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ABSTRACT

Motion estimation is a core task in computer vision and many applications utilize

optical flow methods as fundamental tools to analyze motion in images and videos.

Optical flow is the apparent motion of objects in image sequences that results from

relative motion between the objects and the imaging perspective. Today, optical flow

fields are utilized to solve problems in various areas such as object detection and

tracking, interpolation, visual odometry, etc. In this dissertation, three problems

from different areas of computer vision and the solutions that make use of modified

optical flow methods are explained.

The contributions of this dissertation are approaches and frameworks that intro-

duce i) a new optical flow-based interpolation method to achieve minimally divergent

velocimetry data, ii) a framework that improves the accuracy of change detection al-

gorithms in synthetic aperture radar (SAR) images, and iii) a set of new methods

to integrate Proton Magnetic Resonance Spectroscopy (1HMRSI) data into three-

dimensional (3D) neuronavigation systems for tumor biopsies.

In the first application an optical flow-based approach for the interpolation of

minimally divergent velocimetry data is proposed. The velocimetry data of incom-

pressible fluids contain signals that describe the flow velocity. The approach uses

the additional flow velocity information to guide the interpolation process towards

reduced divergence in the interpolated data.

In the second application a framework that mainly consists of optical flow meth-

ods and other image processing and computer vision techniques to improve object

extraction from synthetic aperture radar images is proposed. The proposed frame-

work is used for distinguishing between actual motion and detected motion due to
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misregistration in SAR image sets and it can lead to more accurate and meaningful

change detection and improve object extraction from a SAR datasets.

In the third application a set of new methods that aim to improve upon the cur-

rent state-of-the-art in neuronavigation through the use of detailed three-dimensional

(3D) 1H-MRSI data are proposed. The result is a progressive form of online MRSI-

guided neuronavigation that is demonstrated through phantom validation and clinical

application.
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Chapter 1

INTRODUCTION

Motion estimation and analysis are important objectives in the field of computer

vision. Many applications utilize optical flow methods as fundamental tools to an-

alyze motion in images and videos. Today, motion estimation and optical flow can

seem as interchangeable terms; however, there is a slight difference between the two.

Ideally, an optical flow field would be the same as the actual motion field. In practice,

we treat the opical flow field as the motion field in the scene. The real motion field is

the projection of three dimensional (3D) motion on a 2D plane, i.e. image plane. On

the other hand, an optical flow field is the displacement vectors of pixels between

two images. Estimation of optical flow fields has been an active research area for

over 35 years. Since the works of [Horn and Schunck (1980); Lucas and Kanade

(1981)] marked the emergence of the field, there have been many improvements and

surveys on the optical flow methods [Verri et al. (1989); Barron et al. (1994a); Beau-

chemin and Barron (1995); Baker and Matthews (2004); Bruhn et al. (2005); Fortun

et al. (2015a)].

The contributions of this dissertation are mainly approaches and frameworks that

can offer solutions to various computer vision/image processing problems. Some

of the proposed frameworks include modified forms of optical flow as the chosen

motion estimator because of its adaptability to different scenarios. The approaches

and frameworks that are proposed in three distinct areas are:

(i) an optical-flow based framework for image interpolation that alsominimizes re-

sultant divergence in the interpolated data. Three-dimensional (3D) biomedical
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image sets are often acquired with in-plane pixel spacings that are far less than

the out-of-plane spacings between images. The resultant anisotropy, which

can be detrimental in many applications, can be decreased using image interpo-

lation. When acquired images are comprised of signals that describe the flow

velocity of fluids, additional information is available to guide the interpolation

process. The approach uses the additional flow velocity information to guide

the interpolation process towards reduced divergence in the interpolated data.

(ii) a framework that mainly consists of optical flow methods and other image

processing and computer vision techniques to improve object extraction from

synthetic aperture radar images. In two-color multiview (2CMV) advanced

geospatial information (AGI) products, temporal changes in synthetic aper-

ture radar (SAR) images acquired at different times are detected, colorized,

and overlaid on an initial image such that new features are represented in cyan,

and features that have disappeared are represented in red. Accurate detection

of temporal changes in 2CMV AGI products can be challenging because of

‘speckle noise’ susceptibility and false positives that result from small orienta-

tion differences between objects imaged at different times. Accordingly, 2CMV

products are often dominated by colored pixels when changes are detected via

simple pixel-wise cross-correlation. The state-of-the-art in SAR image process-

ing demonstrates that generating efficient 2CMV products, while accounting

for the aforementioned problem cases, has not been well addressed. The pro-

posed framework aims to address these two problem cases. Before detecting

temporal changes, speckle and smoothing filters mitigate the effects of speckle

noise. To detect temporal changes, the framework includes various computer

vision techniques like unsupervised feature learning algorithms in conjunction
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with optical flow algorithms that track the motion of objects across time in

small regions of interest. The proposed framework for distinguishing between

actual motion and misregistration can lead to more accurate and meaningful

change detection and improve object extraction from a SAR AGI product.

(iii) a set of new methods that aim to improve upon the current state-of-the-art in

neuronavigation through the use of detailed three-dimensional (3D) 1H-MRSI

data. The correlation of metabolite profiles with specific regions of interest

in anatomical tumor images can be useful in characterizing and treating het-

erogeneous tumors that appear structurally homogeneous. To establish that

correlation, tissue samples must be neurosurgically extracted from specifically

identified locations with high accuracy. Toward that end, a new neuronavi-

gation technology that enhances current clinical capabilities in the context of

neurosurgical planning and execution is presented. The proposed methods im-

prove upon the current state-of-the-art in neuronavigation through the use of

detailed 3D 1H-MRSI data. 3D MRSI spectra are processed and analyzed, and

specific voxels are selected based on their chemical contents. 3D neuronaviga-

tion overlays are then generated and applied to anatomical image data in the

operating room. 3DMRSI based overlays provide comprehensive, quantitative

visual cues and location information during neurosurgery. The newly proposed

3D methods also fully account for scanner calibration and leverage tools that

we have now made publicly available. The result is a progressive form of on-

line MRSI-guided neuronavigation that is demonstrated in this study through

phantom validation and clinical application.

The remainder of this dissertation is structured as follows. In Chapter 2, a defi-

nition of the term optical flow will be given and one of the most well known optical
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flow methods. This will provide a basis for the following chapters as most of the

work described in this dissertation make use of the principles behind this method

in some way. After providing the basis for optical flow, each chapter will provide

background on the subject and methods as the addressed problems are from differ-

ent areas. Chapter 3 describes the optical flow-based framework for interpolating

minimally divergent velocimetry data. Chapter 4 presents a framework for SAR im-

ages using adaptive thresholding, well established image processing techniques, and

optical flow. Chapter 5 describes a variant of the previous framework for improving

change detection in SAR images using feature learning algorithms and optical flow

in conjunction.and a one of its variants will be briefly described. In Chapter 6, a

set of new methods to improve upon the current state-of-the-art in neuronavigation

through the use of detailed three-dimensional (3D) 1H-MRSI data is presented. A po-

tential application of optical flow based interpolation is also discussed in the chapter.

The general conclusions and suggestions for possible future research are discussed

in Chapter 7.
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Chapter 2

BACKGROUND

2.1 Optical Flow

Optical flow is the apparent motion of objects in image sequences that results

from relative motion between the objects and the imaging perspective. In one canon-

ical optical flow paper [Horn and Schunck (1980)], two kinds of constraints are intro-

duced in order to estimate the optical flow: the smoothness constraint and the brightness

constancy constraint. In this section, we give a brief overview of the original optical flow

algorithm and the modified algorithm that was used in this project.

2.1.1 Theory

Optical flow methods estimate the motion between two consecutive image

frames that were acquired at times t and t + δt . A flow vector for every pixel is

calculated. The vectors represent approximations of image motion that are based in

large part on local spatial derivatives. Since the flow velocity has two components,

two constraints are needed to solve for it.

2.1.1.1 The Brightness Constancy Constraint

The brightness constancy constraint assumes that the brightness of a small area in

the image remains constant as the area moves from image to image. Image brightness
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at the point (x, y) in the image at time t is denoted here as I(x, y, t). If the point moves

by δx and δy in time δt, then according to the brightness constancy constraint:

dI

dt
= 0. (2.1)

This can also be stated as:

I(x+ δx, y + δy, t+ δt) = I(x, y, t). (2.2)

If we expand the left side of Eq. 2.2 with a Taylor series expansion, then:

I(x, y, t) +
∂I

∂x
δx+

∂I

∂y
δy +

∂I

∂t
δt+ · · · = I(x, y, t), (2.3)

where the ellipsis (…) denotes higher order terms in the expansion. After canceling

I(x, y, t) from both sides of the equation:

∂I

∂x
δx+

∂I

∂y
δy +

∂I

∂t
δt+ · · · = 0. (2.4)

We can divide this equation by δt, which leads to:

∂I

∂x

dx

dt
+

∂I

∂y

dy

dt
+

∂I

∂t
= 0. (2.5)

Substituting:

α =
dx

dt
and β =

dy

dt
,

the brightness constraint can be written in a more compact form:

Ixα + Iyβ + It = 0, (2.6)

where Ix = ∂I/∂x, Iy = ∂I/∂y, and It = ∂I/∂t. In this form α and β represent the

image velocity components and (Ix, Iy) represents the brightness gradients.
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2.1.1.2 The Smoothness Constraint

Fortunately, points from an object that is imaged in temporally adjacent frames

usually have similar velocities, which results in a smooth velocity field. Leveraging

this property, we can express a reasonable smoothness constraint by minimizing the

sums of squares of the Laplacians of the velocity components α and β. The Lapla-

cians are:

∇2α =
∂2α

∂x2
+

∂2α

∂y2
, (2.7a)

∇2β =
∂2β

∂x2
+

∂2β

∂y2
. (2.7b)

2.1.1.3 Minimization

Optical flow assumes constant brightness and smooth velocity over the whole im-

age. The two constraints described above are used to formulate an energy functional

to be minimized:

ϵ =

∫∫ [
(Ixα + Iyβ + It)

2 + λ2

(
∂2α

∂x2
+

∂2α

∂y2
+

∂2β

∂x2
+

∂2β

∂y2

)]
dx dy. (2.8)

Using variational calculus, the Euler-Lagrange equations can be determined for this

problem. Those equations need to be solved for each pixel in the image. Iterative

methods are suitable to solve the equations since it can be very costly to solve them

simultaneously. The iterative equations that minimize (2.8) are:

αn+1 = ᾱn −
Ix

[
Ixᾱ

n + Iyβ̄
n + It

]
λ2 + I2x + I2y

, (2.9a)

βn+1 = β̄n −
Iy

[
Ixᾱ

n + Iyβ̄
n + It

]
λ2 + I2x + I2y

, (2.9b)
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Figure 1. Image at time t (left), image at time t+ δt (middle), and Horn-Schunck
optical flow field overlaid onto the first image (right).

where n denotes the iteration number and ᾱn and β̄n denote neighborhood averages

of αn and βn. A sample result of this optical flow method is shown in Figure 1. More

detailed information on the method can be found in [Horn and Schunck (1980)]. As

this provides a basis for optical flow, the following chapters will provide background

on separate subjects and build on this fundamental optical flow method in different

applications.
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2.2 Optical Flow with Relaxed Brightness Constraint

In the preceding section, two kinds of constraints were introduced in order to

estimate the optical flow: the smoothness constraint and the brightness constancy constraint.

This section gives a brief introduction to a modified optical flow algorithm that is

employed in Chapters 4 and 5. The approach is explained more in detail in Chapter 4.

The brightness constancy constraint assumes that the brightness of a small area in

the image remains constant as the area moves from image to image. Image brightness

at the point (x, y) in the image at time t is denoted here as I(x, y, t). If the point moves

by δx and δy in time δt, then according to the brightness constancy constraint:

dI

dt
= 0. (2.10)

This can also be stated as:

I(r+ δr, t+ δt) = I(r, t). (2.11)

where r = (x, y, 1)T and r + δr = (x + δx, y + δy, 1)T . However, the brightness

constancy constraint is restrictive. A less restrictive brightness constraint was cho-

sen to address the intensity changes in SAR images. In [Gennert and Negahdaripour

(1987)], it is proposed that the brightness constancy constraint can be replaced with a

more general constraint that allows a linear transformation between the pixel bright-

ness values. This way, the brightness change can be non-zero, or:

dI

dt
≠ 0.

The formulation that allows a linear transformation between the pixel brightness

values is less restrictive, and can be written as:

I(r+ δr, t+ δt) = M(r, t)I(r, t) + C(r, t). (2.12)
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After using the Taylor series, the revised constraint equation can be obtained:

It + Ir · rt − Imt − ct = 0, (2.13)

where mt = limδt→0 δm/δt and ct = limδt→0 δc/δt. The relaxed brightness constraint

error is:

ϵI =

∫∫
(It + Ir · rt − Imt − ct)

2 dx dy. (2.14)

Equation 2.14 can be combined with the other constraint errors to produce the final

functional to be minimized:

ϵtotal = ϵI + λsϵs + λmϵm + λcϵc. (2.15)

where λs, λm, and λc are error weighting coefficients. The remaining errors are given

as:

ϵs =

∫∫
||∇rt||22dxdy,

ϵm =

∫∫
||∇mt||22dxdy,

ϵc =

∫∫
||∇ct||22dxdy.

Substituting the approximated Laplacians into the Euler-Lagrange equations, a single

matrix equation can be derived:

Af = g(̄f), (2.16)

where

A =



I2x + λs IxIy −IxI −Ix

IxIy I2y + λs −IyI −Iy

−IxI −IyI I2 + λm I

−Ix −Iy I 1 + λc


, f =



u

v

mt

ct


, g(̄f) =



λsū− IxIt

λsv̄ − IyIt

λmm̄t + ItI

λcc̄t + It


.
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Figure 2. Original Horn-Schunck optical flow field (left) and an optical flow field
produced with the Relaxed Brightness method (right). Note that the Relaxed
Brightness method provides a smoother, more natural flow field than the
Horn-Schunk method. Image Credit: Yosemite standard test sequence by Lynn
Quam.

The rest of the steps leading to the solutions are given in section 4.2.1. Because

of the flexibility in the brightness constraint, the resulting optical flow can include

inexact matches in images. A comparison of the original optical flow method to the

Relaxed Brightness method is provided on the Yosemite test sequence in Figure 2.

The Yosemite standard test sequence is created by Lynn Quam [Barron et al. (1994b)].
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2.3 Optical Flow with Divergence Constraint

When acquired images contain flow velocity information of fluids (e.g. velocime-

try data), additional information can be used to add a new constraint in the optical

flow algorithm. This section briefly introduces the formulation of using the velocity

information and adding a new divergence constraint to the optical flow algorithm.

This is the backbone of the interpolation framework that is presented in Chapter 3.

According to the continuity equation in fluid dynamics, the rate of mass entering

a system is equal to the rate of the mass leaving the system [Pedlosky (1987)]. In the

case of incompressible flow, the continuity equation takes the form:

∇ · −→u =
∂Vx

∂x
+

∂Vy

∂y
+

∂Vz

∂z
= 0.

where −→u is the velocity vector field and Vx,Vy, and Vz are the velocity compo-

nents. This means that the divergence of the velocity field is zero in the case of

incompressible flow. Figure 3 shows the change in flow velocity of a voxel.

Figure 3. Velocity change in three components of the flow of a sample voxel.

If we know the divergence of a voxel is supposed to be zero, then we can for-
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mulate a new constraint that uses this information. The new energy functional that

needs to be minimized can be of the form:

ϵ =

∫∫
[Hxα +Hyβ +Hz]

2︸ ︷︷ ︸
Brightness constraint

+γ2 [Dxα +Dyβ +Dz]
2︸ ︷︷ ︸

Divergence constraint

+λ2
[
∥∇α∥2 + ∥∇β∥2

]︸ ︷︷ ︸
Smoothness constraint

dx dy

where α and β are the flow vectors. The formulation is expanded with new details

in section 3.2.1.
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Chapter 3

AN OPTICAL FLOW-BASED FRAMEWORK FOR

MINIMALLY-DIVERGENT VELOCIMETRY DATA INTERPOLATION

Three-dimensional (3D) biomedical image sets are often acquired with in-plane

pixel spacings that are far less than the out-of-plane spacings between images. The re-

sultant anisotropy, which can be detrimental in many applications, can be decreased

using image interpolation. Optical flow and/or other registration-based interpolators

can be useful in such interpolation roles since they can help form a correlation be-

tween the images. When acquired images are comprised of signals that describe the

flow velocity of fluids, additional information is available to guide the interpolation

process. In this section, the velocity information is used to form a new constraint in

the optical flow algorithm. Then, a new interpolation framework that uses the new

optical flow method is described. The proposed optical-flow based framework for

image interpolation minimizes resultant divergence in the interpolated data.

3.1 Introduction

Image interpolation is a fundamental problem encountered in many fields [Oktay

et al. (2016); Liu et al. (2018); Alves and Tavares (2015);Witwit et al. (2017); Roszkowiak

et al. (2017); Titus andGeroge (2013); Teoh et al. (2008); Park et al. (2003); Lehman et al.

(1999)]. There are countless scenarios wherein images are acquired at resolutions that

are suboptimal for the needs of specific applications. For example, biomedical images

spanning a 3D volume are often acquired with in-plane pixel spacings far less than
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the out-of-plane spacings between images. This can be the case with clinical images

(e.g., from computed tomography (CT) and/or magnetic resonance (MR) imaging)

as well as in vitro images acquired with modalities such as particle image velocimetry

(PIV) [Liberman et al. (2018); Karani et al. (2018); Chen et al. (2018); Pham et al. (2017);

Lin et al. (2017); Hoon et al. (2016); Ozturk et al. (2003); Frakes et al. (2003)].

However, when acquired images are comprised of signals that describe the flow

velocity of fluids, additional information is available to guide the interpolation pro-

cess. Specifically, the flows of an incompressible fluid into and out of an interro-

gation volume must be equal according to conservation of mass [Pedlosky (1987)].

Quantifying the deviation from zero net flow that is entering (or alternatively leaving)

an interrogation volume (i.e., divergence) thus provides a means to direct interpola-

tion in such a way as to reconstruct more physically accurate data.

Optical flow and/or other registration-based interpolators have proven useful in

interpolating velocimetry data in the past [Głomb et al. (2017); Baghaie and Yu (2014);

This et al. (2017); Głomb and Świrniak (2018); Frakes et al. (2008); Penney et al. (2004);

Casa and Krueger (2013); Brunet et al. (2013); Elkins and Alley (2007); Frakes et al.

(2004); Melnikov and Shevtsova (2005); Heitz et al. (2010)]. Particle Image Velocime-

try (PIV) is a technique that measures a velocity field in a fluid volume with the help

of tracer particles in the fluid and specialized cameras [Raffel et al. (2013); Adrian

and Westerweel (2011)]. The default technique to determine the velocity field from

the raw PIV data is a correlation analysis between two frames that were acquired by

the cameras [Scarano (2002)]. This technique can be extended to 3D as well. Op-

tical flow-based approaches have been widely used in computer vision [Fortun et al.

(2015b); Sun et al. (2014); Dosovitskiy et al. (2015); Aubert and Kornprobst (2006);

Bruhn et al. (2006)], and they have been appealing to researchers because of the flex-
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ibility of variational approaches. Regularizers can be used for different constraints

in the energy functional to be minimized. In the conventional optical flow method

there are two constraints, brightness and smoothness [Horn and Schunck (1980)].

Optical flow-based methods have been promising in the area of fluid flow estima-

tion in PIV [Alvarez et al. (2007, 2009); Ruhnau et al. (2007); Ruhnau and Schnörr

(2007); Herlin et al. (2012); Zhong et al. (2017)]. For example, in Alvarez et al. (2009),

incompressibility of the flow is added as a constraint in the optical flow minimization

problem. In Ruhnau et al. (2007), the vorticity transport equation, which describes

the evolution of the fluid’s vorticity over time, is used in physically consistent spatio-

temporal regularization to estimate fluid motion.

Divergence and curl (vorticity) have been used in estimating optical flow previ-

ously Suter (1994); Gupta and Prince (1996b,a); Corpetti et al. (2006). In Suter (1994),

the smoothness constraint is decomposed into two parts, divergence and vorticity,

in this way, the smoothness properties of the optical flow can be tuned. In Song

and Leahy (1991), both incompressibility and divergence-free constraints are used in

the ill-posed minimization problem to calculate a 3D velocity field from 3D Cine CT

images. In Gupta and Prince (1996a), a second order div-curl spline smoothness con-

dition is employed in order to compute a 3D motion field. In Corpetti et al. (2006), a

data term based on the continuity equation of fluid mechanics [Pedlosky (1987)] and

a second order div-curl regularizer are employed to calculate fluid flow.

In this chapter, an optical-flow based framework for image interpolation that also

minimizes resultant divergence in the interpolated data is presented. That is, the di-

vergence constraint attempts tominimize divergence in interpolated velocimetry data,

not the divergence of the optical flow field. To our knowledge, using divergence in

this way as a constraint in an optical-flow framework for image interpolation has not
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been investigated prior to the preliminary work presented in Kanberoglu et al. (2017).

The method is applied to PIV, computational fluid dynamics (CFD), and analytical

data and results indicate that the tradeoff between minimizing errors in velocity mag-

nitude values and errors in divergence can be managed such that both are decreased

below levels observed for standard truncated sinc function-based interpolators, as

well as pure optical flow-based interpolators. The proposed method thus has poten-

tial to provide an improved basis for interpolating velocimetry data in applications

where isotropic flow velocity volumes are desirable, but out-of-plane data (i.e., data

in different images spanning a 3D volume) can not be resolved as highly as in-plane

data.

The remainder of this chapter is structured as follows. In section 3.2.1, an opti-

cal flow-based framework for interpolating minimally divergent velocimetry data is

described. The proposed method is built on the principles that are described in the

preceding Chapter 2. The new method uses flow velocity data to guide the interpola-

tion toward lesser divergence in the interpolated data. In section 3.3, performance of

the proposed technique is presented with experiments and simulations on real and

analytical data. The results and performance of the proposed method are discussed

and concluded in section 3.4.

3.2 Optical Flow with Divergence Constraint

3.2.1 Methodology

In section 2.1, the methodology for the original optical flow technique is provided

and two kinds of constraints are introduced in order to estimate the optical flow: the
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smoothness constraint and the brightness constancy constraint. This section introduces a new

constraint to estimate the optical flow.

3.2.1.1 Continuity Equation

According to the continuity equation in fluid dynamics, the rate of mass entering

a system is equal to the rate of the mass leaving the system [Pedlosky (1987)]. The

differential form of the equation is:

∂ρ

∂t
+∇ · (ρ−→u ) = 0, (3.1)

where ρ is the fluid density, t is time and −→u is the velocity vector field. In the

case of incompressible flow, ρ becomes constant and the continuity equation takes

the form:

∇ · −→u =
∂Vx

∂x
+

∂Vy

∂y
+

∂Vz

∂z
= 0. (3.2)

This means that the divergence of the velocity field is zero in the case of incom-

pressible flow. In the previous section, Figure 3 shows the change in flow velocity

of a voxel.

3.2.1.2 Symmetric Setup

For the newmethod, a symmetric interpolation setup is proposed as shown in Fig-

ure 4. In the figure, upper and lower slices are from the dataset and the interpolated

slice is in the middle.
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Figure 4. Illustration of the symmetric interpolation setup.

I(x+ α, y + β, z +∆) = I(x− α, y − β, z −∆). (3.3)

In this section, I(x, y, t) denotes the velocity magnitude image and −→
V denotes the

velocity vector components (i.e., Vx,Vy,Vz). If one approximates the expressions with

Taylor expansion around the points (x, y), we get:

I(x+ α, y + β, z +∆) = I(x, y, z +∆) +
∂I(x, y, z +∆)

∂x
α +

∂I(x, y, z +∆)

∂y
β + ... ,

(3.4a)

I(x− α, y − β, z −∆) = I(x, y, z −∆)− ∂I(x, y, z −∆)

∂x
α− ∂I(x, y, z −∆)

∂y
β + ... .

(3.4b)
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After substituting Eqs. 3.4a and 3.4b into Eq. 3.3, terms can be arranged to obtain

the new brightness constraint:

[I(x, y, z +∆)− I(x, y, z −∆)]

+ α

[
∂I(x, y, z +∆)

∂x
+

∂I(x, y, z −∆)

∂x

]
+ β

[
∂I(x, y, z +∆)

∂y
+

∂I(x, y, z −∆)

∂y

]
= 0.

(3.5)

In the next step, the aim is to minimize the divergence of the interpolated slice.

Ideally, the divergence equation of the interpolated slice should be used:

∇ ·
−→
V(z) =

∂Vx(x, y, z)

∂x
+

∂Vy(x, y, z)

∂y
+

∂Vz(x, y, z)

∂z
= 0. (3.6)

Since this information is unavailable, to generate the middle slice with as little diver-

gence as possible, we can use the fact that:

∇ ·
−→
V(z) = ∇ ·

−→
V(z +∆) = ∇ ·

−→
V(z −∆) = 0. (3.7)

which leads to the following constraint by using the divergence expressions of the

two outer slices, I(z −∆) and I(z +∆):

∂Vx(x+ α, y + β, z +∆)

∂x
+

∂Vy(x+ α, y + β, z +∆)

∂y

+
∂Vz(x+ α, y + β, z +∆)

∂z
+

∂Vx(x− α, y − β, z −∆)

∂x

+
∂Vy(x− α, y − β, z −∆)

∂y
+

∂Vz(x− α, y − β, z −∆)

∂z
= 0.

(3.8)
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Using Taylor expansion on Eq. 3.8 yields:[
∂Vx(z +∆)

∂x
+

∂Vx(z −∆)

∂x
+

∂Vy(z +∆)

∂y

]
+

[
∂Vy(z −∆)

∂y
+

∂Vz(z +∆)

∂z
+

∂Vz(z −∆)

∂z

]
+ α

[
∂2Vx(z +∆)

∂x2
− ∂2Vx(z −∆)

∂x2
+

∂2Vy(z +∆)

∂x∂y

]
− α

[
∂2Vy(z −∆)

∂x∂y
+

∂2Vz(z +∆)

∂x∂z
− ∂2Vz(z −∆)

∂x∂z

]
+ β

[
∂2Vx(z +∆)

∂y∂x
− ∂2Vx(z −∆)

∂y∂x
+

∂2Vy(z +∆)

∂y2

]
− β

[
∂2Vy(z −∆)

∂y2
+

∂2Vz(z +∆)

∂y∂z
− ∂2Vz(z −∆)

∂y∂z

]
= 0.

(3.9)

In Eq. 3.9, we need the derivatives of Vz(z + ∆) and Vz(z − ∆) in the z-direction.

Calculating these derivatives in the z-direction would require additional outer slices.

To simplify this requirement, we can expand Vz(x+α, y+β, z+∆) and Vz(x−α, y−

β, z −∆) around the points (x, y, z) and obtain the following,

∂Vz(x+ α, y + β, z +∆)

∂z
=

∂Vz(x, y, z)

∂z
+ α

∂2Vz(x, y, z)

∂x∂z

+ β
∂2Vz(x, y, z)

∂y∂z
+∆

∂2Vz(x, y, z)

∂z2
+ ...

(3.10a)

∂Vz(x− α, y − β, z −∆)

∂z
=

∂Vz(x, y, z)

∂z
− α

∂2Vz(x, y, z)

∂x∂z

− β
∂2Vz(x, y, z)

∂y∂z
−∆

∂2Vz(x, y, z)

∂z2
+ ...

(3.10b)

Using Eqs. 3.10a and 3.10b in Eq. 3.8, we obtain the new divergence constraint

that doesn’t require additional slices for the z-direction derivative,[
∂Vx(z +∆)

∂x
+

∂Vx(z −∆)

∂x
+

∂Vy(z +∆)

∂y
+

∂Vy(z −∆)

∂y
+ 2

∂Vz

∂z

]
+ α

[
∂2Vx(z +∆)

∂x2
− ∂2Vx(z −∆)

∂x2
+

∂2Vy(z +∆)

∂x∂y
− ∂2Vy(z −∆)

∂x∂y

]
+ β

[
∂2Vx(z +∆)

∂y∂x
− ∂2Vx(z −∆)

∂y∂x
+

∂2Vy(z +∆)

∂y2
− ∂2Vy(z −∆)

∂y2

]
= 0.

(3.11)
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Combining Eqs. 3.5, 3.11 and the optical flow smoothness constraint, we obtain the

new energy functional that needs to be minimized,

ϵ =

∫∫
[Hxα +Hyβ +Hz]

2 + γ2 [Dxα +Dyβ +Dz]
2 + λ2

[
∥∇α∥2 + ∥∇β∥2

]
dx dy

(3.12)

where

Hx =

[
∂I(x, y, z +∆)

∂x
+

∂I(x, y, z −∆)

∂x

]
Hy =

[
∂I(x, y, z +∆)

∂y
+

∂I(x, y, z −∆)

∂y

]
Hz = [I(x, y, z +∆)− I(x, y, z −∆)]

Dx =

[
∂2Vx(z +∆)

∂x2
− ∂2Vx(z −∆)

∂x2
+

∂2Vy(z +∆)

∂x∂y
− ∂2Vy(z −∆)

∂x∂y

]
Dy =

[
∂2Vx(z +∆)

∂y∂x
− ∂2Vx(z −∆)

∂y∂x
+

∂2Vy(z +∆)

∂y2
− ∂2Vy(z −∆)

∂y2

]
Dz =

[
∂Vx(z +∆)

∂x
+

∂Vx(z −∆)

∂x
+

∂Vy(z +∆)

∂y
+

∂Vy(z −∆)

∂y
+ 2

∂Vz

∂z

]
Using variational calculus, the Euler-Lagrange equations can be determined for

this problem. They need to be solved for each pixel in the image. The iterative

equations that minimize the solutions are given by,

αn+1 = ᾱn − A1ᾱ
n +B1β̄

n + γ2C1 + λ2C2

γ2D1 + λ2D2

, (3.13a)

βn+1 = β̄n − A2ᾱ
n +B2β̄

n + γ2C3 + λ2C4

γ2D3 + λ2D4

, (3.13b)

where n denotes the iteration number and ᾱn and β̄n denote neighborhood av-

erages of αn and βn. The coefficient expressions in Eqs. 3.13a and 3.13b are given
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as

A1 = γ2 (HxDy −HyDx)
2 + λ2

(
H2

x + γ2D2
x

)
B1 = λ2

(
HxHy + γ2DxDy

)
C1 = HxHzD

2
y +H2

yDxDz −HyHzDxDy −HxHyDyDz

C2 = HxHz + γ2DxDz

D1 = (HxDy −HyDx)
2

D2 =
(
H2

x +H2
y + λ2 + γ2D2

x + γ2D2
y

)
A2 = B1

B2 = γ2 (HxDy −HyDx)
2 + λ2

(
H2

y + γ2D2
y

)
C3 = HyHzD

2
x +H2

xDyDz −HxHzDxDy −HxHyDxDz

C4 = HyHz + γ2DyDz

D3 = D1

D4 = D2

More detailed steps of the derivation can be found in Appendix A.

23



Figure 5. Dimensions of the aneurysm

3.2.2 PIV Setup

The testing datasets were acquired using particle image velocimetry, an optical

experimental flow measurement technique. PIV data acquisition and processing gen-

erally consists of the following steps: (1) computational modeling, (2) physical model

construction, (3) particle image acquisition, (4) PIV processing, and (5) data analy-

sis. The testing datasets were acquired for an in-vitro model of a cerebral aneurysm.

Patient-specific computed tomography (CT) images were first segmented and recon-

structed to obtain the computational cerebral aneurysm model as shown in Figure 5.

The computational model was then translated into an optically clear, rigid urethane

model using a lost-core manufacturing methodology. The physical model was con-

nected to a flow loop consisting of a blood analog solution seeded with 8 µm flu-

orescent microspheres. Fluid flow through the physical model was controlled at

specific flow rates (3, 4 and 5 mL/s). PIV was performed using a FlowMaster 3D
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Stereo PIV system (LaVision, Ypsilanti, MI), where the fluorescent particles were

illuminated with a 532 nm dual-pulsed Nd:YAG laser at a controlled rate, while two

CCD cameras captured the images across seven parallel planes (or slices) within the

aneurysmal volume. A distance of 1 mm separated the planes. Two hundred im-

age pairs, at each flow rate and slice, were acquired at 5 Hz. The image pairs were

processed using a recursive cross-correlation algorithm using Davis software (LaVi-

sion, Ypsilanti, MI) to calculate the velocity vectors within region of interest (i.e., the

aneurysm). Initial and final interrogation window sizes of 32 by 32 pixels and 16 by

16 pixels, respectively, were used. Detailed explanation of the experimental process

can be found in Roszelle et al. (2014). A sample experimental model is shown in

Figure 6.

The proposed algorithm was developed in MATLAB (Mathworks, Inc). Since

the proposed algorithm has two separate terms for divergence and smoothness, dif-

ferent combinations of coefficients can be used for the terms. However, in order

to get a clear idea about the performance of the method only one set of parameters

were used in the simulations. The divergence term’s coefficient γ was set to 150.

From previous tests, it was seen that the proposed method performed better when

a relatively large γ was used while keeping the smoothness coefficient λ small. The

smoothness coefficient λ was set to 1. The same smoothness coefficient was also

used for the Horn-Schunck based method. The iterations for both methods were

set to 2000. Each PIV dataset used in testing had 7 slices. The slices were originally

154x121. They were cropped and zero-padded to reach 128x128. The size of the

region where MSE and divergence were calculated is 110x110. Even though there

are 7 slices in each dataset, only 3 slices were reconstructed from the datasets. These

are slices 3, 4 and 5. Two different spacing steps were used between the slices. The
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Figure 6. Example flow slice from the PIV experiments.

first one is ∆z=2 where the neighboring slices z-1 and z+1 were used to reconstruct

the middle slice. The second one is∆z=4 where slices z-2 and z+2 were used for the

interpolation, e.g., slices 1 and 5 were used to reconstruct slice 3. The method was

tested against linear interpolation and an implementation of Horn-Schunck optical

flow based interpolation.
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3.2.3 Analytical Datasets

The method was tested with a 3D divergence-free analytical dataset and a CFD

data set with turbulent flow. The analytical dataset is given below.

Vx = 0.3y2 + 0.15x2 (3.14a)

Vy = 0.3
(
1− x2

)
(y − 1)− 0.3yx (3.14b)

Vz = −0.3
(
1− x2

)
z (3.14c)

Out-of-plane distance was kept much higher than the in-plane resolution. In order

to assess the robustness of the proposed method, each velocity field was perturbed

by Gaussian noise. The noise had zero mean and standard deviation of 10% of the

maximum velocity in each velocity field.

3.2.4 Computational Fluid Dynamics (CFD) Simulations

The original computational aneurysm model was imported into ANSYS ICEM

(ANSYS, Canonsburg, PA), where the inlet and outlets of the aneurysm model were

extruded. After meshing was performed to discretize blood volumes into tetrahe-

drons, the final mesh was imported into ANSYS Fluent where the blood volume

was modeled as an incompressible fluid with the same density and viscosity as the

blood analog solution used in experiments. The vessel wall was assumed to be rigid,

and a no-slip boundary condition was applied at the walls. A steady flat 4ml/s flow

profile was applied at the inlet of the model, and zero pressure boundary conditions

were imposed at the outlets. The overall CFD approach has been described previ-

ously in [Roszelle et al. (2014); Babiker et al. (2011)].
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3.3 Results

Figure 7 shows divergence and MSE comparison graphs when ∆z=2. The pro-

posed method consistently achieves lower divergence values than the Horn-Schunck-

based interpolation whereas the MSE values vary between better and worse values.

On average, divergence values were 11% lower than the Horn-Schunck-based inter-

polation. In some cases, the proposed method achieves up to 20% lower divergence

values. Figure 8 shows divergence and MSE comparison graphs when ∆z=4. In this

case, the proposed method consistently achieves lower divergence and MSE values

than the other tested methods. Figure 9 shows original, noisy, and interpolated slices

from the analytical dataset for comparison. In the figure, only Vx and Vy components

were plotted to show the effect of the divergence term. In Figure 10, it can be seen

that the proposed algorithm reduces divergence while the MSE is increased in the

CFD dataset.

The graphs in Figure 11 show the behavior of the proposed method as the diver-

gence coefficient γ increases linearly. In this simulation, the smoothness coefficient

λ was kept constant (λ=1). The graphs are taken from the PIV dataset. It should

be noted that the divergence graph profiles were consistent across different images

and datasets. The MSE graph profiles may differ slightly from the divergence graph

profiles across different datasets, but MSE always increased with increasing γ. Fig-

ure 12 shows the behavior of the proposed method as γ and λ increase linearly. The

coefficient values tested were from 0 to 2000. The profiles shown in the figure show

that there needs to be a balance between the divergence and smoothing terms. The

graphs in the figure are consistent with profiles of other published ℓ2-based regular-

ization methods [Shaw and Yalavarthy (2012); Habermehl et al. (2014)].
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Figure 10. Divergence and MSE comparisons for the CFD dataset.

It should be noted that the computational cost of obtaining flow vectors with the

proposed method is similar to that of the Horn-Schunck approach. Even though

the iterative solutions of the proposed method employ several terms, these need to

be computed only once and can be reduced to a simpler form that is similar to the

Horn-Schunck solutions.

Figure 11. Divergence and MSE profiles of the proposed method as γ is increased
linearly while λ = 1.
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3.4 Discussion & Conclusions

A new optical flow-based framework for image interpolation that also reduces

divergence is proposed. The new method uses flow velocity data to guide the inter-

polation toward lesser divergence in the interpolated data. In addition to the sym-

metric interpolation setup, the method introduces a new divergence term into the

canonical optical flow method. The method is applied to PIV, analytical, and CFD

data. The method was tested against linear interpolation and the Horn-Schunck op-

tical flow method since it uses a similar formulation as the Horn-Schunck method.

The proposed method applies a symmetric interpolation setup and considers a new

divergence term in addition to the brightness and smoothness terms in the energy

functional.

In order to test the effects of the divergence term, both the Horn-Schunck and

proposed methods were subject to the same smoothness coefficient. When tested

on the noisy analytical data, the proposed method achieved a smoother and less noisy

interpolated velocity field.

The proposed method was also applied to the PIV data with different values of

smoothness and divergence term coefficients, α and γ, respectively. Results indicate

that the tradeoff between minimizing errors in velocity magnitude values and errors

in divergence can be managed such that both are decreased below levels observed

for standard truncated sinc function-based interpolators as well as pure optical flow-

based interpolators. The divergence term coefficient, γ, needs to be large enough to

reduce divergence in the interpolated data but not so large as to dominate the energy

functional and introduce errors into the final interpolated velocity field.

The proposed method has potential to improve the interpolation of velocime-
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try data when it’s difficult achieve an out-of-plane resolution close to the in-plane

resolution. The results also indicate that the effect of the new divergence term in

the optical flow functional can be appreciated better as the distance between the

interpolated slice and the neighboring slices increases. It was noted that the pro-

posed method outperforms the tested methods in both divergence and MSE values

when the slice distance was increased. When the slice distance is small, the proposed

method achieves lower divergence than the other methods while achieving similar

MSE values.

34



Chapter 4

EXTRACTION OF ADVANCED GEOSPATIAL INTELLIGENCE (AGI)

FROM COMMERCIAL SYNTHETIC APERTURE RADAR IMAGERY

One of the important goals of synthetic aperture radar (SAR) imagery is the capa-

bility of detecting changes between imaging passes. In two-color multiview (2CMV)

products, the changes are colorized and overlaid on one of the images so that new

features are represented in cyan, and features that have disappeared are represented

in red. In order to create the change maps, images are cross-correlated pixel wise to

detect the changes. The extraction of temporal changes and objects from advanced

geospatial intelligence (AGI) products based on SAR imagery is complicated by a

number of factors. Accurate detection of temporal changes and objects represented

in 2CMV AGI products can be challenging because of speckle noise susceptibility

and false positives that result from small orientation differences between objects im-

aged at different times. 2CMV images were chosen as the focus of work documented

in this paper because of the lack of published methods to generate efficient 2CMV

images from SAR imagery.

4.1 Introduction

One important use of SAR imagery is in detecting changes between datasets from

different imaging passes. Target and coherent change detection in SAR images have

been extensively researched [El-Darymli et al. (2013, 2016); Ashok and Patil (2014);

Ren et al. (2014)]. In 2CMV AGI products, the changes are colorized and overlaid on
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an initial image such that new features are represented in cyan, and features that have

disappeared are represented in red. In order to create the change maps, images are

cross-correlated pixel-by-pixel to detect the changes. 2CMV products show changes

at the pixel level and are dominated with red and cyan colors. Figure 13 shows a

portion of a sample 2CMV image. It can be seen that most of the pixels in the

2CMV image are colored either red or cyan even if there is no change in the area.

Useful interpretation of temporal changes represented in 2CMV AGI products

can be challenging because of speckle noise susceptibility and false positives that

result from small orientation differences between objects imaged at different times.

When every small intensity change creates a colored pixel, it becomes more difficult

for operators and/or algorithms to detect meaningful changes and identify corre-

sponding objects of interest.

Before false positive and object detections, smoothing filters are used to attenuate

the effects of speckle noise. Then, the number of false positive detections are reduced

by applying: 1) object intensity and area thresholding and 2) optical flow algorithms

that track the motion of objects across time in small regions of interest. Optical flow

fields can be used to distinguish between objects that have actually moved between

frames and those that are in the same location but are slightly misregistered. Both

cases of apparent motion can result in 2CMV detection, but they obviously differ

greatly in terms of significance. Investigation of the state-of-the-art in SAR image

processing indicates that differentiating between these two general cases is a problem

that has not been well addressed. The algorithms that were proposed for mitigating

speckle noise effects and distinguishing between actual motion and misregistration

can lead to more accurate and meaningful change detection. A lack of published
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Figure 13. a) Reference image, b) Mission image, c) Two-color multiview (2CMV)
image. In all the images, there is an airplane visibly parked next to a building near
the bottom center.

methods for efficient generation of 2CMV products from SAR images serves as

another motivating factor for this work.

The remainder of this chapter is organized in four sections. Following the in-

troduction, Section 4.2 gives a brief background on the filtering and optical flow

techniques that were used in this work and describes the stages of the proposed

framework. Section 4.4 presents simulation results. Section 4.5 discusses the results

and the contributions of the proposed methods.

4.2 Methods

In this section, we describe the key methods and steps of our image processing

approach for eliminating false positives in the difference maps that drive the 2CMV

representation. Some background information on the optical flow that was used in

the framework and filtering of speckle noise is given first. The stages of the frame-

work are explained in the subsequent sections.
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4.2.1 Optical Flow with Relaxed Brightness Constraint

In section 2.1, two kinds of constraints were introduced in order to estimate the

optical flow: the smoothness constraint and the brightness constancy constraint. In this section,

we give an overview of the steps that modify the original optical flow approach. The

modified optical flow method is employed in the proposed framework.

The brightness constancy constraint assumes that the brightness of a small area in

the image remains constant as the area moves from image to image. Image brightness

at the point (x, y) in the image at time t is denoted here as I(x, y, t). If the point moves

by δx and δy in time δt, then according to the brightness constancy constraint:

dI

dt
= 0. (4.1)

This can also be stated as:

I(r+ δr, t+ δt) = I(r, t). (4.2)

where r = (x, y, 1)T and r + δr = (x + δx, y + δy, 1)T . However, the brightness con-

stancy constraint is restrictive. A less restrictive brightness constraint was chosen to

address the intensity changes in SAR images. In Gennert and Negahdaripour (1987),

it is proposed that the brightness constancy constraint can be replaced with a more

general constraint that allows a linear transformation between the pixel brightness

values. This way, the brightness change can be non-zero, or:

dI

dt
≠ 0.

The formulation that allows a linear transformation between the pixel brightness

values is less restrictive, and can be written as:

I(r+ δr, t+ δt) = M(r, t)I(r, t) + C(r, t). (4.3)
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After using the Taylor series, the revised constraint equation can be obtained:

It + Ir · rt − Imt − ct = 0, (4.4)

where mt = limδt→0 δm/δt and ct = limδt→0 δc/δt. The relaxed brightness constraint

error is:

ϵI =

∫∫
(It + Ir · rt − Imt − ct)

2 dx dy. (4.5)

Equation 4.5 can be combined with the other constraint errors to produce the final

functional to be minimized:

ϵtotal = ϵI + λsϵs + λmϵm + λcϵc. (4.6)

where λs, λm, and λc are error weighting coefficients. The remaining errors are given

as:

ϵs =

∫∫
||∇rt||22dxdy,

ϵm =

∫∫
||∇mt||22dxdy,

ϵc =

∫∫
||∇ct||22dxdy.

Substituting the approximated Laplacians into the Euler-Lagrange equations, a single

matrix equation can be derived:

Af = g(̄f), (4.7)

where

A =



I2x + λs IxIy −IxI −Ix

IxIy I2y + λs −IyI −Iy

−IxI −IyI I2 + λm I

−Ix −Iy I 1 + λc


, f =



u

v

mt

ct


, g(̄f) =



λsū− IxIt

λsv̄ − IyIt

λmm̄t + ItI

λcc̄t + It


.
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These equations have to be solved iteratively. The solution is given by:

f = A−1g(̄f), (4.8)

where

A−1 =
1

α



λcλmλs + λmλs+

I2λcλs + I2yλcλm

−IxIyλcλm IxIλcλs Ixλmλs

−IxIyλcλm

λcλmλs + λmλs+

I2λcλs + I2yλcλm

IyIλcλs Iyλmλs

−IxIλcλs IyIλcλs

(I2x + I2y )λcλs+

λcλ
2
s + λ2

s

−Iλ2
s

Ixλmλs Iyλmλs −Iλ2
s

(I2x + I2y )λmλs+

λmλ
2
s + I2λ2

s


and

α = λmλ
2
s + I2λcλ

2
s + (I2x + I2y + λs)λcλmλs.

The equations can then be solved iteratively for other pixels with:

fk+1 = A−1g(̄fk), (4.9)

where k is the iteration number. This way the matrix A−1 need only be computed

once. More details about this optical flow algorithm can be found in Gennert and

Negahdaripour (1987). Two side-by-side sample flow fields generated by the original

optical flow method and the Relaxed Brightness method are provided in Figure 14.
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Figure 14. Reference image (top left), Mission image (top right), original
Horn-Schunck optical flow field (bottom left) and the optical flow field produced
with the Relaxed Brightness method (bottom right). Note that the Relaxed
Brightness method provides a smoother, more natural flow field than the
Horn-Schunk method. (Flow field vectors in the images are enlarged and binned to
better illustrate flow field behavior.)
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4.2.2 Denoising

Speckle noise is an inherent problem in SAR images [Dekker (1998)] and causes

difficulties for image interpretation by increasing the mean grey level of a local region.

It is caused by coherent processing of backscattered signals frommultiple distributed

targets.

In order to mitigate speckle noise effects, we tested different speckle filter designs.

Filters that were included in the testing were Frost [Frost et al. (1982)], Enhanced

Frost [Lopes et al. (1990b)], Lee [Lee (1980)], Gamma-MAP [Lopes et al. (1990a)],

SRAD [Yu and Acton (2002)] and Non-Local Means [Coupe et al. (2009)]. In the

end, Enhanced Frost filter was used in the algorithm due its relatively straightforward

implementation and comparable performance. In this section, some of the tested

filters are briefly presented.

4.2.3 Lee Filter

The Lee filter uses an adaptive approach. If the variance over an area is low or

constant, then this area will be smoothed. In the case of high variance, smoothing

will not be performed. It is assumed that the speckle noise is multiplicative, and the

SAR image is approximated by a linear model.

I(t) = R(t) · u(t). (4.10)

where t = (x, y), I(t) is the recorded value, u(t) is the multiplicative speckle noise

that is independent of R(t) and, R(t) denotes the corresponding terrain reflectivity.

Following Lopes et al. (1990b), the general speckle reduction filter estimate R̂(t) can
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be formulated as

R̂(t) = I(t)W (t) + Ī(t)(1−W (t)). (4.11)

where W (t) is the weighting function and, Ī(t) is the local mean. The weighting

function W (t) for the Lee filter is given by

W (t) = 1− C2
u

C2
l (t)

. (4.12)

where Cu = σu/ū is the noise variation coefficient of the image and, Cl = σl(t)/Ī(t)

is the variation coefficient of the local region (filter window) [Shi and Fung (1994)].

4.2.4 Frost Filter

The Frost filter estimates the scene reflectivity by convolving the observed image

with the impulse response of the SAR system. The impulse response is obtained by

minimizing themean square error (MSE) between the image and the scene reflectivity

model which is assumed to be an autoregressive process. The Frost filter can be given

as

m(t) = K1 exp [−KC2
l (to)|t|]. (4.13)

where K is the filter parameter, Cl(to) is computed over a uniform moving window

centered at to,K1 is normalizing constant and, |t| is the absolute value of the pixel dis-

tance from the center pixel to its neighbors in the filter window [Lopes et al. (1990b)].

4.2.4.1 Enhanced Frost Filter

In Lopes et al. (1990b), it was proposed to divide images into areas of three classes.

The first class takes the homogeneous areas. The second class takes the heteroge-

neous areas in which the speckle noise is to be reduced, while preserving texture.
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The third class corresponds to the areas containing isolated point targets which the

filter should preserve. The Enhanced Frost filter output can be given as

Î(to) =


Ī for Cl(to) < Cu

I ∗K1 exp [−K(Cl(to)− Cu)/(Cmax − Cl(to))|t|] for Cu ≤ Cl(to) ≤ Cmax

I for Cl(to) ≥ Cmax.

(4.14)

where to = (xo, yo) is the spatial coordinate, Ī is the mean intensity value inside

the kernel, K is the filter parameter, K1 is a normalizing constant, and |t| is the

absolute value of the pixel distance from the center of the kernel at to. The rest of

the parameters are

Cu =

√
1

L

Cl(to) = σ/Ī

Cmax =

√
1 +

2

L

where Cu is the speckle coefficient of variation of the image, Cl(to) is the local co-

efficient of variation of the filter kernel centered at to, Cmax is the upper speckle

coefficient of variation of the image, and L is the number of looks. In our imple-

mentation, instead of L, we used ”equivalent number of looks” (ENL). It can be

defined as ENL = µ2/σ2.

Other filters that were included in the testing were Gamma-MAP filter [Lopes

et al. (1990a)], SRAD filter [Yu and Acton (2002)] and a Non-Local Means filter

[Coupe et al. (2009)]. In the end, the Enhanced Frost filter was chosen to be used

in the algorithm due its relatively straightforward implementation and comparable

performance. Implementations of SRAD and Non-Local Means filters were readily

available on the authors’ websites. The need for parameter adjustments was a dis-
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advantage for these filters. Figures 15 and 16 show the sample test results for the

implemented filters.

Figure 15. Samples of the filter tests. a)Original b)Lee filter c)Frost filter
d)Enhanced Frost filter. Note that Enhanced Frost is more effective in removing
the speckle noise.
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Figure 16. Samples of the filter tests. a)Original b)SRAD c)Gamma-Map filter
d)Non-local Means filter. The code for SRAD and Non-local Means can be found
online. Different results can be obtained by changing the parameters of these filters.
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4.3 Image Processing Steps

In this section, the image processing approach for extracting difference maps

is described step-by-step. All of the underlying code was written in the MATLAB

computing environment. The inputs are two registered SAR images of the same

field of view that were taken at different times, i.e. “reference” image and “mission”

image. Due to the large size of the images, a block based approach was employed.

The steps that were implemented are summarized in Table 1. Each step is detailed in

the following subsections and example outputs are provided. A detailed flow diagram

can be seen in Figure 17.
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Table 1. Steps of the proposed framework.

Outline
• Preprocessing

– Read NITF images (a SAR image format)
– Denoising
– Smoothing

• First Stage: Difference Maps
– Image Subtraction
– Calculate image differences based on adaptive thresholds
– Keep significant difference areas

• Second Stage: Optical Flow
– Execute block-based optical flow
– Perform object matching on difference maps from the first stage
– Matched objects are excluded from the final image because they are false positives

• Third Stage: Object Extraction & Optical Flow
– Use adaptive thresholds to extract possible objects from the original images
– Match the results from the second stage with extracted possible objects
– Parts of the larger objects are eliminated
– Perform Optical Flow matching on the extracted objects (improves perfor-
mance)

• Fourth Stage: Final Elimination
– Determine all the eliminated areas
– Check whether the eliminated areas are related to the existing areas or not

• Fifth Stage: Intensity Changes without Objects (Optional)
– Downsample the original images by a factor of 5
– Use 2D Wiener Filter and an averaging filter on the downsampled images.
– Image Subtraction
– Use adaptive threshold to find areas with significant intensity changes
– Upsample
– Overlay the areas on the original images

• Sixth Stage: Merging
– Use a moving window to merge all the areas that are very close to each other
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Figure 17. Flow diagram of the proposed algorithm.
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Figure 18. Preprocessing portion of the flow diagram.

4.3.1 Preprocessing

An NITF-reader script was developed to read the NITF image header informa-

tion and extract the image data for processing. Preprocessing is the first step in the

flow diagram, and it is shown in Figure 18. Small test areas were chosen for pro-

cessing based on guidance from LMC. A sample test area is shown in Figure 19. An

Enhanced Frost filter with a 5x5 window size was first used to denoise the images.

Then, a 9x9 pixel low pass filter was used to smooth the test areas in order to atten-

uate the effects of the remaining speckle noise. Figure 20 shows the residual image

after subtracting the filtered image from the original one.
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Figure 19. A small image test area of an airport from: a) the reference image, b) the
mission image, c) Enhanced Frost Filtered reference image, and d) Enhanced Frost
Filtered mission image.
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Figure 20. Residual after filtering a) original reference image - filtered reference
image, b) original mission image - filtered mission image.
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4.3.2 First Stage Difference Maps

This portion of the algorithm is shown in Figure 21. Since the reference and

mission images are pre-registered, meaningful differences between the two can be

identified by simply subtracting one image from the other. The result of this opera-

tion is shown in Figure 22. Initially, after subtraction, a local intensity threshold was

applied to identify significant differences between the two images. The local intensity

threshold was calculated as:

T = µdif − ασdif , (4.15)

where µdif and σdif are the mean and standard deviation of the difference image in-

tensity, respectively, and α is a user-defined constant. Based on the feedback from

LMC, it was noted that this was not a good assumption for the noise distribution in

the image, because the SAR signal is Rayleigh distributed. In order to keep the com-

plexity simple, a block based approach was used. Because each block has different

content, the thresholds might differ significantly. For this reason, fixed upper and

lower thresholds were set so that the threshold would not go below a certain value.

This method improved the difference object extractions.

Next, in the binary difference maps, object properties such as area and location

are calculated. Based on a user-defined area threshold (30 pixels), insignificant differ-

ence areas are excluded from the difference maps. Figure 22 shows images before

and after this operation. The remaining difference areas are then overlaid onto the

original images. To create a 2CMV image, the areas that exist only in the reference im-

age are colored in cyan and the areas that exist only in the mission image are colored

in red. A sample 2CMV image is shown in Figure 23.
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Figure 21. Flow diagram first stage: difference maps.
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Figure 22. Raw difference images: a) (reference-mission), b) (mission-reference).
Thresholded images: c) thresholded version of (a), d) thresholded version of (b).
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Figure 23. 2CMV image after filtering, smoothing, intensity thresholding, and area
thresholding. Color coded difference areas are overlaid onto the original image.
Note that there are several false positives.
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4.3.3 Second Stage Optical Flow

Figure 23 displays a 2CMV image wherein it is clear that additional processing is

needed to improve results. The primary improvement that is targeted with additional

processing is reducing the number of false positives in the image. This step is shown

in Figure 24. This goal can be accomplished with the use of the optical flow method

described in section 4.2.1. After testing several values, it was seen that setting λs in

(4.7) to a small value around 0.01 gives the best results. To manage computational

complexity, the optical flow algorithm is performed on 256x256 pixel image blocks.

Note that optical flow is calculated based on the original reference and mission im-

ages. Figure 25 shows a 256x256 block from the original image. This block was used

to produce the sample figures shown later in this section. After executing the optical

flow algorithm, the resultant flow vectors are applied to the two first stage difference

maps to find object matches. Optical flow vectors are used to move the difference

objects in the reference image in the flow direction toward the mission image. The

destination of an object is then compared with the same location in themission image.

If there is a matching object in the mission image, then the two objects are excluded

from the difference maps. The same process is performed in the opposite direction

to match mission image difference objects in the reference image. Figures 26-27 il-

lustrate these steps. Red areas indicate the destinations of difference objects after

the optical flow vectors are applied. Note that after applying the optical flow vectors

to the reference image difference objects, their destinations overlap with difference

object locations in the mission image (in many cases). The overlapped objects are

then removed from both. After removal, 15 labeled difference objects remain in the

example instead of 30. Note again that this process is performed for both the ref-
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erence and mission images. The final 2CMV image is shown in Figure 28. Another

illustration of optical flow is shown in Figure 29.

Figure 24. Flow diagram second stage: optical flow.
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Figure 25. A 256x256 pixel image block to be processed with the optical flow
algorithm. Note that a different area is shown in this Figure.
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Figure 26. Difference areas are labeled and prepared to be matched via flow
vectors.
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Figure 28. Final 2CMV image after optical flow processing. False positives are
reduced.
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4.3.4 Third Stage Object Extraction & Optical Flow

This stage has two main parts: extraction and elimination. Extraction is per-

formed by an adaptive thresholding method that is similar to the one used in the

first stage. In this stage the thresholding is performed on the original images to

extract(or label) objects. This is the ’Initial Thresholding’ part in Figure 30. Then

these two thresholded binary masks are processed in two ways. First the optical flow

vectors are used on the images to match the objects. Again, the difference from the

second stage is the vectors are used on the original thresholded images, not on dif-

ference maps. Since the goal is to find the objects that moved between two images,

not all extracted objects are matched. The objects with the possibility of movement

are checked. If there is a match, the difference map is checked again whether there

is a change registered in that location. This step helps further reduce the false posi-

tives. After this process, the registered difference objects are checked again through

original thresholded images. This part of the process checks whether the difference

object is a part of a larger object in the original image. If the object is found to be a

part of a larger object, the same location in the other image is checked for the same

object. In the case of two similar objects around the same location, it can be assumed

that the difference object is a false negative and excluded from the difference map.

It can be seen how these two methods complement each other in Figure 31. After

these two methods are performed, the output of this stage is generated by simply

taking the intersection of the two results.
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Figure 30. Flow diagram third stage: object extraction & optical flow.
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Figure 31. Third stage: object extraction & optical flow. a) thresholded reference
image, b) thresholded mission image, c) optical flow vectors are used to match
structures and compared with the difference map, d) difference objects are checked
whether they are part of larger objects or not. Note that optical flow is efficient in
removing structures that are close to each other and in a pattern.
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4.3.5 Fourth Stage Final Elimination

This stage basically puts together the outputs of the previous stages and checks

the vicinity of excluded objects in case there are more false positives around that

location. Figure 32 shows the stage in the flow diagram and Figure 33 shows the

output of this stage.

Figure 32. Flow diagram fourth stage: final elimination.
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Figure 33. The output after stage 4. False positives are reduced.
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4.3.6 Fifth Stage Intensity Changes without Objects (Optional)

This stage was added later based on the feedback received from LMC. It is shown

in Figure 34. Some particular areas in the image may contain significant intensity

changes even though there is no object in the scene. One example might be a newly

painted surface in themission image. It might be useful to notice this change between

images. It is a challenge to obtain the areas without objects. A simple method was

adopted to achieve this. First, the images are downsampled by a factor of 4(or 5).

A 2D Wiener filter with a 5x5 window was used on the images (This is a built-in

MATLAB function). Then an 11x11 averaging filter was used. This way, most of

the high frequency content is filtered out. A simple threshold lights up most of the

areas with changes. This small intensity change mask can be upsampled and overlaid

on the original image. The method also checks for existing objects in the location.

If objects are found the area is not highlighted. In the algorithm this stage can be

turned on by a flag, because it is not as robust as the other parts of the algorithm.

Unfortunately, there was not enough time to improve this method. Some examples

are shown in Figure 35.
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Figure 34. Flow diagram fifth stage: find intensity changes.
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Figure 35. Sample results for the optional fifth stage of the algorithm. a) original
reference, b) original mission, c) intensity change detection is off, d) intensity
change detection is on. Note that there are no visible objects in the areas shown
but there is a visible intensity increase in the area.
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4.3.7 Sixth Stage Merging

Figure 36 shows the last stage of the algorithm. All the remaining difference

objects are visited by an 11x11 moving window and merged with another object if

the window is able to touch both objects simultaneously. 2CMV image comparisons

are shown in Figure 37.

Figure 36. Flow diagram sixth stage: merging.
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Figure 37. Comparison between original 2CMV and processed 2CMV images.
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4.4 Results

Proposed method has been tested with 8 1024x1024 regions from the datasets

provided by Lockheed Martin. It has been noted that statistical analysis has been

effective for removing false positives that do not match object profiles. Optical flow

has been effective for removing difficult false positives that result from registration

and perspective problems. In many representative image regions, false positive de-

tections have been reduced by over 50%. Object merging has helped reduce the

number of the labeled objects and given a better unified representation of the change

in a region. Adaptive thresholds improved the quality of the object extraction and

helped identify false positives. Establishing false positive motion/error thresholds,

an accord with initial image registration, can be key for continued improvement. In

addition to the dataset that was provided for this work, the framework was also

tested with a SAR dataset from Sandia National Laboratories. The final results for

the Sandia dataset are given in Figures 38 and 39. Even though the computational

complexity was not an issue during the course of this work, it should be noted that

the speckle filtering, optical flow processing and merging are computationally expen-

sive processes. On a 2.4GHz quad core computer (Intel Q6600 chip) with 8GB of

memory, it takes around 5 minutes to process one region. There are many factors

that are contributing to this time. Code was written in the MATLAB environment

and it is not optimized for performance. MATLAB also does not utilize all the cores,

so effectively it uses only a single core most of the time.

74



Figure 38. a) Original image 1, b) Original image 2, c) Difference image.
Differences occur because the images are not registered. Optical flow vectors show
that some of the larger differences are false positives. d) Final difference image.
(Courtesy of Sandia National Laboratories)
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Figure 39. a) Original image 1, b) Original image 2, c) Difference image. Note that
there are false positives in the image, d) Final difference image. (Courtesy of Sandia
National Laboratories)
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4.5 Discussion & Conclusions

Several image processing methods like noise reduction, intensity and area thresh-

olding, and optical flow methods are used to improve object extraction from a SAR

AGI product (2CMV imagery). Results demonstrate the ability of the techniques to

reduce false positives up to 60% in the tested SAR image pairs. However, there is

still room for further improvement. For example, it was noticed that optical flow

object matches close to image block borders can be overlooked due to the inaccu-

racy of flow vectors near the block borders. This problem can be addressed with a

multigrid approach that leverages overlapping image blocks. Using this approach, if

an object pair is close to the border in one block, then it will be near the center of

an overlapping block. Objects that are close to one another can also be merged to

provide a more holistic analysis of the scene and further reduce the number of false

positive object detections. However, it must be concurrently ensured that false posi-

tive reduction is not overly aggressive to the point that false negatives are generated.

One obstacle that has hindered the progress thus far is a fundamental unavailability

of ground truth, correctly processed 2CMV data to be used in training the algorithms.

It is also a challenge to extract only regions with intensity value changes. It is possible

that wavelet based methods might be more successful with such a task.
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Chapter 5

IMPROVING THE ACCURACY OF TWO-COLOR MULTIVIEW (2CMV)

PRODUCTS USING UNSUPERVISED FEATURE LEARNING AND

OPTICAL FLOW

This section presents an alternative solution to the problem that was introduced

in the preceding section, Chapter 4.

5.1 Introduction

In 2CMV AGI products, the changes between two SAR images are colorized

and overlaid on an initial image such that new features are represented in cyan, and

features that have disappeared are represented in red. In order to create the change

maps, images are cross-correlated pixel-by-pixel to detect the changes. 2CMV prod-

ucts show changes at the pixel level and are dominated with red and cyan colors.

Figure 40 shows a portion of a sample 2CMV image. It can be seen that most of the

pixels in the 2CMV image are colored either red or cyan even if there is no change

in the area. There are inherent problems in change detection in SAR images. These

problems are described and a solution is proposed in Chapter 4. This chapter in-

troduces an alternative framework of computer vision methods for the generation

of 2CMV products toward extraction of advanced geospatial intelligence. Before

false positive and object detection algorithms are performed, speckle and smoothing

filters are used to mitigate the effects of speckle noise. Then, the number of false pos-

itive detections is reduced by applying: 1) unsupervised feature learning algorithms
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and 2) optical flow algorithms that track the motion of objects across time in small

regions of interest.

There have been a number of change detection studies using thresholding [Bazi

et al. (2005); Bovolo and Bruzzone (2005); Moser and Serpico (2006); Sumaiya and

Kumari (2016); Kanberoglu and Frakes (2017)], extreme learning machine [Jia et al.

(2016); Gao et al. (2016)], Markov random fields [Melgani and Bazi (2006); Yousif

and Ban (2014)] and combinations of feature learning and clustering algorithms [Ce-

lik (2009); Li et al. (2012); Lu et al. (2017); Ghosh et al. (2011); Nguyen and Tran

(2010); Li et al. (2015); Gong et al. (2014)]. Optical flow fields can be used to distin-

guish between objects that have actually moved between frames and those that are

in the same location but are slightly misregistered. Both cases of apparent motion

can result in 2CMV detection, but they obviously differ greatly in terms of meaning.

Investigation of the state-of-the-art in SAR image processing indicates that differen-

tiating between these two general cases is a problem that has not been well addressed.

Algorithms that mitigate speckle noise effects well and distinguishing between actual

motion and misregistration can lead better change detection. As mentioned in the

preceding chapter, there is a lack of published methods for efficient generation of

2CMV products from SAR images, which serves as another motivating factor for

this work.

The remainder of this chapter is organized in four sections. Following the intro-

duction, Section 5.2 gives a brief background on the filtering, unsupervised feature

learning, and optical flow techniques that were used and describes the stages of the

proposed framework. Section 5.4 presents simulation results. Section 5.5 discusses

the results and the contributions of the proposed methods.
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Figure 40. a) Reference image, b) Mission image, c) Two-color multiview (2CMV)
image. In all the images, there is an airplane visibly parked next to a building near
the bottom center. Note: Reference and Mission images are used as the source of
the sample figures and results throughout this chapter.

5.2 Methods

This section provides the background for the key methods that are utilized in the

proposed framework for generating change maps and eliminating false positives in

those maps that drive the 2CMV representation. Denoising and optical flow tech-

niques are already described in 4.2. This section gives an overview of the unsuper-

vised feature learning techniques that are used in the framework .

5.2.1 k-means Clustering

The k-means clustering algorithm attempts to partition p observations into k clus-

ters such that each observation belongs to the nearest cluster mean (centroid) [Gon-

zalez and Woods (2006)]. The k-means algorithm iteratively tries to find k centroids

for each cluster, while minimizing a within-cluster sum of squares

argmin

k∑
i=1

∑
xjϵS

∥xj − µj∥2
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Outline k-means clustering algorithm

1. Initialize the centroids: Assign k points as the initial group centroids.
2. Calculate the distance of each point to the centroids and assign the point to the
cluster that has the closest centroid.

3. After the assignment of all the points, recalculate the new values of the cen-
troids.

4. Repeat Steps 2 and 3 until the centroid locations converge to a fixed value.

Table 2. Basic steps of the k-means algorithm.

where xj is the j th observation and µj is the mean point (centroid) in the cluster. The

basic steps of the algorithm are given in Table 2.

5.2.2 K-SVD

K-SVD is a dictionary learning algorithm that is used for training overcomplete

dictionaries for sparse representations of signals [Aharon et al. (2006); Rubinstein et al.

(2008)]. It is an iterative method that is as a generalization of the k-means clustering

algorithm. The K-SVD algorithm alternates between two stages: 1) sparse coding

stage, and 2) dictionary update stage. In the first stage, a pursuit algorithm is used

to sparsely code the input data based on the current dictionary. Based on Rubinstein

et al. (2008), the Batch Orthogonal Matching Pursuit (Batch-OMP) algorithm can be

used in this step. In the second stage, the dictionary atoms are updated to better fit

the data via a singular value decomposition (SVD) approach. The basic steps of the

K-SVD algorithm are given in Table 3.
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Outline K-SVD algorithm

Task: Find the best dictionary to represent the data samples {yi}Ni=1, yiϵRN as sparse
compositions by solving:

minD,X{∥Y −DX∥2F} subject to ∀i, ∥xi∥0 ≤ T0.

Initialization: Set the dictionary matrix D(0) ϵ Rn×K with l2 normalized columns.
Set J = 1.
Iterations: Repeat until convergence:

• Sparse coding stage: Use any pursuit algorithm to compute the representation
vectors xi for each sample yi by approximating the solution of

i = 1, 2, ..., N, minxi
{∥yi −Dxi∥22} subject to ∥xi∥0 ≤ T0.

• Dictionary update stage: For each column k = 1, 2, ..., K in DJ−1,
– Define the group of samples that use this atom,

wk = {i |1 ≤ i ≤ N, xk
T (i) ̸= 0}

– Compute the overall representation error matrix, Ek, by

Ek = Y −
∑
j ̸=k

djx
j
T

– RestrictEk by choosing only the columns corresponding towk, and obtain
ER

k .
– Apply SVD decomposition ER

k = U∆V T . Choose the updated dictionary
column d̃k to be the first column of U . Update the coefficient vector xk

R

to be the first column of V multiplied by ∆(1, 1).
• Set J = J + 1.

Table 3. Steps of the K-SVD algorithm
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5.3 Image Processing Steps

In this section, we describe the image processing approach for extracting change

maps. The inputs are two registered SAR images of the same field of view that were

taken at different times, i.e. “reference” image and “mission” image. Due to the

large size of the images, images were divided into subimages for processing.

In the denoising step, an Enhanced Frost filter, as described in Sec. 4.2.4.1, with

a 5x5 window size was first used to mitigate the speckle noise effects. Then, a 9x9

low pass filter was used to smooth the test areas in order to obtain more uniform

flow fields in the optical flow processing step. The remaining steps are grouped in

three stages and described in the following subsections. The detailed flow diagram

shown in Figure 41 can be used as a guide for the following descriptions.
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Figure 41. Flow diagram of the proposed framework.
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5.3.1 First stage: Generation of change maps using unsupervised feature learning

Two change maps are needed for a 2CMV representation of a SAR image pair.

Each change map represents the changes that exist in the corresponding SAR image.

In this stage, we generate a combined change map and separate it into two change

maps. In order to generate the combined change map, we used an approach similar

to that was used in Celik (2009). In the original approach, an eigenvector space is

created by performing principle component analysis (PCA) on the difference image

and k-means algorithm classifies the projections onto the eigenvector space into two

classes, e.g. change and no-change. The basic steps are given in Table 4. It should be

noted that in our framework, PCA was replaced with K-SVD because one can adjust

the dictionary size and the sparsity constraint to obtain change maps with different

levels of details. Figure 42 shows two change map results with different dictionary

sizes.

After the change maps are generated, object properties such as area and location

are calculated and based on a user-defined area threshold, insignificant change areas

are excluded from the change maps. The remaining change areas are then overlaid

onto the reference image. In the 2CMV image, the areas that exist only in the ref-

erence image are colored in cyan and the areas that exist only in the mission image

are colored in red. A sample 2CMV image after this stage is shown in Figure 43. In

Kanberoglu and Frakes (2017) and in Chapter 4, this stage is replaced by adaptive

thresholding.
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Table 4. Steps of the proposed method for generating change maps.

Outline
1. Difference Image:

Xdif = |Reference−Mission|

2. Training Data: Divide Xdif into hxh non-overlapping blocks.
3. Dictionary Generation: Use the K-SVD algorithm to generate an overcom-
plete dictionary.

4. Create Feature Space:
• Generate hxh blocks for each pixel in Xdif where the pixel is in the center
of the block.

• Use OMP algorithm to generate the projections of the data onto the dic-
tionary.

5. Clustering: Use the k-means algorithm to classify the feature space into two
classes, e.g. change and no-change.

6. Change maps: Use the two classes to generate the combined change map.
Divide the combined change map into two separate change maps based on the
changes that occur in the images.

Figure 42. a) Change map with dictionary size = 30 atoms with 30 non-zero
coefficients, b) Change map with dictionary size = 15 with 3 non-zero coefficients.
Note that a larger dictionary size with more non-zero coefficients captures more
changes.
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Figure 43. a) Original 2CMV image, b) 2CMV image after Stage 1. Note that there
are several false positives around the ridges of the building. In the second image,
change colors (red and cyan) were made more pronounced to highlight the false
positives.
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5.3.2 Second stage: Optical flow

Figure 43 displays a 2CMV image after the first stage wherein it is clear that addi-

tional processing is needed to improve results because the ridges of the building in

both images are slightly misregistered and they are shown as changes in both images.

The primary improvement that is targeted with additional processing is reducing the

number of false positives in the image. This goal can be accomplished with the use

of the optical flow (OF) method described in Sec. 4.2.1. To manage computational

complexity, the optical flow algorithm is performed on 256x256 pixel image blocks.

Note that optical flow is calculated based on the original reference and mission im-

ages.

After obtaining the flow vectors, the direction of the majority of flow vectors is

determined. The flow vectors that are in this direction are applied to the two first

stage change maps to find matches. In the reference image, OF vectors are used to

move the detected change areas in the flow direction. The destination of an area is

then compared with the same location in the mission image. If there is a matching

area based on location and size, then the two change areas are excluded from the

change maps. The same process is performed in the opposite direction to match

mission image change areas in the reference image. Figure 44 illustrates this step.
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5.3.3 Third stage: OF assisted object extraction

This stage has two main parts: extraction and elimination. Extraction is per-

formed by an adaptive thresholding method that is similar to the one used in Kan-

beroglu and Frakes (2017). In this stage, the thresholding is performed on the original

images to extract/label objects. The resulting two thresholded images are processed

in two ways. First OF vectors are used on the images to match the objects. The

main difference from the second stage is that the flow vectors are used on the orig-

inal thresholded images, not on the change maps. Change maps do not necessarily

contain objects, and the goal is to find objects that moved between the two images.

Objects with possibility of movement are labeled and compared against the areas in

the change maps. It should also be noted that only some parts of an object can be

detected as a change, and these detected changes can be used as a guide to extract

the full object.

After this process, the labeled areas in the change maps are overlaid on the ref-

erence image and checked whether they are a part of a larger object in the image. If

the labeled area is found to be a part of a larger object, then the same location in

the mission image is checked for the same object. In the case of two similar objects

around the same location, it can be assumed that the detected object is a false nega-

tive and excluded from the difference map. After these two methods are performed,

the output of this stage is generated by simply taking the intersection of the two re-

sults. Figure 45 shows how this process converts the reference image in a) to the

final output in e).
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Figure 45. a) Reference image, b) Mission image, c) Original 2CMV image, d)
2CMV image after using dictionary learning and clustering (Stage 1), e) Final 2CMV
image. False positives are reduced.

5.4 Results

In addition to the final results shown in Figure 45, proposed framework was

tested with eight 1024x1024 regions from a SAR image pair provided by Lockheed

Martin. It was noted that unsupervised dictionary learning and clustering algorithms

were effective at removing false positives that did not match object profiles. Optical

flow was effective for removing difficult false positives that resulted from registration

and perspective problems. In many representative image regions where registration

errors are prevalent, false positive detections have been reduced. The results are

consistent with the results in Chapter 4.
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Figure 46. a) GaborTLC change map , b) NR-ELM change map.

Even though the computational complexity was not an issue during the course

of this work, it should be noted that the speckle filtering, optical flow processing and

merging are computationally expensive processes. On a dual core computer (Intel

Core i7 6500U) with 16GB of memory, it takes about 2.5 minutes to process one

region. There are many factors that are contributing to this time. Code was written

in the MATLAB environment and it is not optimized for performance.

It should be noted that the methods proposed in [Li et al. (2015); Gao et al. (2016)],

GaborTLC and NR-ELM respectively, were also tested on the dataset as possible al-

ternatives to the K-SVD method. Both methods heavily detected intensity changes

in the terrain pixels along with the object changes in the images; however, when sev-

eral of these intensity changes are close to the objects that should be highlighted in

the 2CMV image, the effectiveness of the optical flow step would be hindered. Even

though these methods were effective in detecting changes, for the purposes of this

paper, they were not chosen to be incorporated in the proposed framework. It is pos-

sible to utilize these methods in the framework with different preprocessing/filtering

steps. Figure 46 shows the change maps of the two methods where the structures

are not well defined in the change maps.
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5.5 Discussion & Conclusions

It was shown that unsupervised feature learning algorithms can be effectively used

in conjunction with optical flow methods to generate 2CMV AGI products. Other

image processing methods like noise reduction and adaptive thresholding are used

to improve object extraction in the proposed methodology. Results demonstrate the

ability of the techniques to reduce false positives up to 60% in the tested SAR image

pairs. More recent optical flow or motion estimation algorithms can be investigated

as an alternative to the one utilized in this work. It should be noted that the cho-

sen optical flow method is suitable for the tested dataset and performs adequately

as expected since it takes into account the intensity changes between images. The

choice of K-SVD over PCA increased the computational complexity while allowing

flexibility over the details of the change maps by changing the dictionary size and the

number of non-zero coefficients. Dictionaries with higher number of non-zero coef-

ficients provided more detailed change maps. Two other methods were investigated

as an alternative to the K-SVD method. It was seen that they also detected changes

in the intensity of the terrain pixels. This was counter productive when the goal was

mainly detecting the changes around the objects and generate 2CMV images empha-

sizing these changes. Additional pre-processing methods can be explored to work

around this drawback.
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Chapter 6

INTEGRATION OF 3D 1H-MAGNETIC RESONANCE SPECTROSCOPY

DATA INTO NEURONAVIGATION SYSTEMS FOR TUMOR BIOPSIES

6.1 Introduction

Many important applications in clinical medicine can benefit from the fusion of

spectroscopy data with anatomical imagery. For example, the correlation of metabo-

lite profiles with specific regions of interest in anatomical tumor images can be useful

in characterizing and treating heterogeneous tumors that appear structurally homo-

geneous. Such applications can build on the correlation of data from in vivo Proton

Magnetic Resonance Spectroscopy Imaging (1H-MRSI) with data from genetic and ex

vivo Nuclear Magnetic Resonance spectroscopy. To establish that correlation, tissue

samples must be neurosurgically extracted from specifically identified locations with

high accuracy. A clinical workflow and neuronavigation purposed custom software

tool complete with unique image and data processing capabilities and a graphical

user interface were developed to integrate three-dimensional (3D) 1H-MRSI data

into industry standard image-guided neuronavigation systems. MRSI spectra were

processed and analyzed, and specific voxels were selected based on their chemical

contents. 3D neuronavigation overlays were then generated and applied to anatomi-

cal image data in the operating room. The proposed methods improve upon the cur-

rent state-of-the-art in neuronavigation through the use of detailed three-dimensional
1H-MRSI data.

Without such technology, neurosurgeons must rely on limited two-dimensional neu-
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ronavigation or on memory and other qualitative resources alone for guidance in

accessing specific MRSI-identified voxels. The newly proposed 3D methods also

fully account for scanner calibration and leverage tools that are now publicly avail-

able. The result is a progressive form of online MRSI-guided neuronavigation that is

demonstrated in this study through phantom validation and clinical application. To-

ward that end, this chapter presents new neuronavigation technology that enhances

current clinical capabilities in the context of neurosurgical planning and execution.

3D MRSI spectra are processed and analyzed, and specific voxels are selected based

on their chemical contents. 3D neuronavigation overlays are then generated and ap-

plied to anatomical image data in the operating room. In contrast, 3D MRSI-based

overlays provide comprehensive, quantitative visual cues and location information

during neurosurgery.

The remainder of this chapter is organized in four sections. This section gives a

brief background and a summary of related previous work. Section 6.2 describes the

methods, tools, and systems that were vital to the study. Section 6.3 presents phan-

tom study and clinical results. Section 6.5 discusses the results and the contributions

of the proposed methods.

6.1.1 Background

Biopsy plays a key role in the histopathological diagnosis of tumors. The pri-

mary function of biopsy in that role is to extract tissue samples from specific tumor

locations with high accuracy. However, identifying and accessing the most impor-

tant locations for sampling can be challenging since anatomical Magnetic Resonance

Imaging (MRI) data provide a limited description of tumor properties. Non-invasive
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ProtonMagnetic Resonance Spectroscopy Imaging (1H-MRSI), also known as Chem-

ical Shift Imaging (CSI), can provide valuable guidance in this regard. Specifically,
1H-MRSI can be used to quantify the chemical contents of voxels in an image, and

the origin of extracted tissue can then be validated based on chemical profile. Note

that previous work provides support for using three-dimensional (3D) spectroscopy

data in this process [McKnight et al. (2002); Kanberoglu et al. (2010)].

6.1.2 Summary of Related Previous Work in Tumor Spectroscopy

A number of previous studies have applied Nuclear Magnetic Resonance (NMR)

spectroscopy to examine ex-vivo samples from meningiomas. For example, several

studies have shown that the aggressiveness of ameningioma can be determined based

on its spectral profile [Pfisterer et al. (2007, 2010)]. Other studies have leveraged 1H-

MRSI to distinguish effectively among different types and/or grades of in vivo brain

tumors based on their characteristic biochemical markers [Pfisterer et al. (2007, 2010);

Majos et al. (2003); Preul et al. (1996, 1998); Sibtain et al. (2007)]. More recently, several

studies have demonstrated the use of spectroscopic information to help guide brain

tumor biopsies and neurosurgeries [Stadlbauer et al. (2004b); Chernov et al. (2009);

Stadlbauer et al. (2004a); Hermann et al. (2008); Ng and Lim (2008); Son et al. (2001)].

Of particular interest are Ganslandt et al. (2005), where two-dimensional (2D) 1H-

MRSI was used to better delineate glioma infiltration zones, and Frati et al. (2011),

where 2D spectroscopy data were used in grading gliomas for a large number of

patients. However, the authors of Frati et al. (2011) specifically noted the difficult

challenge of positioning the 2D spectroscopy grid optimally, and further method-

ological advancement was motivated in a subsequent note [Chernov et al. (2012)]. In
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a related study, our group has proposed that 3D 1H-MRSI may permit in vivo grading

of the meningioma subset of intracranial tumors through the examination of spectra

from specifically identified tumor voxels [Moore (2011)].

6.2 Materials & Methods

6.2.1 Scanner Calibration

Effective MRI-based neuronavigation requires high quality image data. Unfor-

tunately, images that are obtained from the MR scanner can suffer from various

distortions. Because of static magnetic and applied gradient field inhomogeneities,

there may be warping effects in acquired images. There may also be intensity imper-

fections due to eddy currents. To mitigate these distortions, the MR scanner should

be calibrated so as to produce images with accurate spatial positioning and inten-

sity information. Typical procedures make use of phantoms on the order of 10cm

to calibrate scanner gradients, which leaves regions beyond the span of the phan-

tom subject to gradient non-linearities. This shortcoming becomes important when

imaging is to cover a larger field of view, to span the human brain for example.

Prior to each MRI examination in this study, a special methodology to calibrate

the scanner [Kanberoglu et al. (2009)] was used for accurate anatomical image ac-

quisition (thereby ensuring accurate localization to follow). The methodology is

based on work from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) [Jr

et al. (2008)] and uses freely available correction and analysis software to calibrate the

scanner for geometric accuracy prior to scanning [Jovicich et al. (2006); Jovicich and

Czanner (2005); Sled et al. (1998); Sled (1998a,b); ADNI-Aqual2 (2018)]. Use of the
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Figure 47. Results of scanner calibration including an originally acquired image (a),
the image after correcting warping effects (b), and the image after correcting
warping effects and intensity imperfections (c).

ADNI-based methodology calibrates scanner gradients over a much larger field of

view (approximately 25cm) than standard approaches. The result is better average

non-linearity over a field of view on the order of the human brain. Figure 47 shows

images before and after the calibration procedure that demonstrate typical benefits

of the process.

6.2.2 3D 1H-MRSI and MRI Data Acquisition

3D 1H-MRSI and MRI data were acquired with a 3T long-bore GE Signa scan-

ner (General Electric Healthcare, Waukesha, WI, USA). First, an axial T1-weighted

spoiled gradient recalled (SPGR) pulse sequence (TE: 2.8ms, TR: 6.7ms, slice thick-

ness: 2mm, matrix size: 320x224, FOV: 26x26mm, flip angle: 13 ◦) was used to ac-

quire 3D anatomical data with gadolinium enhancement. Those data were then used

as a guide for specifying the MRSI ROI, and high-order shimming was performed

to obtain better magnetic field homogeneity in that region. For the MRSI scan, a
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point-resolved spectroscopy (PRESS) 3D CSI sequence, GE Probe-P, was used (TE:

144ms, TR: 2000ms, slice thickness: 7mm, matrix size: 8x8, FOV: 7x7mm). All ac-

quired frequency domain (k-space) data were transformed into the spatial domain

using a standard Inverse Fourier Transform.

6.2.3 MRSI Biopsy Guidance Tool (MRSI-BGT)

A custom MATLAB (Mathworks, Natick, MA, USA) software tool and graphi-

cal user interface, the MRSI Biopsy Guidance Tool (MRSI-BGT), was developed on

site to automatically combine 3D metabolite information with anatomical MRI data

through overlays as shown in Figure 48. In Figure 48, the overall application work-

flow (culminating with overlay visualization in Stealth IGS) is illustrated in the top

row of images, and the functional flow of MRSI-BGT is inlaid below. MRSI-BGT

is publicly available at: http://ipalab.asu.edu/MRSI-BGT.

MRSI-BGT uses several different file types to generate the desired overlays. First,

3D anatomical MRI data are read and their header files are parsed. Since the anatom-

ical MRI and MRSI scans have different spatial characteristics, it can be non-trivial

to overlay the 3D spectroscopy grid onto the anatomical images. The spectroscopy

grid information is stored on the scanner in raw data files (proprietary P-files in a

GE system). MRSI-BGT extracts the grid location information from the P-files and

also selects voxels of interest based on physician selected criteria (e.g., voxels with

the highest metabolite concentrations). MRSI-BGT then uses location and selec-

tion information to create a spectroscopy grid to be overlaid onto anatomical images.

Information from the anatomical MRI data header is examined next in order to auto-

matically determine the appropriate anatomical image uponwhich to overlay the spec-
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Figure 48. Flow diagrams of the overall application workflow (top row) and
MRSI-BGT software functions (bottom inlay).

troscopy grid. After the grid is registered with the anatomical image data (any num-

ber of registration algorithms can be used, see Zitova and Flusser (2003)), LCModel

[Provencher (1993)] is used to quantify metabolite peaks based on 1H-MRSI data.
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MRSI-BGT then uses LCModel metabolite concentration tables (i.e., text files con-

taining relative concentrations of the metabolites) to create voxel-specific metabolite

concentration heat maps for overlay onto the anatomical data. The 3D concentra-

tion values are stored natively in an array and, after the bicubic interpolation method

[Keys (1981)] is performed on the array in MATLAB, the resulting interpolated val-

ues are overlaid onto the anatomical image data as a semi-transparent heat map for

visualization in neuronavigation systems.

It is noteworthy that MRSI-BGT can also be used to manually select voxels for

overlay. DICOM format overlays are then created that display 3D blobs at locations

corresponding to the manually selected voxels. Since the underlying gray scale voxels

offer sufficient dynamic range for effective mapping to other color maps, the 3D

blobs can be illuminated during an operation with different ROI-specific colors as

desired.

6.2.4 Phantom Validation

Before using the proposed methods and tools for actual biopsy, a phantom vali-

dation study were performed to ensure that the MRSI-BGT overlays were generated

correctly. Eight specific voxels were selected from a 3D anatomical MRI data set

describing a phantom, and measurements of distances between the voxels and intra-

image landmarks (taken using the original images) were recorded in MRSI-BGT. 3D

overlays highlighting the eight voxels were generated and voxel positions within the

overlays were validated against ground truth (the voxel positions in the original im-

ages) by comparing the distances measured in MRSI-BGT to equivalent measure-

ments taken in Stealth IGS. Several examples of the validation distance measure-
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Figure 49. MRSI-BGT (a) and Stealth IGS (b) distance measurement comparisons
in two of three dimensions. Note that the measurements indicated in the figure are
graphical representations of the actual measurements and do not represent the
actual measurements exactly.

ments are shown in two of three dimensions in Figure 49. Note that the Stealth IGS

overlays, which were newly generated as a product of this work, were based on in-

formation read from both 3D MRSI data headers and anatomical MRI data headers.

Specifically, the location of the spectroscopy grid was obtained from the 3D MRSI

header and voxel dimensions were obtained from the anatomical MRI header.

6.2.5 Clinical Application: Meningioma Biopsy

After phantom studies, the proposed methods were used in a meningioma study

at the Barrow Neurological Institute of St. Joseph’s Hospital and Medical Center.

Specifically, the methods were used to prospectively target tumor voxels for the first

time based on subtle differences in the concentrations of metabolites uniquely linked
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to meningioma heterogeneity and outcome. Meningiomas are especially heteroge-

neous in nature and are globally characterized by a high alanine peak that differenti-

ates them from other intracranial neoplasms [Pfisterer et al. (2007, 2010); Preul et al.

(1996, 1998)]. To serve the goals of the study, it was important to obtain biopsy speci-

mens from specific meningioma regions with high and low concentrations of alanine

(and other metabolites, choline for example). Further, because of the heterogeneous

nature of meningiomas, biopsy accuracy was especially critical. Twenty-seven pa-

tients demonstrating meningioma were selected for a preoperative 3D 1H-MRSI scan

by neurosurgeons. Of those patients, 15 had meningiomas with usable spectra and

tissue samples collected. Of the remaining 12 patients, three did not have menin-

giomas, two were claustrophobic and would not enter the MRI scanner, one moved

during the scan, two did not undergo surgery, and four did not have usable spec-

tra due to problems with water suppression or difficulties with 3D 1H-MRSI ROI

placement.

The 3T GE Signa scanner was calibrated for each of the 15 suitable meningioma

patients and high-order shimming was performed to optimize data acquisition in the

area of the tumor. Spectroscopy data were acquired using the 3D CSI Probe-P se-

quence. Functool software (General Electric Healthcare, Waukesha, WI, USA) was

used to verify spectral quality immediately after scanning. Due to the limited process-

ing capabilities of Functool, 3D 1H-MRSI data files were processed offline using GE

SAGE software V7 (General Electric Healthcare, Waukesha, WI, USA). LCModel

was then used to quantify metabolite peaks based on the processed 3D 1H-MRSI

data. Note that processing 3D 1H-MRSI data requires the GE SAGE/LCModel

interface presented in McLean et al. (2000). Next, ROI selection and 3D 1H-MRSI

overlay creation for Stealth IGS were executed automatically by MRSI-BGT based
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Figure 50. Snapshots of choline (a) and alanine (b) metabolite heat maps overlaid
onto anatomical MRI data. Selected voxels are labeled based on their metabolite
concentrations ranging from lowest (blue) to highest (red) according to a standard
jet colormap. Highest and second highest values are labeled H and H2, respectively,
while lowest (not shown) and second lowest values are labeled L and L2,
respectively. Note that not all labels appear in each heat map since not all highest
and lowest metabolite values for the entire volumetric data set were found in the
displayed slices.

on physician selected criteria. Specifically, metabolite concentrations for each voxel

(from LCModel) were used to generate color-coded, semi-transparent alanine and

choline1 heat maps, examples of which are shown in Figure 50. The tumor voxels

containing the two lowest and two highest alanine and/or choline concentrations

were automatically highlighted in overlays generated as DICOM series. The over-

lays were then loaded into Stealth IGS along with corresponding anatomical MRI

data, and both were visualized within a standard multi-planar reconstruction display
1Alanine and choline serve as focal examples in this study because of their importance in the

context of meningiomas, but other metabolites can be treated similarly with the proposed methods.

104



Figure 51. Flow diagram of the clinical workflow driven by the proposed methods.

configuration. Finally, biopsies were taken at locations corresponding to the four

highlighted voxels prior to any meningioma excision (so that excision would not dis-

rupt the accurate biopsy of tissue identified through pre-excision imaging). A flow

diagram of the complete workflow described in this subsection is shown in Figure 51.

6.3 Results

6.3.1 Phantom Validation

Since the discrete distance measurements taken for validation were recorded in

units of voxels, there should have been no errors between measurements taken from
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the original images and those taken with Stealth IGS (in excess of the native lower

bound on resolution characteristic of the cumulative acquisition/processing/display

system, that is). A total of ten measurements between the selected voxels and intra-

image landmarks were taken in three dimensions to validate the MRSI-BGT over-

lays. Specifically, the distances between and across the voxels themselves as well as

distances between the voxels and phantom boundaries were measured. As expected,

there were no discrepancies betweenmeasurements taken with Stealth IGS and those

from the original images taken with MRSI-BGT.

6.3.2 Clinical Application: Meningioma Biopsy

Integration of 3D 1H-MRSI data into Stealth IGS successfully enabled pre-

surgical selection of specific ROIs for later spectral and tissue analysis in the menin-

gioma study. Specifically, the proposed methods were used to prospectively target

tumor voxels based on subtle differences in metabolite concentrations. Figure 52

shows an example Stealth IGS overlay captured during an operation. As shown in

the figure, ROI locations and metabolic characteristics were communicated to neu-

rosurgeons through the MRSI-BGT overlays both before and during operations.

Thirty-five tissue samples were harvested during the meningioma study. The

sample sites were documented with Stealth IGS screenshots and samples were im-

mediately frozen in liquid nitrogen or preserved in formaldehyde for later examina-

tion. Of the 35 samples, 27 were usable for ex vivo histological, immunohistochem-

ical, and NMR analysis. A solid tissue volume of ∼0.3ml from each biopsy sample

was suspended in deuterium oxide and examined ex vivo with high resolution magic

angle spinning (HR-MAS) NMR spectroscopy. The HR-MAS spectra were then
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Figure 52. Screenshots of different perspectives from Stealth IGS during an
operation. In each image, the highlighted 3D blobs indicate ROIs selected based on
their metabolic profiles, and the blue arrows indicate where a neurosurgeon is
actively working.

compared to in vivo 3D 1H-MRSI spectra (across metabolites) using a Pearson cor-

relation. Concentrations of alanine, lactate, creatine, choline, and myo-inositol were

compared. Overall, the comparisons provided strong additional validation of the

proposed overlays’ utility as neuronavigational aids [Ala-Korpela et al. (1996); Govin-

daraju et al. (2000); Lehnhardt et al. (2001); Monleon et al. (2008); Ratai et al. (2005);

Xu et al. (2007)]. Specifically, HR-MAS spectra showed reliable correlation with cor-

responding in vivo 3D 1H-MRSI spectra: 23 of 27 spectral correlations were positive,

seven of the 27 spectral correlations were significantly positive (p<0.05), and 17 of

the 27 correlations were greater than 0.60. Proportions of creatine, alanine, lactate,

myo-inositol, and choline were also consistent between corresponding in vivo and ex

vivo spectra. More detailed results can be found in Moore (2011).
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6.4 Potential Application of Optical Flow in MRS-BGT

This section describes a potential application of optical flow in the overlay process

of MRS-BGT. As described in the previous sections, the biopsy guidance framework

requires two sets of image sets. Anatomical image set usually has higher out-of-plane

resolution than spectroscopy dataset. Because these data sets have different resolu-

tions, it is challenging to overlay the slices that align in the z-direction. In practice,

the nearest slices are used in the overlay process. There may be problems in the over-

lay if the change in geometry in the anatomical slices in the z-direction is significant.

The spectroscopy slice may need a better match in the z-direction. Figure 53 shows

a sample case describing the mentioned problem. It should be noted that this is an

overly simplified artificial case for demonstration purposes. In this sample problem,

it is assumed that the desired geometry is at z=9.5cm. In Figure 54, it can be seen that

the existing slices at locations z=9cm and z=10cm do not exactly match the geome-

try at slice location z=9.5cm. Since the purpose of the biopsy guidance is providing

visual cues to surgeons, a motion estimation technique like optical flow can be used

to interpolate the geometry between these slices. This would provide a better match

for the spectroscopy data for the overlay in the operating room. The interpolated

geometry is shown in Figure 55. It should be emphasized that the interpolated slice

can not be used for diagnosis for any other purpose that require accurate MR data

where a single pixel is important. This can be used only for providing a better vi-

sual region of interest when the geometry change between slices is significant or the

anatomical data do not match the spectrocopy data in the z-direction. The proposed

technique was not implemented in MRS-BGT for the reasons mentioned but it is

still an application that has the potential to improve the biopsy guidance process.
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Figure 53. A simplified demonstration of a case where the spectroscopy and
anatomical dataset slice locations are different. In this case the spectroscopy slice is
in the middle of two slices in the anatomical dataset.
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Figure 54. Slices overlaid on the original middle slice to demonstrate the change of
geometry between slices. Red outlines the geometry in the desired slice. Green is
the overlaid slice and it can be seen that the geometry is different than the desired
slice geometry.
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Figure 55. Interpolated middle slice at z=9.5cm and the desired slice comparison.
It can be seen that the interpolated slice matches the desired geometry better than
the neighboring slices.
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6.5 Discussion & Conclusions

In this study, a proof of concept was demonstrated for neuronavigation frame-

work driven by 3DMRI/MRSI data fusion. Specifically, 3D 1H-MRSI data were inte-

grated into an image-based neuronavigation system to provide online visualizations

of both anatomy and in vivo biochemistry in the operating room. The proposed meth-

ods fully account for scanner calibration, and their accuracy was established through

phantom validation and clinical application. The new methods make it possible to

enhance tumor biopsy, characterization, and resection capabilities in comparison to

standard neurosurgical practices that make no use of 1H-MRSI data or rely on 2D

data alone.

Note that using 3D 1H-MRSI in this work (as opposed to more common 2D
1H-MRSI ) offers a number of important advantages. First, there is the well known

improvement in signal-to-noise ratio (which increases proportionally with the square

root of scan time). Second, there is the improved coverage, and flexibility of cover-

age, provided by a natively 3D sequence, which allows the region of support to be

tailored well to tumor morphology. As a result, intra-tumor spectra can be measured

both comprehensively and with high quality. Nevertheless, there are also several

drawbacks to using 3D 1H-MRSI. For one, a greater number of voxels will be af-

fected by partial volume effects at the tumor interface in the 3D case, so spectra from

those boundary voxels should be interpreted judiciously. There is also the aforemen-

tioned increase in scan time (in comparison to a single 2D 1H-MRSI acquisition),

which in some cases may be spent sampling extra-tumor voxels. However, a sin-

gle 3D 1H-MRSI scan may actually save time and money in comparison to previous
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spectroscopic neuronavigation approaches that may call for multiple 2D 1H-MRSI

scans.

Integrating 3DMRSI data into standard neuronavigation systems is of great prac-

tical importance because neurosurgeons are already familiar with the systems and

are comfortable using them in clinical workflows. With the proposed methods, 3D

MRSI data can now be represented within those systems like data from any other

compatible imaging modality. Specifically, the 3D MRSI data are represented in con-

cert with anatomical MRI data through the use of color-coded, semi-transparent heat

map overlays in DICOM format that communicate the metabolic characteristics and

locations of selected ROIs. Similar (but differently purposed) overlays can also be

generated easily using the tools that we have made publicly available. For example,

overlays can be generated for manually specified data or for data from other MRI

approaches (e.g., functional and/or perfusion MRI), both of which may be natively

incompatible with standard neuronavigation systems.

Future work will address several noteworthy limitations of this study. First, the

proposed methods should be applied to larger patients populations as in Frati et al.

(2011) in order to more firmly establish their efficacy. Second, the current implemen-

tation of the methods is tailored to the GE platform, and thus should be generalized

so as to facilitate widespread adoption. Lastly, the publicly available MRSI-BGT tool

is compiled for Windows platforms, and should be translated for cross-platform use.

The proposed methods were applied clinically in this study after phantom valida-

tion to facilitate neuronavigated tissue biopsy, which provided valuable support for

a recent meningioma grading study. Biopsy accuracy was favorable in that study: in

vivo 3D 1H-MRSI spectra agreed well with ex vivoHR-MAS spectra as well as histolog-

ical and immunohistochemical analyses. Without spectroscopic guidance, volumes
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of interest to be extracted in the meningioma study would have been identified based

only on verbal and qualitative visual cues in the operating room, which would have

prohibited any systematic validation of biopsy accuracy. With the proposed meth-

ods, however, 3D MRSI overlays were leveraged as quantitative neuronavigational

aids to enhance neurosurgical capabilities, allowing neurosurgeons to pinpoint and

access specific, confirmed biopsy targets. Our application of the methods demon-

strates that 3D spectroscopy data can play a valuable role in the operating room,

and more broadly that there is great potential for emerging imaging modalities to

continue advancing the state-of-the-art in neuronavigation and neurosurgery.
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Chapter 7

CONCLUSION

After presenting the proposed approaches and frameworks in the preceding chap-

ters, a summary of conclusions is given in this final chapter. The main contributions

of this dissertation are the collection of these methods that offer solutions to prob-

lems from three different areas of computer vision/image processing. All of them

make use of modified optical flow methods for estimating motion fields to solve the

encountered problems.

7.1 Summary of Methods and Contributions

In Chapter 3, we described a new optical flow-based framework for image in-

terpolation that also reduces divergence. The proposed method uses flow velocity

data to guide the interpolation toward lesser divergence in the interpolated data. The

proposed method applies a symmetric interpolation setup and considers a new di-

vergence term in addition to the brightness and smoothness terms in the energy

functional. The method was applied to PIV, analytical, and CFD data and tested

against two interpolation methods. The results indicate that the proposed method

has potential to improve the interpolation of velocimetry data when it is difficult to

achieve an out-of-plane resolution close to the in-plane resolution. The results also

indicate that the effect of the new divergence term in the optical flow functional can

be appreciated better as the distance between the interpolated slice and the neighbor-

ing slices increases.
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In Chapter 4, we used optical flow and well established image processingmethods

to improve object extraction from SAR images. Optical flow fields have been effec-

tive for removing difficult false positives that result from registration and perspective

problems. The proposed framework for distinguishing between actual motion and

detected motion due to misregistration can lead to more accurate and meaningful

change detection and improve object extraction from a SAR AGI product. Results

demonstrate the ability of the optical flow based method to reduce false positives up

to 60% in the tested SAR image regions where registration errors are prevalent.

In Chapter 5, we showed that unsupervised feature learning algorithms can be

effectively used in conjunction with optical flow methods to generate 2CMV AGI

products. Results demonstrate the ability of the techniques to reduce false positives

in the tested SAR image pairs. For further improvement, more recent optical flow or

motion estimation algorithms can be investigated as an alternative to the ones utilized

in this work. It should be noted that the chosen optical flow method is suitable for

the tested datasets and performs as expected since it takes into account the intensity

changes between images.

In Chapter 6, we presented a proof of concept for neuronavigation framework

driven by 3D MRI/MRSI data fusion. Specifically, 3D 1H-MRSI data were inte-

grated into an image-based neuronavigation system to provide online visualizations

of both anatomy and in vivo biochemistry in the operating room. The proposed meth-

ods fully account for scanner calibration, and their accuracy was established through

phantom validation and clinical application. The new methods make it possible to

enhance tumor biopsy, characterization, and resection capabilities in comparison to

standard neurosurgical practices that make no use of 1H-MRSI data or rely on 2D

data alone. Note that using 3D 1H-MRSI in this work (as opposed to more com-
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mon 2D 1H-MRSI ) offers a number of important advantages. First, there is the well

known improvement in signal-to-noise ratio (which increases proportionally with the

square root of scan time). Second, there is the improved coverage, and flexibility of

coverage, provided by a natively 3D sequence, which allows the region of support

to be tailored well to tumor morphology. As a result, intra-tumor spectra can be

measured both comprehensively and with high quality. Nevertheless, there are also

several drawbacks to using 3D 1H-MRSI. For one, a greater number of voxels will

be affected by partial volume effects at the tumor interface in the 3D case, so spectra

from those boundary voxels should be interpreted judiciously. There is also the afore-

mentioned increase in scan time (in comparison to a single 2D 1H-MRSI acquisition),

which in some cases may be spent sampling extra-tumor voxels. However, a single

3D 1H-MRSI scan may actually save time and money in comparison to previous

spectroscopic neuronavigation approaches that may call for multiple 2D 1H-MRSI

scans. With the proposed methods, however, 3D MRSI overlays were leveraged as

quantitative neuronavigational aids to enhance neurosurgical capabilities, allowing

neurosurgeons to pinpoint and access specific, confirmed biopsy targets. Proposed

application of the methods demonstrates that 3D spectroscopy data can play a valu-

able role in the operating room, and more broadly that there is great potential for

emerging imaging modalities to continue advancing the state-of-the-art in neuronav-

igation and neurosurgery. A potential application of optical flow was also proposed

in the overlay portion of the biopsy guidance process. It was shown that optical

flow-based interpolation can be used for providing a better visual region of interest

when the geometry change between slices is significant or the anatomical data do not

match the spectroscopy data in the out-of-plane direction.
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7.2 Suggestions for Future Research

Possible future research may include applications of optical flow motion esti-

mation in video inpainting. In various applications, videos may contain a reticle

(crosshair) in the center of the frame. In some analysis software, the reticle may

cause problems as it is not a part of the natural scene. Removal of the reticle and in-

painting of the region may improve the reliability of the analysis software. A suitable

motion estimator can track the movement of the reticle and its surrounding. This

information can be used with an interpolator to fill in the reticle region with pixels

that are consistent with their surrounding.

Investigating the use of machine learning techniques as a means to solve some of

the inverse problems occurring in this work is a possible direction for continuing in

this research area. It is known that several works have looked at machine learning to

solve classic inverse problems like optical flow estimation, super-resolution etc. In

addition to the unsupervised learning methods used in this work, supervised learn-

ing methods can be investigated. With training data, machine learning methods can

be used for target extraction and classification in radar datasets. Replacing the fea-

ture learning or adaptive thresholding parts of the change detection framework with

deep learning models may offer additional improvements. Generation of training

and ground truth data would be essential to this application.

Another possible direction for future research can be the utilization of deep learn-

ing models to estimate optical flow. Recently, there have been some published works

that use deep learning for estimating optical flow and the results indicate that while

it is possible to use deep learning for optical flow estimation, there is still room for

improvement. This can be a promising direction to advance the state-of-the-art in
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optical flow. New loss functions can be researched and integrated into the presented

framework for the interpolation of velocimetry data. The results obtained from these

techniques can be compared to the results stated in this dissertation.
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ϵ =

∫∫
[Ixα + Iyβ + Iz]

2 + γ2 [Dxα +Dyβ +Dz]
2 + λ2

[
∥∇α∥2 + ∥∇β∥2

]
dx dy

(A.1)
This can be minimized by solving the associated Euler-Lagrange equations.

∂L
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− ∂
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= 0
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where L is the integrand of the energy functional.
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After rearranging the terms, we get:(
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x
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approximating the Laplacians of α and β,

∆α ≈ ρ (α− α)

∆β ≈ ρ
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)
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where ρ is a proportionality constant and, α and β are local averages. These approxi-
mations are substituted for Laplacians and the terms in the equation are rearranged.(

I2x + γ2D2
x + λ2

)
α +

(
IxIy + γ2DxDy
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β = λ2α−

(
IxIz + γ2DxDz

)(
IxIy + γ2DxDy

)
α +

(
I2y + γ2D2

y + λ2
)
β = λ2β −

(
IyIz + γ2DyDz

)
Determinants can be used to solve the above equations.
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