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ABSTRACT

Two urban flows are analyzed, one concerned with pollutant transport in a Phoenix,

Arizona neighborhood and the other with windshear detection at the Hong Kong

International Airport (HKIA).

Lagrangian measures, identified with finite-time Lyapunov exponents, are first

used to characterize transport patterns of inertial pollutant particles. Motivated by

actual events the focus is on flows in realistic urban geometry. Both deterministic and

stochastic transport patterns are identified, as inertial Lagrangian coherent structures.

For the deterministic case, the organizing structures are well defined and are extracted

at different hours of a day to reveal the variability of coherent patterns. For the

stochastic case, a random displacement model for fluid particles is formulated, and

used to derive the governing equations for inertial particles to examine the change in

organizing structures due to “zeroth-order” random noise. It is found that, (1) the

Langevin equation for inertial particles can be reduced to a random displacement

model; (2) using random noise based on inhomogeneous turbulence, whose diffusivity

is derived from k-ε models, major coherent structures survive to organize local flow

patterns and weaker structures are smoothed out due to random motion.

A study of three-dimensional Lagrangian coherent structures (LCS) near HKIA

is then presented and related to previous developments of two-dimensional (2D)

LCS analyses in detecting windshear experienced by landing aircraft. The LCS

are contrasted among three independent models and against 2D coherent Doppler

light detection and ranging (LIDAR) data. Addition of the velocity information

perpendicular to the lidar scanning cone helps solidify flow structures inferred from

previous studies; contrast among models reveals the intramodel variability; and

comparison with flight data evaluates the performance among models in terms of
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Lagrangian analyses. It is found that, while the three models and the LIDAR do

recover similar features of the windshear experienced by a landing aircraft (along

the landing trajectory), their Lagrangian signatures over the entire domain are quite

different - a portion of each numerical model captures certain features resembling

those LCS extracted from independent 2D LIDAR analyses based on observations.

Overall, it was found that the Weather Research and Forecast (WRF) model provides

the best agreement with the LIDAR data.

Finally, the three-dimensional variational (3DVAR) data assimilation scheme in

WRF is used to incorporate the LIDAR line of sight velocity observations into the

WRF model forecast at HKIA. Using two different days as test cases, it is found that

the LIDAR data can be successfully and consistently assimilated into WRF. Using

the updated model forecast LCS are extracted along the LIDAR scanning cone and

compare to onboard flight data. It is found that the LCS generated from the updated

WRF forecasts are generally better correlated with the windshear experienced by

landing aircraft as compared to the LIDAR extracted LCS alone, which suggests that

such a data assimilation scheme could be used for the prediction of windshear events.
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Chapter 1

INTRODUCTION

Dynamical systems ideas provide a framework to understand the qualitative

behavior of solutions of ordinary differential equations by identifying distinguished

regions in the phase space, called manifolds, that serve to organize the evolution and

behavior of solutions to the system. In the particular case where the vector field of

interest is the velocity field of a fluid, the solutions are passive particle trajectories

and the phase space is the actual physical space the fluid occupies. Hence, regions

in the flow that organize the actual physical movement of the fluid are identified. A

fundamental issue in trying to apply these ideas directly, however, is the fact that

in applications the flow is usually only known over a finite time and domain, and so

most dynamical systems ideas cannot be directly applied, as many of the key ideas

depend on the asymptotic limit as time approaches infinity.

Hence an entirely new framework, motivated by, but apart from, classical dynamical

systems has been developed and has become a very active area of research. These

ideas are collectively and generically known as Lagrangian techniques or approaches,

since in fluid mechanics the frame following fluid particles is known as the Lagrangian

frame. This is in contrast to the Eulerian point of view, which analyzes the flow

at fixed points in space. It is claimed, and sometimes has been established, that

Lagrangian methods can be more accurate and insightful in certain cases than their

Eulerian counterparts, since Lagrangian measures depend on the actual motion of

fluid particles, rather than the inferred motion from Eulerian measures. Since many

Lagrangian methods are newly developed, it is natural to compare to the more well
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established and used Eulerian methods. As computing power has increased, and as

the ideas have matured, Lagrangian techniques are starting to become more common.

The main idea of conceptual interest is that of the so called Lagrangian Coherent

Structure (LCS), which are material curves or surfaces that separate regions in the

flow that behave qualitatively different, over some period of time. In other words,

LCS are the finite analog and generalization of manifolds seen in dynamical systems.

The precise definition of, and best way to find, the LCS in a given flow is a problem

that hasn’t been completely settled yet; many methods have been proposed. In this

work, we use the Finite Time Lyapunov Exponent (FTLE), which will be defined

later, to find and identify LCS since we are concerned with the boundaries of regions

that are responsible for pollutant transport and flight discomfort.

Our central thesis is this: we apply the LCS framework to understand flow and

transport in high leverage situations involving potential impact to human health,

safety, and activity. There is a dual purpose to this. First, we further the development

of Lagrangian analysis with the application of the techniques. Secondly, Lagrangian

analysis brings new perspectives to understand flow. We do this in two different

geographical areas: an urban neighborhood in Phoenix, Arizona and the Hong Kong

International Airport (HKIA).

In the first case, we study the geometry of pollutant particle transport in the

Hermoso Park region of Phoenix. Since pollutants have mass and volume they behave

dynamically differently than idealized fluid particles. Assuming a spherical shape, these

inertial particle dynamics can be modeled using the Maxey-Riley equations (Maxey

and Riley 1983). We study the transport of such particles in both deterministic and

stochastic settings in Chapter 2, which is based on work found in (Tang et al. 2012).

Chapters 3 and 4 concern windshear detection for landing aircraft at HKIA. Due
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to the close proximity of the airport to Lantau island terrain induced turbulence can

cause issues with landing aircraft. In (Tang, Chan, and Haller 2011a, 2011b) an LCS

based analysis was introduced, using line of site velocity data measured by LIDAR at

HKIA to detect windshear events along the landing corridor. Analyzing a multitude

of cases across different seasons, (Kafiabad, Chan, and Haller 2013) found that the

developed LCS framework was comparable and competitive with the operational

methods currently implemented at HKIA, which is noteworthy due to the fact that

the operational scheme uses data from a multitude of different sources, whereas

the Lagrangian detection scheme uses only LIDAR data. Furthermore, the LIDAR

data is only given on a two-dimensional scanning cone, and so provides only partial

information about air velocity. In Chapter 3, based on (Knutson, Tang, and Chan

2015), three-dimensional numerical models are used to validate such an approach. It

was found that the Weather Research and Forecasting (WRF) model provided the

best agreement with LIDAR data. In Chapter 4 we implement data assimilation of

the LIDAR data into the WRF model, and explore how LCS windshear detection

could possibly be improved.

1.1 Mathematical Background

In this section we introduce the basics of the finite time Lyapunov exponent.

Suppose that v(x, t) is the velocity field of a fluid, defined on the time interval

[t1, t2]. Let x(t;x0, t0) denote the position of a fluid particle at time t that was

originally at the point x0 at time t0, and note that we thus have

x′(t;x0, t0) = v(x(t;x0, t0), t), (1.1)
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where t ∈ [t1, t2] so the above equation is defined and ′ denotes differentiation with

respect to t.

Define now the flow map, F t0+T
t0

, by

F t0+T
t0

(x0) ≡ x(t0 + T ;x0, t0). (1.2)

The flow map moves the fluid particle found at location x0 at time t0 forward

to its position at the time t0 + T . By results from dynamical systems theory, if

we assume that v is at least C1 then F t0+T
t0

will be a diffeomorphism with inverse(
F t0+T
t0

)−1
= F t0

t0+T
. Since both F t0+T

t0
and F t0

t0+T
are smooth, we can apply the chain

rule to F t0+T
t0

(
F t0
t0+T

(x)
)

= x to see that ∇F t0+T
t0

, the derivative of F t0+T
t0

, is an

invertible matrix and that

(
∇F t0+T

t0
(x0)

)−1
= ∇F t0

t0+T

(
F t0+T
t0

(x0)
)
. (1.3)

Since F t0+T
t0

is differentiable, we have that

F t0+T
t0

(x0 + h)− F t0+T
t0

(x0) = ∇F t0+T
t0

(x0)h + o(|h|). (1.4)

Using the above we can see how small perturbations are advected by the flow.

Letting ∗ denote the transpose of a matrix, the square magnitude of the displacement

is, to leading order,

∣∣F t0+T
t0

(x0 + h)− F t0+T
t0

(x0)
∣∣2 =

〈
F t0+T
t0

(x0 + h)− F t0+T
t0

(x0),F
t0+T
t0

(x0 + h)− F t0+T
t0

(x0)
〉

≈
〈
∇F t0+T

t0
(x0)h,∇F t0+T

t0
(x0)h

〉
=
〈
h,
(
∇F t0+T

t0
(x0)h

)∗∇F t0+T
t0

(x0)h
〉
.

(1.5)

The symmetric tensor
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Ct0+T
t0 (x0) ≡

(
∇F t0+T

t0
(x0)h

)∗∇F t0+T
t0

(x0) (1.6)

is known as the (forward) Cauchy-Green strain tensor. Since it is symmetric,

all its eigenvalues must be real. Furthermore, since both ∇F t0+T
t0

and ∇F t0+T
t0

are

invertible so too is Ct0+T
t0 , hence all its eigenvalues must be non-zero. Finally, since

the map ∇F t0+T
t0

is invertible, for any non-zero x we must have ∇F t0+T
t0

(x) 6= 0, so〈
∇F t0+T

t0
(x),∇F t0+T

t0
(x)
〉
> 0, and so Ct0+T

t0 is positive definite, and therefore all its

eigenvalues must be strictly greater than zero. We label and order the eigenvalues as

0 < λ1(x0) ≤ · · · ≤ λn(x0). (1.7)

In our applications, n is either 2 or 3, namely, we are analyzing two or three-

dimensional flows.

The finite time Lyapunov exponent (FTLE) is defined as

FTLEt0+T
t0

(x0) =
1

2|T |
ln (λn(x0)) . (1.8)

The above work shows that the largest possible growth rate a perturbation can

have is given by
√
λn(x0), which occurs when the perturbation is aligned the the

associated eigenvector of λn(x0).

Note that the FTLE gives an upper bound on the growth rate of a perturbation,

but it does not tell us what type of perturbation results; in other words, relative to a

curve or surface, the FTLE does not distinguish between tangential or normal growth.

There has been much work done to improve this, see for instance (Tang, Chan, and

Haller 2011a; George Haller 2010; Haller and Beron-Vera 2012; George Haller 2013;

Blazevski and Haller 2014; Mancho et al. 2013). A very good comparison between

these approaches is given in (Hadjighasem et al. 2017). While this is a weakness of
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the FTLE in identifying LCS, it is still the case that the FTLE provides, at least to

this date, a strong combination of ease of computation and identification power of

LCS, and is thus the method we use here to extract LCS.
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Chapter 2

THE GEOMETRY OF INERTIAL PARTICLE MIXING IN URBAN FLOWS,

FROM DETERMINISTIC AND RANDOM DISPLACEMENT MODELS

In our first study we examine pollutant transport in an urban neighborhood. We

first analyze the deterministic case, and then examine how random noise affects

transportation patterns. The work here is adapted from (Tang et al. 2012):

Published in: Physics of Fluids

Wenbo Tang, Brent Knutson, Alex Mahalov, and Reneta Dimitrova (2012)

We use Lagrangian measures, depicted by finite-time Lyapunov exponents, to

characterize transport patterns of inertial pollutant particles formed in urban flows.

Motivated by actual events we focus on flows in realistic urban geometry. Both deter-

ministic and stochastic transport patterns have been identified, as inertial Lagrangian

coherent structures. For the deterministic case, the organizing structures are well

defined and we extract them at different hours of a day to reveal the variability of

coherent patterns. For the stochastic case, we use a random displacement model for

fluid particles and derive the governing equations for inertial particles to examine the

change in organizing structures due to “zeroth-order” random noise. We find that, (1)

the Langevin equation for inertial particles can be reduced to a random displacement

model; (2) using random noise based on inhomogeneous turbulence, whose diffusivity

is derived from k-ε models, major coherent structures survive to organize local flow

patterns and weaker structures are smoothed out due to random motion.
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2.1 Introduction

In recent decades, the fast growth of urban areas and heterogeneous use of land

surfaces have generated great interest for scientists, engineers, and urban planners in

understanding the physical processes associated with urban climates (Arnfield 2003;

Britter and Hanna 2003; Fernando 2010; Fernando et al. 2010). In this problem,

local physical processes are interconnected with synoptic and regional scale features

(flow, terrain, etc.), providing neighborhood and street scales that are important for

humans (Britter and Hanna 2003; Fernando et al. 2010). Fluid dynamical research

focusing on urban environments provide valuable information in two directions. On

the one hand, in the upscale direction, land use in urban and suburban areas creates

inhomogeneity in the dynamical and thermal properties at the bottom boundary

layer of the atmosphere, which in turn modifies regional and synoptic flows (Avissar

and Pielke 1989; Kalnay and Cai 2003). Additionally, land surface characterization

provides valuable information on pollutant sources for their long range dispersal

(Civerolo et al. 2000). On the other hand, in the downscale direction, details of street

architecture affects local wind and turbulence patterns driven by large, synoptic scale

flows (Kastner-Klein, Berkowicz, and Britter 2004). Pollutants that affect human

health, such as carbon monoxide, ozone, particulate matters (PM), and harmful

materials, are highly variable within street-neighborhood scale flows (Fernando et

al. 2010). Characterizing transport patterns based on resolved urban flows is thus

imperative for improvements on city planning and the quality of human lives. In this

chapter, we extract such patterns for both deterministic and stochastic flows in a real

urban dispersion model.

In conventional studies of urban fluid dynamics, the focus is on the fluid motion and
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dispersion in idealized urban street canyons or for flow past isolated /regularly spaced

buildings (Sini, Anquetin, and Mestayer 1996; Kim and Baik 2001, 2004; Belcher

2005). While the studies on these models provide fundamental understandings of the

phenomenology for urban flows, and are useful in a parameterization to represent land

surface uses in regional-global scale models, they offer limited information in evaluating

the effects of pollutant dispersion at human related scales. For operational use of

urban climate forecast and warning issuances, an exact representation of the urban

geometry should be considered. To emphasize our point, we note the Hermoso Park

dispersion study (HPS) mandated by the state of Arizona to address policy-related

questions on the well beings of residents in a legislative district in southeast Phoenix.

It is claimed that the heightened respiratory illnesses in the area are related to high

levels of pollutant concentrations (Fernando et al. 2010). With real applications on

air quality in mind, we focus our study on extracting pollutant patterns in the HP

area, driven by wind and thermal forcing measured from a meteorological tower inside

the area of interest.

Pollutant particles have finite-size and dynamically the behave differently than

idealized fluid particles. In the case of rigid spheres, motions of finite-size particles are

captured by the Maxey-Riley equations (Maxey and Riley 1983; Auton, Hunt, and

Prud’Homme 1988). Among atmospheric pollutants, the most common particles are

particulate matters, characterized by their aerodynamic diameters. In particular, PM

of diameter less that 10 µm (PM10, mainly combustion particles) and 2.5 µm (PM2.5,

mainly organic compounds and sulfates) are of major concern due to their prevalence

in the environment. For particles with small diameters (such as PM), simplifications

to the Maxey-Riley equations can be made to approximate particle motions (Maxey

1987; Druzhinin 1995; Babiano et al. 2000; Ferry and Balachandar 2001; Mograbi and
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Bar-ziv 2006; Haller and Sapsis 2008). Our study is based on the simplified set of

equations, discussed in detail later.

As pointed out in Belcher (Belcher 2005), strong dispersion of contaminant parcels

of air are induced by dividing streamlines that enhance topological dispersion. Clearly,

identification of the topology of inertial particle flows will be a useful tool to locate

regions of high dispersion, as well as regions of strong accumulation. In this vein,

we use inertial Lagrangian coherent structures (ILCS), first described in (Sapsis and

Haller 2009), to characterize inertial particle motion in the HP area. The ILCS are

analogous to LCS for idealized fluid particles, sans the difference in the inertial effects

on motions. We favor a Lagrangian approach, as they provide objective description

of the flow topology (G. Haller 2001, 2005). As a comparison, Eulerian criteria are

based on instantaneous velocity fields or their gradient invariants, which are frame

dependent (Okubo 1970; Chong, Perry, and Cantwell 1990; Weiss 1991; Jeong and

Hussain 1995). In the first half of our results, we use this methodology to examine the

organizing patterns of PM with different diameters. Using output of street-scale wind

models at different times of the day, we find the temporal variations of the organizing

patterns in deterministic flows.

For previous work on ILCS, little is known on the effects of random noise on the

coherent structures. The objective of obtaining stochastic ILCS is to find the most

probable mixing patterns in realistic environment. In the latter half of our results,

we consider an inhomogeneous random displacement mode (RDM) extension of the

Maxey-Riley equations, whose randomness is based on parameterized diffusivity from

resolved flow fields. We obtain stochastic ILCS for PM10 and PM2.5. Their relation

with the deterministic ILCS will be discussed. We are only aware of two studies

on stochastic LCS for idealized fluid flows, (Olcay, Pottebaum, and Krueger 2010;
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Tang, Taylor, and Mahalov 2010), neither of which considered inhomogeneous noise

for inertial particles.

The rest of this chapter is organized as follows. In section 2.2, we discuss the simpli-

fied version of the Maxey-Riley equations and the corresponding random displacement

extension. Using an approach in (Rodean 1996), we find that the stochastic term

acts directly on the inertial equations. In section 2.3, we discuss the street-scale wind

model from which we obtain background wind data and parameterized turbulence as

inputs to our analyses. We also discuss numerical schemes for our analyses, as well

as the computation of finite-time Lyapunov exponents (FTLE). In section 2.4, we

present results for both deterministic and stochastic ILCS associated with our flow.

Lastly, in section 2.5 we summarize our findings and discuss future directions.

2.2 Mathematical Formulation

2.2.1 The governing equations

To formulate the mathematical problem, we make the following physical assump-

tions. (1) Inertial particles are carried by background fluid particles, which conduct

random position processes in inhomogeneous turbulence (i.e. , the positions for the

fluid particles are governed by a RDM); (2) the random background fluid velocity

affects inertial particle dynamics through viscous drag; (3) the body force term expe-

rienced by an inertial particle is modeled by a deterministic force due to Lagrangian

change in velocity of a fluid particle in its position plus random noise due to random-

ness in fluid velocity; (4) the random excitation of inertial particle velocity due to

Brownian motion is negligible as compared to randomness induced by background
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eddies. Following (Rodean 1996), the RDM for background fluid particle displacement

is

uf = u + udr + σẆ a, (2.1)

where uf is the random fluid particle velocity, u a deterministic fluid velocity

resolved by models or measurements, udr = ∂K(x)∂/x a deterministic drift velocity

due to turbulence inhomogeneity, and σẆ a a vector Wiener process with standard

deviation σ(x, t) =
√

2K, dependent on local diffusivity K(x, t). As discussed in

(Rodean 1996), the drift term udr is derived exactly from a consistency condition

based on the Fokker-Planck equation to enforce a well-mixed condition when random

noise is inhomogeneous- see (Thomson 1987), and it is independent from the random

noise term σẆ a. We explain the validity of RDM for background fluid in later texts.

Consider typical urban flow length scales of order 1-10 meters, the size of PM is

very small, where we can safely neglect the Faxen correction term (Benczik, Toroczkai,

and Tel 2002). We also follow prior studies to neglect the Basset history force term

(Maxey 1987; Mograbi and Bar-ziv 2006; Haller and Sapsis 2008). Justifications for

removal of the history force term for small particles have been provided in (Sapsis

et al. 2011). In this asymptotic limit, the model for the motion of a single spherical

particle is the following:

ẋ = v

v − 3R

2

[
D(u + udr)

Dt
+ ηẆ b

]
= −1

ε
(v − uf ) +

(
1− 3R

2

)
g,

(2.2)

where g is the vector of gravity, u,udr and uf are from the ambient fluid velocity

equation 2.1, ηẆ b is another vector Wiener process with standard deviation η and

independent from σẆ a, and
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R ≡ 2ρf
ρf + 2ρp

, St ≡ 2

9

( a
L

)2
Ref , ε ≡ St

R
. (2.3)

Here, ρf and ρp are the densities of the fluid and particle, respectively; R is the

density ration distinguishing neutrally buoyant particles (R = 2/3) from aerosols

(0 < R < 2/3) and bubbles (2/3 < R < 2); a is the radius of the spherical particle; L is

a characteristic length scale of the flow; the fluid Reynolds number is Ref = UL/ν, with

typical large scale velocity scale U and fluid viscosity ν; time is non-dimensionalized

with the characteristic time scale L/U . The first term in the square bracket of equation

2.2 is the body force experienced by a fluid particle due to deterministic background

fluid particle motion, and the second term the standard deviation η characterizes

fluid velocity variance (hence the entire square bracket describes stochastic body force

experienced by a fluid particle in position of the inertial particle). These two terms,

together with the factor 3R/2, gives the body force experience by an inertial particle.

The first term of the right hand side of this equation is the viscous drag term, where

uf is random. The second term on the right hand side is a buoyancy term. Note that,

we do not use Duf/Dt for the body force term since σẆ a is not differentiable.

In the deterministic case where σ = η = 0 and udr = 0, provided that the velocity

deformation is not too strong with respect to the parameter ε (Sapsis and Haller

2008; Tang et al. 2009), there exists a slow manifold Mε that attracts dynamics in

the phase space (Haller and Sapsis 2008). The inertial equations resolve a problem

on backward-tracking of trajectories due to a reverse-time numerical instability, the

deterministic ILCS is then extracted based on the slow dynamics (Sapsis and Haller

2009).

For the stochastic case, we rearrange the equation for v and write in terms of the

velocity fluctuation vf = v − u− udr as
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dvf = −vf
ε

dt+

(
3R

2
− 1

)
[D (u + udr)− gdt] +

σ

ε
dW a +

3R

2
ηdW b. (2.4)

Notice that 2.4 is also a Langevin equation, with the Lagrangian decorrelation

time scale ε, drift terms due to body force and buoyancy, and two random terms

due to stochastic drag and body force. Based on 3D results in (Rodean 1996),

the fluid velocity standard deviation ηi = biu
? and the position standard deviation

σi = 2b2iu
?/(C0ε)

1/2, both are order one quantities as far as the size parameter ε is

concerned. Here, C0 = 5.7 is a semianalytical constant, bi an empirical constant in

the ith direction, i = 1, 2, 3, ε = u?3/kl the local energy dissipation rate estimated

by the crude first-order closure, u? the dimensionless friction velocity, k = 0.4 the

von Karman constant, and l a local dimensionless length scale. We further simplify

this expression by arguing that the first stochastic term is dominant in the regime of

interest (small-size aerosols, St� 1, hence 1/ε ≡ R/St� R), thus we drop the last

term in 2.4. We discuss choices of bi, u?, and l in section 2.3.2.

Our equation 2.1 differs from typical Lagrangian stochastic models (LSM) (Rodean

1996; Wilson and Sawford 1996) that consider Langevin equations for fluid velocities.

The problem we consider is inhomogeneous, which in the LSM approach would require

many terms to deal with correlated random noise. The simplicity in uf allows us

to focus on the Langevin equation for ~vf . In general, LSM is more appropriate that

RDM. RDM is applicable in the “far field” regime, when the time scale is much greater

than the Lagrangian decorrelation scale of a fluid velocity and when the random

noise is Gaussian (Rodean 1996). We are not particularly interested in reproducing

a dispersion cloud for specialized release events. Instead, we explore answers to the

following questions: (1) What is the most likely trajectory that an inertial particle

would take in a stochastic environment? (2) What organizing structure can we obtain
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from these most tenable trajectories, so we obtain an overview of regions that are

more vulnerable to pollutant dispersions? We also assume Gaussian statistics for

the random noise. Under these conditions we are in a regime where RDM equation

2.1 is valid. In this vein, we also study simplified version for equation 2.2. In the

long-time limit, this equation should reduce to the diffusion limit, governed by a RDM

(Thomson 1987; Rodean 1996), to be derived later.

We also consider stochastic back trajectories for structure extraction, with reasons

give later in this section. Following earlier work on backward-time LSM, (Flesch,

Wilson, and Yee 1995), we find that the consistency condition merely requires the

reflection of the velocity u + udr. It is noted that (Thomson 1987; Flesch, Wilson,

and Yee 1995) for turbulence in an incompressible flow, the probability density for

forward-time models and backward-time models are equivalent. In addition, since the

forward model and the “reversed” backward model are identical, Smith’s (Smith 1957)

reciprocal theorem also applies. This implies that we can simply run the backward-

time RDM model to obtain the statistics on the composition of particles observed at

a point x at a time t.

2.2.2 Reduction of Langevin equation to random displacement model

We reparameterize equation 2.4 in time such that ε = αT , where α → 0 and T

is order one, a time scale felt for the long-term stochastic trajectories. Applying the

methodology discussed in (Rodean 1996), we integrate equation 2.4 in time to obtain

α[vf ]
t
0 =

∫ t

0

{
−vf
T

dt+ α

(
3R

2
− 1

)
[D(u + udr)− gdt] +

σ

T
dW a

}
(2.5)

In the α → 0 limit, the leading order balance in the above equation is between
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the first and third term on the right-hand side. If we further assume that on average

the velocity fluctuation jump [vf ]t0 as well as the two drift forces in the integrand are

order one, over time the second term on the right-hand side supersedes the left-hand

side and can be considered as a first order correction, thus

∫ t

0

vf
T

dt =

∫ t

0

α

(
3R

2
− 1

)
[D(u + udr)− gdt] +

σ

T
dW a (2.6)

Noting that vf = dxf/dt, where xf is the position process for the fluctuations,

the left hand side can be expressed as

∫ t

0

xf
T

dt =

∫ t

0

α

(
3R

2
− 1

)
[D(u + udr)− gdt] +

σ

T
dW a (2.7)

Differentiating with respect to t and multiplying by T and converting vf back to

v we obtain the RDM for the inertial particle displacement,

dx

dt
= u + udr + ε

(
3R

2
− 1

)[
D(u + udr)

Dt
− g

]
+ σẆ a. (2.8)

This expression converges towards an inertial equation for the slow dynamics

dx

dt
= u + ε

(
3R

2
− 1

)[
Du

Dt
− g

]
(2.9)

in the deterministic limit, first derived in (Haller and Sapsis 2008) using singular

expansion. The random position process consists of the slow manifold velocity, a

deterministic drift term due to inhomogeneous turbulence, and a random walk term

from the RDM for background fluid particles. Note that we cannot directly use the

singular perturbation approach here since Ẇ a is not differentiable.
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2.2.3 Inertial Lagrangian coherent structures

LCS are distinguished material lines/surfaces that attract/repel local trajectories

at the maximal rates (G. Haller 2000; Haller and Yuan 2000). Recently, it has become

popular that FTLE be used to extract LCS. Basing on local dynamics of trajectories,

FTLE offers an objective description of how nearby trajectories stretch with the

background flow. As a result, local material lines that repel nearby trajectories the

most is identified. Reciprocally, attractors are found as local maximizers of FTLE

when trajectories are integrated in backward-time. In the first development of the

theory, FTLE fields do not distinguish large stretching from shear (G. Haller 2001).

This difficulty has been resolved in a recent development based on a variational theory

(G. Haller 2011).

The LCS methodology was first extended to study inertial particle mixing in

(Sapsis and Haller 2009), where they studied the mixing topology for inertial particles

inside hurricane Isabelle. Using the singular perturbation (Haller and Sapsis 2008), the

authors overcome the numerical instability of source inversion for finite-size particles.

As a result, both forward-time and backward-time trajectories are computed based on

the slow manifold dynamics, and coherent structures are extracted. ILCS has also

been used to identify prey dynamics in jellyfish feeding (Sapsis, Peng, and Haller 2011),

where the authors locate regions near a jellyfish that prey cannot escape predation.

In our context, we extract ILCS that organize pollutant particle dynamics. We

use the inertial equation approach, since in forward-time we only deal with three-

dimensional physical space instead of the full six-dimensional phase space, and in

backward-time this is the only way to obtain back-trajectories correctly. We obtain

the entire inertial particle mixing geometry for both deterministic and stochastic
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environments. The deterministic case is a direct extension from our previous work

(Tang et al. 2009), yet the stochastic case has not been considered before. The

more general LSM formulations for inertial particle involves extra modeling, such as a

modified Lagrangian decorrelation time, which is not a direct result of the Maxey-Riley

equations (Csanady 1963; Sawford and Guest 1991). Using Maxey-Riley equation

directly in backward-time, as demonstrated in (Haller and Sapsis 2008), results in

numerical instability even for deterministic trajectories.

We address the stochastic ILCS in the following approach. With the use of RDM,

we estimate the probability that a trajectory evolves in an environment with turbulent

eddies. In forward-time, the concept is straightforward: we find the most likely

trajectory that an inertial particle starting from x0, t0 would end up, after some

integration time T (expectation of x). The most likely repelling structures is thus

ILCS based on the mean trajectories. In backward-time, we find stochastic trajectories,

again starting from x0, t0. Expectation of the random trajectories show the most

likely starting point for the particle occupying x0 at t0. As mentioned earlier, this

interpretation of probability is valid because of the forward-backward probability

equivalence and the validity of reciprocal theorem with RDM. Attracting ILCS are

then obtained, again from the mean trajectories.

2.3 Numerical Details

2.3.1 Urban wind model

We use the quick urban and industrial complex (QUIC) model developed at

the Los Alamos National Laboratory to resolve street-scale urban flows at HP. The
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numerical model consists of a wind model, QUIC-URB, and an inhomogeneous LSM

dispersion model, QUIC-PLUME. For reasons mentioned in section 1.1, since we

study the inertial dynamics based on RDM and the slow manifold, we did not use

QUIC-PLUME. QUIC-URB is based on the Rockle approach (Rockle 1990), in which

a mass-consistent diagnostic wind model computes the 3D flow fields around buildings.

An initial wind field is prescribed based on an incident flow, and superimposed on this

are various time-averaged flow effects of buildings. The QUIC-URB utilizes empirical

algorithms for determining initial wind fields on the roots, in upstream recirculation

zones, in the downwind cavity and wake of a single building, and in street canyons

between buildings. A mass-consistent wind field is produced similar to traditional

diagnostic wind models, but special treatment of boundary conditions is needed at

the building walls (Pardyjak and Brown 2001; B.Singh et al. 2008).

The QUIC simulations were initiated from data collected during the HP study

campaign conducted in early 2009. A 10 m meteorological tower inside the study

area was instrumented with two sonic anemometers for flow, turbulence, and flux

measurements and radiometers for incoming, outgoing, and net solar radiation. For

more details of the field measurements and the model domain, the readers are referred

to discussions and Fig. 13 in (Fernando et al. 2010).

Based on the data input, the simulations were performed on two domains: an outer

domain that covered the entire HP area and an inner domain around the meteorological

tower. The computation area was 4900 × 4220 × 280 m3, with 20 m horizontal and 4

m vertical resolution for the outer domain, and a 1200 × 1050 × 140 m3 area with

5 m horizontal and 2 m vertical resolution for the inner domain. Trees and vehicles

were excluded and the terrain was considered flat, which is a good approximation.
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2.3.2 Details of deterministic and random displacement model

The QUIC-URB outputs are dimensional variables. We use a typical length scale

of a building inside the HP area, L = 45 m, and an appropriate velocity scale at

the particular time, say, U = 1(3) m/s for 6 a.m. (6 p.m.) to non-dimensionalize

our problem. The Lagrangian integration time is 40 time units. Henceforth, the

dimensional integration time is 30 (10) min for the two cases. We examine dynamics

for both PM10 and PM2.5. Since the fluid velocity scale varies, the parameter ε changes

at different times. For example, consider PM2.5 density to be 1000 times of air, then

at 6 a.m. ε2.5 = 7.7199× 10−7, ε10 = 1.2352× 10−5, and at 6 p.m., ε2.5 = 2.316× 10−6,

ε10 = 3.706× 10−5.

We have two different datasets from QUIC-URB. On January 16, 2009, one-hour

averages of observational measurements were available at every hour of the day, hence

allowing the study of variability of structures over time. We used velocity interpolation

between two frames of data to extract ILCS based on this slowly varying unsteady

flow. On February 15, 2009, one-minute averages of observational measurements were

available in the morning, hence the background flow reflects better reality. We study

stochastic ILCS with this dataset.

For the deterministic case, we focus on two representative hours from the data:

6 a.m., and 6 p.m. The 6 a.m. and 6 p.m. cases represent flows during the rush

hours, where emission from the streets are likely to be high and they may quickly

align with ILCS. In order to obtain high resolution results on ILCS, we use a grid

size of 0.25 m over the entire inner domain to generate deterministic trajectories. The

Lagrangian integration code is parallelized and ran on a 14 node cluster with 224

central processing units to achieve such high resolution. Trajectories are computed
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using the fourth order Runga-Kutta methods from the inertial equation. Repelling

(attracting) ILCS are computed from the forward-time (backward-time) integrations.

For the stochastic case, we need to compute K. We only consider a diagonal diffu-

sion tensor, where dimensionless Ki = 2b4i ku
?l/C0. We use parameters implemented

in QUIC-PLUME (Pardyjak and Brown 2001), where in the horizontal direction,

b1 = b2 = 2 and in the vertical direction b3 = 1.3. This anisotrophy reflects a vertical

density stratification. The friction velocity ustar = (k∆z/U)∂|uh|/∂z is based on ver-

tical wind shear, and ∆z is the smallest distance of the particle to a wall/ground/roof.

l is a local length scale, taken to be the smaller of z+ z0 or leddy, where z is the height

from the ground/roof, z0 is the roughness length taken to be 1 m in dimensional units

(Fernando et al. 2010), and leddy = ku/|du/dz| (Williams et al. 2004).

We use 1000 realizations for each initial condition x0. To accommodate the size of

stochastic simulations, we reduce the resolution of initial conditions to 5 × 5 × 2 m,

and only focus on smaller regions of interest. The inertial equations are computed

based on explicit Euler methods with Gaussian white noise. For comparison, we also

examine for a sample initial condition, the full Maxey-Riley equations and their inertial

equations. We use implicit Euler for the deterministic parts of the full Maxey-Riley

equations, explicit random noise is added in the end of the time step.

In our formulations, no-slip boundary conditions are considered. This is because

when particles approach the boundary, their background velocity approaches zero. As

a result, particles fall to the ground due to the gravity term if the boundary condition

is set to be reflective. Since there is no reason that a pollutant particle cannot stick

to rough building surfaces, and the no-slip boundary condition preserves the vertical

structure when particles hit the wall, we prefer using the no-slip boundary condition.

One concern of the no-slip boundary condition is that the setup makes the random
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term near the wall not really Gaussian. In our RDM formulation, eddy diffusivity is

based on the nearest ground or wall, hence diffusion is very limited for trajectories

near buildings, and this near-wall non-Gaussianity does not affect major dynamics in

the interior of the domain. A further concern is that, for an initial condition near the

wall, if there is equal probability for the particle to stick to the wall or disperse away

from the wall, the expectation can be nowhere near any of the high probability regions.

However, consider two nearby particles, the realizations for one of them completely hit

the wall, and the realizations for the other completely disperse away, the separation

measured between the averaged trajectories for these particles are still large and the

ILCS should still be highlighted, so we should be safe as far as ILCS are concerned.

For RDM formulation, (Wilson and Yee 2007) pointed out that a constraint on

the time stepping size is needed. Following their paper, for our inhomogeneous eddy

parameterization in 3D, we require a constraint on the time steeping of the RDM

√
2K∆t

1

K

∣∣∣∣∂Ki

∂xi

∣∣∣∣� 1, (2.10)

where | · | denotes the norm of the argument vector.

Finally, we use a linear extrapolation technique developed in (Tang, Chan, and

Haller 2010) to deal with trajectories leaving the outer domain. The extrapolation is

done in 2D horizontal surfaces. This is because with a no-slip boundary condition at

Z = 0 and incompressibility, 3D extrapolation would leave the flow motionless. Since

the resolved flow on the outer domain is almost two-dimensional and unidirectional

(Fernando et al. 2010) due to the small size of buildings in nearby districts, it is not

unreasonable to implement just the 2D extrapolation at every height. Between the

inner and outer, and outer and extrapolated domains, we use a filter to smoothly

transition velocity data, to avoid the development of spurious structures.
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Note that in the initial study, (Fernando et al. 2010), density for pollutant particles

is reported for two different times of the day. Their result is specific to a particular

emission characteristics, which is not the main goal of our study. We focus on obtaining

the flow topology, which is an overall evaluation of the patterns inside the domain

of interest. High pollutant densities are expected to accumulate along attracting

structures and high dispersion to associate with repelling structures of ILCS extraction.

2.3.3 Computation of FTLE and extraction of ILCS

The mathematical background of the FTLE was discussed earlier in section 1.1,

henceforth we briefly outline the computation. We compute the particle displacements

starting from initial condition (x0, t0) using the inertial equation 2.9 in the deterministic

case, and equation 2.8 in the stochastic case. For the stochastic case, we compute the

ensemble of realizations to obtain the mean trajectory E(x). Denoting the trajectory

x(t;x0, t0), we define the Cauchy-Green strain tensor field as

M t
t0

(x0) ≡
[
∂x(t;x0, t0)

∂x0

]T [
∂x(t;x0, t0)

∂x0

]
, (2.11)

where [∂x/∂x0]
T denotes the transpose of the deformation gradient tensor ∂x/∂x0.

The FTLE field, FTLEt
t0

(x0), is then defined as the scalar field that associates with

each initial position x0 the maximal rate of stretching along x(t;x0, t0),

FTLEt
t0

(x0) =
1

2|t− t0|
lnλmax(M), (2.12)

with λmax(M) denoting the maximum eigenvalue of M .

Traditionally, ILCS boundaries are identified as the highlighters of the FTLE

field. It is known that highlighters of the FTLE field alone would indicate both shear
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Figure 1. Three-dimensional view of backward-time ILCS at 6 AM on January 16,
2009. (a) PM2.5. (b) PM10. Note the removal of separation structures at the roof
top with PM10.

and hyperbolic structures. In our current study, we only consider such highlighters

in backward FTLE as major attractors, with acceptance that there might be false

positives due to shear structures. We leave such decomposition processes to later

studies.

2.4 Results

2.4.1 Deterministic transport

We first discuss results from the deterministic model as our baseline geometry.

Figure 1 reveals the full three-dimensional view of backward-time ILCS at 6 a.m.

on January 16, 2009 for PM2.5 and PM10, respectively. The region is viewed from

the south. Since backward-time structures highlight attracting motion, the ILCS

in Figure 1 show patterns where deterministic particles cluster. Major structures

24



can be identified in the wake of several big buildings in the northeast corner of the

figure (e.g. building A). When the particle size is small, trajectories behave more

like fluid particle trajectories. As such, recirculating bubbles at the roof top can be

seen in most buildings in Figure 1 (a). The tails trailing these tall buildings indicate

material surfaces which attract nearby trajectories. They highlight the converging

flow structures coming from the north and south of the buildings. Also, at the foot

of these buildings, shielding structures can be located where trajectories from the

outside and inside of building wakes collapse. These shields are the boundaries of

wakes near the buildings.

Another interesting feature in the 3D structures is located at the southeast corner

of the domain, between several parallel buildings (e.g. next to building B in Figure 1

(a)). Vortices can be located inside the street canyons and they tend to fill up the

entire width of the canyons. In general, vortices are typical elliptic structures that

are not highlighted by FTLE. However, high values can be obtained on the edge of a

vortex, where particle trajectories from different regions of the flow get entrained into

the vortex. It is indeed the case here as we examine local particle trajectories (not

shown). Above the vortices in the street canyon we observe structures highlighting

skimming flows. Separation between the skimming flows and recirculation vortices

can be seen near the roof top of the parallel buildings as a streamwise sheet structure

laying on top of the spanwise rolls. In this region, three of the four street canyons

have smaller width which lead to the recirculating vortex, whereas one of the street

canyon (on the west) has a wider gap, resulting in no noticeable circulating structure

in between the buildings.

As a comparison, in Figure 1 (b), due to the bigger size of PM10 particles, they

fall to the roof top/ground faster, hence no roof top circulation is found. The ILCS
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Figure 2. Attracting ILCS for deterministic dynamics evaluated at 6 AM on January
16, 2009. The two panels show structures associated with different particle sizes at
Z = 1 m. (a) PM2.5. (b) PM10.
.

boundaries at the foot of the buildings appear to be much weaker than those in Figure

1 (a). Also, in the street canyon region the recirculating vortices seem to be less

intense as compared to those structures based on PM2.5, indicating less attraction of

trajectories originating in different parts of the domain.

To understand the organizing structures at a height important to human activities,

we show slices of ILCS at 1 m height, for particles of different sizes and at different

times of the day. In Figure 2, the ILCS are obtained for PM2.5 and PM10. The

tall building A seen in Figure 1 can be found around X = 3100 m, Y = 2200 m.

The ILCS boundary upwind of A is very pronounced for both PM2.5 and PM10, but

regions of strong attraction (highlighting mid-grey, red) appears to be wider for PM2.5.

This structure corresponds to the convergence of flows at the leading edge of the tall

building when trajectories from the upwind direction collapse into trajectories from
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the front of the building. These trajectories then move along the structure, around the

sides of the building, with trajectories on the outside of the wake boundary moving

downstream. Some of the trajectories are trapped inside the wake structure downwind

of the building, as they get attracted to the backward-time FTLE in the trailing edge.

As the PM size becomes larger, the ILCS boundaries (at Z = 1 m) become smaller and

weaker, indicating less convergence of trajectories. This is because for larger particle

sizes, trajectories initiated at this height fall to the ground too quickly, leaving little

chance for attractors to form (cf. trajectory comparison initiated at Z = 3 in Figure 4

for different particle sizes).

Inside the street canyons next to building B, around X = 2800 − 3100 m and

Y = 1400− 1800 m, we find signatures of recirculating vortices. Clearly seen in Figure

2 (b), the cells of the recirculating vortices fill up the width of the canyon. These

cells are almost indistinguishable in Figure 2 (a), probably because the vortices are

reaching a vertical boundary at Z = 1 m.

In order to show the geometry for repellers (or separating streamlines (Belcher

2005)), so as to locate regions where high dispersion will occur, we plot the forward

time ILCS in Figure 3. Again, particle sizes of PM2.5 and PM10 have been shown. At

this height, major structures are located downwind of the tall buildings and inside

the street canyons, when the particle size is small. The structures inside the street

canyon indicated the repelling geometry of the recirculating vortex. It is not too

surprising that at this height, as the particle size gets larger, the structures are less

complex. This is because in forward-time, most particles fall to the ground and stick

to the bottom, leaving less repelling ILCS to form. As a comparison, backward-time

trajectories ascend higher as time progresses (in backward-time) and separate farther,

resulting in the ILCS being more distinguished.
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Figure 3. Repelling ILCS for deterministic dynamics evaluated at 6 AM on January
16, 2009. The two panels show structures associated with different particle sizes at
Z = 1 m. (a) PM2.5. (b) PM10
.

We discuss structures formed around buildings A and B again for forward-time

ILCS. First, in the street canyon region near building B, recirculating vortex cells are

visible for both PM2.5 and PM10, corroborating with our findings from backward-time

FTLE. On the other hand, the structure downwind of building A is indicative of

separation among inertial particles going downstream and those trapped in the wake

eddy. As particle size increases, this structure fades out, due to particle settling to the

ground and so less separation is observed. Upstream of this building, there is a thin

strip of low FTLE value, marked by an ellipse. High values of forward-time FTLE are

expected if the incoming flow is predominantly two-dimensional and separate around

the building. However, due to the low height and finite width of the building front,

trajectories either fall to the ground stick to the building facade, or entrain into an eddy

at the downwind edge of the building. Thus the separatrix is not well distinguished
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Figure 4. Particle trajectories initiated near forward-time ILCS upwind of building A.
Black: released at Z = 20 m. Mid-grey (green): released at Z = 3 m. (a) Idealized
fluid tracer. (b) PM2.5. (c) PM10
.

here. However, we do notice a quick change in FTLE value as one traverse along this

structure, indicating entrance of a region where particles are advected far downstream.

As particle size increases, this region of low separation expands, indicating more

particles settling upstream of the tall building A, and similarly near other buildings.

To further support our interpretation of the weak structure upwind of building A,

we show several trajectories released at the upwind side, associated with forward-time

FTLE, for different particle sizes in Figure 4. We have compared three particle sizes:

PM0 (idealized fluid), PM2.5, and PM10. A common feature of the ILCS for these sizes

is two highly distinguishable separatrices at Z = 20 m. At Z = 3 m, however, PM0 and

PM2.5 show local FTLE maximum on the upwind side of the building, whereas PM10

shows a local FTLE minimum. We show trajectories initiated near the structures at

Z = 20 m in black, and those initiated at Z = 3 m in mid-grey (green). For the black

trajectories, it is clear that the two trajectories outside of the upwind structure separate

around the building and advect far downstream. Trajectories initiated between the

two FTLE maxima lines remain inside the building wake (although they may end up

in different regions inside the wake). For the mid-grey (green) trajectories, they are
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Figure 5. Comparison of backward-time FTLE for PM2.5 at two different times on
January 16, 2009, at Z = 1 m. (a) 6 AM (b) 6 PM

initiated on the two sides of the separatrix at the upwind side of the building. Were

they not falling to the ground (Figure 4 (a) and (b)), the trajectories would have

moved around the building and thus a repelling topology could be found. For PM10, in

Figure 4 (c), the two mid-grey (green) trajectories fall to the ground too soon, leaving

no chance of strong separation in this region, hence we observe the FTLE minima.

We study the temporal variation of the structures by extracting ILCS for data

from two different hours, for PM2.5. These ILCS at Z = 1 m are shown in Figures 5

and 6. At both times, the ambient wind appears to be predominantly from the east,

thus the ILCS at both times are similar. However, the strength of the backward-time

ILCS at 6 p.m. is larger than that at 6 a.m., probably due to the different incoming

wind speeds. The forward-time ILCS at both times have similar strengths, probably

due to the fact that they hit the ground very soon. Extraction at other times (not
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Figure 6. Comparison of forward-time FTLE for PM2.5 at two different times on
January 16, 2009, at Z = 1 m. (a) 6 AM (b) 6 PM

shown) indicate the variation of coherent structures throughout the day. Combining

the three-dimensional versions of Figures 5 and 6, one obtains the full description of

the topology for deterministic inertial transport in the HP area.

2.4.2 Stochastic transport

The actual urban environment is indeed stochastic, with uncertainties in the

unresolved scales possibly changing our deterministic evaluations. In this subsection,

we examine random inertial particle trajectories and ILCS based on realistic random

noise from turbulent eddies.

We consider the most probable trajectory for an inertial particle embedded in

the stochastic environment. The random displacement model described in section
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2.2.2 has been used. Coherent structures are based on the mean trajectories, with

the interpretation that the stochastic ILCS is the most probable structure observed

based on where inertial particles most likely go. In order to compare deterministic

and stochastic models, we show in Figure 7, for a single initial condition (next to a

building complex so flow has a wake structure), trajectories from both formulations

in forward and backward-time. The mid-grey (red) curves in Figure 7 (a) show

stochastic mean trajectories, with the dashed line in forward-time and solid line

in backward-time, based on the full Maxey-Riley equations. The dark-grey (blue)

curves in the same panel show stochastic mean trajectories based on the inertial

equations, and the black curves show deterministic trajectories. The line styles are

the same as the mid-grey (red) curves for forward and backward-time evolution. First,

we find that the mean trajectories based on the slow manifold equation and full

equations are almost identical in forward-time. As a comparison, the differences

between stochastic and deterministic trajectories are quite pronounced. Second, we

find that the backward-time stochastic trajectory based on the full equations becomes

unstable very quickly in backward time. This is to be expected since equation 2.4 is

strongly unstable in backward-time due to the first term on the right-hand side. For

comparison between the stochastic full equations and inertial equations, we show the

clustering of random realizations by particles in different colors. The mid-grey (red)

particles show forward-time trajectories based on the full equations and the dark-grey

(blue) particles are from inertial equations. Clearly, the patterns are comparable,

leading to similar statistics for single trajectories. On the other hand, the light-grey

(cyan) particles are those from inertial equations in backward-time (no realization from

the full equations in backward-time survive the instability). Motivated by the fact that

the two stochastic formulations result in identical mean trajectories in forward-time,
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Figure 7. Comparisons among stochastic and deterministic trajectories. (a)
Comparisons on the mean trajectories. Mid-grey (red): mean from full Maxey-Riley
equations. Dark-grey (blue): mean from inertial equations. Black: deterministic
equations. Solid: Backward-time trajectories. Dashed: Forward time trajectories. (b)
Comparisons between the full equations and inertial equations for random
realizations. Mid-grey (red): full equations, forward time. Dark-grey (blue): inertial
equations, forward-time. Light-grey (cyan): inertial equations, backward time.
Backward-time realizations with the full equations are not shown as they become
unstable and leave the domain quickly

the inertial equations have only half the degrees of freedom, and the full equations

blow up in backward-time, we use inertial equations as the governing equations in our

computation.

Due to the computational cost for random dynamics, we only focus on regions near

the tall building A in our stochastic cases. The stochastic ILCS is in terms of FTLE

fields computed from the mean of the random trajectories. In Figure 8 we show the

forward-time stochastic ILCS for the tall building at Z = 2 m, for PM2.5. This case

is based on data from February 15, 2009 at 6 a.m. when the flow is predominantly

from the south. In Figure 8 (a), the deterministic ILCS is shown, as a baseline case.

The wake structure is very pronounced downwind of building A. We also plot the

case with eddy diffusivity, determined from our previous discussion of the models, in

Figure 8 (d). This is our upper bound on stochasticity because it is valid for realistic
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Figure 8. Forward-time stochastic ILCS near the tall building at Z = 2 m for PM2.5
on February 15, 2009. (a) Deterministic. (b) 0.25 of the full eddy diffusivity. (c) 0.5
of the full eddy diffusivity. (d) Full eddy diffusivity

flows. In between, in Figure 8 (b) and (c), we consider 1/4 and 1/2 of the value of the

eddy diffusivity, as a proxy to understand the variation of ILCS due to strength of

randomness. As seen, when randomness is progressively increased towards the full

value of eddy diffusivity, the major wake structure remains quite distinguishable.

As a comparison, we also show in Figure 9 the backward-time stochastic ILCS

in the same region. In the deterministic case, the mushroom-like wake structure

trailing building A is clearly seen. At the southeast corner, due to the annex to

building A, some closed structure is also seen as attractors. As we progressively

increase stochasticity, the mushroom-like wake is still visible but fading, whereas the
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Figure 9. Backward-time stochastic ILCS near the tall building at Z = 2 m for
PM2.5 on February 15, 2009. (a) Deterministic. (b) 0.25 of the full eddy diffusivity.
(c) 0.5 of the full eddy diffusivity. (d) Full eddy diffusivity

smaller structure disappears even with 1/4 of the full stochasticity. Finally, at the full

strength, only the counter-rotating vortex cell survives random perturbations.

In Table 1 we compute the correlation between the stochastic and deterministic

FTLE fields to measure the variability of the ILCS by different levels of stochasticity.

The correlation is computed as

CDS =
FTLE(D) ∗ FTLE(S)

Std[FTLE(D)] ∗ Std[FTLE(S)]
, (2.13)

where FTLE(D) and FTLE(S) are the scalar FTLE fields in the deterministic

and stochastic cases, respectively. Std[FTLE] denotes the standard deviation of the
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Table 1. Correlation of stochastic and deterministic FTLE.

Deterministic Quarter Half Full
Forward 1 0.8463 0.8164 0.7896
Backward 1 0.8247 0.7581 0.7070

Figure 10. Comparison between deterministic and stochastic ILCS near the tall
building at Z = 2 m for PM10. (a) Deterministic, forward-time. (b) Deterministic,
backward-time. (c) Full eddy diffusivity, forward-time. (d) Full eddy diffusivity,
backward-time.

scalar fields. As the stochasticity increases, the correlation decreases, but even with

full stochasticity, correlation of the structures is still above 70%. This indicates the

robustness of major ILCS.

We further study the variation of stochastic ILCS with respect to particle size
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in Figure 10. In this figure, we compare the deterministic and fully stochastic cases

directly. In the top panels, the forward-time (Figure 10 (a) ) and backward-time (b)

ILCS for PM10 are shown. Compared to the deterministic cases of PM2.5, these ILCS

are slightly less well-pronounced, but still quite well defined. For the stochastic cases,

again, the major structures survive random perturbations and act as the organizing

centers for nearby inertial particle trajectories.

2.5 Discussions and Conclusions

We have studied the mixing geometry for inertial particles in a realistic street-scale

urban flow model. The model is focused in the Hermoso Park region in a district

in Phoenix, Arizona. The interest is on how these geometry may relate to higher

particulate matter density allegedly causing respiratory problems for local residents.

We focus on the flow topology rather than specialized case studies because with such

a geometry, we can estimate mixing patterns of pollutants from isolated release events

anywhere inside the domain of interest. It also aids identification of patterns from

continuous release events.

In order to objectively extract the mixing geometry, we used inertial Lagrangian

coherent structures, because they offer objective description of transport patterns. For

the deterministic case, the methodology is a direct application of results in (Sapsis

and Haller 2009) and (Tang et al. 2009). We find the ILCS for different particle sizes

and at different hours on January 16, 2009, with data initiated from measurements

and flow simulated with QUIC-URB. The size effects on the structures have been

discussed in detail. In particular, in the deterministic regime, as particle size becomes

larger, attracting structures in the leading edge of large/individual buildings become
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weaker. In addition, particle size also affects the dynamics in street canyons, in

that trajectories are less likely to converge strongly, hence less mixing of the inertial

particles are observed. These results provide the baseline cases for our discussions on

stochastic ILCS.

For the stochastic case, we choose random displacement model, as it is simpler to

analyze than Lagrangian stochastic models. The stochastic ILCS is understood in

terms of the most likely trajectory an inertial particle will take as it evolves inside

the urban flow with inhomogeneous random noise due to spatially dependent eddy

diffusivity. The ILCS is then obtained from the mean motion. With this concept,

backward-time random walk models are also meaningful, as an estimate of where

a trajectory is most likely coming from in the past, so to estimate the tendency of

attraction for each individual material particle. Evaluating the stochastic ILCS, we

find that using eddy diffusivity based on k− ε model, major structures still survive to

serve as the organizing centers for stochastic inertial particle transport. As we vary

the strength of eddy diffusivity, a correlation with the deterministic geometry is also

obtained.

Here, with the more homogenized FTLE field due to eddy diffusion, the extrema

curves/surfaces (serving as ILCS boundaries) are less distinguished as their determin-

istic counterparts. However, bearing in mind that ILCS are regions in the flow where

trajectories exhibit similar types of Lagrangian motion, we can readily identify regions

in the FTLE field with similar data values as the stochastic ILCS. Hence, hyperbolic

regions are highlighting patches in the FTLE field where stochastic mean trajectories

are expected to separate the most, whereas elliptic regions are low-value patches where

stochastic mean trajectories stay together. In terms of automated extraction of the

boundaries of such structures, one would have to rely on the identification of material
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lines on the steepest slopes in the FTLE field, as they mark the transition regions

between most likely hyperbolic (plateaus in FTLE) and most likely elliptic (basins in

FTLE) motion.

Note that the stochastic ILCS obtained with full eddy diffusivity are most robust

and survive realistic disturbances, hence they are most likely to be found in a natural

environment. Maps of stochastic ILCS such as those shown in Figures 8, 9, 10 can

thus aid easy identification of strong elliptic or hyperbolic structures important for

material transport. Subsequently, regions in the real urban environment which are

most susceptible to pollutant accumulation or dispersal can be found for decision

makers to take any air quality counter measures.

There are several aspects that could help improve our understanding of stochastic

ILCS in a realistic urban environment. First, we have only used RDM for the

stochasticity. In general, a LSM based on the Langevin equations is more suitable to

account for the random nature of fluid trajectories. Conventional treatments of inertial

effects are not directly using the governing Maxey-Riley equations, but an estimate of

the finite synchronization time scale of inertial particles, which relates to an assumption

that inertial particles travel at their settling velocities. A new formulation of the

inertial dynamics based on Maxey-Riley equations with LSM (instead of RDM) on

just the fluid trajectories may shed new light on stochastic inertial particle dynamics.

Bearing the nicety of deterministic part of the inertial particle forces, we may use

the approach outlined in this paper again for stochastic backward models. In this

way, stochastic ILCS will be based on a more general formalism, and suited to more

realistic environments.

Second, some careful treatments may also be needed for the boundary condition,

since we are using a simple no-slip boundary condition and the results affect the
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Gaussian assumption. An improved formulation may better estimate the statistics for

inertial particle trajectories and bear a higher confidence in evaluating the stochastic

ILCS.

Third, we the presence of coherent structures, the diffusion process inside the

domain may not be Gaussian, and thus we need to consider other choices of random

noises to better reflect reality. Some of these non-Gaussianity has been incorporated

into QUIC-PLUME for idealized fluid tracers, and we will need to formulate carefully

in the case of inertial particles.

Overall, since particle density is a linear superposition of release events, the precise

knowledge of geometry will aide fast estimates on the source and fate of dispersion for

pollutants, chemical spills or malicious toxin released. The use of mixing topology will

aid environmental protection, mitigation, and homeland security applications. How

to efficiently use ILCS in such applications will be explored in future studies.
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Chapter 3

LAGRANGIAN COHERENT STRUCTURE ANALYSIS OF TERMINAL WINDS:

THREE-DIMENSIONALITY, INTRAMODEL VARIATIONS, AND FLIGHT

ANALYSES

The next two chapters are concerned with a Lagrangian approach windshear

detection at the Hong Kong International Airport. Chapter 3 is drawn from (Knutson,

Tang, and Chan 2015).

Published in: Advances in Meteorology

Brent Knutson, Wenbo Tang, and Pak Wai Chan

We present a study of three-dimensional Lagrangian coherent structures (LCS)

near the Hong Kong International Airport and relate to previous developments of

two-dimensional (2D) LCS analyses. The LCS are contrasted among three independent

models and against 2D coherent Doppler light detection and ranging (LIDAR) data.

Addition of the velocity information perpendicular to the lidar scanning cone helps

solidify flow structures inferred from previous studies; contrast among models reveals

the intramodel variability; and comparison with flight data evaluates the performance

among models in terms of Lagrangian analyses. We find that, while the three models

and the LIDAR do recover similar features of the windshear experienced by a landing

aircraft (along the landing trajectory), their Lagrangian signatures over the entire

domain are quite different - a portion of each numerical model captures certain

features resembling those LCS extracted from independent 2D LIDAR analyses based

on observations.
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3.1 Introduction

A Lagrangian framework for terminal wind hazard detection near Hong Kong

International Airport (HKIA) has been recently developed and locations of such

disturbances have been compared against flight data (Tang, Chan, and Haller 2010,

2011a, 2011b). The approach outlined in this series of work focuses on obtaining

signatures of convergence and divergence of fluid parcel trajectories based on two-

dimensional (2D), near-ground velocity data retrieved from light detection and ranging

(LIDAR) equipment (Chan and Shao 2007). The disturbances extracted from the

Lagrangian methods are found to be in close proximity of real jolts experienced

by landing aircraft. Validating with lengthy flight data over several months, it is

found that this approach outperforms Eulerian measures, such as velocity fluctuation

measurements (Chan and Lee 2012), as they provide better Receiver Operating

Characteristic (ROC) graphs (Kafiabad, Chan, and Haller 2013; Fawcett 2006), and

matches closely with an operational algorithm based on a scanning pattern the follows

the actual aircraft landing trajectories (Chan, Shun, and Wu 2006).

One limitation of the aforementioned methodology is the lack of three-dimensional

(3D) data from the 2D LIDAR output. Indeed this is a common limitation shared by

all other methods based on 2D LIDAR data, and the Lagrangian framework outper-

forms traditional methods in part due to its capability to better infer the signatures

transversal to the 2D plane-position-indicator (PPI) scanning cone. Variational wind

retrieval algorithms in three-dimensions are also available (Sun, Flicker, and Lilly

1991; Qui and Xu 1992; Qiu et al. 2006), but they are more time-consuming and

relevant to operational forecasts at HKIA, and PPI scans are only available at a few
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elevation angles. Henceforth, it is beneficial to verify that sophisticated results based

on 2D data are useful in operational applications.

In this study, we aim to explore to what extent the transversal signatures inferred

from 2D scans represent the true 3D structures - Do we find correspondence of

3D vertical structures at the locations where 2D convergence and divergence are the

strongest, at least near the center of the LIDAR scanning cone? Does this interpretation

successfully extrapolate to data at the peripheral of the LIDAR scanning cone, where

the vertical elevation could be over 1000 meters above mean sea level, and an argument

of strong two dimensionality near ground may not apply? What extra information

does 3D data reveal that is absent from 2D analyses?

Towards this end, we have generated three independent numerical simulations of

the regional atmospheric flows near HKIA, for a case of strong windshear on December

27, 2009. This case corresponds to an airstream associated with a ridge of high

pressure along the southeastern coast of China meeting a cold front from inland,

resulting in aircraft diverting to Shenzhen because they could not land at HKIA (Chan

2012). Two of the simulations are based on numerical weather prediction models - the

Regional Atmospheric Modelling System (RAMS) (Pielke, Cotton, and Walko 1992)

and the Weather Research and Forecasting model (WRF) (Skamarock and Klemp

2008); the third simulation uses the FLOWSTAR package, which is analytically based

and depends more on the terrain data than the physics (Carruthers, Hunt, and Weng

1988). In terms of the initialization of the simulations, the two weather forecast models

are driven by global forecast system (GFS) data (Sela 1980) and use nested grids to

achieve high resolution over HKIA, whereas the latter uses upstream observational

data (independent from LIDAR) as the constant boundary conditions for computation

of a steady state solution.
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To realize our goal on validation of the 2D analyses, we make the following

comparisons. Firstly, we contrast LCS among different models to obtain a full picture

of the 3D flow structures. This comparison reveals the variability among models.

Secondly, within each model, we compare LCS obtained from full 3D data to those

derived from 2D wind fields interpolated on the LIDAR scanning cone. Two schemes are

considered for the 2D data generation. One is the horizontal wind speed interpolated

directly from 3D model. This wind field closely mimics the resolved model flow, so the

comparison directly reflects 2D signature of a 3D field. The other uses line-of-sight

(LOS) velocity from the models and goes through the 2D wind retrieval scheme (Chan

and Shao 2007). This retrieved wind is then used to generate 2D LCS. This effectively

mimics the procedure for LIDAR measurements-LCS generation. Consequently 2D

information loss and modeling assumed in the wind retrieval scheme are tested with

3D data. Thirdly, we contrast the 3D and 2D LCS from models with 2D LCS obtained

from the actual LIDAR measurements to check for any correspondence. Lastly, we

compare the LCS from these analyses with data collected from a landing aircraft.

This brings all models and schemes to the ultimate test for possible operational

implementation.

The rest of this chapter is organized as follows. In section 3.2 we briefly review

the wind retrieval, extrapolation, and LCS generation algorithms. In section 3.3

we introduce the three numerical model data sets. In section 3.4 we discuss the

various comparisons among 3D, 2D, and measurement data. In section 3.5, we draw

conclusions and discuss further studies underway.
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3.2 Wind Retrieval and LCS Generation Algorithms

We briefly summarize the algorithms used to generate 2D wind retrieval from

LIDAR scans and to extract LCS based on the retrieved data. The 2D wind retrieval

algorithm for LIDAR is modified from a two-step variational method for RADAR

(Qiu et al. 2006). The cost function J to be minimized is given by

J(u, v) =J1 + J2 + J3 + J4 + J5 + J6∑
i,j

W1[(u− ub)2 + (v − vb)2]

+W2(vr − vobsr ) +W3(∆x)2
(
∂u

∂x
+
∂v

∂y

)2

+W4(∆x)2
(
∂v

∂x
− ∂u

∂y

)2

+W5(∆x)4
(
∇2u+∇2v

)2
+
∑
n

[
W6

(
∂vobsr
∂t

+ u
∂vobsr
∂x

+ v
∂vobsr
∂y

)2
]
,

(3.1)

where u and v are the components of the retrieved field, subscript B is the

background field, generated from LIDAR radial velocity in the way described in (Qiu

et al. 2006), vr is the retrieved radial velocity, superscript obs is the observed values,

i and j are the horizontal grid point, and n is the time index (three consecutive

scans are used in each analysis). The weights are W1 = 0.1 (after the first step

retrieval), W2 = 1, W3 = W4 = W5 = 0.1, and W6 = 104. They are chosen empirically

in this paper to ensure that the constraints have proper orders of magnitude. The

model-emulated LOS velocity is subject to this retrieval algorithm for emulated 2D

wind and subsequent LCS analyses. For more discussions of this algorithm, the readers

are referred to (Tang, Chan, and Haller 2011a; Chan and Shao 2007).

The retrieved wind is extrapolated beyond the LIDAR resolved range as a global

linear flow that best fits the 2D wind retrieval (Tang, Chan, and Haller 2010). This
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best reveals the nonlinearity inside the LIDAR observational domain while it avoids

addition of extra nonlinearity from data outside when they are completely unknown.

In terms of the current study, this extrapolation is applied to the true and emulated

LIDAR data (so as to measure the performance of the 2D LCS retrieval algorithm).

The numerical models have data coverage outside of the LIDAR range and those

data are used in the 3D computations as they provide the true LCS pertinent to the

corresponding velocity fields.

For a Cartesian grid G in a rectangular region, where the coordinate axes have

been chosen such that the domain center corresponds to the origin, the closest linear

incompressible flow which minimizes error in the Euclidean norm is

vL(x, t) =

 〈xu1−yu2〉〈x2+y2〉
〈yu1〉
〈y2〉

〈xu2〉
〈x2〉

〈yu2−xu1〉
〈x2+y2〉

x +

〈u1〉
〈u2〉

 (3.2)

where 〈g〉 =
∑m

i=1

∑n
j=1 g(xi, yj)/(m × n) is the spatial average of a function g

over the grid G.

The global flow is constructed on the whole plane by letting

v = vL + (u− vL)f, (3.3)

where f is a filter function that takes value 1 inside a subset of G0 of G and value

0 in the exterior of G0. In between we have a buffer zone of with ∆ where f smoothly

transitions between 1 and 0. This allows smooth trajectories to leave the LIDAR

domain.

We use a common measure, the finite-time Lyapunov exponents (FTLE), to reveal

the LCS field.
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An auxiliary grid approach is used to approximate the FTLE field with better

accuracy (Farazmand and Haller 2012). Also, trajectories near ground are allowed to

slide along the surface with horizontal velocity at 10m. This helps remove structures

due to the no-slip boundary conditions and better reveals the structures more relevant

to airflow disturbances that affect the airport.

The FTLE field (Tang, Chan, and Haller 2011b) and its associated gradients

(Kafiabad, Chan, and Haller 2013) have been used to compare LCS signatures of

airflow hazard and jolts experienced from flight data. We will contrast the LCS

analyzed here with flight data for the corresponding event in a similar fashion in

section 3.4.

3.3 Numerical Model Data for the Windshear Event

The numerical model data based on RAMS and FLOWSTAR have been reported

previously (Chan 2012; Carruthers et al. 2014), but they focus on comparisons between

the headwind profile from measurements onboard a flight and in numerical predictions.

Both models capture the general trend of the measured headwind profile. In this

study, these two model data sets, along with a third one using WRF, are used for

LCS analyses.

The RAMS model is nested within the 20 km resolution Operational Regional

Spectral Model (ORSM) of the Hong Kong Observatory (HKO). RAMS was run with

nested grids having spatial resolutions of 4 km, 800 m, and 200 m with two way

nesting. The smallest nest is sufficient to resolve the mountains on Lantau Island,

immediately south of HKIA. The Mellor-Yamada turbulence parameterization scheme
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was used in the first grid and the Deardorff scheme in the other two grids. The model

run started at 1200 UTC, 26 December 2009, and was carried out for 12 h.

The FLOWSTAR model is based on topographic data and meteorological inputs

and generates steady-state solutions of velocity. The boundary conditions for the

FLOWSTAR runs were defined using the observed 10 m wind upstream of Lantau

Island and by the radiosonde ascent for midnight 27 December 2009 at King’s park

for the wind speed and direction, vertical temperature structure, and hence buoyancy

frequency. Three cases were considered for the wind speed and direction and boundary

layer height. In this study we use the data set that best matches the measured

headwind profile. This corresponds to an upstream wind speed of 7.3 ms−1 at z = 10

m height, wind direction of 140◦, a boundary layer height of h0 = 400 m, buoyancy

frequency profile N = 0 s−1 for heights z < h0, N = 0.0124 s−1 for heights z > h0,

temperature step of 7.19◦ C at z = h0, and surface roughness of 0.5 m. The readers

are referred to (Chan 2012; Carruthers et al. 2014) for more thorough discussion of

these two models.

Finally, the WRF model is initiated from GFS data and runs with nested grids

having spatial resolutions of 51.2 km, 12.8 km, 3.2 km, 800 m, and 200 m with two-way

nesting. The model is centered at 22.313 N and 113.92 E. In an attempt to match

the high horizontal resolution, each nest also had 85 vertical levels. In the 3 coarsest

grids the YSU (Yonsei University scheme) boundary layer parameterization was used,

whereas in the 3 finest resolution nests the boundary layer parameterization was

turned off in order to have full 3D diffusion. Full diffusion (diff_opt=2) was selected,

paired with the 1.5 order TKE prediction for turbulence parameterization. Each

nest used the Dudhia shortwave radiation and RRTM longwave radiation schemes.

Five-layer thermal diffusion was used as the land surface option, whereas the MM5
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Figure 11. (a)-(c) Horizontal wind speeds (in knots) for RAMS, FLOWSTAR, and
WRF, respectively, along the landing corridor. The thick black solid curve in each
figure is the landing trajectory. The vector field is the plot of headwind and vertical
velocity along the landing corridor, where hints of coherent structures can be seen.
(d) Headwind comparison between measurements and models. Thick black solid
curve: onboard measurement. Magenta curve: LIDAR measurements along the PPI
scanning cone. Blue dashed curve: interpolated headwind from RAMS. Red dash-dot
curve: interpolated headwind from FLOWSTAR. Green dotted curve: interpolated
headwind from WRF. The black arrow above (a) indicates direction of flight.

similarity scheme was selected for the surface layer and the Kessler scheme was used for

microphysics. No cumulus parameterization was used. The simulation was initiated

at 1800 UTC, 26 December 2009, and ran for 6 h.

As a first comparison, we contrast some Eulerian velocity data among the models

and measurements in Figure 11, for a case of missed approach. The approach is from
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left to right, as indicated by the black arrow about Figure 11 (a). Figure 11 (a)-(c)

how comparison of the headwind for the three numerical models along the landing

corridor. The aircraft trajectory is also shown in each of the panels as the thick solid

black curve. It is seen that all three models capture a region of strong headwind

near the runway threshold. Flying through this patch leads to significant windshear.

The two regional models appear to capture the same trend of the patch from bottom

left to top right. This patch is more columnar in the FLOWSTAR data. The sharp

transition in the FLOWSTAR model at 400 m indicates the height of the inversion

layer. To better infer the flow topology, we use the velocity vectors projected onto the

vertical plane of the landing corridor (headwind and vertical velocity). It seems that

RAMS has the weakest vertical velocity in this plane; FLOWSTAR shows more wave

undulation as the aircraft approaches the runway threshold, yet WRF shows a hint of

flow reversal at -1 NM from the runway threshold between 300 and 500 m in altitude.

This feature possibly leads to strong LCS. In Figure 11 (d), the headwind profile

is shown from different data sets. In this panel, the thick black solid curve is the

actual measurements of headwind onboard the landing aircraft. The magenta curve

shows the headwind profile extracted from LIDAR conical scans. This data closely

follows the velocity ramp from onboard measurement at about -1 nautical mile (NM)

from the runway threshold. The blue dashed curve (RAMS), red dash-dotted curve

(FLOWSTAR) and green dotted curve (WRF) differ from the onboard measurement

further, but they do capture the general trend of the windshear (with weaker velocity

gradients). A cross correlation study shows that, at the respective maxima, the

LIDAR data is 71% correlated with onboard head wind measurements, followed by

WRF (63%), FLOWSTAR (62%), and RAMS (56%). Lagrangian signatures of these

resolved flow data are discussed in the following section.
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3.4 LCS Comparisons

Before comparison with 2D data sets, we first analyze the 3D LCS structure from

various models and their implications on the actual terrain-induced turbulence patches.

3.4.1 Three-Dimensional Features of LCS

The three-dimensional features of the LCS for the three data sets are shown in

Figure 12. These features are highlighted with two vertical slices in the domain.

One vertical slice is along the southern runway, highlighting structures the airplane

experiences when landing. The other vertical slice is perpendicular to the southern

runway, so features transveral to the runway can be seen. The airplane landing

trajectory is shown in each of the panels as the thick black curve. Direction of flight

is again marked by a red arrow in Figure 12 (a), along the vertical slice aligned

with the southern runway. Relevant positions of this trajectory with the coherent

structures, the Lantau Island, and the airport are readily seen. The red dots at sea

surface height in each panel mark the distances for each nautical mile from the runway

threshold, which is located at the lowest point of the plane trajectory. To aid in the

interpretation of the coherent structures, selected fluid parcel trajectories (thin black

curves with black arrows) near ground around the airport are also shown to reveal the

actual atmospheric motion. These trajectories are generated from the time-dependent

velocity data in each of the flow models and they interact with the airplane near the

runway threshold.

Figure 12 (a) and (d) shows FTLE obtained from RAMS, (b) and (e) FTLE

obtained from FLOWSTAR, and (c) and (e) FTLE obtained from WRF. The first
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Figure 12. Lagrangian coherent structures from different data sets and their relative
positions to the Lantau Island. The opaque color maps are the vertical slices of the
FTLE fields along and perpendicular to the runways, intersecting at the southern
runway threshold towards the west. The thick black curve in each panel is the
airplane landing trajectory. The thin black curves are fluid trajectories highlighting
the structures, with black arrows indicating direction of flow. The panels are: (a)
RAMS, forward-time FTLE. (b) FLOWSTAR, forward-time FTLE. (c) WRF,
forward-time FTLE. (d) RAMS, backward-time FTLE. (e) FLOWSTAR,
backward-time FTLE. (f) WRF, backward-time FTLE. The red arrow indicates
direction of flight. The red dots on sea surface level mark every nautical mile towards
the runway threshold. The runway threshold is located at the lowest point of the
flight trajectory.
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panel for each shows the forward-time FTLE field, highlighting separation, the second

shows the backward-time FTLE, highlighting attraction. The integration time for

these FTLE fields is 6 minutes. This is sufficient to capture short-term flow structures

that will be averaged out during long term integrations, yet important for flight safety.

It is also consistent with the integration time from 2D velocity data, so the features

among these data sets can be directly compared. Judging from the orientation of the

structures, it can be seen that the two regional atmospheric models (RAMS and WRF)

behave quite similarly, with wavy structures between 400 and 600 m altitude (cf. (a),

(d), (c), and (f). The vertical slices are shown up to 800 m). Some structures are

also seen near the bottom around the airport, and between 200 and 400 m relatively

less separation is seen. The FLOWSTAR data carries less structures ((b) and (e))

regarding the fact that major features are seen near the bottom and around 400-500

m, with low separation in between these heights. These distinguished structures in

FLOWSTAR data can be explained due to strong shear across the inversion layer.

We closely inspect the fluid particle trajectories to further interpret the structures.

Consistent with the respective velocities, the RAMS ((a) and (d)) and WRF ((c) and

(f)) data show easterlies/east-southeasterlies, whereas the FLOWSTAR data shows

a southeasterly. In RAMS data, several streaks of waves along the runway can be

identified; their nonlinear motion leads up to the corrugated patches seen near the

bottom of the domain. The FLOWSTAR data shows little horizontal separation of

trajectories, but some vertical motion can be identified. The WRF data is the most

interesting, as several vortex rolls aligned roughly in the east-west direction can be

identified, some of which cross the runway threshold.

Overall, the two regional models show good correspondence between the data,

with the exception of that the vertical velocity in RAMS seems to be less than that of
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Figure 13. FTLE fields interpolated on the LIDAR scanning cone. The panels are,
from left to right, data from RAMS, FLOWSTAR, and WRF, respectively. The top
panels are the forward-time FTLE and the bottom panels are the backward-time
FTLE. The black straight lines mark locations of great similarity in FTLE with
Figure 14 , and the black circles mark locations of a few mismatches with Figure 4.

WRF. As comparison, the FLOWSTAR data show less detailed features of coherent

structures, probably due to the heavily idealized assumptions.

3.4.2 Comparisons between Full and Conical LCS

We employ two schemes to contrast the LCS from fully 3D data and 2D emulated

data. In the first scheme, 3D LCS are interpolated along the LIDAR scanning cone

and compared to those generated from 2D velocity along the same cone. This scheme

reveals whether it will be plausible to use 2D information to infer 3D structures. To

further mimic the process of generating LCS from LIDAR line-of-sight (LOS) velocity,

the second scheme emulates LOS velocity scans from simulation data and generates 2D

wind retrieval and then finds the coherent structures. These results are also compared
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Figure 14. FTLE fields interpolated on the LIDAR scanning cone. The panels are,
from left to right, data from RAMS, FLOWSTAR, and WRF, respectively. The top
panels are the forward-time FTLE and the bottom panels are the backward-time
FTLE. The black straight lines and the black circles mark the same locations as seen
in Figure 13 for reference.

to actual LIDAR based FTLE. For easy handling of lack of data when the LIDAR

scanning cone intersects with mountain topography, we use the FDFTLE algorithm

(Tang, Chan, and Haller 2010) to extend the data and allow smooth integration of

trajectories. This avoids artificial structures associated with trajectories running into

Lantau Island. In this subsection, the three model flows are considered, and the

benchmarks and the 2D LCS are approximations to these benchmarks.

We show in Figure 13 the FTLE fields interpolated along the LIDAR scanning

cone. This figure serves as the reference for comparisons with approximations. The

panels are similar to Figure 12, with the left, center, and right columns corresponding

to RAMS, FLOWSTAR, and WRF data sets, and the top and bottom rows correspond

to the forward and backward time integrations. The integration time is 6 minutes. For

easy comparison and feature identification we only focus on a region immediately west
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of the southern runway threshold (threshold marked by the black circle), corresponding

to the smallest nest in RAMS simulation. The topography near the airport is shown

as the black isocontours and the landing trajectory is shown as the thick black line.

The southern LIDAR (square) and -1 NM before the runway threshold (diamond),

where a strong windshear was reported, are also marked for comparison. As seen,

the two regional models show similar features of flow structures, especially near the

southern LIDAR, with some east-west ridge structure above the west end of the

airport. This consistency could be due to both models being driven from global model

data, and hence they bear similar features fro the larger nests towards the smallest

nests. Further away from the airport, the WRF data shows more coherent patterns

indicating more organized convergence and divergence of flow, whereas the RAMS

data shows more scattered features, indicating less organized separation. The stronger

coherence in WRF data could be due to the stronger vertical velocity (cf. Figure

11 and trajectory comparisons in Figure 12 giving rise to better defined vortex rolls.

The FLOWSTAR data is oriented slightly towards the north-west, consistent with

the incoming flow direction. The arc pattern on the left end of this data set is due

to the transition of structures from below to above the inversion layer, where strong

shear gives rise to a highlighting layer of separation, as seen in Figure 12 (b) and (e).

Below this layer (inside the arc towards the LIDAR), some features of the forward

time FTLE can still be identified (Figure 13 (b)). In all models, the strong windshear

at -1 NM can be associated with coherent structures highlighted as the FTLE ridge.

To better understand the role of highlighting FTLE at -1 NM, we plot groups of

black dots, indicating positions of fluid parcels every 2 minutes. These trajectories

are initiated at the diamond, at 190 m elevation, where the windshear is reported.

The initial height of the trajectories is determined based on the elevation of the PPI
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Figure 15. Localized correlation map between Figures 13 and 14. The sizes of the
local regions are 1 km × 1 km patches. The black circles mark the mismatches
discussed in Figures 13 and 14.

scanning cone at this location. The trajectories are integrated using the full 3D data.

The deformation of these dots indicates the local nonlinear behaviors of the flow. As

seen, in RAMS data in Figure 13 (a) and (d), there is trajectory separation transversal

to the local structures in both forward and backward time, resulting in the FTLE

ridges nearby. The forward time trajectories in FLOWSTAR data show very weak

stretching associated with a low FTLE value ridge. The backward trajectories of

FLOWSTAR mostly show contraction in the meridional direction and very weak

separation in the zonal direction, hence giving no highlighting structure near the -1

NM location. The WRF trajectories show stretching along a local structure in forward

time and attraction transversal to a local structure in backward time. As such, all

FTLE behaviors are accounted for with the behaviors of the local trajectories.

In Figure 14, we show these 2D results using horizontal wind data on the PPI

scanning cone. For easy comparison, the layout is precisely the same as those in
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Figure 16. Trajectory comparison between 3D data and 2D data on the LIDAR cone.
The panels are: (a) RAMS. (b) FLOWSTAR. (c) WRF.

Figure 13. The data sets are, left to right, RAMS, FLOWSTAR, and WRF. Plots in

the top row show forward time structures and plots in the bottom row show backward

time structures. Trajectories near -1 NM from runway threshold based on the 2D

interpolated data are again shown to explain the local FTLE behavior and compare

to those in Figure 13. It can be seen that the shapes of local deformation of the

trajectories are similar to those in Figure 13.

To better quantify the match between Figures 13 and 14, we use a local correlation

map. Because flow structures relevant to flight operations are relatively small, we

compare features of size 1 km × 1 km. The correlation between the 3D interpolated

and 2D FTLE fields of each patch of 1 km2 is computed at each patch center and

plotted in Figure 15. The layout is the same as the previous two figures for the three

data sets and two directions of integration. In regions of red color, there is a match
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between features, whereas in regions of blue color, there are mismatches. This leads

to the question of what kind of three-dimensionality leads to the discrepancy in these

two plots. Before explaining such discrepancies, we first locate regions where strong

similarities can be found. The thick black line segments in Figures 13, 14 correspond

to structures where correspondence can be found between 2D and 3D extraction. Such

correspondence is mainly seen in RAMS and WRF data, near the LIDAR (marked by

the square). This can be explained by the local two-dimensionality near the ground,

around the center of the LIDAR scanning cone. At -1 NM and beyond, the LIDAR

scanning cone is already at 190 m. Structures may vary strongly below the cone,

resulting in the mismatch between the 3D and 3D analyses. There is a weak ridge

in the 2D computation that could be related to the more pronounced ridge in 3D

analyses. We use the thin dashed line to identify this possible match.

In order to understand the discrepancies in the 3D and 2D analyses, we focus on

a few regions where the mismatch is pronounced. These regions are highlighted by

the black ellipses in Figures 13 and 14, with centers marked by the black dots (note

their correspondence in the blue regions in Figure 15). We are not concerned with

the big red spot near LIDAR because it is due to vertical shear near ground arising

from the no-slip boundary condition (even though we allowed trajectories to continue

to flow at the speed of 10 m height, the horizontal velocity is still significantly lower

than those in higher elevations). For RAMS data, the two analyses are quite similar,

and hence we choose an FTLE structure that is absent in the 3D analyses yet present

in the 2D analyses. This region is only about 1 NM northwest of the LIDAR; hence

being able to interpret this structure helps us understand possible conflicts near 100 m

elevation. For FLOWSTAR data, we choose a region immediately north of the -1 NM

location. As indicated above, the match in forward time structures is with questions

59



Figure 17. FTLE fields computed from just horizontal stretching. The panels are, left
to right, data from RAMS, FLOWSTAR, and WRF, respectively. The top panels are
the forward time FTLE and the bottom panels are the backward time FTLE.

and the backward time structure does not show much correspondence at this location.

For WRF data, to the east of the -1 NM location, the 3D analyses show a structure

transveral to the landing trajectory yet 2D analyses show a structure aligned with the

landing trajectory. We focus on this region to see what trajectory behaviors lead to

these results.

We explain the difference in the plots in Figure 16, for the three data sets. In

all three panels, trajectories based on 3D data are shown in black, and trajectories

based on 2D data are shown in red. The directions of flow are indicated by the text

arrows. In Figure 16 (a), there is probably only weak horizontal separation in the

3D trajectories (note that the FTLE value is not 0 at this location in Figure 13 (a)).

The trajectories just follow a wave undulation across the airport in the east-west
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direction. Because 2D trajectories leave the domain and use linear extrapolation, it

gives rise to a bit larger stretching and a local FTLE ridge. From Figure 16 (b), it is

seen that trajectories in FLOWSTAR data also bear very weak horizontal separation.

The ridge structure in Figure 13 (b) is mainly due to such a weak separation. The

horizontal discrepancies in the backward time trajectories are better seen in Figure

13 (e) and Figure 14 (e). Both show a bit of separation in the visible domain. As

the trajectories leave the domain, the 3D trajectories follow an external shear flow

that has no separation (given as the upstream condition), yet the 2D trajectories

again undergo a linear extrapolation, where trajectories continue to separate, giving

rise to the slightly larger FTLE value seen in Figure 14 (e). The most interesting

comparison is in Figure 16 (c) for WRF data. Here, a large vertical displacement is

seen in the forward time trajectories. In the 3D trajectories, towards the northeast of

the examined initial conditions, the trajectories go underneath those starting towards

the southwest. Those starting towards the southwest pick up elevation quickly and

form large separation both vertically and horizontally. In fact these trajectories are

caught in a local vortex roll. The LIDAR scan sees first horizontal contraction (as

the east and west trajectories flip over) at low elevation near the LIDAR and then

horizontal separation in the higher elevation (as the west trajectories rotate with

the vortex roll). As seen, the incorporation of the vertical stretching contributes to

significant change of structure at this location.

In the context of flight operations, horizontal windshear is of more concern as

it directly relates to the lift of the airplane, the vertical separation could be due to

nonparallel shear leading nearby vertical trajectories into vastly different positions.

The airplane is less sensitive to this kind of separation. As such, we compute a

partial FTLE field, based on the separation of nearby horizontal trajectories (which
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Figure 18. FTLE fields computed from LOS velocity and 2D variational retrieval.
The panels are, left to right, data from RAMS, FLOWSTAR, WRF, and LIDAR,
respectively. The top panels are the forward time FTLE and the bottom panels are
the backward time FTLE.

are advanced with the full 3D velocity). This measure excludes the effects of direct

vertical separation but does incorporate horizontal separation as the trajectories enter

different elevations. Its use in atmospheric flows has been justified in (Tallapragada,

Ross, and Schmale 2011). The results of this computation are shown in Figure 17.

Figure 17 has the same layout as Figures 13 and 14. A most notable difference

between Figures 17 and 13 is the red spots near LIDAR. They disappear in Figure 17

because the vertical shear near ground has been excluded as the FTLE computation

only considered horizontal separations. As seen, these figures bear much better

correspondence with the 2D analyses, especially for RAMS and FLOWSTAR data

(when the vertical velocity was smaller as compared to WRF). Correspondence in

WRF between Figures 14 and 17 is still better than that between Figures 13 and

fig:conecomp2.

We show in Figure 18 comparison among LCS from LOS velocities. The panels

are, from left to right, RAMS, FLOWSTAR, WRF, and LIDAR scan. The plots in
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the top row show forward time LCS and those in the bottom row show backward time

LCS. For the model data, we first compute the LOS velocity on the LIDAR scanning

cone. Based on this data, we process the 2D variational retrieval outlined in section

2. The retrieved velocity is then processed with the FDFTLE algorithm. This fully

emulates the cycle of realistic LIDAR retrieval that is operational at HKIA. We first

contrast the LOS based 2D LCS to the previous 3D and 2D LCS results. It is quite

clear that all plots compare well with the features see in Figure 13 in the respective

model data sets. There is further degradation from the 3D results, but the structures

near LIDAR seem to be robust even undergoing the many approximations. Those

structures between the -1 NM windshear location and LIDAR seem to preserve their

shape especially well.

As a comparison to real data, we also show, in Figure 18 (d) and (h), LCS extracted

from LIDAR observed LOS. The WRF data seem to have the best match with LIDAR

generated LCS, although FLOWSTAR shows better correspondence in the orientation

of the structures. In addition, the RAMS data also has good correspondence with

LIDAR around the LIDAR. It is especially interesting to note that the mismatch

structure aligned with the landing trajectory in Figure 13 (c) is also present in Figure

18 (c) and (d), further ascertaining the match between the WRF data set and the

benchmark.

Using cross correlation among two-dimensional data sets (Gonzalez and Woods

2007; BozorgMagham, Ross, and I. 2013) in Figure 18, we confirm that the max

correlation between LIDAR and WRF is 35% for forward FTLE and 33% for backward

FTLE, between LIDAR and FLOWSTAR is 13% for forward FTLE and 32% for

backward FTLE and between LIDAR and RAMS is 30% for forward FTLE and 20%

for backward FTLE. This is generally consistent with the visual observations. Note
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that we only allow the shift in both longitudinal and latitudinal directions to be ±1

km to ensure that the correlation is meaningfully through nearby structures.

3.4.3 Comparisons with Onboard Measurements

In (Kafiabad, Chan, and Haller 2013), it is shown that the projected FTLE

gradient, defined as

σP = |∇σ · e|, (3.4)

where e is the direction along the glide path, yields better Receiver Operating

Characteristic (ROC) graphs as compared to the FTLE value or norm of FTLE. As

such, in this subsection we contrast FTLE value σ and the projected FTLE gradient

σP for results from the various schemes at hand. In order to provide a ROC graph,

large numbers of cases need to be analyzed. Here we only focus on one reported

windshear case and contrast only the backward time measures, which are more relevant

to jolts experienced by the aircraft.

We show our detailed comparison in Figure 19. The left three columns of Figure

19 are from three-dimensional simulation data (RAMS, FLOWSTAR, AND WRF,

resp.) and the last column is from LIDAR scans. The x-axis is the distance from

the runway threshold along the glide path, and the y-axis is the relevant Lagrangian

measures. The top panels are from the FTLE values σ and the bottom panels are from

the projected FTLE gradients σP . The gradients are also scaled by 10 NM to place

the curves in similar scale. In each panel, the black curve is the vertical acceleration

measured onboard. As seen, there are several spikes from -1 NM towards the runway

threshold, where a very large spike appears. Windshear was reported at -1 NM. In
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Figure 19. Lagrangian measures compared to vertical acceleration measured onboard
an aircraft. From left to right, the data is from RAMS, FLOWSTAR, WRF, and
LIDAR scans. Only backward time measures are computed since they are relevant to
jolts experienced onboard. The top panels are the FTLE values interpolated along
the glide path, and the bottom panels are the projected FTLE gradient. A strong
windshear is reported at -1 NM from the runway threshold (0 in the x-axis). The
black curves in each panel are vertical acceleration measured from the aircraft. For
the left three columns, the blue, red, and greed curves correspond to data
interpolated from the reduced FTLE, 2D FTLE, and LOS based FTLE. In the right
column (from actual LIDAR data), the blue curves are LOS based FTLE.

the left three columns, the blue, red, and green curves correspond to 3D (reduced

FTLE in Figure 26), 2D, and LOS based FTLE interpolations. In the right column,

since only 2D information is available, the blue curves are LOS based FTLE. These

curves are shifted up by 0.4 for clarity of the figure.

The RAMS data in Figure 19 (a) and (e) show consistency with the major spikes.

In particular, the 3D (blue) and 2D (red) FTLE from RAMS do have (relatively

small) spike at -1 NM. Although a spike is not found precisely at -1 NM for the LOS

based FTLE (green) in Figure 19 (a), a major peak is found nearby. As such, in the

projected gradient field σP (Figure 19 (e)), a spike is found at -1 NM for the green
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curve. In fact, in this plot, several other spikes are identified leading up to the spike

at the runway threshold, with good correspondence in the precise locations of spikes

from all three schemes of FTLE extraction. As for the major peak at the runway

threshold, minor spikes can be found to the right of this peak in all schemes.

The 3D (blue) and 2D (red) FLOWSTAR data in Figure 19 (b) and (f) show little

correspondence with the actual vertical acceleration experienced onboard. Again, this

may be due to the fact that FLOWSTAR is more driven by the topography instead of

the physics, and so a precise match cannot be found. However, we still do identify

spikes in the LOS based σ and σP fields (green) that can be related to major spikes

at -1 NM and at the runway threshold.

The WRF data in Figure 19 (c) and (g) picks up the spikes at -1 NM most

significantly. Both the 2D (red) and LOS based (green) σ and σP show spikes at -1

NM, yet the 3D (blue) and LOS based (green) σ and σP show spikes at the runway

threshold. A minor peak can also be identified in the 3D (blue) curves around -1 NM.

This minor structure can be identified near the diamond in Figure 26 (f).

Most relevant to operations, the LIDAR scan shows strong spiking behavior at -1

NM and the runway threshold, indicating the good correspondence between the two

measurement data. Comparing the LOS based FTLE, it can be seen that WRF data

most closely mimic those from the LIDAR in Figure 19.

To quantify the correlation among the many graphs shown, we focus on the relation

between the vertical acceleration profile and the LIDAR based FTLE (the rightmost

column in Figure 19), as well as the relation between the LOS based FTLE from the

three models (green curves in the left three columns of Figure 19) and the LIDAR based

FTLE. The first comparison shows the effectiveness of the LIDAR based algorithm

for real-time forecasting, whereas the second shows the performance of the models to
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observations. Note that since FTLE and vertical acceleration are two entirely different

measures, one would not expect that the shape matches closely. As such, we first use

the conditional probability developed in (Tang, Chan, and Haller 2011b) to quantify

the effectiveness of LIDAR based FTLE in detecting actual jolts.

Consider vertical acceleration greater than 0.05g, where g is the gravitational

acceleration, being strong jolts (spikes above the black horizontal line), we look for

strong FTLE ridge (> 0.15 s−1) in the vicinity (150 m) of the jolts (spikes above the

blue horizontal line). The justification of these parameters is given in (Tang, Chan,

and Haller 2011b). For the landing approach analyzed here, we find that 1 out of 7 jolt

spikes is left unaccounted for, and 1 out of 6 FTLE ridges does not correspond to a

nearby jolt. Using FTLE gradient, again, 1 out of 7 jolt spikes is left unaccounted for,

and 3 out of 10 FTLE ridges do not correspond to a nearby jolt. In fact, using cross

correlation, the max correlation between the FTLE field and the vertical acceleration

profile is 55%, whereas that between the FTLE gradient and the vertical acceleration

is 57%.

We use cross correlation to measure the correlation of the model data with LIDAR.

At the respective maxima, in terms of the FTLE field, the LIDAR is 24% correlated

to RAMS, 39% correlated to FLOWSTAR, and 58% correlated to WRF. In terms of

the gradient, the LIDAR is 23% correlated to RAMS, 19% correlated to FLOWSTAR,

and 33% correlated with WRF. The high correlation between the LOS based WRF

data and LIDAR as well as the high correlation in their headwind profile led us to

believe that WRF best captures the details of the flow variation close to observations.
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3.5 Conclusions

The recently developed Lagrangian based turbulent structure extraction methods

near the Hong Kong International Airport bring forward great promise in accurate

detection of airflow hazards and prompt issuance of windshear warnings. The original

method is based on two-dimensional scans from light detection and ranging equipment,

going through a variational retrieval step. This huge loss of information necessitates

the need to validate the 2D methodology against 3D data sets to (i) verify that the

2D interpretations of 3D structure are correct; (ii) test if the Lagrangian extraction

methodology does capture major flow hazards; (iii) confirm that the LIDAR based

data (which has already gone through averaging in the measurements and modeling

in the variation retrieval step) is useful in representing the real atmosphere; and (iv)

compare with actual flight data and verify the applicability of the entire Lagrangian

based methodology.

In this study, we have conducted thorough comparisons to address the aforemen-

tioned needs. Our first comparison between full 3D LCS and 2D LCS from velocity

projections onto the LIDAR scanning cone indicates that there could be mismatches

when the stretching rate is evaluated from the vertical separations. A reduced FTLE

based on just the horizontal separation of trajectories shows good correspondence

between the 3D and 2D data, at least within 2 nautical miles from the LIDAR. This

confirms that our interpretation of 3D structures from 2D signatures is valid, at least

close to the LIDAR where the elevation is low.

Secondly, we emulate the LCS generation process as if the 3D velocity data is

the atmospheric truth. Line-of-sight (LOS) velocity on the LIDAR scanning cone is

interpolated and used to generate 2D velocity via a variational retrieval technique
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developed at HKIA. Our results show that, inside a 2-nautical-mile radius from LIDAR,

the LOS based LCS is again comparable to the reduced FTLE. This confirms the

applicability using LIDAR based LCS to interpret true atmospheric structures.

Thirdly, in order to test if the model data are truthful to real atmospheric conditions,

we compare the model based LIDAR emulated LCS to true LIDAR based LCS. It

is found that each model captures some feature of the true LIDAR based LCS, yet

those results produced from our WRF simulation match the best with LIDAR results.

The close match between WRF and truth, as well as the close relation between 3D

LCS and LOS based LCS from the WRF data set, suggest that the LIDAR based

LCS can be used to infer structures in the real atmosphere.

Finally, we compare the LCS results and actual jolts experienced onboard an

aircraft which attempted to land at the time of our analyses. It is found that our

Lagrangian indicators (most pronouncedly from WRF and LIDAR) capture well the

large acceleration experienced by the aircraft. This helps establish the point of using

Lagrangian measures as operational tools in the detection of safety-threatening and

comfort-compromising jolts during landings.

The close match between WRF and LIDAR data brings us hope to further refine

our Lagrangian methodology by improving the forecasting model data, which is

undertaken in the next chapter.
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Chapter 4

DATA ASSIMILATION OF LIDAR IN WRF AT THE HONG KONG

INTERNATIONAL AIRPORT, WITH APPLICATIONS TO LAGRANGIAN

COHERENT STRUCTURE ANALYSIS

4.1 Introduction

As mentioned in the introduction to Chapter 3, Lagrangian measures are a very

promising tool in improving windshear detection for landing aircraft at the Hong

Kong International Airport (HKIA). In fact, Lagrangian analysis using LIDAR data

at HKIA was first carried out in (Tang, Chan, and Haller 2011a, 2011b), and further

analyzed in (Kafiabad, Chan, and Haller 2013). We now use the three-dimensional

variational (3DVAR) data assimilation suite in the Weather Research and Forecast

(WRF) numerical weather model to incorporate the LIDAR line of sight velocity

readings into the WRF forecast. After a discussion on this process, we extract LCS

and compare to flight data.

4.2 WRF Model Settings

WRF was run using 6 nested domains with two-way feedback. The innermost nest

had a grid spacing of 150 m while the largest nest had a grid spacing of 36.45 km,

corresponding to a parent-child grid ratio of 3. The innermost nest was centered at

22.313 N, 113.92 E, the coordinates of the northern LIDAR at HKIA, and had 157

grid points in both the x and y directions, and so covered an area 23.4 km × 23.4 km.

70



The remaining nests each had 133 grid points in the x and y directions. 85 vertical

levels were used in an attempt to match the high horizontal resolution, with a uniform

spacing of about 15 m for the first 600 m of height, and then increasing in a non-linear

profile typical in WRF. This uniform layer was chosen to try and fully resolve the

flow within the LIDAR range.

The Thomson graupel scheme was used for microphysics, and the RRTMG

scheme used for both shortwave and longwave radiation (ra_lw_physics = 4,

ra_sw_physics = 4). The revised MM5 Monin-Obukohov surface layer scheme

(sf_sfclay_physics = 1) was used with the unified Noah land-surface model for surface

physics (sf_surface_physics = 2), together with the Yonsei University scheme for

the boundary layer parameterization (bl_pbl _physics = 1). The exception to this

was the sixth nest (the inner most nest) where no boundary layer parameterization

was used. The Tiedke scheme was used for cumulus parameterization (cu_physics

= 16), called every 5 minutes, with the exception again being the sixth nest, which

had no cumulus parameterization. The horizontal Smagorinsky first order closure

was used for the eddy coefficient (km_opt = 4), together full diffusion (diff_opt =

2). In the sixth nest, since the boundary layer parameterization was turned off, the

1.5 order TKE closure was chosen for the eddy coefficient (km_opt = 2). The initial

conditions and boundary conditions for the outermost nest were driven by the NCEP

FNL Operational Global Analysis data.

Since turbulence along the landing corridor is largely terrain driven, we further

considered the model topography. The highest resolution topography data included

by default in WRF has a resolution of 30 arcseconds, which is roughly about 900

m (depending on latitude). Since the finest nest has a grid spacing of 150 m, this

proved to be too poorly resolved for our purposes; The Advanced Spaceborne Thermal

71



Emission and Reflection Radiometer Global Digital Elevation Model (ASTER DEM)

data was therefore used, which provides terrain elevation every 1 arcsecond, roughly

about every 30 m. For a comparison, the highest peak on Lantau Island is about

934 m. Using the default 30 arcsecond topography results in an in-model peak of

655 m, whereas using the ASTER 1 arcsecond data results in an in-model peak of

860 m, which is much closer to the true value (generally speaking steep terrain can

cause numerical issues in WRF, and so the topography data is smoothed before used;

we used a single pass of this smoother. There is a trade-off between losing terrain

features via the smoothing and WRF requiring an unfeasible small time step due

to the steep terrain). If an inner nest spacing of 200 m were to be used, the height

of the in-model peak would have been 846 m. The extra computational cost of the

smaller grid spacing of 150 m and the steeper terrain topography was worthwhile,

since correcting the model using the LIDAR, but not incorporating enough of the

driving causes of the turbulence, would have most likely only resulted in transitory

changes where the forecast updates cannot be sustained between cycles.

4.3 Assimilation of LIDAR Scans into WRF

Assimilation of radar observations in the WRF model is implemented in the WRF

data assimilation system (WRFDA) using both three-dimensional (3DVAR) and

four-dimensional (4DVAR) variational methods (D.M. Barker et al. 2004; Huang

et al. 2009; D. Barker et al. 2012; Xiao et al. 2005; Wang et al. 2013; Choi, Lim, and

Lee 2013).

There are two long range LIDAR stations at HKIA, shown in Figure 20. Further

information concerning these systems and their deployment at HKIA can be found in
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(Shun and Lau 2002; Shun and Chan 2008; Chan and Lee 2012). We had data from

both the northern and southern LIDAR stations; the northern LIDAR scans at an

elevation of both 1.4◦ and 3◦, whereas the southern LIDAR scans at 3◦. We found that

the northern LIDAR generally provided superior results, possibly due to the southern

LIDAR being in closer proximity to Lantau Island. We used the observations from

both the scanning angles from the norther LIDAR, since a typical airplane landing

trajectory lies between the two scans. The LIDAR data is provided from HKIA on

a grid with 100 m spacing, which was interpolated onto a grid with horizontal grid

points matching that of WRF. WRFDA requires that radar observations are input

with latitude/longitude coordinates to 3 decimal places; with this high resolution

LIDAR data distinct data points sometimes had identical rounded coordinates, so this

interpolation resolved such conflicts. This also resulted in the location of the LIDAR

station to be rounded, and so they are not exact. Such details are insignificant at the

length scales of typical radar assimilation, but may be worth noting in this context.

Any anomalous data needed to be masked out before input into WRFDA. Depending

on weather conditions, this ranged from relatively few data points to a majority of the

LIDAR readings; the performance under these range of conditions will be discussed

below in our case studies. Typically, though, around 5100 LIDAR observations were

assimilated at each step. New LIDAR data is available for each elevation angle about

every 140-150 s. Note that each complete LIDAR scan is regarded to be an observation

at a single point in time.

As mentioned above, the higher resolution topography data resulted in a longer

computational time, one of the consequences of which was that we could only feasibly

use 3D-VAR and not 4D-VAR. 4D-VAR requires integrating the tangent linear and

adjoint models forward and backward in time, respectively, and we found that we
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needed to take an extremely small time step to avoid blow up. So small, in fact, that

integrating forward the necessary time to incorporate even a single additional LIDAR

scan took an untenable amount of time. Integrating 4D-VAR any shorter amount of

time would be functionally the same as 3D-VAR.

A key component of variational data assimilation are the background and observa-

tion error statistics. WRFDA allows for the creation of background error statistics

particular to the domain under consideration or the use of a default statistics file. We

chose to use the default statistics information (i.e. we used the NCEP background

error model). We also chose to give a lot of trust of the LIDAR data, and so tailored

the observation error statistics to this end. More careful consideration of each of these

points would be required for any operational implementation, but our current aim

is rather to extend the analysis from Chapter 3 by matching as close as possible the

WRF model to the LIDAR observations. When the generic background error statistics

are used certain tuning parameters need to be set, corresponding to the length scales

of different control variables. We found, through simple trial and error, a combination

of that worked very well, although it is certainly possible the combination we chose is

not the most optimal.

There is also the question of when to stop the iterative process that minimizes

the cost function. Typically in WRFDA the stopping condition is set to be a factor

that the norm of the gradient of the cost function is reduced by, for instance, stop

when the norm of the gradient is, say, 10% of its original value. We instead set

the number of inner loop iterations to run, finding in our cases that 1-5 iterations

provided a good balance of matching the observations while at the same time keeping

the flow physically realistic. Of course, with the complex interactions between the

observation error statistics, the background error statistics, and the control variable
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parameter settings, this number is likely very specific to our specific case. Six outer

loop iterations were performed. WRFDA also allows for the automatic removal of

any observations that cause too large an innovation, but we disabled this feature.

We found this necessary for any improvements in regions where the WRF model

performed particularly poorly as compared to the LIDAR observations, since in these

regions larger innovations are necessarily required. Furthermore, any “clutter” in the

LIDAR data was removed prior to running WRFDA, and so erroneous LIDAR data

was not driving the large innovations.

To be very clear, most of our choices here were empirical and heuristic in nature,

and would need to be reconsidered and/or refined before operational implementation.

But, again, our interests here are in improving the Lagrangian analyses found in

(Tang, Chan, and Haller 2011a, 2011b; Kafiabad, Chan, and Haller 2013) and Chapter

3 rather than, at this point in time, trying to setup an operational WRF forecast at

HKIA.

The cycling scheme we used was the following: suppose that at time t0 we have

LIDAR data. We take the WRF model output from our innermost nest at this time

as input to WRFDA. We perform the data assimilation and take the output to be

the new WRF input file for that nest. We then run WRF until time t1, the next

time there is available LIDAR data, at which point WRF is stopped and assimilation

performed again. The output is again copied to be the new input to WRF and the

model restarted, the procedure cycling in this manner. Since the LIDAR data is

localized near HKIA, we only perform data assimilation on the innermost nest; there

is little point in trying to assimilation LIDAR scans, which have a maximum possible

range at HKIA of about 10 km, into, say, the outermost nest whose grid spacing is
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Figure 20. The magnitude of the difference in the radial velocity between WRF and
3◦ LIDAR on 2009-02-21 at 07:50:10. (a) No data assimilation. (b) Data Assimilation

36.45 km. Nest feedback is the only route by which the LIDAR information propagates

to the other nests.

4.4 Case Studies

Two different case studies, on 2008-04-19 and 2009-02-21, were analyzed to test

the data assimilation procedure described above. The days, and times chosen on these

days, where chosen to correspond to available flight data; see (Tang, Chan, and Haller

2011a, 2011b), and Chapter 3, for more information.

4.4.1 2009-02-21

A high pressure ridge over the southeast coast of China caused strong easterly

winds at HKIA, with rain affecting the range of the LIDAR throughout the course of

the day. WRF was spun up starting at 06:00:00 and run until 07:50:10, when the data

assimilation was started. This first cycle used LIDAR observations from the 3◦ scan.

76



Figure 20 shows the magnitude of the difference between the radial velocity, given by

WRF, and the LIDAR observations; panel (a) corresponds to no data assimilation,

panel (b) after data assimilation. As can be seen, the data assimilation results match

very closely with the LIDAR scans. Such a close match is only beneficial, however,

as long as the resulting flow is still physically realistic and useful. Figure 21 shows

a before and after comparison of the horizontal (the vector fields) velocity together

with a color plot of the vertical velocity. As before, panel (a) is the WRF model with

no data assimilation, panel (b) after data assimilation. There are some immediate

things to note in this comparison. First, the direction of the flow has changed subtly,

with a more northward tendency than the base WRF model. This is most clearly

seen in the w-component color plot, where the streaks downwind from Lantau Island

have changed direction. Second, the data assimilation has resulted in a region of very

strong vertical motion to the east of the landmass north of Lantau Island. There

now appears to be a backflow as the air hits the landmass, rather than being carried

directly over in the base WRF case. This may be a result of the slight change of the

flow direction after data assimilation. It was found that such a change resulted in

virtually every parameter change in WRFDA that produced a better radial velocity

match with the LIDAR. With this in mind, and since this region doesn’t significantly

affect the forward or backward time LCS near HKIA, we decided that such a change

was acceptable. Third, the flow in the region to the west of HKIA has been changed

fairly significantly, in terms of structure, indicating that along the landing corridor

the WRF model may now yield LCS that match even better with those produced by

LIDAR alone.

The next LIDAR data was available at 07:51:10, for the 1.4◦ scan. This presented

an interesting check for the consistency in the flow changes made by WRFDA. One
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Figure 21. The horizontal velocity field at z = 100 m, together with a color plot of
the w-component of velocity. (a) No data assimilation. (b) Data assimilation

would hope that the changes made to better match the LIDAR observations from the

3◦ scan at 07:50:10 would provide a forecast that would, as a baseline, better match

the LIDAR observations for the 1.4◦ at 07:51:10. In other words, can both LIDAR

scans be used to improve the WRF forecast, or will the changes made at one cycling

step be undone at the next? If so, then we would need to only use one angle scan

rather than both. The comparison is made in Figure 22, which shows the magnitude

of the difference in the radial velocity from WRF and from the 1.4◦ LIDAR at 07:51:10.

In panel (a), no data assimilation was performed. In panel (b), data assimilation

from the 3◦ scan at 07:50:10 was performed, then WRF cycled until 07:51:10 - but no

data assimilation was performed at 07:51:10. Finally, in panel (c), data assimilation

from the 3◦ scan at 07:50:10 was performed, then WRF cycled and data assimilation

performed at 07:51:10 using the 1.4◦ LIDAR observations. As clearly seen in panel

(b), the changes made at 07:50:10 resulted in a more accurate forecast at 07:51:10,

in other words, the changes made in WRF are consistent between the two scanning

angles for the northern LIDAR. As such, it appears that it would be beneficial to
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Figure 22. The magnitude of the difference in the radial velocity between WRF and
the 1.4◦ LIDAR on 2009-02-21 at 07:51:10. (a) No data assimilation. (b) Data
assimilation performed at 07:50:10 using the 3◦ LIDAR observations. (c) Data
assimilation performed at 07:50:10 using the 3◦ LIDAR observations and data
assimilation performed at 07:51:10 using the 1.4◦ LIDAR observations.

use the scans at both angles in any data assimilation implementation. We also note

in Figure 22 panel (c) that while the data assimilation at 07:51:10 did reduced the

error, the improvement was not as good as it was at 07:50:10, as seen in Figure 20 (b).

There are two plausible explanations for this, the first being that since the LIDAR

scan at 1.4◦ is closer to the ground there may be issues with the WRF generated flow

near-ground. For instance, the lowest model level of WRF near HKIA turned out to

be around 30 m. Secondly, we may be able to further tune the parameters in WRFDA

to get a closer match, but in terms of operational simplicity it may be better to have

a uniform choice of parameters for each scan.

4.4.2 2008-04-19

A tropical cyclone made landfall and moved inland, causing strong southerly winds.

In our times of interest there was no rain, and so the LIDAR coverage is very good.

WRF was spun up starting at 12:00:00, and run until the assimilation cycling started

at 13:40:10.
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Figure 23. The magnitude of the difference in the radial velocity between WRF and
3◦ LIDAR on 2008-04-19 at 13:40:10. (a) No data assimilation. (b) Data Assimilation

In Figure 23 we compare the magnitude of the difference in the radial velocity

between WRF and LIDAR, similar to Figure 20. We again see that our data assimila-

tion scheme results in a radial velocity that closely matches the LIDAR observations.

In Figure 24 shows a before and after comparison of the horizontal (the vector fields)

velocity together with a color plot of the vertical velocity. As before, panel (a) is the

WRF model with no data assimilation, panel (b) after data assimilation. This figure

is similar to Figure 21 above. We first note that there are very minimal changes made

to the vertical velocity, in contrast with with what we found for the 2009-02-21 case.

Comparison of the flow direction between the two panels shows that there are changes

made in certain regions, but the bulk flow generally has the same characteristics pre

and post data assimilation.

To make a similar comparison as in the 2009-02-21 case, we next run WRF until

13:41:30, when a 1.4◦ scan is available. We make a similar comparison for consistency

in Figure 25. Panel (a) shows the magnitude of the difference in radial velocity between

WRF and LIDAR with no data assimilation, panel (b) shows the difference between
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Figure 24. The magnitude of the difference in the radial velocity between WRF and
3◦ LIDAR on 2008-04-19 at 13:40:10. (a) No data assimilation. (b) Data Assimilation

WRF and LIDAR at 13:41:30, before performing assimilation with the LIDAR data

available at that time, and panel (c) shows the difference after data assimilation of the

1.4◦ LIDAR scan at 13:41:30. As can be seen, the changes made in WRF are again

consistent between the LIDAR scanning angles. Figure 26 shows the comparison for

one more cycle, incorporating the next 3◦ at 13:42:40. The panel layout is the same.

Again, we note the consistency between the different scanning angles, and therefore

use such a cycling scheme in the comparisons done below.

4.5 Comparisons of LCS and to Onboard Flight Data

We now use our results to extract LCS, and compare to onboard flight data. In other

words, how does the LIDAR data assimilation into WRF affect the correspondence

between vertical accelerations and LCS. In Chapter 3 there were three comparisons

made between the LIDAR LCS and LCS generated from WRF data - computing

81



Figure 25. The magnitude of the difference in the radial velocity between WRF and
the 1.4◦ LIDAR on 2008-04-19 at 13:41:30. (a) No data assimilation. (b) Data
assimilation performed at 13:40:10 using the 3◦ LIDAR observations. (c) Data
assimilation performed at 13:40:10 using the 3◦ LIDAR observations and data
assimilation performed at 13:41:30 using the 1.4◦ LIDAR observations.

Figure 26. The magnitude of the difference in the radial velocity between WRF and
the 1.4◦ LIDAR on 2008-04-19 at 13:42:40. (a) No data assimilation. (b) Data
assimilation performed at 13:41:30 using the 1.4◦ LIDAR observations. (c) Data
assimilation performed at 13:42:40 using the 3◦ LIDAR observations and data
assimilation performed at 13:41:30 using the 1.4◦ LIDAR observations.

the full three-dimensional LCS, and then projecting onto the LIDAR scanning cone,

projecting the three-dimensional wind velocity onto the LIDAR scanning cone, and

then extracting the resulting two-dimensional LCS, and finally, computing the line of

sight velocity from WRF onto the LIDAR scanning cone, running the two-dimensional

wind retrieval algorithm, and then extracting LCS. We chose the second of these

cases; if we were to run the wind retrieval algorithm after computing the line of

sight velocity, we would not expect any difference from the LIDAR generated LCS,

since as shown in the above section after data assimilation the line of sight velocity
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Figure 27. Airplane landing data in comparison to LCS for a missed approach at
14:03:40 on 2008-04-19. (a) Approach path superimposed on backward-time LCS
based on the 3◦ LIDAR scan. (b) Approach path superimposed on backward-time
LCS computed from WRF . (c) Approach path superimposed on backward-time LCS
computed from WRF, using data assimilation. (d) Comparison between positive
vertical acceleration and backward-time FTLE. Vertical acceleration measured
onboard the aircraft is shown in blue, with values less than 0.05g removed. The red
line is the backward-time FTLE computed from the 3◦ LIDAR scan, interpolated
along the flight path. (e) Comparison between positive vertical acceleration and
backward-time FTLE, computed in WRF. (f) Comparison between positive vertical
acceleration and backward-time FTLE, computed in WRF, using data assimilation.
The black vertical lines highlight locations where LCS are correlated with vertical
acceleration. The origin corresponds to the northern LIDAR.

in WRF matches very closely with the LIDAR. We choose not to project the full

three-dimensional LCS since we are interested in flow structures significant enough

to register on the LIDAR. The integration time is 5 minutes and the finite domain

extension from (Tang, Chan, and Haller 2010) was also used. Note that as argued

in (Tang, Chan, and Haller 2011a, 2011b), ridges in the forward-time FTLE should

generally correspond to vertical downdrafts, hence a negative vertical acceleration

measured onboard the aircraft, whereas a backward-time FTLE ridge should generally

correspond to a vertical updraft, ie a positive vertical acceleration measured onboard.
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4.5.1 2008-04-19

The first flight we analyze is from an aborted landing at about 14:03:40. We use

the 3◦ scan, since we have data from this scan at a time very close to the landing

attempt. In Figure 27 we compare the airplane landing data with backward-time

LCS. Panel (a) shows the LCS generated from LIDAR, panel (b) LCS generated from

WRF, and panel (c) LCS generated from WRF, after data assimilation. In each panel,

the red line indicated the landing path of the aircraft. In panels (d) through (f) we

compare the corresponding FTLE with vertical acceleration measured onboard the

aircraft. Panel (d) corresponds to the LIDAR FTLE, panel (e) the WRF FTLE, and

panel (f) the WRF, data assimilation FTLE. We remove all vertical acceleration values

less than 0.05g, as justified in (Tang, Chan, and Haller 2011b). The black vertical lines

highlight locations where the LCS and vertical acceleration are correlated, with a line

drawn if the corresponding peaks are within 150 m; this distance is again explained in

(Tang, Chan, and Haller 2011b).

Immediately, we first note that both WRF cases yield LCS more complex than

the LIDAR, as explained in Chapter 3, and as expected. Second, in comparing the

LCS in the top three panels, we see that the base WRF model, in panel (b), shows

structures oriented north-south, whereas the LIDAR, in panel (a), yields structures

oriented more to the northeast. Something similar was seen in Chapter 3 in Figure 18,

where there was also a misalignment in the LCS as compared to WRF and LIDAR.

As panel (c) shows, the data assimilation is successful in aligning the flow structures

to match the LIDAR LCS. This is critical, since if not, any correlation between WRF

generated LCS and vertical accelerations would prove to be mostly coincidental if the

flow structures are consistently misaligned along the landing paths. In other words,
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data with many peaks will often show correlations, the question for us is whether

the vertical accelerations measured onboard correlate to the actual LCS that cause

the accelerations in WRF. For instance, in Figure 27, panel (b), at roughly (5,2), we

see that a strong FTLE ridge corresponds very closely to an acceleration peak. But,

comparing to the LIDAR LCS in panel (a), we see that the most likely corresponding

structure should intersect the flight path at roughly (5.5,2), and so that particular

LCS most likely didn’t cause the specific vertical acceleration that WRF would predict.

Panel (c) shows a correspondence that matches the LIDAR very closely, comparing

the same FTLE ridge to its matching acceleration peak.

Further analyzing the LCS shown in panels (a) through (c) shows the effects of

the data assimilation. The vertical FTLE ridge in panel (b) that starts at the point

(3,0) has a break as we move vertically, whereas the same ridge in panel (c) has no

such break. Comparing to the LIDAR LCS, there is no such break. On the right hand

side of panel (a) we see a ridge (intersecting the x-axis at the point (5.75,0)) missing

in panel (b), which is recovered by the data assimilation in panel (c). The ridge in

panel (a) that starts at the point (2,0) most likely corresponds to the ridge starting at

roughly (2.75,3.25) in panel (b) and the point (3,2.5) in panel (c). We note that this

ridge is broken in both panels (b) and (c), an example of the data assimilation either

not being able to correct the fundamental error in WRF, or the LIDAR not being able

to capture the true flow LCS. We also see that the two left most ridges in panel (c) are

somewhat farther apart that they are according to the LIDAR information in panel

(a). However, from a qualitative perspective, it is clear that the data assimilation

results in a good correspondence between the WRF and LIDAR LCS.

Moving to panels (d) through (f), we see a good correlation between FTLE peaks

and vertical accelerations, as found in (Tang, Chan, and Haller 2011b; Kafiabad,
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Chan, and Haller 2013). The base WRF model in (e) is impressive at first glance,

but remember the fundamental structure misalignment discussed above. As a first

rough analysis, the LIDAR LCS was correlated to 7 significant vertical jolts as seen

in panel (d), out of the roughly 11 experienced by the aircraft during the landing

attempt. After data assimilation we see in panel (f) that the WRF LCS were also

correlated with 7 jolts. Recall that we consider an FTLE ridge within 150 m of an

aircraft jolt as a correlated to that jolt. It is worthwhile to compare in panels (d) and

(f) the jolts are are identified with LCS and those that are not. The most significant

jolt is experienced by the airplane at about x = 1.25 km, which the LIDAR LCS picks

up, but the WRFDA LCS does not. However, we see in panels (a) and (c) that the

FTLE ridge that causes the jolt is likely the same (the ridge starting at roughly (1,0)

in panel (a) and roughly (1.25,0) in panel (c)), so this is more of a result of our 150 m

criterion, coupled with the WRF mis-alignment bias, that a fundamental issue with

the WRF LCS. Furthermore, while the exact value of the FTLE is not particularly

relevant in terms of the size of the experienced jolt, the size of the FTLE peak is

related to the robustness of the LCS in identifying jolts. As such, the strong ridge

signature in panel (f) could be considered an improvement over the LIDAR FTLE in

panel (a).

Along these lines, the jolt identified at x = 4 in panel (d) corresponds to a very

weak FTLE signature, whereas in panel (f) the signature is more pronounced. This is

similar to the jolt at around x = 6.5 in panel (d); the FTLE ridge is so weak, there

is a valid question of whether that should be considered a true correlation. WRF

misses this jolt entirely in panel (f), which suggests that it may indeed be spurious.

We see in panel (f) that the jolts at x = 3 and x = 5.75 are correlated with FTLE

ridges, whereas with LIDAR in panel (d) they are not. There is also an FTLE ridge
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Figure 28. Airplane landing data in comparison to LCS for a missed approach at
13:46:40 on 2008-04-19. (a) Approach path superimposed on backward-time LCS
based on the 1.4◦ LIDAR scan. (b) Approach path superimposed on backward-time
LCS computed from WRF . (c) Approach path superimposed on backward-time LCS
computed from WRF, using data assimilation. (d) Comparison between positive
vertical acceleration and backward-time FTLE. Vertical acceleration measured
onboard the aircraft is shown in blue, with values less than 0.05g removed. The red
line is the backward-time FTLE computed from the 3◦ LIDAR scan, interpolated
along the flight path. (e) Comparison between positive vertical acceleration and
backward-time FTLE, computed in WRF. (f) Comparison between positive vertical
acceleration and backward-time FTLE, computed in WRF, using data assimilation.
The black vertical lines highlight locations where LCS are correlated with vertical
acceleration. The origin corresponds to the northern LIDAR.

close to the jolt at x = 4.75 in panel (f) that falls just outside our 150 m threshold

which is missed by the LIDAR in panel (d). After this more careful analysis, there is

a very strong case that the WRFDA LCS provides an improvement in jolt detection

relative to the LIDAR, at least for this particular case. Again, this is somewhat

expected, since the data assimilation incorporates the LIDAR information into the

full three-dimensional WRF flow, but it does illustrate the potential for the advanced

prediction of jolts using WRF.

We now analyze another aborted landing in Figure 28, this time from 13:46:40.

In this case, we used the 1.4◦ LIDAR to compare to, since a scan at that angle was

closest to the landing attempt. This will also serve as a comparison between the
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two scanning angles. The panels are similar as in Figure 27. We again see a similar

improvement in the LCS after data assimilation. It is interesting to note, however,

that a different choice of the background error scaling parameters was used in this

case when the data assimilation was run. This is likely due to the fact that the 1.4◦

LIDAR readings are taken closer to the ground level as compared to the 3◦ scan. We

again see that the base WRF model has a slight alignment error of the FTLE ridges,

which the data assimilation corrects. Comparing the major structures, we see that 3

of those from WRF agree well with the LIDAR data. Comparing the LCS structure

between the base WRF case in panel (b) and the WRF data assimilation case in panel

(c), we notice that at a flight distance of greater than about 4 km from the LIDAR

there is not very good agreement with any vertical jolts at all. This is likely due

to the fact that the base WRF forecast yielded such misaligned structures that the

corrections needed were more than the data assimilation could provide. We see a sort

of horizontal connecting structure that forms a sort of arch shape (between the points

(2,0) and (4.75,0) in panel (b) and between the points (3.75,0) and (5.25,0) in panel

(c)). Similar structure was seen in Figure 27, a feature not seen on the LIDAR scans.

We can see that the under the action of the data assimilation, the arch is moved out

along the flow direction; presumably, in an ideal scenario it would “break”, leaving the

two unconnected streaks as seen in panel (a).

In panel (d) we see that the LIDAR extracted LCS has correspondence with 7 out

of the 12 jolts, whereas after data assimilation the WRF generated LCS correlate well

with 7 as well, as seen in panel (f). The major jolt at x = 1 appears to be better

identified by LIDAR, whereas the significant jolt at x = 4 is better identified by WRF.

While the improvement in the correspondence between the jolts and FTLE ridges in
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Figure 29. Airplane landing data in comparison to LCS for a missed approach at
14:03:40 on 2008-04-19. (a) Approach path superimposed on forward-time LCS based
on the 3◦ LIDAR scan. (b) Approach path superimposed on forward-time LCS
computed from WRF . (c) Approach path superimposed on forward-time LCS
computed from WRF, using data assimilation. (d) Comparison between negative
vertical acceleration and forward-time FTLE. Vertical acceleration measured onboard
the aircraft is shown in blue, with values less than 0.05g removed. The red line is the
forward-time FTLE computed from the 3◦ LIDAR scan, interpolated along the flight
path. (e) Comparison between negative vertical acceleration and forward-time FTLE,
computed in WRF. (f) Comparison between negative vertical acceleration and
forward-time FTLE, computed in WRF, using data assimilation. The black vertical
lines highlight locations where LCS are correlated with vertical acceleration. The
origin corresponds to the northern LIDAR. Note that the vertical acceleration shown
as been multiplied by -1.

WRF is not as pronounced in this case as the above case, we again see that using the

WRF flow data we generally get a more robust correspondence.

We now considered the forward-time LCS, first for the aborted landing at 14:03:40.

The layout in Figure 29 is as in Figures 27 and 28. Note that we have multiplied the

vertical acceleration of the aircraft in panels (d) through (f) by -1 (this is done to make

the comparison with the FTLE field easier visually - remember, ridges in the forward-

time FTLE should correspond to downdrafts, hence minima in the vertical acceleration,

and so multiplying by -1 results in a comparison of maxima to maxima). We note, as
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in the backward-time cases discussed above, that the forward-time structures from

WRF in panel (b) are misaligned, and that the data assimilation results in a correct

to generally match the orientation of the LIDAR based LCS in panel (a). Comparing

major structures, we see that the LIDAR LCS in panel (a) there appear to be two

dominant “hairpin” structures rooted at around (1.5, 0) and (3.75, 0). There is not

a particular good correspondence after data assimilation in the WRF LCS in panel

(c), although we do see a hint of a match for the structure at (3.75, 0). The structure

intersecting the flight path at (3, 1.5) in panel (a) does have good correspondence in

panel (c). In panel (a) there is also a hint of a hairpin structure at (6, 0), which we

clearly see in panel (c).

We see in panel (d) that the LIDAR LCS correspond to 8 out of the 11 jolts

experienced by the aircraft. In panel (f), we have a correspondence to 6 jolts. However,

we again see some misses due to the 150 m threshold we have chosen. For instance,

the jolt at about x = 6 is identified weakly by the LIDAR, whereas in panel (f) there

is an FTLE ridge at about x = 6.2 that may have caused the jolt. Looking at the jolts

between x = 3 and x = 6, we see that the WRFDA LCS in panel (f) we probably have

a better qualitative correspondence with the FTLE peaks, having 5 fairly pronounced

ridges in that range, whereas the LIDAR FTLE ridges in panel (d) are noisier, the LCS

structures having been “spread” out in WRF in panel (c) as compared to panel (a). In

fact, qualitatively speaking, the only mismatch in the WRF after data assimilation is

the FTLE peak at about x = 0.75, otherwise there is a very promising general match

in panel (f) between the FTLE curve and the aircraft jolts.

Figure 30 is as Figure 29, but for the landing at 13:46:40. Comparing major

structures, we see that there are not many LCS structures seen in panel (a) before

about x = 1.75 to compare to, although we do notice the structure in panel (a)
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Figure 30. Airplane landing data in comparison to LCS for a missed approach at
13:46:40 on 2008-04-19. (a) Approach path superimposed on forward-time LCS based
on the 1.4◦ LIDAR scan. (b) Approach path superimposed on forward-time LCS
computed from WRF . (c) Approach path superimposed on forward-time LCS
computed from WRF, using data assimilation. (d) Comparison between negative
vertical acceleration and forward-time FTLE. Vertical acceleration measured onboard
the aircraft is shown in blue, with values less than 0.05g removed. The red line is the
forward-time FTLE computed from the 1.4◦ LIDAR scan, interpolated along the
flight path. (e) Comparison between negative vertical acceleration and forward-time
FTLE, computed in WRF. (f) Comparison between negative vertical acceleration and
forward-time FTLE, computed in WRF, using data assimilation. The black vertical
lines highlight locations where LCS are correlated with vertical acceleration. The
origin corresponds to the northern LIDAR. Note that the vertical acceleration shown
as been multiplied by -1.

starting at about (1.5, 2.5) does appear in panel (c). We notice that in panel (a) we

see a hairpin structure originating around (1.75,0), which is also seen in panels (b)

and (c). The structures intersecting the flight path at around x = 3 and x = 3.75

in panel (a) appear also in panel (c). There is also a rough correspondence for the

structure intersecting the flight path around x = 5 and x = 5.5, although the detail in

the LIDAR panel is much finer than the WRF data assimilation LCS in panel (c).

In panel (d) we find that the LIDAR LCS correspond to 11 of the 12 aircraft jolts,

whereas the WRF data assimilation LCS correspond to 8 out of the 11, seen in panel

(f).
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Figure 31. Airplane landing data in comparison to LCS for a successful approach at
07:52:20 on 2009-02-21. (a) Approach path superimposed on backward-time LCS
based on the 3◦ LIDAR scan. (b) Approach path superimposed on backward-time
LCS computed from WRF . (c) Approach path superimposed on backward-time LCS
computed from WRF, using data assimilation. (d) Comparison between positive
vertical acceleration and forward-time FTLE. Vertical acceleration measured onboard
the aircraft is shown in blue, with values less than 0.05g removed. The red line is the
backward-time FTLE computed from the 3◦ LIDAR scan, interpolated along the
flight path. (e) Comparison between positive vertical acceleration and backward-time
FTLE, computed in WRF. (f) Comparison between positive vertical acceleration and
backward-time FTLE, computed in WRF, using data assimilation. The black vertical
lines highlight locations where LCS are correlated with vertical acceleration. The
origin corresponds to the northern LIDAR.

4.5.2 2009-02-21

In Figure 31 we show the backward-time LCS for a successful landing at around

07:52:20, using the 3◦ scanning angle. The panel organization is the same as the above.

Note that at this time airplanes are landing on the northern runway from the opposite

direction as the cases discussed above. Results analogous to those discussed above

are seen on this day as well; we note again the general mis-alignment of the LCS

structures in the base WRF LCS. After data assimilation, we see a good qualitative

agreement between the LIDAR extracted LCS and the WRF generated LCS. However,
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Figure 32. Airplane landing data in comparison to LCS for a missed approach at
08:37:40 on 2009-02-21. (a) Approach path superimposed on backward-time LCS
based on the 1.4◦ LIDAR scan. (b) Approach path superimposed on backward-time
LCS computed from WRF . (c) Approach path superimposed on backward-time LCS
computed from WRF, using data assimilation. (d) Comparison between positive
vertical acceleration and backward-time FTLE. Vertical acceleration measured
onboard the aircraft is shown in blue, with values less than 0.05g removed. The red
line is the backward-time FTLE computed from the 1.4◦ LIDAR scan, interpolated
along the flight path. (e) Comparison between positive vertical acceleration and
backward-time FTLE, computed in WRF. (f) Comparison between positive vertical
acceleration and backward-time FTLE, computed in WRF, using data assimilation.
The black vertical lines highlight locations where LCS are correlated with vertical
acceleration. The origin corresponds to the northern LIDAR.

in panel (a) we see that the structures starting at the points (−4,−3) and (−2,−3)

collapse together at roughly (−6,−0.5), however in panel (c) we do not get the same

intersection in the data assimilation structures. There is a good agreement in the

structures that start at (−2,−3). There is a faint streak starting at (−1,−3) in panel

(c) that corresponds to a much stronger signature originating at the same point in

panel (a).

In Figure 32 we show the backward-time LCS for an aborted landing at around

08:37:40, with the same panel layout as before. We use the 1.4◦ LIDAR for this flight.

As before, we see a good general qualitative agreement between the LIDAR LCS in
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panel (a) and the post data assimilation WRF LCS in panel (c). There is a ridge

in panel (c) starting at (0,−3) that shows a good correspondence to the structure

in panel (a) starting at roughly the same point, although the ridge is fainter as it

approaches that point. Note that in panel (a) there is another structure, starting at

about (−1,−3) that comes very close to the aforementioned structure at about the

point (−2,−2), however in panel (c) the two corresponding structures do not converge.

We also see generally good qualitative agreement in structures starting at the points

(−2,−3), (−3,−3), and (−4,−3). We also see that there are a lot more structures to

the left of x = −5 in panel (c) than there are in panel (a) - there appear to be some

streaks that may match, but such a correspondence may be happenstance. We again

note the direction mismatch in the base WRF panel (b).

Due to the more involved LCS, making any direct comparison with the airplane

jolts more tenuous in panels (d) through (f) than in the previous cases. We can see

that the two jolts identified by the LIDAR in panel (d) at around x = −6.75 and

x = −6 are identified fairly weakly, whereas in panel (f) one jolt is not within 150 m

of any FTLE peak in WRF. However, between x = −7 and x = −3 the WRF LCS in

panel (f) would be interpreted as predicting a jolt filled landing, even if the peaks are

not within the threshold, which is probably a better qualitative match as compared

the what the LIDAR LCS would predict in panel (d). It is worthwhile to note that

the major jolt experienced at x = −1.75 is not technically correlated with an FTLE

peak in panel (f), but a peak, very similar to the identifying peak from LIDAR in

panel (d), is just outside the 150 m range.

In Figures 33 and 34 we show the corresponding forward-time structures for these

two flights. We first note that in panel (a) of both figures we generally see less complex

LCS than in the corresponding backward-time cases. This is most likely due to the
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Figure 33. Airplane landing data in comparison to LCS for a missed approach at
07:52:20 on 2009-02-21. (a) Approach path superimposed on forward-time LCS based
on the 3◦ LIDAR scan. (b) Approach path superimposed on forward-time LCS
computed from WRF . (c) Approach path superimposed on forward-time LCS
computed from WRF, using data assimilation. (d) Comparison between negative
vertical acceleration and forward-time FTLE. Vertical acceleration measured onboard
the aircraft is shown in blue, with values less than -0.05g removed. The red line is the
forward-time FTLE computed from the 3◦ LIDAR scan, interpolated along the flight
path. (e) Comparison between negative vertical acceleration and forward-time FTLE,
computed in WRF. (f) Comparison between negative vertical acceleration and
forward-time FTLE, computed in WRF, using data assimilation. The black vertical
lines highlight locations where LCS are correlated with vertical acceleration. The
origin corresponds to the northern LIDAR. Note that the vertical acceleration shown
as been multiplied by -1.

fact that, due to the incoming flight direction, we are near to the edge of the LIDAR

range - since the flow is coming from the southeast, the forward-time flow is relatively

quickly carried away from the LIDAR velocity, and to the linear background flow.

Interestingly, there is not much correlation in panels (a) and (c) in Figure 33, the data

assimilation did not particularly make a significant improvement over the base WRF

LCS seen in panel (b). There is a slightly better correlation in Figure 34, where we see

in a panel (a) a structure starting at (−0.5,−3) that has a corresponding structure in

panel (c). However, the hairpin like structure in panel (a) found at (−4.75,−3) has

no corresponding structure in panel (c), although perhaps the left branch is visible.
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Figure 34. Airplane landing data in comparison to LCS for a missed approach at
08:37:40 on 2009-02-21. (a) Approach path superimposed on forward-time LCS based
on the 1.4◦ LIDAR scan. (b) Approach path superimposed on forward-time LCS
computed from WRF . (c) Approach path superimposed on forward-time LCS
computed from WRF, using data assimilation. (d) Comparison between negative
vertical acceleration and forward-time FTLE. Vertical acceleration measured onboard
the aircraft is shown in blue, with values less than -0.05g removed. The red line is the
forward-time FTLE computed from the 1.4◦ LIDAR scan, interpolated along the
flight path. (e) Comparison between negative vertical acceleration and forward-time
FTLE, computed in WRF. (f) Comparison between negative vertical acceleration and
forward-time FTLE, computed in WRF, using data assimilation. The black vertical
lines highlight locations where LCS are correlated with vertical acceleration. The
origin corresponds to the northern LIDAR. Note that the vertical acceleration shown
as been multiplied by -1.

Comparing the jolts in panels (d) and (f) in Figure 33, we see that many of the

LIDAR correlations are for very very weak FTLE peaks, and so although there are

more correlations in panel (d) as compared to panel (f), some of these may be due

entirely to noise. This is similar in Figure 34.
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4.6 Conclusion

We have performed data assimilation using LIDAR line of sight velocity into WRF

using 3DVAR. We found that the LIDAR data from different scanning angles can be

consistently incorporated into WRF and found that WRF can be cycled successfully

with those observations. The improvements to the base WRF forecast made at a

given time with a given scanning angle carried over at the next time and resulted in a

better background forecast at the next time, using the other scanning angle. This

is significant in the sense that all the available LIDAR information can be used to

improve the forecast.

We made a LCS comparison between LIDAR, WRF, and WRF using data assimi-

lation, and found that the data assimilation resulted in generally a good qualitative

agreement in LCS structures between WRF and LIDAR. The base WRF LCS were

found to be consistently mis-aligned. We compared to onboard flight data, and found

that after data assimilation the peaks in the WRF LCS, interpolated along the airplane

landing path, showed a very good general agreement with vertical accelerations, giving

an overall better qualitative match as compared to LIDAR alone. This suggests the

potential of using LIDAR observations and WRF together to predict windshear events.

In general, the backward-time LCS showed a better correspondence as compared to

the forward-time LCS. This suggests that in any operational implementation different

assimilation schemes may need to be implemented for each case; in other words, two

different runs of 3DVAR at each given observation time, one to extract forward-time

LCS, one to extract backward-time LCS.

There are different possible future applications for using these results to improve

real time windshear detection. First, there is the possibility of using WRF to predict
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windshear events ahead of time. Obviously computational cost and time would be an

issue that would need to be considered for feasibility. As a second possibility, using

data assimilation and WRF we now have full three-dimensional wind data that would

generate the LIDAR observations, data that has much more information than any

three-dimensional variational retrieval scheme could hope to recreate. Generating a

multitude of such datasets, and using pattern recognition techniques, one could possibly

train a program to analyze two-dimensional LIDAR LCS to infer the underlying three-

dimensional structures, as done in (Tang, Chan, and Haller 2011a), which can then

identify any possible windshear events along the landing corridor.
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Chapter 5

CONCLUSION

We have used Lagrangian coherent structures (LCS) to study the transport of

inertial pollutant particles in an urban setting and to further study windshear detection

at the Hong Kong International Airport (HKIA).

In Chapter 2 we found that the stochastic inertial Lagrangian coherent structures

(ILCS) survive realistic disturbances, in the form of eddy diffusivity, indicating that

they likely serve to organize pollutant transport in the natural environment. The

ILCS therefore identify key structures which decision makers could use to find regions

that are most susceptible to the dispersion or accumulation of pollutants, and the

identification of such regions would be of aid in the development of any air quality

counter measures devised for real life release events. As discussed in the conclusion to

Chapter 2, much further work could be done here, from a more careful formulation of

the stochastic differential equation modeling the movement of inertial particles, to

case studies illustrating the direction application of the ideas developed.

Chapter 3 served to validate the promising Lagrangian based turbulent structure

extraction methods near the Hong Kong International airport first introduced in

(Tang, Chan, and Haller 2011a, 2011b), a neccesary check due to the fundamentally

large loss of flow information inherent in the LIDAR scans. After comparing three

numerical wind models, FLOWSTAR, RAMS, and WRF, we found that the WRF

model best matched the LIDAR extracted LCS.

Therefore, in chapter 4 we used data assimilation to incorporate the LIDAR

observations into the WRF forecast. This resulted in an improved forecast that yielded
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LCS that closely matched the LIDAR extracted LCS, and generally outperformed

the LIDAR extracted LCS in terms of agreement with onboard flight measurements.

This provides a promising hope for using WRF and the LIDAR observations together

to predict windshear events along the landing corridor in real-time, or, to use the

improved full three-dimensional WRF forecasts to further refine the Lagrangian

extraction methods, in terms of trying to better identify the flow regimes where

false positives and false negatives could occur. Although the work done here was at

HKIA, it is readily applicable and generalizable to any airfield that experiences terrain

induced turbulence.
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