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ABSTRACT 

  In recent years, conventional convolutional neural network (CNN) has achieved 

outstanding performance in image and speech processing applications. Unfortunately, the 

pooling operation in CNN ignores important spatial information which is an important 

attribute in many applications. The recently proposed capsule network retains spatial 

information and improves the capabilities of traditional CNN. It uses capsules to describe 

features in multiple dimensions and dynamic routing to increase the statistical stability of 

the network. 

 In this work, we first use capsule network for overlapping digit recognition problem. We 

evaluate the performance of the network with respect to recognition accuracy, convergence 

and training time per epoch. We show that capsule network achieves higher accuracy when 

training set size is small. When training set size is larger, capsule network and conventional 

CNN have comparable recognition accuracy. The training time per epoch for capsule 

network is longer than conventional CNN because of the dynamic routing algorithm. An 

analysis of the GPU timing shows that adjusting the capsule structure can help decrease 

the time complexity of the dynamic routing algorithm significantly. 

Next, we design a capsule network for speech recognition, specifically, overlapping word 

recognition. We use both capsule network and conventional CNN to recognize 2 

overlapping words in speech files created from 5 word classes. We show that capsule 

network achieves a considerably higher recognition accuracy (96.92%) compared to 

conventional CNN (85.19%). Our results show that capsule network recognizes 

overlapping word by recognizing each individual word in the speech. We also verify the 



ii 

scalability of capsule network by increasing the number of word classes from 5 to 10. 

Capsule network still shows a high recognition accuracy of 95.42% in case of 10 words 

while the accuracy of conventional CNN decreases sharply to 73.18%. 
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1. INTRODUCTION 

The start of deep learning can be traced back to the invention of the abstract neuron 

computation (McCulloch-Pitts) model with fixed weight in 1943 [1]. Over the years, neural 

networks have developed from a simple perceptron model [2] to the complicated deep 

neural networks (DNN) of today. The number of layers in these networks have increased 

from tens to hundreds over the years. For instance, the network that won the most recent 

ImageNet challenge is a neural network with 152 layers. Different types of DNNs have 

been used successfully in several fields. For example, convolutional neural network (CNN) 

is widely used in computer vision and autopiloting, and recurrent neural networks (RNN) 

work well in speech processing and language translating.  

 In recent years, CNN has shown to have outstanding capability of dealing with 

information composed of multi-dimensional arrays such as images. In fact, the winners of 

the ImageNet challenges in recent years have all used large scale CNN [8]. A typical CNN 

consists of multiple convolutional layers for feature extraction and multiple fully connected 

layers for classification; the prototype is LeNet-5 proposed by LeCun [5]. CNN makes use 

of convolution operations to efficiently extract the features from the array input using 

different kernels and then applies pooling to exploit space invariance property and improve 

statistical efficiency. Recent ImageNet competitions have validated the outstanding 

performance of CNN for image recognition. More and more CNN structures are being 

designed to further improve the performance of tasks related to image and speech 

recognition. The availability of parallel computers like GPUs has enabled researchers to 

build and analyze such large scale CNNs with relative ease. 
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One drawback of traditional CNN is that it does not retain information about important 

spatial hierarchies between features [20]. So, in applications where spatial information is 

important, CNN is likely to not do as well.  Capsule network [6] proposed in 2016 retains 

the spatial information and improves the capabilities of traditional CNN. It uses capsules, 

which is a group of neurons, to describe the features using multiple dimensions. For 

instance, in overlapping digit recognition, the values in the class capsule represent specific 

parameters like line weights and radius of a curve. Capsule network also makes use of 

dynamic routing algorithm, instead of pooling, to increase the statistical efficiency while 

taking spatial information into consideration. Weights between lower-level capsules and 

higher-level capsules are adjusted over several iterations. This procedure ensures that 

higher-level capsules receive more information from lower-level capsules that they “agree 

with”. Capsule network achieved a 0.25% testing error on MNIST without any 

preprocessing, compared to 0.38% with conventional CNN [6].  

1.1 Problem description  

   Existing work on capsule network [6] has demonstrated its advantage over conventional 

CNN with respect to digit recognition accuracy. Other aspects such as training time and 

convergence speed have not been studied. Furthermore, capsule networks have not been 

used for other applications, such as speech recognition. In fact, in any application where 

spatial information is of high significance, capsule network is very likely to have superior 

performance. In speech processing, features such as MFCC are arranged in time order and 

thus spatial information is available and should be exploited. So, in this thesis, we design 

and evaluate capsule networks for an image recognition task, namely, recognition of 
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overlapping digits and for a speech recognition task, namely, recognition of overlapping 

words.  

1.2 Contributions 

1.2.1 Image recognition task 

  In this work, we first consider capsule network for an image recognition problem, 

specifically, the problem of recognition of overlapping digits. We evaluate the performance 

of the network in terms of accuracy, training time convergence and computation 

complexity. For this evaluation, we train the capsule network and a traditional CNN using 

MultiMNIST, a dataset that includes images of overlapping digits. We record the training 

time, training and testing error of every epoch and also the best testing accuracy achieved 

during the training. We also train the networks with different training set sizes.  

  The results show that for all training set sizes, capsule network converges faster than 

traditional CNN. The capsule network achieves a higher test accuracy when the training 

set size is small. When the training set size is larger, the two networks achieve comparable 

accuracies. In terms of training time, the capsule network takes much longer than 

traditional CNN per epoch of training. However, the capsule network requires fewer 

epochs to achieve the same accuracy. 

   To analyze the computational complexity of the capsule network, we profile the training 

process using NVVP profiler from NVIDIA. We profile the capsule networks with 

different primary capsule sizes as well as a traditional CNN. The results from the profiler 

indicate that all networks spend similar time on convolutional layers and fully connected 

layers. A traditional CNN spends more time on nonlinear operations like ReLU and pooling 
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compared to multiplication computations in convolutional layers and fully connected 

layers. The capsule network spends significantly more time for dynamic routing. It calls 

extra kernels for matrix-matrix multiplication for calculation in dynamic routing. The 

analysis also shows that as the size of primary capsules increases, the time for dynamic 

routing decreases. Next, we change the capsule sizes and study their effect on the training 

time. The results show that when we increase the size of primary capsules and decrease the 

size of class capsules, the training time can be decreased by 50% while keep the testing 

accuracy almost unchanged. 

1.2.2 Speech recognition task 

  Next, we design a capsule network for speech recognition, specially, recognition of two 

overlapping words from five different classes. The speech files are pre-processed using 

MFCC and filter bank and then fed into the neural network. To find the best configuration, 

we test several convolution kernel sizes and compare the accuracy. We find that 

convolutional layers with rectangular kernels (that spreads wider in temporal dimension) 

help achieve higher accuracy. We also train a traditional CNN with rectangular kernels and 

find that the capsule network achieves a much higher accuracy than traditional CNN. In 

case of speaker-dependent training set and using filter bank for pre-processing, capsule 

network achieves an accuracy of 96.88% compared to 84.88% of traditional CNN. 

  Next, we increase the number of classes from 5 to 10 and repeat the experiment. The 

results show that when the number of classes increase, the capsule network still has a high 

recognition accuracy (95.42% from 96.88%) while the traditional CNN suffers from a 

sharp decrease in recognition accuracy (73.18% from 84.88%). We also show that 

adjusting the capsule size can help decrease the training time of the capsule network. 



5 

Specifically, by increasing the primary capsule size and decreasing the class capsule size, 

the training time per epoch can be decreased from 170s to 113s. 

1.3 Thesis report organization 

  This thesis is organized into the following chapters. Chapter 2 gives a brief introduction 

of deep learning and neural networks along with a detailed description of the capsule 

network. Chapter 3 focuses on use of capsule network for the image recognition problem. 

It evaluates performance and timing results for different configurations and provides 

comparison with baseline CNN. Chapter 4 focuses on use of capsule network for speech 

recognition tasks. It too compares the performance of the capsule networks for different 

configurations with traditional CNN. Chapter 5 concludes the thesis and lists future work 

in this area. 
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2. BACKGROUND: DEEP LEARNING AND CAPSULE NETWORK 

2.1 Deep learning and neural network 

Deep Learning architecture is a computation model which utilizes multiple processing 

layers to learn representation of data with multiple levels of abstraction [4].  Examples 

include deep neural network (DNN), convolutional neural network (CNN) and recurrent 

neural network (RNN). This model has been applied to computer vision, speech 

recognition and natural language processing and in each case has shown significant 

improvement in their state-of-the-art performances. 

One of the earliest models of neural network is the perceptron [2] proposed in 1958. It 

is a simple neural network with one layer of input neurons and one layer of computation 

neurons as shown in Fig 2.1. The network is trained by adjusting the weights of the network. 

But such a network cannot solve non-linear classification problems like XOR. The two-

layer perceptron with two computation layers was capable of solve the non-linear 

classification problem. But the computations were too complex and there were no efficient 

algorithms to train such a network at that time [19]. A three-layer network could be trained 

using the backpropagation algorithm [7] proposed in 1986. But the drawbacks include 

unacceptable long training time and training process stopping at local optimal points.  

What started the new era of deep learning is introduction of Deep Belief Network [3] 

shown in Fig 2.1. More hidden layers were added into the neural network and a pre-training 

process was applied instead of randomly initializing the weights. In a three-layer neural 

network, the hidden layer transformed the input into a space that could be linearly classified, 

and then the output layer completed the classification task. More layers enabled the 
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network to transform the input more times and thereby handle more complex classification 

tasks. The pre-training process introduced in [3] was designed to solve the problem of local 

optimal points. The model would start from some point close to the global optimal instead 

of some random point. This method largely accelerated the training process. With the 

development of stochastic gradient descent and powerful computers designed for linear 

algebra operations, training time of DNNs decreased from days to hours.  

 

Fig 2.1 From Perceptron to Deep Neural Network 

2.2 Convolutional neural network 

Of the different types of deep learning architectures, CNNs have been very successful 

in processing data that can be presented by multiple arrays such as color images that are 

composed of three 2D arrays of pixel intensities [4]. These networks have been 

successfully applied to image processing, natural language understanding and vision 

system in self-driving cars [8]. The key operation in a CNN is convolution between the 
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input array and the convolution kernel, which is an array of weights. For example, 

convolution between two two-dimensional arrays is calculated as follows [8]: 

𝑆(𝑖, 𝑗) = (𝐼 ∗ 𝐾)(𝑖, 𝑗) =  ∑ ∑ 𝐼(𝑚, 𝑛)𝐾(𝑖 − 𝑚, 𝑗 − 𝑛)

𝑛𝑚

 

where I is the input array, K is the kernel array and S is the output of convolution. Fig 2.2 

describes the operation between two arrays pictorially. 

 

Fig 2.2. Convolution between input and kernel array [8] 

A typical CNN consists of a few layers to extract the features from input data as 

described in Fig 2.3. Then a few classifier layers use the feature maps to form the final 

output of the neural network. In most cases, the classifier layers are several fully connected 

layers. The convolutional layers apply convolution operation to the input arrays to extract 

the features. In each convolutional layer, multiply convolution kernels or filters are applied 

to extract different types of features. With convolution kernels, one feature map contains 



9 

features extracted from a group of correlated values across all locations in the array. After 

features are detected, pooling layers merge semantically similar features into one to 

increase the reliability of feature detection. The most common-used pooling methods, like 

max pooling and average pooling enable the output to be unchanged when input is slightly 

changed. Fig 2.4 explains the operation of max pooling. After feature maps are generated 

from the convolutional layers, a few fully connected layers are applied to generate the 

output.  

 

Fig 2.3. Features are extracted layer by layer 
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Fig 2.4. Three neurons judge the existence of digit ‘5’. Each rotates the input and 

makes prediction by comparing the rotated image to a known image of ‘5’. The max 

pooling ensures the prediction is correct when the input digit ‘5’ is rotated. 

There are several popular CNN networks. One of the first networks is LeNet-5 [5], which 

consists of two convolutional layers to extract the pre-known features with fixed kernels 

and two fully connected layers to classify the features. AlexNet proposed by Krizhevsky 

in 2012 was one of the first convolutional neural networks whose kernels were trained to 

collect the features [10]. It has 5 convolutional layers and 3 fully connected layers. To solve 

the problem of gradient vanishing in deeper layers, ResNet was proposed by He in 2016 

[9]. The key idea of ResNet is to create a residual block with bypass layer. ResNet-50, for 

example, has 49 convolutional layers and 1 fully connected layer and uses element-wise 

additions in residual blocks. 
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Fig 2.5. LeNet-5 structure [5] 

 

Fig 2.6. AlexNet Structure [10] 

 

Fig 2.7. ResNet Structure [9] 

2.3 Capsule network 

Convolutional neural network (CNN) utilizes the property that features in an array are 

invariant to locations and uses pooling layers to ignore the location information about 

features. While this strategy forces the network to focus on features to make a decision, the 

lack of location information causes other problems that lead to wrong classification. In 
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some case, decisions that ignore location information are very likely to be wrong.  For 

example, in the case of face sketch shown in Fig 2.8, a traditional CNN learns to judge the 

existence of face by checking if there are two eyes, one nose and one mouth. Since relative 

locations of these features are not considered, it is highly possible that the trained network 

will judge the Picasso style image on the right to also be a face. Capsule network proposed 

in [6] collects the features across the array while keeping the location information and 

thereby improves the performance. 

 

Fig 2.8. A face and a re-ordered ‘face’ 

  Capsule is a group of neurons whose activity vector represents the instantiation 

parameters of a specific type of entity such as an object or an object part [6]. In a capsule 

network structure, features are described as a vector instead of a scalar. In Fig 2.9, every 

part of the face can be described by a three-dimensional vector which include the 

probability of existence, relative size and relative height. For instance, in the normal face, 

the left eye is represented by (0.95, 0.8, 5). In a normal face, the sizes are close to each 

other, and the heights obey specific rules. In the Picasso style face, two eyes are not at the 

same height, the mouth is above the nose and the size of the nose and one eyelash is too 

big or too small. This image is not likely to be classified to be a face by the capsule network. 
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Thus, by representing the information as a vector, a more informed decision can be made 

about whether it is a face or not.  

 

 

Fig 2.9. Use of capsules to describe parts of a face (top panel) and recorded face (bottom 

panel) 

  Information flow between lower-level capsules and higher-level capsules is done through 

the dynamic routing algorithm. This algorithm decides how to distribute information 

collected from the lower level to a proper capsule in the higher level. Instead of learning 

how to distribute during backpropagation, the dynamic routing algorithm enables higher-
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level capsules to choose the input they “agree with” [6]. At the beginning of the routing 

process, all the output of lower-level capsules is distributed with equal weights. After a 

higher-level capsule receives the information from all inputs and forms an initial idea, it 

decides how much it “agrees with” a lower-level capsule. Then the weights are renewed to 

ensure that in the next iteration, higher-level capsules will receive more information from 

lower-level capsules that they “agree with”.  

The procedure is described pictorially in Fig 2.10. The rectangles are high level capsules 

and the dots are predictions from lower level capsules. The green dots indicate that this 

cluster of predictions are close to each other and the blue dots indicate the predictions that 

are different from others. Higher-level capsules agree to a prediction when the prediction 

is in the cluster and in the following iteration, increase the weights of these predictions. 

Since higher-level capsules do not agree with the blue dots, then the weights are decreased 

in the next iteration.  

 

Fig 2.10. Dynamic routing scheme  
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   In the capsule network used in this thesis, two convolutional layers are used to collect 

the features from original input. In convolutional layers, multiple kernels are used to extract 

the features and every kernel produces a feature map. The output of second convolutional 

layer are grouped into capsules called primary capsules. A primary capsule includes 

multiple neurons at the same location in different feature maps. The primary capsules feed 

data to class capsules, one per specific class, using dynamic routing. Fig 2.12 describes this 

network. 

 

Fig 2.11. Capsule network 

  The loss function in capsule network consists of two parts: marginal loss for recognition 

of object existence and reconstruction loss used as regularization [6]. The values in a class 

capsule describe different characteristics of the object and the length of vector in class 

capsules denotes the probability of existence. A separate marginal loss allows multiple 

classes to exist simultaneously. In a capsule network, the loss function for an object of class 

k, L𝑘is given by: 
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where 𝑣𝑘 is the length of vector in class capsule k, 𝑇𝑘 = 1 if class k is present, 𝑚− = 0.1 

and 𝑚+ = 0.9, 𝜆 is for down-weighting the loss for absent classes, and 𝜆 is set to be 0.5. 

To regularize the model, the network reconstructs the input array using three fully 

connected layers [6]. Fig 2.12 describes the reconstruction network. During training, only 

output of capsules with correct label take part in the reconstruction. The reconstruction 

error is scaled Mean Square Error between reconstructed array and input array. The 

reconstruction error is added to the marginal loss to form the loss function [10]. 

 

Fig 2.12. Reconstruction as regularization 
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3. CAPSULE NETWORK FOR OVERLAPPING DIGIT RECOGNITION 

   In this chapter, we evaluate the performance of the capsule network for an image 

recognition problem, specifically, overlapping digit recognition. We built MultiMNIST 

image dataset of overlapping digits and trained the network to recognize the digits in the 

images. To provide fair a comparison, we also build a traditional CNN and trained it with 

the same dataset.   

3.1 Structure of capsule network 

  The capsule network used here has the following structure: The first convolutional layer 

has 256 channels, kernel size of 9 × 9, stride of 1, and no padding. The second layer has 

256 layers, kernel size of 9 × 9, stride of 2, and no padding. The outputs of the second 

convolutional layer are grouped into 8-dimensional primary capsules. The second capsule 

layer consists of class capsules each with 16 dimensions. The two capsule layers are 

connected using the dynamic routing algorithm.  

The reconstruction part uses three fully-connected layers: The first one has 512 neurons 

fully connected to the class capsules, the second has 1024 neurons and the last layer builds 

the reconstructed image with 32 × 32 = 1024  neurons. The configuration follows the 

capsule network proposed by Hinton [6] and makes slight adjustment to fit the input image 

size. Fig 3.1 describe the proposed capsule network. 

   The loss function consists of two parts: the first part is marginal loss calculated by labels 

and class capsules; the second part is Mean-Square-Error calculated using reconstructed 

image and input image. The reconstruction part is added to the marginal loss with a down-

weighting parameter to ensure that the reconstruction loss is not the dominating part. The 

stochastic gradient descent is calculated with Adam optimizer [13].  
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Fig3.1. Capsule network for digit recognition 

3.2 Baseline CNN 

  We create a baseline CNN similar to that in [6]. It has similar number of weights as the 

capsule network. Baseline network has three convolutional layers with 256, 256 and 128 

channels. The kernel sizes are  5 × 5  and stride is 1 for all three layers. After each 

convolutional layer, the results pass through a  2 × 2  max pooling layer and ReLU 

activation function. The classification is done by three fully connected layers with 328, 192 

and 10 neurons. The last two layers are fully connected and use dropout as regularization 

method [6]. Fig 3.2 describes the baseline CNN structure.  

 

Fig3.2. Baseline CNN structure 



19 

3.3 Training on small size training set 

  In a capsule network with dynamic routing algorithm, the information in low-level 

capsule is sent to the high-level capsule which ‘agrees with’ the input. Thus, the capsule 

network is expected to converge faster than normal CNN, since normal CNN uses multiple 

fully connected layers to do the classification and requires more samples to reach the 

optimal value. In this section, we compare the performance of capsule network and the 

baseline CNN with respect to converging speed, training time and testing accuracy. 

3.3.1 Experiment design 

   This experiment is based on a MultiMNIST dataset, which is built based on MNIST 

hand-written digit dataset [14]. In MNIST dataset, there are 50,000 images in the training 

set and 10,000 images in the testing set. Each image includes a hand-written digit from 

zero to nine. Along with the image is the label indicating the correct number in the image. 

The MultiMNIST dataset is built by overlaying two images with different labels to form 

one image including 2 digits.  The size of images in the MNIST dataset is 28 × 28, and we 

shift the image randomly by up to 4 pixels in each direction. In this way we get an image 

of size 32 × 32. For instance, as shown in Fig.3.3, digits 0 and 7 are combined to form one 

image with label (0, 7).  We can control the training set size by choosing how many images 

are mixed with one image in MNIST. In this experiment, we used training sets of size 

50,000, 10,0000, 150,000, 200,000 and 250,000 images. 
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Fig3.3. Digits from MNIST and overlapping digits in MultiMNIST 

3.3.2 Result    

  Figure 3.4 -3.9 show the training and testing errors when training the capsule network and 

baseline network for 20 epochs. The training set size varies from 50,000 to 250,000. In 

each figure, the top panel shows the training loss and testing loss for baseline (left subplot) 

and capsule network (right subplot); the bottom panel compares the training loss of baseline 

and capsule network and the table shows the testing accuracies and average training time 

per epoch of the two networks. The implementation is in PyTorch with Python3.5 and 

Cuda9.0. The training time is the actual execution time of the algorithm when run on 

NVIDIA GTX1070 with 8G frame buffer.  
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Fig 3.4. Performance comparison when training on 50,000 images.  
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Fig 3.5. Performance comparison when training on 100,000 images 

 

Fig 3.6. Performance comparison when training on 150,000 images 
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Fig 3.7. Performance comparison when training on 200,000 images 

 

Fig 3.8. Performance comparison when training on 250,000 images 

   The curves of training loss show the convergence speeds of capsule network and baseline 

network. The curves of testing loss show whether the networks are overfitting. The subplot 

on the right of bottom panel compares the convergence of two networks. In the table is the 

best testing accuracy and training time per epoch. When training set size increases, 

convergence speeds of both networks increase. The training time per epoch and accuracy 

also increases as the training set size increases. Fig 3.9 and Fig 3.10 plot the training loss 

of the baseline network and capsule network respectively.  
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Fig 3.9. Training loss of baseline network for different sized training sets 

 

Fig 3.10. Training loss of capsule network for different sized training sets 

This evaluation shows that, capsule network converges faster than the baseline network 

in all cases. When training set is small (50,000 images), the capsule network achieves a 
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higher accuracy. However, when training set is larger, both networks have comparable 

accuracy. In all cases, capsule network converges to a relatively low loss in about 12 epochs 

while baseline network requires more than 20 epochs. In all cases, the capsule network 

shows a faster convergence speed. 

TABLE 3.1. MOST TIME-CONSUMING KERNELS IN TRAINING PROCESS 

FOR BASELINE NETWORK 

 

Kernel in GPU 

Baseline CNN 

Time Percentage 

maxwell_scudnn_relu 10.52s 37.3% 

Maxwell_cudnn_128x128 5.08s 18.0% 

Maxwell_gcgemm_32x32 3.59s 12.7% 

PoolingForward/Backward 3.41s 7.7% 

 

TABLE 3.2. MOST TIME-CONSUMING KERNELS IN TRAINING PROCESS 

FOR CAPSULE NETWORK 

 

Kernel in GPU 

Network with  

dynamic routing 

Time Percentage 

Batch_gemm_kernel 92.94s 41.5% 

Cudnn::detail_dgrad_engine 39.83s 17.8% 

Maxwell_cudnn_relu 16.62s 7.4% 

Maxwell_cudnn_128x128 14.12s 6.3% 

 

While the capsule network has higher convergence rate and higher accuracy, its training 

time is a lot higher which is 8 times more per epoch. To analyze the bottlenecks of the 

capsule network, we use NVVP profiler by NVIDIA to profile one epoch of training both 

capsule network and baseline network. Table 3.1 shows the profiling results of baseline 

network. We find that convolution operation and computation in fully connected layers can 

be efficiently computed with multiplication kernels in GPU (Maxwell_cudnn_128x128 
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and Maxwell_gcgemm_32x32).  The most time-consuming part is nonlinear operations 

including ReLU and pooling.  

Table 3.2 shows the profiling results of capsule network. The convolution operation and 

computation in fully connected layers take 16.62s which is only 7.4% of the training time 

per epoch. The dynamic routing algorithm calls GEMM kernels for matrix-matrix 

multiplication which is not as efficient as Cudnn kernels (for example, 

Maxwell_cudnn_128x128). This kernel spends 92.94s, which is 41.5% training time per 

epoch. In addition, Cudnn kernel for gradient calculation contributes 39.83s and ReLU 

operation spends 16.62s. 

3.4. Capsule size 

Next, we study the tradeoff between the number of capsules and the size of capsules. For 

primary capsules, a larger size means one capsule knows more about one specific feature 

and describes the features with more detail. It is expected that decision it makes for the 

next level will be more reasonable. On the other hand, using a larger number of primary 

capsules is likely to help detect more types of features, and there are also more capsules 

that take part in the ‘voting’ process. In terms of computation cost, more capsules mean 

more matrix-vector multiplications in the training process which results in increase of 

training time. For class capsules, a larger size also records more parameters to describe a 

specific digit, which is likely to force the primary capsule’s vote to be more accurate while 

a small size for class capsule reduces the computation cost of dynamic routing algorithm. 

3.4.1 Experiment design and result 

      We keep the capsule network to be the same as the last experiment and only change the 

capsule sizes in primary capsule layer and class capsule layer. For studying the effect of 
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size, primary capsule part, we consider 4, 8, 16, and 32-dimensional capsules and keep the 

class size to be 16. In each case, the training set is 50,000 images and testing set is 10,000 

images. The training process lasts for 20 epochs. The results are shown in Fig 3.11 and 

Table 3.3. We see that the capsule size does not have much effect on accuracy. But 

networks with the larger size of primary capsule converges faster and has much short 

training time. 

TABLE 3.3. ACCURACY AND TRAINING TIME FOR DIFFERENT PRIMARY 

CAPSULE SIZE 

 

Capsule Size 

 

4 

 

8 

 

16 

 

32 

 

Accuracy 

 

88.28% 

 

88.70% 

 

88.98% 

 

89.38% 

 

Training time/epoch 

 

357s 

 

236s 

 

177s 

 

163s 

 

Fig 3.11. Training loss of capsule network when the class capsule is of size 4,8, 

16 and 32; the class capsule size is 16. 
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For class capsule part, we use the primary capsule size of 8 and test the network with 

class capsule of size 16-dimensions and 8-dimensions. The training and testing sets are the 

same as the primary capsule part. The training also lasts for 20 epochs. The results are 

shown in Fig 3.12 and Table 3.4. The 16-dimensional network converges faster at the 

beginning, but after 10 epochs, the converging speed of the two networks are the same. 

TABLE 3.4. ACCURACY AND TRAINING TIME OF DIFFERENT CLASS 

CAPSULE SIZE 

Capsule Size 8 16 

Accuracy 88.66% 88.70% 

Training time/epoch 204s 236s 

 

Fig 3.12. Training loss of capsule network when the class capsule is of size 8, 16; 

the primary capsule size is 8. 
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3.4.2 NVVP profiler analysis  

Table 3.5 shows the result of profiling capsule network with different sizes of primary 

capsule. The result shows that the change of capsule size does not affect the calculation 

load in convolutional layers and fully-connected layers. But as the primary capsule size 

increases, the time for dynamic routing computation is reduced.  

TABLE 3.5. RESULT OF DIFFERENT PRIMARY CAPSULE SIZES 
       Size of primary capsule 

 

kernel in GPU  

 

4  

 

8 

 

16 

 

32 

Batch_gemm_kernel 173.28s 92.94s 52.20s 48.19s 

Cudnn::detail_dgrad_engine 39.72s 39.83s 40.00s 39.75s 

Maxwell_cudnn_relu 16.31s 16.62s 16.82s 16.75s 

Maxwell_cudnn_128x128 13.71s 14.12s 14.42s 14.46s 

 

   Table 3.6 describes the computations needed in the dynamic routing algorithm. Assume 

that there are 𝑁1  primary capsules of size 𝑆1 , and 𝑁2  class capsules of size 𝑆2 . In the 

network used here, 𝑆1 × 𝑁1 = 256 × 21 × 8 = 43008.  

   The table shows that the number of primary capsules affects the number of computations 

in calculating the prediction, calculating the input of class capsule, and renewing the 

coupling coefficients. The size of the used to calculate prediction is determined by the size 

of the primary capsule. The total time can be expressed as: 

𝑇 =  𝑁1 × 𝑁2(𝑡1(𝑆1, 𝑆2) + 𝑡2(𝑆2) + 𝑡4(𝑆2)) + 𝑁2𝑡3(𝑆2) 

where 𝑡1(𝑆1, 𝑆2)  denotes the time for prediction, 𝑡2(𝑆2)  denotes the time for computing 

input of class capsule, 𝑡3(𝑆2) denotes the time for applying squash function to the input in 

each class capsule, and 𝑡4(𝑆2)  denotes the time for renewing the coefficients between 

primary capsules and class capsules.  
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TABLE 3.6. COMPUTATIONS IN DYNAMIC ROUTING ALGORITHM 

 

Operations 

 

Equations 

 

Number of 

computations 

 

Computation 

Making 

Prediction 

�̂�𝑗𝑖 =  𝑊𝑖𝑗𝑢𝑖 43008

𝑆1
× 𝑁2 

Multiplication between(𝑆2, 𝑆1) and 

(𝑆1, 1) 

 

Input of class 

capsule 

 

𝑠𝑗 =  ∑ 𝑐𝑖𝑗�̂�𝑗𝑖

𝑖

 

 
43008

𝑆1
× 𝑁2 

Multiplication between(𝑆2, 1) and 

scaler 𝑐𝑖𝑗, summation of two 

(𝑆2, 1) vectors 

 

Squash 

function 

 

𝑣𝑗 =
‖𝑠𝑗‖

2

1 + ‖𝑠𝑗‖
2

𝑠𝑗

‖𝑠𝑗‖
 

 

 

𝑁2 

 

 

Calculating ‖𝑠𝑗‖ 

Renewing 

coefficients 

𝑏𝑗𝑖 =  𝑏𝑖𝑗 + �̂�𝑗𝑖 ∙ 𝑣𝑗 43008

𝑆1
× 𝑁2 

Inner product of two 𝑆2-dimension 

vectors 

 

Fig 3.11 shows the training time for dynamic routing algorithm as a function of numbers 

of primary capsules. It shows that for primary capsule size of 4, 8, and 16, the relation 

between training time and numbers of capsules is linear. This means for all computations 

with capsule size 𝑆1  no larger than 16, the GPU implementation calls the same sized 

computation kernel. As a result, increasing the size of primary capsules efficiently 

decreases the training time by decreasing the number of computations. In case of capsule 

size of 32, the GPU implementation requires computation kernels of larger size, which 

results in more time per computation. So, though the number of computations is decreased, 

the training time decreases mildly.  

3.4.3 Summary of results 

For the MNIST recognition task, we can see that a larger primary capsule works better, 

which indicates that the digit recognition task does not require the network to collect large 

number of features. Fewer features, each with more details are enough for making correct 

decision. In this case, although there are fewer capsules voting, the vote from each capsule 
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contributes more. As for the class capsule, a larger size helps only in the beginning, which 

means that 8 values are enough to describe a digit for classification. The slight difference 

is not worth the increase in the computation. In terms of training time, we find that 

increasing the size of primary capsule and decreasing size of class capsule can cut down 

the training time of capsule network while keeping the accuracy nearly unchanged. 

 

Fig 3.13. Time for dynamic routing and number of capsules 

3.5 Conclusion 

The largest training set used in this work was 250,000 images compared to 60M images 

in Hinton’s papers [6]. So, in my experiments, the advantage on accuracy of capsule 

network may not be that obvious. But the convergence speed of capsule network stands out 

in case of small training set. Also, capsule network achieves a high accuracy when the 

training set is small (50,000 images). We found that the training time for capsule network 

is extremely long compared to baseline network. To mitigate this problem, we show that 

adjusting the capsule size can cut down training time by 50% (from Table3.5, training time 

decreased form 357 seconds to 163 seconds) while keeping the accuracy almost unchanged.   
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4. CAPSULE NETWORK FOR OVERLAPPING WORD RECOGNITION 

In the last chapter, we analyzed the performance of capsule network for recognizing 

overlapping digits. We showed that capsule network can solve the complex feature 

extraction and recognition task well. We concluded that capsule network converges faster 

and has better performance compared to the baseline CNN when the training set is small. 

These results inspired us to apply capsule network to the speech recognition task since 

speech recognition problems have to deal with smaller training sets. Besides, in speech 

processing, features such as MFCC are arranged in time order and thus spatial information 

is available and could be exploited with capsules. In this chapter, we show use of capsule 

network for the speech recognition problem of identifying two overlapping words. We start 

with overlapping speech created from five different words, then increase the number of 

words to ten. 

4.1 Data set and pre-processing  

The data set we use for speech recognition is based on the Speech Commands dataset 

collected by Google [12]. It consists of over 105,000 WAVE audio files of people saying 

thirty different words. Every WAVE file includes one word from one speaker with a length 

of 2 seconds as shown in Fig 4.1. We built a mixed speech file by overlaying two WAVE 

files from two different words as shown in Fig 4.2. When mixing is finished, we have 

WAVE files, each of which contains 2 words with a total length of 2 seconds.  

Before feeding these training samples into the neural network, we carry out speech 

processing on the speech file. Training network to learn features in the time domain is more 

difficult since the features are mixed across the two speakers. Thus, in speech recognition-
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based applications, frequency domain features are commonly used and have proven to be 

successful. Among the various types of frequency domain features, Mel-Frequency 

Cepstral Coefficients (MFCC) and filter bank features are very popular and are often used 

in deep learning applications. 

 

Fig 4.1. Wave plot of word ‘backward’ and ‘follow’ 

 

Fig 4.2. Wave plot of overlapping ‘backward’ and ‘follow’ 

Computing filter bank and MFCCs involve similar procedures, as in both cases filter 

bank is computed and MFCC can be obtained with a few additional steps. In a nutshell, a 

signal goes through a pre-emphasis filter, then gets sliced into (overlapping) frames and a 
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window function is applied to each frame. Then a Short-Time Fourier Transform (STFT) 

is done on each frame and then the power spectrum is calculated. The last step involves 

application of triangular filters on a Mel-scale (described in Fig 4.3) to the power spectrum 

to extract coefficients in different frequency bands. This procedure is referred to as filter 

banks. To obtain MFCCs, a Discrete Cosine Transform (DCT) is applied to decorrelate the 

filter bank coefficients. In both cases, the final step is mean normalization. In our 

experiment, we apply both MFCCs and Filter bank to get frequency-domain features as the 

input of our network. Fig 4.4 describes the procedures to calculate filter bank and MFCC 

based features. 

 

Fig 4.3 Filter bank on a Mel scale 
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Fig 4.4 Block Diagram illustrating calculation of MFCC and filter bank coefficients 

 

Fig 4.5. MFCCs feature maps 
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Fig 4.6. Filter bank feature maps 

Fig 4.5 and Fig 4.6 show the feature maps obtained using MFCCs and Filter bank, 

respectively. It is clear from the figures that the feature maps of a mixed speech contain 

features that are specific to the individual speakers and words; this makes recognition from 

feature maps feasible. 

4.2 Experiment 1: Design and Result 

In the first experiment, we choose 5 words to build the dataset. The five words are 

‘backward’, ‘follow’, ‘marvin’, ‘sheila’ and ‘visual’. Every word has multiple speech files 

recorded by different speakers, the number of speakers for each word is shown in Table 

4.1.  

To derive the training set, for every speech file in all word categories, we mixed it with 

20 speech files from other categories. Thus, there are 161,320 mixed speech files in the 
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training data set, each containing two words from two different word categories. The test 

set is created by a similar method, but the size is 1/5 of the training set.  

TABLE 4.1 WORDS IN THE DATASET 

Label word number 

0 backward 1558 

1 follow 1454 

2 marvin 1831 

3 sheila 1754 

4 visual 1469 

* In total 8066 

    TABLE 4.2 WORDS IN SPEAKER DEPENDENT DATASET 

label word Training samples Testing samples 

0 backward 1298 260 

1 follow 1212 242 

2 marvin 1528 303 

3 sheila 1462 292 

4 visual 1225 244 

* In total 6725 1341 

 

We also create speaker independent training set by training the network using speech files 

from one group of people and then testing the network with another group of people. In 

this case, the wave file distribution is as shown in Table 4.2. The mixing procedure is the 

same as speaker independent training set. 
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After generating the training and testing wave files, preprocessing using MFCC and 

filter bank is done to create the training and testing feature map sets. Each feature map is 

of size 98x60. We choose training set size of 50,000 and testing set size of 10,000. 

4.2.1 Capsule network  

In this experiment, the capsule network has the same structure as in the last chapter.  

Specifically, there are two convolutional layers for feature extraction and two capsule 

layers with 8-dimensional primary capsules and 16-dimensional class capsules for 

classification. We tested different kernel and stride choices for the two convolutional layers. 

We choose kernels with rectangular shape instead of square shape. This is because features 

from MFCC and filter bank show more correlation in temporal dimension. So, a rectangular 

kernel makes better use of weights and collects more useful information. After the second 

convolutional layer, the outputs are grouped into capsules. For the reconstruction part, the 

output of reconstruction is now a 60x98 array; this is the same size as input feature map.  

We tested for five different kernel size sets. The results are shown in Table 4.3. The two 

convolutional layers of the capsule network use kernels K1 and K2. Configuration of K1 

and K2 is shown in Fig 4.7. We can see that a wider convolution kernel in temporal 

dimension has higher accuracy. For example, when trained with speaker-independent filter 

bank features using kernel K2 of size (6,6), the accuracy of network using kernel K1of size 

(18,2) is 78.75% and the accuracy of network using K1of size (6,18) is 82.24%. For 

baseline CNN network, we use K1 of size (6, 24) and K2 of size (6,12) for the first two 

convolutional layers. We choose these sizes for K1 and K2 since the capsule network has 

the best performance for these kernel sizes. 
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Fig 4.7. Kernel configuration in convolution layers 

TABLE 4.3 ACCURACY AND TRAINING TIME FOR DIFFERENT CONFIGURATIONS 

Accuracy K1 (28,2) 

K2 (6,6) 

K1 (18,2) 

K2 (6,6) 

K1 (6,24) 

K2 (6,12) 

K1 (6,18) 

K2 (6,12) 

K1 (6,18) 

K2 (6,6) 

Baseline 

CNN 
Time 

 

MFCC 

Speaker Ind. 

 

75.91% 75.75s 

 

78.76s 

 

76.75% 

 

81.67% 

 

79.20% 

 

155s 171s 160s 210s 157s 38s 

 

MFCC 

Speaker Dep. 

 

89.64% 90.88% 93.94% 92.30% 93.56% 83.68% 

156s 186s 170s 218s 165s 38s 

 

Filter Bank 

Speaker Ind. 

 

79.60% 

 

78.75% 

 

83.68% 

 

82.24% 

 

81.52% 

 

77.26% 

 

161s 174s 168s 208s 161s 38s 

 

Filter Bank 

Speaker Dep. 

 

95.64% 

 

96.32% 

 

96.72% 

 

96.84% 

 

96.92% 

 

85.19% 

 

154s 170s 160s 205s 164s 38s 

4.2.2 Effect of capsule size  

      The results in Table 4.3 also show that the training time of capsule network is long 

compared to baseline CNN. Results from last chapter indicate that the training time of 

capsule network can be decreased by changing the size of capsule. In this experiment, we 

train the capsule network with different capsule size configurations and compare the 

corresponding accuracy and training time with respect to a baseline network. 
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We use convolutional layers with K1 of size (6,24) and K2 of size (6,12) and primary 

capsule size to be 4, 8, 16 and 32. We also try one configuration with class capsule of size 

16 to see if the training time can be further decreased. The results are shown in Table 4.4. 

The capsule size in the table is denoted in form of (primary capsule size)/ (class capsule 

size).  

TABLE 4.4 ACCURACY AND TRAINING TIME FOR DIFFERENT CAPSULE SIZES 

Accuracy 4/16 8/16 16/16 32/16 32/8 

Time 

 

MFCC 

Speaker Ind. 

 

77.87% 78.76% 78.78% 79.52% 79.43% 

234s 160s 128s 121s 112s 

 

MFCC 

Speaker Dep. 

 

93.53% 93.94% 93.93% 93.05% 94.00% 

229s 170s 130s 122s 113s 

 

Filter Bank 

Speaker Ind. 

 

84.77% 83.68% 82.61% 83.00% 84.67% 

230s 168s 129s 122s 113s 

 

Filter Bank 

Speaker Dep. 

 

96.72% 96.72% 96.50% 96.28% 96.88% 

225s 170s 127s 122s 113s 

 

From the result we can see that changing the capsule size does not have much effect on 

recognition accuracy, but a capsule with larger size requires shorter time for training. In 

case of using speaker-dependent filter bank features, comparing accuracy of networks that 

use primary capsule of size 8 and size 32 for primary, we see that the difference in accuracy 

is smaller than 1% but the training time for every epoch reduces from 170s to 122s which 

is about 28% lower.  The results for config 32/16 and config 32/8 have similar accuracy, 

but the training time is further decreased by 9 seconds from 122s to 113s.  
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4.3 Experiment 2 

To further investigate the performance of capsule network on overlapping speech, we 

trained the network on a training set that consists of more categories of words as shown in 

Table 4.5. In this experiment, we choose 5 more words in addition to the 5 words we used 

in the last experiment. In total, there are 10 categories of words to mix and there are 45 

categories of mixed files.   

The capsule network for this experiment uses convolutional layers with kernel size 

K1(6,24) and kernel size K2 (6,12). The primary capsule size is 32 and the class capsule 

size is 8.  

TABLE 4.5 ACCURACY AND TRAINING TIME FOR DIFFERENT CAPSULE SIZE 

label word number label word number 

0 backward 1558 5 bed 1686 

1 follow 1454 6 forward 1452 

2 marvin 1831 7 nine 3629 

3 sheila 1754 8 six 3598 

4 visual 1469 9 wow 1797 

  

  We build both speaker dependent and speaker independent training set by overlaying the 

word from different categories. Filter bank is used to build the feature maps for mixed files. 

The training set size is 54000, which means 1200 samples for each kind of mixed speech. 

The testing set size is 10800. The results are shown in Table 4.6. 

    In this experiment, the training sample per category decreased from 5000 to 1200. In 

case of training with speaker independent training sets, the accuracy of capsule network 
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shows slight decrease from 96.88% to 95.42%, while the baseline network’s accuracy 

decreases sharply from 84.67 to 73.18%. This result validates the capability of capsule 

network to have high performance when dealing with small training set compared to 

traditional CNN. As for the speaker dependent case, both networks show sharp decrease. 

This result is predictable since speaker dependent training set shows fewer common 

features with testing set, which means the training set size has stronger effect on accuracy. 

TABLE 4.6 RESULT OF 10-WORD RECOGNITION 

Accuracy  

Capsule Network 

 

Baseline Network 
Time per epoch 

 

Speaker dependent 

95.42% 73.18% 

157s 41s 

 

Speaker independent 

64.73% 61.45% 

157s 41s 

4.4 Recognizing individual word 

In this part, we show the reconstructed feature map from the capsule network to show 

that the capsule network can recognize overlapping speech recognizes individual speech 

components.  

The network configuration used for this study is as follows: Convolutional layer 1 has 

kernel size (6, 24) and stride (2, 2); Convolutional layer 2 has kernel size (6, 12) and stride 

(2,1). The primary capsule size is 32 and class capsule size is 8. The network is trained 

with speaker independent training set.   

We use network trained with speeches of overlapping words to recognize speech of 

single word and present the reconstructed feature maps. We take word ‘backward’ and 
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‘follow’ as example. The original and reconstructed feature maps are shown in Fig 4.8 to 

Fig 4.13. 

 

Fig 4.8. Original and reconstructed MFCCs feature map of word ‘backward’ 

 

Fig 4.9. Original and reconstructed MFCCs feature map of word ‘follow’ 
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Fig 4.10. Original and reconstructed MFCCs feature map of overlapping speech 

consisting of ‘backward’ and ‘follow’ 

 

Fig 4.11. Original and reconstructed Filter bank feature map of word ‘backward’ 

 

Fig 4.12. Original and reconstructed Filter bank feature map of word ‘follow’ 
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Fig 4.13. Original and reconstructed Filter bank feature map of overlapping speech 

consisting of ‘backward’ and ‘follow’ 

Capsule network trained by overlapping speech features can recognize individual speech 

features. The reconstructed feature map contains most of the features of the individual 

inputs. The reconstructed overlapping speech contains features from both inputs, which 

proves that capsule network is capable of recognizing every individual word in the 

overlapping speech. 
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5. CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

This thesis report described our work on evaluating the capsule network for image 

recognition and speech recognition tasks. For image recognition, we consider the problem 

of recognition of images with overlapping digits. We trained the capsule network and 

baseline CNN with training sets of different sizes and recorded for every epoch the training 

time, training loss and testing loss. We also recorded the best accuracy. A comparison of 

the performance of two networks showed that capsule network has faster convergence than 

baseline CNN network. For a small training set, the capsule network has higher testing 

accuracy. However, when training set became larger (more than 100,000 images), the 

accuracy of the two networks was comparable.  

The results also showed that the training time of the capsule network for one epoch is 

much longer than that of baseline network (approximately 8 times of baseline network). 

So, we analyzed the training process using a NIVDIA profiling tool, NVVP. We found that 

in the baseline CNN, convolution operations and fully connected layers did not take up 

much time. The most time-consuming computations for baseline CNN are nonlinear 

operations like max pooling and ReLU. In the capsule network, the dynamic routing part 

takes up 41.5% of the total time. The dynamic routing algorithm requires several matrix-

matrix multiplication kernels which were very time-consuming.  

The computational complexity analysis also suggested that we could reduce training 

time per epoch by adjusting the capsule structure. So, we changed the size of primary 

capsules and class capsules and evaluated both accuracy performance and training time. 
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The results showed that the change in capsule sizes had no effect on accuracy but could cut 

down the training time by more than 40% (from 236s of 8-dim primary capsules to 163s 

of 32-dim capsules).  

Next, we evaluated the performance of the capsule network for speech recognition. The 

specific problem that we considered was overlapping word recognition. We created wave 

files of two overlapping words for speaker-dependent and speaker-independent datasets. 

We used MFCC and filter bank to pre-process the speech signal. We started with 5 classes 

of words and trained the capsule network with different convolution kernel configurations. 

The results showed that rectangular kernels which covered more in time dimension worked 

better. We also trained a baseline CNN with rectangular kernels.  

 We showed that for both speaker-dependent and speaker-independent datasets, the 

capsule network achieved a much higher accuracy (96.92% with speaker-dependent and 

83.68% with speaker-independent dataset) compared to baseline network (84.88% with 

speaker-dependent and 78.77% with speaker-independent dataset). However, the training 

time of the capsule network was approximately 4 to 5 times that of the baseline network. 

Next, we adjusted the capsule parameters and studied its effect on performance of the 

capsule network. The results showed increasing the primary capsule size to 32 and 

decreasing the class capsule size to 8 resulted in less than 1% change in accuracy. However, 

such a change decreased the training time significantly. It is now approximately 3 times 

that of the baseline CNN. 

To further explore the potential of capsule network for overlapping words recognition, 

we added five more classes of word to the speech data set making the number of different 

words to mix with at ten. We used a training set of size 54,000 and testing set of size 10,800. 
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The testing accuracy of both networks decreased when training set is speaker-dependent. 

However, the capsule network kept a high accuracy of 95.42% when training set is speaker-

independent while the baseline network’s accuracy decreased from 84.88% to 73.18%. 

This experiment further proved that the capsule network has superior performance for 

overlapping word recognition task. 

5.2 Future Work 

There are several related problems that will be considered in the future: 

1. The size of convolution kernel influences the network performance in terms of 

accuracy and training time. A set of experiments should be carried out to find the 

optimal kernel sizes. 

2. Network with multiple capsule layers is worth investigating because in traditional 

CNN, multiple fully-connected layers are applied to improve the classification 

accuracy. 

3. Mean-square-error is common but not the best choice for speech recognition. For 

reconstruction error-based regularization, better choice may be Itakura-Saito 

distance. 

4. Dynamic routing makes use of inner product to judge whether a higher-level 

capsule ‘agrees with’ a lower-level capsule which is very time consuming. The 

timing problem can be mitigated by finding other techniques which have less 

computational load.  
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