a PI controller (with high frequency roll off) and W = z
s+z

is command pre-filter to

address overshoot (not shown in Fig. 4.3). We chose g = 5, z = 10, b = 200. This

structure is selected because it can be used to generate good controllers for a nearly

decoupled P[e→ωr,l] ≈ pI2×2.

4.5 Summary and Conclusions

This chapter addressed modeling and control issues associated with differential

drive ground vehicles and its potential to become a suitable catcher. A nonlinear

model is used to capture the vehicle dynamics. Motor dynamics are also modeled.

Trade studies are conducted to shed light on critical vehicle parameters and how they

impact static properties, dynamic properties, control system design and overall vehicle

design. In the next chapter, the interception control laws are discussed. Future work

will involve implementing those laws in the differential drive ground robot.

44

Chapter 5

CONTROL LAWS FOR GROUND ROBOT INTERCEPTING A BALL

5.1 Introduction and Overview

Even novice baseball or cricket players appear to know virtually from the moment

of bat contact where to run to catch a ball [4].To understand this task of intercept-

ing a ball, we simplify the problem by assuming the ball and the interceptor car is

in the same plane and the car just moves in a line along the x-axis. To make the

car interceptor model simple, we assumed a double integrator model of the car. No

acceleration constraint has been put on the car. We would like to understand how

the interception works for a planar catch in a quadratic resistant medium. A success-

ful interception is considered when the error between the ball position and the car

position is equal or less than half car lengths at the ball drop point or interception

zone. In previous chapters, we talked about modeling the trajectories, estimating

them, discussed about the hardware and control tradeoffs. We simply laid down the

foundations for building a research grade ground vehicle that successfully intercepts

a ball. This chapter primarily lays down the foundation for a control law that can

be employed with a simple double integrator model of a car. Open Loop and closed

loop control policies are discussed, simulation results are presented and the necessity

of continuous feedback is put forth. Interdependency of the initial ball launch con-

ditions and initial car positions are provided. Essentially, we want to know under

what conditions of initial velocity, angle and initial car positions gives us a successful

interception.

45

5.2 Interception Control Laws

In this section, we discuss primarily an open loop and a closed loop control policy

for intercepting a tossed ball in a quadratic resistant medium. We consider a simple

double integrator model for the car/robot. We also assume that the car and ball

trajectory is in the same plane and the car moves along a line. The open loop policy

is based on perfect information of range and time of flight for a projectile motion in

ideal or no drag medium. Upon gaining knowledge of the range and time of flight of

the ball, we command the car to reach the range at or before the ball hits the ground.

Open Loop Policy. The no drag model for the ball is:

ẍb = 0 (5.1)

ÿb = −g (5.2)

The assumed model for our interceptor car is:

ẍc = u (5.3)

The range and time of flight information of the ball trajectory in a no drag medium:

R =
V 2
o sin2θo
g

(5.4)

tR =
2Vosinθo

g
(5.5)

Now, assuming perfect knowledge of the range and time of flight, we command the

car to get to the range R at the specified time tR.

R = xc(tR) = xc(0) +
1

2
ut2R (5.6)

ẍc = u =
−2[xc(0)−R]

t2R
= constant (5.7)

Closed Loop Policy. The open loop policy bases itself on a perfect knowledge of

the range and time of flight information, which in practice cannot be obtained easily.“

46

Baseball outfielders could derive the destination from an assumed projected parabolic

trajectory, but research indicates that observers are very poor at using such a purely

computational approach”[4]. “In addition, factors such as air resistance, ball spin and

wind can cause trajectories to deviate from the parabolic ideal”[4]. This interception

strategy doesn’t demand the ball position, but only needs the elevation angle of the

ball with respect to the interceptor or robot, which can be done by a camera mounted

on the vehicle. This closed loop policy, also called Gaining Angle of Gaze or the

Optical Acceleration Cancellation law (OAC), doesn’t need any information regarding

the initial ball launch velocity or angle nor any instantaneous speed information [4],

[5], [6],[30].

𝛼

𝜑

𝐴 (𝑥𝑏, 𝑦𝑏)

𝐵 (𝑥𝑏, 0) 𝐶 (𝑥𝑐 , 0)

Figure 5.1: Diagram depicting the ball position A(xb, yb) and car position C(xc, 0).
α is the elevation angle while φ is the line of sight angle.

Consider the diagram shown in Figure 5.1. Let the location of the ball at any time t

is A(xb, yb), the location of the car/robot be C(xc, 0) and let α be the elevation angle

while φ is the line of sight angle. ”[4]. The same idea is applied to our interceptor

47

car. That being said, the quadratic drag model for the ball is:

ẍb = −βvvx (5.8)

ÿb = −βvvy − g (5.9)

The interceptor moves in a path so that the rate of change of the slope with respect

to the ball trajectory remains constant. The control law to do the same is defined

below [4], [30].

d

dt
(tan α) = constant (5.10)

d

dt

(AB
CB

)
= constant (5.11)

d

dt

(yb
xc − xb

)
= constant (5.12)

Intergrating the above equation, along with finding the necessary coefficients give us

xc =
ybxc(0)

Vosin(θo)t
+ xb (5.13)

Differentiating the above with respect to time gives us

ẋc = u = − ybxc(0)

Vosin(θo) t2
+

ẏbxc(0)

Vosin(θo) t
+ ẋb (5.14)

where xc is the position of the car, u is the controls applied, yb is y component of the

ball position, xc(0) is the initial car position, Vo is the initial launch velocity, θo is the

initial launch angle and xb is the x component of the ball position.

5.3 Robot Intercepting Ball: Simulation Results

Open Loop Policy. Constant acceleration is commanded for specific initial positions

of the car xc(0). The car acceleration commanded is lesser when the initial car

position xc(0) is close to the range i.e. xc(0) at 10 m has the lowest acceleration due

48

to proximity with the range at 9.55 m. In summary ẍc increases with larger xc(0)

and smaller tR(vo, θo).

0 0.5 1 1.5 2 2.5 3

Time (sec)

0

5

10

15

20

25

30

35

40

45

50
Car Acceleration Profile

Figure 5.2: Car acceleration profile for xc(0) ranging from 0 to 50 m.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Time (sec)

0

10

20

30

40

50

60
Car Velocity Profile

Figure 5.3: Car velocity profile for xc(0) ranging from 0 to 50 m. Velocity increases
as car approaches the range.

49

0 0.5 1 1.5 2 2.5 3

Time (sec)

0

10

20

30

40

50

60
Car Position with time

Figure 5.4: Car position for xc(0) ranging from 0 to 50 m. Intercept occurs for any
xc(0). In practice, acceleration would be constrained.

0 2 4 6 8 10 12

Horizontal Displacement x (m)

0

0.5

1

1.5

2

2.5

3

V
er

tic
al

 D
is

pl
ac

em
en

t y
 (

m
)

Trajectories: No drag vs quadratic drag

Figure 5.5: Ball trajectory for Vo = 10 m/s and θo = 45o with no drag and quadratic
drag with β = 0.0085. Range and Time of flight are R = 9.55 m and tR = 1.416 s.

50

0 0.5 1 1.5

time (sec)

0

2

4

6

8

10

12

H
or

iz
on

ta
l D

is
pl

ac
em

en
t x

 (
m

)

Horz. Disp. with time: No drag vs quadratic drag

Figure 5.6: Horizontal displacement of
ball with time.

0 0.5 1 1.5

time (sec)

6.4

6.5

6.6

6.7

6.8

6.9

7

7.1

H
or

iz
on

ta
l v

el
oc

ity
 (

m
/s

)

Horizontal velocity: No drag vs quadratic drag

Figure 5.7: Horizontal velocity of ball
with time.

0 0.5 1 1.5

time (sec)

0

0.5

1

1.5

2

2.5

3

V
er

tic
al

 D
is

pl
ac

em
en

t y
 (

m
)

Vert. Disp. with time: No drag vs quadratic drag

Figure 5.8: Vertical displacement of ball
with time.

0 0.5 1 1.5

time (sec)

-8

-6

-4

-2

0

2

4

6

8

V
er

tic
al

 S
pe

ed
 (

m
/s

)

Vertical velocity: No drag vs Quadratic drag

Figure 5.9: Vertical velocity of ball with
time.

51

Closed Loop Policy This policy does not need knowledge of the initial launch

conditions of the ball in a quadratic resistant medium. For simulation, Vo = 10 m/s

and θo = 45o are selected. Figure 5.5 shows the trajectory of the ball. The range

and time of flight information obtained from the simulation are R = 9.55 m and

tR = 1.416 s respectively. These values are provided to give a perspective. These

values are not used in the control policy for the car to intercept the ball. Additionally,

Figure 5.6, Figure 5.7, Figure 5.8 and Figure 5.9 are provided to gain an idea regarding

the displacement and velocities in each axis. The time step considered is 10−6 seconds

so that numerical error is minimal. From this point onward, lets define Equation 2.13

as the ideal xc equation and Equation 2.14 as the OAC control law. It makes sense to

simulate and compare the results that we get from each equation. The left plots mean

results from the ideal xc equation and right plots mean results from OAC control law.

Figure 5.10and Figure 5.11 depict the car accelerations. Car approaching from the

0 0.5 1 1.5

Time (sec)

-1

0

1

2

3

4

5
Car Acceleration with time(Ideal)

Figure 5.10: Car accelerations for various
xc(0) for ideal xc equation

0 0.5 1 1.5

Time (sec)

-1

0

1

2

3

4

5
Car Acceleration with time

Figure 5.11: Car accelerations for various
xc(0) for OAC control law

left of the range i.e. with xc(0) = 0, 5 m, the acceleration curve is concave down

which means the acceleration decreases as it approaches the target. Car approaching

from the right of the range i.e. with xc(0) = 10 m and above, the acceleration curve

52

0 0.5 1 1.5

Time (sec)

-30

-25

-20

-15

-10

-5

0

5

10
Car velocities with time (Ideal)

Figure 5.12: Car velocities for various
xc(0) for ideal xc equation

0 0.5 1 1.5

Time (sec)

-30

-25

-20

-15

-10

-5

0

5

10
Car velocities with time

Figure 5.13: Car accelerations for various
xc(0) for OAC control law

is concave up which means the acceleration increases as it approaches the target.

Figure 5.12and Figure 5.13 gives us an idea about the commanded velocity. As it is

evident from the plots, the car is commanded approximately constant velocity which

increases in magnitude as xc(0) is further from the range. Figure 5.14and Figure 5.15

0 0.5 1 1.5

Time (sec)

0

5

10

15

20

25

30

35

40

45

50
Car positions with time (Ideal)

Figure 5.14: Car positions for various
xc(0) for ideal xc equation

0 0.5 1 1.5

Time (sec)

0

5

10

15

20

25

30

35

40

45

50
OAC Car Position: Final % Error wrt half car length(0.15m);T=10-6s

Figure 5.15: OAC Car Positions: Final
% Error wrt half car length. T = 10−6s

show the car positions for various xc(0). At this point we define the final error at

tR as xc−R
0.5 Car Length

x100. The underlying idea is that we make sure an interception

53

0 0.5 1 1.5

time(sec)

0

5

10

15

20

25

30

35

40

45

50
Error = sqrt((x

c
-x

b
)2+y

b
2) / (0.5 Car Length)

Figure 5.16: Error wrt half car length for
various xc(0) for ideal xc equation

0 0.5 1 1.5

time(sec)

0

5

10

15

20

25

30

35

40

45

50
Error = sqrt((x

c
-x

b
)2+y

b
2) / (0.5 Car Length)

Figure 5.17: Error wrt half car length for
various xc(0) for OAC control law

occurs only when this final error is below a certain limit, say 1/10 th car length.

From Figure 5.15, the final error for each car positions are depicted. The maximum

error turns out to be about 0.22 % which is well below the 1/10 th limit we want.

hence it can be said that the car, irrespective of its initial position intercepts the ball

successfully at tR. To gain additional perspective, Figure 5.20and Figure 5.21 shows

the Error with respect to half car lengths go to zero for all initial car positions at tR.

The upcoming section will analytical prove how the line of sight angle φ goes to zero

upon interception.

5.4 Stability Proof

From Figure 5.1,

φ = 90o − α (5.15)

= 90o − tan−1
(yb
xc − xb

)
(5.16)

54

Differentiating w.r.t time gives

φ̇ = −α̇ (5.17)

= − (xc − xb)2

y2b + (xc − xb)2
d

dt
(tan α) (5.18)

= −c sin2φ (5.19)

where the constant c is defined as:

c =
Vosinθo
xc(0)

(5.20)

Rewriting above equations give us:

φ̇ = −Vosinθo
xc(0)

sin2φ (5.21)

For small angle approximations, the above equation can be written as:

φ̇ = −Vosinθo
xc(0)

φ2 (5.22)

Integrating the above gives:∫ φ

φo

dφ

φ2
= −Vosinθo

xc(0)

∫ t

0

dt (5.23)

1

φo
− 1

φ
= −Vosinθo

xc(0)
t (5.24)

φ =
φoxc(0)

xc(0) + φoVosinθo t
(5.25)

lim
t→∞

φ = 0 (5.26)

From the above equation, φ is locally asymptotically stable.

55

Figure 5.18: φ vs time for various initial
positions of car (from Stability eqn 5.25)

Figure 5.19: φ vs time for various initial
positions of car (90-α)

Figure 5.20: φ vs time for various initial
positions of car (via inverse tangent)

Figure 5.21: α vs time for various initial
positions of car

56

5.5 Summary and Conclusions

We took ideas from observing how baseball or cricket outfielders intercept a ball.

We proposed an open loop and a closed loop control policy to intercept the tossed

ball by a car in the same plane of the trajectory. The open loop policy is based on the

simple idea of sending the car to the range of the ball before the flight time. This is

based on perfect information of the range and time of flight of the ball motion, which

in practice is not helpful. The closed loop policy is based on the Optical Angular

cancellation (OAC) law that doesn’t need knowledge of initial launch conditions of

the ball. It is showed how the control law based on OAC is effective in intercepting the

ball successfully with an error margin of less than 1/10th the car length. A stability

proof for the line of sight angle is also provided to solidify the claim.

57

Chapter 6

SUMMARY, CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH

6.1 Summary of Work

This thesis addressed control issues that are important to achieve the design and

development of a robotic catcher. The following summarizes key themes within the

thesis.

1. Literature Survey. A fairly comprehensive literature survey of relevant work

was presented.

2. Modeling the Trajectories. The model of the trajectory of the tossed ball

was presented in varying drag mediums. Analysis was done to show how the

trajectory changes when the medium is ideally resistant or quadratically resis-

tant.

3. Estimating the Trajectories. Every model has limitations and are subject to

measurement noises that can give unpredictable results. To get correct measure-

ments, results from linear model based and nonlinear model based estimators

were put forth. Kalman Bucy Filter and Extended Kalman Filter were demon-

strated.

4. Hardware and Control. The hardware to be used was described and suitable

control trade offs were demonstrated.

58

5. Control Law for Interception. Open loop and closed loop interception Con-

trol Laws were described in details and validated with necessary simulations.

6.2 Directions for Future Research

Future work will involve each of the following:

• Modeling. The trajectory modeling will incorporate effects of spin, longitu-

dinal wind and other forms of disturbances to make it a more realistic compu-

tation. More efforts towards realizing a closed form analytical solution for the

projectile motion with quadratic drag problem.

• Estimation. Different types of noises and uncertainties will be taken into

account to estimate the trajectories correctly. Nonlinear filters like particle

filter will be explored and trade studies will be done.

• Hardware. Work on hardware will start with better components. Multiple

processors will be used for computationally intense work; e.g. onboard opti-

mization and decision making.

• Catchers and Throwers Multiple catchers and throwers will be built to realize

a robotic circus.

59

REFERENCES

[1] A. Rodriguez, “Control and trajectory following for single and multiple non-
holonomic differential drive robots: Critical design tradeoffs,” in Submitted to
American Controls Conference, July 2019. IEEE, 2019.

[2] U. Frese, B. Bauml, S. Haidacher, G. Schreiber, I. Schäfer, M. Hahnle, and
G. Hirzinger, “Off-the-shelf vision for a robotic ball catcher,” in Intelligent Robots
and Systems, 2001. Proceedings. 2001 IEEE/RSJ International Conference on,
vol. 3. IEEE, 2001, pp. 1623–1629.

[3] Z. Yu, Y. Liu, Q. Huang, X. Chen, W. Zhang, J. Li, G. Ma, L. Meng, T. Li, and
W. Zhang, “Design of a humanoid ping-pong player robot with redundant joints,”
in Robotics and Biomimetics (ROBIO), 2013 IEEE International Conference on.
IEEE, 2013, pp. 911–916.

[4] M. K. McBeath, D. M. Shaffer, and M. K. Kaiser, “How baseball outfielders
determine where to run to catch fly balls,” Science, vol. 268, no. 5210, pp. 569–
573, 1995.

[5] E. Aboufadel, “A mathematician catches a baseball,” The American mathemat-
ical monthly, vol. 103, no. 10, pp. 870–878, 1996.

[6] R. Mori and F. Miyazaki, “Examination of human ball catching strategy through
autonomous mobile robot,” Transactions of the Society of Instrument and Con-
trol Engineers, vol. 38, no. 6, pp. 543–548, 2002.

[7] K. Puttannaiah, “H∞ control design via convex optimization: Toward a com-
prehensive design environment,” M.S. Thesis, Arizona State University, Tempe,
AZ, 2013.

[8] K. Puttannaiah, J. A. Echols, and A. A. Rodriguez, “A generalized H∞ control
design framework for stable multivariable plants subject to simultaneous output
and input loop breaking specifications,” in IEEE American Control Conference,
2015, July 2015, pp. 3310–3315.

[9] K. Puttannaiah, J. A. Echols, K. Mondal, and A. A. Rodriguez, “Analysis and
use of several generalized H∞ mixed sensitivity framework for stable multivari-
able plants subject to simultaneous output and input loop breaking specifica-
tions,” in Proceedings of the 54th IEEE Conference on Decision and Control,
2015, Dec 2015, pp. 6617–6622.

[10] K. Puttannaiah, A. A. Rodriguez, K. Mondal, J. A. Echols, and D. G. Cartagena,
“A generalized mixed-sensitivity convex approach to hierarchical multivariable
inner-outer loop control design subject to simultaneous input and output loop
breaking specifications,” in IEEE American Control Conference, 2016, July 2016,
pp. 5632–5637.

60

[11] J. A. Echols, K. Puttannaiah, K. Mondal, and A. A. Rodriguez,
“Fundamental control system design issues for scramjet-powered hypersonic
vehicles,” in AIAA Guidance, Navigation & Control Conference. American
Institute of Aeronautics and Astronautics, 2015. [Online]. Available: http:
//dx.doi.org/10.2514/6.2015-1760

[12] K. Puttannaiah, “A generalized H∞ mixed sensitivity convex approach to multi-
variable control design subject to simultaneous output and input loop-breaking
specifications,” Ph.D. Dissertation, Arizona State University, Tempe, AZ, 2018.

[13] K. Puttannaiah, K. Mondal, and A. A. Rodriguez, “A generalized mixed sensi-
tivity approach to hierarchical control design subject to specifications at several
loop breaking points,” in 2019 Annual American Control Conference (ACC),
2019, submitted.

[14] A. Sarkar, K. Puttannaiah, and A. A. Rodriguez, “Inner-outer loop based robust
active damping for lcl resonance in grid-connected inverters using grid current
feedback,” in 2018 Annual American Control Conference (ACC), June 2018, pp.
6766–6771.

[15] D. G. Cartagena, K. Puttannaiah, and A. A. Rodriguez, “Modeling of a multi-
core processor thermal dynamics for development of dynamic thermal manage-
ment controllers,” in IEEE American Control Conference, 2016, July 2016, pp.
6917–6922.

[16] Y. Imai, A. Namiki, K. Hashimoto, and M. Ishikawa, “Dynamic active catch-
ing using a high-speed multifingered hand and a high-speed vision system,” in
Robotics and Automation, 2004. Proceedings. ICRA’04. 2004 IEEE International
Conference on, vol. 2. IEEE, 2004, pp. 1849–1854.

[17] G. Bätz, A. Yaqub, H. Wu, K. Kühnlenz, D. Wollherr, and M. Buss, “Dynamic
manipulation: Nonprehensile ball catching,” in Control & Automation (MED),
2010 18th Mediterranean Conference on. IEEE, 2010, pp. 365–370.

[18] S. Kim, A. Shukla, and A. Billard, “Catching objects in flight,” IEEE Transac-
tions on Robotics, vol. 30, no. EPFL-ARTICLE-198748, 2014.

[19] G. Parker, “Projectile motion with air resistance quadratic in the speed,” Amer-
ican Journal of Physics, vol. 45, no. 7, pp. 606–610, 1977.

[20] J. C. Hayen, “Projectile motion in a resistant medium: Part i: exact solution
and properties,” International journal of non-linear mechanics, vol. 38, no. 3,
pp. 357–369, 2003.

[21] E. W. Packel and D. S. Yuen, “Projectile motion with resistance and the lambert
w function,” The College Mathematics Journal, vol. 35, no. 5, pp. 337–350, 2004.

[22] C. H. Belgacem, “Analysis of projectile motion with quadratic air resistance from
a nonzero height using the lambert w function,” Journal of Taibah University
for Science, vol. 11, no. 2, pp. 328–331, 2017.

61

http://dx.doi.org/10.2514/6.2015-1760
http://dx.doi.org/10.2514/6.2015-1760

[23] K. Yabushita, M. Yamashita, and K. Tsuboi, “An analytic solution of projectile
motion with the quadratic resistance law using the homotopy analysis method,”
Journal of Physics A: Mathematical and theoretical, vol. 40, no. 29, p. 8403,
2007.

[24] Q. Jia, X. Li, J. Song, X. Gao, G. Chen, and H. Zhang, “Projectile motion
aerodynamic parameter identification and simulation,” in Industrial Electronics
and Applications (ICIEA), 2014 IEEE 9th Conference on. IEEE, 2014, pp.
1872–1876.

[25] S. Ray and J. Fröhlich, “An analytic solution to the equations of the motion of
a point mass with quadratic resistance and generalizations,” Archive of Applied
Mechanics, vol. 85, no. 4, pp. 395–414, 2015.

[26] V. Chistyakov and K. Malykh, “A precise parametric equation for the trajectory
of a point projectile in the air with quadratic drag and longitudinal or side wind,”
in Mechanics-Seventh Polyakhov’s Reading, 2015 International Conference on.
IEEE, 2015, pp. 1–5.

[27] M. Turkyilmazoglu, “Highly accurate analytic formulae for projectile motion
subjected to quadratic drag,” European Journal of Physics, vol. 37, no. 3, p.
035001, 2016.

[28] “Drag of a Sphere: NASA,” https://www.grc.nasa.gov/WWW/K-12/airplane/
dragsphere.html, accessed: 2018-08-20.

[29] R. Sumukha, S. G. Koolagudi, V. Naresh, F. Afroz, and Y. A. Reddy, “Realistic
golf flight simulation,” in Computing for Sustainable Global Development (IN-
DIACom), 2016 3rd International Conference on. IEEE, 2016, pp. 2215–2219.

[30] K. Mundhra, A. Suluh, T. Sugar, and M. McBeath, “Intercepting a falling object:
Digital video robot,” in ICRA, 2002, pp. 2060–2065.

[31] R. Saucier, “Analytical approximations of projectile motion for linear and
quadratic air drag,” Tech. Rep., 2012.

[32] “Reynold’s Number: NASA,” https://www.grc.nasa.gov/WWW/BGH/
reynolds.html, accessed: 2018-08-20.

[33] “Flight Equations with Drag: NASA,” https://www.grc.nasa.gov/WWW/K-12/
airplane/flteqs.html, accessed: 2018-08-20.

[34] A. A. Rodriguez, Multivariable Control System Design. Control3D LLC, 2010,
vol. 1.

[35] “An Introduction to The Extended Kalman Filter,” http://www.
goddardconsulting.ca/extended-kalman-filter.html, accessed: 2018-08-20.

62

https://www.grc.nasa.gov/WWW/K-12/airplane/dragsphere.html
https://www.grc.nasa.gov/WWW/K-12/airplane/dragsphere.html
https://www.grc.nasa.gov/WWW/BGH/reynolds.html
https://www.grc.nasa.gov/WWW/BGH/reynolds.html
https://www.grc.nasa.gov/WWW/K-12/airplane/flteqs.html
https://www.grc.nasa.gov/WWW/K-12/airplane/flteqs.html
http://www.goddardconsulting.ca/extended-kalman-filter.html
http://www.goddardconsulting.ca/extended-kalman-filter.html

APPENDIX A

MATLAB CODE

63

%
%
%***
%***
%
% PURPOSE
%
% This routine examines projectile motion of a particle in a
% gravitational field subject to:
%
% 1. Quadratic (NonLinear) Drag Model
% 2. Linear Drag Model
%
%
% ASSUMPTIONS:
%
% Projectile: Golf ball
% Medium: Air
%
%***
%***
%
% Nirangkush Das, A.A. Rodriguez, all rights reserved.
% 05-18-18
%

%
%***
%***
%
% Medium Properties
%

rho = 1.2041; % Density of Air (kg/m^3)
% 20 deg C (68 deg F)
% Speed of Sound = 343.21 m/sec
% Characteristic specific impedance 413.3 Pa s/m

g = 9.81; % Acceleration due to gravity (m/s^2)
% at Earth surface

%
%***
%***
%
% Projectile Properties

64

%

m = 0.04593; % Mass (kg)
d = 0.04277; % Diameter of spherical projectile (m)
A = pi*d^2/4; % Silhouette area (m^2)

Cd = [0 0.45 1]; % 3 Drag Coefficients
C = 0.5*Cd*A*rho/m; % Drag Force in gees
%Type of Surface = Recess Dimples

%
%***
%***
%
% Launch Conditions: Initial Velocity and Angle
%

V0 = 10; % Initial launch Velocity (m/s)
beta0 = 45; % initial launch angle (degrees)

%
%***
%***
%
% FLIGHT TIME ESTIMATE - TIME FOR SIMULATION
%
% ASSUMPTION: Used zero drag flight time
% Provides upper bouncd on real-world flight time
%

tf = 2*V0*sind(abs(beta0))/g; % time of flight with No Drag
tvec = 0:0.01:tf; % time vector

%
%***
%***
%***
%***
%***
%***
%
% 1. QUADRATIC (NONLINEAR) DRAG MODEL
%
%

65

% Initial Condition vector for Simulation
%

IC = [0;V0*cosd(beta0);0;V0*sind(beta0)];

%
% Form the Non-Linear function of the model for Simulation
%

f = @(t,a1,C)[a1(2);-C*sqrt(a1(2)^2 + a1(4)^2)* a1(2); a1(4);
-g-C*sqrt(a1(2)^2 + a1(4)^2)* a1(4)];

%
% This routine used ode45 to solve the system of Non-Linear equations.
%

for i=1:length(C)

[t,xa] = ode45(@(t,a1) f(t,a1,C(i)),[tvec],IC);

x(i,:) = xa(:,1); % Storing the results
vx(i,:) = xa(:,2); % Storing the results
y(i,:) = xa(:,3); % Storing the results
vy(i,:) = xa(:,4); % Storing the results

v(i,:) = sqrt(vx(i,:).^2+vy(i,:).^2); % Computing the
% particle and storing it

theta(i,:) = atand(vy(i,:)./vx(i,:)); % Computing the
% projectile with horizontal and storing it.
pause(0.05)

end

This part clears out negative values for x,y,. Also end values

x(y<0) = NaN;x(1,end)=NaN;
y(y<0) = NaN;y(1,end)=NaN;

%
% End values for v,vx,vy,theta needs to be NaN
% for getting discontinuous plot
%

vx(1,end) = NaN;vx(2,end)=NaN;vx(3,end)=NaN;

66

vy(1,end) = NaN;vy(2,end)=NaN;vy(3,end)=NaN;
theta(1,end) = NaN;theta(2,end)=NaN;theta(3,end)=NaN;
v(1,end) = NaN;v(2,end)=NaN;v(3,end)=NaN;

%
%***
%***
%
% Particle Trajectory for Quadratic Drag Model
%

figure(10)
plot(x(1,:),y(1,:),’k’,x(2,:),y(2,:),’r’,x(3,:),y(3,:),’g’)
title(’Trajectory for Quadratic (Nonlinear) Drag Model’)
xlabel(’Horizontal Displacement x (m)’)
ylabel(’Vertical Displacement y (m)’)
legend(’$C_d=0$’,’$C_d=1$’,’$C_d=2$’)
set(legend,’Interpreter’,’latex’)
grid on
%axis([0 5 -5 5])

%***
%***
%***
%***
%***
%***
%***
%***
%
% 2. LINEAR DRAG MODEL
%
% Projectile conditions:
%
% linear drag model
% same launch conditions
% same drag coefficients
% Solved using lsim

v_tlin = g./C ; % Form terminal velocity of the Linear System.

%
%
% Form the A,B,C,D matrix from the State Space representation
% System. There are 3 System Model Matrix A, since 3 values of
% Coefficients are considered. Matrices B,C,D remain the same.
%

67

a1=[0 1 0 0;
0 -g/v_tlin(1) 0 0;
0 0 0 1;
0 0 0 -g/v_tlin(1)];

a2=[0 1 0 0;
0 -g/v_tlin(2) 0 0;
0 0 0 1;
0 0 0 -g/v_tlin(2)];

a3=[0 1 0 0;
0 -g/v_tlin(3) 0 0;
0 0 0 1;
0 0 0 -g/v_tlin(3)];

b=[0;0;0;-g];
c=eye(4,4);
d=0*eye(4,1);

%
% Form the system for 3 different drag coefficients.
%

sys1=ss(a1,b,c,d);
sys2=ss(a2,b,c,d);
sys3=ss(a3,b,c,d);

%
% Create the input vector u.
%

u=ones(length(tvec),1);

%
% Simulate using lsim. The ’tvec’ and ’IC’ come from previ
% for Quadratic Drag.
%

[y1,t,x1]=lsim(sys1,u,tvec,IC);
[y2,t,x2]=lsim(sys2,u,tvec,IC);
[y3,t,x3]=lsim(sys3,u,tvec,IC);

%
% Compute the Instantaneous Velocity Vectors
%

68

v1=sqrt(x1(:,2).^2+x1(:,4).^2);
v2=sqrt(x2(:,2).^2+x3(:,4).^2);
v3=sqrt(x3(:,2).^2+x3(:,4).^2);

%
% Compute the Instantaneous Angle Vectors
%

theta1=atand(x1(:,4)./x1(:,2));
theta2=atand(x2(:,4)./x2(:,2));
theta3=atand(x3(:,4)./x3(:,2));

%***
%***
%***
%***
%
% This section has been commented out.
%

% for i=1:length(C)
%
% v_tlin(i,:) = g./C(i); % Terminal Velocity
%
%
% % Computing the horizontal component of Velocity.
% vx_lin(i,:) = V0.*cosd(beta0).*exp(-g.*tvec./v_tlin(i));
%
% % Computing the vertical component of Velocity.
% vy_lin(i,:) = V0.*sind(beta0).*exp(-g.*tvec./v_tlin(i))-
%
% % Computing the horizontal Displacement.
% x_lin(i,:) = (V0*v_tlin(i)*cosd(beta0)/g).*(1-exp(-g.*t
%
% % Computing the vertical Displacement.
% y_lin(i,:) = v_tlin(i)/g*(V0*sind(beta0)+v_tlin(i)).*(1
%
%
% % Computing the Instantaneous Velocity of the Particle.
% v_lin(i,:) = sqrt(vx_lin(i,:).^2+vy_lin(i,:).^2);
%
% % Computing the Instantaneous Angle of projectile with
% theta_lin(i,:) = atand(vy_lin(i,:)./vx_lin(i,:));
%
% pause(0.05)

69

%
%
% end
%
% %
% % This part clears out negative values for x,y,.
% % Also end values need to be NaN for discotinuous plot
% %
%
% x_lin(y_lin<0) = NaN;x_lin(1,end)=NaN;
% y_lin(y_lin<0) = NaN;y_lin(1,end)=NaN;
%
% %
% % End values for v, vx, vy, theta needs to be NaN
% %
%
% vx_lin(1,end) = NaN;vx_lin(2,end)=NaN;vx_lin(3,end)=NaN;
% vy_lin(1,end) = NaN;vy_lin(2,end)=NaN;vy_lin(3,end)=NaN;
% theta_lin(1,end) = NaN;theta_lin(2,end)=NaN;theta_lin(3,en
% v_lin(1,end) = NaN;v_lin(2,end)=NaN;v_lin(3,end)=NaN;

%
%***
%***
%***
%***
%

%
% Trajectories for both Quadratic and Linear Drag Models
%

figure(20)
plot(x(1,:),y(1,:),’k’,x(2,:),y(2,:),’r’,x(3,:),y(3,:),’g’,
title(’Trajectory: Quadratic (Solid) & Linear Drag (Dashed)’)
xlabel(’Horizontal Displacement x (m)’)
ylabel(’Vertical Displacement y (m)’)
legend(’$C_d=0$’,’$C_d=1$’,’$C_d=2$’,’$C_d=0$’,’$C_d=1$’,’$C_d=2$’)
set(legend,’Interpreter’,’latex’)
grid on

%
%
%***
%***

70

%
% Horizontal Displacement with time
% for both Quadratic and Linear Drag Models
%

figure(30)
plot(t’,x(1,:),’k’,t’,x(2,:),’r’,t’,x(3,:),’g’,t’,x1(:,1),--’)
title(’Horz. Disp. with time: Quadratic(Solid) & Linear Drag(Dashed)’)
xlabel(’time (sec)’)
ylabel(’Horizontal Displacement x (m)’)
legend(’$C_d=0$’,’$C_d=1$’,’$C_d=2$’,’$C_d=0$’,’$C_d=1$’,’$C_d=2$’)
set(legend,’Interpreter’,’latex’)
grid on

%
%***
%***
%
% Vertical Displacement with time
% for both Quadratic and Linear Drag Models
%

figure(40)
plot(t’,y(1,:),’k’,t’,y(2,:),’r’,t’,y(3,:),’g’,t’,x1(:,3)--’)
title(’Vert. Disp. with time: Quadratic(Solid) & Linear Drag(Dashed)’)
xlabel(’time (sec)’)
ylabel(’Vertical Displacement y (m)’)
legend(’$C_d=0$’,’$C_d=1$’,’$C_d=2$’,’$C_d=0$’,’$C_d=1$’,’$C_d=2$’)
set(legend,’Interpreter’,’latex’)
grid on

%
%***
%***
%
% Horizontal Component of Velocity with time
% for both Quadratic and Linear Drag Models
%

figure(50)
plot(t’,vx(1,:),’k’,t’,vx(2,:),’r’,t’,vx(3,:),’g’,t’,’g--’)
title(’Horizontal Velocity: Quadratic (Solid) & Linear Drag (Dashed)’)
xlabel(’time (sec)’)
ylabel(’Horizontal Velocity (m/s)’)
legend(’$C_d=0$’,’$C_d=1$’,’$C_d=2$’,’$C_d=0$’,’$C_d=1$’,’$C_d=2$’)
set(legend,’Interpreter’,’latex’)
grid on

71

%
%***
%***
%
% Vertical Component of Velocity with time
% for both Quadratic and Linear Drag Models
%

figure(60)
plot(t’,vy(1,:),’k’,t’,vy(2,:),’r’,t’,vy(3,:),’g’,t’,’g--’)
title(’Vertical Velocity: Quadratic (Solid) & Linear Drag (Dashed)’)
xlabel(’time (sec)’)
ylabel(’Vertical Velocity (m/s)’)
legend(’$C_d=0$’,’$C_d=1$’,’$C_d=2$’,’$C_d=0$’,’$C_d=1$’,’$C_d=2$’)
set(legend,’Interpreter’,’latex’)
grid on

%
%***
%***
%
% Instantaneous Velocity of Projectile versus time
% for both Quadratic and Linear Drag Models
%

figure(70)
plot(t’,v(1,:),’k’,t’,v(2,:),’r’,t’,v(3,:),’g’,t’,v1(:,1),--’)
title(’Velocity: Quadratic (Solid) & Linear Drag (Dashed)’)
xlabel(’time (sec)’)
ylabel(’Velocity (m/s)’)
legend(’$C_d=0$’,’$C_d=1$’,’$C_d=2$’,’$C_d=0$’,’$C_d=1$’,’$C_d=2$’)
set(legend,’Interpreter’,’latex’)
grid on

%
%***
%***
%
% Instantaneous Angle of Velocity Projectile with horizontal versus
% for both Quadratic and Linear Drag Models
%

figure(80)
plot(t’,theta(1,:),’k’,t’,theta(2,:),’r’,t’,theta(3,:),
title(’Angle: Quadratic (Solid) & Linear Drag (Dashed)’)
xlabel(’time (sec)’)

72

ylabel(’Angle (degree)’)
legend(’$C_d=0$’,’$C_d=1$’,’$C_d=2$’,’$C_d=0$’,’$C_d=1$’,’$C_d=2$’)
set(legend,’Interpreter’,’latex’)
grid on

%
%***
%***
%***
%***
%***
%***
%***
%***
%
% 3. FLIGHT EQUATIONS WITH DRAG CONSIDERING VERTICAL AND HORIZONTAL
% (IDEAS AND EQUATIONS FROM NASA WEBPAGE)
%
% Projectile conditions:
%
% Quadratic drag model
% same launch conditions
% same drag coefficients
% Terminal velocity for Quadratic Drag employed
% Solved using ode45

CdT = [0 1.4 2.8]; % 3 Drag Coefficients
CT = 0.5*CdT*A*rho/m; % Drag Force in gees

%
% Form Terminal velocity for Quadratic Drag Model
%
V_t=sqrt(g./CT);

%
% Form function for simulation with ode45
%

f = @(t,a1,V_t)[a1(2);-g*(a1(2)^2)/V_t^2; a1(4);
-g-g*(a1(4)^2)/V_t^2];

for i=1:length(V_t)

73

[t,Xa] = ode45(@(t,a1) f(t,a1,V_t(i)),[tvec],IC);

X(i,:) = Xa(:,1); % Storing the results fo
Vx(i,:) = Xa(:,2); % Storing the results for
Y(i,:) = Xa(:,3); % Storing the results for
Vy(i,:) = Xa(:,4); % Storing the results for

pause(0.05)

end

figure(90)
plot(x(1,:),y(1,:),’k’,x(2,:),y(2,:),’r’,x(3,:),y(3,:),’g’,
title(’Trajectory:Original Quad model(solid)vs Toss Mod
xlabel(’Horizontal Displacement x (m)’)
ylabel(’Vertical Displacement y (m)’)
legend(’$C_d=0$’,’$C_d=1$’,’$C_d=2$’,’$C_d=0$’,’$C_d=1
set(legend,’Interpreter’,’latex’)
grid on

Curve Fits for Quadratic and Linear Model on Balls.m

X3=X(2,:)’;
Y3=Y(2,:)’;

% Least Square Fit
H7=[ones(length(Y3),1),X3,X3.^2];
Astar7=zeros(3);
Ytilde7=zeros(length(Y3),3);
R7=zeros(length(Ytilde7),3);
Astar7=inv(H7’*H7)*H7’*Y3;
Ytilde7=H7*Astar7;
R7=Y3-Ytilde7;

% Cubic Polynomial Fit
H8=[ones(length(Y3),1),X3,X3.^2,X3.^3];
Astar8=zeros(4);
Ytilde8=zeros(length(Y3),4);
R8=zeros(length(Ytilde8),4);
Astar8=inv(H8’*H8)*H8’*Y3;
Ytilde8=H8*Astar8;
R8=Y3-Ytilde8;

% Weighted Least Squares Fit
v3=0:1/(length(Y3)-1):1;

74

W3=diag(v3);

H9=[ones(length(Y3),1),X3,X3.^2];
Astar9=zeros(3);
Ytilde9=zeros(length(Y3),3);
R9=zeros(length(Ytilde9),3);
Astar9=inv(H9’*W3*H9)*H9’*W3*Y3;
Ytilde9=H9*Astar9;
R9=Y3-Ytilde9;

plot(X3,Y3,’k’,X3,Ytilde7,’r’,X3,Ytilde8,’g’,X3,Ytilde9,’m’)
title(’NASA Toss Model of Golf Ball (C_d=0.45) with Least
xlabel(’Horizontal Displacement x (m)’)
ylabel(’Vertical Displacement y (m)’)
legend(’Original Toss Model’,’Quadratic LSF’,’Cubic LSF’,
set(legend,’Interpreter’,’latex’)
h_line = findobj(gcf, ’type’, ’line’);
set(h_line, ’LineWidth’,0.8);
grid on
axis([0 11 0 3])
hold on

%
%
%***
%***
%
% PURPOSE
% This rountine examines how a Kalman Filter can be used to
% estimate the trajectory of a partcle subjected to Linear
%
% ASSUMPTION:
% zero mean process noise xi with unit intesity for x, vx, y, vy
% zero mean output noise with intensity mu for vx and vy
%
%***
%***
%
% A.A. Rodriguez, all rights reserved
% 05-18-18
%
%
% NonLinear Equations for Planar xy Motion of a Point Mass with
% Linear Drag = - beta v where v = sqrt(vx^2 + vy^2)
%
% Variables:
% x1 = x (m)
% x2 = vx (m/sec)

75

% x3 = y (m)
% x4 = vy (m/sec)
%
% x1_dot = x2;
% x2_dot = - \beta * x2;
% x3_dot = x4;
% x4_dot = - gravit_accel*1 - \beta * x4;

% Medium Properties
%

rho = 1.2041; % Density of Air (kg/m^3)
% 20 deg C (68 deg F)
% Speed of Sound = 343.21 m/sec
% Characteristic specific impedance 413.3 Pa s/m

gravit_accel = 9.81; % Acceleration due to gravity
% at Earth surface

%
%***
%***
%
% Projectile Properties
%

m = 0.04593; % Mass (kg)
d = 0.04277; % Diameter of spherical projectile (m)
A = pi*d^2/4; % Silhouette area (m^2)

Cd = 0.45; % 3 Drag Coefficients
beta = 0.5*Cd*A*rho/m; % Drag Force in gees

%
%***
%***
%
%
% PLANT ICs
%
% xinit = 5; % RED
% vxinit = 1; % GREEN
% yinit = 40; % BLUE
% vyinit = -5; % MAGENTA

76

xinit = 0; % RED
vxinit = 7.071; % GREEN
yinit = 0; % BLUE
vyinit = 7.071; % MAGENTA
%

%
% ESTIMATOR ICs
%
% xhatinit = -5; % RED
% vxhatinit = 6; % GREEN
% yhatinit = 5; % BLUE
% vyhatinit = 3; % MAGENTA

xhatinit = -1; % RED
vxhatinit = 1.25*7.071; % GREEN
yhatinit = 1; % BLUE
vyhatinit = 0.75*7.071; % MAGENTA

%
%***
%***
%
% Form Initial Conditions for Plant and Estimator
%
xo = [xinit vxinit yinit vyinit xhatinit vxhatinit yhati

%
%***
%***
%
% FORM TIME VECTOR
gravit_accel = 9.81; % accelearation due to gravity in m/sec
tinit = 0; % Initial Time
tinc = 0.01; % Time Increment
tfinal = 4;
%%tfinal = 1.001*(-vyinit - sqrt(vyinit^2 + 2*gravit_acce
t = [tinit:tinc:tfinal]; % Time Vector

%
%***
%***
%
% Desured KF OPEN LOOP BW
%

77

Desired_KFBW = 4*5/(tfinal); % Choose KF BW parameter mu
% to achieve this open loop KF BW
% Corresponds to a 5tau settling time of
% 0.25* tfinal; i.e. 5tau = 0.25 tfinal
% or Desired_KFBW = 1/tau = 4*5/tfinal

%
%***
%***
%
% NON IDEA IDEAL PARABOLIC PHYSICS TRAJECTORY - LINEAR DRAG
% Nonlinear Model becomes linear
%
% LINEAR PLANT/SYSTEM: xdot = a x + b u + l xi
% y = c x + d u + theta
%

gravit_accel = 9.81; % accelearation due to gravity in m/sec

a = [0 1 0 0
0 -beta 0 0
0 0 0 1
0 0 0 -beta];
b = [0 0 0 -gravit_accel]’; % u = unit step
l = eye(4); % State Process Noise Input Matrix
c = [1 0 0 0
0 0 1 0]; % Selects x and y coordinates
d = [0*ones(2,1)];

%
%***
%***
%
% KALMAN FILTER DESIGN VIA LQR DUALITY
%
statewm = l*l’; % State Weighting Matrix (l*l’)
% Must be symmetric and
% at least Positive Semidefinite

rho = 0.02; % Control Weighting Scalar
% Miust choose small enough so that KF
% is MUCH faster than flight time
% want convergence to be around tfinal/2 maximum
controlwm = rho*eye(2,2); % Control Weighting Matrix
% Must be symmetric and Postivie Definite

78

g = lqr(a’, c’, statewm, controlwm);
h = g’;

%
% NOTE: Selection of state weighting matrix assumes that
% Process Noise Intensity Matrix = eye(4,4)
%
mu = rho; % Sensor Noise Intensity Scalar
sensintenm = controlwm’; % Sensor Noise Intensity Matrix
eig(a-h*c); % must be stable; real(eigenvalues) < 0
% requires (a,c) detectable or (a’,c’) stabilizable

%***
%***
%
% FORM PLANT AND KALMAN FILTER
%
% PLANT/SYSTEM: xdot = a x + b u + l xi
% y = c x + d u + theta
%
% MODEL BASED ESTIMATOR: xhatdot = a xhat + bu + l
% yhat = c xhat + du + mtheta
%
% COMBINING THE ABOVE:
%
%
%
% | ytilde | = | y - yhat | = | c -c | | x |
% | xhat|
% or
%
% zdot = m z + n u + p xi + pp mxi + q (y - yhat)
% ytilde = r z + s thetavec
%
ns = size(a)*[0 1]’; % Number of States
m = [a 0*a
0*a a];
n = [b
b];
p = [l
0*l];
q = [0*h
h];

r = [c -c];
s = eye(2,2);

79

%
%***
%***
%
% CLOSE MODEL-BASED ESTIMATOR LOOP ON OUTPUT ESTIMATION ERROR
%
% zdot = m z + n u + p xivec + q ytilde
% ytilde = r z + s thetavec
%
% or
%
% zdot = m z + n u + p xivec + q (r z + s thetavec)
% ytilde = r z + s thetavec
%
% or
%
% zdot = (m + qr) z + n u + p xivec + q * s thetavec
% ytilde = r z + 0 u + s thetavec
%
% or
%
% zdot = acl z + n u + p xivec + q * s thetavec
% ytilde = r z + 0 u + s thetavec
%

%
%***
%***
%
% EXTERNAL SIGNALS
%
% u = UNIT STEP
%
% xivec = [white noise with intensity 1;
% 0];
% thetavec = [white noise with intensity mu
% 0];

%
%***
%***
%
% FORM u to ytilde
%
%
acl = m + q*r;

80

bcl = [n p q];
ccl = r;
dcl = [0*eye(2,5) eye(2,2)];
sysu2ytilde = ss(acl,n,r,0*eye(2,1));

%
%***
%***
%
% COMPUTE ESTIMATOR CLOSED LOOP POLES
%
eig(acl) % CONTAINS PLANT POLES AND
% CLPs of ESTIMATOR; CLPs of ESTIMATOR should be STABLE !

damp(eig(acl))

%
%***
%***
%
% FORM NOMINAL TIME RESPONSE
%
u = 1*ones(1,length(t)); % Unit Step

%
%***
%***
%
% Compute Nominal
%
% Output Estimation Error and State Estimation Error
% Plant States and Estimates
%
[ytilde,t,z] = lsim(sysu2ytilde, u, t,xo);

%
% Output Estimation Error
%
figure(8)
plot(t, ytilde(:,1),t, ytilde(:,2))
title(’Output Estimation Error’)
xlabel(’t (sec)’)
ylabel(’$\tilde{y} = y - \hat y$’,’Interpreter’,’latex’)

set(legend,’Interpreter’,’latex’)

81

h_line = findobj(gcf, ’type’, ’line’);
set(h_line, ’LineWidth’,2);
grid on

%
% State Estimation Error
%
figure(10)
title(’State Estimation Error’)
xlabel(’t (sec)’)
ylabel(’$\tilde{x} = x - \hat x$’,’Interpreter’,’late
set(legend,’Interpreter’,’latex’)
h_line = findobj(gcf, ’type’, ’line’);
set(h_line, ’LineWidth’,2);
grid on

%
% Plant States and Estimator States
%
figure(12)
title(’Plant States (solid) and Estimator States (dashed)’)
xlabel(’t (sec)’)
ylabel(’x’) x4$’,’Location’,’southwest’)
set(legend,’Interpreter’,’latex’)
h_line = findobj(gcf, ’type’, ’line’);
set(h_line, ’LineWidth’,1);
grid on

%
% % Plant State Estimates
% %
% figure(14)
% plot(t, z(:,1),’r’, t, z(:,2), ’g’, t, z(:,3), ’b’,t
% title(’Plant States’)
% xlabel(’t (sec)’)
% ylabel(’\hat{x}’,’Interpreter’,’latex’)
% grid on
% %
% %
% % Estimator States
% %
% figure(16)
% plot(t, z(:,5),’--r’, t, z(:,6), ’--g’, t, z(:,7), ’--b’
% title(’Estimator States’)
% xlabel(’t (sec)’)
% ylabel(’\hat{x}’,’Interpreter’,’latex’)
% grid on

82

% %

%
%***
%***
%
% Trajectory Slope
%
figure(18)
plot(t, z(:,4)./z(:,2))
title(’Trajectory Slope’)
xlabel(’t (sec)’)
ylabel(’dy/dx’)
h_line = findobj(gcf, ’type’, ’line’);
set(h_line, ’LineWidth’,2);
grid on

%
%***
%***
%
% Trajectory
%
figure(20)
plot(z(:,1), z(:,3))
title(’Trajectory’)
xlabel(’x (m)’)
ylabel(’y (m)’)
h_line = findobj(gcf, ’type’, ’line’);
set(h_line, ’LineWidth’,2);
grid on

%
%***
%***
%
% Trajectory Angle
%
figure(22)
plot(t, (180/pi)*atan(z(:,4)./z(:,2)))
title(’Trajectory Angle’)
xlabel(’t (sec)’)
ylabel(’\theta (deg)’)
h_line = findobj(gcf, ’type’, ’line’);
set(h_line, ’LineWidth’,2);
grid on

83

%
%***
%***
%
% FORM FREQUENCY VECTOR
%
winit = 10^-2; % Initial frequency
wfin = 10^2; % Final frequency
nfps = 1000; % Number of Frequency Points
w = logspace(log10(winit), log10(wfin),nfps); % Vector of

%
%***
%***
%
% PLANT SINGULAR VALUES
%
figure(5)
plant = ss(a,b,c,d);
clsv = sigma(plant,w); % PLANT
semilogx(w,20*log10(clsv))
title(’Plant’)
xlabel(’w (rad/sec)’)
ylabel(’singular values (dB)’)
h_line = findobj(gcf, ’type’, ’line’);
set(h_line, ’LineWidth’,2);
grid on

%
%***
%***
%
% PLANT SINGULAR VALUES - xi to y
%
figure(6)
xi2yplant = ss(a,l,c,0*ones(2,4));
xi2yclsv = sigma(xi2yplant,w); % PLANT - xi to y
semilogx(w,20*log10(xi2yclsv))
title(’Plant: \xi to y’)
xlabel(’w (rad/sec)’)
ylabel(’singular values (dB)’)
h_line = findobj(gcf, ’type’, ’line’);
set(h_line, ’LineWidth’,2);
grid on

84

%
%***
%***
%
% PLANT TRANSFER FUNCTION MATRIX
%
zpk(plant) % Plant Transfer Function Matrix

%
%***
%***
%
% SINGULAR VALUES - u to ytilde (SHOULD BE VERY VERY SMALL!!!)
%
figure(30)
clsv = sigma(ss(acl,bcl,ccl,dcl),w); % u to ytilde
semilogx(w,20*log10(clsv))
title(’Nominal Frequency Response - Gravity to Estimation Error’)
xlabel(’w (rad/sec)’)
ylabel(’singular values (dB)’)
h_line = findobj(gcf, ’type’, ’line’);
set(h_line, ’LineWidth’,2);
grid on

%
%***
%***
%
% ERROR DYNAMICS (Assume zero means for process and sensor noises)
%
% xtildedot = (a - h*c) xtilde + l xi - h theta
% ytilde = c xtilde + theta

%
%***
%***
%
% KF LOOP
%
figure(32)
kfloop = ss(a, h, c, 0*ones(2,2)); % KF LOOP
kfloop_sv = sigma(kfloop,w);
semilogx(w,20*log10(kfloop_sv))
title(’KF Loop’)
xlabel(’\omega (rad/sec)’)
ylabel(’singular values (dB)’)
h_line = findobj(gcf, ’type’, ’line’);

85

set(h_line, ’LineWidth’,2);
grid on

zpk(kfloop) % Open Loop TFM for KFLOOP

%
figure(34)
kfloop = ss(a, h, c, 0*ones(2,2)); % KF LOOP
bode(kfloop,w)
title(’KF Loop’)
xlabel(’ω (rad/sec)’)
ylabel(’singular values (dB)’)
h_line = findobj(gcf, ’type’, ’line’);
set(h_line, ’LineWidth’,2);
grid on

%
%***
%***
%
% ALL MARGINS
%
allmargin(ss(a,h*[1 0]’,[1 0]*c,0*ones(1,1)))

%
%***
%***
%
% KF SENSITIVITY
%
figure(36)
kfsen = ss(a-h*c, h, -c, eye(2,2)); % KF SENSITIVITY
kfsen_sv = sigma(kfsen,w);
semilogx(w,20*log10(kfsen_sv))
title(’KF Sensitivity’)
xlabel(’\omega (rad/sec)’)
ylabel(’singular values (dB)’)
h_line = findobj(gcf, ’type’, ’line’);
set(h_line, ’LineWidth’,2);
grid on

%
%***
%***
%
% KF COMPLEMENTARY SENSITIVITY
%

86

figure(38)
kfcompsen_sv = sigma(kfcompsen,w);
semilogx(w,20*log10(kfcompsen_sv))
title(’KF Complementary Sensitivity’)
xlabel(’\omega (rad/sec)’)
ylabel(’singular values (dB)’)
h_line = findobj(gcf, ’type’, ’line’);
set(h_line, ’LineWidth’,2);
grid on

%
%***
%***
%
% KF COMPLEMENTARY SENSITIVITY
%
figure(40)
semilogx(w,20*log10(kfsen_sv), w,20*log10(kfcompsen_sv))
title(’KF Sensitivity and Complementary Sensitivity’)
xlabel(’ω (rad/sec)’)
ylabel(’singular values (dB)’)
h_line = findobj(gcf, ’type’, ’line’);
set(h_line, ’LineWidth’,2);
grid on

%
%***
%***
%
% SINGULAR VALUES - xi to ytilde (SHOULD BE VERY VERY SMALL!!!)
%
figure(42)
sysxi2ytilde = ss(acl, p, r, 0*ones(2,4)); % xi to ytilde
sysxi2ytilde_sv = sigma(sysxi2ytilde,w);
semilogx(w,20*log10(sysxi2ytilde_sv))
title(’$\xi \;\;\;\; to \;\;\;\; \tilde{y}$’,’Interpreter’,’latex’)
xlabel(’\omega (rad/sec)’)
ylabel(’singular values (dB)’)
h_line = findobj(gcf, ’type’, ’line’);
set(h_line, ’LineWidth’,2);
grid on

%
figure(44)
sysxi2ytilde1 = ss(a-h*c, l, c, 0*ones(2,4)); % xi to ytilde

87

sysxi2ytilde1_sv = sigma(sysxi2ytilde1,w);
semilogx(w,20*log10(sysxi2ytilde1_sv))
title(’$\xi \;\;\;\; to \;\;\;\; \tilde{y}$’,’Interpreter’,’latex’)
xlabel(’\omega (rad/sec)’)
ylabel(’singular values (dB)’)
h_line = findobj(gcf, ’type’, ’line’);
set(h_line, ’LineWidth’,2);
grid on

%
%***
%***
%
% SINGULAR VALUES - theta to ytilde (SHOULD BE VERY VERY SMALL!!!)
%
figure(50)
systheta2ytilde = ss(acl, q*s, r, s); % theta to ytilde
systheta2ytilde_sv = sigma(systheta2ytilde,w);
semilogx(w,20*log10(systheta2ytilde_sv))
title(’$\theta \;\;\;\; to \;\;\;\; \tilde{y}$’,’Interpreter’,’latex’)
xlabel(’\omega (rad/sec)’)
ylabel(’singular values (dB)’)
h_line = findobj(gcf, ’type’, ’line’);
set(h_line, ’LineWidth’,2);
grid on

figure(52)
systheta2ytilde1 = ss(a-h*c, -h, c, eye(2,2)); % theta to ytilde
systheta2ytilde1_sv = sigma(systheta2ytilde1,w);
semilogx(w,20*log10(systheta2ytilde1_sv))
title(’$\theta \;\;\;\; to \;\;\;\; \tilde{y}$’,’Interpreter’,’latex’)
xlabel(’\omega (rad/sec)’)
ylabel(’singular values (dB)’)
h_line = findobj(gcf, ’type’, ’line’);
set(h_line, ’LineWidth’,2);
grid on

% xi to y_hat (singular values)

a_sv=[a 0*eye(4,4);h*c a-h*c];
b_sv=[l;0*l];
c_sv=[0*c c];
d_sv=0*eye(2,4);

88

figure(60)
sysxi2y_hat=ss(a_sv,b_sv,c_sv,d_sv);
sysxi2y_hat_sv = sigma(sysxi2y_hat,w);
semilogx(w,20*log10(sysxi2y_hat_sv))
title(’$\xi \;\;\;\; to \;\;\;\; \hat{y}$’,’Interpre
xlabel(’\omega (rad/sec)’)
ylabel(’singular values (dB)’)
h_line = findobj(gcf, ’type’, ’line’);
set(h_line, ’LineWidth’,2);
grid on

%
%***
%***
%
% CRITICAL DATA
%
mu

zpk(plant) % Plant Transfer Function Matrix

Desired_KFBW % Choose mu to achieve this open loop KF BW

zpk(kfloop) % Open Loop TFM for KFLOOP

allmargin(ss(a,h*[1 0]’,[1 0]*c,0*ones(1,1)))

ans =

-6.9985
-6.9985
-1.0104
-1.0104
0
-0.0085
0
-0.0085

Pole Damping Frequency Time Constant
(rad/TimeUnit) (TimeUnit)

-7.00e+00 1.00e+00 7.00e+00 1.43e-01
-7.00e+00 1.00e+00 7.00e+00 1.43e-01
-1.01e+00 1.00e+00 1.01e+00 9.90e-01
-1.01e+00 1.00e+00 1.01e+00 9.90e-01
0.00e+00 -1.00e+00 0.00e+00 Inf

89

-8.47e-03 1.00e+00 8.47e-03 1.18e+02
0.00e+00 -1.00e+00 0.00e+00 Inf
-8.47e-03 1.00e+00 8.47e-03 1.18e+02

ans =

From input to output...
1: 0

-9.81
2: --------------
s (s+0.008475)

Continuous-time zero/pole/gain model.

ans =

From input 1 to output...
8.0004 (s+0.8839)
1: -----------------
s (s+0.008475)

-2.3553e-15 (s+0.325)
2: ---------------------
s (s+0.008475)

From input 2 to output...
-2.3553e-15 (s+7.474)
1: ---------------------
s (s+0.008475)

8.0004 (s+0.8839)
2: -----------------
s (s+0.008475)

Continuous-time zero/pole/gain model.

ans =

struct with fields:

GainMargin: [10 double]
GMFrequency: [10 double]
PhaseMargin: 83.7942
PMFrequency: 8.0496

90

DelayMargin: 0.1817
DMFrequency: 8.0496
Stable: 0

mu =

0.0200

ans =

From input to output...
1: 0

-9.81
2: --------------
s (s+0.008475)

Continuous-time zero/pole/gain model.

Desired_KFBW =

5

ans =

From input 1 to output...
8.0004 (s+0.8839)
1: -----------------
s (s+0.008475)

-2.3553e-15 (s+0.325)
2: ---------------------
s (s+0.008475)

From input 2 to output...
-2.3553e-15 (s+7.474)
1: ---------------------
s (s+0.008475)

8.0004 (s+0.8839)
2: -----------------
s (s+0.008475)

91

Continuous-time zero/pole/gain model.

ans =

struct with fields:

GainMargin: [10 double]
GMFrequency: [10 double]
PhaseMargin: 83.7942
PMFrequency: 8.0496
DelayMargin: 0.1817
DMFrequency: 8.0496
Stable: 0

92

	LIST OF FIGURES
	1
	1.1 Introduction and Motivation
	1.2 Literature Survey
	1.3 Contributions: Critical Questions to be addressed
	1.4 Outline of Thesis
	1.5 Summary and Conclusions

	2
	2.1 Introduction and Overview
	2.2 Parabolic Spherical Particle Trajectories: No Drag
	2.3 Spherical Particle Trajectories: Including Linear Drag
	2.4 Spherical Particle Trajectories: Including Quadratic Drag and Approximations
	2.5 Summary and Conclusions

	3
	3.1 Introduction and Overview
	3.2 Kalman Bucy Filtering (KBF)
	3.3 Extended Kalman Filter (EKF)
	3.4 Comparisons: KBF vs EKF
	3.5 Summary and Conclusions

	4
	4.1 Introduction and Overview
	4.2 Description of Hardware
	4.3 Description of Model
	4.4 Speed Control of the Ground Vehicle
	4.5 Summary and Conclusions

	5
	5.1 Introduction and Overview
	5.2 Interception Control Laws
	5.3 Robot Intercepting Ball: Simulation Results
	5.4 Stability Proof
	5.5 Summary and Conclusions

	6
	6.1 Summary of Work
	6.2 Directions for Future Research
	REFERENCES
	A

