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ABSTRACT

Bio-molecules and proteins are building blocks of life as is known, and understanding

their dynamics and functions are necessary to better understand life and improve its

quality. While ergodicity and fluctuation dissipation theorem (FDT) are fundamental

and crucial concepts regarding study of dynamics of systems in equilibrium, biological

function is not possible in equilibrium.

In this work, dynamical and orientational structural crossovers in low-temperature

glycerol are investigated. A sudden and notable increase in the orientational Kirk-

wood factor and the dielectric constant is observed, which appears in the same range

of temperatures that dynamic crossover of translational and rotational dynamics oc-

cur.

Theory and electrochemistry of cytochrome c is also investigated. The seeming

discrepancy in reorganization energies of protein electron transfer produced by atom-

istic simulations and those reported by protein electrochemistry (which are smaller)

is resolved. It is proposed in this thesis that ergodicity breaking results in an effective

reorganization energy (0.57 eV) consistent with experiment.

Ergodicity breaking also affects the iron displacement in heme proteins. A model

for dynamical transition of atomic displacements in proteins is provided. Different

temperatures for rotational and translational crossovers of water molecules are re-

ported, which all are ergodicity breaking transitions depending on the corresponding

observation windows. The comparison with Mössbauer spectroscopy is presented.

Biological function at low temperatures and its termination is also investigated in

this research. Here, it is proposed that ergodicity breaking gives rise to the violation

of the FDT, and this violation is maintained in the entire range of physiological

temperatures for cytochrome c. Below the crossover temperature, the protein returns

to the FDT, which leads to a sudden jump in the activation barrier for electron

i



transfer.

Finally the interaction of charges in dielectric materials is discussed. It is shown

that the potential of mean force between ions in polar liquids becomes oscillatory at

short distances.
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GLOSSARY

Cyt-c Cytochrome Complex

ENS Elastic Neutron Scattering

Eq Equation

ET Electron Transfer

eV electron Volt

FDT Fluctuation Dissipation Theorem

Fig Figure

MD Molecular Dynamics

MSA Mean Spherical Approximation

MSD Mean Square Displacement

MSF Mean Square Fluctuations

NPT Number Pressure Temperature, an ensemble with constant values of Number

of particles, Pressure and Temperature

NS Neutron Scattering

ns nano second

NVE Number Volume Energy, an ensemble with constant values of Number of par-

ticles, Volume and Energy

NVT Number Volume Temperature, an ensemble with constant values of Number

of particles, Volume and Temperature
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Ox Oxidized

PDT Protein Dynamical Transition

ps pico second

Red Reduced

SAM Self Assembled Mono-layer

ST Stocks

vdW van der Waals
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3.7 Long Relaxation Time of the Force-Force Autocorrelation Function of

the Force Acting on the Heme Vs 1/T (Black Circles) for Reduced Cyt-

C. Also Shown Are the Relaxation Times for the Force on the Heme

Produced by the Protein (Squares) and by Water (Triangles).Fits to

Arrhenius Linear Functions Are Shown by the Dashed Lines. . . . . . . . . 75

3.8 〈δx2〉 For the Reduced State of Cyt-C. The Points Are Experimen-

tal Data[10] And the Solid Lines Are Calculations According to Eqs.

(3.1), (3.16), and (3.17).The Calculations Are Done for the Total Force-

Force Correlation Function (Black) and for Its Components from the

Protein (Orange) and Water (blue).The Dashed Lines Refer to the

Low-Temperature Linear Fit of the Experimental Data and to the

High-Temperature Linear Fit of the Iron Displacement Produced by

the Protein. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.9 MSF of Heme Iron in Oxidized Myoglobin. Points Indicate Experimen-

tal Results,[13] Solid Line Refers to the Fit to Eqs. (3.1) and (3.16)

with the Nonergodicity Factor fne(T ) Determined From Stretched Dy-

namics According to Eq. (3.20).The Nonergodic Force Variance Is De-

termined According to Eq. (3.21) with the Fitting Constant A = 2.5

nN/Å (Corresponds to 〈δF 2〉 = 0.1 nN2 at T = 300 K). . . . . . . . . . . . . . . 78

3.10 The Dipolar Susceptibility of the Hydration Shell Water Calculated

From MD Simulations According to Eq. (3.22)For Shells of Thickness a

Around Cyt-Ox (Open Points) and Cyt-Red (Filled Points) at Different

Temperatures (Some Red and Ox Points Coincide on the Scale of the
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3.11 Center of Mass MSF (Trans., Circles) and the MSF Due to Molecular

Rotations (Rot., Squares) of Water Molecules Within the Hydration

Shell 6 Å Thick Around the Ox Cyt-C. The Center of Mass Translations

and Molecular Rotations Are Calculated within the Time-Window of

100 Ps (Filled Points) and 1 ns (Open Points). The MSFs For Center-

Of-Mass Translations Are Reduced by a Factor of 40 to Bring Them

to the Same Scale with the Results for Rotations. The Dashed Lines

Are Linear Fits Through Subsets of Points to Illustrate Differences in

the Onset Temperatures (Trot(1 ns) = 144 K, Trot(100 ps) = 152 K,

and Ttr(100 ps) = 191 K.The Dotted Lines Connecting the Points Are

Drawn to Guide the Eye. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
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lated from κ(T ) and κvib(T ) According to Eq. (3.24). Points Indicate
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for Lysozyme Dissolved in 50:50 Glycerol-D2O Solvent at h = 0.83 g

D2O/g Lys.[14] The Results for Lysozyme Are Multiplied by a Fac-

tor of 10 to Bring Them to the Scale of the Plot. The Dotted Lines
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3.13 ∆F † Given by Eq. (3.26) vs T Calculated from MD Simulations (∼ 250

ns of Simulations at Each Temperature[15]). The Legend Indicate the

Reaction Times τr = k−1
R .Deviations From the Thermodynamic Be-

havior, kR = 0 (Specified as An Infinite Observation Time, “∞”),Are

Determined by the Nonergodic Factor fne(T ) (Eq. (3.17)) Calculated

from τr and the Relaxation Time[15] τX(T )(s) = exp[−23.8 + 835/T ].

The Reorganization Energies From Long Simulation Trajectories Are

Approximated by Linear Functions of Temperature: λSt(T ) = 1.71 −

0.0015× T eV, λ(T ) = 4.19− 0.00446× T eV (T Is in K). . . . . . . . . . . . 86

4.1 Schematics of Cathode Electron Transfer From the Fermi Energy Level εF ,

Corresponding to the Equilibrium Electrode Potential, to An Oxidized Re-

actant with the Average Energy εOx. Electron Transfer Predominantly Oc-

curs From εFTo a Nonequilibrium Energy Level in Resonance with. The

Electrode-Reactant Electronic Coupling ∆ Characterizes the Tunneling Prob-

ability (Eq (4.3)). The Nonequilibrium Energy Level Is a Part of a Gaussian

Manifold with the Variance σ2 = 2kBTλ Specifying the Reorganization En-

ergy λ (Eq (1.34)). The Overpotential η Shifts the Electrode Chemical

Potential as µ = εF − eη. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.2 Quantum Center of Cyt-C Used in the Calculations to Compute the Hamil-
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4.3 Temperature Dependence of Reorganization Energies From QM/MD Sim-

ulations. Shown Separately Are the Variance Reorganization Energies λi

(Eq (1.34)) in the Reduced (Red Diamonds) and Oxidized (Blue Triangles)

States of Cyt-C and Their Mean Values (Black Circles). Squares Refer to

the Stokes-Shift Reorganization Energy λSt (Eq (1.38)) and Black Diamonds

Refer to the Reaction Reorganization Energy λr (Eq (1.40)). The Dashed

Lines Are Linear Regressions Through the Simulation Points (the Upper

Dashed Line Is a Linear Regression Through the Mean Values λ(T )). . . . . . . 101

4.4 Rate Constant k0 = kc(0) (Eq (4.3)) at η = 0 for Horse Cyt-c on the Gold

Electrode Modified with PyC11/C10 Self-Assembled Monolayer[16] (Points,

Exp.). The Solid Line Shows the Calculations Based on Eqs (4.3) and

(4.5),Which Give Identical Results. The Electron Coupling ∆ = 2 × 10−9

eVIs Used to Reproduce the Experimental Data. The Temperature-Dependent

Reorganization Energy λr(T ) from Figure 4.3 Was Used in Eqs (4.3) and

(4.5).The Dotted Line Shows the Result of Neglecting the Temperature De-

pendence λr(T ) and Putting λr = λr(300 K). . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.5 Normalized Probability Density Pc(η) (Eq (4.4)) Obtained From Experi-

ment with Tuna (Filled Circles[17]) and Horse (Diamonds[18])Cyt-C and

From MD Simulations (Solid Line).The Experimental Results Were Col-

lected at T = 273 K From Voltammograms with the Electrode Coated with

the OH− (CH2)11SH ω-Hydroxyalkenthiol.The MD Value of the Reorga-

nization Energy λr = 0.57 eV Was Obtained by Extrapolating the Results

Shown in Figure 4.3 to 273 K.The Dashed Line Is the Gaussian Fit Through

the Filled Circles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
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4.6 Shift of the Cathodic Peak Potential ∆Ep Vs the Scan Rate log10(v∗), v∗ =

ev/(kBTkc(0)). The Points Are Experimental Data[16]And the Solid Line Is

the Calculations[19, 20] Performed with λr = 0.56 eV and ∆ = 2× 10−9 eV

at T = 298 K. The Dashed Line Indicates Laviron’s[21] Irreversible Reaction

Limit with the Slope 2.3kBT/(αe)And with the Transfer Coefficient α = 0.5

(Butler-Volmer Kinetics[22]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.1 Temperature Dependence of the Reorganization Energies Calculated From

the First and Second Moments of the Reaction Coordinate, λSt (Marked as

“St”, Open Squares) and λ (Circles). We Find λ � λSt at High Tempera-

tures (Open Circles),In Violation of the Fluctuation-Dissipation Theorem,

and the Return to λSt ' λ Anticipated by the FDT Below the Crossover

Temperature Tc ' 170 K (Filled Circles). The Results for λRefer to the

Oxidized State of Cyt-C, and Both Oxidized and Reduced States Were

Simulated to Produce λSt. The Solid Curve Is the Fit to Eq (5.6) As-

suming Ergodicity Breaking with the Arrhenius Relaxation Time τX =

τ0 exp[EX/(kBT )]. The Activation Energy EX/kB = 1725 K Was Obtained

from MD Simulations (Fig. A.14) and τ0/τobs = 10−6 WasAdopted Based

on the Length of the Simulation Trajectories. The Dashed Lines Are the

Linear Regressions Through the Simulation Points. . . . . . . . . . . . . . . . . . . . . . 111
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5.2 (a) Compressibility of Hydration Shells χN (a) (Eq (5.4)). (b) Average Num-

ber of Water Molecules in the Shell of Thickness a = 6 Å. (c) Dipolar Sus-

ceptibility χM (a) (Eq (3.22)). (d) Free Energy Surfaces of Oxidized Cyt-C

(Eq (1.33)), F (X) = F1(X). The Free Energy Surfaces Have Been Shifted

to the Common Level F (〈X〉1) = 0.The Dashed Lines Drawn Through the

Points in (a)-(c) Are Fits to Guide the Eye and the Vertical Dotted Line in

(c)Is Drawn at the Temperature Tc ' 170 K Also Shown in Figure 5.1. . . . . 114

5.3 (a) 〈Q〉 vs T for the Hydration Waters within the Shell of Thickness a = 6

Å Around Cyt-C in the Oxidized Form (Filled Diamonds). Also Shown

Are 〈Q〉-Values for Bulk SPC/E Water[23] (Open Squares) and TIP3P Wa-

ter (Open Circles). (b) Distribution Functions of the Tetrahedral Order

Parameter[24, 25] (Eq (5.5)) In the Hydration Shell of Oxidized Cyt-C

(a = 6 Å) At Different Temperatures. The Dashed Line Refers to Bulk

TIP3P Water. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.4 Arrhenius Plot of −∆F †/(kBT ) vs 1/T for the Reaction of Electrode Re-

duction of Cyt-C. Points Represent the Activation Barriers Calculated as

∆F † = F (0) − F (〈X〉1) From the Free Energy Surfaces Calculated at Dif-

ferent Temperatures From MD Trajectories. The Dashed Lines Are Linear

Interpolations Between the Points. The Vertical Dotted Line Indicates the

Crossover Temperature Tc Shown in Figure 5.1. . . . . . . . . . . . . . . . . . . . . . . . . 120

6.1 Schematic Representation of Screening of Charge q1 by the Dielectric

with the Dielectric Constant ε. The Electrostatic Potentials Produced
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6.2 Variance of the Electric Field of SPC/E Water at the Center of a Set

of Non-Polar Kihara Solutes with Varying Size R0.The Dashed Lines

Show the Fitting of the Data with the Power Law σ2
E ∝ R−δ0 . The

Resulting Values of δ for Smaller and Larger Solutes Are Indicated

in the Plot. The Simulations[26] Are Done for the Kihara Solutes of

Varying Size with the Solute-Solvent Interaction Energy εLJ = 0.65

kJ/mol [Eq. (6.30)]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.3 SL(k) For SPC/E Water at T = 300 K From Molecular Dynam-

ics Simulations (MD)And From the MSA Solution for Dipolar Hard

Spheres[27] in Eq. (6.26) (MSA). The Dotted Line Refers to the Padé

Form in Eq. (6.23) (Λ = 0.17 Å) and The Dashed Line Marks the

Lorentz Approximation [Eq. (6.24)]. The Horizontal Dotted Line Marks

the k →∞ Limit SL(∞)→ 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.4 Boltzmann Factor e0s(r) and Its Derivative e′0s(r)For the Kihara Poten-

tial Describing the Solute-Solvent Isotropic Interaction. g′0s(r)Obtained

From Molecular Dynamics Simulations Are Shown at εLJ = 0.65 kJ/mol

(Blue) and 3.7 kJ/mol (Red). The Position of the Positive Spike of

e′0s(r) Defines the Cavity Radius a, Which Is Very Close to R0 =

rHS + σ0s = 5 Å for the Kihara Solutes Studied Here [Eq. (6.30)]. . . . . . 137

6.5 Poles kn = k′n + ik′′n of the MSA Longitudinal Structure Factor [Eq.

(6.26)] In the Upper Half-Plane of the Complex k-Plane:
∣∣Q(κkn, ξ
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∣∣2 =
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6.6 Direct Integration in Eq. (6.29) (Solid Line) Compared to the Lorentzian

Approximation in Eq. (6.25) (Dashed Line) and to the Summation

Over the Poles of SL(k) Produced by the MSA (Fig. 6.5) (Dash-Dotted

Line).The Calculations Are Done for Two Spheres with the Radii 5 Å

at Varying Distance R Between Their Centers. The Structure Factor

for the SPC/E Water From Simulations (Fig. 6.3) Is Used in Numerical

Integration. The Corresponding Fits to the Lorentz and the MSA So-

lutions Are Displayed in Fig. 6.3.The Dotted Line Shows the Dielectric

Result [Eq. (6.1)]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.7 Solute-Solvent Density Distribution Functions g0s(r) Calculated From

MD Simulations of Neutral (q = 0) and Charged (q = ±1) Single

Kihara Solutes in SPC/E Water (rHS = 2 Å).Also Shown Is the Distri-

bution Function for a Single Solute in the Box Containing Two Kihara

Solutes Separated by the Distance of R = 20 Å.The Results Shown

by the Solid Lines Refer to εLJ = 3.7 kJ/mol, While the Dashed Line

Refers to εLJ = 0.65 kJ/mol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.8 Results of MD Simulation for Two Neutral Kihara Solutes Placed at

Different Distances R.Black Points Refer to Electrostatic Potential

Created by Water’s Partial Atomic Charges and the Red Points Indi-

cate the Electrostaic Potential Created by the Water’s Point Dipoles.

The Solid Line Is the Result of Numerical Integration in Eq. (6.29)And

the Dashed Line Is the Dielectric Result in Eq. (6.1). . . . . . . . . . . . . . . . . 143
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6.9 U(R) From Eq. (6.29) with SL(k) for SPC/EWater and f0s(k) Cal-

culated From Solute-Water Distribution Functions of Kihara Solutes

with Changing Size R0. The Results for Two Magnitudes of the Solute-

Solvent Lenard-Jones Energy εLJ Are Shown. . . . . . . . . . . . . . . . . . . . . . . . . 144

6.10 Schematics of Dielectric Screening in Solid Dielectrics: the External

Field Causes a Bulk Stress in the Sample, Resulting in Surface Charges.

The External Field E0 Is Compensated by the Field of the Surface
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Bulk Dielectric Constant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
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to Guide the Eye. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
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A.4 Protein and Water Reorganization Energies in the Temperature Range

From 280 to 360 K. Triangles Refer to Water and Circles Represent Pro-

tein. The Red Points Show the Simulation Results for the Stokes-Shift

Reorganization Energy λSt And the Blue Points Indicate the Variance

Reorganization Energy λ.The Dotted Lines Connect the Points. . . . . . 192

A.5 Relaxation Time of the Stokes-Shift Dynamics (Eq (A.6)) as a Function

of 1/T .The Points Refer to the Simulation Data and the Straight Line

Is the Linear Regression ln[〈τ(s)〉] = −23.8 + 835K/T . . . . . . . . . . . . . . . . 193

A.6 Relaxation Time of the ν-ProcessReported From Broad Band Dielec-

tric Spectroscopy of Hydrated Myoglobin Powders (Points, h = 0.36 g
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17.757/T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
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ponents(Exp5) And the Results From Using Stretch Exponential (Eq.
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A.9 Here the Results of Using Eq. (A.9) For Different Components of the

Force Is Presented. The Slope of Fit to the Protein+water Is 1701

K, for the Protein Component Is 1819 K and for the Water Is 1108

K. The Fittings for Water Were Specially Poor. The Data Was Also

Fitted with 3 Exponents and One Stretch, which Gave the Best Fits

and the Resulting Slope where 1155 K (Not Shown in the Graph). . . . . 198

A.10 Normalized Time Auto-Correlation Function of the Force Acting on the
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A.14 Relaxation Time of the Stokes-Shift Dynamics (Eq (A.14))As a Function

of 1/T .The Points Refer to the Simulation Data for the Oxidized Form of

Cyt-C and the Dashed Straight Line Is the Linear Regression ln[〈τ(ps)〉] =

1.24 + 1725K/T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
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A.16 Activation Barrier for the Reduction Reaction of Cyt-C Vs T . Points Are

the Simulation Results and the Dashed Lines Are Linear Fits Through the

High-Temperature and Low-Temperature Portions of the Data. . . . . . . . . . . . 205
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A.19 Distribution Functions of the Orientational Order Parameter p21 (Eq (A.16))In

the Hydration Shell of Oxidized Cyt-C (a = 6 Å)At Different Temperatures
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A.20 Dependence of the Minimum of the Free Energy of Electron Transfer in

the Oxidized Form of Cyt-C on Temperature. The Dashed Line Shows the

Hyperbolic Fit to the Results at T > Tc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

A.21 A Cartoon of the Simulation Cell Including Two Kihara Solutes Sep-
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5 Å and 8 Å.The Values of the Solute-Solvent Lennard-Jones Energy
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Nearly Indistinguishable on the Scale of the Plot. Also Shown Is the

Longitudinal Structure Factor of TIP3P Water.[30] All Results Refer

to T = 300 K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

A.25 Linear Fit of [SL(k)]−1 Vs k2. Points Are Calculated From MD on the

Lattice Vectors Consistent with the Simulation Box and the Solid Line

Is a Linear Fit 19.14 − 10.47k2. The Simulation Results Are for the

SPC/E Water at 300 K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

xxix



Chapter 1

INTRODUCTION

1.1 FDT and its Violation

Fluctuation Dissipation Theory (FDT) is a very powerful tool in theoretical and

experimental physics. The first example of FDT is probably provided by the Einstein

famous paper on Brownian motion [31]. The Einstein relation reads D = µkBT ,

where D is the diffusion constant, µ is mobility (characterizing the response of the

system to a weak external force), kB is the Boltzmann constant and T is the absolute

temperature. More generally, the FDT relates the response of a system influenced by

a small external perturbation to the instantaneous fluctuations of the unperturbed

system by a proportionality factor, namely temperature. This property is main theme

of the FDT which we come back to in many points in this work. For a system in

equilibrium with the bath and assuming detailed balance, one can write ((1.1))[32]:

RAP (t, t0) =
1

kBT

δ

δt0
CAB(t, t0)θ(t− t0) (1.1)

Here

RAP (t, t0) = δA(t)/δP (1.2)

represents the (impulse) response of the system to the impulse perturbation

δP (t, t0) = δPδ(t− t0) (1.3)

(δ(t− t0) is the Dirac delta function) and

C(t, t0) = 〈A(t)B(t0)〉 (1.4)
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is the correlation of the observables A and B (with B coupled with P in Hamiltonian

H(t) = H0 − P (t)B ). (One can always choose observables in a way to have a

mean of zero 〈A〉 = 〈B〉 = 0 without losing the generality and this is what assumed

here). Heaviside function θ(t − t0) insures that causality is satisfied. For simplicity

we consider A and B to be the same variable A = B. Assuming a step function for

perturbation δP (t) = δPθ(t), one can integrate over t0 from 0 to t to get

χ(t) =
1

kBT
(C(0)− C(t)) (1.5)

where χ(t) =
∫ t

0
R(t, t0)dt0 is the (integrated) response χ(t) = 〈A〉t/δP . This equa-

tion ((1.5)) is a fluctuation dissipation relation connecting dynamic variables for the

classical equilibrium systems that satisfy detailed balance. The response term in this

way is more accessible by experiment. The importance of this equation can be appre-

ciated by recognizing the involved terms. Its applicability is broad because it gives

you access to response of the system through the system dynamics and vise versa. In

the static limit t→∞, C(t) goes to zero and one gets [33]

χ =
1

kBT
〈A2〉 (1.6)

One can get the temperature from (eq. (1.5)) by plotting the response vs corre-

lation. The results give a line with the slope of s0 = − 1
kBT

, so one can calculate the

temperature T using the slope s0. When in equilibrium, for a given energy, all con-

figurations of the system will be visited by equal probability, and the temperature is

the well defined value corresponding to the state of the system and the energy gained

with particles by fluctuations is lost through dissipation. Any deviation from a line

with slope s0 is indicative of being out of equilibrium and violation of the fluctuation

dissipation theorem. This deviation from equilibrium state disturbs both the ther-

modynamic description of the system and the system’s temperature as a well defined

thermodynamic parameter.
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While there is no unified description for out of equilibrium systems, the intuition

from the equations and definitions in the equilibrium state have been fruitful. As

a result, many fluctuation dissipation relations have been used for non-equilibrium

systems. There are good reviews on the subject (for instance, [34][35][36]) and the

interested reader would find them very informative. Here, only a glimpse of the

concept of effective temperature is presented.

One of the ways people used is the definition of an effective (fictive) temperature

out of the deviation from FDT [37][38]. Literature on glassy systems[39] was among

those proposing the use of an effective temperature and the mean field spin-glass

models, are among those exactly solvable models [40][41]. The advantage of using

(eq. (1.1)) is in providing a way to connect to the experimental investigation of

the concept, which was done very recently for a system in non-equilibrium steady

state[42].

While one sees the use of effective temperature in systems with broken ergod-

icity, the appearance of it is suggestive of the presence of ergodicity at some scale

in the system. One needs to recognize that while the use of the effective tempera-

ture has been quiet helpful in describing different dynamics in many non-equilibrium

and glassy [43] systems, the price one has to pay is that these temperatures are not

definite for a given state of the system, and the effective temperature depends on

the chosen variable in fluctuation dissipation relation. The different dynamics inside

the system lead to different effective temperatures [44]. This violation of the FDT

and the division into different dynamics (and so different time scales) can give rise to

different behaviors of systems which are investigated in the following chapters (specif-

ically look at Kirkwood factor jump in glycerol in lower temperatures Fig. 2.7 [45],

figures 3.10 and 3.12 [46], Fig. 4.3 [15], and maybe most ilustrative of all, figure 5.1

[47]). We will see how mean square displacement(MSD) and dynamics of the system
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follows FDT at low temperatures, and how at some temperature we see a deviation

from the linear dependence and how it can be described by the provided theoretical

framework. Also we see how FDT leads to termination of biological activity of the

protein and why FDT violation seen in reorganization energies makes the biological

activities possible and how the same theoretical framework (ergodicity breaking) can

be utilized to describe these behaviors. This is the general theme of the whole of this

work. Now lets move on starting with the basics of neutron scattering.

1.2 Neutron Scattering

To study any microscopic system, the interest is to know the relative position

and motion of particles which are building the system, in other words one wants to

know the structure and dynamics of the system. Depending on the properties of the

system of interest (such as spacial and time scale of subsystems) and the amount

of the required details, one can select techniques or tools that are suitable for the

study. These techniques have many limitations and often a combination of them,

accompanied with a lot of hard work of scientists and brilliant ideas, is the only way

to improve the knowledge on a system.

One of the very important and useful tools which is suitable for studying many

systems including liquids and biological systems, is neutron scattering, which is the

focus of this chapter.

1.2.1 Why Neutrons

In this section the basic characteristics of the neutron scattering are provided.
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Advantages and Disadvantages

Neutron has m ∼ 1.67× 10−27kg (N), zero electric charge and zero (or negligible)

electric dipole. Neutron, unlike the electrons and photons, does not interact with

charged particles via electromagnetic interaction, but rather through very short range

strong forces with nuclei, which makes it uniquely useful. Since the size of nuclei is

typically 105 times smaller than their relative distances, neutrons can penetrate much

deeper into the material and so reveal the properties deeper in the bulk rather that

just a shallow surface. Moreover, because of the small cross section and short range

forces, compared to the wavelength of neutrons (or size of system under investigation),

the scattering centers can be considered as point particles. In other words, for neutron

scattering, a nucleus can be considered as a point scatterer. Also, because neutrons

have small absorption and small cross section with some materials, it is easier to

control temperatures or other properties related, for example, to the sample holder

and its environment.

Neutron also interacts hugely differently with different nuclei which provides the

key advantage of being able to select the particles of interest for measurement using

different isotopes. For instance, the cross section of a proton (82.03 barn) 1 is hugely

bigger than that of a deuteron (7.64 barn), so by replacing some hydrogen atoms with

deuterons the properties of the system are (mostly) conserved, but the subsection with

deuterons can be considered invisible in comparison with the part with protons (for

comparison, carbon scattering cross section is 5.551 barn). This trick is quite popular

in neutron scattering studies of many molecules and of mixed systems.

Neutrons can cover a wide range of system sizes. For liquids or biological studies,

cold and thermal neutrons are of most interest with ranges of wavelength from about

1Each barn is equal to 10−28 m2. Different cross section values (coherent, incoherent and averages)
of different elements can be found in Evaluated Nuclear Data File (ENDF) online database or “Barn
Book”s.
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1 Å up to 2 nm. The relative energy and energy transfer in this range is relatively

small and measurement does not destroy the system.

While neutrons have many useful properties, they have their limitations as well.

The small cross section, which was discussed as a huge advantage, means small inter-

action and small interaction means a need for more flux and time for measurements

and also bigger samples, which can bring more limitations. The neutron sources are

limited to the nuclear reactors and particle accelerators, which makes them quite ex-

pensive tools. The need for high flux/time and expensive sources are among the most

important limitations of the neutron scattering. Also, neutron interaction is weak,

which makes them harder to detect.

1.2.2 Basics of Neutron Scattering

The interpretation of neutron scattering data, and designing various experiments

and techniques in the field, is based on the works led by Van Hove’s paper [48],

followed by the works of others. In this section, an attempt is made to provide steps,

which guide the reader through the fundamental equations with self-consistency. The

details of the calculations can be found in textbooks. Then, different sources of

neutrons will be described and some techniques will be briefly discussed.

Theory

Here, the mathematical basics of the neutron scattering is provided. We start by

representing the incident beam in the form of a plane wave (Eq. (1.7))

ψ =
1√
L3

exp(ik.r) (1.7)

where k is the wave-vector, r is the position and L is the size of the box which contains

the neutron and the scatterer (This is a normalization factor which will disappear from
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equations at the end). The differential cross section d2σ
dΩdE′ is defined as the ratio of

number of particles (here neutrons) with energies in a differential small range dE ′

from E ′ scattered per second into differential solid angle dΩ in the direction (θ, φ)

divided by incident flux, differential solid angle dΩ and differential Energy interval

dE ′. Flux of incident neutrons comes as (Eq. (1.8))

Φ =
1

V olume
× velocity =

1

L3

~k

m
(1.8)

in which, m is the mass of the neutron. Writing the energy of a scattered neutron

in terms of its wave-vector k′ and some basic geometry, gives the density of the final

state (Eq. (1.9))

ρk′ =
L3mk′

(2π)3~2dΩ (1.9)

Now, for the differential cross section, using the Fermi’s golden rule one gets (Eq.

(1.10))[49]

(
d2σ

dΩdE ′

)

λ→λ′
=
k′

k

( m

2π~2

)2

| 〈k′λ′|V|kλ〉 |2δ(∆Es + ∆En)L6 (1.10)

(Eq. 2.15 of [49]), where, V gives the interaction/perturbation potential, ∆Es is

the energy change in the scattering system, ∆En = E − E ′, δ is delta-function, and

λ and λ′ are the labels of the energy states of the scattering system, before and after

interaction, respectively. Now, assuming that the interactions are very short ranged

(which is a reasonable assumption for strong interactions) and they only depend on

the relative positions of the incident and scattering particle, and so substitution of

scattering centres (nuclei) by delta functions and then Fourier transform V to the

k space, following steps of reference [49] (in Born approximation regime, so Fermi

pseudo-potential can be used), one gets (Eq. (1.11))[49]
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(
d2σ

dΩdE ′

)

λ→λ′
=
k′

k
|
∑

j

bj 〈λ′| exp(iq.Rj)|λ〉 |2δ(∆Es + ∆En) (1.11)

Where the q = k − k′ is proportional to the momentum transferred and the

summation is over scattering centres while Rj represents the position of nucleus j,

and bj is the scattering length of the relevant nucleus. Now, by using the integral

form of the delta-function and summing over λ′ and averaging over λ (Boltzmann

distribution), one gets (Eq. (1.12))[49]

d2σ

dΩdE ′
=

1

h

k′

k

∑

j,l

blbj

∫
〈exp(−iq.Rl(0)) exp(iq.Rj(t))〉 exp(−iωt)dt (1.12)

where, we have used ω~ = ∆En. Now, let’s introduce two functions that are used

very often in the literature, the intermediate scattering function (I(q, t))(Eq. (1.13)),

and its Fourier-transform dynamic structure factor (S(q, ω)) (Eq. (1.14))

I(q, t) =
1

N

∑

j,l

〈exp(−iq.Rl(0)) exp(iq.Rj(t))〉 (1.13)

S(q, ω) =
1

h

∫
I(q, t) exp(−iωt)dt (1.14)

where N is the number of scattering centres.

Assuming the scattering lengths of nuclei are uncorrelated and in the case that

enough of them are present, they can be averaged (this average can be taken in-

dependently of the < .. > average since the spin state of the nucleus is generally

independent of its location). Then one can break the scattering cross section into two

parts (Eq. (1.15))

∑

j,l

〈bjbl〉NSjl =
∑

j,l

〈b〉2NSjl +
∑

j

(
〈
b2
〉
− 〈b〉2)NSjj (1.15)
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By writing the two parts, namely coherent and incoherent, separately, we have(Eqs.

(1.16) and (1.17)).

(
d2σ

dΩdE ′
)coh

= 〈b〉2 1

h

k′

k

∑

jl

∫
〈exp(−iq.Rl(0)) exp(iq.Rj(t))〉 exp(−iωt)dt

=
σcoh
4π

k′

k
NS(q, ω)

(1.16)

and

(
d2σ

dΩdE ′
)incoh

= (
〈
b2
〉
− 〈b〉2)

1

h

k′

k

∑

j

∫
〈exp(−iq.Rj(0)) exp(iq.Rj(t))〉 exp(−iωt)dt

=
σincoh

4π

k′

k
NSs(q, ω)

(1.17)

Here, Ss(q, ω) comes from Is(q, t) in which sub(s) denotes that the summation is

taken only over cases where j = l. Moreover, σcoh = 4π 〈b〉2 and σincoh = 4π(〈b2〉 −

〈b〉2) are coherent and incoherent scattering cross sections, respectively (see footnote

1).

It is useful to introduce another important function, the time dependent pair

correlation function (G(r, t))(also known as Van Hove function)(Eq. (1.18)),

G(r, t) =
1

(2π)3

∫
I(q, t) exp(−iq.r)dq (1.18)

So far, we have kept everything in the quantum form for the sake of completeness,

but from now-on, the equations are usually represented in the classical limit, which

gives better physical picture of the processes. One can think about G(r, t) as it would
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give the probability of finding a nucleus at (r, t), given that there is one at r = 0 at

t=0. And, for the incoherent part, Gs(r, t) would give the probability of finding a nu-

cleus at (r, t), given that the same nucleus was at r = 0 at t=0. However, this simple

interpretation assumes no correlation between scattering length of the nucleus and it’s

location, which can be wrong, for instance, for a crystal with multiple elements. One,

though, should be careful about the limits. So, for instance, the classical interpreta-

tion would result in S(−q,−ω) = S(q, ω), which means the probability that a neutron

loses energy ~ω is equal to the probability that the neutron gains the same amount

of energy! The right equation, however, would be S(−q,−ω) = exp(−~ωβ)S(q, ω),

which is well known as detailed balance equation. It means that, although for the

neutrons nucleus interaction, it does not matter in which direction the process goes,

but it is much more likely (factor of exp(~ωβ) to find the nucleus at a state of lower

energy level than a higher one.

Different Sources and Techniques of Neutron Scattering

There are two practical sources for neutrons. First one is nuclear reactors which

provide the cheaper neutrons. The other source is particle accelerators (spallation

sources). The flux provided by the particle accelerator is pulse-shape and has a

higher intensity, but is more expensive. Since the energy of neutrons in each of these

two sources is much higher than needed, mediators are used to provide thermal or

cold neutrons. The usual choice in a reactor is water, while in particle accelerator, the

liquid hydrogen is a popular choice. Then the neutrons are provided, using neutron

guides, for a few tens of instruments, each consisting of different tools and techniques,

but generally including some or all of the following components: monochromator to

select the wavelength of the neutron beam using Bragg’s law; collimator to keep the

neutrons with the same direction using parallel absorber plates; Chopper to make
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short pulses or picking out a small band of energies; detector to count the neutrons

by using nucleus interactions with 3He or 10B to produce charged particles which then

can be detected. Other tools are used in different instruments, like spin turn coil for

spin dependent measurements but the ones that named are the most important/basic

ones.

Since neutrons are neutral and don’t interact easily, it is hard to produce or detect

them, and so, it is crucial to make the best out of the limited fluxes we can make.

That’s why there are many different instruments, which are separately designed to

focus on a particular range of measurements in order to make the most effective and

practical use of the neutrons. Depending on whether the energy exchange of the

neutrons is measured or not, comes one of the main divisions in the field, namely

elastic (without energy exchange), and inelastic (with energy exchange).

Elastic neutron scattering is focused on measuring intensity by changing the scat-

tering angle. In this method, the intensity is measured in different angles either by

step-scanning or by using detectors, which are position sensitive. Elastic scattering

is insensitive to energy of neutrons (assuming the sensitivity of the detectors for neu-

trons with different energies can be averaged) and only counts them in specific angles.

So, the function which is used to describe the result depends only on q as a variable.

So, by integrating the differential cross section of the previous section with respect to

energy, one can get the relevant cross section. For elastic scattering, the coherent part

measures the structure factor (S(q)), which gives the correlations of atomic positions,

while the incoherent part is an isotropic background. The diffraction experiments and

Small-angle neutron scattering (SANS) experiments cover for big and small range of

q, respectively. For elastic (diffraction) one can write (Eq. (1.19))

S(q) =

∫
S(q, ω)d(~ω) = I(q,0) = 1 +

∫
g(r) exp(iq.r)dr (1.19)
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which is called the structure factor and for incoherent part it gives the trivial

answer Si = 1 and g(r) is known as static pair correlation function (or density-density

correlation function). The small angle scattering is when the angle of diffraction is

very small and so q is small (q = 4π sin(θ)
λ

< 0.5Å
−1

), which means that large “r”s can

be studied in this range.

In the inelastic scattering, the energy of neutrons are also of interest, so energy

analysis are being established before detection. The methods for doing this, usually

consist of using crystal analyser or time of flight method. Crystal analysers are arrays

of single crystals, which are used in a 3-D form (aka triple axis spectrometers) to

analyse the wave-vector of incident and scattered wave. Usually a set of measurements

is performed at constant q. Time of flight (TOF) method uses the fact that the

neutrons with different energies have different speeds and so, they will take different

times to go through the same path. This method is very important in spallation

sources since they provide beams in pulses and it would make it inconvenient to

use them by blocking all the flux with different energies to select only a fraction of

it. In inelastic scattering, the information about energy changes can be resolved to

get informations about time dependent (dynamics) properties of the system. But,

since it is impossible to get time dependent pair correlation function (G(r, t)) only

based on the scattering data, the presence of a model is a necessity to interpret the

data obtained from inelastic or quasi-elastic experiments. The quasi-elastic neutron

scatterings are inelastic neutron scatterings which focus on the energy transitions

close to 0 (small ω).

The other set of techniques in the inelastic neutron scattering are with the use

of analysing spins of the neutrons. These are polarization analysis and spin-echo

analysis. Neutron spin-echo (NSE) technique is basically based on the the Larmor

precession and uses the fact that the spin flip probability within a perpendicular mag-
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netic field should be proportional to the amount of time it spends in the field, and so

for two regions of the space with the same length but opposite direction, the popula-

tion of spins should not change if the speed of neutrons remain unchanged, and so any

change in the population would indicate the change in the speed of neutrons. Notice

that it is insensitive to neutrons’ speed if it remains unchanged. This technique is

very accurate and can measure the energy changes of neutrons to less than a nano

electron volt (neV). Here the coherent and incoherent scattering is a key to get data

about the structure and dynamics, and so for instance since the incoherent part pro-

vide information about self correlation it is important to improve the differentiation

between which part comes from coherent scattering and what fraction is because of

incoherent scattering.

Analyzing spins is another step forward to improve the techniques. NSE can looks

at the difference between incident and scattered momentum components. It is very

powerful tool to let us use bigger parts of the beam energy spectrum and so increasing

the flux and have a very high resolution at the same time. Another point about NSE

is that it gives a measure of I(q, t) at echo point, so it is directly a measure in time

space and not ω.

1.3 MSD and Protein Dynamical Transition

Understanding the dynamics of the systems in condensed matter phases and bi-

ological systems is a very wide and important section in the field and Mean Square

Displacement (MSD) of the atoms of a system is one of the important measures to

help doing so. In this chapter, the MSD definition and tools to measure it will be

mentioned very briefly and then what is called Protein Dynamical Transition (PDT)

will be reviewed by providing different descriptions and models and discussions of

the field mainstream (homogeneity is assumed in these cases, since 1
3

implies that the
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projection of the MSD on any of Cartesian axis gives similar value).

1.3.1 Definitions

MSD

Mean Square Displacement is defined as ((1.20))

MSD(t) =
1

3

〈
(r(t)− r(0))2

〉
(1.20)

where the r(t) and r(0) gives the position of a particle at time t and time 0, and < .. >

denotes the averaging. One third is for convention and comes from the fact that in

experiment we are usually dealing with the (r.q) . MSD is a measure of the flexibility

of the system and there are different experimental tools to measure it depending on

the size and state of the system of interest, where among them neutron scattering,

dynamic light scattering and Mössbauer spectroscopy are the most important ones.

For small t, limt→0, where the particles are in ballistic motion between collisions, each

behaves like a free particle, and so MSD is quadratic in time. In the other limit, when

limt→∞ for liquids, particles displacement are diffusive and it is linear in time.

PDT

The system dynamic is a function of the energy of the system and of its tem-

perature. At very low temperatures when the only mode available for the system’s

particles is their fluctuations around their equilibrium positions, and so can be con-

sidered in the harmonic vibrations, the MSD of particles is proportional to the square

of their average amplitude. By increase of temperature the square of amplitude in-

creases linearly and so MSD increases linearly with temperature (notice that this is

only true at the temperatures that are low enough to limit all dynamics of the system

in relevant time-scales except harmonic oscillation). At much higher temperatures
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where all dynamics are accessible in the relevant time-windows, and diffusion makes

the biggest contribution to the MSD, fluctuations are proportional to the energy of

the system and so it’s velocities and as a result the MSD. In the region in between,

is where very interesting and complicated things happen.

In 1980 Keller et al. [50] used Mössbauer spectroscopy to deduce MSD of the iron

atom at center of oxymyoglobin and to model the dynamics of the molecule. They

broke the MSD into the vibrational, conformational and diffusional parts, and they

comment that above T=240 K the results for the crystal and solution differ because

of diffusion. Parak et al.[51] provide more experimental results for water solved iron

and crystallized oxymyoglobin iron and discuss that based on their model should be 3

modes producing an unexpectedly large MSD where two modes have strong coupling

to the iron, and so unlike nonspecific modes that do not couple strongly, these modes

should be within protein’s modes and describe protein dynamics.

In 1989 Doster et al. [52] used elastic and inelastic neutron scattering to mea-

sure the MSD and address the corresponding dynamic’s time-scales. They used the

term “Dynamical Transition” to describe their results, namely the striking change

(decrease) in the intensity of elastic scattering with small values of q and the corre-

sponding increase in the MSD and the deviation from the Gaussian behaviour above

the temperature of 180 K (which is mainly the result of rotations of methyl groups,

they also found the change of Gaussian from vibrating above 240K) and then the sec-

ond change at 240K, which was considered as a resolution-dependent transition named

the Dynamic Transition in analogy with glass transition. To conclude, there are new

non-vibrational dynamics provide these behaviour above T 180K for time-steps 1-

100 ps which mimics the MSD dependencies came from Mössbauer spectroscopy with

much longer time-scales (10−7 s). So they suggest these dynamics could be coupled.
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1.3.2 Views and Models

Since the early reports on the onset of increasing of MSD vs time, various views

provided different models to describe the PDT. Some apparently non-converging

results like the reports of different temperatures using different instruments and

time-scales and analysis and interpretations of incoherent neutron scattering and

Mössbauer spectrum (and sometimes wrong result from experiments without proper

procedure!) have puzzled the scientific society and kept them away from arriving at

a global agreement. In the following, three competing models in the mainstream are

discussed.

Hans Frauenfelder’s View(s)

Hans Frauenfelder is a well-known scientist and following his papers is useful not

only because of their impacts on the field but also because they have been chang-

ing direction of focus during the years and cover a wide range of views. In 1991

Frauenfelder et al. [53] published a very well-cited paper which offered a complex

landscape model to describe the dynamics of the proteins. In this view, proteins as-

sume “conformational sub-states” in which the energy of them have so many valleys

with nearly same energies, and for characterizing them statistics should be used. The

Energy potential is a function of all coordinates of the conformation space where by

different cross sections one can get different energy and length scales. They use these

ideas to stress the similarity to glassy systems and suggest that the use of simple

exponentials to describe protein behavior is inadequate and should be substituted by

other functionalities, stretched exponentials for example, as is used to describe glass

forming materials. By providing data for their example molecule (“Myoglobin”), they

argue that binding of CO to the heme iron at low temperatures is a local phenomenon
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independent of the whole protein relaxation and so only non-exponential time depen-

dence would be sufficient to describe it (like β relaxation in glass formers), while

the relaxation phenomena are usually collective processes including many atoms of a

molecule and so an Arrhenius temperature dependence for relaxation time constant is

not proper and we should use functions used for α relaxations in glass formers. They

use this analogy and say that in the theoretical form, both can be discussed in rugged

energy landscape (the α and β relaxation had been pointed before, for instance [52]).

This paper tries to provide a very wide view of the complexity of the proteins

and makes use of the glass and glass-spin models to provide the basics for improving

theory of this multi-dimensional landscape at a better “resolution”. But beside that,

they only distinguish the glasses and proteins with the possible changes in the energy

landscape of proteins because of mutagenesis and evolution. Moreover they almost

never mentioned how the environment, or more specifically the presence of solvent

affect this “landscape” and alter the relations and dynamics and functions of the

molecule, and whether it is still useful to use a landscape with the presence of a liquid

as the solvent, which can not be described as a static landscape. Moreover, as long as

heme is of interest, it is hard to get a real measure of the whole protein motions since

the role of solvent in the heme interactions is significant. Due to these issues, solvent

comes to the picture in a rather radical way. In a paper in 2002 Frauenfelder and

Parak (and others[54]) described the motion of the proteins in terms of two different

classes, namely slaved and non-slaved.

In this new picture, the protein is not by its own, but the hydration shell is included

to make the landscape and plays a significant role. They compare the rates k(T ) of

the motions of proteins and fluctuations of the solvent to make two groups of slaved

and non-slaved motions. The slaved are those witch maintain the ratio of the rate

to the solvent fluctuations rate n(T ) = kdiel(T )/k(T ) where the rate of the solvent
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fluctuations comes from the dielectric measurements of the bulk solvent (kdiel(T )).

In this sense, n(T) is the measure of how the fluctuations of solvent get slowed by

the protein and its hydration shell. These are the motions that are slaved by the

solvent, and those motions with rates that don’t keep this relation are independent

fluctuations of the protein and hydration shell that are making the landscape and

are independent of the bulk. To describe the connection of the protein and solvent

they give a model where at very low temperatures the particle escapes one sub-

conformation to another in a region with very small barriers between minima and

rarely goes to the other parts of the conformational space (another statistical sub-

state). However, this rate increases with increasing temperatures significantly, and

they formulate a model of the Brownian motion in the conformation space where it

can move around in the conformational space. To give an example they provide data

for Myoglobin in a glycerol/water solvent with the ratio 3/1, but they claim that the

picture is general and can be applied to very different proteins and conditions.

In a 2004 paper, the Fenimore et al. [1], get to the MSD and its temperature and

time dependence. In this view the dynamic of proteins are divided to three classes of

fluctuations. Here the non-slaved are not the protein and hydration shell, but the dry

(aka dehydrated) vibrations of proteins. Second the “shell-coupled” processes where

protein and β fluctuations in the hydration shell are coupled, the “solvent-slaved”

motions are those that follow the α fluctuations of the bulk solvent. As a result,

the picture of the landscape also changes: the conformational sub-states contain

a number of sub-states with different structures with probably different functions,

where the sub-states are containing different tiers, α and β, where the transitions of

former are slaved with the bulk and the later which reside in the former, is coupled

by hydration-shell and inside, it probably contains more unrefined structures. The

MSD is divided into two parts (Eq. (1.21)); one part comes from the linear fit to
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the low temperatures (from 10K to 170K) MSD(〈x2(T )〉v), and the other from the

subtraction of the total MSD from the vibration part.

〈x2(T )〉 = 〈x2(T )〉v + 〈x2(T )〉c (1.21)

They follow similar procedure for other techniques to define 〈x2(T )〉c. They label

the rate characteristic of different experiments by km where the rate and time are

related as km = 1/τ , where τ for Mössbauer experiments is 140 ns. For the elastic

neutron scattering they use Heisenberg uncertainty = ~/Γ, where Γ is the energy

resolution of the instrument. Then they apply the random walk model to describe

the Fe MSD at T less than 250K (random walk of the heme iron in conformational

sub-states). “s” is the length of the steps and kc(T ) is the rate of them. For an

infinite system it comes (Eq. (1.22))

〈x2(T )〉c ' ns2 = (
kc(T )

km
)s2 (1.22)

and for bounded systems it is accurate only for low temperatures. For higher

temperatures they talk about two limiting situations. The first is the random walk in

the square well, where the MSD converges to a constant independent of temperature.

The other scenario is a harmonic potential where MSD comes as 〈x2(T )〉c = kbT/b.

The major claim here is that there are three processes determined by α and β rates.

By convention they chose the 10−2s as the limit for glasses and claiming that there is

two glass temperatures for the protein (Tg
α = 173 and Tg

β by extrapolation is 100K),

and so td (dynamical transition temperature) for proteins is not special in a funda-

mental way and only indication of temperature where “〈x2(T )〉c appears to vanish”.

But to do so, a list of similarities between proteins and “glasses” is provided namely,

inhomogeneity described by “energy landscape”, with two types of fluctuations, α and
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β, with rates kα(T ) and kβ(T ) respectively, and that they both also “show relaxation

phenomena at liquid helium temperatures”. Then by using Vogel-Tammann-Fulcher

(Eq. (1.23)), and Arrhenius equation (Eq. (1.24)) for rates,

kα(T ) ≈ Av exp(
−Ev

kb(T − T0)
) (1.23)

kβ(T ) = A exp(
−H
kbT

) (1.24)

they argue that the coupling of the hydration shell and MSD of Fe measured by

Mössbauer experiment holds for temperatures around or less than 250 K. This comes

from the second graph of the paper (Fig. 1.1 2 ) where they argue that the rate can be

fitted with an Arhhenius form with parameters in the range of the typical β relaxation

(the values for an Arrhenius fit for glycerol/water with 3/1 ratio is given earlier in

the paper for comparison, namely H≈10-30 kJ/mol and log(A)≈ 14 − 15s−1), and

so they label it as the β relaxation. Then by dividing the MSDc to two different

regimes of temperature dependent, where above the 250K it is proportional to T and

so justifies the harmonic potential scenario 〈x2(T )〉c = kbT/b, and for bellow 250K

where the temperature dependence of the MSDc and kβ is the same and so they are

coupled and the equation ((1.22)) should be used where they assume kc(T ) = εkβ(T )

and ε is the fraction of the shell water transition that causes the Fe to move.

In 2009 “A unified model of protein dynamics” paper [55] Frauenfelder et al. use

different hydration levels to measure the α and βh where now h is indication of the

hydration level of the protein and βh are the statistically independent β which are

not dependent on α fluctuations. They embedded the solution in solid poly (vinyl)

alcohol (PVA) to eliminate the collective relaxation and since α is viscosity related, so

2Fig.1 is second Figure from [1]
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Figure 1.1: (A)The MSD From Mössbauer Scattering where the Dashed Line Is Vi-
brational Contribution, Denoted by V, (B) Give the Rate kβ of Dielectric Relaxation
of Hydration Water of Metmyoglobin, (Right Vertical Axis) Compared with the Log
(MDDc) (Left Vertical Axis) [1]

they expect they be absent by using this technique. Then they propose that the MSD

changes at higher temperatures arise from the fraction of the area of βh spectrum that

arises from the modes faster than the Mössbauer time-window (140ns). The spectrum

can be fitted by equation 5 of the paper (Eq. (1.25)) where kβ = 2πν and b and c

are fitting parameters. The fraction area of spectrum with slower rates (aβ) than

Mössbauer can be estimated by equation 6 of the paper (Eq. (1.26)) where kM is

mössbauer rate (1/250 ns−1).

εβ
′′
(kβ, T ) = ∆εIm[1 + (ikβ/kh(T ))b]−c (1.25)

aβ(T ) = 1−
∫ ∞

logkM

ε
′′
(kβ, T )d(logkβ)/a

′′
(T ) (1.26)

In another paper by Frauenfelder and co-workers ([56]), the time correlation func-
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tion for gamma absorbtion is provided by 〈exp[−iq.RC(0)] exp[iq.RC(t)]〉 where the

RC(0) and RC(t) are the quantum operators and quantum transition amplitude be-

tween them gives the conformational part of time correlation function. The brackets

denotes quantum and ensemble averaging. Then by saying that the iron atom is cou-

pled to the hydration shell fluctuations and they are to the macroscopic system, and

by result of that for quantum systems that coupled to the macroscopic systems, the

quantum dephasing occurs exponentially in time domain, they write the transition

amplitude for ensemble of proteins as (Eq. (1.27))

〈exp[−iq.RC(0)] exp[iq.RC(t)]〉 =

∫
d(log kβ)ρ(kβ, T ) exp(−χkβ|t|) (1.27)

where the χkβ is the rate of dephasing, where the value of χ is obtained from

fitting =1.8 and then kept constant. After integration of the intermediate correlation

function (Equation 3 of the paper) with respect of time, the resulting scattering

function S(∆Eexp) (Eq. (1.28)) agrees with experimental data.

S(∆Eexp) = fV (T )

∫
d(logkβ)ρ(kβ, T )× 1

π

Γ
2

+ χ~kβ
∆E2

exp + (Γ
2

+ χ~kβ)2
(1.28)

Here the fV represent the vibrational fraction, ρ(kβ, T ) is the normalized distribu-

tions (divided by area), Eexp = E0v/c(E0 is energy of gamma ray and v the velocity

of the source) and Γ is the width of the energy due to life time of the nucleus.

For more data on neutron scattering with similar viewpoint, one check Magazu’s

papers on the issue, for instance ( [57][58][59]). For a recent summary of Frauenfelder’s

view and his critics of other points of view, the 2013 paper [60] would be a good

reference.
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Wolfgang Doster’s View

The term “protein dynamical transition” for proteins’ motions coupled to the ki-

netic glass transition of the solvent, first introduced by Doster in two important papers

([61] [52]) employing calorimetry and infra-red spectroscopy (1986). Those were fol-

lowed by intensive inelastic neutron scattering measurements on some biomolecules,

mainly myoglobin, which showed similar temperature dependencies with the glass

formers. The hydrogen bond network clusters where suggested on the former pa-

per, while the later paper suggests a coupling between fast local and slow collective

motions, a feature of dense glass formers.

In 1990 PRE ([62]) Doster et al. using the shape of the inelastic scattering function

approximated the scaling behaviour based on mode-coupling theory (MCT) for simple

liquids near liquid-glass transition. There the MCT (a theory which can approximate

cage effect) is used to provide a connection between density fluctuations of the protein

and scaling properties of liquid-glass transition in simple liquids, instead of mode-

softening or stochastic description in their Nature paper ([52]).

In 1998 there was another work ([63]), which reported on the role of the solvent

composition and its viscosity on kinetics of a protein. They studied binding of CO

to Myoglobin. In this work they used different co-solvent concentration (which mod-

ifies the dielectric constant, chemical potential and the surface tension) and different

viscosities to distinguish between intramolecular and surface-coupled dynamics. The

results suggested that the viscosity of solvent does not affect the inner barriers, but it

does affect the outer kinetic barrier, which controls entry of CO. They also suggested

that the increase in the surface tension from co-solvents like glycerol causes increase

in the water concentration around the protein and result in a reduction of viscosity at

microscopic level comparing with the bulk viscosity. Here they just briefly mention
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the protein-water hydrogen bonds.

In 1999 ([64]) the Mössbauer effect was used to study the solvent effect, here the

80% sucrose/water. They studied the temperature dependence of heme displacements

and its coupling to the visco-elastic relaxation of the solvent. They used the Gaussian

approximation and classical limit of 〈x2〉 = 0 at T = 0 to analyse their data. Com-

paring their results for the mean square displacement of the heme and results from

Franke, M (1992 3 ), they tried to illustrate the effect of viscosity on MSD, namely

the increase in the dynamical transition temperature with increasing viscosity (Fig 7

of [64]).

In a more recent review article, Doster et al. in 2005 [65] provide a broad anal-

ysis of the experimental data, mainly dynamic neutron scattering for proteins and

proteins-water time-resolved dynamics, by moment analysis of the intermediate scat-

tering function and derive the time-dependent displacement distribution function.

Based on this distribution function, they identify two types of displacements, tor-

sional transitions and continuous motions. They claim that the continuous motion is

based on small displacements and hydrogen bond fluctuations (which induce fast β

processes) and the transition is a coupling effect of the protein to water. Its tempera-

ture dependence varies with the hydrogen bond strength and viscosity (discontinuity

of OH bond stretching vibration near Tg of solvent). Moreover, by splitting the

intermediate scattering function in two exponentials, and plotting the constructed

displacement distribution (Eq. (1.29)), it has been shown that the side-chain (mostly

methyl groups) rotation exists in dehydrated and hydrated transitions for proteins,

and is weakly coupled to the solvent

3 Franke, M. 1992. Konformationssubzustande in Myoglobin, Mössbauerspektroskopische Un-
tersuchung und modellmassige Deutung der Reaktionskinetik mit CO. Ph.D. thesis. Friedrich-
Alexander-Universitat, Erlangen-Nurnberg, Germany.
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I(q, T, tres) = A1.exp(−q2〈∆x2
1〉/2)) + A2.exp(−q2〈∆x2

2〉/2)) (1.29)

where 〈r2〉 = 3〈∆x2〉.

The claim is that the change in the population of open hydrogen bonds above this

temperature Tg results in a large decrease of the characteristic time of translational

diffusion (long-range), and this is where the time resolution of the instrument starts to

affect the reported transition temperature. The compact proteins can’t undergo the

glass transition, which “always involves the arrest of long-range transitional diffusion”.

So, they insist, the term “protein-dynamical transition” implies freezing of specific

fraction of local motions because of coupling to the glass-forming solvent. It shows

the relaxation time of water which is a dynamic property, drastically changes in

a short temperature range. They differentiate their view from assigning α and β-

processes to proteins (Hans’ view), by insisting that the generalized Langevin equation

with frequency dependent frictional forces gives the right description of observations.

At higher temperatures, the frictional role of solvent molecules with much faster

motions than the collective motions of protein is their main role. And around the

glass transition, protein and solvent motions freeze at the same rate. They suggest

that viscose coupling is the right term for the interaction of water with the protein,

since the time-scale of the adjustment of water molecules is much faster than protein’s

collective displacements. Also the dependence of the dynamics of the protein on the

solvent, is their reasoning, suggests a seascape instead of landscape (dynamic fast

changing instead of self trapping at fixed energies).

In 2008[66], Doster makes it clear that by transition he means huge change in

the corresponding relaxations times, which is kinetic and not a thermodynamic phe-

nomenon. That the α relaxation changes, near a critical temperature, are super-

Arrhenius. That the smoothness of the structural relaxation times in a log-scale for a
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long range doesn’t change the fact that in the linear temperature form quantities like

displacements, specific heat and thermal expansion show a sudden onset at the glass

transition temperature. He gets to the temperature 240K as the glass temperature

with respect to 50 ps time scale. That the liquid behaviour as an associated behaviour

of liquids can will be arrested bellow the glass transition temperature and can happen

not only for bulk water but for hydration shell water molecules as well, and the differ-

ence between them is in the magnitude of diffusion coefficient and crystallization rate.

Here, he take hydrogen-bond fluctuations as β processes and not only as their triggers

(In 2010 review paper [67], he talks about “the hydration bond fluctuations, which

give rise to fast β-processes.”). Doster points out here that for the purpose of model-

ing, describing intensity of elastic scattering is not enough and successful models for

proteins’ dynamics, should be able to describe the spectral (inelastic) data.

In 2010 PRL Doster et al. [68], they use neutron backscattering to study the

water in a deuterated protein “C-phycocyanin”. They investigate the existence of the

so-called hidden transition of the shell water. The integrate of the inelastic part of the

scattering does not support the specific resolution independent change in temperature

around 220K. The integrand amount of increase depends on the wave-vector as well

as ω, nothing specific about 220K, while the elastic friction showed a drop in the

220K, which suggests the same transition temperature for both samples. Then they

use the same model which was used by the Chen et al. [2] (more detain in 1.3.2) to

analyse the spectra, an elastic line and a Kohlrausch-Williams-Watts function (Eq.

(1.30) (equation 1 of the [68]))

Sth(q, ω) = fq

(
a1δ(ω) + a2

∫ ∞

−∞

dt

2π
eiωt−(

|t|
τ

)β
)

(1.30)

which is Fourier transform of a stretched exponential and fq is the Debye-Waller

factor for phonon scattering outside resolution of instrument. Then they show that
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different fitting procedures to obtain the rates provide different results.

In 2011, Doster [69] talks about the confusion that defining the protein dynamic

transition as the temperature onset of mean square displacement can cause. Doster

suggests that the drop of the elastic intensity (normalized by low temperature), which

approximate the intermediate scattering function at the resolution time, to the 1/e

of the low temperature value can be a better definition of temperature onset of the

transition for any given time window. The advantage of it would be that the elastic

intensity is a direct experimental value and is not influenced by the models and

assumptions which are inevitable for other values like finding the displacement. Seems

inspired by Gotze work[70], he tries to reduce the use of α and β-processes, and talk

about first and second processes mostly. He counts three onsets of the mean square

displacements in respect to temperature. One is related to the fast fluctuation of

hydrogen bond (in the β process), which gives the increased amplitude above the

glass transition, independently of the resolution of the instrument. The second one,

which varies with the time resolution, is related to the long collective displacements.

The third one, which is independent of the solution and shows up even in dehydrated

proteins and bellow the glass temperature, is related to the side-chain rotations.

Sow-Hsin Chen’s View

In 2005,2006 and 2007 a number of papers was published by Chen et al. about the

fragile to strong dynamic crossover (structural transition) in the confined water at

temperature 220K. Some of them where investigating, either by quasielastic neutron

scattering[2, 71, 72] or computer molecular dynamic simulations[73], the hydration

water layer around proteins and biomolecules. Here we follow the most relevant and

influential one as related to our discussion[2]. In this paper they consider the shell

water as the one single layer of water molecules covering the surface of the protein
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and so they chose h (the ratio of water mass/ protein mass) around 0.3 and they

performed other checks (differential scanning calorimetry) to check for absence of

any bulk-like water. They used two samples for neutron scattering measurements,

one with H2O water and one with heavy water (D2O) and then they subtracted the

incoherent signal of protein hydrogen atoms. They covered the temperature range

180-270 K. The NIST center for neutron research with energy resolution of 0.8 µeV

was their neutron source. The model they used for their analysis is the relaxing-cage

model(RCM). In this model, the intermediate scattering function for translational

dynamics of water (the rotation is disregarded for Q < 1.1Å
−1

according to [74]) is

divided into two parts. The fast Gaussian in-cage vibrational relaxation, followed by

a plateau, and a slow (t > 1ps) relaxation of the cage with a stretched exponential

(Eq. (1.31) here, equation 1 in [2]).

F (Q, t) = F S(Q, t)exp

[
−
(

t

τT (Q)

)β]

where τT (Q) ∼= τ0(0.5Q)−γ

(1.31)

where the F S(Q, t) stands for the fast vibrational dynamics of water molecule in

the cage. It is calculated from simulations since it is not sensitive to temperature.

τT (Q) is translational relaxation time, which is T and Q dependent and is specified

by two other parameters (τ0 and γ) which by stretch parameter β “are obtained by

analysing simultaneously a group of nine quasi-elastic peaks at different Q values”.

The β value is 0.5. Then they obtain the average (translational) relaxation time by

(Eq. (1.32))

〈τT 〉 =
τ0Γ(1/β)

β
(1.32)

which is independent of Q.
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Figure 1.2: “Neutron Spectra and Their RCM Analyses. Measured QENS Spectra

(Filled Symbols) and Their RCM Analysis Results (Solid Lines) at Q = 0.87 ΓΓΓÅ
−

1
and at a Series of Temperatures Are Shown. (Inset) One Particular Spectrum at T =
230 K Is Singled out and Contrasted with the Resolution Function of the Instrument
for This Q Value (Dashed Line).” [2]

The obtained average relaxation times show two different behaviours. The high

temperatures behaviour match well with “Vogel-Fulcher-Tammann (VFT) law 〈τ0〉 =

τ1exp[DT0/(T − T0)]”, which describes fragile liquids, and for low temperatures, an

Arrhenius law 〈τ0〉 = τ1exp[EA/kBT ] was found which describes strong liquid 4 . The

intercept of the two is found to be at TL =220K (Fig. 1.3). Also mean square displace-

ment (using Gaussian approximation) and βγ vs temperature changes are provided

which show changes in 220K (Fig. 1.3). Graphs of the dynamic structure factor vs

energy are provided for different temperatures. In fig.2 of the paper, specifically, the

neutron spectra and RCM fits are provided. Though the fitting in the maximums

doesn’t look very precise as can be seen in (Fig. 1.2).

1.4 ET and FDT Application

Cellular and biological functions require energy and electron transfer (ET) is a

key underlying step. The fascinating wide range of distances and time intervals that

4 T0 is the temperature in which the fragile liquid correlation length diverges (=176K in the
paper), and EA is the activation energy (=3.13 kcal/mol in the paper)
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Figure 1.3: “Evidence for the Dynamic Transition. (A) The Temperature Depen-
dence of the Mean-Squared Atomic Displacement of the Hydrogen Atom at 2-Ns
Time Scale Measured by An Elastic Scan with Resolution of 0.8µeV. (B) Tempera-
ture Dependence of the Average Translational Relaxation Times Plotted in log(〈τT 〉)
vs. T0/T ,Where T0 Is the Ideal Glass Transition Temperature. Here, There Is a Clear
and Abrupt Transition From a VogelFulcherTammann Law at High Temperatures to
An Arrhenius Law at Low Temperatures, with the Fitted Crossover Temperature
TL = 220 K and the Activation Energy EA = 3.13 Kcal/mol Extracted From the
Arrhenius Part Indicated in the Figure.” [2]

biological ETs occur in and studies of the efficiency of the process have been the focus

of many studies [75, 76, 77, 78, 79, 80, 81]. One of the earliest was the work of De

Vault and Chance [82] helping the realization of quantum mechanical tunneling as

the physical mechanism behind many ET reactions. In this case the focus was on

the light-induced oxidation of cytochrome in Chromatium based on its insensitivity

to temperature for low temperatures.

Modern theories of electron transfer assign the energy gap X between the donor

and acceptor energy levels to the electron-transfer reaction coordinate.[3, 83, 84, 85]
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For the half reaction changing the oxidation state of the system, the energy gap

∆E(q) is between the electronic states of the oxidized and reduced states.[15] The

free energy surface is defined by tracing out the entire manifold of the nuclear degrees

of freedom q while restraining the energy gap to a given value X

e−F (X)/(kBT ) ∝ 〈δ (X −∆E(q))〉 (1.33)

For electron transfer in solution, one considers the one-electron states of the donor

and acceptor and the instantaneous (fluctuating) energy gap X between them as the

reaction coordinate. Thermal fluctuations reduce this gap to zero in the activated

state of an electron transfer reaction (radiationless transition). The same energy

gap comes in resonance with the radiation photon in spectroscopy of charge-transfer

transitions (Figure 1.4a).[86] One observes charge-transfer absorption or emission

bands with the maxima corresponding to the average excitation energies 〈X〉i. The

separation between the maxima is the spectroscopic Stokes shift,[4, 87] which can be

used to quantify the reorganization energy labelled as λSt (Fig. 1.4b).

Please note that in general G = F +pV which connects the Helmholtz free energy

and Gibss energy with the work done at constant presure p which is negligible for

most problems in condensed mater,[88] and so here they are used interchangeably.

If Pi(~ω) is the probability of absorbing (i = 1) or emitting (i = 2) a photon with

the energy X = ~ω, the free energy surfaces of electron are constructed to compliment

this picture in terms of the free energy (reversible work) required to achieve a given

value of X: Gi(X) = Gi
0 − kBT ln[Pi(X)] (Fig. 1.4c), where Gi

0 is the free energy at

the minimum. The separation between the minima of the free-energy surfaces then

becomes equal to 2λSt. One additionally can define the reorganization energy from

the curvature of the free energy surface at the minimum, ∂2Gi(X)/∂X2|X0i
, which

can be related to the variance of the reaction coordinate X according to the standard
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Figure 1.4: (a) Reaction Coordinate X = ~ω for Solution Electron Transfer Between
the Donor (D) and Acceptor (A).[3] (b)Probability Densities for Absorbing (abs.) and
Eemitting (em.) a Photon in a Charge-Transfer Optical Transition; 〈X〉i Stand for
the Average Transition Energies. The Separation Between the Peaks of Optical Tran-
sitions Represents the Stokes Shift and the Corresponding Reorganization Energy λSt.
(c) The Free Energy Surfaces of Electron Transfer Gi(X) = Gi

0− kBT ln[Pi(X)] Fol-
lowing From the Optical Transition Probabilities Pi(X). The Reorganization Energy
λ Defines the Curvature of the Free Energy Surface Near the Bottom (Shown by the
Double Arrow).It Also Provides the Measure of Inhomogeneous Broadening of the
Optical Charge-Transfer Band[4] (σ2

X = 〈(δX)2〉 = 2kBTλ in (b) and in Eq (1.34)).
The Filled Dots in (b) and (c) Indicate, Respectively, P2(0) and the Crossing Point of
Gi(X) Representing the Transition State, X = 0, Of the Electron-Transfer Reaction.
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rules of statistical mechanics[89, 85, 90]

λ = 〈(δX)2〉/(2kBT ) (1.34)

A schematic of the free energy surfaces for half ET is presented in figure 1.5.

The Marcus theory of electron transfer[76] defines the free energy barrier for elec-

tron transfer, ∆G†, in terms of the reorganization energy λSt = λ and the reaction

free energy ∆G0

∆G† =
(λ+ ∆G0)2

4λ
(1.35)

Returning to the picture of optical transitions, the variance reorganization energy

λ determines the Gaussian width of the energy-gap fluctuations or the inhomogenoues

width of a single vibronic optical line.[91] As mentioned above, in the Marcus picture

one has λSt = λ, which is a specific case of a general result, namely FDT.[92] This

phenomenology changes for protein electron transfer in solution, where one finds[90,

93] λ� λSt.

A generic Gaussian distribution of the reaction coordinateX results in the parabolic

free energy surface[83, 94, 90]

Gi(X) = Gi
0 +

(X − 〈X〉i)2

4λ
(1.36)

where i = Ox,Red.

We can apply the condition of crossing at zero energy gap, GRed(0) = GOx(0), to

obtain the average values

〈X〉Ox = −λSt − (λ/λSt)∆G0

〈X〉Red = λSt − (λ/λSt)∆G0

(1.37)

where ∆G0 = GRed
0 −GOx

0 is the reaction free energy. The Stokes-shift reorganization

energy from these equations is half of the separation between the minima of the
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Figure 1.5: Schematic Representation of the Free Energy Surfaces for Half Electron Trans-
fer, Ox + e− → Red. The Oxidized (Ox = 1) and Reduced (Red = 2) States Are Charac-
terized by Approximately Parabolic Free Energy Surfaces Along the Energy Gap Reaction
Coordinate X, with the Minima at 〈X〉1 and 〈X〉2. The Separation Between the Minima
Is Twice the Stokes-Shift Reorganization Energy λSt. The Curvatures of the Parabolas
Produce the Reorganization Energy λ Related to the Variance of X: λ = 〈δX2〉/(2kBT ).
The Activation Barrier of a Half Reaction Is Determined by Crossing of Two Parabolas at
X = 0 And Is Given by Eq (5.2) At Zero Reaction Free Energy.

crossing parabolas

λSt = 1
2
|〈X〉Red − 〈X〉Ox| (1.38)

The activation barrier for the cathodic process is the free energy difference between

the activated state, GOx(0), and the free energy at the minimum, GOx
0 : ∆G† =

GOx(0)−GOx
0 . One gets from eqs (1.36) and (1.37)

∆G† =
(λr + ∆G0)2

4λr
(1.39)

where λr is the effective reorganization energy given by eq (1.40)

λr =
(λSt)2

λ
(1.40)

For reactions involving small values of ∆G0, typical for biology,[79] the reorgani-

zation energy becomes the most important factor determining the reaction barrier.

While the electrochemistry of cytochrome c would be the subject of chapter 4, the

elaboration on the breaking FDT, namely λSt 6= λ , the use of fluctuation dissipation

relation to define the effective temperature, the role of effective temperature to un-

derstand the rate of ET, and returning to the FDT regime at low temperatures are
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provided in chapter 5. Cytochromes are proteins with heme and they are structurally

very similar. In this work we chose cytochrome c because the experimental data for

electrochemistry of it was available in the literature.

1.5 Charge Interaction

The last part of this work is about the screening of Coulomb charges inside liquid

dielectrics. Here the derivation of the main equation, which is followed for the theory

development and simulation calculation, is provided. Starting from definition of free

energy one can write

∆F

= FY − FX = − 1

β
ln
QY

QX

= − 1

β
ln{
∫ ∫

d~pNd~rNexp[−βHY ]∫ ∫
d~pNd~rNexp[−βHX ]

}

(1.41)

now by inserting 1 = exp[+βHX ]exp[−βHX ] in the numerator

∆F

= − 1

β
ln{
∫ ∫

d~pNd~rNexp[−βHY ]exp[+βHX ]exp[−βHX ]∫ ∫
d~pNd~rNexp[−βHX ]

}

= − 1

β
ln〈exp[−β(HY −HX)]〉

(1.42)

If one have two charges in a liquid, HY −HX can be replaced by q1φ1 + q2φ2, and

one gets

∆F = − 1

β
ln〈exp[−β(q1φ1 + q2φ2)]〉 (1.43)

where

35



φ1 = φs1 +
q2

2R
& φ2 = φs2 +

q1

2R
(1.44)

here R is the distance between two charges and φsi is electrostatic potential created

by the dielectric at the position of charges qi, i = 1, 2.

Now by writing the cumulants, showing only first two non-zero terms one could

write

∆F

' 〈q1φ1 + q2φ2〉 −
β

2
〈[δ(q1φ1 + q2φ2)]2〉+ ...

' 〈q1q2

R
+ q1φs1 + q2φs2〉 −

β

2
〈(0 + 0 + q1δφs1 + q2δφs2)2〉+ ...

' q1q2

R
+ q1〈φs1〉+ q2〈φs2〉 −

β

2
(q1

2〈δφs12〉+ q2
2〈δφs22〉+ 2q1

2q2
2〈δφs1δφs2〉) + ...

(1.45)

for interaction free energy of the two charges in the realm of linear response one

finally gets

∆F −Gs1 −Gs2 = q1q2(
1

R
− β〈δφs1δφs2〉) (1.46)

where the Gsi is the energy of solvation for the charge qi.
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Chapter 2

DYNAMICAL AND ORIENTATIONAL STRUCTURAL CROSSOVERS IN

LOW-TEMPERATURE GLYCEROL

This material was published in Physical Review E (journal) 94(1), p.012616 (2016

July 22).

2.1 Summary

Mean square displacements of hydrogen atoms in glass-forming materials and pro-

teins, as reported by incoherent elastic neutron scattering, show kinks in their tem-

perature dependence. This crossover, known as the dynamical transition, connects

two approximately linear regimes. It is often assigned to the dynamical freezing of

subsets of molecular modes at the point of equality between their corresponding relax-

ation times and the instrumental observation window. The origin of the dynamical

transition in glass-forming glycerol is studied here by extensive molecular dynam-

ics simulations. We find the dynamical transition to occur for both the center of

mass translations and the molecular rotations at the same temperature, insensitive

to changes of the observation window. Both the translational and rotational dynamics

of glycerol show a dynamic crossover from the structural to a secondary relaxation at

the temperature of the dynamical transition. A significant and discontinuous increase

in the orientational Kirkwood factor and in the dielectric constant is observed in the

same range of temperatures. No indication is found of a true thermodynamic tran-

sition to an ordered low-temperature phase. We therefore suggest that all observed

crossovers are dynamic in character. The increase in the dielectric constant is related

to the dynamic freezing of dipolar domains on the time-scale of simulations.
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2.2 Introduction

Displacements of atoms and molecules induced by thermal agitation generally in-

crease with temperature. A linear growth of the mean-squared displacement (MSD)

with increasing temperature is predicted by the Nyquist (fluctuation-dissipation) the-

orem [92, 95]. The MSD is experimentally extracted from either the intermediate

scattering function of the neutron scattering experiment [96] or from the fraction of

recoilless γ-ray emission of the 57Fe nucleus in the Mössbauer experiment [80, 97].

The Nyquist theorem was found to be violated for a number of glass-forming mate-

rials, where a kink in the MSD vs. temperature is often observed at the laboratory

glass transition [98]. More complex behavior, with several kinks [99, 100, 101], was

observed for proteins in partially hydrated powders or in the polycrystalline form

[102, 103].

A typical temperature dependence of the protein MSD starts with the linear in-

crease in accord with the Nyquist theorem and the corresponding vibrational density

of states [103, 104]. It is followed by one or two low-temperature crossovers and,

finally, with a much stronger increase above the temperature of the dynamical tran-

sition Td ∼ 200 − 250 K [105]. This latter temperature depends on a number of

factors, including the resolution of the spectrometer, i.e., effectively the time period

over which the atomic displacements are recorded [106, 107]. This phenomenology

has attracted significant attention since enhanced flexibility and, therefore, the ability

to perform biological function can develop at T > Td [108].

A somewhat unexpected observation came recently from Capaccioli et al [5], who

presented two key observations based on the analysis of a large database of neutron

scattering data accumulated so far: (i) the MSD measured in 50:50 lysozyme-glycerol

mixture can be nearly seamlessly overlaid with corresponding measurements for the
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pure glycerol and (ii) there are two crossover temperatures common to lysozyme-

glycerol and glycerol systems, at Td ' 210 and 276 K.

The first observation is significant for assigning the modes of the protein-solvent

system responsible for the protein’s extended flexibility at high temperatures. High

protein flexibility is required for its biological action [109, 110, 80], and this per-

spective connects protein function with specific physical modes and fluctuations of

the protein-solvent system [93]. Frauenfelder and co-workers suggested that the sol-

vent mode coupled to the protein atomic displacements has to be attributed to the

hydration shell [111, 112]. They also noted that this mode is decoupled from the

α-relaxation of the bulk solvent (structural or collective relaxation with the longest

relaxation time and usually connected to the liquid viscosity). The relaxation time of

the hydration shell is both faster than α-relaxation and is Arrhenius, with the activa-

tion energy usually smaller than that of α-relaxation. Taken together, these features

point to its β-character in the established classification of glass science [113, 114].

Since secondary β-relaxation processes exist also in the bulk solvent, the fluctuations

localized in the hydration shell of the protein are classified as βh-relaxation and are

expected to carry the dynamics distinct from the bulk [115]. The dynamical tran-

sition then occurs when the βh-relaxation of the hydration shell slows sufficiently

down, with lowering temperature, to become longer than the instrumental time-scale

(dynamical freezing) [116, 117].

The observation of a near-equivalence of MSDs recorded by neutron scattering

in lysozyme-glycerol and pure glycerol systems puts under question the hydration-

shell hypothesis, or at least the part of it attributing β-relaxation specifically to the

shell, in contrast to a faster relaxation mode of the bulk (of presumably β-character).

The question posed by this observation is whether the modes of the solvent coupled

with protein flexibility are hydration-shell specific or generic to the bulk material.
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Furthermore, since the dynamical transition is a general phenomenon common to

glass-forming materials, including molecular liquids and biopolymers [98], the ques-

tion here is what are the modes that experience dynamical freezing at Td and whether

the instrumental resolution must necessarily be a part of the explanation. Addressing

some of these mechanistic questions is a goal of this study.

In order to avoid the complexities of protein solutions, we address these basic

questions by focusing solely on bulk glycerol, for which we report here extensive

molecular dynamics (MD) simulations. The temperature dependence of hydrogen

MSDs is analyzed in terms of separate contributions of the center of mass translations

and rotations relative to the center of mass of the molecule. Both translational and

rotational MSDs show a crossover at the same temperature Td ∼ 275 K consistent

with experimental data. The temperature of translational and rotational dynamical

transitions does not change when the observation time is significantly altered. We

also find that the same temperature characterizes the dynamic crossover from α to β

relaxation as measured by glycerol’s diffusivity and rotational dynamics.

The consistent picture arising from our observations is that a structural crossover

occurs in glycerol at ∼ 250 − 275 K, which affects both the MSDs and relaxation

times. However, there is no indication from our data that this crossover should be

identified with a true thermodynamic transition. We therefore suggest that all ob-

served crossovers are dynamical in character. In particular, the structural crossover to

a low-temperature state of glycerol, characterized by long-ranged dipolar correlations,

becomes possible because these collective correlations cannot relax on the limited ob-

servation time. The dynamical transition in the MSD recorded by neutron scattering

is not the result of crossing of the time-scale of single-particle translational/rotational

diffusion with the observation time-scale, but rather the crossing of the latter with the

time-scale of multi-body relaxation of polarized domains. A corresponding significant
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increase in the orientational Kirkwood factor and the jump in the dielectric constant

at low temperatures are caused, in our simulations, by the crossing of the relaxation

time of dipolar domains and the observation (simulation) time. This phenomenol-

ogy is similar to that of relaxor ferroelectrics where dynamic freezing of ferroelectric

domains is responsible for the high dielectric constant of the low-temperature phase

[118].

2.3 Incoherent Neutron Scattering

The experimental MSDs are extracted from incoherent elastic neutron scattering.

The reported signals are affected by the instrumental resolution function convoluting

with the self-dynamic structure factor Ss(q, ω), for which we assume the scattering

momentum q directed along the x-axis of the laboratory frame. The function Ss(q, ω)

is the time Fourier transform of the self-intermediate scattering function

I(q, t) = N−1
∑

j

〈eiq∆xj(t)〉, (2.1)

where ∆xj = xj(t)− xj(0) is the displacement of a hydrogen atom and the sum runs

over N hydrogen atoms in the system; 〈. . . 〉 denotes an ensemble average.

In what follows we will consider all hydrogens in the system identical, although

we will separate two groups of hydrogens of glycerol: 3 hydroxyl hydrogens and 5 hy-

drogens bonded to carbon atoms. Correspondingly, experimental results for partially

deuterated glycerol [119] C3H5(OD)3 (g-d3) and C3D5(OH)3 (g-d5) will be analyzed

by considering the corresponding groups of hydrogen atoms not substituted by deuter-

ation.

The intensity of the elastic scattering function at ω = 0 gives access to the MSD

[96, 119]. The corresponding function Ss(q, ω = 0,∆ω), depending on the resolution

window of the spectrometer ∆ω, can be approximated by I(q, tr) ' Ss(q, ω = 0,∆ω),

41



where the resolution time tr is related to the resolution window of the spectrometer.

According to Doster et al [120], the connection is tr/ps = 1.09/Γ(meV), where Γ is

the width at half maximum of the resolution function.

The intermediate scattering function in Eq. (2.1) can be estimated in the Gaussian

approximation [121], which leads to

− ln [I(q, t)] ' q2〈(δx)2〉 − q2〈δx(t)δx(0)〉. (2.2)

If the time autocorrelation function 〈δx(t)δx(0)〉, δx(t) = x(t)−〈x〉 decays sufficiently

to zero on the resolution time tr, the second term in Eq. (2.2) disappears and one gets

an estimate of the mean square fluctuation (MSF) 〈(δx)2〉 from the linear slope of

− ln[I(q, tr)] vs q2 [119, 122]. Otherwise one obtains half of the MSD (1/2)〈∆x(tr)
2〉

from the slope of − ln[I(q, tr)] vs q2.

The data presented here were obtained from extensive MD simulations of glycerol

described by the OPLS-AA force field [123] as is explained in section A.1. Our

main purpose in the analysis of the intermediate scattering function is to extract the

relative contributions to the observed MSD arising from center of mass translations

and molecular rotations relative to the center of mass. The question that we address

here is whether the dynamical transition, if observed, occurs at the same temperature

for these two modes. In addition to general mechanistic insights that such an analysis

can produce, this question is relevant to testing the idea of dynamical freezing of a

subset of molecular motions as the reason for the experimentally observed kink in

the dependence of the MSD on temperature [102, 105, 103, 106], identified with Td.

If the kink is caused by reaching the equality between the relaxation time and the

instrumental observation window [106], the dynamical transition temperature should

be different for translations and rotations having their distinct relaxation times, unless

they happen to be close. This is not what we observe from our simulations: the
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Figure 2.1: 〈x2〉 = 〈∆x(tr)
2〉 for g-d5 (Upper Panel) and g-d3 (Lower Panel) Deuter-

ated Glycerol. The Experimental Data Obtained From IN13 Spectrometer for Corre-
spondingly Deuterated Glycerol [5] Are Compared to MD Simulations. The Simulated
MSDs Are Separated into Displacement of the Glycerol Center of Mass (‘‘Trans”) and
the Displacements of Hydrogens Relative to the Center of Mass (‘‘Rot”). The Dashed
Lines Are the Linear Regressions Drawn Through the Corresponding Points From MD
Simulations.

dynamical transition temperatures are the same for rotations and translations when

calculated from fitting the intermediate scattering function to Eq. (2.2) (Fig. 2.1).

The separation of the center of mass translations and rotations relative to the

center of mass assumes the factorization of the intermediate scattering function into

the translational, IT (q, t), and rotational, IR(q, t), components

I(q, t) = IT (q, t)IR(q, t). (2.3)

We therefore calculated IT (q, t) and IR(q, t) separately and produced the linear fits of

the corresponding functions vs q2 with tr = 25 ps for both g-d3 and g-d5 liquids. No

deuteration was actually performed in simulations and only the corresponding groups

of hydrogen atoms were selected to produce the intermediate scattering functions.

The accuracy of translation/rotation factorization in Eq. (2.3) was tested previ-
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ously and is usually found to hold [124, 125, 126]. Indeed, one expects this separation

to be accurate in the Gaussian limit since translations and rotations carry different

symmetry. If one separates ∆x(t) = ∆xc(t) + ∆xR(t) into the center of mass dis-

placement ∆xc(t) and the rotation relative to the center of mass ∆xR(t), the MSD

becomes the sum of two self terms and the translational-rotational cross term

〈∆x(t)2〉 = 〈∆xc(t)2〉+ 〈∆xR(t)2〉+ 2〈∆xc(t)∆xR(t)〉. (2.4)

Figure 2.2 shows an example of the analysis of the three correlation components in Eq.

(2.4) from MD simulations. The translational and rotational components of the MSD

are close in magnitude, while the cross-correlation is negative and is much smaller.

The translational and rotational MSDs are shown separately in Fig. 2.1 to indicate

the common point of the kink at Td ∼ 275 K. The same temperature of the dynamical

transition is reported experimentally [119, 5]. However, the absolute values of MSDs

from experiment (closed diamonds in Fig. 2.1) are below the simulation results, which

is easy to see from the plot since the overall MSD follows from adding up the transla-

tional and rotational components (Eq. (2.4)). The most probable explanation of this

discrepancy is that fitting the experimental neutron scattering data in a limited range

q-values used in the measurements [119] allows one to probe only a limited subset of

motions [127, 128], presumably the translational diffusion. Indeed, the agreement be-

tween simulations and experiment for the center of mass MSD is quite good. We also

note that the agreement between the calculated coefficient of self-diffusion of glycerol

and the results of measurements by NMR [8] is also reasonable (Fig. 2.6 below).

The time dependence of MSDs shown in Fig. 2.2 also helps to understand the

physical origin of MSDs recorded by neutron scattering. Both the translational and

rotational components of the MSDs are characterized by two distinct regimes: a

fast (∼ 1 ps) growth due to ballistic motions in the liquid’s cage (localized diffusion
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[129]), followed by a much slower, long-range diffusion with 〈∆x(t)2〉 ∝ t (see Fig.

2.3 for a log-log plot). The main observation here is that most of the MSD on the

resolution time-scale tr ∼ 25 ps is caused by the ballistic displacement associated

with a secondary relaxation and not by the diffusional motion associated with the

primary relaxation process. This conclusion holds both below and above Td (Figs.

2.2 and 2.3). The increase of the observation window from 25 ps to 135 ps makes

the time spent by the particle on the linear, diffusional portion of the MSD longer

(Fig. 2.2) and thus increases the slope of the high temperature part of the MSD curve

(Fig. 2.4). It is important to realize that fast cage dynamics, resulting in the main

portion of the observed MSD, are much faster than the resolution time tr and in fact

become even faster with lowering temperature because of a greater rigidity of the
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low-temperature glycerol. It is the amplitude of the ballistic displacement which gets

larger with increasing temperature, resulting in the observed temperature dependence

of the MSD. The crossing of the resolution time of the spectrometer (25 ps) and the

relaxation time of these ballistic motions never occurs (also se below) and, therefore,

the kink in the MSD vs temperature cannot be attributed to the finite resolution

time.

The change of the form of the MSD vs T with the changing observation window tr

is shown in Fig. 2.4. It adds additional evidence to the suggestion that the kink in the

MSD’s temperature dependence is not caused by the equality between the relaxation

time and the observation window. While the high-temperature portion of the MSD

has a steeper slope for a higher tr, in agreement with experiment [5], the temperature

of the dynamical transition Td has little sensitivity to tr. In addition, the equality

between the dynamical transition temperatures for the translational and rotational

MSDs is preserved between tr = 25 ps and tr = 135 ps. If one assumes that the

consistency in Td for tr = 25 ps shown in Fig. 2.1 is a mere coincidence, it is hard

to see how it can be preserved at tr = 135 ps. One has to accept the conclusion

that the kink in the MSD is not related to the observation window [122, 130] and,
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instead, should be attributed to the softening of the liquid cage, with increasing

temperature, in which a glycerol molecule finds itself for a relatively short time of

∼ 1 ps. The rattling inside the cage is followed by an escape and the onset of long-

range diffusion, but this component simply adds to the main displacement achieved

by the ballistic cage rattling. The next question is whether structural distinctions of

the entire liquid producing the difference between the low-temperature rigid cage and

the high-temperature soft cage can be identified.

2.4 Dynamic Crossover

An explanation alternative to the instrumental resolution effect for the appearance

of the kink in the proton MSD involves the dynamic crossover, i.e., a corresponding

kink in the dependence of the system relaxation time on the inverse temperature [131].

This phenomenology, known as the fragile-to-strong transition in glass science [113],

represents the crossover from the structural α-relaxation at high temperatures above

the crossover to a secondary β-relaxation at low temperature below the crossover.

Correspondingly, the activation barrier of the high-temperature α-relaxation is higher

than the activation barrier of the low-temperature β-relaxation. We show below

that this phenomenon is not connected to the kink in the MSD reported by neutron

scattering and, at least in our simulations, has a trivial explanation of slower dynamics

exceeding in its relaxation time the observation window (simulation time in the case

of MD).

The problem of dynamic crossover in confined water has been extensively studied

[132, 128, 133] and it has been established that the temperature of the dynamic

crossover of confined water is generally consistent with Td of proteins [131, 134].

The temperature Td was also found to be independent of the protein hydration level

[134, 130, 135] even though the relaxation times themselves are strongly affected by
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hydration. This latter observation points to the connection between Td and some sort

of structural change in confined water.

The dynamic crossover results for water are necessarily limited to confined systems

since bulk water is unstable to nucleation below ' 243 K [136, 133]. Since our present

simulations apply to bulk glycerol, it would be of significant interest to establish a

phenomenology similar to that found for confined water for a material available in

bulk phase both in simulations and in the laboratory experiment.

It is useful to start off with an estimate of how the dynamic crossover in the

relaxation time can potentially affect the MSD measured on the resolution time tr.

This can be illustrated for the rotational MSD, which can be rewritten in terms of the

rotational MSF 〈(δxR)2〉 = 〈x2
R〉− 〈xR〉2 and the normalized autocorrelation function

of rotations φR(t)

〈∆xR(t)2〉 = 2〈(δxR)2〉 [1− φR(t)] , (2.5)

where

φR(t) = 〈(δxR)2〉−1〈δxR(t)δxR(0)〉. (2.6)
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Figure 2.6: Diffusion Coefficients Recorded Experimentally by NMR (“Exp”, [8])
and Obtained from the Simulations (“MD”).The Dashed Line Is a Regression Drawn
Through the MD Points.

The generic form of φR(t) is an initial ballistic (Gaussian) decay, followed by ex-

ponential collective relaxation: φR(t) = Ag exp[−(t/τg)
2] + (1 − Ag) exp[−t/τR] (or,

alternatively, multi-exponential or stretched exponential term) [95]. In the entire

temperature range studied for glycerol we find that tr falls between the time of ballis-

tic relaxation τg and the time of collective exponential relaxation τR: τg � tr � τR.

One therefore gets

〈∆xR(t)2〉 ' 2〈(δxR)2〉 [Ag + (1− Ag)(tr/τR)] . (2.7)

The relaxation time is not expected to affect the MSD when tr � τR, but can affect

faster relaxing systems when tr ' τR [137]. At tr � τR, the magnitude of the MSD

is mostly determined by the amplitude of the Gaussian component of the relaxation

dynamics, in agreement with the arguments presented in relation to Figs. 2.2 and

2.3. Therefore, if the dynamic crossover and the kink of the MSD occur at the same

temperature [134] one has to relate this coincidence to a structural change and not to

a direct effect of the relaxation time on the MSD. The hypothesis that the crossover

in the relaxation time affects the MSD is, therefore, not supported by our simulation

results.

The results for the average rotational relaxation time for all protons in glycerol
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are shown in Fig. 2.5. It is calculated by integrating the time correlation function

〈τX〉 =

∫ ∞

0

φX(t)dt, (2.8)

where X = R corresponds to the normalized time correlation function in Eq. (2.6).

These results are shown by the open points in Fig. 2.5.

We have additionally calculated the time correlation function φE(t) ∝ 〈δE(t) ·

δE(0)〉 based on the dynamic variable of the electric field produced by the rest of

the glycerol liquid at the center of mass of a given target molecule (X = E). The

microscopic electric field E(t) is therefore a fluctuating local field producing a torque

on the glycerol’s dipole moment. The results for the average relaxation times obtained

from the corresponding time correlation functions through Eq. (2.8) are shown by the

closed points in Fig. 2.5. There is a good agreement between τR and τE suggesting

that the electric field fluctuations are caused by molecular rotations, as one would

anticipate from the standard Debye model of dielectric relaxation [138, 6].

The average relaxation times from MD simulations are compared in Fig. 2.5 with

the average relaxation time calculated from the Cole-Davidson fit of glycerol’s loss

spectrum reported by broad-band dielectric spectroscopy [7] (solid line). There is a

very good agreement between the simulations and experimental dielectric data at high

temperatures, suggesting that the adopted force field [123] (see section A.1) is well

parametrized for glycerol rotations. There is a less satisfactory agreement between the

diffusion coefficient calculated from MD and measured by NMR (Fig. 2.6). Differences

between quasi-elastic neutron scattering (QENS) and NMR/viscosity data for glycerol

self-diffusion have been documented in the past [139, 129] and might contribute to

the discrepancy.

The dynamic crossover occurs in the range of temperatures when the α-relaxation

time becomes comparable to the length of the simulation trajectory τsim ' 50 ns. In
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Figure 2.7: The Kirkwood Factor (a) and Dielectric Constant (b) Of Glycerol Calcu-
lated From MD (Circles)And Measured in Bulk Samples Experimentally [9] (Squares).
The Dashed Lines Are Linear Fits to the Corresponding Subsets of Data to Guide the
Eye. The Kirkwood Factors in (a)Were Obtained Both in NVE and NVT Separate
Simulation Runs.

fact, the time window τcalc on which the time correlation function φX(t) is calculated

from the simulation trajectories is always shorter, τcalc < τsim. We therefore stop

observing the slow relaxation in simulations when the α-relaxation time becomes

longer than τcalc. The relative weight of the fast relaxation in 〈τ〉 increases and we

observe this as a dynamical crossover.

What our data do not seem to address is why the kinks in the rotational and

translational MSDs and the corresponding dynamical crossovers in the rotational re-

laxation times and translational diffusion (Figs. 2.5 and 2.6) all occur in the same

range of temperatures. A possible scenario to explain this coincidence might include

a structural transition resulting in a drop of the configurational entropy [140]. Ac-

cording to the general arguments based on the Adam-Gibbs relation [113], this would

result in a much slower main relaxation process, which would sharply disappear from

the observation window of our numerical experiment. While our results presented

below do support alteration of glycerol’s orientational structure, we do not have a
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direct evidence for a discontinuous change in the configurational entropy.

In order to identify possible structural changes, we have looked at the temperature

dependence of the Kirkwood factor reflecting orientational correlations in the liquid

gK =
∑

m

〈ê` · êm〉. (2.9)

Here, êm are the unit vectors of molecular dipoles (4.6 D in the force field used in

our simulations). The Kirkwood factor was in turn used in the Kirkwood-Onsager

relation [138] to calculate the dielectric constant ε(T ) (the glycerol force field is non-

polarizable and the refractive index is equal to unity). The results of these calculations

are shown in Fig. 2.7.

The Kirkwood factor shows a discontinuous increase at T < 250 K, which results

in the corresponding increase of the dielectric constant calculated from MD simu-

lations. The increase in gK is caused by the emergence of long-range orientational

correlations of glycerol dipoles at low temperatures, as is illustrated in Fig. 2.8. We

show there the projection of the pair correlation function of glycerol h(r, ê1, ê2), de-

pending on the distance r between two molecules and their orientations ê1 and ê2, on

the rotational invariant of the scalar product between the unit vectors of the dipole
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moments ∆(1, 2) = (ê1 · ê2). The corresponding pair distribution function [95]

h∆(r) =

∫
h(r, ê1, ê2)∆(1, 2)

dω1dω2

(8π)2
(2.10)

at different temperatures in shown in Fig. 2.8.

It is clear that a long-range oscillatory pattern, reflecting preferential parallel

alignments of the dipoles, appears at low temperatures. The dipolar alignments

are responsible for an increase in the low-temperature Kirkwood factor, gK = 1 +

ρ
∫
h∆(r)dr, ρ is the number density. Despite these long-range orientational corre-

lations, the low-temperature phase does not show any specific orientational order,

as confirmed by calculations of the first and second orientational order parameters

[141, 142] (Fig. 2.9) as explained below. No translational order is observed either: the

radial pair distribution functions are nearly identical at low and high temperatures

(Fig. 2.10). We therefore can conclude that the low-temperature phase is a disordered

liquid.

The orientational order can be detected by orientational order parameters typically

defined for liquid crystals [142]. The order parameter pn is the average nth order

Legendre polynomial Pn(ê · n̂)

pn = N−1
m

∑

`

〈Pn(ê` · n̂)〉 (2.11)
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relative to the liquid director n̂; Nm is the number of molecules in the liquid. The

director is identified as the eigenvector corresponding to the largest eigenvalue of the

tensor

Qαβ = (2Nm)−1
∑

`

(3 ê`,αê`,β − δαβ) , (2.12)

where α and β are the Cartesian projections and δαβ is the Kronecker delta function.

The results of calculations for the first and second order parameters (n = 1, 2) are

shown in Fig. 2.9. No orientational order can be identified at low temperatures from

these calculations.

The jump in the simulated dielectric constant is in stark disagreement with the

linear dielectric experiment [9] where no discontinuities were observed (squares in Fig.

2.7b). The results of simulations are in fair agreement with experiment at high tem-

peratures, but the increase in the Kirkwood factor at lower temperatures (Fig. 2.7a)

makes the dielectric constant much higher than observations. Since the crossover

temperature for the dielectric constant is roughly consistent with the kinks in the

rotational and translational MSDs, we conclude that restricting the observation win-

dow not only makes changes to the observable relaxation dynamics, but also does not

allow certain orientational correlations to relax. As a result, we observe a long-range
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orientational order frozen on the observation time-scale. This implies that both the

low-temperature Kirkwood factor and the corresponding dielectric constant shown in

Fig. 2.7 are non-equilibrium quantities. A similar, about five times compared to the

bulk (Fig. 9 in Ref. 143), increase in the dielectric constant was observed for ultrathin

films of glycerol obtained by vapor deposition [144]. Subsequent combined dielectric

and calorimetry measurements have suggested the existence of rigid polar clusters,

which relax as a whole, with an enhanced cluster dipole moment [143]. There is also

recent evidence of an unrelaxed orientational order in organic glasses obtained by

surface deposition [145].

The existence of highly correlated clusters should be seen in the heterogeneity

of binary correlations expressed in terms of fourth-order correlation functions [146].

In order to test this hypothesis, we made the next step of calculating the distance-

and time-dependent correlations between binary dipolar orientational correlations

expressed through the instantaneous Kirkwood factors. Specifically, the quantity

c`(t) =
∑

m6=`

ê`(t) · êm(t) (2.13)

was constructed at each point of the simulation trajectory to reflect the instantaneous

binary correlations of the chosen dipole moment ` with all remaining dipoles in the
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liquid. Obviously, one has 〈c`(t)〉 = gK − 1. We then constructed the distance- and

time-dependent correlation between the local binary correlations as follows

C(r, t) =
V

N2
m

∑

`,k

〈c`(0)ck(t)δ (r− r`(0) + rk(t))〉, (2.14)

where the average is taken along the simulation trajectory and V is the liquid volume.

The normalization of C(r, 0) relates it to the Kirkwood factor

V −1

∫
C(r, 0)dr = (5/3)g2

K − 2gK + 1. (2.15)

Similarly to h∆(r) in Fig. 2.8, but significantly more pronounced, we observe the

rise of long-range heterogeneous correlations at low temperatures (Fig. 2.11). The

appearance of such correlations, exceeding the range of local order in the density

distribution function (Fig. 2.10), signifies the spatial orientational heterogeneity of

the low-temperature glycerol.

2.5 Discussion and Implications for the Protein Dynamical Transition

We obtained here, by computer simulations, both a kink in the temperature de-

pendence of the MSD (dynamical transition) and the dynamical crossovers in the

relaxation times. Both effects have been observed experimentally and a link between

them has been suggested through some sort of structural transition in the liquid

[131, 133, 135]. The answer to the ongoing discussion of whether a purely dynam-

ical crossover or a structural transition explains the data might be that both are

present. However, in contrast to the scenarios involving thermodynamic liquid-liquid

transitions, both the structural and relaxation time crossovers have a dynamic origin.

The structural crossover is caused by the inability of certain structural correlations

to relax on the observation window. There is nothing in our data that connects the

appearance of such structural correlations to a thermodynamic transition between
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two phases of a bulk material. This distinction becomes, however, less loaded with

physical meaning in the low-temperature state. When the relaxation time of the

“orientationally correlated liquid” becomes much longer than any conceivable exper-

imental time, one has to distinguish this state of the material as an “orientationally

correlated glass”, with all relevant properties distinct from the “ordinary” glass. One

arrives at polyamorphism of the glass state [113] caused by long-ranged orientational

correlations.

The observation of an increase in the dielectric constant of glycerol below the

dynamical transition, here by simulations and for vapor deposited glasses experimen-

tally [144, 143], adds a structural component to the standard picture of ergodicity

breaking of glass science. The standard paradigm is that the glass does not have the

ability to relax, but maintains the structure of the liquid. This is indeed true for the

positional structure of the glycerol molecules. However, the inability of dipolar orien-

tations to relax causes orientational heterogeneity represented by correlated dipolar

clusters, which do not relax on the observation time-scale. The long-sought growth

of the structural order of glass-formers on approach to the laboratory glass transi-

tion might be, therefore, best discovered by experiments probing the heterogeneity of

orientational multipolar correlations.
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Chapter 3

ERGODICITY BREAKING OF IRON DISPLACEMENT IN HEME PROTEINS

This material was published in Soft Matter (journal) 13(44), pp.8188-8201 (2017).

3.1 Summary

We present a model of the dynamical transition of atomic displacements in pro-

teins. Increased mean-square displacement at higher temperatures is caused by the

softening of the force constant for atomic/molecular displacements by electrostatic

and van der Waals forces from the protein-water thermal bath. Displacement soft-

ening passes through a nonergodic dynamical transition when the relaxation time of

the force-force correlation function enters, with increasing temperature, the instru-

mental observation window. Two crossover temperatures are identified. The lower

crossover, presently connected to the glass transition, is related to the dynamical

unfreezing of rotations of water molecules within nanodomains polarized by charged

surface residues of the protein. The higher crossover temperature, usually assigned

to the dynamical transition, marks the onset of water translations. All crossovers

are ergodicity breaking transitions depending on the corresponding observation win-

dows. Allowing stretched exponential relaxation of the protein-water thermal bath

significantly improves the theory-experiment agreement when applied to solid protein

samples studied by Mössbauer spectroscopy.

3.2 Introduction

Atomic displacements in proteins are viewed as a gauge of the overall flexibil-

ity of macromolecules.[147] Displacements of the hydrogen atoms are reported by
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neutron scattering,[148] and mean-square displacements (B-factors) of all atoms are

known from X-ray crystallography. Neutron scattering reports ensemble averages of

scattering from many hydrogen atoms of a single protein.[148, 96, 109, 149] In con-

trast, Mössbauer spectroscopy often probes the displacement of a single atom in the

protein,[150, 80] which is the heme iron in this study focused on cytochrome c (Cyt-c)

and myoglobin proteins.

The temperature dependence of atomic displacements from both neutron scatter-

ing and Mössbauer spectroscopy shows a number of crossovers. They are marked by

changes in the slope of atomic mean-square displacement vs temperature,[75, 102]

deviating from expectations from the fluctuation-dissipation theorem.[92, 104] This

problem has attracted significant attention in the literature.[96, 117, 80, 151, 152, 153,

154] The accumulation of the data over several decades of studies, combined with their

recent refinements through the comparison of the results obtained on spectrometers

with different resolution,[106, 5, 155, 156] have lead to a convergent phenomenological

picture.

Two low-temperature crossovers are now identified (Fig. 3.1). The higher-temperature

crossover Td, originally assigned to the protein dynamical transition,[102, 151] depends

on the observation window of the spectrometer[117, 106, 5, 155] and shifts to lower

temperatures when the resolution is increased (a longer observation time τr in Fig.

3.1). The lower crossover temperature, Tg ' 170 − 180 K, is independent of the ob-

servation window (in the range of resolution windows available to spectroscopy) and

is assigned to the glass transition of the protein hydration shell.[102, 155, 151, 5]

All motions, rotations and translations, in the hydration shell (except for cage rat-

tling) terminate at the lower temperature Tg. While this interpretation is consistent

with the basic phenomenology of glass science, it does not address the question of how

the structure and dynamics of the hydration shell affect atoms inside the protein, the
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heme iron for Mössbauer spectroscopy. The basic question here is whether the obser-

vations can be fully related to stiffening of the hydration shell at lower temperatures,

thus reducing elastic deformations of the protein,[157] or there are some long-range

forces acting on the heme, which are reduced in their fluctuations when the hydration

shell dynamically freezes. It is possible that no simple answer to this question can be

obtained in the case of neutron scattering since there are several classes of motions of

protein hydrogens: cage rattling, methyl rotations, and jumps between cages.[101] To

avoid these complications, we focus here on a single heavy atom, heme iron, probed

by Mössbauer spectroscopy on the resolution time τr = 142 ns.

The question addressed here is what are the physical mechanisms propagating

fluctuations of the protein-water interface to an internal atom within the protein.[158,

159] This question, also relevant to how enzymes work,[93] was addressed by the

electro-elastic model of the protein,[160, 161] where both the effect of the viscoelastic

deformation and the effect of the long-range forces acting on the heme iron were

considered. The main conclusion of that theoretical work was the recognition of

the two-step nature of the crossover in the mean-square fluctuation (MSF) of the

heme iron. The low-temperature crossover, Tg ' 170 − 180 K, was assigned to an

enhancement of viscoelastic deformations above the glass transition of the protein-

water interface.[160] The increment in the MSF at Tg was, however, insignificant,

as confirmed below based on new molecular dynamics (MD) simulations. It was,

therefore, concluded that altering elastic stiffening is not sufficient to describe the

rise of the MSF above Td and long-range forces need to be involved.

The iron MSF significantly increases when electrostatic forces acting on the iron

are included.[160] The dynamical transition and the corresponding enhancement of

the MSF are promoted by ergodicity breaking when the longest relaxation time crosses

the instrumental time.[162, 116, 117, 106] The equation for the MSF resulting from
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this perspective involves the MSF from local vibrations of the heme 〈δx2〉vib and the

global softening of the entire heme motions through the long-ranged forces acting on

it. This second component enters the denominator of Eq. (3.1) through the variance

of the force acting on heme’s iron 〈δF 2〉r

〈δx2〉r =
〈δx2〉vib

1− β2〈δF 2〉r〈δx2〉vib

, (3.1)

where β = 1/(kBT ) is the inverse temperature. Equation (3.1) was originally derived

in Ref. [160] and is briefly re-derived in the discussion presented below.

The subscript “r” in the angular brackets, 〈. . . 〉r, indicates that the average is

constrained by the observation window τr. Correspondingly, the fluctuations of the

long-range forces are mostly frozen at low temperatures when 〈δF 2〉r is low, yielding

〈δx2〉 ' 〈δx2〉vib. Since the relaxation time of the long-range forces τ(T ) depends

on temperature according to the Arrhenius law, it shortens with increasing temper-

ature, ultimately reaching the point[160, 163, 164, 152] τr ' τ(Td), at which the

high-temperature crossover occurs. Fluctuations of the long-range forces become dy-

namically unfrozen at this temperature, leading to an increase of both 〈δF 2〉r and

〈δx2〉r.

In this chapter, we present new extensive simulations of Cyt-c in solution at differ-

ent temperatures. The goal is to assert the role of long-range forces in achieving the

softening of atomic displacements at high temperatures (Eq. (3.1)). We consider the

entire heme as a separate unit experiencing the force from the surrounding thermal

bath. This coarse graining allows us to focus on the long-time relaxation of the force-

force correlation function relevant for the long observation time, τr = 142 ns, of the

Mössbauer experiment. We find that the longest relaxation time τ(T ) follows the Ar-

rhenius law with the activation barrier characteristic of a secondary relaxation process

(β-relaxation of glass science[165]). We therefore support the proposal advanced by
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Figure 3.1: Schematic Representation of Two Crossovers in the Temperature De-
pendence of the Mean-Square Fluctuation (MSF) 〈δx2〉. The Lower Crossover, Tg, Is
Independent of the Instrumental Resolution Window and Corresponds to the Glass
Transition of the Protein-Water Interface. The Upper Crossover (Dynamical Transi-
tion), Td, Does Depend on the Observation Window and Is Related to the Entrance
of the Relaxation Time of the Force Acting on the Coarse-Grained Unit (Residue,
Cofactor, etc.)Into the Resolution Window of the Experiment. The Temperature Td
Shifts to the Lower Value when the Observation Time Is Increased.

Frauenfelder and co-workers[117, 107] that the higher-temperature crossover is caused

by ergodicity breaking when the relaxation time of the secondary process character-

izing the protein-water interface enters the experimental observation window. This

relaxation process effects the heme iron through the combination of non-polar (van

der Waals) and polar (electrostatic) forces.

Our focus on the protein in solution has a limited applicability to experiments

done with solid samples. Nevertheless, computer simulations produce results close

to observations for the reduced state of Cyt-c. The length of simulations is also

insufficient to sample the dynamics on the time-scale of τr = 142 ns. In addi-

tion, the solution setup does not reproduce highly stretched dynamics observed in

protein powders.[101, 166, 152] We find that the agreement between theory and

experiment[13] is much improved when stretched exponential dynamics from dielectric

spectroscopy for powder samples[28] are used in our model.

Despite limitations of our simulations in application to experimental data, there is

one significant advantage of the solution setup. Experiments done with solid samples
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cannot claim that the observed phenomenology directly applies to solutions. The

similarity between our simulations and such experiments gives credit to the idea that

dynamical transition, caused by ergodicity breaking, is a general phenomenon rele-

vant to physiological conditions. From a more fundamental perspective, ergodicity

breaking is broadly applicable to enzymetic activity at physiological conditions and

is described by a formalism carrying significant similarities with the problem of dy-

namical transition of atomic displacements.[93] We discuss the connection between

ergodicity breaking of atomic displacements with similar phenomenology for reactions

of electron transfer in proteins at the end of this chapter.

3.3 Formalism

The standard definition adopted for the fraction of recoiless absorption of the

γ-photon in Mössbauer spectroscopy is through the average

f(k) =
∣∣〈eikx

〉
r

∣∣2 . (3.2)

The average 〈. . . 〉r is over the statistical configurations of the system accessible on a

given time resolution of the experiment specified through the observation (resolution)

time τr. Further, k is the wavevector aligned with the x-axis of the laboratory frame

and x is the displacement of the heme iron.

The average over the stochastic variable of iron displacement x can be represented

by an ensemble average with the free energy Fr(x)

〈
eikx
〉

r
=

∫
dxeikx−βFr(x). (3.3)

The free energy Fr(x) is distinct from the usual thermodynamic free energy

in two regards. First, it is a partial free energy corresponding to the reversible

work performed by all degrees of freedom of the system at a fixed displacement x.
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Therefore, Fr(x) is analogous to the Landau functional of the thermodynamic order

parameter.[167] There is another distinction of Fr(x) from the thermodynamic free

energy specified by the subscript “r”. This free energy is defined by sampling the con-

strained part of the phase space Γr which can be accessed on the resolution time τr.

The definition of Fr(x) should thus include two constraints: (i) a fixed value x and (ii)

a restricted phase space available to the system. Both constraints are mathematically

realized by the following equation[168, 169, 93]

e−βFr(x) =

∫

Γr

dΓδ (x− x̂ · q) e−βH . (3.4)

Here, x̂ is the unit vector along the x-axis and q is the iron’s displacement vector.

The restriction of the phase space is realized as a dynamical constraint on the fre-

quencies over which the correlation functions appearing in the response functions are

integrated.[93] A simple cutoff, ω > ωr = τ−1
r , is used in the statistical averages

below.

We will next consider the displacement of the iron as composed of the displacement

of the heme’s center of mass and the normal-mode vibrations relative to the center

of mass. The Hamiltonian in Eq. (3.4) can therefore be separated into a linear term

involving the external force F acting on the heme from the protein-water thermal

bath and the Hamiltonian Hvib of intra-heme vibrations

H(q) = H(0)− q · F +Hvib. (3.5)

By expanding the iron’s displacement q in the normal-mode vibrations Qα, we can

re-write the free energy Fr(x) in the form

e−βFr(x)+βH(0) =

∫
dqδ (x− x̂ · q) 〈eβq·F〉B

∫ ∏

α

dQαδ

(
q−

∑

α

êα
Qα√
m

)
e−βHvib ,

(3.6)
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where m is the mass of the iron atom and the dimensionless vectors êα represent the

unitary transformation from the Cartesian coordinates to the normal modes Qα.[170]

Further, the average 〈. . . 〉B is over the fluctuations of the classical protein-water

thermal bath which creates movements of the heme as a whole. It is reasonable to

anticipate that these relatively large-scale fluctuations follow the Gaussian statistics

with the force variance σ2
F = 〈(δF)2〉, δF = F− 〈F〉. The average over such fluctua-

tions in Eq. (3.6) then becomes

〈eβq·F〉B = e(βqσF )2/2. (3.7)

In addition, the integral over the normal modes in Eq. (3.6) is a Gaussian integral

such that ∫ ∏

α

dQαδ

(
q− 1√

m

∑

α

êαQα

)
e−βHvib = e−q

2/(2σ2
vib), (3.8)

where the variance due to intramolecular vibrations is

σ2
vib =

~
6m

∑

α

ê2
α

2n̄α + 1

ωα
. (3.9)

Here, n̄α is the average occupation number of the normal mode α with the frequency

ωα. By substituting Eqs. (3.7) and (3.8) into Eq. (3.6), one obtains the harmonic free

energy function[160]

βFr(x) = H(0) +
x2

2σ2
(3.10)

with the variance

σ2 =
σ2

vib

1− (βσFσvib)2
. (3.11)

The basic result of this derivation is straightforward: adding Gaussian fluctuations

of the heme’s center of mass to intramolecular vibrations of the heme leads to the

softening of the force constant of the harmonic free energy F (x).[158] Combining

this result with Eqs. (3.2) and (3.3), one obtains the Gaussian form for the recoiless
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fraction

f(k) = e−k
2〈δx2〉r (3.12)

with 〈δx2〉r given by Eq. (3.1) in which 〈δx2〉vib = σ2
vib.

The subscript “r” in 〈δF 2〉r specifies that the average over the stochastic fluctu-

ations of the force F acting on the heme from the thermal bath is understood in the

spirit of the dynamically restricted average over a dynamically accessible subspace

of the system Γr, as specified in Eq. (3.4). In practical terms, this implies that only

frequencies greater than ωr = τ−1
r can contribute to the observables. The effective

variance can therefore be calculated as[117, 93]

〈δF 2〉r =

∫ ∞

ωr

(dω/π)CF (ω). (3.13)

Here, CF (ω) is the Fourier transform of the time auto-correlation function

CF (t) = 〈δF(t) · δF(0)〉, (3.14)

where δF(t) = F(t)− 〈F〉.

3.4 Results

We performed MD simulations of Cyt-c in oxidized (Ox) and reduced (Red) states

at temperatures in the range 280–360 K as shown in Fig. 3.2 and in Fig. S1 in the

ESI†. Additional simulations of the Ox state were done in the temperature range of

120–240 K. The simulation protocol is described elsewhere[171] and in more detail in

the appendix A. Briefly, the system size involved 101440 atoms and the total of 33231

TIP3P water molecules. The production runs were 250 ns long for 280 K and above

and 135 ns long for the lower temperatures. The overall length of the simulation

trajectories was 4.7 µs produced with the NAMD software package.[172]

The total force acting on the heme, FH , was calculated from MD trajectories.

This procedure averages out the short-time fluctuation of the forces caused by internal
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Figure 3.2: Long Relaxation Time of the Force-Force Autocorrelation Function of
the Total Force Acting on the Heme Vs 1/T . The Results of MD Simulations for
the Reduced (Red, Filled Circles) and Oxidized (Ox, Open Squares)Are Fitted to
Arrhenius Linear Functions with the Slopes ERed/kB = EOx/kB = 1868 K.

vibrations and allows us to focus on the long-time dynamics, produced by the bath,

and its potential effect on the observable displacement of the iron. We found that

the force-force time correlation function calculated for the iron atom is dominated by

intramolecular vibration and is oscillatory (Fig. A.10). The long-time dynamics is

hard to extract from that correlation function, which is the reason for our focus on

the overall force acting on the heme. However, this overall force needs rescaling when

applied to the individual iron atom. Assuming that the heme moves as a rigid body,

our re-scaling is given by the ratio of the iron mass m = 56 g/mol and the mass of

the heme M = 614 g/mol

F =
m

M
FH . (3.15)

This rigid-body re-scaling can obviously apply only to the slowest dynamical com-

ponents of the force. In contrast, the correlation function CF (t) calculated from sim-

ulations shows a number of time-scales, from sub-picoseconds, to long-time dynamics

on the time-scale of 6–25 ns (T ' 300 K). While the slowest relaxation process usually

constitutes about half of the amplitude of the time correlation function, Eq. (3.15)

does not discriminate between the slow and fast dynamics. It is therefore clear that

67



our estimate of the overall amplitude of the force acting on heme’s iron is good only

up to some effective coefficient accounting for an imperfect rigidity of the heme. Elas-

tic deformations of the heme shifting its center of mass are effectively disregarded in

the re-scaling assuming the rigid-body motions. With these uncertainties in mind,

we estimate 〈δF 2〉r in Eq. (3.1) from the following equation

〈δF 2〉r = fne(T )(m/M)2〈δF 2
H〉. (3.16)

The nonergodicity parameter fne(T ) here comes from the dynamic restriction imposed

on the integral over the frequencies in Eq. (3.13). Assuming that only the slowest

component in the relaxation of the force can potentially enter the observation window,

τr = 142 ns, we can write[93] fne(T ) in the form corresponding to exponential relax-

ation of CF (t) in Eq. (3.14) (see below the discussion of non-exponential, stretched

dynamics)

fne(T ) = (2/π)cot−1 [τ(T )/τr] . (3.17)

In this equation, τ(T ) is the relaxation time of the slowest component of CF (t). A

similar expression, accounting for the finite resolution of the spectrometer, was used

in the past for the integrated elastic intensity.[173]

It is clear from Eq. (3.17) that the nonergodicity parameter is equal to unity

when τ(T ) � τr and the fluctuations of the force are ergodic. In the opposite limit

of slow fluctuations, τ(T ) � τr, the force fluctuations are dynamically frozen on

the observation time and do not contribute to the softening of iron’s displacement,

fne → 0. This corresponds to low temperatures when intra-heme vibrations dominate.

The crossover temperature Td is reached at τr ' τ(Td).

The long-decay relaxation times τ(T ) are shown in Fig. 3.2. The activation bar-

rier of this relaxation time, Ea/kB ' 1900 K, is below the typical values for the α-

relaxation of condensed materials, thus pointing to a localized (secondary) relaxation
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process of the protein-water interface.[117, 166] In fact, the secondary β-relaxation of

confined[174] and protein hydration[175] water observed below T ' 228 K is charac-

terized by a higher activation energy, ' 5340 K. At high temperatures, comparable

to the range studied here, the activation energy is lower even for the α-relaxation

and is in the range ∼ 1560 K[176] (see below). Still, the force-force correlation func-

tion projects the motions of both protein and a large number of hydration water

molecules on a single collective coordinate of the overall force acting on the heme.

The corresponding relaxation cannot be attributed to a single component. Experi-

mental evidence for such collective dynamics is insufficient, but relatively low acti-

vation barriers are not uncommon for the collective Stokes-shift dynamics of optical

dyes.[177, 178] An activation barrier of Ea/kB ' 1660 K was recently reported for the

slow relaxation component of the Stokes-shift dynamics characterizing the protein-

water interface.[178] When the optical dye is approximated by a dipole, the optical

spectral shift reflects the local electric field at the dipole moment of the dye. There

must be, therefore, a good match between the Stokes-shift measurements and at least

the electrostatic component of the force-force correlation function considered here.

The long-decay relaxation time τ(T ) was determined in the range of temperatures

280 ≤ T ≤ 360 K, where our simulations demonstrate sufficient convergence. The

Arrhenius fits of the simulation data (lines in Fig. 3.2) are then extrapolated to lower

temperature where the experimental Mössbauer data are available. These extrapo-

lated relaxation times are used in Eq. (3.17) to calculate the nonergodicity factor in

Eq. (3.16). This extrapolation is obviously an approximation and we cannot exclude

that the activation energy for the relaxation time grows at lower temperatures.

Calculations of displacements of the heme iron based on Eqs. (3.1), (3.16), and

(3.17) are shown in two panels of Fig. 3.3. The experimental results[10] are rea-

sonably reproduced by our calculations in the Red state of the protein without any
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Figure 3.3: 〈δx2〉 for Reduced (Red, Upper Panel) and Oxidized (Ox, Lower Panel)
States of Cyt-c. The Points Are Experimental Data[10] And the Solid Lines Are
Calculations According to Eqs. (3.1), (3.16), and (3.17). The Dashed Lines Are Low-
Temperature Interpolations of the Experimental Data. The Dashed-Dotted Line in
the Lower Panel Is Based on Multiplying the Relaxation Time τ(T ) for the Ox State
with the Constant Coefficient Equal to 2.65.

additional fitting. The shift of the crossover temperature to a higher value in the

Ox state observed experimentally would imply, in our model, slower dynamics of the

force or a larger value of 〈δF 2
H〉. While a larger value of 〈δF 2

H〉 is indeed observed

(Table 3.1), its overall result is insufficient to explain the shift of the experimental

crossover temperature. The experimental results are recovered by multiplying τ(T )

from simulations by a factor of 2.65. While this factor is obviously arbitrary, the

need for a correction might be related to our insufficient sampling of the long-time

dynamics, extrapolation of the high-temperature relaxation times to lower tempera-

tures, and the assumption of exponential dynamics not supported by measurements

with protein powders[101, 166, 152] (see below).

Despite some difficulties with the long-time dynamics in the Cyt-Ox state, the
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Table 3.1: Separation of 〈δF 2
H〉 (nN2) into the Electrostatic (El.) and Non-Polar

(vdW) Components and the Splitting into the Protein (Prot.) and Water Contribu-
tions (T = 320 K).

Redox State El. vdW Prot. Water Total

Red 8.86 23.17 9.60 3.12 14.52

Ox 16.62 12.65 19.34 2.87a 17.05a

a The contribution of the first hydration layer to the force variance is 2.39 nN2, the total

force variance from the first hydration shell and protein combined is 16.7 nN2.

short-time dynamics produced by simulations are consistent with experiment. This

is confirmed by the calculation of the vibrational density of states

D(ω) =
3N∑

α=1

(êα · x̂)2δ (ω − ωα) , (3.18)

where êα, as above in Eq. (3.6), are expansion coefficients for the linear transformation

from the Cartesian displacement of the Fe atom to normal coordinates Qα in Eq. (3.6).

The normalization of the density of states adopted in producing the experimental data

shown in Fig. 3.4 requires[170]

∫ ∞

0

D(ω)dω = 1. (3.19)

With this normalization, the density of states from simulations was computed from

the velocity-velocity autocorrelation function (see appendix A for more detail) and

displayed in Fig. 3.4. While the overall shape of the density of states is reproduced,

there is a nearly uniform shift toward low frequencies relative to experiment.[11, 12]

This shift might be related to the expansion of the protein at T = 300 K, at which

simulations were performed, compared to the experimental temperature of T = 68 K.

Table 3.1 shows the splitting of the variance of the force acting on the heme into

electrostatic and van der Waals (vdW) components and, additionally, into the compo-

nents from the water and protein parts of the thermal bath. Note that the components

do not add to the total force variance because of cross-correlations. The splitting into
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Figure 3.4: Experimental (Exp.,[11, 12] T = 68 K ) and Simulation (Sim., T = 300
K)Vibrational Density of States for Cyt-Ox (ν̄ = ω/(2πc), c Is the Speed of Light).
Simulations Were Done for 1 ns in the NVE Ensemble with Non-Rigid Protons and
0.25 fs Integration Step (Configurations Saved Every 1 fs).

components indicates that vdW interactions and electrostatics contribute comparable

magnitudes to the force variance. The softening of iron vibrations cannot therefore

be fully attributed to electrostatics (dielectric effect[179, 117, 107]). It cannot be at-

tributed to the hydration shell[107] either and is in fact a combined effect of protein

and water, with the dominant contribution from the protein. The water contribution

can be further diminished in solid samples used in neutron scattering or Mössbauer

spectroscopy. However, the force variance arising from the protein and first hydration

layer combined is only slightly below the overall force of the thermal bath (footnote

in Table 3.1).

The separation of the force variance between protein and water allows us to

comment on the idea of “slaving” of the protein dynamics by water suggested by

Frauenfelder and co-workers.[179, 111, 117] The “slaving” phenomenology implies

the equality of the enthalpy of activation for a relaxation process in the protein with

the enthalpy of activation for the structural relaxation of bulk water (α-relaxation).

When plotted in the Arrhenius coordinates (− ln[τ ] vs 1/T ) the two plots are then

parallel.

72



Figure 3.5: Activated Kinetics in the Kramers’Friction Dominated Limit. The
Characteristic Frequency of Vibrations in the Well Is Given by ωR = ω2

0/ζ For An
Overdamped Harmonic Oscillator with the Eigenfrequency ω0 and Friction with the
Medium ζ; ∆F † Is the Free Energy of Activation Along the Reaction Coordinate q.

The origin of this phenomenology is easy to appreciate within the framework of

Kramers’ activated kinetics dominated by friction with the thermal bath (Fig. 3.5).

The rate constant of an activated process ∝ ωR exp[−β∆F †] is the product of an

effective frequency in the reactant well ωR with the Boltzmann factor exp[−β∆F †]

involving the free energy of activation ∆F †. If the motions along the reaction coor-

dinate are represented by an overdamped harmonic oscillator with the frequency ω0

and the friction coefficient ζ, the direct solution of the Langevin equation leads to the

relaxation frequency ωR = ω2
0/ζ. Therefore, “slaving” appears when most of energy

dissipation occurs to the water part of the thermal bath (which has a higher heat

capacity than the protein[180]). In that case, the temperature dependence of ζ(T ),

and of the corresponding relaxation process in water, would determine the tempera-

ture dependence of the relaxation rate in the protein, which is only shifted to lower

rates due to an additional activation barrier ∆F † (assuming ∆F † is temperature-

independent). This is the “slaving” scenario.

While there are reported instances when this phenomenology is correct,[166, 181]

one can argue that energy dissipation for a localized process occurs to the protein hy-

dration shell, which possesses its own relaxation spectrum. Indeed, Frauenfelder and

co-workers[117] argued that localized processes in the protein have to be “slaved”
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Figure 3.6: Normalized Force-Force Correlation Function SF (t) = CF (t)/CF (0) for
the Protein (p) and Water (w) Components at the Temperatures Indicated in the
Plot. The Fraction of the Fast Ballistic Decay Increases with Lowering Temperature
Since the System Becomes More Rigid Overall. This Results in a Lower Starting
Point of the Slow Component.

to the relaxation of the hydration layer. Consistently with that notion, relaxation

processes related to protein function are often characterized by the activation bar-

rier much lower than those for α-relaxation of bulk water (Fig. 3.2). For instance,

the Stokes shift dynamics directly related to the redox activity of Cyt-c show the

activation barrier of its relaxation time Ea/kB ' 840 K.[15] This is much lower than

∼ 1560 K (increasing to ∼ 6400 K upon cooling) from diffusivity and viscosity of

water (α-relaxation).[176] The idea of “slaving” to β-relaxation of the hydration shell

is less useful, and is harder to prove, since relaxation of the shell is mostly inaccessi-

ble experimentally. Our simulation results allow us such a test since the dynamics of

both the hydration layer and of the heme’s iron are available.

In application to Mössbauer experiment, our data do not support “slaving”. Only

∼ 20% of the force variance acting on heme’s iron comes from from hydration water

(Table 3.1). This also implies that the dynamics should be biomolecule-specific.[182]

In this scenario, “slaving” would be only possible if the protein dynamics followed

the dynamics of water. The results of simulations do not support this conjecture:

the dynamics of SF (t) = CF (t)/CF (0) are distinctly different for the protein and its
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Figure 3.7: Long Relaxation Time of the Force-Force Autocorrelation Function
of the Force Acting on the Heme Vs 1/T (Black Circles) for Reduced Cyt-C. Also
Shown Are the Relaxation Times for the Force on the Heme Produced by the Protein
(Squares) and by Water (Triangles).Fits to Arrhenius Linear Functions Are Shown
by the Dashed Lines.

hydration water (Fig. 3.6). The dynamics of water is on average significantly faster

(a larger drop from the initial value SF (0) = 1, not resolved in Fig. 3.6), and the

slow dynamics of the protein and water are not consistent either. Nevertheless, the

temperature dependence of the relaxation time of the force-force correlation function

is consistent between the protein and water components (Fig. 3.7). The enthalpies of

activation for the protein and water relaxation are, therefore, close in magnitude, in

a general accord with the “slaving” phenomenology. The origin of this effect can be

traced to coupled fluctuations of the protein and hydration water,[183, 184, 185, 186,

187] without invoking the dominant role of water in the dynamics.

Water is a faster subsystem producing a shorter relaxation time of CF (t). One

therefore anticipates that the temperatures of ergodicity breaking should separate for

the water and protein components of the thermal bath.[188] This indeed happens, as

is illustrated in Fig. 3.8 for the reduced state of Cyt-c. The rise of 〈δx2〉 due to water

occurs at ' 150 K, while the transition temperature for the protein is ' 200 K. The

water’s onset is hard to disentangle because the force produced by water on the heme

is relatively low. One might expect that the water-related transition is better resolved
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in neutron scattering experiments[188] since a large number of protons located close

to the interface potentially contribute to the signal. Overall, this calculation clearly

points to a nonergodic origin of the dynamical transition, as we stress again below

when considering the separation of rotational and translational motions of water in

the hydration shell.

3.5 Stretched Relaxation

Difficulties with reproducing ergodicity breaking of Cyt-Ox (Fig. 3.3 lower panel)

might be related to a limited applicability of the results obtained for solutions to

dynamics in protein powders and crystals studied experimentally. In addition to the

obvious uncertainty of extrapolating the high-temperature simulation results to lower

temperatures, the dynamics of hydration water can be qualitatively different in those

environments compared to solutions. The relaxation of hydration water in powders

was associated by Ngai and co-workers[155, 152] with the general phenomenology of

confined water in water-containing glass-formers. The ν-process characterizing such

dynamics is highly stretched, with a very slow decay of the high frequency tail of

the loss function: ε′′ ∝ ω−γ for the dielectric loss[189, 28] and χ′′(ω) ∝ ω−γ for the

neutron scattering loss.[101] A low value of stretching exponent, γ ' 0.2, is observed

in both cases.

The ν-process observed in lysozyme and myoglobin powders by dielectric spec-

troscopy was identified to cause the dynamical transition in neutron scattering.[181]

We can therefore use the corresponding relaxation time τ(T ) reported from dielec-

tric measurements to explain Mössbauer data for met-myoglobin[13] (oxidized form

of myoglobin). Before we do that, we have to extend the nonergodicity parameter

obtained in Eq. (3.17) for exponential relaxation to stretched exponential relaxation.

Cole-Cole function was used to fit the dielectric data.[28] We therefore can re-write
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Figure 3.8: 〈δx2〉 For the Reduced State of Cyt-C. The Points Are Experimental
Data[10] And the Solid Lines Are Calculations According to Eqs. (3.1), (3.16), and
(3.17).The Calculations Are Done for the Total Force-Force Correlation Function
(Black) and for Its Components from the Protein (Orange) and Water (blue).The
Dashed Lines Refer to the Low-Temperature Linear Fit of the Experimental Data
and to the High-Temperature Linear Fit of the Iron Displacement Produced by the
Protein.

the nonergodicity parameter fne(T ) as follows

fne(T ) =
2

π

∫ ∞

τ(T )/τr

dω

ω
Im
[
(1 + (iω)γ)−1

]
, (3.20)

where γ is the stretching exponent of the Cole-Cole function. At γ = 1, Eq. (3.20)

transforms to Eq. (3.17). This nonergodicity factor can be used in the following form

for the force variance

β〈δF 2〉r = Afne(T ) (3.21)

where, according to the standard prescription of the fluctuation-dissipation theorem,

the amplitude A is held constant. The use of this form along with γ = 0.25 and the

experimental τ(T ) (see Fig. A.6 in appendix A) in Eq. (3.20) produce the MSF of

myoglobin shown by the solid line in Fig. 3.9. The fit requires 〈δF 2〉 ' 0.1 nN2 at

T = 300 K, which is roughly consistent with 〈δF 2〉 ' 0.14 nN2 for Cyt-Ox in Table

3.1 when Eq. (3.15) is applied. The quality of the fit is significantly reduced with

γ = 1 (Fig. A.13 in appendix A), which testifies to the need of applying stretched

relaxation to describe ergodicity breaking in protein powders.

77



 ! "

 ! #

 !  

$
%
&'
(
)*
+
' ,

-  '. '  /. /  . 

0)*1,

)2&3!
)24!)*'/,

567897:;<

Figure 3.9: MSF of Heme Iron in Oxidized Myoglobin. Points Indicate Experi-
mental Results,[13] Solid Line Refers to the Fit to Eqs. (3.1) and (3.16) with the
Nonergodicity Factor fne(T ) Determined From Stretched Dynamics According to Eq.
(3.20).The Nonergodic Force Variance Is Determined According to Eq. (3.21) with
the Fitting Constant A = 2.5 nN/Å (Corresponds to 〈δF 2〉 = 0.1 nN2 at T = 300 K).

We note here that a somewhat analogous procedure employing a frequency filter

to the loss spectrum was used by Frauenfelder and co-workers.[117] Their empirical

approach was to apply the normalized dielectric loss spectrum of myoglobin embedded

in poly(vynal)alcohol to the entire recoilless fraction of the Mössbauer effect f(k) in

Eq. (3.2). Our approach is clearly different as it applies the constraint imposed by

the observation window to the force variance in the denominator of Eq. (3.1). The

physical reason for using the dielectric loss is not clear and is in fact inconsistent with

our results showing that nonpolar (vdW) forces significantly contribute to the force

variance (Table 3.1).

3.6 Glass Transition

The lower crossover temperature Tg of the protein MSF represents the glass transi-

tion of the hydration shell.[152] It was previously identified with the onset of transla-

tional diffusion of the water molecules in the shell.[190] However, glass science requires

one to pay attention not only to translations, but also to molecular rotations. There

are a number of reasons for that. First, the configurational entropy of fragile glass-
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formers is mostly rotational[191] (e.g., the heat capacities of supercooled ethanol and

its plastic crystal are nearly identical[192]). Reducing the configurational entropy is

required for reaching the glass transition[193] and, therefore, the rotational config-

uration space has to be strongly constrained close to Tg. Second, the temperature

dependence of the dielectric relaxation time can be superimposed with the relaxation

time from viscosity[165] and with the diffusion coefficient. Therefore, both rotations

and translations are expected to dynamically freeze near Tg.

The density of water in the hydration shell is enhanced compared to the bulk,[194,

195] and shell water, being heterogeneous and more disordered than the bulk,[196, 187]

is close in physical properties to a mixture of low-density and high-density amorphous

ice as observed on samples with low hydration level.[197, 198] Note, however, that

ice-like water has been also observed in the hydration layers of anti-freeze proteins

in particular.[154] Nevertheless, the positional structure of the hydration shell (pair

distribution function) mostly does not change with cooling, and there is no structural

transition associated with crossing the temperature Td.[199] Compared to the posi-

tional structure and translational dynamics,[200, 201] there is much less experimental

and computational evidence on orientational correlations and rotational dynamics of

water in the hydration shell. The lack of experimental evidence on the orientational

structure, in contrast to orientational dynamics, is particularly notable. When dy-

namics are concerned, the single-particle rotational dynamics are slowed down by a

factor of 2–4, as is seen by NMR[202] and computer simulations.[203] Collective re-

laxation probed by Stokes shift of optical dyes are much slower, in the range of sub-

to nanonoseconds,[204, 205, 206] pointing to a significantly slower collective response

of water dipoles[207] compared to single-molecule rotations. A relatively small retar-

dation factor of single-particle rotations in hydration layers compared to the bulk can

in fact be misleading since the distribution of rotational times considerably widens in
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Figure 3.10: The Dipolar Susceptibility of the Hydration Shell Water Calculated
From MD Simulations According to Eq. (3.22)For Shells of Thickness a Around Cyt-
Ox (Open Points) and Cyt-Red (Filled Points) at Different Temperatures (Some Red
and Ox Points Coincide on the Scale of the Plot). The Dotted Lines Connect the
Points to Guide the Eye.

hydration layers such that a single average relaxation time is a poor representation

of the dynamical heterogeneity of the hydration layer.[208, 209]

The fact that the collective response of the shell dipole is quite different from

single-particle MSF is illustrated in Fig. 3.10, which shows the dipole moment variance

for hydration shells of Cyt-Ox and Cyt-Red with varying temperature and thickness

of the shell. More specifically, we present the dimensionless variance of the shell

dipole moment defined analogously to the dielectric susceptibility of bulk dielectrics

χ(a) = [3kBTvwNw(a)]−1〈δM(a)2〉. (3.22)

Here, vw is the volume of a single water molecule (effective diameter 2.87 Å[210]) and

Nw(a) is the number of water molecules in the shell of thickness a measured from the

van der Waals surface of the protein; M(a) is the total dipole moment of the water

molecules in the shell, δM(a) = M(a)− 〈M(a)〉.

The susceptibility shown in Fig. 3.10 represents the statistics of collective fluctua-

tions of the entire dipole moment of the hydration shell. The main qualitative differ-

ence between 〈δx2〉(T ) for the single-particle atomic displacements and fluctuations of
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the collective shell dipole is that the latter clearly violates the fluctuation dissipation

theorem,[92] which predicts 〈δM(a)2〉 ∝ T . From the perspective of the fluctuation-

dissipation theorem, χ(a) should be temperature-independent. The phenomenology

of susceptibility decaying with temperature, in violation of the fluctuation-dissipation

theorem,[9] is shared by most polar liquids.[6] However, the decay of χ(a) with in-

creasing T is much stronger for the hydration layer than for the bulk liquid.[9]

In contrast to homogeneous liquids, the protein hydration shells are heterogeneous

and highly frustrated.[207] This is because polarized interfacial water has to follow

a nearly uniform mosaic of positive and negative surface residues. Surface charges

provide pinning sites for the interfacial waters,[211] and the local electric field orients

water dipoles into polarized domains. These domains are mutually frustrated by the

altering sign of the charged residue since the dipoles at the domain boundaries can

take either of the alternative orientations. This new physics, quite distinct from bulk

polar liquids, connects hydration shells to relaxor ferroelectrics, where mutual frustra-

tion of dipolar crystalline cells breaks the material into ferroelectric nanodomains at

the glass transition reached above the Curie point.[118] Despite strong interactions,

the water molecules in the shell stay in the fluid state, but with the collective fluctu-

ations of the shell dipole slowed down compared to the bulk (hundreds of picoseconds

to tens of nanoseconds for the slow relaxation tail[212, 207, 209]). The relaxation

time of the dipole moment of the first hydration layer, ≈ 1 − 10 ns,[207] is in the

same time range as the relaxation of elastics deformations of the protein’s shape.[213]

One can therefore anticipate that the protein and water dynamics are coupled on

this long time-scale because of coupled elastic and water domain fluctuations, as was

indeed suggested by Careri and co-workers long time ago.[214]

The phenomenology of relaxor ferroelectrics suggests that the dipolar response

of the shell is determined by reorienting the polarized domains, instead of predom-
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Figure 3.11: Center of Mass MSF (Trans., Circles) and the MSF Due to Molecular
Rotations (Rot., Squares) of Water Molecules Within the Hydration Shell 6 Å Thick
Around the Ox Cyt-C. The Center of Mass Translations and Molecular Rotations Are
Calculated within the Time-Window of 100 Ps (Filled Points) and 1 ns (Open Points).
The MSFs For Center-Of-Mass Translations Are Reduced by a Factor of 40 to Bring
Them to the Same Scale with the Results for Rotations. The Dashed Lines Are Linear
Fits Through Subsets of Points to Illustrate Differences in the Onset Temperatures
(Trot(1 ns) = 144 K, Trot(100 ps) = 152 K, and Ttr(100 ps) = 191 K.The Dotted Lines
Connecting the Points Are Drawn to Guide the Eye.

inantly single-particle rotations found in bulk polar liquids.[215] This interpretation

is supported by nanosecond time-scales characterizing the dynamic susceptibility of

the shell χ(ω, a)[207] (Fig. A.12 in the appendix A). This picture does not contradict

to the dynamic (fluid) nature of the hydration shell in which water can diffuse along

the surface visiting a residue per ' 11 ps.[216] Moving from a positive to a negative

residue can be accompanied with a dipole flip, still preserving the domain structure,

which requires much longer times to be altered. The dipole flip of a water molecule

moving to a neighboring residue will also produce a short relaxation time for single-

particle rotations.[202, 203] Overall, the domains freeze in below Tg, remaining fluid

above Tg.

A sharp drop of χ(a) at about ' 145 K signals reaching the glass transition

on the time scale of MD simulations (Fig. 3.10). This Tg is somewhat lower than

experimental Tg ' 170 K from calorimetry of concentrated solutions of Cyt-c.[217]

The glass transition of the hydration shell prevents elastic motions of the protein,
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making a hydrated protein harder at low temperatures than the dry one.[157] One

wonders if rotations and translations of water molecules in the shell terminate at the

same temperature. Figure 3.11 shows that this is not the case (see appendix A for the

details of calculations). The glass transition for χ(a) coincides with freezing of water

rotations. The onset temperature depends on the observation window (cf. filled to

open squares in Fig. 3.11), consistent with ergodicity breaking at the transition. On

the contrary, the onset of water translations occurs at a higher temperature, ' 190 K.

A similar phenomenology was recently reported from neutron scattering of protein’s

hydration shell,[108] where the onset of water’s translations also followed the onset

of rotations. The temperature of translational onset is close to Td, as was noted in

the past.[218] Similar findings are reported in a recent study of rotational dynamics

of a spin probe located in the hydration shell of lysozyme by electron spin echo

spectroscopy.[219] The authors report two crossover temperatures, 130 K and 160 K,

within the resolution window of 100 ns. This technique is sensitive to rotations of the

spin probe only, but one can anticipate that enhanced translations of the surrounding

waters at the higher crossover temperature can also enhance the rotations of the spin

probe.

A crude estimate of the “dielectric constant” of the shell might be relevant here. If,

for the sake of an estimate, one adopts the connection between the dielectric constant

and the susceptibility of bulk dielectrics, ε(a) = 1+4πχ(a), then the inspection of Fig.

3.10 suggests ε(a) ' 407 at T = 170 K and a = 21 Å. This very high dielectric constant

is consistent with recent dielectric spectroscopy of protein powders,[220, 28] reporting

high dielectric increments ∆ε ' 102 − 104 for the relaxation process reaching 1-10

µs at the room temperature. Given the temperature dependence of this relaxation

process, it appears likely that it is responsible for glass transition of hydrated protein

samples.[166] The drop of χ at Tg seen in Fig. 3.10, and a similar behavior observed
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previously in simulations of lysozyme,[207] suggests a possible connection between

high ∆ε and polarized domains formed in the hydration shell.

3.7 Onset of Protein Functionality

Equation (3.1) offers a natural explanation of the extended flexibility of proteins

at high temperatures in terms of the force constant assigned to a cofactor or residue

in the folded protein.[157] According to Eq. (3.1), softening of the protein matrix due

to collective agitation of the protein-water thermal bath reduces the vibrational force

constant κvib = (β〈δx2〉vib)−1 by the magnitude

κb = β〈δF 2〉r. (3.23)

The total force constant κ = (β〈δx2〉)−1 becomes

κ = κvib − κb. (3.24)

Using Eq. (3.24), Fig. 3.12 shows κb(T ) for Cyt-c (Ox) and myoglobin (Figs.

3.3 and 3.9). We have additionally included the results from neutron scattering of

lysozyme (Lys) in 50:50 glycerol-D2O solution (h = 0.83 g D2O/g Lys),[14] which

display a crossover temperature at ' 180 K. All these data point to a rise of κb at

Td to a nearly constant value (except for Cyt-Ox) charactering the protein flexibility

at GHz frequencies. The Young’s moduli of the hydrated protein fall with increasing

temperature[221, 157] in a fashion consistent with κb in Fig. 3.12.

The notion of protein dynamics as proxy for enzymatic activity has been ac-

tively discussed in the recent literature.[222, 154, 223] One has to clearly distinguish

flexibility,[180] i.e. the ability to sample a large number of conformations, from the

actual dynamics, i.e. the time-scales involved in usually dissipative decay of correla-

tion functions. Whether flexibility and activity must accompany each other for slow
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Figure 3.12: Force Constant of the Protein-Water Medium κb = β〈δF 2〉r Calculated
from κ(T ) and κvib(T ) According to Eq. (3.24). Points Indicate the Experimental
Results for Cyt-c (Ox),[10] Myoglobin (Myo),[13] and for Lysozyme Dissolved in 50:50
Glycerol-D2O Solvent at h = 0.83 g D2O/g Lys.[14] The Results for Lysozyme Are
Multiplied by a Factor of 10 to Bring Them to the Scale of the Plot. The Dotted
Lines Connecting the Points Are Drawn to Guide the Eye.

(in milliseconds) enzymetic reactions remains to be seen,[224] but there is one class

of enzyme reactions where protein configurational space has to be dynamically re-

stricted for the reaction to occur.[93] This is the process of protein electron transport

essential to production of all energy in biology,[225] either through photosynthesis or

through mitochondrial respiration.[79]

The fluctuation-dissipation theorem connects fluctuations to response to an exter-

nal perturbation.[92] In this framework, high flexibility implies high solvation,[226] or

trapping, energy. Electrons in biological energy chains have to perform many tunnel-

ing steps within a narrow energy window consistent with the energy input from food

or light. In order to accomplish vectorial electron transport, energy chains have to

avoid deep energy traps. Therefore, large conformational motions producing asym-

metries in solvation energies between the initial and final tunneling states have to be

dynamically frozen on the reaction time.[93]

This phenomenology is consistent with what we have found here for the dynamical

transition of atomic displacements. The role of the force constant in Eq. (3.23) is
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Figure 3.13: ∆F † Given by Eq. (3.26) vs T Calculated from MD Simulations (∼ 250
ns of Simulations at Each Temperature[15]). The Legend Indicate the Reaction
Times τr = k−1

R .Deviations From the Thermodynamic Behavior, kR = 0 (Speci-
fied as An Infinite Observation Time, “∞”),Are Determined by the Nonergodic Fac-
tor fne(T ) (Eq. (3.17)) Calculated from τr and the Relaxation Time[15] τX(T )(s) =
exp[−23.8+835/T ]. The Reorganization Energies From Long Simulation Trajectories
Are Approximated by Linear Functions of Temperature: λSt(T ) = 1.71− 0.0015× T
eV, λ(T ) = 4.19− 0.00446× T eV (T Is in K).

played by the reorganization energy λ determined through the variance of the donor-

acceptor energy gap X used to gauge the progress of the reaction.[225, 85, 227, 93]

The reorganization energy is determined through the variance of X by the equation

inspired by the fluctuation-dissipation theorem (cf. to Eq. (3.23))

λ(kR) = β〈δX2〉r/2. (3.25)

Here, 〈δX2〉r = 〈δX2〉fne(T ) depends on the observation window through the noner-

godicity factor fne(T ) (Eq. (3.17)) multiplying the thermodynamic (τr →∞) variance

〈δX2〉. The only difference of this problem from our discussion of iron’s MSF is that

one has to replace the relaxation time of the force τ(T ) with the relaxation time

τX(T ) of the Stokes-shift correlation function[228] CX(t) = 〈δX(t)δX(0)〉. The role

of the observation window is now played by the reaction time τr = k−1
R given in terms

of the reaction rate constant kR.[229]

The reorganization energy λ(kR) quantifies the depth of the trap created for a

charge by the protein-water thermal bath. The amount of energy to de-trap the elec-
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tron and bring it back to the tunneling configuration specifies the activation barrier

∆F †. It is given in terms of two energy parameters:[93] the difference of first moments

of X in the initial and final states, known as the Stokes-shift reorganization energy

λSt, and the second moment of X specified by λ(kR)

∆F † = (λSt)2/[4λ(kR)]. (3.26)

The parameter λSt specifies the energy difference between two states of the protein

(Red and Ox in the case of Cyt-c). It does not reach its thermodynamic value because

of the inability of the protein to sample its entire phase space on the reaction time.[93]

Instead of reaching, through a conformational change, two thermodynamic minima

of stability (for Red and Ox states), the protein gets trapped in an intermediate

local minimum. The time separation k−1
R � τconf between the reaction time and

the time of the conformational transition τconf constrains the available configuration

space thus producing the glassy statistics and dynamics of the protein.[230, 231] A

relatively small value of λSt follows, such that the condition λSt � λ(kR) keeps the

reaction barrier in Eq. (3.26) relatively low. The reorganization energy λ(kR) in the

denominator in Eq. (3.26) is, however, directly affected by nonergodic freezing of a

subset of degrees of freedom, which can lead to a significant increase of the reaction

barrier at low temperatures and to the termination of the protein function.

This perspective is illustrated in Fig. 3.13 showing the effect of the observation

window on ∆F †(T ). The input parameters to the results shown in Fig. 3.13 are

λSt(T ) and λ(T ) taken from simulation trajectories (' 250 ns) and the Stokes-shift

relaxation time τX(T ) calculated for Cyt-c.[15] As the temperature decreases, the re-

laxation time τX(T ) leaves the observation window, τr = k−1
R , and λ(kR) drops. The

activation barrier grows at low temperatures (see Eq. (3.26)) and the reaction slows

down due to ergodicity breaking qualitatively consistent with the dynamical transi-
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tion for the atomic MSF (at faster rates, such as those involved in primary events

of photosynthesis, λSt becomes affected by kR and the picture changes again[232]).

The overlap of the time-scales probed by the neutron scattering and Mössbauer spec-

troscopy with the typical reaction times of protein electron transfer suggests that the

fluctuations of the protein-water thermal bath responsible for the high-temperature

part of the displacement curve are the same as those involved in activating redox

activity of proteins. We come back to the biological function of the protein and its

termination at low temperatures in chapter 5.
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Chapter 4

THEORY AND ELECTROCHEMISTRY OF CYTOCHROME C

This material was published in the Journal of Physical Chemistry B 121(19),

pp.4958-4967 (2017 May 9).

4.1 Summary

Extensive simulations of cytochrome c in solution are performed to address the

apparent contradiction between large reorganization energies of protein electron trans-

fer typically reported by atomistic simulations and much smaller values produced by

protein electrochemistry. The two sets of data are reconciled by deriving the ac-

tivation barrier for electrochemical reaction in terms of an effective reorganization

energy composed of half the Stokes shift (characterizing the medium polarization in

response to electron transfer) and the variance reorganization energy (characteriz-

ing the breadth of electrostatic fluctuations). This effective reorganization energy is

much smaller than each of the two components contributing to it and is fully consis-

tent with electrochemical measurements. Calculations in the range of temperatures

between 280 and 360 K combine long classical molecular dynamics simulations with

quantum calculation of the protein active site. The results agree with the Arrhenius

plots for the reaction rates and with cyclic voltammetry of cytochrome c immobilized

on self-assembled monolayers. Small effective reorganization energy, and the result-

ing small activation barrier, is a general phenomenology of protein electron transfer

allowing fast electron transport within biological energy chains.
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4.2 Introduction

Redox proteins participate in metabolic redox reactions of biology and in photo-

synthetic and respiratory energy chains responsible for the cross-membrane electron

transport. The conditions of operation of redox proteins within energy chains require

some design trade-offs to accommodate both the small reaction free energies and the

need to place bulky cofactors in the chain at sufficiently long distances. The overall

rate of protein electron transfer is the product of the Boltzmann factor describing the

activation barrier and the electron coupling (tunneling probability) decaying expo-

nentially with the distance between the donor and acceptor.[77, 78, 81]

It is often assumed that proteins provide a nonpolar environment for electron

transfer, blocking the access of highly polar water to the active sites. This view is

supported by the low dielectric constant of protein powders (∼ 2−5[233, 89]) and the

low magnitude of the screening factor (effective dielectric constant[225]) required in

the Coulomb law to screen the interaction between the charges. However, hydration of

the protein causes ionization of the surface groups and their increased mobility.[96] As

a result, any active site of a hydrated protein is surrounded by a nearly uniform density

of surface charges[234] maintaining the stability of the folded protein in solution

and allowing its solubility in water.[235] While these charges mostly do not affect

the electrostatic screening inside the protein, their motions, caused by thermally

activated elastic deformations of the protein, produce a significant electrostatic noise

at the protein active site.[90] It is this electrostatic noise that affects the electronic

energy levels of the donor and acceptor, bringing them into resonance for electron

tunneling.[76]

As we saw in section 1.4 the reorganization energy in the Marcus equation (eq

(1.35)) is both the measure of the change in the distribution of charges (polariza-
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tion) in the medium caused by transferring the electron (nominator in eq (1.35)) and

the measure of the breadth of electrostatic fluctuations caused by thermal agitation

(denominator in eq (1.35)).[89, 90] The Boltzmann factor exp[−∆G†/(kBT )] then be-

comes a Gaussian distribution of the variable ∆G0 with the mean −λ and the variance

2kBTλ.

Given that a hydrated protein is a soft medium possessing a large density of charge

at the protein-water interface, it is hardly a surprise that atomistic computer simula-

tions consistently show large reorganization energies for electron transfer, λ ' 1 − 2

eV,[236, 237, 238, 227] or even higher[232, 239] when the simulation trajectories are

sufficiently long. More surprising was the realization that the reorganization en-

ergy characterizing the fluctuations of the energy levels (thermal agitation) was dis-

tinct from the reorganization energy characterizing their shift upon electron transfer

(medium polarization).[232]. We know from section 1.4 , that the former is λ and the

later is λSt.

The typical phenomenology of electrostatic fluctuations at active sites of proteins

as calculated from atomistic simulations is the inequality[232, 90] λ� λSt. The reason

for this result can be traced to the non-Boltzmann (non-ergodic) sampling of the

phase-space available to the protein on the reaction time-scale,[93] polarizability of the

active site,[84, 171] or the combination of both these factors and/or some other reasons

not yet identified. This phenomenology, as well as some analytic models allowing non-

Gaussian fluctuations affecting electron transfer,[84, 240, 241] provides an extension

of the standard Gaussian picture of the Marcus model,[83] which stipulates[85] λSt =

λ. At least some of these extensions[84] require non-parabolic free energy surfaces.

Since our simulations do not provide sufficient sampling to distinguish such features,

the phenomenology of equal-curvature parabolas[93] is used here. Specifically, the

variance reorganization energies in the oxidized and reduced states are considered
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to be equal (given by λ) and distinct from λSt. This phenomenological approach

allows us to accommodate both the non-Boltzmann (non-equilibrium) sampling and

polarizability effects (requiring non-parabolic free energy surfaces[84]) in terms of only

two reorganization parameters, λ and λSt.

Large values of the reorganization energies appearing in simulations come in direct

contradiction to often small, in the range 0.3− 0.6 eV[17, 18, 242, 16, 243, 244, 245]

(or even smaller, < 0.25 eV[246, 247]), values of the reorganization energy reported

by electrochemistry of redox proteins. Since electrostatics is not much sensitive to

the details of force fields employed by atomistic simulations, the problem cannot be

simply related to still existing deficiencies of the atomistic force-field models. As one

can see from section 1.4, the reorganization energy reported by electrochemistry of

proteins is an effective “reaction” (superscript “r”) reorganization energy combining

two reorganization energies typically reported by simulations(1.40)

The notion that proteins are characterized by the condition λ� λSt explains why

relatively small values of λr are reported by electrochemical measurements. Please

note that λr in the form of eq (1.40) is a direct consequence of the parabolic shape of

the free energy surfaces of electron transfer. One comes back to the standard Marcus

picture with λr = λ = λSt when λSt = λ.

In order to show the consistency of our theoretical model with experimental data,

we have performed extensive simulations of a much studied[248, 249] heme protein

cytochrome c (Cyt-c, wild type from horse). We show that the temperature depen-

dence of the reaction reorganization energy λr(T ) is consistent with the Arrhenius

plots for electrochemical rates obtained from cyclic voltammetry.[16] We also show

that the distribution of the energy levels (density of states) of the oxidized heme,

caused by thermal agitation of the bath, is consistent with the corresponding distribu-

tion obtained by taking the derivative of the cathodic current with the overpotential,
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dic/dη. The cathodic current ic is obtained from cyclic voltammetry after correction

for mass transport.[250, 17, 18, 251] We report an overall good agreement between

experiment[16, 252, 243, 17] and the combined application of the analytic theory and

computer simulations.[93, 171]

Producing reliable values of reorganization parameters of Cyt-c has required the

combination of long trajectories of classical molecular dynamics (MD) simulations

with quantum calculations of the heme’s active site. Since long simulation times are

required for the convergence of the reorganization energies, our quantum calculations

are based on Warshel’s empirical valence-bond method,[253, 254] which involves diag-

onalizing the quantum Hamiltonian, affected by fluctuating electrostatics, along the

MD trajectory.[237, 171] This specific form of a general QM/MM methodology[255]

allows one to combine long trajectories required for sufficient sampling of electrostatic

fluctuations with a large number, M ' 100, of excited quantum states of the active

site. These excited states are coupled to the fluctuating electrostatic field through

a set of transition dipoles and thus allow us to account for the polarizability of the

active site and the corresponding deformation of the electronic density in response to

the medium fluctuations.[84, 237, 171] This part of the calculation formalism turns

out to be very essential for achieving low values of λr consistent with experiment.

4.3 Methods

4.3.1 Eelectron Transfer

In the case of electrode electron transfer, the energy gap involving one-electron

states is between the fluctuating energy level of the oxidized reactant in solution εOx

and the energy level in the metal ε (cathodic process, Fig. 4.1).[22] Correspondingly,

we replace i = {1, 2} for solution electron transfer with i = {Ox,Red} for electrode
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Figure 4.1: Schematics of Cathode Electron Transfer From the Fermi Energy Level εF ,
Corresponding to the Equilibrium Electrode Potential, to An Oxidized Reactant with the
Average Energy εOx. Electron Transfer Predominantly Occurs From εFTo a Nonequilibrium
Energy Level in Resonance with. The Electrode-Reactant Electronic Coupling ∆ Charac-
terizes the Tunneling Probability (Eq (4.3)). The Nonequilibrium Energy Level Is a Part of
a Gaussian Manifold with the Variance σ2 = 2kBTλ Specifying the Reorganization Energy
λ (Eq (1.34)). The Overpotential η Shifts the Electrode Chemical Potential as µ = εF − eη.

reactions. While full description of the problem in terms of finite-temperature dis-

tribution of the electrons in the metal is possible,[256, 257, 258, 259, 260] we first

simplify the discussion by considering electron transfer to a single level corresponding

to the chemical potential of the electrons in the metal µ = εF − eη. It is modified by

the overpotential η (e is the elementary charge) from the Fermi energy εF consistent

with the equilibrium potential at the electrode (Fig. 4.1).

In this picture, the initial state of the system with the electron in the metal

is EOx
g + µ, where EOx

g is the ground state of the oxidized state of the reactant.

The final state, before any relaxation of the nuclear subsystem has occurred, is the

ground quantum state in the reduced state ERed
g . Both energies refer to the same

nuclear configuration of the thermal bath. The electron-transfer reaction coordinate,

monitoring the transition to the activation state X = 0, is the energy gap between

the initial and final states[3, 85]

X = EOx
g − ERed

g + µ (4.1)

Since the reduction and oxidation rates are equal at η = 0, eη = ∆G0 for the elec-

trochemical discharge. One therefore gets for the barrier of electrochemical electron
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transfer

∆G† =
(λr + eη)2

4λr
(4.2)

The significant result of this derivation is that accepting two equal-curvature

parabolas, even with the variance reorganization energy distinct from the Stokes

reorganization energy, does not alter the basic Marcus result[76] for the dependence

of the activation barrier on the reaction free energy. The two reorganization energies,

λ and λSt, combine into an effective reorganization energy λr (eq (1.40)), which is

the only parameter that can be reported from experiments altering either the reac-

tion free energy (solution reactions) or the electrode overpotential (electrochemical

kinetics). In contrast, spectroscopy of charge-transfer bands allows one to distinguish

between λSt and λ.[87, 261] The former parameter determines the spectroscopic Stokes

shift, while the latter yields the inhomogeneous broadening of the spectral lines (Fig.

1.4b).[91, 262, 4]

The arguments presented here can be extended to the calculation of the rate

of non-adiabatic electron transfer, which involves summation of the Golden Rule

transitions to all energy levels of the metal below the chemical potential µ. The

resulting cathodic rate is[256, 263, 264, 265]

kc(η) =
∆

~
erfc

(
λr + eη√
4kBTλr

)
(4.3)

where erfc(x) is the complimentary error function and ∆ = πρFV
2 is the electronic

coupling between the redox species and the electrode. It is given in terms of the

coupling V between the reactant and the individual energy state in the metal and

the density of states ρF of the conduction electrons at the Fermi level.[266, 257, 259]

The derivative of the rate over the overpotential, dkc/dη, is thus proportional to

the “density of states” of the oxidized energy level in the medium

Pc(η) ∝ exp

[
−(λr + eη)2

4kBTλr

]
(4.4)
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This distribution is distinct from the corresponding distribution along the reaction

coordinate POx(X) ∝ exp[−βGOx(X)] (Figure A.2). The function Pc(η) is a mea-

sure of the probability POx(0) to reach the activated state X = 0 when the average

〈X〉Ox = −λSt− (eη)(λ/λSt) is varied by applying the overpotential. The distribution

function Pc(η) is directly accessible from cyclic voltamemtry upon correction for mass

transport.[250]

Solvent dynamics can potentially affect the preexponential factor of the rate

constant.[267, 268, 269, 270] The rate constant of electron transfer between the elec-

trode and an adsorbed reactant, not affected by diffusion, is given by the following

relation[271, 272, 273]

ksc(η) = (1 + g)−1kc(η) (4.5)

with the nonadiabatic rate constant kc(η) according eq (4.3). The factor in front of

it, correcting for the solvent dynamics, is given by the relation

g =
∆〈τ〉
~

4kBTλ
r

(λr + eη)2
(4.6)

The theory leading to eq (4.5) is the result of applying the Sumi-Marcus[268]

formalism to electrode kinetics.[273] The analytical expressions in eqs (4.5) and (4.6)

are obtained under the assumption of a sufficiently low overpotential such that λr +

eη � kBT .[273] Further, 〈τ〉 is the characteristic time of the Stokes-shift dynamics

of the energy gap X specified through the energy gap autocorrelation function[274]

CX(t) = 〈δX(t)δX(0)〉 (4.7)

where δX(t) = X(t)− 〈X〉 and 〈τ〉 is defined as the integral of the normalized time

correlation function (average solvation time[228])

〈τ〉 =

∫ ∞

0

dtCX(t)/CX(0) (4.8)
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The relaxation times in the range 〈τ〉 ' 300− 900 ps[275, 204, 276, 277] were deter-

mined from MD simulations (Figure A.5 and Table A.3). These Stokes-shift relaxation

times were used in eq (4.6) to estimate the effect of the solvent dynamics on ksc(0).

It was found to be negligible for the experimental data considered below.

4.3.2 Simulations and Data Analysis

. The NMR solution structure of horse heart cytochrome c (PDB 1GIW) was

adopted as the starting configuration for the classical MD simulations. The sim-

ulations were done with NAMD software suite, [172] with the trajectory length of

≥ 250 ns for each temperature and oxidation state (overall ≥ 4 µs of MD sim-

ulations). The classical MD simulations were followed by empirical valence-bond

calculations[253, 254] performed for the quantum center including the heme, histi-

dine, methionine, and two cysteine amino acids (Fig. 4.2 and A.2.1) following the

protocol developed in the past.[171] The electrostatic potential of the bath φ(r) act-

ing on the quantum center was expanded around the potential φFe at the heme iron

up to the dipolar operator. This expansion leads to a set of transition dipoles µijk in

the matrix of the quantum center Hamiltonian[237, 171]

H i
jk =

(
Ei
j +QiφFe

)
δjk − µijk · Eb (4.9)

Here, Ei
j is the energy of jth state in either i = Ox or i = Red states and Qi is the

total charge of the quantum center. The excited states j and k are coupled through

the electric field of the thermal bath Eb multiplying transition dipoles µijk in eq (4.9).

Physically, this term in the Hamiltonian represents the polarization of the heme by

the medium field through a non-zero polarizability αij of state j, which is given in

terms of the transition dipoles as

αij = 2
∑

k 6=j

∣∣µijk
∣∣2 /∆Ejk (4.10)
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Figure 4.2: Quantum Center of Cyt-C Used in the Calculations to Compute the Hamil-
tonian Matrix in Eq (4.9). It Includes the Heme (Gray, with Fe Colored Red), Histidine
(Blue), Methionine (Green), and Two Cysteine (Orange) Amino Acids.

where ∆Ejk = Ek − Ej.

The quantum states j = 0, . . . ,M include the ground state of the quantum center,

j = 0, and a number of its excited states produced here by ZINDO/S calculations

for the oxidized (Ox, Q = −1) and reduced (Red, Q = −2) states. The number

of states M = 100 was chosen to converge the polarizability of the quantum center.

Decreasing the number of states M makes the quantum center less polarizable and

eventually brings the system back to the Marcus formulation with λSt ' λ.[171]

Additional details of the simulation protocol and of the quantum calculations are

given in appendix A.

A polarizable quantum center carrying the polarizability αi gives rise to the po-

larization free energy −(1/2)Eb · αi · Eb. On the other hand, the free energy (re-

versible work) invested in creating a fluctuation in the medium scales quadratically

with the field,[278, 84, 279] (χ/2)E2
b . The sum of this term and the polarization free

energy lowers the force constant for the medium fluctuation from χ to ' (χ − αi),

αi = 1
3
Tr[αi]. When projected on the reaction coordinate of electron transfer X, less

free energy invested in an electrostatic medium fluctuation implies lower curvature
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of the corresponding parabola Gi(X) and a higher reorganization energy λ.[84] This

physical picture is consistent with our simulations.

The Hamiltonian matrix in eq (4.9) is diagonalized at each instantaneous value of

the potential φFe and the electric field Eb along the simulation trajectory to produce

the minimum eigenvalues E
Ox/Red
g corresponding to the quantum ground state in

either oxidized or reduced states of the active site. They are used in eq (4.1) to

produce the trajectory of the fluctuating variable X. The probability distributions of

X calculated in the oxidized and reduced states yield the free energy surfaces of the

half reaction Gi(X) (Figure A.2).

The reorganization energies λSt and λ are obtained from, correspondingly, the

first and second moments of the variable X. The former is defined in terms of the

average energy gap 〈X〉i in the Red and Ox states according to eq (1.38). The latter is

given through the variance, λi = 〈(δX)2〉i/(2kBT ), i = Ox,Red. Significantly longer

simulations are required to converge λi compared to λSt (Figure A.1). We find λOx

and λRed slightly different even after 250 ns of simulations (Fig. 4.3 and Table A.2.2).

The values of λ used for the kinetic analysis were therefore obtained by taking the

mean of the values in the corresponding redox states, λ = (λOx+λRed)/2 (black circles

in Fig. 4.3).

A separate issue is the potential impact of the polarizability of the protein-water

solvent on the reorganization energies calculated from simulations. Dielectric con-

tinuum models predict that the reorganization energy is proportional to the Pekar

factor c0 = n−2
D − ε−1

s ,[76] which implies a drop by a factor of about n−2
D in going from

a non-polarizable solvent to a polarizable solvent with the refractive index nD (as-

suming a high static dielectric constant εs). This perspective would suggest that the

reorganization energies obtained by computer simulations in non-polarizable solvents

(TIP3P water in this study) would need to be scaled down to account for the polar-
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izability effects. Recently this problem has been addressed by computer simulations

and liquid-state theories.[280, 281]

It turns out that microscopic solvation models do not support re-scaling of the

reorganization energy according to the rules stipulated by dielectric continuum mod-

els. In contrast to those predictions, λ stays nearly constant with increasing n2
D, or

even slightly increases (for polarizable water models), instead of the predicted drop.

Given these new results and previous simulations and calculations of the effects of the

solvent polarizability on electron transfer,[282, 283] it is reasonable to suggest that

the reorganization parameters obtained from the present simulations do not need fur-

ther re-scaling. A good agreement with experimental results demonstrated below is

another indication that our calculation formalism is robust.

We also note that electron transfer in redox proteins is typically accompanied by

small structural changes of the active site[284] and, correspondingly, low reorganiza-

tion energy of active site vibrations. Estimated values range from 0.05− 0.09 eV for

Fe-porphins[285] to 0.10−0.14 eV for Zn-porphyrins[286] to ' 0.1 eV in azurins.[287]

This internal reorganization energy is generally split between quantum and classical

vibrations. The reorganization energy related to quantum vibrations affects the rates

in the Marcus inverted region of electron transfer,[288] which is not typically reached

in either the electrochemical experiment or at the typical conditions of redox reac-

tions in biological energy chains. Therefore, only the classical part of the internal

reorganization energy can potentially affect these reactions. While the splitting of

the reorganization energy between the classical and quantum modes is not known

for Cyt-c, the classical part of the internal reorganization energy, remaining after

subtracting the quantum component, is expected to be small, within the simulation

uncertainties. We therefore do not include the internal reorganization energy in our

calculations of the electrode kinetics.
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Figure 4.3: Temperature Dependence of Reorganization Energies From QM/MD Sim-
ulations. Shown Separately Are the Variance Reorganization Energies λi (Eq (1.34)) in
the Reduced (Red Diamonds) and Oxidized (Blue Triangles) States of Cyt-C and Their
Mean Values (Black Circles). Squares Refer to the Stokes-Shift Reorganization Energy
λSt (Eq (1.38)) and Black Diamonds Refer to the Reaction Reorganization Energy λr (Eq
(1.40)). The Dashed Lines Are Linear Regressions Through the Simulation Points (the
Upper Dashed Line Is a Linear Regression Through the Mean Values λ(T )).

4.4 Results

The results of QM/MD simulations for the reorganization energies as functions

of temperature are shown in Figure 4.3. The corresponding values at T = 300 K,

estimated from linear regressions of the simulation data, are listed in Table 4.1. As

expected, both reorganization energies, λSt and λ, are fairly large and consistent

with a large density of charge and polar groups surrounding the active site of a redox

protein. A relatively small value of the reaction reorganization energy λr (eq (1.40)) is

achieved due to λ� λSt. As we already pointed out, this inequality in the case of Cyt-

c is the consequence of a high polarizability of the active site allowing its electronic

density to deform in response to the fluctuations of the thermal bath. Reducing

the polarizability by either using fixed partial atomic charges (zero polarizability)

or a small number of quantum states when diagonalizing the quantum Hamiltonian

produce λSt ' λ ' 1.3−1.6 eV consistent with the standard Marcus picture of a single

reorganization energy characterizing electron transfer.[171] However, these values of
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Gold Electrode Modified with PyC11/C10 Self-Assembled Monolayer[16] (Points, Exp.).
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Data. The Temperature-Dependent Reorganization Energy λr(T ) from Figure 4.3 Was Used
in Eqs (4.3) and (4.5).The Dotted Line Shows the Result of Neglecting the Temperature
Dependence λr(T ) and Putting λr = λr(300 K).

the reorganization energy are too high to describe the experimental electrochemical

data, as we show below.

Not only the reorganization energy itself, but also its temperature dependence

is reduced for λr compared to λSt and λ. We list in Table 4.1 the entropies of

reorganization

Sλ = − (∂λ/∂T )V (4.11)

at constant volume consistent with the NVT ensemble used in the simulations (see

A.2.1). All reorganization energies are decaying functions with increasing tempera-

ture, as is expected from studies of electron-transfer reactions in polar liquids.[289,

290]

The decay of the reorganization energy with increasing temperature is related to

structural fluctuations in polar liquids producing changes in both orientations of the

liquid dipoles and their positions (density fluctuations). While changes in orientations

are mostly driven by redistributing the thermal energy (energy driven), the density

rearrangements require local repacking of the liquid against repulsive molecular cores
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Table 4.1: Reorganization Parameters of Cyt-c at T = 300 K (eV).a

Parameter λ λSt λr

λ 2.85 1.26 0.56

TSλ 1.34 0.45 0.14
aThe Parameters in the Table Are Calculated From Linear Interpolations of the MD Data

in the Range of Temperatures From 280 K to 360 K (Fig. 4.3).

(entropy driven). The difference in the character of fluctuations, energy-driven for ro-

tations and entropy-driven for translations, projects on different effects of temperature

on the corresponding components in the reorganization energy. The reorganization

energy arising from molecular rotations is nearly temperature-independent, while the

reorganization energy arising from density fluctuations decays approximately hyper-

bolically with increasing temperature. The overall dependence of the reorganization

energy on temperature is hyperbolic,[289] as proven experimentally[291, 290] for sys-

tems with λSt ' λ. Figure 4.3 shows that the general rule of the reorganization energy

decaying with increasing temperature extends to redox proteins with λ� λSt.

The largest entropy Sλ is observed for the variance reorganization energy λ, with

TSλ/λ ' 0.5 consistent with typical values observed for electron transfer in polar

molecular liquids.[289] In contrast, the temperature variation of λr is significantly re-

duced, by an order of magnitude, due to the mutual cancellation of the corresponding

temperature effects on λSt and λ. This cancellation achieves a significant robustness

of operation and insensitivity of the enzyme to the variations of thermodynamic

conditions.[77] Consistently, a very small reaction entropy was recently reported for

electrochemistry of immobilized myoglobin.[292]

The magnitude of λr, and its temperature dependence, are fully consistent with

the experimental data. Figure 4.4 shows the temperature variation of k0 = kc(0)

measured for horse Cyt-c[16] immobilized on a self-assembled monolayer (SAM) on
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Circles.

a metal electrode.[256, 293, 294] Immobilization is achieved by linking the heme of

Cyt-C to terminal pyridine group of the PyC11/C10 monolayer. The application of the

non-adiabatic electron-transfer rate requires the unknown parameter ∆ in eq (4.3),

which does not affect the slope of the Arrhenius plot (ln k0 vs 1/T ), but causes its

vertical shift. The value of ∆ was adjusted to fit the experimental data (points in Fig.

4.4). A good agreement of the Arrhenius slope with experiment suggests that λr, and

its temperature dependence, are reliably reproduced by the simulations. Neglecting

the temperature dependence of λr results in a lower slope (dotted line), in accord

with the positive sign of Sλ in Table 4.1 affecting the enthalpy of activation according

to the relation

∆H† ' λ+ TSλ
4

(4.12)

The estimate of the solvent dynamic effect,[267, 269, 270] with the relaxation time

〈τ〉 ' 300 − 900 ps obtained from simulations (see A.2.1), shows that the term in

the denominator in eq (4.5), containing g ∝ 〈τ〉 (eq (4.6)), can be neglected for this
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reaction (g ' 4× 10−4).

An independent test of our results is provided by voltammetry of horse Cyt-c

performed[17] on an electrode coated with ω-hydroxyalkenthiol SAM of a thickness

comparable to the one used to produce data shown in Figure 4.4.[16] In these ex-

periments, the derivative of the diffusion-corrected[250] electrode current dic/dη was

recorded (points in Fig. 4.5). As mentioned above, this derivative is proportional

to the probability density Pc(η) along the overpotential coordinate (eq (4.4)). The

probability density based on our MD simulations (solid line in Fig. 4.5) is in good

agreement with experiment without any additional fitting. The value of λr ' 0.57 eV

used in the analysis is consistent with λr ' 0.58±0.04 eV reported previously[18, 242]

(native rat Cyt-c in Ref. 242).

Our results are also consistent with the reported cyclic voltammograms[16] with-

out additional fitting (Fig. 4.6). The calculations were performed by applying the

rate constant as given by eq (4.3) to kinetic equations describing redox adsorbates

(see A.2.1).[19, 20] The reorganization energy λr for the analysis is taken from our

MD data and ∆ = 2×10−9 eV is the fitting parameter from the Arrhenius plot shown
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in Figure 4.4. The calculations are consistent with the expected limiting behavior for

fully irreversible reactions where Laviron’s solution[21] for the Butler-Volmer kinetics

predicts the linear plot with the slope 2.3kBT/(αe) (dashed line in Figure 4.6 for the

transfer coefficient α = 0.5).
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Chapter 5

TERMINATION OF BIOLOGICAL FUNCTION AT LOW TEMPERATURES:

GLASS OR STRUCTURAL TRANSITION?

This material was published in the Journal of Physical Chemistry Letters 9(9),

pp.2359-2366 (2018 Apr 19).

5.1 Summary

Energy of life is produced by electron transfer in energy chains of respiration or

photosynthesis. A small input of free energy available to biology puts significant re-

strictions on how much free energy can be lost in each electron-transfer reaction. We

advocate the view that breaking ergodicity, leading to violation of the fluctuation-

dissipation theorem (FDT), is how proteins achieve high reaction rates without sacri-

ficing the reaction free energy. Here we show that a significant level of nonergodicity,

represented by a large extent of the configurational temperature over the kinetic tem-

perature, is maintained in the entire physiological range for the cytochrome c electron

transfer protein. The protein returns to the state consistent with the FDT below the

crossover temperature close to the temperature of the protein glass transition. This

crossover leads to a sharp increase in the activation barrier of electron transfer and

is displayed by a kink in the Arrhenius plot for the reaction rate constant.

5.2 Introduction

Life exists in a very narrow range of temperatures and the question of what hap-

pens when the temperature is lowered seems to be irrelevant for biological function.

However, in particular in the field of physiological energy flow,[79] lowering temper-
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ature has offered significant insights into the basic physical mechanisms behind the

high-temperature phenomena. The classical experiments by de Vault and Chance[82]

showed that the rate of protein electron transfer becomes temperature-independent

below ∼ 150 K, which helped to realize that electron tunneling is the physical mech-

anism behind biological electron transport.[81] Likewise, lowering temperature in

Mössbauer spectroscopy of myoglobin allowed Parak and Formaneck[75] to observe a

kink in the temperature dependence of iron displacement in the heme cofactor. This

result came in violation of the fluctuation-dissipation theorem (FDT)[92] and of an

even earlier result known as the Nyquist theorem.[295] Here, we continue along this

path of enquiry by employing large-scale molecular dynamics (MD) simulations to

drive cytochrome c (Cyt-c) protein below its glass transition to interrogate the effect

of lowering temperature on the activation barrier of protein electron transfer. We

show that the violation of the FDT first pointed out by Parak and Formaneck[75, 80]

is a fundamental principle allowing proteins to achieve fast reaction rates without

sacrificing the reaction free energy.

The FDT is a set of relations connecting the response of a macroscopic variable X

to a weak perturbation with thermal fluctuations of the same variable.[92] Specifically,

if a weak step perturbation F is introduced at time t = 0, the change ∆X(t) =

χ(t)F is represented by the product of the linear response function χ(t) and F . The

total change ∆X(∞) obtained at t → ∞ is related to the variance 〈δX2〉 caused by

thermal agitation at equilibrium:[92] kBTχ(∞) = 〈δX2〉 (angular brackets refer to an

equilibrium ensemble average).

The general framework of the FDT applies to solvation of charge by polar liquids

and is typically ascribed to the linear response approximation for solvation,[296] with

the most famous result given by the Born equation for polar solvation. This framework

is also commonly applied to enzymology[297, 298] and, more specifically, to probably
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the simplest reaction catalyzed by proteins, the reaction of electron transfer.[76, 79]

No bonds are formed or broken during electron transfer, which allows one to reduce the

problem to the language of nonequlibrium solvation and the fluctuation-dissipation

relations. This connection was achieved by Marcus,[278] who, following Onsager’s idea

of microscopic reversibility,[299] defined the free energy required to bring the donor

and acceptor in the resonance configuration for electron tunneling. This formalism has

lead to now widely accepted picture of equal-curvature crossing parabolas (Fig. 1.5).

The collective variable X = ∆E(q), depending on the system’s nuclear coordinates q,

is the energy gap between the initial and final electronic states[3] and the activation

barrier is the free energy required to climb from the parabola’s bottom to X = 0 at

the crossing point (tunneling configuration).

5.3 Discussion and Results

While providing a general and widely applicable view of activated processes in

polar materials, the Marcus picture is too limited when applied to protein electron

transfer. The difficulty is the need for a large in magnitude and negative reaction

free energy,[76] ∆G0 ' −λ, to accomplish sufficiently fast near-activationless elec-

tron transfer often observed in primary events of photosynthesis and energy chains of

respiration.[300, 301] The proposal that proteins might provide a weakly polar envi-

ronment for redox active sites[288] has been mostly refuted by a large number of recent

MD simulations[227] and by comparison of simulations with experiment[232, 302, 15]

(with potential exceptions of active sites buried deep inside the membrane-bound

proteins[303, 227]). As our simulations below also indicate, the typical reorgani-

zation energy of protein electron transfer, ' 1 eV, is not much different from the

standard expectations for organic donor-acceptor complexes in solution[304, 305] and

ligand-protected (e.g., λ ' 1 eV for cobaltocene[306]) redox metal ions (up to three
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times higher reorganization energies are found for transition metal aqua ions[307]).

Such relatively high values of the reorganization energy for protein electron transfer

require significant losses of free energy for an energy chain operating at low activa-

tion barriers. On the other hand, rather small input free energy, |∆G0| ' 1 eV, is

typically available to biology, either through the photon energy or the redox poten-

tial of organic molecules.[79] Since this input needs to be utilized in a large number

of electron-transfer steps, energy complexes of biology must have developed non-

Marcusian mechanisms of operation to avoid wasteful conversion of free energy to

heat.

Nonlinear solvation, going beyond the linear response approximation of the Mar-

cus picture and the FDT, does not seem to have a significant chance to operate

in the soft environment of an active site subjected to screening by mobile waters

and ionic clouds.[83, 296] We have alternatively suggested that energetic efficiency

of biology exceeding the predictions of the standard models is achieved by elimi-

nating ergodicity,[232] i.e., by incomplete sampling of the space of available con-

figurations. This hypothesis leads to a number of verifiable predictions.[93] Most

directly, ergodicity breaking, common to glass science, leads to the violation of

the FDT with the consequence that the thermal variance of an observable prop-

erty 〈δX2〉/(kBT ) exceeds the linear susceptibility χ(∞). To characterize this dis-

tinction, one introduces an effective (fictive[308]) temperature of a glassy system

Teff ∝ 〈δX2〉/χ(∞).[309, 310, 311, 312] In the case of electron transfer, this definition

translates to the following relation[93]

Teff

T
=

λ

λSt
(5.1)

Here, Teff is the effective temperature characterizing the configurational manifold of

the thermal bath of the reaction site (protein and the surrounding solvent for protein
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Figure 5.1: Temperature Dependence of the Reorganization Energies Calculated From the
First and Second Moments of the Reaction Coordinate, λSt (Marked as “St”, Open Squares)
and λ (Circles). We Find λ � λSt at High Temperatures (Open Circles),In Violation of
the Fluctuation-Dissipation Theorem, and the Return to λSt ' λ Anticipated by the FDT
Below the Crossover Temperature Tc ' 170 K (Filled Circles). The Results for λRefer to
the Oxidized State of Cyt-C, and Both Oxidized and Reduced States Were Simulated to
Produce λSt. The Solid Curve Is the Fit to Eq (5.6) Assuming Ergodicity Breaking with the
Arrhenius Relaxation Time τX = τ0 exp[EX/(kBT )]. The Activation Energy EX/kB = 1725
K Was Obtained from MD Simulations (Fig. A.14) and τ0/τobs = 10−6 WasAdopted Based
on the Length of the Simulation Trajectories. The Dashed Lines Are the Linear Regressions
Through the Simulation Points.

electron transfer) and T is the standard kinetic temperature.

The right-hand side of eq (5.1) involves two reorganization energies, λSt and λ.

The former is the analog of the linear susceptibility χ(∞) of the FDT. It is equal to

half of the separation between the mean values of the energy gap X in two electron-

transfer states[313, 314] (the Stokes shift[87])(equation (1.38) and figure 1.5). The

second reorganization energy is λ (eqauation (1.34) and Figure 1.5).

In the thermodynamic limit of ergodic sampling described by the FDT, Teff = T

and λSt = λ, as required by the standard theory.[76] When ergodicity is broken, one

gets[310] Teff > T and the reorganization energy from the curvature exceeds that from

the shift between the parabolas’ minima. As is easy to appreciate from Figure 1.5,

this scenario leads to the drop of the activation barrier compared to the standard

theory. The activation barrier with zero reaction free energy becomes

∆F † = λr/4 =
(
λSt
)2
/(4λ) = (λSt/4) (T/Teff) (5.2)
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The effective “reaction” reorganization energy λr is the only parameter that enters the

activation barrier, which for a non-zero reaction free energy ∆G0 still carries the form

of the Marcus theory[93] (check equations (1.36) and (1.39)). What is different from

the standard theory is that λr = (λSt)2/λ loses its simple meaning of a linear solvation

free energy and becomes a composite parameter given by eq (5.2). In the case of Cyt-c

at 300 K we obtain from MD simulations: λ ' 2.9 eV, λSt ' 1.3 and Teff/T ' 2.3.

The resulting λr ' 0.57 eV is in close agreement[15] with the values reported from

electrochemistry of proteins attached to monolayer-coated electrodes,[17, 18, 242]

λr ' 0.58 ± 0.04 eV. This result is slightly below λr ' 0.7 eV from solution rates

measured vs the reaction driving force (Marcus inverted parabola) for cytochrome c

proteins modified through the attachment of Ru-based electron donors.[307] No direct

comparison to electrochemistry can, however, be conducted because reorganization

of Ru-chromophore significantly affects the energetics.[315]

Mechanisms to lower reaction barriers had to be sought after by natural selection.

Our theoretical framework presents a potential realization of this selection pressure

through a physically robust mechanism. The practical question is whether proteins

can serve as media allowing ergodicity breaking and what are the magnitudes of

barrier depression that can be achieved.

The main result of this study is shown in Figure 5.1. It presents the analysis of

extensive (> 5.6 µs) MD simulations of Cyt-c (PBD 1GIW and 1AKK) in two redox

states at a number of temperature from above the room temperature (TH = 360

K) to low temperatures (TL = 120 K) below the glass transition of the protein at

Tg ' (170− 180) K.[100] The main observation from these data is that

Teff � T (5.3)

at physiological temperatures, where λ(T ) is a slightly dropping function of tempera-
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ture, as expected.[289] The high-temperature behavior, where the FDT is clearly vio-

lated, is followed by a sharp return to the FDT expectations, Teff ' T , at a crossover

temperature Tc not too far from Tg. The question addressed by this report is what are

the mechanisms contributing to this unusual phenomenology. The simulation proto-

col for the MD simulations presented here was described previously[171, 15] and is

discussed in more detail in appendix A. It is important to note that while Teff � T is

often found for the electrostatics of protein active sites in agreement with experimen-

tally reported kinetics of electron transfer,[232, 302] Cyt-c is a somewhat special case.

We found, in agreement with previous simulations,[237, 227] that λ ' λSt when the

heme is represented by partial atomic charges and no polarizability of the active site

is included. The condition λ� λSt is achieved by allowing polarizability of the active

site modeled here by QM/MD calculations described in previous publication[171] and

in section A.2.1. The polarizability of Cyt-c significantly exceeds what a similar for-

malism finds for iron-sulfur clusters in bacterial complex I, where still Teff/T ≈ 3− 6

was reported.[316]

One first has to stress that the ratio Teff/T > 2 is significantly higher for pro-

teins than for bulk glass-formers,[311] but close to the results obtained by pulling

DNA hairpins with optical tweezers.[312] The DNA experiments represent a driven

system, while protein electrostatics is intrinsically non-equilibrium. There are, there-

fore, some unique properties of the biomolecule-water thermal bath that allow a very

substantial deviation from the FDT for the charge-potential conjugate variables and

a correspondingly large depression of the activation barrier related to electrostatics

at the active site.

The first question to ask in connection with a sharp drop of λ at Tc is whether one

can identify some other properties, related either to the protein or to its hydration

shell, which show similarly strong alterations around Tc. We could not identify protein
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Figure 5.2: (a) Compressibility of Hydration Shells χN (a) (Eq (5.4)). (b) Average Num-
ber of Water Molecules in the Shell of Thickness a = 6 Å. (c) Dipolar Susceptibility χM (a)
(Eq (3.22)). (d) Free Energy Surfaces of Oxidized Cyt-C (Eq (1.33)), F (X) = F1(X). The
Free Energy Surfaces Have Been Shifted to the Common Level F (〈X〉1) = 0.The Dashed
Lines Drawn Through the Points in (a)-(c) Are Fits to Guide the Eye and the Vertical
Dotted Line in (c)Is Drawn at the Temperature Tc ' 170 K Also Shown in Figure 5.1.

properties showing a crossover, but a number of crossovers for the hydration shell were

found by the present simulations.

We first focus on whether the orientational or density manifold of the hydration

shell shows an unusual behavior. Figure 5.2a presents the compressibility of the

hydration layers of different thickness a measured from the protein’s van der Waals

surface. The compressibility is calculated as the variance relative to the average

number of hydration waters in the shell of thickness a[317, 318, 207]

χN(a) = 〈δN(a)2〉/〈N(a)〉 (5.4)

The resulting functions χN(a), calculated for a = 6, 9, 15 Å, are all approximately

proportional to the kinetic temperature T , as expected from the FDT (Fig. 5.2a).

No discontinuity is seen at Tc, even though a curious dependence is found for the

average number of waters, as is shown in Figure 5.2b. The average 〈N(a)〉 is seen to

go through a minimum at T ' 270 K. It is also reflected by a slight bump of χN(T )
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at the same temperature. The origin of this behavior is not clear since TIP3P force

field used in the simulations does not display the density maximum consistent with

the properties of water. The compressibility of the hydration shell is also higher for

thinner shells, despite a typically higher density of the hydration water compared to

the bulk.[195] This observation indicates that the network of water hydrogen bonds

is broken in the hydration shell (see also below), which is more disordered than the

bulk[196, 187] and has a higher compressibility.

The temperature dependence of the orientational manifold of the hydration wa-

ter is distinctly different from its density. Figure 5.2c shows the dipole moment

susceptibility[207] provided by equation (3.22). The dimensionless dipolar suscepti-

bility is defined in analogy with the dielectric susceptibility of bulk dielectrics.[319] It

is normalized with the average number of waters in the shell 〈N(a)〉. The temperature

dependence of χM(a) is peculiar in two regards: (i) it violates the FDT even at high

temperatures (similarly to λ(T ) in Figure 5.1), increasing with lowering temperature

in contrast to the anticipated decrease, and (ii) it shows a sharp drop to nearly zero

at a temperature consistent with the drop of λ at Tc (vertical dotted line in Figure

5.2c). The violation of the temperature dependence predicted by the FDT for the

variance of the bulk dipole moment is displayed by many polar liquids,[9] but the

temperature slope of χM(a) for the hydration shells far exceeds that for bulk liquids.

A similar observation was previously made for the lysozyme protein,[207] and this

behavior of χM(T ) might universally apply to the protein hydration shells.

The question raised by the unusual temperature dependence of χM(T ) is whether

the hydration shell is en route to a dipolar ordered phase interrupted by the glass

transition, similarly to the phenomenology found for relaxor ferroelectrics.[118] We

have analyzed orientational order of the interfacial dipoles in terms of two lowest order

parameters, pl = 〈Pl(cos θ)〉, l = 1, 2, of the water dipoles forming angle θ with the
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closest normal direction to the van der Waals surface of the protein[207] (Pl(x) is the

Legendre polynomial of order l). The preferential alignment of water molecules in the

interface corresponds to their hydrogens pointing toward the protein surface (either

dangling OH bonds[320, 321] or hydrogen bonds with the protein, Figure A.18). This

alignment, which is further tested with a separate order parameter[322] p21 sensitive

to dangling bonds (Fig. A.19), is enhanced when the temperature is lowered (Fig.

A.17). Nevertheless, there is no distinguishable structural transition in the ordering

of dipoles in the interface. Still, the free energy surfaces of electron transfer presented

in Figure 5.2d indicate a bimodal behavior near Tc.

The details of the free energy calculation formalism are given in the section A.2.1.

Briefly, we employ Warshel’s valence-bond approach,[253, 254] in which the quantum-

mechanical Hamiltonian of the heme with ligating amino acids is diagonalized at each

simulation frame along the MD trajectory.[237, 171] The energies produced by diag-

onalizing the oxidized and reduced states of Cyt-c form the energy gap X = ∆E(q).

The reorganization energy λ in the oxidized state is shown in Figure 5.1 and the free

energy surfaces for the oxidized state of Cyt-c at different temperatures are shown

in Figure 5.2d. They show a distinct shift of the minimum around Tc, with the

overall shape near Tc suggestive of a bimodal distribution (similarly to Landau’s free

energy functionals of an order parameter[167]). In search of a possible structural

transition[153] of water in the protein-water interface, we have examined the temper-

ature effect on the distribution functions P (Q) of the tetrahedral order parameter Q

of hydration water.

The tetrahedral order parameter[24, 25]

Q = 1− 3
8

3∑

i=1

4∑

j=i+1

(cos θij + 1/3)2 (5.5)

is defined by the angle θij formed by a target molecule with its four nearest neigh-
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Figure 5.3: (a) 〈Q〉 vs T for the Hydration Waters within the Shell of Thickness a = 6
Å Around Cyt-C in the Oxidized Form (Filled Diamonds). Also Shown Are 〈Q〉-Values for
Bulk SPC/E Water[23] (Open Squares) and TIP3P Water (Open Circles). (b) Distribution
Functions of the Tetrahedral Order Parameter[24, 25] (Eq (5.5)) In the Hydration Shell of
Oxidized Cyt-C (a = 6 Å) At Different Temperatures. The Dashed Line Refers to Bulk
TIP3P Water.

bors i and j. Tetrahedral ice-like structure yields 〈Q〉 = 1 and 〈Q〉 = 0 describes

the state of orientational disorder. We find that 〈Q〉 of the hydration shell increases

monotonically with lowering temperature (Fig. 5.3a) in parallel to bulk SPC/E[23]

and TIP3P water, but below both of them. Consistently with compressibility χN(a)

of hydration shells (Fig. 5.2a), lower 〈Q〉 values indicate higher disorder of hydration

water compared to the bulk.[196, 187] The distributions P (Q) shown in Figure 5.3b

rather closely follow the behavior observed in the bulk[25] (dashed line), developing

a bimodal distribution consistent with more ordered hydration water at low temper-

atures (also see Fig. A.15). The disturbance of the tetrahedral order imposed by the

protein is marginal[323] and, overall, we see little evidence of a structural transition

of the hydration shell around the crossover temperature. We therefore favor the glass

transition (dynamical freezing) interpretation of the crossover in both λ and χM . The
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two-state shape of F (X) = F1(X) near the crossover temperature (Fig. 5.2d) likely

reflects changes in the bimodal distribution of Q shown in Figure 5.3b.

In the glass transition scenario, thermal motions of the medium, leading to fluc-

tuations of the electron-transfer energy gap X, become dynamically frozen when

the relaxation time τX(T ) of the collective coordinate X(t) becomes comparable

with the observation time τobs, which is the length of the simulation trajectory in

our case. In turn, the relaxation time τX(T ) is associated with the Stokes-shift

dynamics[87] and is found from the corresponding Stokes-shift time correlation func-

tion CX(t) = 〈δX(t)δX(0)〉, δX(t) = X(t) − 〈X〉. The nonergodic reorganization

energy becomes a sum of the low-temperature component λf produced by fast vibra-

tional and ballistic motions of the medium and the component λs related to collective

medium fluctuations with the relaxation time τX(T ). The slow component λs is mul-

tiplied by the nonergodicity factor accounting for dynamical freezing[93](also look at

Eq. (3.17))

λ(T ) = λf + (2λs/π)cot−1 [τX(T )/τobs] (5.6)

Slow collective modes of the protein-water interface, producing λs > λf , are re-

lated to elastic deformations of the protein’s shape. Such elastic deformations, cover-

ing a broad range of time-scales,[324] shift the positions of polar and ionized surface

residues, thus resulting in a significant electrostatic noise at the protein’s active site

reflected by λs. Modeling elastic protein fluctuations does not necessarily require

atomistic simulations and can be accomplished even with mechanical elastic-network

models for protein fluctuations.[161] Global elastic modes shifting surface charges

are coupled to polarized domains of hydration water at the protein-water interface,

also enhancing the magnitude of electrostatic fluctuations. The dynamics of interfa-

cial water, coupled to the surface residues,[184] are highly stretched[325] and involve

time-scales significantly exceeding those of bulk water.[324] The interfacial electro-
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statics couples to the polarizability of the heme through the electrostatic field, thus

leading to a higher value of the reorganization energy.[171]

The complex dynamics of the protein-water interface are reduced in eq (5.6) to an

effective Debye process. Such reduction is not always possible and complex (stretched-

exponential) dynamics are required to describe ergodicity breaking of heme’s iron

displacements.[46] For the Debye process, relative values of τX(T ) and τobs are suf-

ficient to account for nonergodicity. The results of MD simulations for τX(T ) were

fitted to the Arrhenius law τX = τ0 exp[EX/(kBT )] yielding EX/kB ' 1725 K (Fig.

A.14). This relaxation time was then used in eq (5.6) to produce the solid line in

Figure 5.1 based on the low-temperature value λf and the high-temperature linear

interpolation of the simulation points (upper dashed line in Figure 5.1). The crossover

temperature Tc ' 170 K (vertical dotted line in Figure 5.1) is determined as the mean

point λ(Tc) = (λs + λf )/2. We reach an overall consistency of this procedure, and

the hypothesis of dynamical freezing, with the simulation data.

The data accumulated in this study present the following general picture of ki-

netically and energetically efficient operation of redox enzymes. The folded state

of the protein, strongly coupled with the surrounding hydration water, exists in a

nonergodic state similar to a quenched and ageing glass.[326] The resulting incom-

plete sampling of the phase space leads to a separation of the configurational effective

temperature Teff from the kinetic temperature T , eq (5.1). In contrast to bulk glass

formers, where the excess of Teff over T is very minor, this ratio can be very signifi-

cant, Teff/T ' 2 − 6, when judged from λSt and λ.[232, 93] The excess amplitude of

fluctuations, leading to large magnitudes of λ, is provided by coupled fluctuations of

the protein-water interface.[232] The time-scale of these fluctuations is on the scale

from hundreds of picoseconds to nanoseconds to microseconds.[324] The Stokes-shift

relaxation time follows the Arrhenius temperature dependence with the activation
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Figure 5.4: Arrhenius Plot of −∆F †/(kBT ) vs 1/T for the Reaction of Electrode
Reduction of Cyt-C. Points Represent the Activation Barriers Calculated as ∆F † =
F (0)−F (〈X〉1) From the Free Energy Surfaces Calculated at Different Temperatures From
MD Trajectories. The Dashed Lines Are Linear Interpolations Between the Points. The
Vertical Dotted Line Indicates the Crossover Temperature Tc Shown in Figure 5.1.

barrier EX/kB ' 2×103 K consistent with β-type relaxation of the protein hydration

shell.[117]

Coupled protein-water fluctuations can be dynamically frozen by either choosing a

reaction window τr significantly below τX , or by lowering temperature and thus driv-

ing τX(T ) out of the observation window. The former mechanism is accomplished for

fast primary reactions of bacterial photosynthesis,[301, 232] where the reaction time

is τr ' 3− 10 ps. The latter mechanism is explored by us in this chapter for protein

electron transfer. We have previously shown that the same mechanism applies to the

dynamical transition in proteins,[75] when lowering temperature drives the dynamics

of heme’s iron displacements out of the observation window.[46] When the collective

modes of the protein-water interface, allowing nonergodic sampling of configurations,

freeze in, only fast ballistic modes of the thermal bath drive thermal fluctuations.

The reaction kinetics returns at this point to the expectations of the FDT. In the

framework of electron-transfer kinetics, this regime corresponds to equality of two

reorganization energies, λSt ' λ, as we indeed observe in MD simulations (Fig. 5.1).

An observable consequence of the sharp return of the protein to the ergodic behav-

ior at lower temperatures should be displayed as a crossover in the Arrhenius plot for
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the reaction rate. This is illustrated in Figure 5.4 where we calculated the activation

barrier of electron transfer as the free energy required to reach the activated state

X = 0, ∆F † = F (0) − F (〈X〉1). The free energy surfaces at different temperature

were obtained from MD simulations according to eq (1.33). The sharp drop of λ at

Tc is accompanied by an increase in the slope of the Arrhenius plot (the activation

energy vs 1/T is shown in Figure A.16).

Crossovers in Arrhenius plots are far from unusual for photosynthetic systems.[327,

328, 329] The earliest examples are the classical experiments by de Vault and Chance,[82]

where flattening of the Arrhenius plot for electron transfer from reduced Cyt-c to the

primary reaction center donor at low temperatures was reported. It is therefore im-

portant to stress that many of these reactions involve the reaction free energy, with

its own temperature dependence,[232] and are often close to activationless[300] or

electron-transfer inverted regimes, when intramolecular vibrations become significant,

particularly at low temperatures.[288] In contrast, Figure 5.4 shows activated kinet-

ics in the normal regime of electron transfer, not affected by quantum intramolecular

vibrations and for a half (electrode) reaction with no driving force (zero overpotential

for electrochemistry). The activation barrier, and its increase at lower temperatures,

are solely the result of two reorganization energies in eq (5.2).
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Chapter 6

SCREENING OF COULOMB INTERACTIONS IN LIQUID DIELECTRICS

This material was published in arXiv:1807.07242 (2018 Jul 19).

6.1 Summary

The interaction of charges in dielectric materials is screened by the dielectric con-

stant of the bulk dielectric. In dielectric theories, screening is assigned to the surface

charge appearing from preferential orientations of dipoles along the local field in the

interface. For liquid dielectrics, such interfacial orientations are affected by the in-

terfacial structure characterized by a separate interfacial dielectric susceptibility. We

argue that dielectric properties of polar liquids should be characterized by two dis-

tinct susceptibilities responsible for local response (solvation) and long-range response

(dielectric screening). We develop a microscopic model of screening showing that the

standard bulk dielectric constant is responsible for screening at large distances. The

potential of mean force between ions in polar liquids becomes oscillatory at short

distances. Oscillations arise from the coupling of the collective longitudinal excita-

tions of the dipoles in the bulk with the interfacial structure of the liquid around the

solutes.

6.2 Introduction

The material formulation of the Coulomb law suggests that the potential energy

of two charges, q1 and q2, placed in a dielectric material with the dielectric constant
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ε should be determined from the equation

U =
q1q2

εR
. (6.1)

The dielectric is then said to screen the interaction between two charges placed at

distance R, lowering the interaction energy from its vacuum value q1q2/R to a value

ε times smaller. While the language of interaction energy is often used in electro-

statics, UMF is in fact a potential of mean force (PMF), a free energy, as is now

well understood[330, 331, 332, 333, 334, 335] and will also become clear from the

discussion presented below.

Dielectric screening is assigned in theories of dielectrics to the surface charge

created at the dividing dielectric surface. For instance, when an ion with the charge

q is introduced in the dielectric, the surface charge of an opposite sign is placed

at the cavity expelled by the ion from the dielectric material (Fig. 6.1). Maxwell

thought of the surface charge as the result of deformation of the entire material made

of positively and negatively charged fluids neutralizing each other.[336] The external

field then deforms the material by pulling and pushing the oppositely charged liquid

in opposite directions and creating opposite charges at the closest dividing surface.

This view might still apply to an ionic crystal, but needs revision when molecular

polar materials are concerned. The current view of interfacial dielectric polarization

of polar molecular materials is that molecular dipoles are oriented by the field and

predominantly point their oppositely charged ends toward the external charges. Even

though they move randomly by thermal agitation, a large fraction of molecules arrives

at the interface oriented along the field thus producing an overall surface charge

density of the sign opposite to the sign of the external charge.[337]

The mathematics build around this picture assigns the surface charge density σ

to the projection of the polarization density P of the material onto the unit vector
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n̂ normal to the dividing surface and pointing outward from the dielectric[338] :σ =

Pn = n̂ ·P (Fig. 6.1). The surface charge density at the cavity surrounding the charge

q1 is then σ1 = −(q1/S)(1−ε−1), where S = 4πa2 is the surface area of the cavity with

the radius a. The electrostatic potential of charge q1 and the potential of the opposite

charge distributed over the cavity surface add up to φ1 = q1/(εr) at any r > a. This

electrostatic potential then interacts with the charge q2 with the energy U = q2φ1,

thus recovering Eq. (6.1). Importantly, the electrostatic potential in the medium is

a small number produced by a nearly complete compensation of two large numbers

of opposite sign: the vacuum potential and the potential of the surface charges. This

mathematics of the problem puts a significant demand on theoretical formulations,

which should incorporate this compensatory effect before any approximations have

been introduced.

This textbook consideration, and corresponding more elaborate derivations,[339]

make a case for a proposal that screening of charges in the bulk of a dipolar dielectric

is in fact a surface phenomenon dictated by the orientational structure of dipoles in

the interface. If this assumption is correct, then the statistics of material’s dipoles

pointing their opposite ends to the ion cannot be determined solely by bulk properties

of the material and should be a function of the interfacial structure as well. While

Maxwell’s notion of bulk deformation still applies to ionic lattices, the focus on the

interface seems to be particularly important for liquid dielectrics which respond to

inserting a solute by altering their interfacial structure, both in terms of the dipolar

orientations and interfacial density. The goal of this article is to investigate physical

consequences of this proposition and to develop a mathematical formalism to correct

Eq. (6.1). Our focus here is on liquid dielectrics which, according to the picture of

interfacial polarization, can build global dielectric screening through changes in the

interfacial structure. We show below that, in agreement with standard expectations,
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the bulk dielectric constant and not interfacial structure ultimately determines the

long-distance screening of charges. The interfacial structure affects screening at short

distances only.

The fact that the surface charge density can be significantly modified in polar

liquids compared to the standard prescriptions of dielectric theories can be established

by numerical simulations of microscopic interfaces. One needs, in accord with the

standard rules, obtain the statistical average of normal projection of the polarization

density 〈Pn〉. It can be calculated from the fluctuation relation[339, 340]

〈Pn〉 = −β〈δPnδUC〉, (6.2)

where δUC is the fluctuation of the Coulomb interaction between the charge and the

polar medium and β = (kBT )−1 is the inverse temperature. This fluctuation formula

was indeed evaluated from molecular dynamics (MD) trajectories obtained for a model

nonpolar Kihara solute and corresponding solutes carrying ionic charges.[340] The

result of this calculation was the effective dielectric constant of the interface εint ' 9

for a = 5 Å. The result is obviously much lower that the dielectric constant of bulk

water (TIP3P water with ε ' 97 in the simulations). A low value of an effective

dielectric constant around ε ' 5 has long been suggested to explain ionic mobility[341]

and in fact was successfully used to calculate ionic activity coefficients.[342] We stress

that essentially equal interface dielectric constants were found for both neutral and

ionic solutes with a = 5 Å,[340] suggesting that εint lower than the bulk value can

potentially apply not only to ions.

The question we address here is what is the dielectric constant that should be used

in Eq. (6.1) at distances of the nanometer scale. We develop an analytical theory of

microscopic screening by a polar liquid and perform molecular dynamics simulations

of model solutes in SPC/E water. The main result of the proposed theory is the
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Figure 6.1: Schematic Representation of Screening of Charge q1 by the Dielectric
with the Dielectric Constant ε. The Electrostatic Potentials Produced by the Charge
q1 and the Oppositely Charged Surface Charge Density σ1 Add Up to q1/(εr) Inside
the Dielectric.

fluctuation relation for the screening between the charges in the dielectric and the

corresponding perturbation theory formulated in terms of microscopic pair correlation

functions. It casts the screening of charges by a polar liquid in terms of the structure

factor of the longitudinal collective excitations of the liquid dipoles. The exact result

of this consideration is the following relation

U(R) =
q1q2

εR
− q1q2

∑

n

I(n)(R). (6.3)

Here, the first summand is the standard dielectric result in Eq. (6.1). The second sum-

mand is the sum over all longitudinal collective excitations of the liquid represented

by the poles of the corresponding longitudinal structure factor. These excitations

of the bulk liquid dielectric are coupled to the interfacial structure of the solutes

to create oscillations of the PMF around the long-distance dielectric result given

by Eq. (6.1). In contrast to screening by free charges in plasmas, where plasmon

excitation are quasiparticles with the lifetime significantly exceeding the oscillation

period, longitudinal excitations in polar liquids (dipolarons[343, 344, 215, 345, 346])

are overdamped. The qualitative outcome of the theory is that their overall effect is

represented by exponentially decaying oscillations with the decay length Λ and the

oscillation wavevector kmax given by the first maximum of the polarization structure
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factor
∑

n

I(n)(R) ∝ e−R/Λ cos (kmaxR) . (6.4)

Most simulations of the PMF between ions in solution have been performed for

small ions typically used as electrolytes.[347, 333, 348] The effect of the molecular

structure of water on ion pairing is clearly seen in energetic stabilization of contact

and solvent-separated ion-pair configurations. The well-defined molecular structure

of water around small ions is expected to alter at a nanometer cross-over length-

scale,[349, 350] asymptotically approaching the structure at flat interface. While this

cross-over is usually understood in terms of changes in the density profile and shell

compressibility,[318] the electrostatic interfacial properties are affected as well.[351,

26] As an example of a dramatic crossover in electrostatic properties, we show in Fig.

6.2 the change of the variance of the solvent field Es at the center of a spherical solute

with the solute size. Applying the linear response approximation, one anticipates that

the variance of the solvent field scales as inverse cube[351] of the solute radius R0

σ2
E = βσ3〈(δEs)2〉0 ∝ (σ/R0)3, (6.5)

where the solvent diameter σ is used to produce the dimensionless quantity σ2
E. For

solute radii below ' 1 nm, the molecular dynamics (MD) simulations[26] show the

power law σ2
E ∝ R−δ0 with δ = 3.8 consistent with this expectation. In contrast, there

is a sharp cross-over in scaling at R0 ' 1 nm, when the exponent changes to δ = 0.1,

i.e., essentially no decay of σ2
E with the growing solute size. These results are reported

here based on previously produced trajectories[26] for Kihara solutes[352, 353] of

varying size. This model solute combines a hard-sphere core with the radius rHS

with a Lennard-Jones layer of thickness σ0s at the surface (see the discussion of the

simulation protocol below and, in particular, the interaction potential in Eq. (6.30)).

The radii reported in Fig. 6.2, R0 = rHS + σ0s, are altered by changing rHS.
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Figure 6.2: Variance of the Electric Field of SPC/E Water at the Center of a Set of
Non-Polar Kihara Solutes with Varying Size R0.The Dashed Lines Show the Fitting
of the Data with the Power Law σ2

E ∝ R−δ0 . The Resulting Values of δ for Smaller
and Larger Solutes Are Indicated in the Plot. The Simulations[26] Are Done for the
Kihara Solutes of Varying Size with the Solute-Solvent Interaction Energy εLJ = 0.65
kJ/mol [Eq. (6.30)].

The slowing down of the decay of the field variance with increasing solute size

is caused by softening of the interface,[349] thus allowing stronger fluctuations com-

pensating for an increased size. This crossover does not rule out further crossovers

as the size of the solute increases, as we anticipate, but cannot prove with the

present computational capabilities. Independently of the long-distance asymptote

of σ2
E, the appearance of a soft, fluctuating interface raises the question of its cou-

pling with the bulk dipolaron excitations responsible for oscillations in electrostatic

screening[346] [Eqs. (6.3) and (6.4)]. For small ions, screening is mostly driven by

dielectric laws[331] and the structure of the hydration shell is insignificant except at

the contact configuration.[333] One wonders how extending the size of the solute and

changing the density of the hydration layer affect this outcome. Here we report new

simulations of the Kihara solutes in SPC/E water[26] to address these questions. We

study how dipolaron excitations in the bulk couple to the interfacial structure and

how does this coupling affect oscillations of microscopic dielectric screening. We find

that increasing density of the hydration layer, by increasing the solute-solvent attrac-

tion, significantly amplifies the PMF oscillations. On the other hand, increasing the
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size of the solute, beyond the cross-over region in Fig. 6.2, reduces the oscillations

amplitude and leads to a faster approach to the dielectric limit. In other words, soft-

ening of the nanometer-scale interface leads to a faster approach to the continuum

limit for ionic screening.

6.3 Fluctuation Relations

We now consider two charges, q1 and q2, at the distance R immersed in a polar

material. Each charge is represented by a repulsive sphere with the radius a defined

more precisely below. The total free energy of this system of charges is the sum of

their gas-phase interaction energy and the free energy of polarizing the dielectric Fs

F =
q1q2

R
+ Fs. (6.6)

For the latter, we will use the linear response approximation.[354, 355] It allows one

to represent Fs as either half of the average interaction energy between the charges

and the polar medium or in terms of the variance of the interaction energy. In the

latter approach, one obtains

Fs = −(β/2)〈(δuq)2〉, (6.7)

where δuq = uq − 〈uq〉 and the interaction energy uq between the charges and the

dielectric is given in terms of the electrostatic potentials φsi created by the dielectric

at the positions of charges qi, i = 1, 2

uq = q1φs1 + q2φs2. (6.8)

The variance of uq splits into self terms, representing solvation free energies of

individual charges, and the cross term modifying their interaction due to the screening

by the polar material. Combining the cross terms with the gas-phase interaction
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energy, we obtain (Eq. (1.46)) the following formula for the screened interaction

energy between the charges[356]

U(R) = q1q2

[
R−1 − β〈δφs1δφs2〉

]
. (6.9)

Equation (6.9) is the starting point for our theoretical development. We first note

that in the linear response approximation the ensemble averages 〈. . . 〉 in the above

equations do not depend on the charge state of the ions. The averages can be taken

either for the dielectric in equilibrium with the full charges qi, or at qi = 0, or for

any charge state in between.[357] Previous studies[354, 355, 358, 340] have shown that

this approximation is satisfied exceptionally well when the ionic radius a is sufficiently

large to avoid strong interactions between the charges and the dipoles of the medium.

We will assume first that this approximation holds and show below that it is indeed

satisfied when tested against numerical simulations. For the rest of our discussion we

put q1 = q2 = e, where e is the elementary charge.

Before we proceed to the formal theory, it is useful to anticipate the result when

the standard dielectric theory applies. It is easy to see that Eq. (6.1) is recovered

when one assumes for the potential cross correlation

β〈δφs1δφs2〉 = 4πχLR−1, (6.10)

where 4πχL = 1− ε−1 is the longitudinal susceptibility of a polar material.[215] Ac-

cording to the standard expectation of the theory of polar liquids,[359] spherical ions

interact with the longitudinal polarization of a dipolar liquid with the susceptibility

χL in the macroscopic limit of long-wavelength polarization excitations. The theory,

therefore, must be able to produce this limit when only the long-ranged macroscopic

polarization of the medium is accounted for. The formalism developed next satisfies

this expectation.
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6.4 Perturbation Theory

If the average 〈. . . 〉 in Eq. (6.9) is treated as an ensemble average over the con-

figurations of a polar liquid around two uncharged cavities with the radii a, the cal-

culation of the cross correlation becomes a standard perturbation problem of liquid

state theories.[360] One can write the cross correlation in terms of the solute-solvent

and solvent-solvent distribution functions as follows

〈δφs1δφs2〉 = ρ

∫
d1φs1(1)φs2(1)g0s(r1)

+ ρ2

∫
d1d2φs1(1)φs2(2)g0s(r1)g0s(r2)hss(1, 2),

(6.11)

where ρ = N/V is the number density of a polar liquid and

φs(1) = −m1 · r̂1
r2

1

(6.12)

is the electrostatic potential of liquid’s dipole m1 at the position r1 in the liquid,

r̂1 = r1/r1. The positions and orientations of the liquid dipoles are combined into

single indexes such as (1) = (r,ω1) and d1 = drdω1/(4π). We note also that

〈φs〉 = 0 when no preferential orientations of liquid’s dipoles is anticipated around

an uncharged repulsive core of the solute. Further, the Kirkwood superposition

approximation[360, 361] has been applied to the second summand in Eq. (6.11) to

represent the three-particle solute-solvent-solvent distribution function as the prod-

uct of the solute-solvent pair distribution function g0s(r) and the solvent-solvent pair

correlation function hss(12). The latter depends on both the distance between two

molecules in the liquid r12 and their orientations ω1 and ω2.

One can use Fourier transform to re-write Eq. (6.11) in reciprocal space. The

transformation to reciprocal space allows one to eliminate the space convolution in

the second summand in Eq. (6.11) and present the result in terms of k-space structure

factors describing collective fluctuations in the liquid. The details of the derivation
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are given in the A.3.2 and the result of this derivation is the sum of two terms, I1(R)

and I2(R), representing the corresponding summands in Eq. (6.11) as one-dimensional

k-integrals

I(R) = β〈δφs1δφs2〉 = I1(R) + I2(R), (6.13)

where

I1(R) =
6y

π

∫ ∞

0

dkf0s(k)j0(kR)

I2(R) =
6y

π

∫ ∞

0

dkf0s(k)2j0(kR)
[
SL(k)− 1

]
.

(6.14)

Here, jn(x) is the spherical Bessel function of nth order[362] and f0s(k) appears as a

result of Fourier transforming φs(1)g0s(r1). It is given by the relation

f0s(k) = k

∫ ∞

0

drj1(kr)g0s(r), (6.15)

which is a special case of the Hankel transform.[363] Further, SL(k) in Eq. (6.14) is

the longitudinal structure factor of a polar liquid,[215, 364] which describes correlated

fluctuation of the reciprocal-space polarization density projected on the direction of

the wavevector k̂ = k/k

P̃L(k) =
∑

j

(mj · k̂) eik·rj , (6.16)

where the sum runs over all dipoles mj in the liquid with their positions at rj. The

structure factor is a scaled variance of this collective variable given as

SL(k) =
3

Nm2
〈P̃L(k)P̃L(−k)〉. (6.17)

The long-wavelength limit of the structure factor is related to the longitudinal

susceptibility of a dielectric through the dimensionless density of dipoles in the liquid

y = (4π/9)βm2ρ by the following relation

3ySL(0) = 4πχL. (6.18)
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Figure 6.3: SL(k) For SPC/E Water at T = 300 K From Molecular Dynamics
Simulations (MD)And From the MSA Solution for Dipolar Hard Spheres[27] in Eq.
(6.26) (MSA). The Dotted Line Refers to the Padé Form in Eq. (6.23) (Λ = 0.17 Å)
and The Dashed Line Marks the Lorentz Approximation [Eq. (6.24)]. The Horizontal
Dotted Line Marks the k →∞ Limit SL(∞)→ 1.

The opposite limit of SL(k) at k → ∞ corresponds to disappearance of correlations

between different dipoles in the liquid, which leads to SL(∞) = 1. Both limits are

illustrated in Fig. 6.3 for SPC/E water from our simulations discussed in more detail

below.

Equations (6.13) and (6.14) is a formally exact solution for the electrostatic po-

tential cross-correlation within the limits of the linear response approximation and

the Kirkwood anzatz[361] for the triple solute-solvent-solvent correlation function.

The first summand in Eq. (6.13), I1(R), describes fluctuations of the potential at two

ions produced by rotations and translations of a single molecule in the liquid. The

second term, I2(R), corresponds to correlated thermal motions of two molecules. The

interaction of a liquid dipole with the first charge is propagated through the liquid

dipole-dipole correlations to the second charge. The function f0s(k) reflects the local

structure of the liquid around each solute thus coupling the screening fluctuations of

the bulk with the interfacial structure. It has an important property of f0s(0) = 1

(see below) and scales at large k as exp[ika]. This latter property allows one to con-

vert Ii(R) into the residue integrals in the complex k-space. The integral I1(R) is
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calculated exactly as I1(R) = 3y/R if only the pole at k = 0 is accounted for. The

same applies to the k = 0 pole of I2(R). Given that we assume R > 2a, the k = 0

pole produces the result I
(0)
2 (R) = (3y/R)(SL(0)−1). The rest of the contour integral

in the complex k-space is given by residues of SL(k) − 1 at complex poles kn. The

final result is

I(R) = R−1
(
1− ε−1

)
+
∑

n

I(n)(R). (6.19)

This form can be substituted to Eq. (6.9) with the result for the interaction of two

ions given by Eq. (6.3).

A significant advantage of the result in Eq. (6.3) is that it incorporates the can-

cellation of two large terms from the gas-phase Coulomb interaction of the charges

and its screening by surface charges of the dielectric as the zero-order term, thus

avoiding errors from incorporating approximations into each of the components. The

corrections to the continuum limit arise from longitudinal collective excitations in the

polar liquid coupled to the interfacial structure of each solute. This is a physically

attractive picture, which might extend beyond the derivation presented here. We

explore physical consequences of it in terms of an analytical solution when the poles

of the longitudinal structure factor can be well defined.

Before we turn to this next step, it is useful to identify the approximations made

in deriving Eq. (6.19). First, we have assumed that there is no specific orienta-

tional structure of the solvent dipoles around a nonpolar solute carrying zero charge.

This is a reasonable approximation in most cases, although water dipoles attend

preferential orientations around nonpolar solutes.[365] This pattern, also found for

SPC/E water employed here, tends to diminish when more accurate force fields are

used.[366] Second, the structure factor SL(k) in Eq. (6.14) refers to the reference sys-

tem, which is the polar liquid with inserted nonpolar repulsive cores of the solutes.

Since the dielectric constant is affected by solution compared to the bulk, particularly
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for electrolytes,[347] the ability to use the structure factor for bulk liquid needs to be

tested. We in fact have done this test in our simulations discussed below and have

shown that at the concentrations used in our calculations the bulk and solution struc-

ture factors are nearly identical (Fig. A.24). We have also tested the sensitivity of

the sum over the poles, the second summand in Eq. (6.19), to the dielectric constant

and found it relatively low. The use of the bulk structure factor SL(k) in Eq. (6.14)

is therefore justified and we now proceed to using our analytical approximation to

calculate the sum over the dipolaron excitations in the liquid.

6.5 Analytical Solution

In order to study the behavior of f0s(k) in Eq. (6.15), we will follow here the pro-

cedure analogous to that adopted in the perturbation theory of nonpolar (Lennard-

Jones) fluids. The theory of nonpolar fluids[367] starts with the observation that the

Boltzmann factor, e(r) = exp[−βu(r)], of the intermolecular liquid potential u(r)

changes sharply over a short range of distances. This allows one to formulate a per-

turbation theory in terms of short-ranged “blip functions”. Following this general

framework, we consider the Boltzmann factor of the reference solute-solvent inter-

action potential u0s(r), which is mostly repulsive and is responsible for the forma-

tion of the solute cavity with the radius a. The corresponding Boltzmann function,

e0s(r) = exp[−βu0s(r)], of the solute-solvent distance r, changes between zero in-

side the repulsive core of the solute and unity inside the liquid. Figure 6.4 shows

e0s(r) calculated for the solute-water isotropic interaction potential given in the Ki-

hara form[352] [Eq. (6.30)] and used in our numerical simulations discussed below.

A sharp growth of e0s(r) implies that one can approximate its derivative by a delta-

function:[361] e′0s(r) ' δ(r−a), which also provides the definition of the cavity radius

a as the position of the maximum of e′0s.
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We now re-write Eq. (6.15) in the form involving the derivative of the ion-liquid

distribution function

f0s(k) =

∫ ∞

0

drj0(kr)g′0s(r). (6.20)

From this equation, one gets at k = 0 the following boundary condition f0s(0) =

g0s(∞) − g0s(0) = 1. We next note that g0s(r) = e0s(r)y0s(r), where y0s(r) is a

smooth function.[361] One therefore can put

g′0s(r) ' e′0s(r)y0s(r). (6.21)

Figure 6.4 compares e′0s(r) with g′0s(r) obtained from MD simulations. One can see

that g′0s(r) follows the shape of e′0s(r) at the lower value of the solute-solvent Lennard-

Jones attraction energy εLJ, thus suggesting that y(r) is nearly constant in the range

of r-values where the spikes of these functions occur. As the attraction increases and

the interface becomes more structured, the peak of g′0s(r) shifts to larger distances.

Nevertheless, the approximation of g′0s(r) with a positive and negative blips turns out

to be quite accurate for modeling f0s(k) at all parameters studied here.

Given that e′0s involves positive and negative blips (Fig. 6.4), it can be represented

by a sum of delta-functions positioned at r = a and r = b and carrying positive and

negative amplitudes. This transforms f0s(r) to the form

f0s(k) = cj0(ka) + (1− c)j0(kb), (6.22)

where b is the position of the negative blip and the coefficients in front of the spherical

Bessel functions are chosen to satisfy the condition f0s(0) = 1. The fit of this function

to f0s(k) obtained by numerical integration in Eq. (6.20) is given in the subsection

A.3.2. For our discussion here we only need to know that f0s(k)2 in the integral I2(R)

in Eq. (6.14) scales at most as e±2ibk and can perform the residue integration under

the assumption R > 2b.
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Figure 6.4: Boltzmann Factor e0s(r) and Its Derivative e′0s(r)For the Kihara Po-
tential Describing the Solute-Solvent Isotropic Interaction. g′0s(r)Obtained From
Molecular Dynamics Simulations Are Shown at εLJ = 0.65 kJ/mol (Blue) and 3.7
kJ/mol (Red). The Position of the Positive Spike of e′0s(r) Defines the Cavity Radius
a, Which Is Very Close to R0 = rHS + σ0s = 5 Å for the Kihara Solutes Studied Here
[Eq. (6.30)].

The positions of singularities of SL(k) in the complex k-plane are generally un-

known and we resort here to two approximations. We first apply the Ornstein-Zernike

approximate based on the known expansion of SL(k) at low wavevectors.[361] Accord-

ing to the Ornstein-Zernike equation, SL(k) =
[
1 + (ρ/3)cL(k)

]−1
, where cL(k) is

the direct correlation function propagating the longitudinal polarization through the

liquid.[27, 361] The expansion cL(k) in powers of k results in a vanishing linear term

such that SL(k)−1 becomes a linear function of k2. One therefore can approximate

SL(k) with the Padé form as

SL(k) =
SL(0) + Λ2k2

1 + Λ2k2
, (6.23)

where Λ = 0.17 Å is found from the slope of SL(k)−1 vs k2 for SPC/E water (Fig.

A.25). This representation of SL(k) is not very reliable (Fig. 6.3). A better ap-

proximation can be reached in terms of the Lorenzian function with the maximum

coinciding with the kmax of the simulated SL(k). Since SL(k) has to be a symmetric

function of k, SL(k) = SL(−k), the following functionality yields a more reasonable
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approximation (Fig. 6.3)

SL(k) = 1
2
SL(0)

[
k2

max + κ2

(k − kmax)2 + κ2
+

k2
max + κ2

(k + kmax)2 + κ2

]
(6.24)

This function has two poles in the upper-half k-plane: k1 = kmax + iκ and k2 =

−kmax + iκ. The sum over these poles results in

∑

n

I(n)(R) =
k2

max + κ2

2κR

(
1− 1

ε

)

Im
∑

n=1,2

k−1
n f0s(kn)2eiRkn .

(6.25)

The overdamped dipolar excitations in the polar liquid produce an exponential de-

caying screening, not unlike the Debye-Hückel screening by plasmon excitations in

electrolytes [Eq. (6.4)]. The fitting of Eq. (6.24) to the simulation data produces

kmax = 2.6 Å−1 and the screening length Λ = κ−1 = 3.2 Å, both consistent with the

diameter of the water molecule σ ' 2.8− 2.9 Å (2π/kmax = 2.4 Å).

The mean-spherical approximation (MSA) for dipolar fluids[27] provides a next

step for improving the analytical solution. This exact solution of the Ornstein-Zernike

equation with the MSA closure yields the longitudinal structure factor in terms of the

Baxter solution[368, 361] Q(k, ξL) of the Percus-Yevick closure for the fluid of hard

spheres

SL(k) =
∣∣Q(κLk, ξL)

∣∣−2
. (6.26)

Here, the longitudinal polarity parameters is found from the k = 0 value of the

structure factor by solving the equation[27]

SL(0) =
(1− 2ξL)4

(1 + 4ξL)2
. (6.27)

In addition, an empirical factor κL is introduced to provide the best fit of the analytical

function to the results of simulations. This slight correction is required to reproduce

a more open structure of water compared to closely packed simple fluids and results
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Figure 6.5: Poles kn = k′n + ik′′n of the MSA Longitudinal Structure Factor [Eq.

(6.26)] In the Upper Half-Plane of the Complex k-Plane:
∣∣Q(κkn, ξ

L)
∣∣2 = 0. The

Pole Closest to the Real Axis Is: k1 = 2.61 + 0.44i, Å−1.

in κL = 0.85 for SPC/E water studied here (Fig. 6.3). Similar scaling is required

for other force fields of water when fitted to the Baxter function in Eq. (6.26). We

found κL = 0.95[283] and κL = 0.93[280] for TIP3P[369] and SWM4-DP[370] water,

respectively. The comparison of SL(k) for the SPC/E and TIP3P water models is

shown in Fig. A.24.

The analytical form given by Eq. (6.26) results in a large number of poles kn =

±k′n ± ik′′n in the complex k-plane (Fig. 6.5). The pole closest to the real axis has

its imaginary part corresponding to the correlation length Λ ' (k′′1)−1 = 2.26 Å,

reasonably close to the Lorentzian fitting. Further, the pole I(n) in Eq. (6.25) becomes

I(n)(R) =
6y

R
Re

[
f0s(kn)2

knc′n
eiknR

]
, (6.28)

where c′n = (ρ/3)dcL/dk|k=kn .

The numerical summation over the poles shown in Fig. 6.5 is compared to both the

Lorentz approximation [Eq. (6.25)] and to direct integration in Fig. 6.6. The latter

is done by combining the integral I(R) in Eq. (6.13) and (6.14) with the Coulomb

interaction energy to obtain an integral representation for the PMF

U(R) =
6ye2

π

∫ ∞

0

dkf0s(k)2j0(kR)
[
(3y)−1 − SL(k)

]
. (6.29)
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Figure 6.6: Direct Integration in Eq. (6.29) (Solid Line) Compared to the Lorentzian
Approximation in Eq. (6.25) (Dashed Line) and to the Summation Over the Poles
of SL(k) Produced by the MSA (Fig. 6.5) (Dash-Dotted Line).The Calculations Are
Done for Two Spheres with the Radii 5 Å at Varying Distance R Between Their
Centers. The Structure Factor for the SPC/E Water From Simulations (Fig. 6.3) Is
Used in Numerical Integration. The Corresponding Fits to the Lorentz and the MSA
Solutions Are Displayed in Fig. 6.3.The Dotted Line Shows the Dielectric Result [Eq.
(6.1)].

It turns out that the simplest Lorentzian form captures the main features of the

PMF, and it is even superior to the summation of poles produced by the MSA ap-

proximation. The resulting PMF shows oscillations around the continuum solution

thus producing over- and under-screening at different distances due to the molecular

nature of the polar liquid.[330, 331] The oscillations of the interaction energy are,

however, mostly within ∼ 5− 9kBT consistent with many previous simulations of ion

pairing in force-field water.[347, 333, 348, 371] We now turn to direct MD simulations

of the potential cross-correlation in Eq. (6.9).

6.6 Numerical Simulations

Numerical MD simulations employed two solutes placed in the simulation box

containing 7408 SPC/E[29] water molecules. The solute-solvent interaction potential

was given by the isotropic Kihara potential,[352, 353] which combines the hard-sphere

repulsion characterized by the repulsion radius rHS with a Lennard-Jones layer of the
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thickness σ0s and the attraction energy εLJ

u0s(r) = 4εLJ

[(
σ0s

r − rHS

)12

−
(

σ0s

r − rHS

)6
]
. (6.30)

The MD trajectories were produced with the NAMD simulation package[172] supple-

mented with a separate script developed to calculate the force between the Kihara

solute and SPC/E water. The parameters used for the Kihara potential in this set

of simulations were rHS = 2 Å, σ0s = 3 Å, and εLJ = 3.7 kJ/mol. We additionally

analyzed the trajectories obtained previously,[26] which involved the variation of rHS

to produce the results shown in Fig. 6.2 and for the analysis presented below. We

have also analyzed simulation data with changing solute-solvent attraction energy

εLJ. Two values of this parameter, εLJ = 0.65 kJ/mol and εLJ = 20 kJ/mol, were used

in the analysis. The former attraction energy is close to the interaction energy of

the water molecules in the bulk, and it models a hydrophobic solute which does not

produce a strong pull on the waters in the hydration shell.[353] The value εLJ = 3.7

kJ/mol mostly studied here is more consistent with a hydrophilic solute. Finally, the

attraction at εLJ = 20 kJ/mol is so strong that it breaks water’s structure and results

in the condensation of the first hydration layer at the solute surface. The resulting

layering is seen as a gap of zero solute-solvent pair distribution between the first and

second hydration layers (Fig. A.22).

One of the advantages of using nonpolar solutes for the calculation of the dipolar

screening is that one avoids the Coulomb interactions between the charged solutes

and their images in the replicas of the simulation cell, which are unavoidable in any

finite-size simulations.[332] The cross-correlations (Eq. (6.13)) were calculated at a

number of configurations with the distance between two Kihara solutes altered in the

range 10 ≤ R ≤ 20 Å. However, the ability to use the non-ionic solutes to calculate

screening between ions is based on the linear response approximation, which assumes
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Figure 6.7: Solute-Solvent Density Distribution Functions g0s(r) Calculated From
MD Simulations of Neutral (q = 0) and Charged (q = ±1) Single Kihara Solutes
in SPC/E Water (rHS = 2 Å).Also Shown Is the Distribution Function for a Single
Solute in the Box Containing Two Kihara Solutes Separated by the Distance ofR = 20
Å.The Results Shown by the Solid Lines Refer to εLJ = 3.7 kJ/mol, While the Dashed
Line Refers to εLJ = 0.65 kJ/mol.

that the solvent structure remains intact for all charge state of the ion, from zero

charge to the highest charge considered in this framework. In order to test this as-

sumption we have additionally simulated single Kihara solutes in SPC/E water in

neutral and charged states. For the charged solutes, the charge q = ±1 was placed at

the center of the Kihara sphere. Figure 6.7 shows that the pair solute-solvent distri-

bution functions obtained for all three states are very close, in support of the linear

response assumption. Further, the solute-solvent density profiles in the simulation

box with two solutes are identical to single-solute distribution at sufficiently large

separations between two spheres (Fig. 6.7, the two lines are identical on the scale of

the plot). The solute-solvent density profile is in fact more strongly affected by the

magnitude of the Lennard-Jones energy εLJ in Eq. (6.30) than by the charge state

in the range of radii considered here. The dashed line in Fig. 6.7 shows g0s(r) at

εLJ = 0.65 kJ/mol, with a clearly less structured interface.

The results of calculations of I(R) in Eq. (6.13) need to be combined with the

direct Coulomb interaction in Eq. (6.9) to obtain the screened PMF. We found, in

agreement with previous results,[356] that this approach leads to the R→∞ asymp-
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Figure 6.8: Results of MD Simulation for Two Neutral Kihara Solutes Placed at
Different Distances R.Black Points Refer to Electrostatic Potential Created by Wa-
ter’s Partial Atomic Charges and the Red Points Indicate the Electrostaic Potential
Created by the Water’s Point Dipoles. The Solid Line Is the Result of Numerical
Integration in Eq. (6.29)And the Dashed Line Is the Dielectric Result in Eq. (6.1).

tote shifted from zero. The reason is that the Ewald potential φE(R) is shifted from

the Coulomb potential.[356] The simulation results (black points in Fig. 6.8) were

therefore shifted vertically to fit the analytical model (Eq. (6.29), solid line) at the

largest distance studied here. We have additionally performed calculations replacing

the atomic charges at the water molecules with point dipoles. These results (red

points in Fig. 6.8) are very close to the charge-based calculations thus justifying the

use of the dipolar density field to represent water in the analytical theory.

We next address the question of the effect of the solute size and the density of the

hydration layer on the oscillatory screening behavior of the PMF. Figure 6.9 shows the

calculations performed according to Eq. (6.29) with the solute-water pair distribution

functions of Kihara solutes of increasing size. A clear pattern of decreasing amplitude

of the screening oscillations is seen for larger solutes. The oscillations essentially

disappear beyond the size crossover shown in Fig. 6.2. Increasing the density of the

hydration shell produces an opposite effect. We achieve denser hydration layers by

significantly increasing the solute-solvent Lennard-Jones attraction (the lower panel

in Fig. 6.9). The value εLJ = 20 kJ/mol used to illustrate this point is somewhat

143



 !"

 !#

 ! $%
&'
()
$*
+

,-." 

'$/$"' )$0

$' $1$2$0
$' $1$,$0
$' $1$##$0

345$1$ !-2$65789:

#! 

 !2

 ! 

/ !2$%
&'
()
$*
+

,-." 

'$/$"' )$0

345$1$" $65789:

Figure 6.9: U(R) From Eq. (6.29) with SL(k) for SPC/EWater and f0s(k) Calculated
From Solute-Water Distribution Functions of Kihara Solutes with Changing Size R0.
The Results for Two Magnitudes of the Solute-Solvent Lenard-Jones Energy εLJ Are
Shown.

unrealistic, leading to a collapse of the first hydration shell and layering between the

first and second shells (see examples of the solute-solvent distribution function in

Fig. A.22). However, this calculation produces an about order-of-magnitude increase

in the amplitude of oscillations, indicating that oscillatory pattern of screening is

caused by coupling of the bulk dipolarons to the interfacial structure. Increasing the

structure of the hydration shell enhances the amplitude of oscillations.

6.7 Discussion

The textbook picture of screening of electrostatic fields in dielectrics goes back to

Maxwell[336] and considers a slab of dielectric placed in an external field E0. The

external field induces bulk strain leading to surface charges. They in turn produce

an internal electric field Es opposing (screening) the external field (Fig. 6.10). The

Maxwell field E = E0 − Es is the result of near cancelation between these two fields

leading to E0 reduced by ε. This picture silently assumes that the dielectric is a solid

and can sustain bulk stress. The dielectric constant, related to material’s ability to
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develop this bulk stress in response to an external field, is a bulk material property.

This simple picture is bound to fail and needs to be changed for liquid dielectrics

since liquids do not sustain bulk stress and any surface charge must be a surface

phenomenon. Since the dielectric constant is still a bulk material property reported

by the dielectric experiment, dielectric screening needs to be described in a language

disconnected from surface charges. The main question here is whether polarization

of the interface and the corresponding interfacial susceptibility, which enter the local

polarity response (e.g., for ion solvation), are related to dielectric screening at large (on

molecular scale) distances. Not unexpected, our results show that the local response

of the liquid interface is mostly unrelated to the long-distance screening. The latter

is achieved in liquids by mutual correlations of the liquid dipoles in the bulk and not

by the field of the surface charges. The cartoon shown in Fig. 6.10 does not apply to

liquid dielectrics, even at the qualitative level.

A significant consequence of this perspective is that the bulk dielectric constant

reported by the dielectric experiment applies to long-distance dielectric screening, but

a local interfacial susceptibility has to be used for solvation. In practical terms, polar

liquids must be characterized by at least two susceptibilities describing the surface and

bulk responses separately. The model solutes dissolved in the force-field water studied

here provide a convincing example: their interfacial dielectric constant obtained from

Eq. (6.2) is ' 9,[340] but the dielectric constant entering the long-distance screening

is ' 71. The analytical theory presented here can be extended to liquids confined

in the slab geometry since this extension is achieved at R0 → ∞ while keeping the

thickness of the liquid between two solutes constant. The parameters of the theory

still remain the same: the density distribution function of the interface and the bulk

structure factor.

We find that the dielectric limit of the Coulomb law in Eq. (6.1) is reached at
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Figure 6.10: Schematics of Dielectric Screening in Solid Dielectrics: the External
Field Causes a Bulk Stress in the Sample, Resulting in Surface Charges. The External
Field E0 Is Compensated by the Field of the Surface Charges Es to Yield the Screened
Maxwell Field E = E0 − Es.Liquid Dielectrics Do Not Support Bulk Stress and
Corresponding Surface Charges Must Be An Interfacial Property Not Directly Related
to the Bulk Dielectric Constant.

long distances between the solutes, but the granularity of the polar liquid shows itself

over ' 0.5 − 1 nm into the bulk in the form of oscillations around the dielectric

solution. These oscillations are linked to the overdamped excitations in the polar

liquid (dipolarons[215]) represented by the poles of the longitudinal structure factor

of dipolar polarization density.[372] The excitation with the longest length of decay

causes the first peak of the structure factor and is mostly sufficient to reproduce the

oscillatory screening calculated by numerical integration. We therefore conclude that

dipolaron excitation responsible for the first peak in the structure factor is the main

cause of the oscillatory dielectric screening and of the corresponding PMF in ion pairs.

It is important to stress that previous reports of oscillatory PMF have been limited

to small ions typically employed as supporting electrolytes.[331, 347, 333, 348] Here

we show that similar oscillations develop for dielectric screening between large solutes

with the diameter of ' 1 nm.

The simulation protocol employed here is based on the fluctuation relation for the

dielectric screening involving the correlation of electrostatic potential produced by

the polar liquid at two solutes [Eq. (6.9)]. The advantage of this formalism is that

it does not require integrating the force between the solutes over distances.[348, 335]

One therefore can directly calculate the screening between groups belonging to a

well-defined structure (such as a protein[316]). Since the approach is based on linear
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response, one has the freedom to either remove the charges from the corresponding

groups or keep them if needed. Nevertheless, dielectric screening is still a challenging

task for simulations since subtraction of two large terms prone to numerical errors is

involved. A significant advantage of the theoretical approach summarized in Eq. (6.3)

is that subtraction of two largest contributions to the PMF is achieved in the contin-

uum limit and only microscopic corrections linked to damped dipolaron excitations

need a separate calculation.
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Chapter 7

CONCLUSION

In first chapter we talked about glycerol crossovers and dynamics. We saw that

the thermodynamic transformation is not at work to create dipolar domains. The

conclusion that no thermodynamic transformation is at work in creating dipolar do-

mains does not make our observations less “interesting”. In particular, this scenario

is relevant to the role of dynamics and structure of protein’s hydration shells in the

protein function. About anything related to the protein structure and function has to

be described as metastable. Protein itself is unstable to either hydrolysis or associa-

tion, both bringing it to a thermodynamically more stable state [373]. The function of

proteins as enzymes catalyzing specific biochemical reactions is even more affected by

the notion of a finite “observation window” [93]. This idea implies that any dynami-

cal or structural information related to the protein itself or to its hydration shell has

to be considered from the perspective of a finite observation window provided by the

reaction rate, i.e., the characteristic time on which the reactants climb the activation

barrier separating them from the products. A dynamic process slower than the rate

becomes dynamically frozen and does not contribute to the fluctuation spectrum of

the bath driving the reaction.

The ability of the solvent to preserve a specific structure distinct from its thermo-

dynamic state on a given observation window immediately implies that an enzymetic

reaction will “see” different solvents, with potentially dramatically different proper-

ties (such as polarity), depending on the reaction rate. Figure 2.7 provides a dramatic

confirmation of this possibility showing the ability of glycerol to possess a very high

dielectric constant due to its inability to relax its long-range orientational correlations
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on a given observation window. A related example, with a similar phenomenology, is

the appearance of polarized (ferroelectric) domains in the hydration shells of proteins

observed on the time-scale of simulations [207]. Similarly to our present results for

glycerol, these domains might well equilibrate to zero overall dipole on longer time-

scales, but a non-zero net dipole of the shell will be recorded by any kinetic process

occurring faster than the domain relaxation dynamics.

Bulk glycerol studied by linear dielectric spectroscopy does not display the features

indicative of domain formation. There is a general agreement that linear dielectric

spectroscopy does not directly probe heterogeneity of a bulk material [6]. However,

it might still be illuminating to ask why the relaxation of oriented domains in the

bulk is not observed by dielectric spectroscopy. One possible answer to this is that

the lifetime of a domain is smaller than its rotational relaxation time. The domains

dissolve before there is a chance to probe their rotational relaxation. Increasing the

lifetime of domains, as potentially achieved by surface vapor deposition [144, 143],

might create conditions for observing the large dipole of the correlated domain.

The identification of the MSD crossover with the cage dynamics, in the combi-

nation with nearly identical behavior of MSD of glycerol and lysozyme-glycerol [5],

puts under question the need for a special βh relaxation process of the hydration shell

[111, 112, 117] to explain these data. It appears that fast secondary relaxation of

bulk glycerol (βf in the standard classification of glass science [165, 374, 375]) is suf-

ficient to describe the glycerol-protein system. It does not necessarily mean that the

same situation repeats itself for a hydrated protein or other hydrated molecules [137],

or applies equally well to the Mössbauer experiment with a much longer resolution

time of tr ' 140 ns [80]. Some experimental data indeed claim the existence of inde-

pendent relaxation processes of the protein hydration shells with significantly slower

relaxation times [205, 376]. The resolution of this claim, however, depends on the wa-
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ter mode probed by the observations. There is a relatively insignificant slowing down

of water’s single-molecule rotational dynamics in hydration shells [377]. An attempt

to find a separate dynamic process in density fluctuations (translations) probed by

depolarized light scattering resulted in the realization that cross protein-water corre-

lations, instead of a separate dynamic process, can explain the data [378]. However,

the collective variable of the shell dipole moment can be characterized as a separate

dynamic process, which is both significantly slower and is spatially extended into the

bulk [379]. From a general perspective, a strong perturbation of the forces existing in

the bulk is required for a new dynamic process to appear. If a significant alteration

of the hydrogen-bond network is achieved in the solvation layer, one can expect a

separate dynamic process to show up. The extent of such network perturbation is

where the distinction between glycerol and water might be found.

The model presented in chapter 3, assigns atomic displacements in the protein to

two factors: (i) high-frequency vibrations within the subunit (residue, cofactor, etc.)

and (ii) fluctuations in the position of the subunit caused by thermal fluctuations of

the entire protein and its hydration shell. The second component enters the observable

MSF in terms of the variance of the force applied to the center of mass of the subunit

(denominator in Eq. (3.1)). This equation can be alternatively viewed as softening of

a stiff vibrational force constant by the protein-water thermal bath (Eq. (3.24)). Since

the variance of the force depends on the observation window, softening of vibrations

is achieved at the temperature above Td allowing the long-time relaxation of the force

autocorrelation function to remain within the observation window. An experimental

link to this picture is provided by inelastic x-ray scattering[380, 381, 382] recording

softening of the protein phonon-like modes representing global vibrations. In line

with the common observations of the dynamical transition, softening of the protein

phonon modes is strongly suppressed in dry samples.[381] Similar phenomenology is
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provided by the temperature dependence of the protein boson peak[221, 383] reflecting

the density of protein collective vibrations on the length-scale of a few nanometers

and THz frequency.[384, 385, 386] For instance, the frequency of the boson peak for

myoglobin falls from ∼ 32 cm−1 to ∼ 16 cm−1 when the temperature is raised from

170 to 295 K.[221]

The forces produced by the protein-water thermal bath at internal sites inside

the protein are strongly affected by the structure and dynamics of the hydration

shell.[160, 158, 159] Shell dipoles cluster in nanodomains pinned by charged surface

residues. Dynamical freezing of these nanodomains occurs at the glass transition of

the hydration shell corresponding to the lower crossover temperature Tg (Fig. 3.1).

Rotations of water molecules in the shell dynamically freeze at this temperature.

Translations dynamically freeze at a higher temperature close to Td. Therefore, the

existence of two crossover temperatures in the dynamical transition of proteins reflects

two separate ergodicity breaking crossovers for rotations and translations of hydration

water (Fig. 3.11).

The entrance of the relaxation time into the resolution window, resulting in the

dynamical transition of a specific relaxation mode, is often considered to be a “trivial”

effect, in contrast to an anticipated true structural transition.[102, 387] However, this

ergodicity breaking allows protein-driven reactions to proceed without being trapped

into deep solvation wells. The link between flexibility and solvation, and thus the

ability to produce traps, has been under-appreciated in the literature on enzymatic

activity. As an illuminating example, protein electron transfer occurs in dynami-

cally quenched proteins where ergodicity breaking impedes the development of deep

solvation traps along the electron-transport chain.

Effective (reaction) reorganization energy λr (eq (1.40)), combining the Stokes-

shift and variance reorganization energies, controls the activation barrier of electrode
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electron transfer. The resulting low activation barrier is consistent with the values

obtained from cyclic voltammograms. The low value of λr is specific to metallopro-

teins in solution. Here, we have not directly simulated the protein attached to the

electrode and instead applied the results for the protein solution to interfacial electron

transfer.

The effect of temperature on the activation barrier is significantly reduced com-

pared to the standard models due to the compensation of individual temperature

dependencies of λ and λSt in λr. This result implies a robust operation of the redox

enzyme, little affected by the alteration of temperature.

Redox enzymes act to lower the activation barrier for electron transfer. When the

reaction free energy is low, lower barrier implies minimizing the reorganization energy

(eq (1.39)). It has been long anticipated that redox proteins should have evolved

mechanisms to achieve this goal. However, traditional thinking in terms of a non-

polar environment provided by the protein and producing low solvation energy turned

out, with the help of atomistic simulations, to be inconsistent with a wet and covered

with charges and polar groups environment of a typical redox site. The mechanisms

which evolved in such a heterogenous environment appear to be different from the

standard thinking of the Marcus model considering polarization of a homogeneous

solvent in response to re-localizing the electron.

The heterogeneous protein-water thermal bath is capable of producing the spec-

trum of fluctuations deviating from the rules of the Gibbs ensemble by the fact of

being trapped in non-equilibrium states on the time-scale of the reaction.[93] While

this mechanism operates for a number of proteins, Cyt-c appears to be more stable

and rigid than many other proteins, thus disallowing a large number of trap states.

Polarizability of the active site is involved in this case. It achieves the same result of

an intense electrostatic noise effectively lowing the barrier for electron transfer. It ap-
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pears that different mechanisms are involved with different proteins, all reaching the

same goal of minimizing the reaction reorganization energy through large-amplitude

interfacial noise. The principle of a noisy protein-water interface, also washing out

small differences in thermodynamic conditions and effects of insignificant mutations,

might be a general principle by which energy chains of biology achieve low activation

barriers for physiological electron transport.

The perspective presented here offers a potential explanation for the evolutionary

pressure preserving large protein complexes to drive electron transport in biological

energy chains. Obviously, redox chemistry can be accomplished by much smaller

molecules, such as organic donor-acceptor complexes employed in photoinduced elec-

tron transfer.[304] However, the Stokes-shift dynamics of small molecules, leading to

electron transfer, are extremely fast in water,[388] with most of the Stokes shift accu-

mulated at sub-picosecond times. This is the case of τX � τr, when ergodic conditions

are fulfilled and no rate increase due to reaction nonergodicity can be achieved. In

contrast, for large protein complexes, a significant portion of the Stokes shift is asso-

ciated with much longer time-scales, in the nanosecond to microsecond domain.[324]

These large complexes, due to a combination of properties not fully understood and

distinct from bulk glass formers,[311] allow highly nonergodic sampling of the reac-

tion coordinate, thus leading to the configurational temperature much exceeding the

kinetic temperature (eqs (5.1) and (5.3)). The interested reader can refer to author’s

published research[45][47][46][15][389][390][391].
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troscopy on deoxymyoglobin crystals. Journal of molecular biology, 161(1):
177–194, 1982.

[52] Wolfgang Doster, Stephen Cusack, and Winfried Petry. Dynamical transition
of myoglobin revealed by inelastic neutron scattering. 1989.

[53] Hans Frauenfelder, Stephen G Sligar, and Peter G Wolynes. The energy land-
scapes and motions of proteins. Science, 254(5038):1598–1603, 1991.

[54] Paul W Fenimore, Hans Frauenfelder, Benjamin H McMahon, and Fritz G
Parak. Slaving: solvent fluctuations dominate protein dynamics and functions.
Proceedings of the National Academy of Sciences, 99(25):16047–16051, 2002.

[55] Hans Frauenfelder, Guo Chen, Joel Berendzen, Paul W Fenimore, Helén Jans-
son, Benjamin H McMahon, Izabela R Stroe, Jan Swenson, and Robert D
Young. A unified model of protein dynamics. Proceedings of the National
Academy of Sciences, 106(13):5129–5134, 2009.

157



[56] Robert D Young, Hans Frauenfelder, and Paul W Fenimore. Mössbauer effect
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[192] B Kabtoul, R J Jiménez-Riobóo, and M A Ramos. Thermal and acoustic
experiments on polymorphic ethanol. Phil. Mag., 88(33-35):4197–4203, 2008.

[193] R. Richert and A. C. Angell. Dynamics of glass-forming liquids. V. On the link
between molecular dynamics and configuration entropy. J. Chem. Phys., 108:
9016, 1998.

[194] M Gerstein and C Chothia. Packing at the protein-water interface. Proc. Natl.
Acad. Sci. USA, 93:10167–10172, 1996.

[195] D. I. Svergun, S. Richard, M. H. J. Koch, Z. Sayers, S. Kuprin, and G. Zaccai.
Protein hydration in solution: Experimental observation by x-ray and neutron
scattering. Proc. Natl. Acad. Sci., 95:2267–2272, 1998.

[196] Adrien Lerbret, Alain Hédoux, Burkhard Annighöfer, and Marie-Claire
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APPENDIX A

SIMULATION AND ANALYSIS PROTOCOLS
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A.1 Glycerol

Molecular dynamics (MD) simulations were performed for twelve different tem-

peratures (147, 168, 179, 195, 214, 239, 255, 275, 287, 302, 312, 334 K) in a cubic box

consisting of 1000 glycerol molecules using the OPLS-AA (Optimized Potentials for

Liquid Simulation - All Atoms) force field [392] as a part of the Gromacs [393] simu-

lation package. After the initial NPT and NVT equilibration runs, 50 ns trajectories

were produced in the NVE ensemble with no constraints.

Each system was initialized with a 300 ps NVT run using a Nose-Hoover thermo-

stat with H-bonds constrained, followed by a 300 ps run with no constraints. A 1-3 ns

NVE run was followed to check for stability before performing 50 ns production runs

for each temperature. The time step for all production runs was 0.5 fs, with all atoms

(including hydrogens) allowed to move according to the OPLS-AA force field param-

eters. The group cutoff-scheme was used with an update time of 5 ns and a cutoff

distance of 1.1 nm for the shifted Lennard-Jones and electrostatic interactions with a

group list distance of 13 Å renewed every 10 simulation steps. Long-ranged electro-

static interactions were calculated with the particle mesh Ewald method. Additional

NVT trajectories (tens of ns) were produced in order to compare the results between

NVE and NVT ensembles (Fig. 2.7). NVT simulations, with the Verlet cutoff-scheme

and a Nose-Hoover thermostat, were carried out for the following temperatures: 230,

240, 250, 260, 270, and 280 K. The typical trajectory length was 50 ns and all atoms

were allowed to move.
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A.2 Cytochrome C

A.2.1 Simulation Protocol

The simulation protocol has followed the previous simulations setup[171] and was

used here to simulate the hydrated cytochrome c (Cyt-c) at a number of temperatures

(from 120 K to 360 K) and in its oxidized and reduced states. The trajectories were

produced with NAMD software program.[172] The CHARMM 27[394] force field was

used. Particle mesh Ewald was used to handle the long-range electrostatics, with the

cutoff distance of 12.0 Å. The time step of 2.0 fs was used for all simulations. No

ions were used to neutralize the total charge of the simulation cell. It was found in

previous simulations[186] that ions complicate the convergence of λ since they are

not sufficiently screened and tend to bind to ionized surface residues. The analysis

of implementing Ewald sums in the cell with uncompensated charge is discussed in

the previous work where the computational model of Cyt-c was developed.[171] That

analysis also included separate simulations of Cyt-c with the presence of electrolyte,

with little effect on the results for the reorganization energies. The simulation cell

carrying a net charge was used for the rest of simulations since it provides faster

convergence of λ.

Separate NMR solution structures for the oxidized (PDB 1AKK) and reduced

(PDB 1GIW) were used for the initial setup. The force field parameters and charges

for the two oxidation states were taken from Kaszuba et al.[395] These force-field

parameters were applied to produce classical MD trajectories used to calculate the

classical electric field and electrostatic potential entering the quantum Hamiltonian

(see below).

The procedure of solvating two structures followed several steps. First, crystal-

lographic water molecules were taken from the 1YCC PDB file and added to the
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1GIW cytochrome c structure (Red state). To assure that the protein was properly

saturated with water, we performed a “soaking” procedure. It consisted of making a

small sphere of water surrounding the protein with a total system size of 5497 atoms.

From this structure, 150 ns simulations were performed. Finally, from the last frame

of these longer simulations, a box (100.1Å×100.1Å× 100.1Å) consisting of a total of

101440 atoms was created and additional water molecules added to the total of 33231

molecules. This addition of water was followed by 20 ns NPT simulations allowing

the newly created box to relax around the sphere. This NPT equilibration was fol-

lowed by 10 ns NVT equilibration. The same sequence of steps was then applied to

the 1AKK structure preceded by the alignment of the 1GIW and 1AKK structures.

All force field parameters were applied using VMD’s “psfgen” tool and TIP3P water

molecules were added using VMD’s “solvate” plugin [172].

Most electron-transfer cytochromes form 6-coordinated His-Fe-Met complex[396].

The Fe-His bond is, however, weaker than the Fe-Met bond and can break in some

forms of cytochrome c [397]. The stretching frequency of the Fe-His bond in 6-

coordinated cytochromes is[397] ∼ 220− 240 cm−1. The breaking of the Fe–Nε bond

was previously modeled by QM/MM simulations[397] and used in our modeling to

construct a Morse potential

U(r) = De

[
1− e−γ(r−re)

]2
(A.1)

with the well depth De = 9.0 kcal/mol, the well width γ = 1.52 Å−1, and the

equilibrium bond distance re = 2.33 Å.[171] The potential in eq (A.1) was applied to

the simulations in the form of the force by utilizing NAMD tclForces functionality.

We found, however, that the application of this potential does not strongly affect any

properties that we have collected on the time-scale of simulations.

Test simulations were done with two different NMR structures, to which both Red
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and Ox charge distributions of the heme were applied. We, however, found that small

differences in protein structure do not yield noticeable changes in the electron-transfer

activation parameters. It is the change in the charge distribution that is the main

factor affecting the average energy gap for the half reaction (eq (4.1)). Either of the

two structures can in fact be used in simulations of electron transfer in Cyt-c.

NVT simulations, 1 ns each, with the temperature increments of 1 K were used for

cooling and heating from the initial temperature of 300 K. Production simulations of

at least 250 ns in length were performed for Red and Ox oxidation states at T ≥ 280

K and of 135 ns in length for the temperatures below 280 K.

Quantum calculations. A portion of Cyt-c was chosen as the quantum center

(Figure 4.2) and was treated quantum mechanically, with the rest of the system

treated at the classical atomistic level. The quantum center contained the heme,

HIS, MET, and two CYS ligated amino acids. In all cases, hydrogen atoms were

added to satisfy valency. The geometry of the quantum center was optimized by

freezing all the atoms except the added hydrogens.[171]

The Hamiltonian matrix of the quantum center in the electrostatic field of the

surrounding classical subsystem is provided in equation (4.9). GAUSSSIAN’09 [398]

was used for all quantum calculations in vacuum (Red and Ox states) using the

ZINDO/S method [399]. The charges of the Red (singlet) and Ox (doublet) quantum

center were−2 and−1, respectively. The transition dipoles in the Hamiltonian matrix

were used to calculate the polarizability tensor of the quantum center

ααβ0 = 2
∑

j>0

µα0jµ
β
j0

Ej − E0

, (A.2)

The convergence of this parameter as a function of the number of states was used to

determine M = 100 states in the Hamiltonian matrix. The polarizability change of

the active sites ∆α = αOx−αRed = −30.8 Å was found with this choice, α = 1
3
Tr[α].
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Figure A.1: Running Averages of the Reorganization Energies of the Oxidized (Ox)
and Reduced (Red) States at T = 310 K. λ = (λOx + λRed)/2 Indicates Their Mean.
λSt Indicates the Running Average for the Stokes-Shift Reorganization Energy.
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Figure A.2: Free Energies of Electron Transfer for the Oxidized (Ox) and Reduced
(Red) States of Cyt-C Calculated From MD Simulations (Points) at T = 300 K.The
Dashed Lines Are Interpolations Between the Points to Guide the Eye.

A.2.2 Data Analysis

The energy gap in the QM/MD simulations is defined as the difference between

the lowest eigenvalues E
Ox/Red
g of the oxidized and reduced states (eq.(4.1)) obtained

by diagonalizing the corresponding Hamiltonian matrices in Eq. (4.9)

The electrode chemical potential µ in eq.(4.1) is established by the condition of

the free energies of electron transfer intercepting at X = 0.
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Two reorganization energies of electron transfer, λSt and λ, are considered here.

Figure A.1 shows the running averages of λi and λSt along the simulation trajectory.

We also list values and the error estimates calculated as the standard deviation be-

tween averages within the trajectory blocks of 20 ns in length in table A.2.2 . These

calculations most likely overestimate the errors since they include parts of the tra-

jectory when sufficient convergence was not yet reached. However, they point out

that the temperature variation of λ1 and, in particular, its drop at the crossover tem-

perature are well resolved by the present simulations. The free energy surfaces from

simulations at η = 0 (overpotential (chapter 4)) are shown in Figure A.2.

Since our calculations do not include the chemical potential of the metal in eq

(A.2), the calculated values of the reaction coordinate incorporate an unknown gas-

phase shift ∆I

XMD = ∆I +X (A.3)

In order to determine this component, we turned to the temperature dependence of

the minimum of the free energy surface in the oxidized state. In the idealized behavior

of the Marcus theory, one expects Xmin = −λSt. Corrections to this idealized limit

can always be present, and we assumed that they can be accommodated into a shift

linear in temperature, Xmin(T ) = −λSt(T ) + aT , where λSt(T ) = 1.486 eV − 0.8 ×

10−3eV/K × T was found from MD simulations. We found that simulated minima

follow the temperature dependence

XMD = ∆I − λSt(T ) + aT (A.4)

very well. From these results we found ∆I = 2.52 eV to be most consistent with the

data. Figure A.3 shows the application of this shift to the Red and Ox free energy

surfaces at T = 165 K. This constant offset was used to shift the energy gaps XMD

to obtain X.
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Table A.1: Reorganization Energies (eV).a

T λSt λ1(Ox) λ2(Red)

120 1.01±0.04

140 1.11±0.08

160 1.52±0.18

165 1.33 1.70±0.22 2.07

170 1.71±0.22

180 3.27±0.68

185 3.50±0.61

200 2.81±0.34

220 2.90±0.37

240 3.19±0.32

260 2.78±0.21

280 1.31 2.89±0.28 3.70

290 1.32 2.97±0.70 2.97

310 1.21 2.65±0.32 2.18

320 1.21 2.54±0.23 2.19

330 1.21 3.15±0.35 2.76

340 1.21 2.58±0.22 2.47
aErrors in the Reorganization Energy From the Energy Gap Variance Are

Estimated as the Standard Deviation Between Averages Calculated From 20 ns

Blocks Along the MD Trajectory.
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Table A.2: Stokes Shift and Variance Reorganization Energies of Protein and Water
Components of the Thermal Bath (eV).

λSt λ

T protein water protein water

280 0.03 1.3 4.3 6.6

290 0.44 0.85 4.6 6.3

300 0.45 0.74 4.5 6.5

310 0.55 0.62 3.9 5.2

320 0.41 0.73 5.2 6.5

330 0.38 0.79 4.4 6.1

340 0.055 1.23 5.6 6.8

360 0.54 0.59 4.4 5.9
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The reorganization energy was additionally separated into the protein and water

components. This was achieved by using the corresponding contributions for the

electrostatic potential φFe and the electrostatic field Eb in the Hamiltonian matrix in

eq (4.9). These results are shown in Figure A.4 and listed in Table A.2. Note that

λp (protein) and λw (water) do not add up to λ because the diagonalization of the

Hamiltonian matrix within the empirical valence-bond formalism produces a generally

non-linear functional of the electrostatic scalar (potential) and vector (electric field)

fields of the medium.

A.2.3 Dynamics

Dynamics and Parameters Regarding Electrochemistry (Chapter 4)

The main dynamic function studied in Chapter 4 is the time auto-correlation

function of the energy gap (Stokes-shift dynamics) CX(t) = 〈δX(t)δX(0)〉. This cor-

relation function calculated from MD trajectories in Red and Ox states of cytochrome

c was fitted to five decaying exponential functions

S2(t) = CX(t)/CX(0) =
5∑

n=1

Ane
−t/τn (A.5)

with the fitting parameters listed in Table A.3 (
∑5

i=1Ai = 1). The average relaxation

times at different temperatures, also listed in Table A.3, are obtained according to

the relation

〈τ〉 =
5∑

n=1

Anτn (A.6)

Calculation Protocols, MSF and Dynamics of the Susceptibility (Chapter

3)

The calculations of the force acting on the heme involved all atoms of the protein

and water except the following atoms closest to the heme: SG on the SYS, SG on
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Table A.3: Fitting Parameters for the Time Correlation Functions of the Energy
Gap to the Sum of 5 Exponential Functions (Eq (A.5), Relaxation Times τn Are in
ps). The Average Relaxation Time 〈τ〉 Is Given by Eq (A.6).

T A1 A2 A3 A4 A5 τ1 τ2 τ3 τ4 τ5 〈τ〉

Red

290 0.53 0.20 0.09 0.07 0.11 0.09 2.02 6166.55 22.98 240.53 573.90

300 0.616 0.170 0.001 0.14 0.07 0.13 4.82 2617.11 2623.93 103.58 376.71

310 0.60 0.20 0.06 0.09 0.05 0.09 1.37 3797.56 8.62 113.98 243.72

320 0.60 0.21 0.05 0.08 0.05 0.08 1.12 1224.03 6.91 79.07 69.90

330 0.57 0.18 0.07 0.10 0.08 0.09 1.66 1220.05 41.75 167.50 103.26

340 0.65 0.16 0.03 0.08 0.08 0.12 3.03 10000.0 81.05 1502.62 385.72

360 0.65 0.16 0.03 0.07 0.08 0.11 2.38 283.98 48.38 1027.16 92.03

Ox

290 0.53 0.17 0.12 0.13 0.06 0.08 1.29 10000.0 9.79 148.90 1160.12

300 0.48 0.17 0.15 0.13 0.07 0.1 1.90 7879.70 16.03 294.63 1228.29

310 0.60 0.20 0.06 0.09 0.05 0.09 1.37 3797.56 8.62 113.99 243.72

320 0.66 0.12 0.04 0.07 0.03 0.1 1.53 8764.37 14.40 282.57 397.37

330 0.64 0.19 0.09 0.05 0.03 0.13 3.97 10000.0 119.59 1206.51 969.43

340 0.57 0.16 0.09 0.11 0.07 0.09 1.46 5357.80 13.75 123.72 468.54

360 0.59 0.06 0.05 0.20 0.11 0.10 633.15 27.61 2.04 10000.0 1093.0

195



 !"

 #

 $

 %

 &

'(
)

!
"
*+

,

$-".-..-"%-.%-"/-./-"

!"
/
012*3

 !
,

2456-
2789

Figure A.6: Relaxation Time of the ν-ProcessReported From Broad Band Dielec-
tric Spectroscopy of Hydrated Myoglobin Powders (Points, h = 0.36 g of Water/g
of Prot.).[28] The Solid Line Is Regression Through the Points with the Equation:
log10[τ(ps)] = −1.5974 + 314348/T 2 − 17.757/T .

the CYS and SD on the MET. For the force variance of the Ox state, the expected

linear temperature scaling of 〈δF2〉 was not followed for the variances obtained from

250 ns simulation trajectories. Therefore, the force variance was calculated from 50

ns segments and then averaged over 5 such values to obtain the data shown in Fig.

A.13. These results were used to produce figure 3.3 in chapter 3.

Force acting on the heme The force autocorrelation function

Ca
F (t) = 〈δFa(t) · δFa(0)〉 (A.7)

was calculated from MD trajectories in Red and Ox states of Cyt-C. The component

a = El,Tot here indicate either the electrostatic force or total force acting on the

heme of Cyt-C. Fa(t) in this equation is therefore the sum of all forces acting on the

atoms of the heme. The calculations of the autocorrelation function were done in

the time interval from 0.2 ps to 10–40 ns by sliding the averaging window along the

trajectory of 250 ns. The correlation function was fitted to five decaying exponents

(Eq. (A.5)) with the fitting parameters listed in Tables A.4, A.5,A.6. The average

relaxation time, also listed in the tables, was calculated according to the relation A.6.
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Figure A.7: Exp5 Represent Fitting with 5 Exponents (Eq. A.5), While Exp1/St1 Is
when 1 Exponent and One Stretch Exponential Is Used for the Fitting (Eq. A.8).The
Top Subsection Is SF (t) Of Force Coming From Water Plus Protein on the HEME
for Red State at 310 K, While the Bottom Is From Water Molecules on HEME at
290 K for Red State.

The fitting process of 5 Exponents is only to have keep the same method for all the

fittings and get the closest fits to the data. To illustrate that using another method

would not change the general results, the stretch exponent (eq. A.8) is used to fit

the data and the results is compared with the 5-exponents fitting. As one can see in

(figs. A.7,A.8 and A.9), the results are not that different, (one would expect it, since

the multi-exponential amplitudes are negligible for most of the parts, except for two

major ones, one in very short drop and one for long-time dynamics(tens of ns range)).

SF = CF (t)/CF (0) = A1e
−t/τ1 + (1− A1)e−t/τ2

β

(A.8)

The time of stretch fitting (fig. A.8) is obtained by eq. (A.9)

τ = Γ(1 +
1

β
) ∗ τ2 (A.9)

here the Γ represents gamma function.

In contrast to SF (t) averaging over vibrations of the individual atoms in the heme,
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Figure A.8: Comparing the Results From Using Long-Time Component of 5 Expo-
nents(Exp5) And the Results From Using Stretch Exponential (Eq. A.9)(Exp1/St1)
for Ox State(Top) and Red State(Bottom).The Slope of the Fittings Are 1559 K
for Ox and 1701 K for Red State for Stretch Exponential, and 1868 K for Using
Long-Time Component of 5 Exponents .
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Figure A.9: Here the Results of Using Eq. (A.9) For Different Components of the
Force Is Presented. The Slope of Fit to the Protein+water Is 1701 K, for the Protein
Component Is 1819 K and for the Water Is 1108 K. The Fittings for Water Were
Specially Poor. The Data Was Also Fitted with 3 Exponents and One Stretch, which
Gave the Best Fits and the Resulting Slope where 1155 K (Not Shown in the Graph).
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Figure A.10: Normalized Time Auto-Correlation Function of the Force Acting on
the Fe Atom SFe(t) = CFe(t)/CFe(0), Where CFe(t) = 〈δFFe(t) · δFFe(0)〉.

the force-force time auto-correlation function of the force acting on the heme iron is

highly oscillatory (Fig. A.10). This correlation function is difficult to analyze in terms

on the long-time dynamics required for the dynamical transition and the force acting

on the entire heme was chosen for that reason.

MSF of Cyt-C The modeling of the MSF of the heme iron requires calculating

the overall force variance acting on the heme and the nonergodicity parameter fne(T )

in Eq. (3.16) in the chapter 3. The variance of the total force acting on the heme

depends on temperature. Based on the expectations from the fluctuation-dissipation

theorem, we approximated the simulation results at different temperatures by a linear

function, 〈δFH〉 = cT . The coefficient c for two oxidation states is cRed = 0.018 and

cOx = 0.017 (eV/Å)2K−1. The simulation points and the linear fit are shown in Fig.

A.11

MSF of Hydration Shell The self intermediate scattering function (ISF) was

calculated separately for translations and rotations of the water molecules in the

hydration shell of Cyt-c. The translational ISF is

Fs(k, t) = N−1
∑

j

〈
eik·∆rj(t)

〉
, (A.10)
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Figure A.11: Variance of the Force Acting on the Heme 〈δF 2
H〉 Vs T . The Dashed

Lines Are Regressions Through the Points, 〈δF 2
H〉 = cT .

where ∆r(t) = rO(t) rO(0) for oxygen atoms counted within the shell 6 Å thick. A

similar function was calculated replacing ∆r(t) in Eq. (A.10) with ∆rO-H(t) for the

vector connecting the oxygen and hydrogen atoms. For each function − ln(Fs(k, t))

vs q2 in the range of small q-values (q < 0.13 Å−1) was fitted wit a linear function

to produce the corresponding MSFs. t = 100 ps and t = 1 ns were used in the

calculations shown in Fig. 3.11 of the chapter 3.

Dynamics of the susceptibility The calculations of the static dipolar susceptibil-

ity of the hydration shell are shown in Fig. 3.10 of the chapter 3. The dynamic version

of the susceptibility function requires calculating the time correlation function of the

shell dipole moment, 〈δM(t) · δM(0)〉. The imaginary part of the frequency Fourier

transform of the susceptibility is the loss function χ′′(ω). The results of calculations

of this functions are shown in Fig. A.12. The calculations are performed for the water

shell with the thickness of 6 Å around the van der Waals surface of the protein.

Vibrational density of states Vibrational density of states of the Fe atom in the

heme was calculated from the velocity correlation function

Z(t) = 1
3
〈vFe · vFe(0)〉 (A.11)
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Figure A.12: χ′′(ω) for T = 280, 310 and 320 K. The Thickness of the Water Shell
Is 6 Å.

It is connected to the vibrational density of states (VDOS) D(ω) by the relation

(A.12)[11]

Z(t) =
kBT

2mFe

Re

∫ ∞

−∞
D(ω)eiωtdω, (A.12)

where mFe is the mass of the Fe atom.

The Fourier transform was calculated numerically by multiplying Z(t) with a

Gaussian function with FWHM = 1 meV. The resulting VDOS presented in the

text was produced from 1 ns NVE simulation with non-rigid protons and 0.25 fs

simulation step (1 fs saving frequency). Since the trajectory length limits the range

of low frequencies, quadratic extrapolation to zero was applied below 10 cm−1.

Analysis of Experimental Results

The relaxation time for myoglobin (Fig. 43.4 in the chapter 3) was taken from

dielectric measurements of protein powders by Nakanishi and Sokolov.[28] The process

named as “main” is highly stretched, with the high-frequency wing of the dielectric

loss following the power law decay, ε′′ ∝ ω−α. The stretching exponent α changes

from 0.24 at T = 163 K to 0.17 at T = 143 K (lysozyme). The dielectric loss was

fitted to the Cole-Cole dispersion function with the resulting relaxation time shown
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Figure A.13: MSF of Heme Iron in Oxidized Myoglobin. Points Indicate Exper-
imental Results,[13]Solid Line Refers to the Fit to Eqs. (3.1) and (3.16) with the
Nonergodicity Factor fne(T ) Determined From Stretched Dynamics [Eq. (3.20) in
the Chapter 3] With γ = 0.25 (Solid Line) and γ = 1.0 (Dashed Line). The Noner-
godic Force Variance Is Determined as β〈δF 2〉r = Afne(T ) With the Fitting Constant
A = 2.5 nN/Å (γ = 0.25) and 1.53 nN/Å (γ = 1.0). The Relaxation Time τ(T ) Is
From the Broad Band Dielectric Spectroscopy of Hydrated Myoglobin Powders[28] as
Shown in Fig. A.6

by points in Fig. A.13. These data, fitted to a function shown by the solid line in

Fig. A.13, were used in producing the nonergodic variance of the force acting on the

Fe atom in the heme of myoglobin.

Dynamics and Parameters (Chapter 5)

In chapter 5, as is also mentioned about chapter 4, the main dynamic function

studied is the time auto-correlation function of the energy gap (Stokes-shift dynamics)

CX(t) = 〈δX(t)δX(0)〉. The normalized correlation function SX(t) = CX(t)/CX(0)

calculated from MD trajectories in the oxidized states of cytochrome c was fitted to

a sum of one decaying exponential function and a stretched exponential form

SX(t) = AEe
−t/τE + (1− AE)e−(t/τ)β (A.13)

The average relaxation times at different temperatures are obtained according to

〈τ〉 = AEτE + (1− AE)τΓ(1 + β−1) (A.14)
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Table A.4: Total Time Correlation Function for Cyt-C (Red). The Relaxation
Times Are in Ps. The Units of the Force Are eV/Å.

T A1 A2 A3 A4 A5 τ1 τ2 τ3 τ4 τ5 〈τ〉 〈δF2
H〉

280 0.518 0.045 0.002 0.012 0.423 24273 1228 0.008 0.005 0.008 12634 5.63

290 0.44 0.11 0.45 0.00 0.00 24929 2350 0.006 0.008 0.005 11240 5.69

310 0.527 0.021 0.036 0.009 0.406 12026 1228 0.008 0.010 0.005 6369 5.99

320 0.493 0.017 0.002 0.035 0.451 9259 50.40 0.009 0.007 0.01 4567 5.65

330 0.566 0.000 0.202 0.000 0.232 7444 0.026 0.009 0.020 0.008 4212 8.32

340 0.475 0.016 0.485 0.00 0.02 8501 62.65 0.009 0.62 0.01 4038 6.24

360 0.500 0.000 0.003 0.000 0.497 6603 0.009 0.008 0.006 0.007 3303 6.54

where Γ(x) is the gamma-function.[362] The results of the fit of 〈τ〉(T ) to the Arrhe-

nius dependence are shown in Figure A.14.

The activation barrier was calculated as the free energy difference between the

point at X = 0 and the bottom of the free energy surface at its minimum, ∆F † =

F (0)−F (〈X〉1). The temperature dependence of the activation barrier for the Cyt-c

reduction is shown in Figure A.16.

Table A.5: Electrostatic Component of the Force-Force Correlation Function for
Cyt-C, Red. The Relaxation Times Are in Ps. The Units of the Force Are eV/Å.

T A1 A2 A3 A4 A5 τ1 τ2 τ3 τ4 τ5 〈τ〉 〈δF2
H〉

280 0.861 0.027 0.072 0.010 0.03 16229 4.733 0.002 0.4 0.05 13979 4.05

290 0.85 0.02 0.11 0.02 0.00 15443 35.34 0.07 2.940 0.06 13169 4.14

310 0.79 0.07 0.057 0.05 0.032 8333 0.038 0.03 0.1 77 6585 2.75

320 0.76 0.04 0.002 0.08 0.12 10529 1175 0.01 1.5 0.00 8038 3.45

330 0.81 0.03 0.00 0.01 0.14 7962 67.52 0.00 0.06 0.00 6483 3.73

340 0.77 0.06 0.13 0.02 0.02 10938 1081 0.077 2.98 8.12 8517 4.02

360 0.82 0.01 0.11 0.02 0.033 7837 45.2 0.00 4.52 0.585 6427 4.39
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Table A.6: Total Force-Force Time Correlation Function for Cyt-C, Ox. The Re-
laxation Times Are in Ps. The Units of the Force Are eV/Å.

T A1 A2 A3 A4 A5 τ1 τ2 τ3 τ4 τ5 〈τ〉 〈δF2
H〉

280 0.580 0.168 0.002 0.028 0.373 21944 338.959 0.007 0.004 0.007 12730 7.09

290 0.15 0.41 0.43 0.008 0.0 35007 11053.6 0.004 29.39 0.008 9884 6.15

310 0.550 0.029 0.191 0.023 0.207 14854 78.834 0.002 0.158 0.004 8164 6.25

320 0.57 0.00 0.003 0.059 0.362 10973 0.007 0.009 0.733 0.01 6318 6.64

330 0.558 0.013 0.021 0.0 0.408 11047 198 0.004 0.005 0.007 6167 6.33

340 0.48 0.038 0.190 0.03 0.25 9712 149.6 0.003 0.183 0.004 4688 6.97

360 0.550 0.010 0.005 0.003 0.432 6331 0.250 10.0 0.005 0.009 3482 6.30

Table A.7: Electrostatic Component of the Force-Force Correlation Function for
Cyt-C, Ox. The Relaxation Times Are in Ps. The Units of the Force Are eV/Å.

T A1 A2 A3 A4 A5 τ1 τ2 τ3 τ4 τ5 〈τ〉 〈δF2
H〉

280 0.87 0.00 0.00 0.024 0.10 16917 111.7 0.002 19.72 0.003 14697 4.99

290 0.9 0.02 0.04 0.045 0.00 12124 1.86 0.001 0.051 0.018 10912 6.01

310 0.81 0.08 0.08 0.02 0.01 16048 1451 0.00 0.78 0.7 13202 6.29

320 0.9 0.00 0.03 0.00 0.067 10553 0.327 0.00 0.01 0.00 9486 6.47

330 0.852 0.017 0.015 0.092 0.023 11171 164 7.68 0.060 1.076 9526 6.26

340 0.738 0.15 0.04 0.04 0.03 27377 1727 0.745 0.01 0.01 20461 6.97

360 0.861 0.002 0.11 0.03 0.0 7028 64.34 0.00 0.37 0.00 6054 6.30
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Figure A.14: Relaxation Time of the Stokes-Shift Dynamics (Eq (A.14))As a Function
of 1/T .The Points Refer to the Simulation Data for the Oxidized Form of Cyt-C and the
Dashed Straight Line Is the Linear Regression ln[〈τ(ps)〉] = 1.24 + 1725K/T .
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Figure A.15: Distribution P (Q)Of the Tetrahedral Order Parameter Q (Eq (5.5)) At
Different Temperatures for TIP3P Water.
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Figure A.16: Activation Barrier for the Reduction Reaction of Cyt-C Vs T . Points
Are the Simulation Results and the Dashed Lines Are Linear Fits Through the High-
Temperature and Low-Temperature Portions of the Data.
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Figure A.17: Distribution Functions of the First-Order Orientational Order Parameter
p1 (Eq (A.15)) In the Hydration Shell of Oxidized Cyt-C (a = 6 Å)At Different Tempera-
tures Indicated in the Plot. The Maximum of the Distribution Corresponds to the Angle
130◦Between the Water Dipole Moment and the Normal to the Protein Surface.

A.2.4 Order Parameters of Hydration Water

The tetrahedral order parameter[24, 25, 23] is given by the equation (5.5). Figure

(5.3a) shows the dependence of the average 〈Q〉 within the hydration shell of Cyt-

c on temperature. As expected, there is a continuous increase of tetrahedral order

of the hydration water with lowering temperature (Figure A.15). We also find that

hydration water is less ordered than bulk SPC/E[23] and TIP3P water.

We have also calculated the first two, l = 1, 2 orientational order parameters of

the water molecules in the protein’s hydration shell

pl = Pl(ê · n̂) (A.15)

where ê is the unit vector of the water dipole moment chosen within the distance

a from the protein surface and n̂ is the unit normal to the protein surface (Pl(x)

is the Legendre polynomial of order l). The calculation of the unit normal n̂ first

involved the location of the protein atom closest to a given water molecule. Once

the closest protein atom was located, the normal direction was determined along the

vector connecting this atom to water’s oxygen.

The distribution functions of p1 at different temperatures are shown in Figure
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Figure A.18: Configuration of the Water Molecules Relative to the Normal to the Protein
Surface n̂Corresponding to the Maximum of P (p1) in Figure A.17. µ Shows the Direction
of the Dipole Moment and the Lines Represent the OH Bonds.
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Figure A.19: Distribution Functions of the Orientational Order Parameter p21 (Eq
(A.16))In the Hydration Shell of Oxidized Cyt-C (a = 6 Å)At Different Temperatures
Indicated in the Plot. The Lower Maximum of the Distribution, Growing with Lowering
Temperature, Corresponds to the Angle χ = 0◦Between the Plane of the Water Molecule
and the Plane Containing the Normal and the Water Dipole Moment.

A.17. It is clear that there is a broad spread of dipolar orientations in the shell, with

some preference for a radial orientation parallel or antiparallel to the local normal to

the surface. The temperature variation of the distribution does not reveal, however,

any discontinuous changes pointing to a structural transition in the hydration shell.

The maximum of the distribution P (p1), at the angle θ = 130◦ between n̂ and µ,

corresponds to the configuration in which the water molecules in the interface point

their hydrogens toward the protein surface (Figure A.18). Further identification of

this preferential orientation is achieved by considering an additional order parameter

appearing from the expansion of the interfacial distribution functions in rotational
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Figure A.20: Dependence of the Minimum of the Free Energy of Electron Transfer in
the Oxidized Form of Cyt-C on Temperature. The Dashed Line Shows the Hyperbolic Fit
to the Results at T > Tc.

invariants[322]

p21 = 1
2
〈sin θ2 cos 2χ〉 (A.16)

The angle χ is between the plane containing n̂ and µ and the plane of the water

molecule. Figure A.19 shows the distributions of p21 at different temperatures. The

sharp spike at p21 = 0 reflects water molecules next to hydrophobic patches of the

protein, where water tends to orient in plane of the dividing surface.[365] Changing

temperature does not strongly affect the orientational structure in those parts of the

interface. The second peak, increasing in amplitude with lowering temperature, is

reached at θ = 130◦ and χ = 0 and describes the increasing populations of water’s

hydrogens pointing toward the protein surface, either through hydrogen bonds or

through dangling bonds. This is the configuration shown in Figure A.18.

A.2.5 Modeling of Cyclic Voltammograms

The calculations were performed for the reduced current ψ = i/(βe2vAΓt) as

defined by Laviron.[21] Here, i = ic − ia is composed of the cathodic, ic, and anodic,

ia, currents passing through the area A under the applied voltage with the scan rate

v. The equation for the reduced current is given in terms of the surface mole fractions

of the oxidized, xO = ΓO/Γt, and reduced, xR = 1 − xO, adsorbates; Γt is the total
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surface concentration. The equation for the current is[20]

ψ = (kO/v
∗)xO − (kR/v

∗)(1− xO) (A.17)

Here,

v∗ = βev/k(0) (A.18)

is the dimensionless scan rate and k(0) is the rate at zero overpotential, η = 0, and

β = 1/(kBT ). Further, the reduced rates for the oxidation and reduction reactions in

eq (A.17) are

kO(η) =
[
erfc(

√
βλr/2)

]−1

erfc

(
λr + eη

2
√
kBTλr

)
,

kR(η) =
[
erfc(

√
βλr/2)

]−1

erfc

(
λr − eη

2
√
kBTλr

) (A.19)

where ercf(x) is the complimentary error function. The solution for xO(η) is given

as[20]

xO(η) = e
1
v

∫ η
ηm

(kO+kR)dz

− 1

v

∫ η

ηm

dzkR(z)e
1
v

∫ η
z (kO+kR)dy

(A.20)

where the cathodic sweep runs from ηm to −ηm with the scan rate magnitude v. This

equation is the solution of the kinetic equation for the surface mole fraction of the

oxidized state

− v

k(0)

dxO

dη
= kR − (kO + kR)xO (A.21)

A.3 Charge Screening

A.3.1 Simulation Protocol

The simulation cell was created by combining PDB coordinate files corresponding

to two dummy atoms and a box of SPCE water.[29] The dummy atoms were placed

symmetrically a distance R apart from one another along the x-axis and the water
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Figure A.21: A Cartoon of the Simulation Cell Including Two Kihara Solutes Sep-
arated by the Distance R in the Cubic Simulation Cell Containing SPC/E[29] Water
Molecules.

molecules within the distance R0s = rHS + σ0s from the dummy atom’s center were

removed, resulting in 7408 SPC/E water molecules in the box. The solute radius R0s

combines the hard-sphere core rHS with van der Waals diameter σ0s appearing in the

Kihara potential describing the isotropic solute-solvent interaction

u0s(r) = 4εLJ

[(
σ0s

r − rHS

)12

−
(

σ0s

r − rHS

)6
]

(A.22)

The following parameters were used for the Kihara potential: rHS = 2 Å, σ0s = 3 Å,

and εLJ = 0.65, 3.7, and 20.0 kJ/mol. The center of each Kihara solute was shifted

from the origin to a distance ±R/2 along the x-axis as illustrated in Fig. A.21. The

separation distance between the two Kihara spheres was then varied from 10 Å to 20

Å.

All simulations were performed using the NAMD[172] simulation package with a 2

fs timestep. The system was initialized by first energy minimizing for 1000 steps and

then performing a 1 ns NPT simulation allowing the sides of the box to relax around

the system. A cubic simulation cell with side length of 60 Å was created by the end of

NPT simulations. Following this initial equilibration, a 200 ps NVT equilibration at
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Table A.8: Cross Correlation of the Electrostatic Potential I(R) [Eq. (6.13)] in Å−1.

Distance, Å 11 11.5 12 12.5 13.0 14.0 15.0 15.5 16.0 17.0 18.0 20.0

I(R) · 100 4.25 3.90 4.34 3.62 3.35 2.62 1.991 1.74 1.95 1.78 1.06 0.72

300 K was performed. The long range electrostatic forces were calculated using the

Particle Mesh Ewald (PME) technique with a cutoff distance of 18 Å (also used for

the Kihara potential). All forces were calculated at every step along the trajectory

and configurations were saved every 10 ps. Simulation trajectory were ≈ 90 ns in

length, of which 80 ns were used for production.

The Kihara potential was implemented using NAMD’s tclBC module and the

tclBC configuration file handling both Kihara centers was developed in-house by con-

sidering the general relationship between the potential and the force, F0s = −∇u0s,

with u0s(r) from Eq. (A.22). The dummy atoms added to the system were used to

calculate the electrostatic potential at the center of each cavity using NAMD’s pair-

interaction energy plugin by setting the charge of the dummy atom equal to +1 e.

The force calculation for these dummy atoms was turned off throughout the produc-

tion of trajectory configurations and these two atoms were held fixed by using the

fixedAtom keyword available within NAMD.

The electrostatic screening between the charges in SPC/E water was calculated

from the cross-correlation of the electrostatic potentials at the centers of two Kihara

solutes according to the equation (6.13). The results of calculations from the MD

trajectories are listed in Table A.8.

A.3.2 Derivation of Equations in (6.14)

Here we provide details of the derivation of Eq. (6.14). It follows from using

the Fourier transform in the single particle (first summand) and two-particle (second
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Figure A.22: g0s(r)For Kihara Solutes in SPC/E Water with R0 = rHS+σ0s Equal to
5 Å and 8 Å.The Values of the Solute-Solvent Lennard-Jones Energy εLJAre Indicated
in the Plot.

summand) equation for the potential correlation written in direct space in Eq. (6.9).

We therefore follow the transformation for each term separately, which we specify as

I1 and I2. The one-particle term can be written as

I1 = ρ

∫
d1φs1(1)φs2(1)g0s(r1)2

− ρ
∫
d1φs1(1)φs2(1)g0s(r1)h0s(r1).

(A.23)

the Fourier transforms are performed on the effective electrostatic potentials φsi(1)g0s(r1)

accounting for the interfacial structure through the solute-solvent pair distribution

function g0s(r). The corresponding Fourier transforms become

φ̃s1(k) = −4πi(m · k̂) f0s(k)

φ̃s2(k) = −4πi(m · k̂) eik·Rf0s(k),

(A.24)

where

f0s(k) = k

∫ ∞

0

drj1(kr)g0s(r). (6.15)

Examples of g0s(r) for two sizes of the Kihara solute R0 = rHS + σ0s and the

Lennard-Jones energies εLJ equal to 0.65 kJ/mol and 20 kJ/mol are shown in Fig.

A.22. For the higher attraction energy, εLJ = 20 kJ/mol, one observes layering be-

tween the first and second hydration shells (zero probability to find a water molecule).
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Figure A.23: Numerical Integration in Eq. (6.15)And Fit to Eq. (6.22) for εLJ = 0.65
(Black) and εLJ = 3.7 kJ/mol (Red). The Fitting Parameters Are c = 1.806, a = 5.0
Å and b = 6.15 Å (Black) and c = 2.65, a = 5.0 Å and b = 6.06 Å (Red).

The angular integration over the orientations of the solvent dipole m and the

wavevector k then result in the one-dimensional k-integral

I1(R) =
6y

π

∫ ∞

0

dkkj0(kR)f0s(k). (6.14)

As is discussed in the chapter 6, the function f0s(k) can be represented by a linear

combination of two zeroth-order spherical Bessel functions originating from two blips

of the solute-solvent Boltzmann factor

f0s(k) = cj0(ka) + (1− c)j0(kb). (6.22)

Figure A.23 shows the fit of f0s(k) from the direct integration in Eq. (6.15) to Eq.

(6.22). Assuming that f0s ∼ exp[i2bk] at k → ∞, one can close the integration

contour in the upper half of complex k-plane and assume that f0s(k) is an analytic

function of the complex variable k. At R > 2b one then obtains

I1(R) =
3y

R
. (A.25)

We now turn to the two-particle term

I2(R) = ρ2

∫
d1d2φs1(1)φs2(2)g0s(r1)g0s(r2)hss(1, 2). (A.26)
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Figure A.24: SL(k) Calculated for Bulk SPC/E Water and for the Solution with
Two Kihara Solutes at the Distance R = 10 Å. The Two Lines Are Nearly Indistin-
guishable on the Scale of the Plot. Also Shown Is the Longitudinal Structure Factor
of TIP3P Water.[30] All Results Refer to T = 300 K.

By substituting the Fourier transforms of φs1(1) and φs2(2) and integrating over the

orientations of two dipole moments in the liquid and the wavevector k we arrive at

the result

I2(R) =
6y

π

∫ ∞

0

dkf0s(k)2j0(kR)
[
SL(k)− 1

]
(6.14)

Here, SL(k) is the linear combination of two projections of the solvent-solvent pair

correlation function on rotational invariants,[361, 360, 27] h∆ and hD. The longitudi-

nal structure factor is a linear combination of the corresponding Fourier transforms

specified with tildas

SL(k) = 1 + (ρ/3)
[
h̃∆(k) + 2h̃D(k)

]
. (A.27)

The structure factor of bulk SPC/E water was calculated from simulations and

used in numerical integration in Eq. (6.14). The perturbation derivation of this

equation assigns SL(k) instead to the solution of SPC/E water with two Kihara

solutes. We have calculated SL(k) both for the solution and for bulk SPC/E water

and found the two results nearly indistinguishable (Fig. A.24).

The function SL(k)−1 expands to a linear function of k2 at low k-values as is

shown in Fig. A.25. The expansion is used to construct the Paé form for SL(k) as
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Figure A.25: Linear Fit of [SL(k)]−1 Vs k2. Points Are Calculated From MD on the
Lattice Vectors Consistent with the Simulation Box and the Solid Line Is a Linear
Fit 19.14− 10.47k2. The Simulation Results Are for the SPC/E Water at 300 K.

follows

SL(k) =
SL(0) + Λ2k2

1 + Λ2k2
. (6.23)

The linear fit in Fig. A.25 is used to calculate Λ = 0.17 Å for SPC/E water at 300 K.

However, as we discuss in the chapter 6, this approximation is not reliable and better

estimates of the integrals involving SL(k) are obtained by using either the Lorentz or

the MSA approximations for the longitudinal structure factor.
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