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ABSTRACT

Blockchain scalability is one of the issues that concerns its current adopters. The

current popular blockchains have initially been designed with imperfections that in-

troduce fundamental bottlenecks which limit their ability to have a higher throughput

and a lower latency.

One of the major bottlenecks for existing blockchain technologies is fast block

propagation. A faster block propagation enables a miner to reach a majority of the

network within a time constraint and therefore leading to a lower orphan rate and

better profitability. In order to attain a throughput that could compete with the

current state of the art transaction processing, while also keeping the block intervals

same as today, a 24.3 Gigabyte block will be required every 10 minutes with an

average transaction size of 500 bytes, which translates to 48600000 transactions every

10 minutes or about 81000 transactions per second.

In order to synchronize such large blocks faster across the network while maintain-

ing consensus by keeping the orphan rate below 50%, the thesis proposes to aggregate

partial block data from multiple nodes using digital fountain codes. The advantages

of using a fountain code is that all connected peers can send part of data in an encoded

form. When the receiving peer has enough data, it then decodes the information to

reconstruct the block. Along with them sending only part information, the data can

be relayed over UDP, instead of TCP, improving upon the speed of propagation in

the current blockchains. Fountain codes applied in this research are Raptor codes,

which allow construction of infinite decoding symbols. The research, when applied to

blockchains, increases success rate of block delivery on decode failures.
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Chapter 1

INTRODUCTION

A blockchain, is a continuously growing list of records, called blocks, which are

linked and secured using cryptography. Each block typically contains a crypto-

graphic hash of the previous block, a time stamp and transaction data. By design, a

blockchain is immutable because of the linked structure. It is ”an open, distributed

ledger that can record transactions between two parties efficiently and in a verifiable

and permanent way” according to [25]. In order to be used as distributed ledger, it

is managed by a peer to peer network, in which all peers/nodes follow one protocol.

This protocol takes care of messaging between these peers, and adding and validating

the new blocks formed. Once a block is added to the blockchain, the block can’t be

altered, since all blocks added after will need to be changed.

Blockchains are secure by design and exemplify a distributed computing system

with high Byzantine fault tolerance, leading to consensus in a decentralized network.

This makes blockchains potentially suitable for the recording of events, medi-

cal records, and other records management activities, such as identity management,

transaction processing, documenting provenance, food traceability, and voting. [7]

Blockchain was invented by Satoshi Nakamoto in 2008 to serve as the public trans-

action ledger of the cryptocurrency bitcoin [30]. The invention of the blockchain for

bitcoin made it the first digital currency to solve the double-spending problem with-

out the need of trust. Blockchain networks essentially engage two major types of

actors:

1. Miners: Mining is the process of adding transaction records to the public

ledger. The miners, in a proof of work blockchain, solve a computationally diffi-
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cult problem in order to add a block to the ledger. In bitcoin, this problem is to

solve for a number (nonce) [10] that when hashed with the block data must start

with a certain number of zeroes. This number of zeroes is termed the difficulty of

the network. The miner who successfully adds a block to the ledger is rewarded

with a block reward along with the fee on all transactions included in the block.

The miners, therefore have incentive in computing the hash for the next block

and propagating it to the network so that their block is accepted. In order to

mine these computationally expensive hashes and propagate them through the

network, miners invest heavily into high grade infrastructure, bandwidth for the

node and the electricity costs of running the mentioned hardware.

2. Propagation Nodes: These nodes are voluntary nodes on the network that

help in propagation of the blocks and transactions. Propagation nodes are of 2

types:

(a) Full Nodes: These nodes help in propagating the complete blocks and

fulfill all requests. In addition to propagating the blocks, it also verifies

and validates the transactions by checking its inputs and outputs. They

validate whether there is a double spend on the transaction by checking a

complete history of the transaction. They also verify the signatures of the

witnesses. In order to validate and serve all requests, these blocks store

the complete copy of the blockchain.

(b) Light Nodes/SPV (Simplified Payment Verification): These nodes

are lightweight nodes that run on machines with less computational power

and less storage. They also validate the block but not by checking the

transactions in depth, but they do so by checking their merkle proofs.

That is basically hashing all the transaction hashes together to see if the
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merkle root [8] present in the block header is what they get after hashing all

their transactions. In order to do so, the SPV wallets only need the header

of all blocks included in the chain and the merkle proofs. Therefore, these

nodes do not store a copy of the blockchain and hence don’t propagate

complete blocks. These are often run on Raspberry Pis or mobile wallets.

The Dash network [21] employs an additional 2nd layer protocol, commonly re-

ferred to as the Masternode layer.

1. Masternode: These nodes are full nodes which aim to help the Dash blockchain

network by providing services and, in return, get awarded by sharing a portion

of the block reward with miners. The requirements for a full node to be a

masternode are as follows:

(a) The node at all times should have a 1000 dash in its wallet.

(b) The node should run a high bandwidth connection. The current require-

ment is 1 Gigabit per second.

(c) The node should run significant memory (RAM), in order to store the

transaction set in memory for faster validation. It is currently 4GB but

might increase based on future needs.

In order for the blockchain network to run securely and all the consensus rules be

enforced, it is important that the network contains a significant number of full nodes

and help verifying transactions and propagating complete block data. The current

bitcoin network runs 10,000 nodes approximately.

As the blockchain decentralized network grows larger or the number of transactions

on the network, the network runs into issues relating to scalability that are explained

below.
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1.1 Scalability Challenges with blockchains

1.1.1 Challenge: Throughput

The block interval [3] in a blockchain network is controlled by the mining difficulty

[9], which approximates to 2 minutes 30 seconds in Dash network, and lives in the

neighbourhood of 10 minutes in the bitcoin network. In the bitcoin network, the

mining difficulty is adjusted every 2016 blocks in order to get it closer to the above

mentioned intervals. The block size was initially not constrained. However, it was

later capped to 1MB in 2010 [6]. The average size of transaction on the bitcoin

network is 500 bytes. The maximum number of transactions that can be packed inside

a block is dependent on the transaction sizes for that block, however approximating

500 bytes a transaction, the throughput is close to 3.5 transactions per second. In the

bitcoin blockchain network, it is seen that with a mixed transaction size, the network

roughly has a throughput of 3-7 transactions per second [40].

Transaction sizes depend on three variables :

1. List of inputs

2. List of outputs

3. A list of witnesses, that is one per each input and is dependent on a flag which

if set to 0 indicates no witness.

Majority transactions, based on the data provided by block explorers, happen

between two peers resulting in 1 input and 2 outputs along with 2 witnesses therefore

resulting in an almost static transaction size. This results in a linear throughput

increase with the increase in block size.

Public blockchains, seeing this limitation on throughput, have been slowly forking

over to larger block sizes. Dash currently has a 2MB block size limit within a 2.5
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minute block interval. Bitcoin Cash over the years has slowly forked the blockchain

multiple times to increase the block limit to 32MB. [4] lists all forks that happened

with bitcoin.

1.1.2 Challenge: Validation of large blocks

As block size gets bigger, validation of individual transactions ( a 1GB block may

have over a million transactions ), 2 million taking average transaction size to be 500

bytes, becomes a challenge for personal computers or Raspberry Pis that are running

full nodes on the network. One of the key reasons for this challenge is that although

all clients employ infrastructure with multiple threads, the blockchain code does not

make use of threads at its full potential. Recent research at Stanford [35] shows that

even though a gigabyte block may be propagated in the block interval constraint, it

will be hard to validate the number of transactions. This resulted in the changing the

implementation of Bitcoin Cash cryptocurrency to handle a large number of threads

in order to increase the performance of the software.

1.1.3 Challenge: Relay of large blocks

Block relay (1.1) on the blockchain network uses a gossip protocol in which a node

relays the newly heard blocks to its peers which is approximately in the neighbourhood

of 8-10 peers. This information is relayed using a series of messages. On hearing about

a new block, the first node validates the complete block and then advertises the block

its peers using an inv(Inventory message, which is a 64 byte hash of the received

block). If the peer on the other side hasn’t heard of this 64 byte hash, it sends a

getdata message ( 36 bytes ) to the first peer. In response to the getdata message,

the second peer now transmits the whole block to the first peer. This is the size of a

full block (current block size agreed upon by the network).
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Figure 1.1: Traditional Relay

As the block size increases on the network, the last message (getdata) relay is

bound on the upstream bandwidth of the second peer, therefore slowing down the

propagation of blocks through the network.

Miners on the network although receive a transaction fee on adding a transaction

to the block, a major portion of their revenue come from the block reward. If the

miners are not able to propagate their blocks to the network, they lose the block

reward and with that their potential profits. The block that was mined correctly but

was still not added to the blockchain is referred to as an orphan block. This leads

the miners to either mine smaller blocks (less revenue because of less transactions)

or not mine at all. The former leads to a lower throughput and the latter leads to

risks of Centralization since only a handful a miners can afford to relay larger blocks

because of high bandwidth requirements.

1.2 Existing Solutions

In the recent years, the solutions to speed up propagation process have aimed at

reducing the payload of the block. In the gossip protocol, transactions are relayed in
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the network using the same process as of blocks. Every transaction that happens on a

node, is broadcasted to all its peers using an inventory message(inv) that is followed

by a getdata and a transaction data transmission, if required. Since this data has

already been transferred across the network, there was an opportunity to send only

the information required to propagate the block. That involves a metadata of all

the transactions and the full transactions that have not already been transmitted

to the requesting peer. This led to developing three different solutions that manage

to send a significantly smaller payload in the block, while also being able to relay

the complete block. Although these existing solutions are efficient in relaying the

metadata, work in a probabilistic way because of the assumption that a majority of

the full transaction information is synchronized in the network.

Transaction data that has not yet been included in the network, is kept in the

memory of the node and referred to as memory pool . Since these are the data that

the miners use to create new blocks, synchronization of memory pool is important

if we are relaying metadata for block reconstruction. However, new research in [14],

discussed in details in Chapter 3 (Design and Methodology), states that, that is not

always the case.

The motivation and protocol for solutions that work on decreasing the block pay-

load are explained below in section X.

1.2.1 Compact Blocks

Bitcoin Improvement Protocol (BIP) 152 [19] introduces Compact blocks as a

payload reduction technique. Compact blocks are based on the idea that most trans-

actions on the network are already transmitted to the peers and only the difference

in the information is to be sent across for efficient relay.

The process to relay a compact block is shown in 1.3 for high bandwidth relay
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Figure 1.2: Low Bandwidth Compact Relay

Figure 1.3: High Bandwidth Compact Relay

and 1.2 for low bandwidth compact relay and is explained below:

1. All nodes that support compact blocks broadcast Sendcmpct(0) or Sendcmpct(1)

for non-expedited or expedited relay respectively.

2. A new blocks is mined, the header or inv is sent to the receiving node.

3. If the receiver node hasn’t yet received the block, it sends a getdata(cmpct)

request to the Sender node.
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4. The sender node responds with a compact block, which is collection of 6 byte

shortids of transactions and some pre-filled transactions that the node might

not have heard of. (Example the coinbase transaction)

5. In case of collision of the shortid or the receiver not having the transaction

information, the peer requests all the transactions (it doesn’t have) in the form

of getblocktxn request.

6. The above request is responded with a blocktxn message that contains the full

transactions.

Based on the above process, one can understand that the compact block saves

significant bandwidth by reducing the block payload to relay metadata information

across the network. [2] states that the maximum sketch for a block is seen to be

between 9 and 20KBs for 1MB block, and has a 90% chance of block propagation

happening without having to re-request the extra transmissions. The protocol doc-

umentation does not provide any information on how it affects when the block size

increases or how this technique will scale with an increased flow in transactions. There

are several weaknesses that were observed after the protocol went live through a soft

fork [11]:

1. The memory pools of different nodes in a high transaction flow environment

are not synchronized. The node allocates a certain amount of memory to its

memory pool, and after this memory pool fills up, the transactions that arrive

later are dropped

1.2.2 Xtreme Thin Block

Bitcoin Unlimited Improvement Protocol (BUIP010) [1] proposed and imple-

mented another form of payload reduction called Extreme Thin Blocks XThin. This
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Figure 1.4: XThin Relay

technique uses a similar technique as Compact block. It does add more complications

explained below in order to decrease the re-transmission rate. The process to relay

an XThin block is shown in 1.4 and is explained below:

1. All nodes that support XThin Blocks, run another service NODE XTHIN as a way

of letting the network know the kind of blocks they support.

2. The receiver node creates a bloom filter of all the items in its memory pool. It

then requests the block getdata along with the bloom filter.

3. The Sender then sends the block adding all transaction IDs(8 bytes) also referred

as cheap hashes along with header information and full transactions that the

receiver doesn’t have (based on the receiver’s memory pool).

4. The receiver reconstructs the block using the transactions that it has in its

memory pool along with the full transactions supplied by the Sender.

The protocol documentation states that the block sizes reduce to a maximum

block sketch of 17.5 KB in the experiments that were run on 1MB blocks. This was

observed when the protocol went live with Bitcoin-Bitcoin Cash hard fork as well.
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Figure 1.5: Graphene Relay

Xtreme Thin blocks face several problems as well:

1. Bloom filters although encode information in a relatively much smaller size, but

have a False Positive Rate associated with it. In case of of false positives, the

full transactions are re-requested by the receiver node.

1.2.3 Graphene blocks

Bitcoin Unlimited Improvement Protocol (BUIP093) [13] proposes Graphene Re-

lay propagation in order to further decrease the payload of a block. The Graphene

propagation however gets rid of the shortID list implementation and sends a bloom

filter along with an Invertible Bloom Lookup table [24] in order to relay information.

The graphene protocol is shown in 1.5 and is explained below:

1. The sender sends an inv:inventory message to notify an new block.

2. The receiver requests the graphene block using getgrblk message along with

the count of transactions in its mempool.

3. The sender sends the graphene payload that consists of a bloom filter of all the

transactions inside the block and an Invertible Bloom Lookup Table.
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4. The Invertible Bloom Lookup Table consists of a mapping of all transaction IDs

along with the cheap hashes (the first 8 bytes of the Transaction ID).

5. Ranks of transaction IDs are calculated using lexicographical ordering.

6. The receiver on the other hand collects all transaction IDs in its memory pool

and orphan pool and filters the transactions of the block using the Sender’s

bloom filter.

7. Using these filtered transactions an IBLT is constructed at the receiver’s end

and subtracts the sender IBLT from it.

8. IBLT decode success is based on either the subtraction to lead an empty set or

a non-empty set in which the remaining transactions can be requested again.

9. IBLT decode failure can happen based on its probabilistic nature or when the

receiver IBLT has very low transactions to match or a checksum failure.

The above mentioned technique is highly efficient for sending large blocks when

memory pools are synced. In case of IBLT decode failures results in the node request-

ing a full block in order to avoid a Denial of Service attack.

1.3 Current Proposal

The techniques, mentioned in Section 1.2,

1. rely on memory synchronization of nodes communicating the blocks and the

overhead of decode failures is re-transmission of full data back from the sender.

2. They also rely on a single peer to send the complete data as opposed to using

multiple peers to transmit partial data.
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3. They can only be used to receive blocks that are currently being propagated.

They can’t be used to sync new nodes.

1.3.1 Digital Fountain

This thesis aims to leverage the research of digital fountains [16] [26] [38] [39]

in order to propagate block information as a fallback method for the above existing

solutions.

In order to make these methods more efficient, this thesis aims to add a protocol

of aggregating data taken from multiple peer nodes in the form of encoded symbols,

collecting them over to the receiver end and re-constructing the block.

In case of block failure, in the current blockchains, the peer requests all the full

transactions from one peer using getdata. In case of large blocks, this is a time

consuming relay and can lead to higher orphan rates and hurt the profitability of

miners. As an alternative, the receiving node can request all the peer nodes for part

of data and reconstruct the block and recreate the source block. This significantly

reduces the uploads per peer in the network and reduces the stress of data transmission

per node. However, the overall data downloaded by the receiving peer has some

overhead in case of decode failures.

There are 2 ways of implementing this idea:

1. Creating a list of transactions that are missing and dividing them among all

nodes and requesting for the specific data.

2. Requesting a Forward Error Correcting fountain code, that if the receiver has

enough symbols of, can recreate the block. This method is explained and is

worked out in this thesis.

The reasons for using the latter technique are the following:
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1. The fountain code symbols can be transmitted over both UDP and TCP. While

transmitting this data in a UDP network, there will be a need to transmit

additional overhead symbols in case of data loss.

2. In a blockchain network, when in the above described techniques if a decode

failure happens, the whole block data needs to be sent. However, when using

fountain codes, the whole data need not be sent . It is sufficient to send more

repair symbols to successfully decode. These symbols are smaller in size and,

thus, get transmitted faster.

3. Miners with higher bandwidth can use asynchronous multicast to reliably trans-

mit data.

Trade offs of using the fountain code technique are as follows:

1. Extra computation is added to a node in order to create the symbols before

relaying them. These computations are only done once, by the miner while

relaying the symbol. The other nodes can flush the symbols to disk and use it

for relaying at anytime.

2. There is overhead while reconstructing the block. In order to decrease the

number of decode failures, overhead repair symbols are added. However, this

burden is added on the download side and not on upload side, because the

upload is shared by a set of peers.
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Chapter 2

RELATED WORK AND THEORY

This thesis is inspired from the delivery methods utilized by Content delivery Net-

works (CDNs) [31] [34] [41] [42] and torrent networks in order to relay large files on

a network in an efficient manner. CDNs transmit large file over an adaptive relay

network in the form of software or media distribution. In order to transmit these

large files to multiple thousands of clients, the CDN caches symbols in its memory

and opens up many fountains one for each client.[32] and [33] show efficient ways of

using fountain codes to deliver a continuous stream of systematic symbols (System-

atic symbols : The first k that are transmitted are the encoded data part). Assuming

that a part of those k symbols are dropped, repair symbols are sent till the client

collects a total of k ( original + repair) symbols and is able to reconstruct this data.

Torrents on the other hand use a distributed file in order to find the nodes that

can provide the information. This file is called the torrent file. When we know the

nodes that can provide the information, we request them for the information. These

nodes respond with a part of the file that they own. When all nodes provide the

known information, the file is aggregated and reconstructed into the usable file.

BitTorrents [5] [18] were experimented to use fountain codes in 2012 by [20].

However, the results in the case of torrents were almost comparable to the one with

no coding technique used in the initial phase, but as enough seeders seed the data,

the download with coding increases to a much faster rate. In our case, the block will

be present with all the seeders, therefore the algorithm to find/disperse data is not

employed as is the case with this paper.

In the context of blockchains, miners who need to send the information to many
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nodes and in a fast and reliable manner, stream multiple fountains for each node that

they are connected to. The full nodes use the torrent approach of aggregating data

and upload the partial information.

Blockchains, in the near future, in order to scale on chain will require to transmit

large blocks over the network in a relatively small block interval. Since, CDNs effec-

tively transmits their target data for efficient downloads, the idea can be abstracted

and specific pieces of technology can be utilized in blockchains to synchronize large

blocks over the decentralized distributed network.

2.1 Digital Fountains Codes

The common analogy to understand Fountain codes, is a water fountain. In order

to fill a glass of water, one needs enough water, and not specific parts of water.

Fountain codes work on the same principle. In order to reconstruct data, one needs

enough symbols, here k. They can be a combination of source and repair symbols.

Fountain codes are also known as rateless erasure codes. Near optimal erasure

codes [29] can transform k symbol messages into practically infinitely encoded form

i.e. they can generate an arbitrary amount of redundancy symbols that can be used for

error correction. Luby Transform [27] codes are the first class of practical fountain

codes which depend on bipartite graphs to trade reception overhead for encoding and

decoding speed.

These codes employ a simple ⊕ based algorithm to encode and decode a message.

And these codes adopt only a one way communication protocol which can directly be

plugged as an alternative to getdata request explained in the coming chapters.

2.1.1 Encoding and Decoding of Luby Transform Codes

1. The sender encodes and sends packets of information.
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2. The receiver evaluates each packet. If the packet has an error, it discards that

packet, otherwise it is saved as a message.

3. Eventually the receiver has enough valid packets to reconstruct the message, on

which an ACK is sent after transmission.

Luby Transform Encoding Process

1. The message is divided into n blocks of roughly equal length.

2. The degree d, 1 <= d <= n is chosen at random.

3. d blocks are chosen at random.

4. If Mi is the ith block of the message, data portion of the next packet is Mi1 ⊕

Mi2 ⊕ ...⊕Mid

5. A prefix is appended to the encoded packet: defining n, d and a list of indices

i1, i2, ..id.

6. Some form of error detecting code (as simple as cyclic redundancy check) is

applied to the packet and transmitted.

Luby Transform Decoding Process

1. The packet is first checked, if the packet isn’t clean or it has already been sent,

it is discarded.

2. If the cleanly received packet is of degree d > 1, it is first processed against all

the fully decoded blocks in the message queuing area, then stored in a buffer

area if its reduced degree is greater than 1.
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3. If d = 1 is received, the packet is matched against all the packets of d > 1

residing in the buffer. If d = 2 is received, it is reduced to d = 1 and moved to

message queuing area.

4. When all the n blocks are produced, the signal is transmitted.

2.1.2 Raptor Codes

Raptor codes are systematic fountain codes, where on receiving symbols the sys-

tem can’t identify whether these are original source or the repair symbols.

The way these are generated is, from the original source k symbols are constructed

that can decode the entire source. Once we know that, the k can decode the original,

we generate more symbols from the original symbols again and call them the repair

symbols. The receiver end now gets a degree distribution in such a way that we don’t

actually require symbols of degree 1 to decode all the original symbols.The degree

distribution employed for RaptorQ is taken from a mix of 2 or more distributions.

Any mix of source and repair symbols, as long as we have enough symbols (k), we

can decode the source.

The idea that makes Raptor codes work they do, is deactivation decoding. In

order to decode the entire data, we find a very small fraction of symbols through Giant

Component analysis and which can be later discovered using Gaussian elimination as

shown in [36] and [28], that if we assume to be decoded, we can decode the rest of

the data.

With this version improvised over time, if k symbols are received at the receiver’s

end, there is a .5% chance of failure and is independent of k, and with every overhead

symbol, the chances of failure to decode reduces by a factor of 200 as stated in [37].

Therefore, for the current time, the research on erasure channels have reached

to optimality with the invention of raptorQ codes with a clever use of two or more
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degree distributions.

The result on Raptor codes shows that a file on TCP that takes about 2min 15

seconds to downloads, downloads in about 13 seconds. Therefore, this research is

further applied to recover/reconstruct data in blockchain in order to understand its

implications on block propagation.

Some of the advantages of these codes, as stated in the paper [15]

1. Scalable: The server (miner) load remains constant if the number of leeching

nodes increase. In cases of miners relaying blocks on asynchronous multicast

connections, this will help increase the performance in sending data.

2. Reliable: An exact copy of the original file is reconstructed at the receiver end,

which is very important, since we are dealing with transactional data.

3. Reception Efficient: The total number of packets that each receiver needs

to reconstruct the file or data is minimal. In ideal cases, the length of data to

be received equals the length of aggregated symbols. As we add more symbols,

every symbols decreases the chance of decode failure by 200.

4. Time Efficient:The time spent to generate and reconstruct the packets is

minimal. These symbols can be saved in a file and can be directly broadcasted

in order to respond to a request.

5. Time Independent: Receivers may initiate the download at their discretion,

implying that different receivers may start the download at widely disparate

times. Receivers may sporadically be interrupted and continue the download at

a later time.

6. Server Independent: Receivers may collect packets for the file from one or

more servers that are transmitting packets. No coordination between servers
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should be required for this.

7. Tolerant: The protocol should tolerate a heterogeneous population of receivers,

especially a variety of end-to-end packet loss rates and data rates.
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Chapter 3

DESIGN AND METHODOLOGY

3.1 The Simulator

In order to understand propagation and the scalability of the dash network, a sim-

ulator was developed at ASU using an already existing simulator that was developed

at ETH Zurich for this research [23]

The ETH blockchain simulator is an NS3 (Network Simulator 3) based bitcoin sim-

ulator. This simulator demonstrates the workings of Bitcoin, Dogecoin and Litecoin,

but bases its research on each block being the fundamental/rudimentary component.

We found that simulations that merely went down to the block level were not

detailed enough for our purpose. In order to reliably model a consensus network

with block propagation speedups such as compact or xthin we must understand these

networks down at the level of transactions.

In order to understand the network at the level of transactions, we modeled gen-

eration of transactions using a normal distribution. Each node is has a transaction

generator that creates a random transaction with a piecewise constant distribution

and hashes that data.

Masternode in the current simulator is not a separate class but a check on full

node. The network is randomly distributed with full nodes, masternodes and the

miners. All the miners in the network are connected to each other which simulates

the real world network. When establishing the connections between nodes, we create

point-to-point channels between them, which abstracts away any intermediate devices

(routes, switches, etc). These channels have two characteristics:
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1. Latency

2. Bandwidth

Mining pools typically maintain private peering connections among themselves

which we capture in our simulations.

In short, below are the modifications done to the bitcoin-simulator for it to run

the current dash-simulations:

1. Transactions are added in order to add traffic and understand propagation tech-

niques in more detail.

2. Every node now has its own mempool in order to test set reconciliation for

Xthin and Compact propagation.

3. Compact block propagation is added.

4. Extreme thin block propagation is added.

5. Masternode (bool) is added to the full-node. Because this is network propaga-

tion, the bandwidth is the only differentiating factor between a full node and

masternode.

6. Bloom filter using Murmur Hash library is added in order to test xthin.

7. Capability to test x-11 hashing is added, although it doesn’t add value to prop-

agation.

8. FillBlock - this parameter if true, fills the block with transactions to its max-

imum capacity. If this is set to false, the simulator uses a piecewise constant

distribution to generate the next block size and adds transactions limiting to

the new block size.
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The resulting simulator code is available at [17]

3.1.1 Parameters

The simulator takes in the below given parameters:

1. Block size

2. Block Interval

3. Propagation type

4. Number of blocks

5. Fill block - The block is filled to capacity if fillBlock=true.

We ran multiple experiments in order to understand and compare the below three

types of propagation:

1. Traditional

2. Compact

3. Extreme Thin Blocks

The simulations were run with different network sizes and different block sizes.

Through these simulations, it was realized that both compact and xthin blocks can

support the Dash network with a capacity an order of magnitude larger than the

traditional block propagation.

We ran simulations for both Compact and XThin in the same testing set up from

block sizes of 1 MB to 10MB. Through the experiments, we were able to observe

that compact blocks are not scalable above 4MB block sizes on the dash network.

However, we were able to propagate XThin blocks with lower orphan rates. The
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reason XThin blocks gave us better results is because of the bloom filter that is sent

apart from cheap hashes, which helps understand the other peer whether or not what

full transactions to send.

Note: The simulator does not always present the same results every time because

the propagation can take different routes, the distributions used can use different node

bandwidths, blocks are generated using Geometric progression from a seed value which

is generated from a random seed. Parameters and distributions used in the simulator,

gives some variance to the results, although the increase/decrease slope of the results

can be confidently used.

3.2 Hypothesis

The memory pools of the nodes on the network are not synchronized when there

is high amount of transaction flow. This is because of the following reasons:

1. Unspent transactions that are relayed to the node are stored in-memory. When

transactions flow is high, and the memory is full, the transactions are dropped.

2. Transactions use gossip protocol for propagation through the decentralized net-

work and therefore rely on nodes that are forwarding it. It is not always possible

for the transaction to have relayed to a node where the block is received. Since,

compact, XThin and graphene rely on memory pool synchronization, it is not

always the case that all transactions relayed in the block sketch are known to

the node.

Since, the memory pools of the peers go out of sync, reducing payload by using

cheap hashes often leads to re-transmissions. This re-transmission is in the form of

complete block or block transactions. In order to increase the speed of this request,

we use fountain codes. Using fountain codes enables reliable transmission of data
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between all peer nodes and then aggregating the data at the node that is requesting

the block.

The reasons of using and applying them to blockchains for transmitting data are

multifold:

1. The primary reason for using fountain (raptor) codes is that they work on

quantity (k) of symbols rather than quality (what part of data is being relayed).

Therefore, on receiving any k symbols, we can reconstruct a block with 99.5%

efficiency [37] .

2. Infinite decoding symbols can be created using the data, all peers required

to send the data create k/(number of peers) symbols, independent of what

the other peers have created, and then send them to the receiving node to

reconstruct the block.

3. On decode failures, creating more decode or repair symbols has a linear com-

plexity therefore these symbols are not compute heavy.

4. The repair symbols are small in size and can be relayed faster rather than

sending the whole block for recovery.

The most important among others for us is that they are computationally easier

to encode/decode since they use binary operations for both and they are server in-

dependent. In case of blockchains, we can ask data from all connected peer nodes

and collect symbols to recreate the block. This will generate a lower upload footprint

for the nodes that are serving data therefore leads to a faster synchronization. The

scalability can be tested by using this propagation technique for large block sizes

till we lose consensus (Orphan rate = 50%). The block propagation throughput is

constrained by orphan rate of the network.
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3.3 The protocol specifications

Below are the specifications of the implementation of protocol used by digital

fountain in blockchains:

1. The sender node, on hearing a new block, sends an inv to another peer. The

whole block body is reinterpreted as a byte array and then encoded into a set

of symbols of a length that was negotiated between the peers.

2. On receiving the inv/header message the receiver requests the whole blocks

using an expedited getraptor request to all its peers.

3. All peers who have heard of the block respond with raptorcode and encoded

symbols of the blocks. The other peers drop the message.

4. The receiver collects these symbols in a singleton class (map of block header

ID to symbol ID and symbol pair). Note that, since this research is done for

large block sizes, symbols here will be significantly large. In order to prevent

DoS attacks, every symbol must contain the header. The header should not be

encoded. In smaller blocks, this can be optimized to send only the 64 byte hash

along with every symbol.

5. The receiver knows the amount of symbols needed to reconstruct the block and

waits till it gets at least the required count of the symbols.

6. On reaching the required count, it reconstructs the block using raptor decoding

and serializes the stream on byte array to form the block.

The above is also shown in the figure 3.1

26



Figure 3.1: Protocol

3.4 Implementation Details

The implementation in order to test the hypothesis of data aggregation is done in

2 parts:

1. Dash Core Client:In this specific implementation, the following parts are

implemented:

(a) RaptorQ (RFC6330) encoder and decoder: This is done in c++

adhering to the Dashcore standards. The header-only C++ version of

libRaptorQ is used. This is implemented in order to under to understand

the encoding and decoding procedure for each custom data type (block,

transaction, etc). Also, to collect data on number of symbols and symbol
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sizes in order to re-create the data.

(b) Signaling: Signals are developed in the dash client. This is primarily done

to understand the use cases where a node can be automatically attacked

without a malicious intention. ( example: in an expedited raptorcode

message from a non-miner node can be considered as DoS, because symbols

will get recovered after we receive all symbols)

Modifications in the dash client:

(a) New classes for Raptor Symbol and Raptor Symbol data has been added.

The raptor symbol class creates a vector of symbols to be sent in as the

message, while the data class captures the size of each symbol, the total

size, the time taken to encode and decode the data.

(b) A new singleton class is added that keeps track of all symbol data mapped

to its header that a node contains. This data remains in memory for the

last 6 blocks and is then flushed to disk.

(c) A symbol decoder is developed that collects the symbols in the singleton

class and keeps a check on the count. It tries to decode only when the

symbols are collected.

2. Dash Simulator: Dash client gives us a good transparency of how encoding

and decoding will work, and the symbol sizes, and the constraints. However, in

order to test how scalable the hypothesis is, experiments need to be run with

variable block sizes, variable symbol sizes and number of connections. While

testing in the Dash client, the regression test mode needs to be used but it

does not add any latency between the nodes which defeats the purpose of the

propagation. The testnet can be used, but large block sizes can not be tested
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because of the low transaction flow on the testnet. Dash Simulator that has

been described above, gives the following advantages:

(a) It helps in understanding the metrics of every node, which is not available

in public blockchains. Also, it will be not be available because of security

reasons.

(b) It helps us run various parameters and help model the blockchain in a way

we want it to be tested.

Modifications in the Simulator:

(a) Since the testing of propagation of blocks is to bested, for this hypothesis

transaction and memory pool have been removed.

(b) The masternode layer is still there.

(c) 2 new messages have been introduced, getraptor and raptorcode.

(d) The getraptorcode is sent to all peers as soon as one hears about the

block through the inv/header message.

(e) The raptorcodes are uploaded in a stream of messages.
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Chapter 4

EXPERIMENTS & RESULTS

The current raptor code in Dash is only developed for replacing getdata requests.

We have compared 2 metrics in order to compare the techniques. The results shown

below can efficiently be applied to compact blocks, XThin and Graphene blocks in

cases where the block transactions are sent.

4.1 Evaluation Criteria

1. The orphan rate. The orphan rate tells us how many blocks weren’t added to

the block and how much profitable it will be for a miner to use this technique.

2. The block propagation times for median block propagation on of the nodes.

The block sizes we have used are from 100MB to 1GB.

3. Orphan rates for different symbol sizes help us understand what symbol size to

use.

Below is a detail of all the experiments that were run in order to test the hypothesis

and understand the implications of introducing Fountain Codes into the current state

of blockchains.

4.2 Dash Core Client

4.2.1 Testing Environment

1. DashCore version 12.3 is used for development.
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2. libRaptorQ [22] 0.1.X branch, 697b318036a1ea4751e69cde7989ff3b3bd7c655 com-

mit is used. The code needs to be changed in order to directly include the header

files.

3. 3 local nodes in regression test mode were spawned for each experiment.

4. Each node creates its own blockchain in the assigned directory.

The tests done on the actual dash core client were used to find out how many

repair symbols were used in order to complete the data.

4.2.2 Observations

1. It was observed, that for a block on regression test mode, the aggregated size

of k encoded symbols had the same size as that of a block mined.

2. In the setup of 3 nodes and 4 nodes, we sent 1/3 and 1/4 encoded symbols from

each node to the receiving node and we were able to recreate the block.

3. For small block sizes, we used 4 byte and 16 byte symbols. But for larger

blocks, symbols can be as long as we want, with the constraint that symbol

size is divisible by encoded array sent. If this is not the case, the decode fails.

Therefore, symbol size and encoded vector size is negotiated in the getraptor

request.

4.3 Dash Simulator

4.3.1 Testing Environment

1. The simulator is run with 24 nodes, with 8 mining pools. 8 full nodes and 8

masternodes. 24 nodes here represent the whole network because:
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(a) For this protocol to work, memory pool synchronization is not required.

(b) Both traditional and the fountain protocol are compared on a 24 node

network in order to have a fair comparison.

(c) Traditional propagation is used, because the messages - blocktxn, xblocktx

and grblocktx in compact, XThin and graphene respectively are similar to

full blocks except they are smaller in size (Since only missing transactions

are propagated.

2. The masternodes although in the real network have higher bandwidth, in this

experiment we have kept it the same as full nodes. The reason for this is to

extrapolate these results to other public cryptocurrencies.

3. The average bandwidth taken for each node is taken from [12], where the paper

talks about the latency and the bandwidth distribution for each continent.

4. The simulations for run for 100 blocks each.

5. Different symbol sizes have been used to understand the dependency of symbol

sizes on orphan rate. k varies between 10 and 10000 i.e the number of symbols

required to reconstruct the block. Orphan rates are calculated for each of these

k to understand the ideal size for raptor code symbol size.

6. Each node only forwards 50% symbols, except the miners, who stream the all

the symbols. In case if only one node is streaming the block, the data is re-

requested and the rest 50% are streamed.

7. The average bandwidth distributions are taken from [12] which for these simu-

lations ranged below 50 MB per second.
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Figure 4.1: Orphan rate with respect to symbol Sizes

Choosing the symbol size

In order to aggregate the symbols from the peer nodes, we need to understand what

ratio of the block size should the symbol size be in order for the propagation to be

optimal for the bandwidth of the nodes that we have tested.

The following are the observations based on 4.1. In the graph, k refers to the

number of symbols required to reconstruct the block. All symbols are equal in size.

1. For k = 10, we see that for 100MB blocks although the orphan rate starts with

a low value of 9%, it increases fast as the block size increases. This is because

the symbols sizes become larger than the upload bandwidth for the node and

therefore take time to propagate.

2. For k = 100 and k = 1000 , the orphan rate increases at almost the same rate.

It can be noticed that although the symbol sizes differ by a magnitude of 10,

33



Figure 4.2: Block Size vs Orphan Rate k=10

for block sizes between 100MB and 1000MB, symbols will vary between 1MB

and 10MB, which are still not utilizing the complete bandwidth of the node and

hence take lesser time to propagate and therefore less orphanage.

3. For k = 10000 in smaller block sizes, between 100MB and 400MB, the perfor-

mance is optimal, although when the block sizes grow, it is seen that the orphan

rate is similar to that of k = 100 and k = 1000, which is still significantly less

than the original block propagation.

4.3.2 Results

Orphan Rates

From graphs 4.2, 4.3, 4.4, 4.5 we can observe,
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Figure 4.3: Block Size vs Orphan Rate k=100

1. The orphan rate in traditional relay reaches close to 97%, that is that almost all

blocks produced get orphaned when we run a 1 GigaByte simulation. That said,

for all block sizes between 100MB and 1GB, the network is unable to maintain

consensus.

2. On the contrary, we see that when the data is aggregated from multiple peers,

the orphan rate is contained below 50% for a 400MB block with k = 10 and for

k between 100 and 10000, the network maintains consensus below 600MB.

Bandwidth

1. average bandwidth Average bandwidth used by both cases is similar in our

simulations, however we are sending no overhead symbols. In case of lesser than
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Figure 4.4: Block Size vs Orphan Rate k=1000

k symbols received, we ask the peers again to send more symbols.

2. The total number of getraptor are significantly higher, by a factor of 2, in

some cases 3. That is because of us sending multiple requests to aggregate one

block. This doesn’t affect the overall bandwidth utilization because the size of

the request is 36 bytes each.

Median Block Propagation

From graphs 4.6, 4.7, 4.8, 4.9, we can observe,

1. The median block propagation for block sizes in traditional block propagation

elevate above 2.5 minutes in 200MB block sizes, and that is noticeable in 4.2
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Figure 4.5: Block Size vs Orphan Rate k=10000

that 200MB blocks are not in consensus.

2. The median block propagation remains below 2.5 minutes for Raptor Code

Propagation till 400MB for k=10 and remain below below 2.5 minutes for 600MB

blocks for k between 100 and 10000. Therefore 4.2 shows that consensus is

maintained till 400MB blocks for k=10 and 4.3, 4.4 and 4.5 show consensus is

maintained for 600MB blocks for k values between 100 and 10000.
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Figure 4.6: Median Block propagation k=10
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Figure 4.7: Median Block propagation k=100
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Figure 4.8: Median Block propagation k=1000
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Figure 4.9: Median Block propagation k=10000
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Chapter 5

CONCLUSION

Analyzing the above results, we can conclude that utilizing data aggregation tech-

niques on a node for data propagation works better than syncing block using one

peer. It must be noted that full nodes are personal machines that do not have high

bandwidth. They get several advantages when only relaying symbols instead of the

full blocks:

1. Miners have the capability of multi-casting. In the experiments, we have used

TCP connections, but we have scheduled these uploads simultaneously. They

can simultaneously serve large blocks to many nodes by continuous asynchronous

streams, which wasn’t possible in the traditional relay.

2. The data received by a full node is downloaded through multiple peers in parallel

which results in faster downloads.

The above advantages, help nodes to propagate large blocks faster. Although, The

current propagation techniques result in much faster propagation and lower orphan

rates. Those (compact, XThin, Graphene) techniques have been tested on smaller

blocks and they are highly dependent on memory pool synchronization. If memory

pools (of the peers propagating blocks) do not synchronize, the methods fail to relay

blocks faster and rely back on the traditional propagation. This thesis is intended

to put the idea that today’s state of art of propagation techniques (compact, XThin

and Graphene) can take advantage of fountain codes for relay as a complimentary

technology to make propagation faster.
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5.1 Future Work

We have seen from the above experiments that the orphan rate is significantly

reduced when sending the Fountain codes instead of leeching the block from a sin-

gle client. The orphan rate for a 100 MB blocks reduces from 17% to 9% which is

very profitable for a miner. We can also conclude that the network is able to main-

tain consensus upto 600MB blocks as compared to 100MB in traditional. We also

know that orphan rates is much lower and transmission speed is higher in techniques

like Compact blocks, XThin blocks and graphene blocks because they efficiently re-

duce the payload while sending the draft/sketch of the whole block. The one major

area where fountain codes can make these techniques better is when there is a need

for re-transmission of block data (blocktxn ,xblocktx and grblocktx which block

transactions for compact block, xthin blocks and graphene blocks respectively).

In order to show the advantage of using fountain codes in increasing the perfor-

mance of compact, XThin and Graphene blocks, the protocol will be more complicated

because memory pool of each nodes are being used for encoding and decoding.
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