
Concurrent Checkpointing for Embedded Real-Time Systems

by

Michael Prinke

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved November 2018 by the
Graduate Supervisory Committee:

Yann-Hang Lee, Chair
Aviral Shrivastava

Ming Zhao

ARIZONA STATE UNIVERSITY

December 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ASU Digital Repository

https://core.ac.uk/display/195379986?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

©2018 Michael Prinke

All Rights Reserved

ABSTRACT

The Internet of Things ecosystem has spawned a wide variety of embedded real-time

systems that complicate the identification and resolution of bugs in software. The methods

of concurrent checkpoint provide a means to monitor the application state with the ability

to replay the execution on like hardware and software, without holding off and delaying the

execution of application threads. In this thesis, it is accomplished by monitoring physical

memory of the application using a soft-dirty page tracker andmeasuring the various types of

overheadwhen employing concurrent checkpointing. The solution presented is an advance-

ment of theCheckpoint andReplay InUserspace (CRIU) thereby eliminating the large stalls

and parasitic operation for each successive checkpoint. Impact and performance ismeasured

using the Parsec 3.0 Benchmark suite and 4.11.12-rt16+Linux kernel on aMinnowBoardTur-

bot Quad-Core board.

i

TABLE OF CONTENTS

Page

LIST OF TABLES . v

LIST OF FIGURES . vi

CHAPTER

1 INTRODUCTION . 1

1.1 General Description . 1

1.2 Significance of the Problem . 2

1.3 Problem Statement and Scope . 3

1.4 Thesis Statement . 4

1.4.1 Objective . 4

1.4.2 Procedure . 5

2 LITERATURE REVIEW . 6

2.1 Relevant Theory . 6

2.1.0.1 Hardware Based Monitoring . 7

2.1.0.2 Software Based Monitoring . 9

2.1.1 Check Pointing . 9

2.1.2 Other Related Work . 11

3 METHODOLOGY . 12

3.1 Design . 12

3.1.1 Dirty Page Tracking and Concurrent Checkpoint Process 12

3.1.2 High level Design - Checkpoint . 13

3.1.2.1 Workload Capabilities . 15

3.1.3 Detailed Design . 15

3.1.3.1 Concurrent Checkpoint Manager . 15

ii

CHAPTER Page

3.1.3.2 Kernel Modifications . 18

3.1.3.3 Kernel Driver Interface . 19

3.2 Replay Design . 21

3.3 Additional Checkpoint, Monitoring, and Replay Techniques Not

Addressed . 24

3.3.1 Copy on Write . 24

3.3.2 Syscall Monitoring . 25

3.3.3 Syscall Replay . 25

3.3.4 RDTSC Monitoring . 26

3.3.5 RDTSC Replay . 26

3.3.6 MMIO Monitoring . 26

3.3.7 MMIO Replay . 27

3.4 Measurements . 28

3.4.1 PARSEC Modifications . 28

3.4.2 Important Events and definitions . 29

3.4.2.1 Checkpoint Boundary . 29

3.4.2.2 Checkpoint Period . 30

3.4.2.3 Checkpoint Finished . 30

3.4.2.4 Fast Page Fault . 31

3.4.2.5 Anonymous Page Fault . 31

3.4.2.6 Page Table Entry Clear (PTE Clear) 31

3.4.2.7 Forced Thread Stall . 32

3.4.3 Calculations . 32

3.4.3.1 Runtime - truntime . 32

iii

CHAPTER Page

3.4.3.2 Overhead - toverhead . 33

3.4.3.3 Page Fault Stall Overhead tpfstall . 33

3.4.3.4 Dirty Tracking Overhead - Ttracking . 33

3.4.4 Non-Critical Measurements . 33

3.4.4.1 Page Copy Performance - tpage_copy . 34

3.4.4.2 Page Walk Performance - tpage_walk . 34

3.4.4.3 Page Remap Performance - tpage_remap 34

4 RESULTS . 35

4.1 System Setup . 35

4.2 Activity Description . 36

4.3 Blackscholes Data . 38

4.4 Canneal Data . 42

4.5 Analysis . 45

4.5.1 Concurrent Checkpoint Applied Analysis 47

5 CONCLUSION . 51

REFERENCES . 53

iv

LIST OF TABLES

Table Page

1 Execution Times of Blackscholes Benchmark Program . 18

2 CREAPLY KConfig Settings . 19

3 CREAPLY Ioctl Commands . 22

4 Logging Events . 30

5 Caption . 35

6 Execution Times of Blackscholes Benchmark Program . 40

7 Blackscholes Overhead . 40

8 Blackscholes Overhead Analysis . 41

9 Execution Times of Canneal Benchmark Program. 42

10 Canneal Overhead . 43

11 Canneal Overhead Analysis . 43

12 Execution Times of Canneal with Dirty Tracking Only . 43

13 Canneal Overhead Analysis . 44

14 CRIU Checkpoint Comparison Data . 47

v

LIST OF FIGURES

Figure Page

1 Waveform Representation of Concurrent Checkpoint Activity with 2 Thread 14

2 State Diagram Representing on CREPLAY IOCTL Kernel Interface 23

3 Critical Creplay Structures . 24

4 3 Thread Concurrent Checkpoint Activity . 39

5 3 Thread Concurrent Checkpoint Activity - Cont. 40

6 Blackscholes: Comparing 2 Thread Checkpoint Period 25Hz to 50Hz 41

7 Canneal: 3 Thread 10 Hz Dirty Tracking Only . 44

8 Checkpoint Latency Analysis Graphs . 48

9 Tracking Overhead Analysis Graphs . 49

10 Histograms of Repeated Page Faults . 50

vi

Chapter 1

INTRODUCTION

1.1 General Description

Embedded applications are rapidly increasing in complexitywhilemaintaining a require-

ment of real-time performance. This stems from growth of the Internet of Things (IoT)

ecosystem and the hardware supporting it. Most platforms within this space do not sup-

port hard real-time as they are derivatives of consumer products such as control gadgets in

unattended environments. The debug capabilities of these platforms is also more compli-

cated since they tend to be headless without a system level user interface and when deployed

cannot be taken offline for debug activities. This deduces debug capabilities to events that

can be easily reproduced on similar hardware that may not be completely identical. Error

scenarios are exponentially difficult to reproduce when long hour testing is required. Even

more so when a best knownmethod of steps to reproduce the error are not available. These

scenarios are best addressed by the generation of application state checkpoints which can be

replayed on similar hardware with replicated or simulated operations from IO devices.

Generation of a checkpointwithin a real-time system requires intricate understanding of

system behavior, resource capacity, and resource bandwidth. Within a hard real-time con-

text, much of this information is known at design time. This is possible in hard real-time

targeted systems due to bounds on the execution behavior as well as additional hardware

capabilities to enforce maximum latency and constrained resource consumption. In a soft

real-time context, this information may be known within some statistical limits and only

limited capabilities for reducing latencymaximums. For instance, TimeDivisionMultiplex-

1

ing (TDM) is common for hard real-time systems. However in soft real-time, priority-based

scheduling and resource isolation ismore common to avoid high latency spikeswhile context

switching, interrupts, other asynchronous events are still allowed. When adding checkpoint

capabilities to a system, there is a high risk of impacting the cycle time or response time of

real-time applications. Themain concerns aremultiple consumers of the data, a dependency

that now exists in synchronizing the checkpoint acrossmultiple application threads, and the

sharing of hardware resources.

This work aims to perform amajority of the checkpointing effort concurrently by track-

ing dirty pages and copying them asynchronously, there by reducing the checkpoint latency

observed by the target application. This starts by tracking the application state, compiling

all state changes into a synchronized checkpoint, and saving off the checkpoint to a storage

medium. The goal is to limit the total observable overhead to the application with check-

pointing enabled. Capabilities can compliment variousmethods of bandwidthmanagement

and checkpoint scheduling. With the interest of improving the ecosystem, the solutionwith

be a software only advancement with reliance on current hardware capabilities found in the

Intel Atom Processor family. While this work is targeted at embedded real-time systems, it

can be applied to enterprise applications.

1.2 Significance of the Problem

As the software industry evolves for embedded applications, multiple parties will be in-

volved in the development and maintenance of IoT systems such that software is becoming

less likely to be designed in-house, and multiple software vendors may play a role in any

given design. Support of these systems requires a more robust debug tool-chain with con-

current checkpoint and replay at the forefront. This will reduce the debug hours spent on

2

potential errors, and the impact observed by the end customer of the product. By regularly

checkpointing an application, the most recent checkpoint prior to an error occurrence can

be provided to a debug team. The debug team can then use the individual checkpoints to

replay and identify the error to develop a fix. When using in-place patching of software,

this method can provide a method of verification and regression to prove a bug is fixed. A

collection of checkpoints can also provide the debug team visibility into a possible use case

that was not identified and addressed at design time. Without checkpointing, an identical

setup is typically required that can be time consuming and expensive to house,maintain, and

manipulate for debug practices. By studying the impact of concurrent checkpointing on em-

bedded applications, the overhead can be better understood as it relates to varying types of

environments and workloads.

1.3 Problem Statement and Scope

Checkpoint and replay of applications has been a classical approach for fault tolerance

and process migration. For long-running embedded applications, it is becoming common

practice for debug. The replay of errors and faults is made possible by restarting an applica-

tion from a known state saved off by a successful checkpoint solution. In a real-time embed-

ded system utilizing commodity hardware, software basedmonitoringmust be used in place

of a hardware based monitoring solution that may not be readily supported. A software

based solution also gives way to broader adoption and evolution much like the operating

system and system libraries. The goal of this work is to research and propose such a solution

for concurrent checkpointingwithin the constraints of amulti-core, multi-threaded, embed-

ded environment where resource bandwidth limitations are observable and measurable by

the software developer. This includes defining an initial state of an applicationprior to check-

3

pointing, the methods used to track changes in application state such as virtual and physical

memory, and the cpu state at a point in time for the checkpoint to take place. Most impor-

tantly, the checkpointingmechanism targeted in the researchmust carry out amajority of its

operations concurrently during the execution of applications threads. Hence, there should

beminimal interference to the application’s execution nor should the logical behavior of the

application be altered.

The scope of the research is limited to the various techniques for concurrent checkpoint-

ing including the tracking of state changes, copying the changed state, and replaying from

that state. This excludes a natural improvement that would address monitoring of IO de-

vices for simulating IO responses during replay from a checkpoint.

1.4 Thesis Statement

Using an Intel Atom processor running Preempt-RT linux and a multi-threaded soft

real-time application, the application state changes can be tracked using software and saved

off in a scheduled fashion to enable concurrent checkpointing for future replay. The check-

pointing mechanism needs to have a limited and quantifiable impact to real-time perfor-

mance and the response time of embedded application to be checkpointed.

1.4.1 Objective

To improve the use of checkpoint methods using a commodity grade solution with lit-

tle to no proprietary intellectual property. The setup should closely resembles a simple soft

real-time system, rather than one that meets the requirements of a hard real-time. Real-time

performance is not widely represented by benchmarks within the open source community

4

and at the time of research benchmarking suites requiring licenses such as EEMBCwere not

available for use. The re-purposing of an existing benchmark, PARSEC 3.0, should be possi-

ble tomeet the demand of a real-time application and provide demonstration of both overall

performance and response time. The application life cycle should be composed of an initial-

ization phase where memory is allocated and resources are defined prior to aRegion of Inter-

est where the application performs an operation repetitively. During this repetition, check-

points of the application state should occur concurrently with little to no added overhead

to the application. The application state changes are collected and saved off to non-volatile

storage medium to be used for future replay of the application.

1.4.2 Procedure

The hardware selection is aMinnowBoardTurbotQuad-Core board aimed at themaker

community and Internet of Things ecosystem. The operating system is Ubuntu 18.04 Min-

imal Install combined with a modified 4.11.12 linux kernel and the 16+ Preempt-RT patches

applied. The linux kernel is configured to isolate 3 of the CPU cores from system interrupts

and scheduling. The PARSEC 3.0[1] benchmark is employed as the testing means with in-

strumentation tomeasure response time of each compute operation and the added synchro-

nization between dissimilar threads. After initialization is complete, but prior to theRegion

of Interest, the application is stalled while an initial checkpoint is created using [6] to assist

in restoring both application and system state during the replay phase. Once resumed, the

application enters theRegion of Interest and the concurrent checkpoint methods begin.

5

Chapter 2

LITERATURE REVIEW

2.1 Relevant Theory

The basis for concurrent checkpoint spans many areas of work with the two ends of the

spectrumbeingmigration of virtualmachines with little to no concept of real-time andman-

aging functional safety under hard-real time constraints. The migration of virtual machines

evolved quickly with the rise of the data center relying mostly on software based solutions

due to the limited hardware support provided by mainstream products at the time. Hyper-

visors began to employ solutions to reduce the downtime ofmigration by copying data prior

to a checkpoint and using dirty taking bits in the page table to monitor which pages during

checkpointmust still be copied. This capability of dirty tracking is supported by Intel Archi-

tectures where a hyper-visor is present. Consequently this hardware advancement does not

work in native more where vitalization is not deployed. Containers begin to take off where

virtual machines leave off since in the case of containers to have the “state” which must be

saved, copied, and restored and unlike virtual machines, no hyper visor is present since the

containerwill run native to the operating systemproviding the service. Focusingmore in the

application domain, there are two prominent solutions being CRIU (Checkpoint and Re-

play inUserspace)[6] and BLCR (Berkely LabCheckpoint andReplay)[8]. BLCR is loosely

maintained within the 3.X linux kernel, due to heavy kernel modifications in order to oper-

ate. CRIU being less kernel dependent is current and stable withmodern Linux releases and

make use of ptrace capabilities for OS State Management. Both solutions provide a means

to halt and application, save it’s state to a storage medium, and restore at a later time on

6

like hardware and software. CRIU is particularly useful for debugging complex applications

such as the Firefox web browser since it also supports common OS state issues like multiple

threads, file pointers, and inter-process socket communication. BLCR is more limited in its

support and therefore was not tested along side CRIU for this body of work. Thus far, the

checkpoint methods mentioned have focused on common desktop applications with little

interest in real-time systems or embedded systems. In the real-time embedded space, most

research has been dominated by hard-real time use cases where deterministic monitoring is

employed. In-order to meet the deterministic nature of the monitoring, all bodies of work

mentioned are hardware based solutions typically monitoring the memory traffic either in-

side the CPU core, or on an external coherent memory bus. These solutions, rather than

monitoringwhich segments ofmemory are changed, seek to track the coherentmemory state

on a per transaction basis. The replay in these systems also trend towards a deterministic so-

lution that can be used to satisfy functional safety needs, thereby running two applications

in parallel, and if one fails or is incorrect, the next frame it can restart from the successful

applications known state. The interest of this work is to evaluate concurrent checkpointing

methods for soft real-time embdded systems, and therefore revolves around advancing the

CRIU solution with advancement when possible from other relevant areas.

2.1.0.1 Hardware Based Monitoring

Hardware based monitoring consist of techniques that require no additional sets of in-

structions inline with execution code. Many techniques reviewed utilize hardware features

for logging that are saved in buffers or registers that must be moved to memory or non-

volatile storagewhich add additional overhead either through additional out of cycle instruc-

tions or bandwidth requirements on the memory bus. In [20, 21], Tsai discusses a hardware

7

monitoring solution utilizing the address and data signaling commonly founding in older

microprocessor designs when the memory hierarchy was separated from the CPU itself. Al-

though in this case a full monitoring solution is provided, a significant amount of data is

sampled on each clock cycle and then used to enable replay and re-execution at a later time.

The value in this research provides targeted logging specific to events and function calls to

reduce the overall logging resource requirements. Implementing this such solution on to-

day’s modern architectures is inherently very difficult due to the speed of executions and

resulting data to capture at this level. Intel provides Last Branch Record tracing capabilities

which allow a user to track basic blocks in clock tick granularity[intelsdm3b]. This provides

tracking for individual threads but with limited buffering since latest architectures only sup-

port 32 entries. Also since the trace entries store clock ticks which are based off a variable

frequency, cross correlation is not possible with neighboring cores on the same die. Work

can be done to enable correlation and use a means to track execution flow but at 32 entries,

the buffers must be record extensively with added check pointing of data in heap and stack.

DeLorean[13] provides a chunk based hardware solution to monitoring with a companion

replay mechanism. DeLorean is the most advances solution thus far when using a hardware

based solution but falls short due to the tight coupling a cpu’s execution units. It also is af-

fected by additional stalls due to howmicro-architectural issues are handled including inter-

rupts, branch perdition, and cache overflow. BugNet[14] also integrates with the execution

units and uses simple checkpoints including minimal information of the architectural state

such as program counter and register file contents. Unlike full check pointing providing a

known state of memory, all first time load memory accesses are included in the monitoring,

removing the need to checkpoint memory. the key limitation for embedded systems is the

hard limit on the replay window the architecture has.

8

2.1.0.2 Software Based Monitoring

Software based monitoring is defined as the addition of instructions that must be exe-

cuted inline that add additional delay to the total execution time. Intel has introduced the

SystemVisible EventNexus (SVEN)[19] in its recent product offeringwhichprovides low in-

terference in the range of 20ns[2]. SVENuses binary storage of 32 or 64 byteswhich includes

a time-stamp and short header. Due to the low cost of SVEN it makes it the ideal candidate

of monitoring real-time workloads withing amulti-core environment. Since SVEN is an on-

die solution it does not directly provide correlation of events in a distributed environment,

but can be extended with logical clocks to do do. ARM provides a similar capability that

adheres to theMIPI® SystemTrace specification[5]. This allows an application developer to

place trace events inline with execution code as a low cost solution to print statements. The

claim of low latency is made but with no supporting data or comparison.

2.1.1 Check Pointing

Li[11] compares two check pointing solutions that satisfy real-time environments by

copying memory contents concurrently. This works by using a concurrent copy thread to

read contents in memory and mark the virtual pages as read only. Therefor, if any write

occurs by the executing thread, a page fault occurs. The small memory system concurrently

writes the checkpoint out to a slowermediumbut forces extended delays if a page ofmemory

is accessed while waiting to be copied. In a similar scenario with large memory availability,

the copying can occur much quicker, but the inherent problem of page faults still exist. The

problem inmodern systems now is that the TLB structures prevent painful page translation

misses that can have large latency. Additionally since the virtual pages are being updated at

9

run time, this flow is common practice for self modifying code, which requires flushing of

the TLB structures that further add latency to execution. While Li’s research aims to target

real-time, the allowable overhead is 100ms which is much grater that most real-time respon-

siveness requirements seen today. In [15], a checkpointing solution is proposed that uses

synchronized clocks rather than logical clocks such as lamport clocks and seems to ignore the

checkpointing latency itself due to the nature of the distributed system. In [3] and [23], the

algorithmic cost of checkpointing is managed through an adaptive mechanism understand-

ing both time and energy restrictions on the system. Zhang’s algorithm for adaptive check

pointing targets fault tolerancewhere faults arrive as a Poisson process with rateλ. This algo-

rithm assumes a rollback on fault and repeats the execution still within the deadline. Since

the goal of replay is debug rather than fault tolerance, the correlation of faults could pro-

mote a desired window size to detect faults and use the information to eliminate soft errors

fromdesign related faults. AGDBbased solution also calledDelorean[12], not synonymous

with [13] as a hardware monitoring solution, provides checkpoint and rollback capabilities.

the methods used to reduce memory usage for checkpointing and the most state-of-the-art.

Since DeLorean depends on high speed memory backed storage rather than the slower non-

volitile storage mediums, the usability is deminished for a closed chassis hard real-time sys-

tem. RR[17, 16] is a comparable solution aimed at debugging the Firefox web browser, but

does not provide a checkpointing and replay mechanism safe for live execution for replay at

a later time on a remote system. Being open source, rr provides a sandbox for early research,

but does not port well to deep embedded RTOS solutions. In [4] a checkpoint solution for

containers is proposed based on flagging of dirty pages and copying the data concurrently

with execution until a checkpoint barrier occurs fromwhich a checkpoint must be finalized.

The algorithm seeks to control the time spent during pre-copy versus stop-and-copy stages

10

to reduce overall time spent on checkpointing. [22] creates a compile in software checkpoint-

ing that creates a shadow copy of memory during program execution.

2.1.2 Other Related Work

DMP[7] seeks to enforce deterministic sharedmemory inknownnon-deterministicmul-

tiprocessor environments. This canprovide anoptimizedmeans to create locations for check

pointing since it is another way to drive synchronization without traditional synchroniza-

tion barriers. The value is in the quantum definition of where to place the token passing.

Noticing that the hardware solutions provide speed upwhere the software solution provides

considerable slow down, it is not likely a viable software solution for real-time systems.

11

Chapter 3

METHODOLOGY

3.1 Design

3.1.1 Dirty Page Tracking and Concurrent Checkpoint Process

The basis of the design utilizes the hardware mechanism of page faults to track memory

state changes. This provides support for multi-thread and multi-core environments. The

page faults occurs when physical memory is either not mapped to a virtual memory address

known as an anonymo page, or does not have the correct permissions, such as writing to

a read-only page knwon as a dirty page. The soft dirty tracking defines the use of marking

writable pages as read-only, and where a write permissions fault occurs, the page is granted

write permission and marked as dirty by setting a bit in their respective page table entry. To

avoid parsing the entire page table to discover dirty pages, and dirty queue is implemented

which is populated at the same time the bit in the page table entry is set. Theprocess perform-

ing the checkpoint can then retrieve the dirty pages asynchronously from the dirty queue.

This tracking comes with an overhead which is discussed in the Chapter 4. Since the mem-

ory state changes must be synchronized to a known valid state for replay, all writes to mem-

ory after a checkpoint boundary must be prevented from modifying the physical memory

which may yet to be collected by the checkpointing process. Therefor the ckpt_inprogress

flag is used to signal the beginning of a checkpoint boundary. When a page fault occurs and

the flag is set, then the page fault will wait for an event signaling the checkpoint process is

complete. Once the ckpt_inprogress flag is set, the checkpointing facility should make sure

12

all pages aremarked as read only such that anywrite tomemorymay be captured, and forced

to wait for the checkpoint finished signal event.

In order to properly checkpoint a multi-threaded application where multi-core schedul-

ing is possible, each thread must be checked in the kernel runqueue if it is scheduled and

running. If it is not running the cpu state can be saved from the scheduler task struct. If it is

running, then an smp_function_call is forced on the core where the thread is running, forc-

ing it to swap, and save the cpu state to the scheduler task struct. From the task_struct the

cpu register state can then be retrieved and saved for checkpoint replay. In the case of more

threads than cores, the runqueue can be modified to prevent other threads from running in

place before their cpu register state can be collected.

With all thread’s cpu register state collected, the dirty page queue must be emptied and

all physical memory changes remaining must be delivered to the checkpointing process in

user space. In the event of Virtual Memory Map changes, the entire VMA table is saved off

during each checkpoint and delivered to user space after the cpu register state is collected

but prior to the dirty queue being emptied the last time. Once all state changes are made

available to the checkpointing process in user space, the application selected for checkpoint

can continue. The Checkpointing process in userspace is responsible for saving of the final

checkpoint state to persistent storage. This flow with respect to dirty tracking is presented

in Figure 3.1.1

3.1.2 High level Design - Checkpoint

The checkpoint infrastructure consists of kernel modifications to existing page fault

flows and an accompanying kernel space driver called the creplay driver. The intelligence

for algorithm selection and orchestration occurs separately in a user space application, the

13

CPU 2 Thread SMP_FUNC_CALL Thread

CPU 3 Thread PageFault Stall Thread

ckpt_ inprogress
PageFault AnonymousPage Dirty Page Dirty Page

DirtyQueue 0 1 2 1 0 1 0

PageCopy
Get RegState CPU2 CPU3

5

1:

2:

3
4

6

Figure 1. Waveform Representation of Concurrent Checkpoint Activity with 2 Thread
1:The dirty queue fill by page faults for both anonymous pages and dirty pages.
2:The dirty queue is access asynchronously by the checkpointing process and pops one item
from the dirty queue at a time, copying the contents of the physical memory for that page
and marking it once more as read-only.
3:After some time, the checkpointing process will request a checkpoint and set the
ckpt_inprogress flag and immediately pop all remaining items from the dirty queue and
marking all pages as read-only.
4:Thread on CPU 3 has attempts to write to memory while ckpt_inprogress is set, a Page
Fault Stall Event occurs where the thread waits for the ckpt_finished_event.
5:The checkpointing process then requests the cpu register state of all threadswithin the pro-
cess. With Thread on CPU 2 still running, an smp_func_call is sent to that core to collect
the thread’s cpu register state.
6:ckpt_inprogress flag is unset creating a ckpt_finished_event allowing the application to
continue normally.

checkpointing process, where the checkpoint data is collected and saved to persistent storage.

The application selected for concurrent checkpoint has no knowledge of or interaction with

the underlying kernel hooks. Monitoring of the physical memory changes occurs through

the dirty page tracking. The kernel driver provides a facility that is flexible to multiple use

cases of such that the user can control the frequency of checkpointing and frequency of con-

current page copies. It is extendable to support a per page designation to reduce page faults

based on categorization such as type (ie. stack memory), or frequently written. Therefore

the checkpointing facility provided by the kernel driver can be reused by a different user

space application tuned to fit the needs of the target system.

14

3.1.2.1 Workload Capabilities

There are no required changes to support concurrent checkpointing of an application.

Any application canbe launchedby the operating system, and interceptedby the checkpoint-

ing infrastructure. For applications where a known initialization phase occurs and threads

are spawned, a checkpoint syscall has been added that allows an application to stall and wait

until the checkpointing can begin. This sis call is defined as sys_checkpoint() with syscall

number 333. The PARSEC benchmarks used for testing have this syscall added at the begin-

ning of theRegion of Interest to properly intercept andmeasure the overhead of checkpoint-

ing.

3.1.3 Detailed Design

3.1.3.1 Concurrent Checkpoint Manager

Theuserspace application for controlling concurrent checkpointing is aC++application

that utilizes the Checkpoint and Replay Kernel Interface provided by /dev/creplay. The ap-

plication is run from the command line using the arguments from Table 1. Only the main

thread context is used and shared with all kernel level operations. At initialization time,

two RB-Trees are created to store the PTEs and VMAs representing the virtual and phys-

ical memory of the application to be checkpointed. PTrace is used to halt execution and stall

the threads initially to collect a baseline, but is not used in the concurrent checkpoint flow.

A pre-checkpoint is requested of the kernel1 as a baseline for all future checkpoints. If the
1Described by Section 3.1.3.3

15

threads are stalled in the checkpoint syscall when the pre-checkpoint is requests, they will

begin executing after PTrace detaches.

Once all threads are running, the concurrent checkpointing begins by calling the

POP_QUEUE ioctl command from the kernel driver to collect pages in the dirty queue.

All data from the POP_QUEUE commands is persistent in memory until processed at the

end of the checkpoint. The POP_QUEUE repeats instantly if the dirty queue is not empty.

Once empty, a pause of 1/10thof the checkpoint periodoccurs and then thePOP_QUEUE is

repeated again followedby another pause. This continues until the end of the checkpoint pe-

riod is reached. To initiate the checkpoint, the POP_QUEUE command is called oncemore

with the ckpt_inprogress flag set. This represents the beginning of the checkpoint boundary.

The POP_QUEUE command repeats until the dirty queue is empty once more. All pages

within the target application should bemarked read-only at this point. If any pages in the ap-

plication have dirty tracking disabled for performance reasons, these pages should temporar-

ily be marked as read-only. The VMA data is then dumped next using the VMA_DUMP

ioctl command. The GET_REGS ioctl command is then called next to collect the CPU reg-

ister state of each thread to be checkpointed. Finally the POP_QUEUE command is called

once more with the ckpt_inprogress flag unset to signaling that the checkpoint is complete,

and the threads can continue. All the data must be processed at this point. The PTE data

from POP_QUEUE commands is queried against the data in the PTE RB-Tree using the

virtual address of each page. If the address does not exist in the tree, it is added and marked

as “new”. If it does exist, and any memory changes are found, it is marked as “dirty” with

the new contents copied into the existing data. Similarly with the VMA_DUMP data, the

VMA data is queried and flagged for changes. If the VMA region is new, it is added. If

it has shrunk, moved, or expanded, it is marks appropriately. All changes to the physical

pages are stored then written to a *.pte file, all vma changes are written to a *.vma file, and

16

the CPU register states for each thread are written to a *.regs file. Finally the event log is

retrieved using the GET_LOG ioctl command and the checkpoint counter is incremented.

The concurrent checkpointing begins again by the repeated calls of POP_QUEUE until the

checkpoint period expires once more.

The copying of physical memory from the application is done by the kernel driver when

the POP_QUEUE command is issued. The checkpoint process is responsible for creating a

buffer adequate in size for the kernel to copy the memory contents into. The design choice

to use the kernel driver to perform the copy is an optimization from the way both CRIU

and PTrace supports. CRIU uses parasite called “Compel” to send the contents of memory

to the CRIU address space. Since the parasite takes over the threads, this intrusion was to

be avoided. PTrace also supports a means for one application to collect that memory state

of another by effectively mapping the target address into the consumers address space. This

was one possible solution but remained difficult in synchronizingwithmarking of each page

as read-only to correctly maintain the flow for correct dirty tracking. For this reason, the

copying of thememory contents is absolutely necessary when popping from the dirty queue

and using a separate facility such as PTrace versus performing the copy in the kernel driver,

did not seem like a natural design choice. When the memory contents are compared against

the data in the RB-Tree, any dirty pages would result in an additional copy in memory, and

then copiedoncemoreby the operationof saving the checkpoint state topersistentmemeory.

The overhead of these two final copies are not observed by the target process, therefor no

attempts to avoid them are made.

17

Argument Description Default
-m <mode> Mode of operation. Options: pid, concur-

rent,concurrent_overhead concurrent_verify,
squash, squash_verify, replay_file

N/A

-o <filepath> Basefile name for output of checkpoint files. Cre-
ates “filepath”[.pte,.regs,.vma]

N/A

-c <filepath> Checkpoint file to use for replay N/A
-p <pid> PID of main process of focus for check-

point/replay
N/A

-s <size> Maximum size of page faults allowable per check-
point. Size up for larger checkpoints

4096

-b <begin> Checkpoint start number for squashing check-
points

0

-e <end> checkpoint end number for squashing check-
points

0

-f <freq> Target frequency for checkpoint operations 100

Table 1. Execution times of Blackscholes benchmark program

3.1.3.2 Kernel Modifications

AllKernelChanges arewrapped and enabledby theCONFIG_CREPLAYdefine at com-

pile time by the preprocessor. The KConfig additions are listed in Table 2 similarly with

a config file used during compilation located in the source tree as rt-creplay-config which

can be renamed to .config to reproduce the setup. The mm_struct structure is used as the

primary construct for storing checkpointing data. This includes the dirty queue defined

as struct pte_checkpoint_queue, the queue for the event log, a spinlock for checkpoint

synchronization, and multiple flags for managing state including the ckpt_inprogress and

ckpt_enabled flags. The vma_struct has the added unsigned char * pte_cpt_stage which

stores the state of each page within that vma context. The task_struct has a added flag for

logging when the thread is stalled in a page fault event.

The Soft-Dirty tracking used by CRIU is reused with slight modifications to track the

events and add the pages to the dirty queue. The page fault flow is first modified in the

18

Config Name Description Default
CREPLAY Enable/Disable Support of CREPLAYDriver and asso-

ciated Kernel Hooks
Y

CREPLAY_QUEUE_INIT_SIZE The default queue size for saving off which dirty pages
must be copied.

1024

CREPLAY_NUM_INSTANCES Number of allowable concurrent checkpoint instances 8

Table 2. CREAPLY KConfig Settings

early flow within the handle_mm_fault() function. Here is where a forced stall occurs if

the thread’s ckpt_inprogress is set. If it is, it enters a wait_queue to be later woken up with

the checkpoint is complete. The do_anonymous_page() and handle_pte_fault() functions

are where the page tracking occurs and additions to the dirty queue are made. Within han-

dle_pte_fault() the pte_cpt_stage is updated to reflect the current state of the page in the

checkpointing process and logs if requeueing has occured2. The ckpt_event() logging func-

tion is added to assist in tracking all concurrent checkpointing events in the kernel and elim-

inate the need for printk style logging. Logging is also added to the context_switch() func-

tion to log context switch events3. The associative relationship for data structures within the

checkpoint facility is shown in Figure 3 with arrows representing pointers and dots repre-

senting instances. The checkpoint_file exists as a static array within the creplay kernel driver

supporting 8 instances by default.

3.1.3.3 Kernel Driver Interface

The kernel driver “creplay” houses the bulk of the changes including a syscall which

is why it is a compile-in driver rather than a module. The purpose of the creplay kernel
2The requeue counter is not used for any purpose at this time.

3the logging in the context_switch() function does not log all possible swap events as some events may be
missing from the final log

19

driver is to avoid halting the threads to retrieve the application memory state and track ac-

tivity in a low cost manner. The IOCTL commands are listed in Table 3. The typical flow

will follow the state diagram in Figure 2. The first step in any concurrent checkpointing

scenario is the checkpoint syscall which will stall the threads until woken by the creplay

driver. A syscall in this case is used instead of ioctl to simplify integration with an appli-

cation of any permission level. The concurrent checkpoint infrastructure starts with issu-

ing a CHECKPOINT_MSG or CHECKPOINT_STALL_MSG. This saves of a baseline

of the application state, initializes the soft-dirty tracking, and wakes the threads(s) from the

checkpoint syscall. At this point the application is being activelymonitored, andDirty Pages

are available by the POP_QUEUE ioctl command. If POP_QUEUE is issues with (1) ar-

gument, representing ckpt_inprogress, then the application’s environment will transition

state and any future writes to memory should be prevented, but execution will not stop

otherwise. VMA_DUMP_MSG is should be used in this state to prevent added latency

once all threads are halted or stalled. TheGET_REGS ioctl changes the application environ-

ment state by forcing all thread to halt using an inter-processor interrupt (IPI) through the

smp_func_call mechanism. The application is then returned to the running state by issue-

ing POP_QUEUE with ckpt_inprogress cleared.

Concurrent checkpointing terminates with the thread, there is no mechanism to turn off

concurrent checkpointing at this time.

Concurrent checkpointing requires multiple asynchronous activity, including in areas

where preemption is not favorable. Spinlocks are in use in various flows but only for very

short moments, ideally less than 100 clocks worth of instructions. Both the Dirty Queue

and Event Log are wrapped by spinlocks to supportmulti-threaded applications. The check-

point also has a process wide spinlock for simplicity that is used to protect the pte_cpt_stage

of each vma_struct. This could be optimized similar to or directly reuse the kernel function

20

pte_lockptr(). Mutex locks are use to protect the allocation into the checkpoint_file array.

The is only used during the checkpoint syscall, PID_MSG ioctl, andCHECKPOINT_MSG

ioctl flows.

Checkpoint initialization, ckpt_queue_init(), occurs during the checkpoint syscall,

of CHECKPOINT_MSG. This allocates the pointers for the pte_cpt_stage for all the

vma_sturcts currently present, and initializes the Event Log, Dirty Queue, and both Wait

Queues. The wait queues are used as a synchronization method between the creplay driver,

and the process being checkpointed. The ckpt_stall_event wait queue is used by the creplay

driver, to wait until the process enters a valid state for initial checkpoint. Once the check-

point syscall is made, a wake event is sent to the ckpt_stall_event. The ckpt_finished_event

wait queue is used by the threadswhen a page fault occurswhen ckpt_inprogress is set. Once

the checkpoint is complete for a thread and ckpt_inprogress is cleared, a wake event is sent

to ckpt_finished_event. The event log must persist after a process has terminated in order

to read all events. For this reason it is a statically allocated in the checkpoint file, rather than

dynamically at run time. A pointer is placed in the mm_struct of the process that it belongs

to at that time. The event log tracks the events listed in Table 4. The event are tracked using

the rdtscp[10] instruction to get the most accurate timing possible. Further serializing of

the instructions using cpuid is not favorable and dismissed to reduce the logging overhead.

3.2 Replay Design

The replay infrastructure uses the same components as the checkpoint flow but with ex-

tra functionality. In order to correctly replay using the concurrent checkpoint data files, the

process must have identical system level resources including PIDs, file pointers, etc. These

items are not critical to the concurrent checkpoint research and therefor leverages CRIU to

21

IOCTL Command Description Data
PID_MSG Check if PID is active in the Checkpoint Ta-

bles and Cleans up non-existant threads
pid

MONITOR_MSG Enables Sift Dirty Tracking for a specific PID pid
WRITE_VMA_MSG Modifies the contents of a vma_struct, if it

does not exist, create it
pid and
vma_struct
details

WRITE_PTE_MSG Modifies the contents of a PTE. Must exist
within a vma_struct but can map new physi-
cal memory if it does not exist

pid, 4K page con-
tents, virtual and
physical address

POP_QUEUE Pops items off the Dirty Queue and returns
the physical

in:pid

memory contents and virtual remapped ker-
nel address. Sets ckpt_inprogress which de-
fines a Checkpoint Boundary

out:virtual, phys-
ical address, and
4K page contents

GET_REGS Collects the register State of the specific
PID(s). Issues an smp_func_call if PID(s) are
running

in: pid(s) out: x86
and x87 registers

VMA_DUMP_MSG Collects the Virtual memory map for a PID in:pid
out:vma_struct(s)

READ_PTE_MSG Reads the Physical memory of a PIDs address
space. Uses translated address if present

in:pid,address
out:4K data

GET_LOG Collects the event log of Checkpoint events event log entries
CHECKPOINT_MSG Dumps all physical and virtual memory con-

tents to a file and enables/clears Soft-Dirty
tracking bits.

pid

Note:Assumes the Targeted PID is halted but
is not required.

CHECKPOINT_STALL_MSG Waits for an application to enter a stalled
state from syscall. Then same as CHECK-
POINT_MSG

pid

Table 3. CREAPLY ioctl commands

checkpoint the system state prior to concurrent checkpoint, and similarly to restore the pro-

cess and system state. For a majority or real-time embedded applications, this is valid since

the initialization phase of applications will setup all system state, I/O, and memory prior to

regular execution.

The files from the concurrent checkpoint are not immediately consumable for check-

point since they describe changes between each checkpoint. To create a single restore point,

the collection of checkpoints are squashed together along with the pre-checkpoint applica-

tion state. These resulting files are then loaded into the Red-Black trees for VMA changes

22

S0
No Ckpt

S1
Waiting
for Ckpt

S2
Concurrent
Checkpoint

Active
ckpt_inprogress=0

S3
Concurrent
Checkpoint

Active
ckpt_inprogress=1

S4
Checkpoint

Boundary Set
All Memory Marked

Read-only
ckpt_inprogress=1

Checkpoint Syscall CHECKPOINT_STALL_MSG

POP_QUEUE
ckpt_inprogress=0

POP_QUEUE
ckpt_inprogress=0

POP_QUEUE
ckpt_inprogress=1

GET_REGS

POP_QUEUE
ckpt_inprogress=0

State Diagram representing on CREPLAY IOCTL Kernel Interface
S0: New process, Checkpoint Uninitialized

S1: Process Stalled for Checkpoint Initialization
S2: Process Running With concurrent Checkpoint

S3: Process Marked for Checkpoint Boundary
S4: All Threads Force Stalled for Checkpoint Boundary

Figure 2. State Diagram representing on CREPLAY IOCTL Kernel Interface

and PTE changes. The PID selected for replay is then halted along with all child TID using

ptrace attach. Each change noted in the red-black trees is written to their appropriate VMA

and PTE using the WRITE_VMA_MSG and WRITE_PTE_MSG commands to the cre-

play kernel driver. CPU state is written using ptrace SET_REGS and SET_FPREGS. Finally

the threads are restarted using ptrace detach.

23

task_struct

vma_struct

mm_struct

checkpoint_event_queue

wait_queue : ckpt_stall_event

pid

Checkpoint Flags:
ckpt_enabled
ckpt_inprogress
ckpt_stall

wait_queue : ckpt_finished_event

spinlock : ckpt_lock

pte_cpt_stage

ckpt_page_fault_halt

checkpoint_file

pte_cpt_queue (Dirty Queue)

Figure 3. Relevant variables and their association to relevant kernel structures.

3.3 Additional Checkpoint, Monitoring, and Replay Techniques Not Addressed

In order to properly replay execution, certain events during execution must be repeated

that otherwise wouldn’t during replay from a static checkpoint. These areas are identified

with a purposed solution but not included in testing due to limited scope.

3.3.1 Copy on Write

Copy on Write (COW) is theorize to further reduce the overhead of a checkpoint by

preventing the application for waiting for the ckpt_finished_event when a page fault occurs

24

when ckpt_inprogress is set. The idea is to copy the memory contents of that page to a sepa-

rate buffer that can be retrieved much like the dirty queue and allow the thread to continue

running. This was not extensively tested as there is complexity in managing the memory

state, and correctly collecting the cpu register state since the thread is known to be crossing

the checkpoint boundary. A few of the requirements have been implemented such as the

data_checkpoint_queue but a separate retrievalmethod is necessary that alsomarks the page

as read-only after the ckpt_inprogress flag is unset and the contents are read in the following

checkpoint period.

3.3.2 Syscall Monitoring

Syscalls can be trapped by ptrace that allows for both monitoring and manipulation.

This is one simple solution to have the concurrent checkpoint thread trap on syscalls from

the real-time application. The issue is the overhead of trapping syscalls which requires ex-

tra scheduling delays and can cause serialization of syscalls where they otherwise wouldn’t

be. One possible solution to avoid this is to manipulate the syscalls in the kernel to support

concurrent monitoring, and replay when the data is available. With hundreds of syscalls, all

scattered through out the kernel, this is a larger effort than what can be achieved as part of

this work.

3.3.3 Syscall Replay

Replaying syscall behavior is possible using ptrace just as it is for monitoring. All syscall

data can be stored to a file, and used for replay. Where replay is not required to run at real-

25

time speeds, added overhead is not a concern. For replay, manipulation of the kernel is less

likely, although knowledge of each syscall would be necessary for correct operation.

3.3.4 RDTSC Monitoring

RDTSC andRDTSCPprovide immediate access to the cpu clockwithout costly syscalls.

Since it is natively supported by the Instruction Set Architecture and allowed in User Space

there is no simple trapping on execution of the instruction. It is possible to trap with a hy-

pervisor, which is common in real-time embedded systems, this adds additional complexity

to the test setup that is out of scope. An ideal solution would trap on execution of the in-

struction, and save off the value to a space where the concurrent checkpoint can retrieve it at

time of checkpoint without overhead to the application. A hypervisor such as JailHouse[18]

or ACRN[9] is used in these environments and can be modified for this support.

3.3.5 RDTSC Replay

Replaying of RDTSC values is more difficult since the instruction still requires trapping

through hypervisor. In this case for each execution window, a data buffer of RDTSC values

would be passed to the hypervisor, fromwhich all trapped calls could be linked and repeated.

Instruction replacement is not possible since RDTSC has too small of a byte count.

3.3.6 MMIO Monitoring

Device or SensorData is typically received through aMemory Buffer commonly referred

to as an RX buffer. These either exist in device memory where memory read instructions

26

translate device I/O or the buffer exists in system memory and is asynchronously updated

throughDMA transactions originating from the device or sensor itself. DMATransactions

are a system level operation with little to no visibility to theOperating system orHypervisor

making this not simply trappable. The memory read accesses are possibly known, atleast

to a developer, and possibly to the Operating system, based on how mmap is used if at all

within the user space application. If a kernel driver is used, then the ioctl or similar syscall

can be addressed as before. Since addresses typically result is a page fault is a trap is desired,

the ovrhead can be great. One possible solution is instruction injection by modifying the

applications code itself to inject write after read of the data, if those instructions are known

to access MMIO regions. This is not an ideal solution since it requires both memory and

cache bandwidth and can double the instruction density for functions that require monitor-

ing. A hardware solution such as Intel’s Processor Trace could be be used to collect MMIO

transactions but the overhead is not bounded and is not fit for real-time applications.

3.3.7 MMIO Replay

Replay ofMMIO instructions is a complex topic since they are boundedbyphysical time

based onwhen the data was last written by an asynchronous entity such as a device or sensor.

In replay, physical time is not known and is bounded by logical time such as Lamport clocks

or more complex vector clocks. This makes maintaining the memory buffers difficult and

instead requires each memory read instruction to be replayed exactly. One solution similar

as described for monitoring is instruction injection. In the case of replay, the data is read

from a file or buffer in memory, rather than the desired address. This requires basic address

checking to make sure the replaying thread has not shifted to a new execution path.

27

3.4 Measurements

The software for observation used is the PARSEC 3.0 benchmark suite with modifica-

tions to identify cycle specific performance and checkpoint latency. These two categories

address the overhead of concurrent checkpointing in relation to the response time for each

given workload. Additional measurements in the kernel flows are added to better character-

ize areas of latency such as the soft dirty tracking latency and per thread forced stalls. Non-

critical measurements exist in areas that do not directly impact the overhead observed by the

workload but can indirectly impact the limits of checkpointing given the total system level

performance.

3.4.1 PARSEC Modifications

The PARSEC Benchmarks are organized to separate the initialization from the critical

section resulting in aRegion of Interest orROIwheremeasurement should take place. Upon

entering the ROI, a synchronization is made with CRIU using SIGSTOP and SIGCONT

after which synchronization is made with the concurrent checkpoint to begin using a newly

added syscall. After these synchronization points, the workload should continue executing

be in a controlled environment where all threads are created, file pointers are in place. Mem-

ory changes are allowable after initialization through allocation to heap or the increase in

stack size from sbrk().

Each workload is broken into cycles that already exist but for sake of measurement are

isolated by a new syscall to allow for both event logging and synchronization with the con-

current checkpointing. Synchronization is optional, and only crucial when operatingwithin

the bounds of an isochronous scheduling method for responses and checkpoints.

28

Each benchmark is not created with real-time performance in mind, making each cycle’s

performance unrelated to all other cycles. Therefor when analyzing performance, the data

is represented as a transient. Further analysis of each transient is discussed in the Analysis

section.

3.4.2 Important Events and definitions

A list of all events logged by the checkpoint infrastructure is presented in Table 4. These

are used to capture the associated activity and support the calculations required to identify

various sources of overhead. All events are captured with a time using the RDTSCP instruc-

tion.

3.4.2.1 Checkpoint Boundary

The setting of ckpt_inprogress defines a checkpoint boundary from which all future

memory writes should be pushed to the following checkpoint period. The state of the appli-

cation is not synchronized with the ckpt_inprogress flag directly, but rather all future page

faults that occur when the flag is set. If pages exist that are writable, the writes to this mem-

ory space will be accounted for in the current checkpoint period until the pages are marked

read-only and the resulting page fault on a future write will push the writes to the following

checkpoint period.

29

Event Name Function Location Important Data
PAGE_FAULT_ANON do_anonymous_page() cpu, pid, virtual address
PAGE_FAULT_DIRTY handle_pte_fault() cpu, pid, virtual address
PAGE_FAULT_FINISH handle_pte_fault() cpu, pid, virtual address
PAGE_FAULT_STALL handle_mm_fault() cpu, pid, virtual address
PAGE_FAULT_RESUME handle_mm_fault() cpu, pid, virtual address
SWAP_IN context_switch() cpu, current pid, parent pid,

next pid
SWAP_OUT context_switch() cpu, prev pid, parent pid, new

pid
SMP_FUNC_CALL_ISSUE creplay:device_ioctl() cpu, pid
SMP_FUNC_CALL_COMPLETE creplay:device_ioctl() cpu, pid
POP_PAGE creplay:device_ioctl() virtual address
PAGE_WALK_START creplay:device_ioctl() virtual address
PAGE_WALK_COMPLETE creplay:device_ioctl() virtual address
MEMREMAP_START creplay:device_ioctl() physical address
MEMREMAP_COMPLETE creplay:device_ioctl() physical address, remapped ad-

dress
PAGE_COPY_START creplay:device_ioctl() physical address, remapped ad-

dress
PAGE_COPY_COMPLETE creplay:device_ioctl() physical address, remapped ad-

dress
CLEAR_DIRTY creplay:device_ioctl() virtual address
CHECKPOINT_START creplay:device_ioctl()
CHECKPOINT_COMPLETE creplay:device_ioctl()
THREAD_HALTED creplay:device_ioctl() pid
TRHEAD_UNQUEUED creplay:device_ioctl() pid

Table 4. Logging Events

3.4.2.2 Checkpoint Period

The checkpoint period is the window of time between when the cpu register states are

collected against a synchronized memory state of the entire process. A checkpoint period

represents all state changes that have occurred compared to the previos checkpoint period.

3.4.2.3 Checkpoint Finished

The checkpoint finished event is generated by the kernel driver when a POP_QUEUE

command is issued with the ckpt_inprogress flag unset. The event will occur at the end of

30

the POP_QUEUE flow as to catch copy any pages that cause a Page Fault and waiting for

the ckpt_finished_event.

3.4.2.4 Fast Page Fault

This event occurs when a a write operation targets a physical memory page that is clean

andmarked as read-only. This is the quickest type of page fault which the kernel can quickly

update the PTE in the TLB and resume execution. The start of the event is the result of a

hardware initiate fault event that is not directly measurable using simple methods. The Fast

Page Fault is a product of the dirty page tracking used for concurrent checkpointing and

would not occur otherwise.

3.4.2.5 Anonymous Page Fault

Anonymous page faults are a product of writes to virtualmemory that is known to a pro-

cess but does not yet have physical memory associated with it. These faults occur naturally

in all operating environments. The dirty page tracking treats these page faults similarly to

the fast page fault if the memory type is writable. A read-only page in this case is assumed

to be generated by another means that the OS should handle during replay. Like fast page

faults, the overhead from anonymous page faults is not easily measured.

3.4.2.6 Page Table Entry Clear (PTE Clear)

Each time a page is saved off for concurrent checkpointing outside of a full process stall,

the PTE and TLB entries must be updated to clean and marked as read-only. This requires

31

locking either the entire page table or a segment of it, possibly stalling other page faults. Since

the PTE Clear typically occurs by the checkpointing thread it can add undesired latency to

the workload by serialization as a result of these shared locks. The time to perform a PTE

Clear by itself does not directly impact the target process.

3.4.2.7 Forced Thread Stall

A forced thread stall occurs when all threads in a process must delay future execution

of writes to physical memory. This occurs through either a page fault triggered by the dirty

page tracking, syscall synchronization, or smp_func_call methods. Each method of stall is

measurable based on the initial event such as the occurrence of the page fault, syscall, or

smp_func_call. The stall is observed to finish when a the thread is observed to have been

swapped in by a context switch.

3.4.3 Calculations

3.4.3.1 Runtime - truntime

The runtime of the of theworkload is themeasured time to complete theRegion of Inter-

est part of the PARSECbenchmark. This is reported out to the console once the benchmark

completes.

32

3.4.3.2 Overhead - toverhead

The overhead is the difference in runtime between when concurrent checkpointing is

activated using the compilation config gcc-ckpt_replay and when it is not using gcc-hooks.

3.4.3.3 Page Fault Stall Overhead tpfstall

Each page fault stall event can be measured per core by a page fault that occurs when

ckpt_inprogress is set. This is measured as the time between PAGE_FAULT_STALL and

PAGE_FAULT_RESUME. A summation of all tpfstall will provide a total overhead from

page fault stalls represented as Tpfstall. In the case of multicore systems, this total overhead

is shared between all cores. For measurement, the maximum of total observed overhead per

each core, is stated as the Tpfstall.

3.4.3.4 Dirty Tracking Overhead - Ttracking

With concurrent checkpointing activated the overhead observed from tracking alone

is assumed to be toverhead - Tpfstall. The per page fault overhead ttracking is generalized as

Ttracking/npfdirty, with npfdirty as the number of page faults per core.

3.4.4 Non-Critical Measurements

Additional events while measurable, are not as critical to determining the overhead con-

current checkpointing, but rather can be used to determine the limits of the infrastructure

and various areas of optimization.

33

3.4.4.1 Page Copy Performance - tpage_copy

The copying a page of memory from a kernel remapped address to a user space buffer

using copy_to_user().

3.4.4.2 Page Walk Performance - tpage_walk

While the PTE value is commonly knownduring a page fault, a full pagewalk is required

to collect the various structures in the entire page table to properly lock the page table region

from changes and update the dirty tracking. This typically is a long latency serialized opera-

tion with little to no cache benefit.

3.4.4.3 Page Remap Performance - tpage_remap

The x86 architecture when running in protected mode, the kernel must map physical

memory from a user space process into its virtual address space to support access. This is

performed by the memremap() using a MEMREMAP_WB flag to generate a write-back

configuration.

34

Chapter 4

RESULTS

4.1 System Setup

The system setup uses a MinnowBoard Turbot Quad-Core board running Ubuntu

18.04 LTS with a modified 4.11.12-rt16+ kernel build booting off a SanDisk 120GB SSD. The

kernel config is reduced and scrubbed for compile-in drivers only without any usage of an

initramfs. While the system is not heavily tuned formore stringent real-time usage, the “isol-

cpus=1,2,3” kernel argument is used at boot time to isolate the last two cores from regular

system scheduling and interrupts. The PARSEC benchmarks used for measurement and

compiledusing gcc-hooks and gcc-ckpt_replay. “gcc-ckpt_replay” in this case refers to amod-

ified gcc-hooks configuration with a synchronization for CRIU and syscall that is needed

during the initialization of the concurrent checkpoint operation. The PARSEC[1] bench-

marks used are blackscholes and canneal. The concurrent checkpointing is run using the

configurations for data collection listed in Table 5. These vary the frequency of the check-

point placement, and PARSEC simulation and native input datasets. The frequency of the

POP_QUEUE calls is set to 1/10th of the checkpoint period.

The concurrent checkpoint is first started with CRIU and restored for a clean operating

Frequency Checkpoint Arguments Target Datasets
50Hz ./rt_ckpt <..> -s 4096 -f 50 native
25Hz ./rt_ckpt <..> -s 4096 -f 25 native
10Hz ./rt_ckpt <..> -s 4096 -f 10 native
1Hz ./rt_ckpt <..> -s 4096 -f 1 native

Table 5. Caption

35

environment after which the application will run with concurrent checkpoint active. The

output of event logging is redirected to a file.

criu dump -t <pid> --shell-job --images-dir criu_images

criu restore --shell-job --images-dir criu_images

./rt_ckpt -m concurrent -o ckpt -p <pid> -s 4096 > concurrent_log.txt

Sample output of blackscholes with checkpoint enabled is listed as follows:

PARSEC Benchmark Suite Version 3.0-beta-20150206

[HOOKS] PARSEC Hooks Version 1.2

Num of Options: 65536

Num of Runs: 100

Size of data: 2621440

[HOOKS]SIGSTOP Waiting for CRIU

[1]+ Stopped taskset -c 2,3 ...

fg

taskset -c 2,3 ./pkgs/apps/blackscholes/inst/amd64-linux.gcc-ckpt_replay/bin/blackscholes 1 ...

[HOOKS]SYSCALL_CKPT Waiting for Concurrent Checkpoint

[HOOKS] Entering ROI

[HOOKS] Leaving ROI

[HOOKS] Total time spent in ROI: 2.647s

[HOOKS] Terminating

4.2 Activity Description

The activity of concurrent checkpointing is represented in Figure 4. 3 Areas are selected

for viewing. A-B and E-F show the checkpointing process, with the “Checkpoint” signal

representing ckpt_inprogress. From these the ckpt_inporogress is set using POP_QUEUE

where the dirty tracking queue is emptied and with page walks, page remapping, and page

36

copying occurring. While the dirty tracking queue is being emptied, a page fault occurs in all

three threads causing the page fault stall event. These threads remain in the page fault stall

until the ckpt_finished_event is observed by those threads after the ckpt_inprogress signal

is unset. For consistency, all pages marked as dirty have a low cost bulk copy that occurs at

the end of the checkpoint prior to unsetting ckpt_inprogress. This is to catch any inconsis-

tencies in the timing and sequencing of dirty tracking. In a production enviroment, this can

be removed with adequate verification of the dirty tracking sequencing. The performance

penalty of the extra copies was tested for and left in for consistency. The actual impact was

minimal on the order of less than 10%ofTpfstall. Small swap events can be seenwhen the Page

Fault stall event occurs but since no other threads are assigned to those cores, the threads re-

main active, but dormant until the ckpt_finished_event is observed.

The activity between markers C and D in Figure 4 show the concurrent checkpointing

activity. Page faults occur on each core in thier respective threads filling up the dirty queue.

A POP_QUEUE command is sent with ckpt_inprogress unset to collect the dirty page thus

far but not yet prepare for a checkpoint. The page walks, remaps, and copies during this

phase have little to no impact on the target process. Serialization of page faults, and some

delays can be observed due to the use of locks in the page table structure, and the dirty queue.

Global locks are avoided to prevent latency propagation from the checkpointing facility to

the target thread.

The required use of smp_func_call is demonstrated in Figure 5 when the GET_REGS

command occurs prior to the threads being halted through either a page fault stall or sched-

uler swap. Since a full context_switch is not observed, the swap events do not show in the

wave form, but this is the point the cpu state registers are captured. A page fault stall event

is still observed to prevent writes from entering the previous checkpoint period but this has

no impact on the cpu state registers used for the checkpoint. The final page walk and remap

37

is to have a second check of the address faults that occur after the GET_REGS command,

but the contents to be written to memory are not allowed until the page fault resumes after

ckpt_inprogress is unset.

4.3 Blackscholes Data

The runtime data comparing checkpoint frequency to standalone application without

checkpointing is presenting in Table 6. The overhead observed by looking at the run-time is

quite small with themost observed as 1.059 slowdownwith a checkpoint target frequency of

50Hz in the 2 thread configuration. The checkpoint frequency of 50Hz is not sustainable by

looking at the activity waveform in Figure 6 and comparing it against the equivalent 25Hz

configuration. This shows that the SucceedingPOP_QUEUEcommand is delayedby about

60% of the checkpoint period since the user space checkpoint application is busy saving the

state changes form the prior checkpoint. Additional measurements can be made with the

user space checkpoint application to find it’s limits and possible optimization’s to support

higer frequencies, but this work is focused on the target application overhead from concur-

rent checkpointing. A breakdown of the measurable overhead and assumed dirty tracking

overhead is presented in Table 7. The dirty tracking overhead is not easily measured since it

requires visibility of hardware events such as interrupts and micro-architectural latency. For

analysis, this overhead will be represented as the remaining overhead after subtracting the

total delay observed from page fault stalls. Further study of the checkpoint overhead can be

used to define a overhead per page fault for the tracking and a forced stall overhead. The

per page fault overhead uses the assumed dirty tracking overhead divided by the number of

page faults resulting in a rough overhead in microseconds. For Blackscholes, these items are

calculated from the data in Table 8.

38

74540 ms 74550 ms 74560 ms 74570 ms 74580 ms 74590 ms 74600 ms 74610 ms 74620 ms 74630 ms 74640 ms 74650 ms 74660 ms
000+ 00000680 0000+ 000+ 000+ 0000+ 000+ 0000+ 000+ 0000+ 000+ 00000680 0000+ 000+ 00000680 000+ 000+ 000+ 0000+ 00000680 00000680
000+ 00000681 0000+ 00000681 0000+ 00000681 000+ 00000681 0000+ 000+ 00000681 000+ 0000+ 000+ 0000+ 000+ 00000681 00000681
000+ 00000682 0000+ 00000682 000+ 00000682 000+ 0000+ 000+ 0000+ 000+ 0000+ 00000682 000+ 0000+ 000+ 0000+ 000+ 00000682 00000682

A B C D E FTime
CPU1[31:0]=00000680
CPU2[31:0]=00000681
CPU3[31:0]=00000682
Checkpoint=0
PageClear=x
PageCopy=0
PageFaultCPU1=0
PageFaultCPU2=0
PageFaultCPU3=0
PageRemap=0
PageWalk=0
SMPCPU1=x
SMPCPU2=x
SMPCPU3=x

(a) Wide View

74543 ms 74544 ms 74545 ms 74546 ms 74547 ms
00000680 00000680
00000681 00000681
00000682 00000682

A BTime
CPU1[31:0]
CPU2[31:0]
CPU3[31:0]
Checkpoint
PageClear
PageCopy
PageFaultCPU1
PageFaultCPU2
PageFaultCPU3
PageRemap
PageWalk
SMPCPU1
SMPCPU2
SMPCPU3

(b) A-B

74583 ms 74584 ms 74585 ms 74586 ms 74587 ms
00000680 00000680
00000681 00000681
00000682 00000682

C DTime
CPU1[31:0]
CPU2[31:0]
CPU3[31:0]
Checkpoint
PageClear
PageCopy
PageFaultCPU1
PageFaultCPU2
PageFaultCPU3
PageRemap
PageWalk
SMPCPU1
SMPCPU2
SMPCPU3

(c) C-D

74658 ms 74659 ms 74660 ms 74661 ms
00000680 00000680
00000681 00000681
00000682 00000682

E FTime
CPU1[31:0]
CPU2[31:0]
CPU3[31:0]
Checkpoint
PageClear
PageCopy
PageFaultCPU1
PageFaultCPU2
PageFaultCPU3
PageRemap
PageWalk
SMPCPU1
SMPCPU2
SMPCPU3

(d) E-F

Figure 4. 3 Thread Concurrent Checkpoint Activity
39

127117200 us 127117300 us 127117400 us 127117500 us 127117600 us 127117700 us 127117800 us 127117900 us 127118 ms 127118100 us
00000934 00000934
00000935 00000935
00000936

Time
CPU1[31:0]
CPU2[31:0]
CPU3[31:0]
Checkpoint
PageClear
PageCopy
PageFaultCPU1
PageFaultCPU2
PageFaultCPU3
PageRemap
PageWalk
SMPCPU1
SMPCPU2
SMPCPU3

(a) SMP_FUNC_CALL Usage

Figure 5. 3 Thread Concurrent Checkpoint Activity - Cont.

Execution times (seconds) Slowdown factors
Dataset no

chkp
1Hz 10Hz 25Hz 50Hz 1Hz 10Hz 25Hz 50Hz

1 Thread 329.7 335.125 339.826 341.557 340.401 1.016 1.031 1.037 1.032
2 Thread 164.592 167.355 170.357 170.388 174.365 1.017 1.035 1.035 1.059
3 Thread 109.928 111.811 114.388 115.923 113.038 1.017 1.041 1.055 1.028

Table 6. Execution times of Blackscholes benchmark program

Execution overhead in ms
Results Total overhead Page Fault

Stalls (%)
Assumed Dirty
Tracking (%)

Per
Checkpoint

Overhead(ms)
1 Thread 1Hz 5.425 2.709(49.9%) 2.715(50.0%) 8.797
1 Thread 10Hz 10.126 5.916(58.4%) 4.208(41.6%) 1.938
1 Thread 25Hz 12.252 8.481(69.2%) 3.751(30.6%) 1.149
1 Thread 50Hz 10.701 6.386(59.7%) 4.254(39.8%) 0.445
2 Thread 1Hz 2.763 1.490(53.9%) 1.273(46.1%) 9.430
2 Thread 10Hz 5.765 3.598(62.4%) 2.165(37.6%) 2.239
2 Thread 25Hz 5.796 2.625(45.3%) 3.155(54.4%) 0.658
2 Thread 50Hz 9.773 5.872(60.1%) 3.862(39.5%) 0.770
3 Thread 1Hz 1.883 0.739(39.2%) 1.144(60.7%) 6.657
3 Thread 10Hz 4.460 2.867(64.3%) 1.592(35.7%) 2.533
3 Thread 25Hz 5.995 4.291(71.6%) 1.693(28.2%) 1.556
3 Thread 50Hz 3.110 1.340(43.1%) 1.741(56.0%) 0.255

Table 7. Blackscholes Overhead

40

Execution overhead in ms
Results npfdirty ncheckpoint

(Actual
Frequency)

npfdirty
sec

npfdirty
ncheckpoint

tpfdirty(us)

1 Thread 1Hz 843433 308(0.9) 2516.771 2738.419 3.219
1 Thread 10Hz 981168 3052(9.0) 2887.266 321.484 4.289
1 Thread 25Hz 1016093 7383(21.6) 2971.449 137.626 3.691
1 Thread 50Hz 984006 14343(42.1) 2890.726 68.605 4.323
2 Thread 1Hz 410896 158(0.9) 2455.236 2600.608 3.688
2 Thread 10Hz 491228 1607(9.4) 2883.521 305.680 4.592
2 Thread 25Hz 498993 3987(23.4) 2928.569 125.155 6.761
2 Thread 50Hz 403250 7622(43.7) 2312.677 52.906 10.213
3 Thread 1Hz 204176 111(1.0) 1826.082 1839.423 6.176
3 Thread 10Hz 325558 1132(9.9) 2846.085 287.595 5.558
3 Thread 25Hz 243136 2757(23.8) 2097.392 88.189 7.198
3 Thread 50Hz 197945 5263(46.6) 1751.137 37.611 9.314

Table 8. Blackscholes Overhead Analysis

90630 ms 90640 ms 90650 ms 90660 ms 90670 ms 90680 ms
00000+ 00000A0A 00000A0A 00000A0A 00000A0A 00000A0A 00000A0A 00000A0A 00000A0A 00000A0A
0000+ 00000A0B 00000A0B 00000A0B 00000A0B 00000A0B 00000A0B 00000A0B 00000A0B 00000A0B

D

11.830 ms 46.420 ms

Time
CPU1[31:0]
CPU2[31:0]
Checkpoint
PageClear
PageCopy
PageFaultCPU1
PageFaultCPU2
PageRemap
PageWalk
SMPCPU1
SMPCPU2

(a) 2 Thread 25Hz

119080 ms 119090 ms 119100 ms
000+ 000008B9 000008B9 000008B9 000008B9 000008B9 000008B9 000008B9 000008B9
000+ 000008BA 000008BA 000008BA 000008BA 000008BA 000008BA 000008BA 000008BA

G

14.553 ms 23.887 ms

Time
CPU1[31:0]
CPU2[31:0]
Checkpoint
PageClear
PageCopy
PageFaultCPU1
PageFaultCPU2
PageRemap
PageWalk
SMPCPU1
SMPCPU2

(b) 2 Thread 50Hz

Figure 6. Blackscholes: Comparing 2 Thread Checkpoint Period 25Hz to 50Hz

41

Execution times (seconds) Slowdown factors
Dataset no

chkp
1Hz 10Hz 25Hz 50Hz 1Hz 10Hz 25Hz 50Hz

1 Thread 354.742 361.801 386.79 397.094 390.152 1.020 1.090 1.119 1.100
2 Thread 184.859 190.196 193.339 197.084 204.042 1.029 1.046 1.066 1.104
3 Thread 127.815 132.57 135.818 139.036 151.94 1.037 1.063 1.088 1.189

Table 9. Execution times of Canneal benchmark program

4.4 Canneal Data

Canneal has larger memory footprint than blackscholes with irregular memory access.

The checkpoint overhead is more apparent than blackscholes, specifically seeing that the

number of page faults is 4x greater for canneal in 1 thread configurations at 10hz than the

similar configuration for blackscholes. The slow down is greater for this reason as well the

overhead observed from dirty tracking, vs overhead from page fault stalls. 9. Serialization is

also more apparent from page faults in the 2 and 3 thread configurations. Canneal requires

more time to save larger amounts of state changes due to the greater number of page faults.

Since the tpfdirty does notmatch blackscholes closely, the concurrent checkpointingwas tested

with only POP_QUEUE commands being issues and never setting ckpt_inprogress. This

data is representing in Tables 12 and 13. The overhead is isolated per core to see possible vari-

ation between threads on each core. Looking at the waveform activity in Figure 7, the extra

pagefaults that occur on Core 1 are skewing the overhead results, making Core 2 and 3 num-

bers appearing to have a larger overhead. for this reason all data captured focuses on Core 1

results only ignoring data for Core 2 and 3 in the case of multicore runs.

42

Execution overhead in ms
Results Total overhead Page Fault

Stalls (%)
Assumed Dirty
Tracking (%)

Per
Checkpoint

Overhead(ms)
1 Thread 1Hz 7.059 1.760(24.9%) 5.299(75.1%) 5.569
1 Thread 10Hz 32.048 13.804(43.1%) 18.244(56.9%) 4.086
1 Thread 25Hz 42.352 21.543(50.9%) 20.806(49.1%) 2.549
1 Thread 50Hz 35.410 20.077(56.7%) 15.248(43.1%) 1.255
2 Thread 1Hz 5.337 2.075(38.9%) 3.262(61.1%) 11.465
2 Thread 10Hz 8.480 2.985(35.2%) 5.487(64.7%) 1.712
2 Thread 25Hz 12.225 3.916(32.0%)) 8.282(67.7%) 0.866
2 Thread 50Hz 19.183 8.269(43.1%) 10.854(56.6%) 0.899
3 Thread 1Hz 4.755 1.144(24.1%) 3.611(75.9%) 9.081
3 Thread 10Hz 8.003 2.464(30.8%) 5.535(69.2%) 1.954
3 Thread 25Hz 11.221 4.184(37.3%) 7.019(62.5%) 1.289
3 Thread 50Hz 23.379 14.197(60.7%) 9.141(39.1%) 2.248

Table 10. Canneal Overhead

Execution overhead in ms
Results npfdirty ncheckpoint

(Actual
Frequency)

npfdirty
sec

npfdirty
ncheckpoint

tpfdirty(us)

1 Thread 1Hz 1059333 316(0.9) 2927.944 3352.320 5.002
1 Thread 10Hz 4067596 3378(8.7) 10516.290 1204.143 4.485
1 Thread 25Hz 4094040 8452(21.3) 10310.002 484.387 5.082
1 Thread 50Hz 1922762 15993(41.0) 4928.238 120.225 7.930
2 Thread 1Hz 564792 181(1.0) 2969.526 3120.398 5.808
2 Thread 10Hz 722335 1743(9.0) 3736.106 414.421 7.826
2 Thread 25Hz 736951 4523(22.9) 3739.274 162.934 11.471
2 Thread 50Hz 723334 9199(45.1) 3545.025 78.632 15.648
3 Thread 1Hz 408758 126(1.0) 3083.337 3244.111 8.984
3 Thread 10Hz 511564 1261(9.3) 3766.541 405.681 11.060
3 Thread 25Hz 544793 3247(23.4) 3918.359 167.783 13.258
3 Thread 50Hz 536797 6315(41.8) 3550.386 85.003 17.841

Table 11. Canneal Overhead Analysis

Execution times (seconds)
Dataset no chkp 1Hz 10Hz 25Hz 50Hz
3 Thread 127.815 130.383 131.572 133.204 133.201

Table 12. Execution times of Canneal with dirty tracking only

43

Execution overhead in ms
Results npfdirty

npfdirty
sec

tpfdirty(us)
3 Thread 1Hz Core 1 391461 3002.393 6.560
3 Thread 10Hz Core 1 563240 4280.850 6.670
3 Thread 25Hz Core 1 654184 4911.144 8.238
3 Thread 50Hz Core 1 573570 4306.049 9.390
3 Thread 1Hz Core 2 210927 1617.749 12.175
3 Thread 10Hz Core 2 350625 2664.891 10.715
3 Thread 25Hz Core 2 432056 3243.566 12.473
3 Thread 50Hz Core 2 343797 2581.039 15.666
3 Thread 1Hz Core 3 208725 1600.861 12.303
3 Thread 10Hz Core 3 351888 2674.490 10.677
3 Thread 25Hz Core 3 431464 3239.122 12.490
3 Thread 50Hz Core 3 342478 2571.137 15.727

Table 13. Canneal Overhead Analysis

110 sec 120 sec 130 sec 140 sec 150 sec 160 sec 170 sec 180 sec 190 sec 200 sec 210 sec 220 sec 230 sec 240 sec 250 sec
xxxxxxxx
xx+ 0+ + + 000+ 000004+ 0+ 000+ 00+ 00+ 000+ 0+ 00+ 000+ 0000045F 000004+ 0+ 0000045F + 00+ 000+ 0+ + + 000+ + 000004+ + 0000+ 00000000
xx+ 000003BB

Time
CPU3_out_next[31:0]
CPU3_out_prev[31:0]
CPU3_out_tgid[31:0]
Checkpoint
PageClear
PageCopy
PageFaultCPU0
PageFaultCPU1
PageFaultCPU2
PageFaultCPU3
PageRemap
PageWalk
SMPCPU0
SMPCPU1
SMPCPU2
SMPCPU3

Figure 7. Canneal: 3 Thread 10 Hz Dirty Tracking Only
Since all the threads join prior to the end of checkpointing, the data for Core 1 has more
pagefaults causing the overhead to be skewed

44

4.5 Analysis

For the two workloads with varying configurations there is a trend between checkpoint

frequency and overhead observed. The goal of this research is to de-emphisize the dominant

delay from the checkpoint itself and shift it into a concurrent operation where only limited

amount of the overhead is observed by the target application. This has been successful in

showing that less that 75% of the total overhead is a directly related to stopping the process

while the application state is captured. In most cases, there is a even distribution of forced

stalls, and general overhead with a few observances of tracking being a major overhead. In

blackscholes, most checkpoint delays are observed to be less than 5ms when running in mul-

ticore operation and in single coremode,most checkpoints were 500us or less. This validates

the solution as a candidate for soft real-time systems that can absorb a average 10% overhead

to the required response time. When first developing the checkpoint, all page copies within

the checkpoint flow would perform a full page walk, remap, and finalize with unmap forc-

ing the operation to repeat completely. This greatly increased the checkpoint time since each

page walk took on average 1us and the remapping from physical to virtual address in the ker-

nel took on average 3.5us. The page copying itself can be lengthy when cache misses occur,

but averages out to less than 1us. The page walk and remapping steps can be eliminated if

caching the result and leaving the remapping in place for future events. This results in a

rather difficult cleanup from anOS perspective once checkpointing is finished and the appli-

cation either continues normally, or exits. The data from the tables are compiled into graphs

in Figure 8 and Figure 9 to assist in visualizing trends between checkpoint frequency and

overhead measurements. Figure 9(a) highlights an average overhead for each page fault due

to dirty tracking. Figure 9(b) shows the comparison of tracking overheadwith andwithout a

checkpoint occurring. Figure 9(c) represents the number of page faults due to tracking. The

45

checkpoint frequency in this setup has less impact onnumber of page faults it produces since

as the frequency increases less POP_QUEUE commands are possible within the checkpoint

period. Figures 10 show a histogram of the amount of repeated unique addresses during a

checkpoint period due to the POP_QUEUE command. For both workloads running in a 3

thread configuration, the amount of repeated addresses increase exponentially as the check-

point frequency reduces. This is why in Figure 8(b) an unusually large overhead is observed

for canneal running 1 thread. When a checkpoint period is larger such as 1s or more, it is ben-

eficial to cluster the POP_QUEUE commands near the end of the checkpoint period, rather

than spread themout evenly as doneby these tests. Theworkloadsusedparallelizewell across

all cores, allowing the page faults to also be spread evenly across all cores. For workloads that

are parallelized based on producer and consumer, the producer threads will observe the bulk

of the tracking overhead and consumer thread will be generally left unaffected. As a work-

load becomes more parallel across multiple cores, it is possible for page faults to serialize due

to the semaphore for the mm_struct, mmap_sem. This is required to be held for most page

faults, and similarly is required in the POP_QUEUE command flow. This fits well with

page fault overhead doubling when parallelism is used. Reducing the dependency on the

mmap_sem may reduce this latency, but it may not be possible with the current page fault

architecture. For comparison with CRIU, six checkpoints are measured for both Canneal

and Blackscholes when running in the 3 Thread gcc-hooks configuration presented in Ta-

ble 14. Checkpoints performed by CRIU, copy the entire memory space which is why the

checkpoint time is very large. Criu’s page copy routines are quite inefficient in comparison.

In [4], using CRIU’s pre-dump can further improve the checkpoint times into the 100s of

milliseconds range, but the work presented here presents a checkpoint method 2 orders of

magnitude faster than [4].

46

Total
Checkpoint
Time(s)

Page Copy
Time(s)

Core State
Copy

Time(ms)

Memory Copy
Size(MB)

Average 4K
Page Copy
Time(us)

Blackscholes 3 Thread
5.77s 5.71s 0.36ms 610.00MB 36.6us
6.28s 6.24s 0.34ms 610.00MB 39.9us
5.43s 5.35s 0.46ms 610.00MB 34.3us
5.46s 5.43s 0.47ms 610.00MB 34.8us
6.42s 6.39s 0.37ms 610.00MB 40.9us
5.73s 5.69s 0.52ms 610.00MB 36.4us

Canneal 3 Thread
14.32s 14.28s 1.43ms 847.00MB 65.8us
19.29s 19.25s 0.47ms 847.00MB 88.8us
21.84s 21.82s 0.44ms 847.00MB 100.6us
19.04s 18.99s 0.38ms 847.00MB 87.5us
25.51s 25.46s 0.45ms 847.00MB 117.4us
31.49s 31.46s 0.47ms 847.00MB 145.0us

Table 14. CRIU Checkpoint Comparison Data

4.5.1 Concurrent Checkpoint Applied Analysis

The purpose of concurrent checkpoint with respect to Real-Time Embedded Systems

is to create a reliable checkpoint frame work with minimal impact to the performance of a

target Real-Time application. Such systems have a desired response time within a defined

Quality of Service. The checkpoint facility can be orchestrated differently based on the al-

lowable overhead and any possible discoveries during its operation. The simplest solution

is to alter the frequency and placement of the POP_QUEUE requests to reduce the dirty

tracking overhead if the same addresses are known to be found multiple times. This can

be reduced by delaying the POP_QUEUE longer after a ckpt_inprogress is unset from the

previous checkpoint period. As noticed when attempting to checkpoint the benchmarks at

50Hz, the POP_QUEUE commands are not equally placed and are usually delayed by the

amount of time to save the previous checkpoint to disk. This shows that while the check-

47

0 10 20 30 40
Checkpoint Frequency

100

150

200

250

300

350

400
Ru

nt
im

e
in

 S
ec

on
ds

blackscholes_t1
blackscholes_t2
blackscholes_t3
canneal_t1
canneal_t2
canneal_t3

(a) Total Runtime

0 10 20 30 40
Checkpoint Frequency

0

5

10

15

20

25

30

35

40

To
ta

l O
ve

rh
ea

d
in

 S
ec

on
ds

blackscholes_t1
blackscholes_t2
blackscholes_t3
canneal_t1
canneal_t2
canneal_t3

(b) Total Overhead

0 10 20 30 40
Checkpoint Frequency

0

5

10

15

20

To
ta

l P
ag

e
Fa

ul
t S

ta
ll

Ov
er

he
ad

 in
 S

ec
on

ds

blackscholes_t1
blackscholes_t2
blackscholes_t3
canneal_t1
canneal_t2
canneal_t3

(c) Checkpoint Overhead

0 10 20 30 40 50
Checkpoint Frequency

0

2

4

6

8

10

12

Av
er

ag
e

Ch
ec

kp
oi

nt
 L

at
en

cy

in
 m

illi
se

co
nd

s

blackscholes_checkpoint
blackscholes_checkpoint
blackscholes_checkpoint
canneal_checkpoint
canneal_checkpoint
canneal_checkpoint

(d) Checkpoint Latency

Figure 8. Checkpoint Latency Analysis Graphs

pointing frequency increases, the amount of page faults for dirty tracking do not increase.

The tracking overhead similarly does not increase at the same rate as the checkpointing fre-

quency either. Additional hooks canbe added to reducedirty trackingoverhead for common

duplicates such as stack memory. A stage is attached to each vma_struct to provide this per

page classification. A requeue counter is present used to count the amount of repeats of a

specific page. Neither the stage or counter is not used in the current implementation. This

provides extensible in both the kernel modifications, or the user space interface to manipu-

late the behavior as needed.

48

0 10 20 30 40
Checkpoint Frequency

4

6

8

10

12

14

16

18

Pa
ge

 F
au

lt(
Di

rty
) O

ve
rh

ea
d

in
 m

icr
os

ec
on

ds

blackscholes_t1
blackscholes_t2
blackscholes_t3
canneal_t1
canneal_t2
canneal_t3

(a) Tracking Overhead

0 10 20 30 40 50
Checkpoint Frequency

6

8

10

12

14

16

18

Pa
ge

 F
au

lt(
Di

rty
) O

ve
rh

ea
d

in
 m

icr
os

ec
on

ds

blackscholes_checkpoint
canneal_checkpoint
canneal_tracking_overhead

(b)ComparingTrackingOverheadwithoutCheckpointing (3Thread)

0 10 20 30 40
Checkpoint Frequency

2000

4000

6000

8000

10000

Nu
m

 P
ag

e
Fa

ul
ts

 p
er

 se
co

nd
 fo

r C
or

e
1

blackscholes_t1
blackscholes_t2
blackscholes_t3
canneal_t1
canneal_t2
canneal_t3

(c) Page Fault Occurrences

Figure 9. Tracking Overhead Analysis Graphs
49

2 4 6 8 10 12 14
Average Num. of Page Faults

Per Address Within a Checkpoint

0
100

101

102

103

104

105

106

Nu
m

be
r o

f U
ni

qu
e

Ad
dr

es
se

s blackscholes_n_1_checkpoint
blackscholes_n_10_checkpoint
blackscholes_n_25_checkpoint
blackscholes_n_50_checkpoint

(a) Blackscholes 3 Threads

2 4 6 8 10 12 14
Average Num. of Page Faults

Per Address Within a Checkpoint

0
100

101

102

103

104

105

106

Nu
m

be
r o

f U
ni

qu
e

Ad
dr

es
se

s canneal_n_1_checkpoint
canneal_n_10_checkpoint
canneal_n_25_checkpoint
canneal_n_50_checkpoint

(b) Canneal 3 Threads

Figure 10. Histograms of Repeated Page Faults

50

Chapter 5

CONCLUSION

The method presented in this work is a low cost solution to perform concurrent check-

pointing by using a dirty page tracking scheme for soft real-time embedded environments.

The method performs best when memory is heavily reused during the applications life to

further reduce the per page fault cost. If incorporated into CRIU to fully utilize all its ca-

pabilities along side concurrent checkpointing, a robust checkpoint and replay can be pro-

duced and dramatically reduce the checkpoint delay spent in copying application memory

state. Concurrent checkpointing can quickly exhaust a storage medium as well depending

on the frequency of checkpoints and amount of dirty pages per checkpoint. By employing

various algorithms to deciding which pages to copy concurrently or during a checkpoint

can help in reducing the dirty tracking overhead. The highest cost of a checkpoint comes

from remapping the physical memory from one process into the kernel before copying into

a storage medium. The actual copy of the memory is quite low cost compared to other la-

tency’s by an order of magnitude. One such comparison is to not copy memory and leave it

marked as dirty, but perform all the remapping during each checkpoint period. This makes

the checkpoint more difficult to schedule since a page fault stall is what helps halt all threads

during a checkpoint and it is difficult to achieve checkpoint synchronization if writes are

not restricted around the checkpoint boundary. Additional optimization could be made to

reduce dirty tracking costs for stack memory, but would require understanding where the

stack pointer is, especially in cases where an applications stack grows very large with more

data items in stack than heap.

The ideal usage for this method of concurrent checkpointing exists at 10Hz or below

51

due to some of the long latency’s observed in the microseconds. When stepping into 100Hz

or 1KHz of checkpointing, the storage medium will quickly fill, and the overhead of check-

pointing will become a significant portion of the overall compute on the system. For such

requirements, a hardware assisted checkpointing solution would be appropriate. With an

observed maximum of 1.189x(Canneal 3 Thread 50hz) slowdown for checkpointing, and a

more common 1.05x slowdown this solution canbeusedwithout impacting the application’s

quality of service. The additional system resources and compute power required greatly de-

pends on the application in question. When comparing the current cost per core and cost

for additional memory versus that of a semi custom design with an external hardware based

monitoring device, this software based method will be a more likely solution.

52

REFERENCES

[1] Christian Bienia. “Benchmarking Modern Multiprocessors”. PhD thesis. Princeton
University, Jan. 2011.

[2] Pat Brouillette and JasonRoberts. “Real-TimeDebugging with SVEN andOMAR”.
In: Intel� Technolo Journal 16.1 (2012), pp. 62–73. url: https://software.intel.com/
sites/default/files/article/380173/real-time-debugging-with-sven-inteltechjournal.
pdf.

[3] N. Chen and S. Ren. “Building a Coordination Framework to Support Behavior-
Based Adaptive Checkpointing for Open Distributed Embedded Systems”. In: Sys-
tem Scienc , 2007. HICSS 2007. 40th Annual Hawaii International Conference on.
Jan. 2007, 257b–257b. doi: 10.1109/HICSS.2007.114.

[4] X. Chen, J. H. Jiang, andQ. Jiang. “AMethod of Self-Adaptive Pre-Copy Container
Checkpoint”. In: 2015 IEEE 21st Pacific Rim International Symposium on Depend-
able Computing (PRDC). Nov. 2015, pp. 290–300. doi: 10.1109/PRDC.2015.11.

[5] CoreSight Architecture Specification. ID092613. Version 2.0. ARM. 2013.
[6] CRIU. Checkpoint/restore in userspace. Accessed: 2017. url: https://criu.org/.
[7] Joseph Devietti et al. “DMP: Deterministic Shared Memory Multiprocessing”. In:

SIGPLAN Not. 44.3 (Mar. 2009), pp. 85–96. doi: 10. 1145/1508284.1508255. url:
http://doi.acm.org/10.1145/1508284.1508255.

[8] JDuell, PaulHargrove, and Eric Roman. “TheDesign and Implementation of Berke-
ley Lab”s Linux Checkpoint/Restart”. In: LBNL Technical Report, LBNL 54941
(Jan. 2003).

[9] Linux Foundation. Project ACRN. Accessed: 2018. url: https://projectacrn.org.
[10] Intel® 64 and IA-32 Architectur Software Developer’sManual Volume 3B. 253669-

061US. Intel. 2016.
[11] K. Li, J. F.Naughton, and J. S. Plank. “Real-time, ConcurrentCheckpoint for Parallel

Programs”. In: SIGPLANNot. 25.3 (Feb. 1990), pp. 79–88. doi: 10.1145/99164.99173.
url: http://doi.acm.org/10.1145/99164.99173.

[12] A. Miraglia et al. “Peeking into the Past: Efficient Checkpoint-Assisted Time-
TravelingDebugging”. In: 2016 IEEE 27th International Symposium on Software Re-
liability Engineering (ISSRE). Oct. 2016, pp. 455–466. doi: 10.1109/ISSRE.2016.9.

[13] Pablo Montesinos, Luis Ceze, and Josep Torrellas. “DeLorean: Recording and De-
terministicallyReplaying Shared-MemoryMultiprocessor Execution Ef?Ciently”. In:
SIGARCH Comput. Archit. News 36.3 (June 2008), pp. 289–300. doi: 10 . 1145 /
1394608.1382146. url: http://doi.acm.org/10.1145/1394608.1382146.

53

https://software.intel.com/sites/default/files/article/380173/real-time-debugging-with-sven-inteltechjournal.pdf
https://software.intel.com/sites/default/files/article/380173/real-time-debugging-with-sven-inteltechjournal.pdf
https://software.intel.com/sites/default/files/article/380173/real-time-debugging-with-sven-inteltechjournal.pdf
https://doi.org/10.1109/HICSS.2007.114
https://doi.org/10.1109/PRDC.2015.11
https://criu.org/
https://doi.org/10.1145/1508284.1508255
http://doi.acm.org/10.1145/1508284.1508255
https://projectacrn.org
https://doi.org/10.1145/99164.99173
http://doi.acm.org/10.1145/99164.99173
https://doi.org/10.1109/ISSRE.2016.9
https://doi.org/10.1145/1394608.1382146
https://doi.org/10.1145/1394608.1382146
http://doi.acm.org/10.1145/1394608.1382146

[14] S. Narayanasamy, G. Pokam, and B. Calder. “BugNet: continuously recording pro-
gram execution for deterministic replay debugging”. In: 32nd International Sympo-
sium on Computer Architecture (ISCA’05). June 2005, pp. 284–295. doi: 10.1109/
ISCA.2005.16.

[15] S. Neogy, A. Sinha, and P. K. Das. “Checkpoint processing in distributed systems
software using synchronized clocks”. In: Proceedings International Conference on
Information Technolo : Coding and Computing. Apr. 2001, pp. 555–559. doi: 10 .
1109/ITCC.2001.918855.

[16] RobertO’Callahan et al. “EngineeringRecord andReplay forDeployability”. In:Pro-
ceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference.
USENIX ATC ’17. Santa Clara, CA, USA: USENIX Association, 2017, pp. 377–389.
url: http://dl.acm.org/citation.cfm?id=3154690.3154727.

[17] rr: lightweight recording and deterministic debu ing. Accessed: 2017. url: http :
//rr-project.org/.

[18] Siemens. Jailhouse: Linux-based partitioning hypervisor. Accessed: 2018. url: https:
//github.com/siemens/jailhouse.

[19] Software Development Kit for the System Visible Event Nex Technolo (SVEN).
328506-001US. Rev 1.0. Intel. 2013.

[20] J. J. P. Tsai, K. Y. Fang, and Y. D. Bi. “On real-time software testing and debugging”.
In: Proceedings., Fourteenth Annual International Computer Software and Appli-
cations Conference. 1990, pp. 512–518. doi: 10.1109/CMPSAC.1990.139423.

[21] J. J. P. Tsai et al. “A noninterference monitoring and replay mechanism for real-time
software testing and debugging”. In: IEEE Transactions on Software Engineering
16.8 (Aug. 1990), pp. 897–916. doi: 10.1109/32.57626.

[22] D. Vogt et al. “Lightweight Memory Checkpointing”. In: 2015 45th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks.
June 2015, pp. 474–484. doi: 10.1109/DSN.2015.45.

[23] Ying Zhang and Krishnendu Chakrabarty. “Energy-aware adaptive checkpointing in
embedded real-time systems”. In: Proceedings of the conference on Design, Automa-
tion and Test in Europe-Volume 1. IEEE Computer Society. 2003, p. 10918.

54

https://doi.org/10.1109/ISCA.2005.16
https://doi.org/10.1109/ISCA.2005.16
https://doi.org/10.1109/ITCC.2001.918855
https://doi.org/10.1109/ITCC.2001.918855
http://dl.acm.org/citation.cfm?id=3154690.3154727
http://rr-project.org/
http://rr-project.org/
https://github.com/siemens/jailhouse
https://github.com/siemens/jailhouse
https://doi.org/10.1109/CMPSAC.1990.139423
https://doi.org/10.1109/32.57626
https://doi.org/10.1109/DSN.2015.45

	Title Page
	Table of Contents
	List of Tables
	List of Figures
	Chapter
	1 Introduction
	2 Literature Review
	3 Methodology
	4 Results
	5 Conclusion
	References

