
Constructing Knowledge Graph for Cybersecurity Education

by

Fanjie Lin

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved November 2018 by the
Graduate Supervisory Committee:

Dijiang Huang, Chair
I-Han Hsiao
Yinong Chen

ARIZONA STATE UNIVERSITY

December 2018

ABSTRACT

There currently exist various challenges in learning cybersecuirty knowledge, along

with a shortage of experts in the related areas, while the demand for such talents keeps

growing. Unlike other topics related to the computer system such as computer ar-

chitecture and computer network, cybersecurity is a multidisciplinary topic involving

scattered technologies, which yet remains blurry for its future direction. Construct-

ing a knowledge graph (KG) in cybersecurity education is a first step to address the

challenges and improve the academic learning efficiency.

With the advancement of big data and Natural Language Processing (NLP) tech-

nologies, constructing large KGs and mining concepts, from unstructured text by

using learning methodologies, become possible. The NLP-based KG with the se-

mantic similarity between concepts has brought inspiration to different industrial

applications, yet far from completeness in the domain expertise, including education

in computer science related fields.

In this research work, a KG in cybersecurity area has been constructed using

machine-learning-based word embedding (i.e., mapping a word or phrase onto a vec-

tor of low dimensions) and hyperlink-based concept mining from the full dataset of

words available using the latest Wikipedia dump. The different approaches in corpus

training are compared and the performance based on different similarity tasks is eval-

uated. As a result, the best performance of trained word vectors has been applied,

which is obtained by using Skip-Gram model of Word2Vec, to construct the needed

KG. In order to improve the efficiency of knowledge learning, a web-based front-end

is constructed to visualize the KG, which provides the convenience in browsing re-

lated materials and searching for cybersecurity-related concepts and independence

relations.

i

DEDICATION

Dedicated to my beloved family.

ii

ACKNOWLEDGMENTS

First and foremost, I am grateful to Dr. Dijiang Huang for giving me the opportu-

nity to work with him and his group. He has guided me patiently through challenges

in the research for completion of my thesis work. I would not be able to achieve it

without the insightful suggestions from him. It is my great honor to be your master

student.

In addition, I would like to thank Dr. I-Han Hsiao and Dr. Yinong Chen for

being my committee members and provide valuable feedback and suggestions to my

research.

I would express my gratitude to the School of Computing, Informatics, and De-

cision Systems Engineering for providing me the good learning opportunities and

supporting my internships during my graduate study.

I would also like to acknowledge all SNAC lab members and my friends who helped

me and guided me a lot in my study. Specially, I would like to express my sincere

thanks to Yuli Deng, a doctoral student at ASU, for spending much of his valuable

time to provide technical support in machine installation and upgrade, as well as

guidance in my daily work. I would like to extend my thanks to Dr. Stanford Ho at

ASU Health Services, Dr. Michael Whitaker at Mayo Clinic for taking care of me in

these years.

Finally, I would like to thank my loved parents, Yuepeng Lin and Dr. Aixi Zheng

who love me and support me during the entire period of my study. Last but not the

least, I would like to express my sincere thanks to my husband Dr. Yang Feng for his

encouragement and shaping my writing skills in my thesis.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . vii

CHAPTER

1 INTRODUCTION . 1

1.1 Problem Statements . 2

1.2 Research Questions . 2

1.3 Contributions . 3

1.4 Outline . 5

2 RELATED WORK . 7

3 METHODOLOGIES AND IMPLEMENTATION . 11

3.1 Dataset Preparing and Processing . 12

3.1.1 Full Wikipedia . 12

3.1.2 Wikiepdia Category . 15

3.1.3 IEEE Xplore Library . 15

3.1.4 Other Resources . 16

3.2 Training Methods Comparison and Discussion . 16

3.2.1 Background . 16

3.2.2 Training Experiment . 19

3.2.3 Window Sizes . 23

3.3 Evaluation . 25

3.3.1 Comparison of Similarities . 25

3.3.2 Similarity Accuracy . 31

3.3.3 Principal Component Analysis (PCA) . 32

3.4 Research Articles Recommendation . 34

iv

CHAPTER Page

3.5 Knowledge Graph Construction . 35

4 KNOWLEDGE GRAPH VISUALIZATION . 38

4.1 CyberKG-Research (KG with Research Articles Recommendation) . 38

4.2 CyberKG-Lab (KG for Cybersecurity Online Lab - ThothLab) 44

5 CONCLUSIONS AND DISCUSSIONS . 59

5.1 Conclusions . 59

5.2 Discussions . 60

6 FUTURE WORK . 61

REFERENCES . 62

APPENDIX

A Type of Wikipedia Pages . 66

B Data Samples . 69

C Open Source Libraries . 73

v

LIST OF TABLES

TABLE Page

3.1 Experiment Settings . 20

3.2 Top5 similarities for “Botnet” by using CBOW model to train Ap-

proach I . 26

3.3 Top5 similarities for “Botnet” by using Skip-Gram model to train Ap-

proach I . 27

3.4 Top5 similarities for “Botnet” by using CBOW model to train Ap-

proach II . 27

3.5 Top5 similarities for “Botnet” by using Skip-Gram model to train Ap-

proach II . 28

3.6 Average Similarity distances for using Approach I . 29

3.7 Average Similarity distances for using Approach II 29

3.8 Top5 similarities for “botnet” by using Skip-Gram model to train Cy-

berData 1 . 30

3.9 Top5 similarities for “botnet” by using Skip-Gram model to train Cy-

berData 2 . 30

3.10 Accuracy of training results for using Approach I . 31

3.11 Accuracy of training results for using Approach II . 31

B.1 Dataset Sample I: Concept pages from Wikipedia dataset with corre-

sponding ID and Title . 70

B.2 Dataset Sample II: Replace PageIDs for matched titles Wikipedia con-

cept pages’ description . 70

B.3 Dataset Sample III: Extract PageIDs only from Dataset Sample II 71

B.4 Dataset Sample IV: Convert PageIDs in Dataset Sample III to corre-

sponding titles . 71

vi

LIST OF FIGURES

FIGURE Page

3.1 KG Construction Flowchart . 11

3.2 Full Wikipedia Preprocess Flowchart . 13

3.3 CBOW Model Structure . 21

3.4 Skip-Gram Model Structure . 22

3.5 Accuracy comparison for different window size with a dimension size

of 400 . 24

3.6 Accuracy comparison of fixed window size(original) and dynamic win-

dow size(modified) by using Skip-Gram Model . 25

3.7 Top 5 similarities for ’botnet’ and its related terms 33

3.8 Terms in 1st layer of ’Computer security’ in Wikipedia category 34

3.9 Merge two small graph together base on overlap and word embedding

similarity.(Firewall Graph on the left, DDoS graph in the middle and

merged result on the right.) . 37

4.1 CyberKG-Research: Sample Visualized Knowledge Graph 39

4.2 CyberKG-Research: Sample graph showing the relation among termi-

nologies . 41

4.3 CyberKG-Research: A sample of the KG showing linked nodes 42

4.4 CyberKG-Research: A subset of our knowledge graph showing most

related reading research article. 43

4.5 Sample Visualized CyberKG-Lab: User select all labs under Software

and Web Security category . 46

4.6 Sample Visualized CyberKG-Lab: User select all labs in ThothLabs

System . 48

vii

FIGURE Page

4.7 Sample Visualized CyberKG-Lab: Hang Over ’Web application secu-

rity’ node and highlight its neighborhood nodes . 49

4.8 Sample Visualized CyberKG-Lab: Click ’setuid’ node to display corre-

sponding infomration . 50

4.9 Sample Visualized CyberKG-Lab: Tree map of node ’setuid’ 51

4.10 Sample Visualized CyberKG-Lab: Searching relate terms 53

4.11 Sample Visualized CyberKG-Lab: Searching ’Password’ related terms . . 54

4.12 Sample Visualized CyberKG-Lab: Expanding related node ’Password

cracking’ in ’Passowrd’ related terms search result . 56

4.13 Sample Visualized CyberKG-Lab: Hovering mouse on the ’Password

cracking’ node . 58

A.1 Sample XML files in Wikipedia dump . 67

B.1 Data Sample V: Processed with Stanford CoreNLP 72

viii

Chapter 1

INTRODUCTION

Nowadays, cybersecurity has become one of the most-discussed fields in technol-

ogy and there is a high demand for cybersecurity professionals in the industry with

constant growth within the past few years. According to a Peninsula Press analysis of

the Bureau of Labor Statistics report [1], there are more than 209,000 unfilled cyber-

security jobs in United States alone in 2016 and this demand is expected to grow by

53 percent through 2018. Existing learning materials on cybersecurity education are

mainly managed in a problem-centric fashion, in which instructors arrange learning

and corresponding materials based on a specific security issue or solution, e.g., firewall

configuration, IDS deployment, buffer overflow attack, etc. However, the concepts of

this materials’ dependencies are usually complicated and unclear, which hinders both

students and instructors to manage the learning materials in a coherent way. Due to

the lack of requirements for students and limited qualifying teaching resources, the

talent pool of cybersecurity professionals is yet to keep up.

To close the cybersecurity professionals demanding gap, we need to greatly im-

prove existing cybersecurity education, and in particular, providing self-guided learn-

ing modules is an effective approach not only allowing students and researchers to

follow the well-structured curriculum but also giving them the opportunity to learn at

their own pace. Knowledge Graph (KG) is one of the effective solutions to organize,

index, recommend reading materials for learners. In this thesis, We have presented

a research work on designing and developing the cybersecurity KG which includes

both learning-related and domain-content-related knowledge to improve the learning

1

efficiency of cybersecurity knowledge.

1.1 Problem Statements

Unlike other Computer Science (CS) topics such as computer architecture and

programming languages where well-structured curriculum has been adopted by most

of the existing institutions, cybersecurity is a multidisciplinary area that focuses more

on loosely connected problems or solutions. As a result, the learning materials vary

based on the preference of individual instructors and learning outcomes are difficult

to measure. Usually, practitioners are only required to tackle the real-world problem

in a few specific areas. Currently, using hands-on exercises is a critical and effi-

cient learning approach for cybersecurity education since it focuses more on practical

problem-solving skills instead of theory and models. However, most of the existing

learning materials lack a coherent way to manage and provide a more productive

learning plan for cybersecurity learners.

1.2 Research Questions

The goal of the research is to the issues in 1.1, more precisely to answer the

research questions as follows:

• How to provide more effective learning for students currently cybersecurity ed-

ucation?

• Is there any solution that is easier for rookies to understand in the cybersecurity

area?

• Can we recommend more reasonable reading materials/hands-on labs for lec-

turers and students?

• Instead of learning specific knowledge required by the courses/instructors, can

2

we have a general guidance to preview the knowledge structure?

• Can students learn the knowledge more clearly?

1.3 Contributions

To address the above-described cybersecurity education issues, we managed to

design a new learning solution that can provide the knowledge graph and guidance

to effectively organize, index, recommend reading materials and hands-on labs for

learners.

In this presented work, we have deployed Natural Language Processing (NLP) as

the foundation to build the corresponding KG. NLP is a multidisciplinary field, which

covers CS, artificial intelligence (AI), and linguistics, aiming to improve the interac-

tions between human and computer. In the past, lots of NLP tasks, i.e., chunking and

document classification, are based on supervised learning methods which require man-

ual annotation and feature selection in data training. Such annotated data usually

has the limited size and it is hard to perform operations (e.g., annotation and feature

selection) efficiently on new dataset. With the dramatic development of deep learning

and representation of learning emerging in various domains, more and more research

works have proven the unsupervised learning capabilities for NLP tasks in analyzing

the massive corpus of text. Word embedding is one of the unsupervised learning abil-

ities of NLP tasks, which is also known as the distributed representation of words by

representing words with much lower dimensional numerical vectors[2]. Word embed-

ding, with its advantage on converting human-readable words into machine-readable

numeric, has been gaining extensive attention in recent years. Embedded words are

learned as vectors [3] to represent the semantic similarities among different words.

With the numerical representation of similarities available to machine, NLP-based

3

KG built from word embedding, which largely reduce the search scope for people in

learning, has brought inspiration to different industrial applications.

The contributions of this research work is as follows below:

(1) Use unsupervised learning-based word embedding to convert the full dataset of

words available at Wikipedia [4] into its corresponding numerical vector. We have

processed Wikipedia as the corpus in which has the wide coverage of words and

concepts. The latest version of English Wikipedia, which was used in this work,

has over one billion concepts (terms or phrases that possess a page/definition in

the knowledge base, in our case Wikipedia) for the machine to learn the meaning

of around two billion words without supervision and embedding. Due to the

ambiguity in present existing word embedding approaches, we have followed the

Sherkat’s method [5] to learn the embedding of Wikipedia Entity and Concept

separately. We also used the Stanford CoreNLP [6] which is known as the ’Name

Entity Recognition’ to preprocess the contexts as the alternative approach. These

two different approaches to word embedding have been deployed for comparison

purposes in terms of word similarity.

(2) Develop the toolkit to collect concepts from computer security category in Wikipedia

which was contributed by numerous Wikipedia users as the baseline test corpus

and collect research articles in the cybersecurity domain from the IEEE Xplore

Digital library [7]. In addition, we have developed a toolkit to preprocess selected

ebooks and lab descriptions as part of training data;

(3) Compare the different methodologies in word embedding and modify the current

Word2Vec method by proposing the use of dynamically allocated window size to

improve the accuracy in word embedding training;

4

(4) Given the numerical vector representation of every single word, extract the se-

mantic similarity between different terminologies (may be made up by multiple

words) within the cybersecurity area of Wikipedia, by using a modified Word2Vec

Skip-gram model [8] (and it will be discussed in detail in later chapters);

(5) Based on the given categorization from Wikipedia page, each term being trained

in (4) will be used to find the most related (in terms of key-word similarity)

research articles to improve the efficiency of knowledge learning and the quality of

research outcome in the cybersecurity area. It will help students and researchers

to explore the materials and develop skills in the specific area;

(6) Construct a visualized KG of concepts and terminologies of cybersecurity based on

a huge amount of public cybersecurity contents as mentioned above (Wikipedia,

cybersecurity research articles, ebooks and cybersecurity lab descriptions). The

nodes of the KG and their dependency relationship (similarity) are obtained by

learning public cybersecurity corpus which is fine-tuned with research articles and

hands-on online lab - ThothLab [9], [10];

(7) Develop a web-based front end to visualize KG to fill the knowledge base gap as

well as the talent gap: CyberKG-Research (KG with Research Articles Recom-

mendation)and CyberKG-Lab (KG for Cybersecurity Online Lab - ThothLab)

for easy browsing and search cybersecurity related concepts, as well as their in-

terdependence relations.

1.4 Outline

The remainder of this thesis report is organized as follows. Chapter 2 presents the

related background, literature and works on word embedding, as well as on knowl-

edge graph. Chapter 3 explains the data preparing, processing, and training in our

5

experiment implementation, discusses models(results) comparison by using obtained

previous training, introduces how we recommend related research articles and con-

struct the knowledge graph. Chapter 4 shows the visualization of our knowledge

graphs with the explanation. Discussions and conclusions are presented in Chapter

5. Finally, we provide the future work of this research in Chapter 6.

6

Chapter 2

RELATED WORK

In this chapter, we will discuss the related research works on the KG construction

in recent years. We have analyzed different methodologies for the word representations

and word similarities. In addition, we will discuss and analyze the related existing

works on implementation of word embedding by using the massive size of data (e.g.

Wikipedia corpus), as well as the possibilities to construct the NLP-based KG on this

approach.

Building a KG can be difficult although related works have been done in this area

recently. According to research conducted, there are two approaches to develop the

knowledge bases in education: the first approach is primarily relying on the profes-

sional experts, which involves manual work to certain extent in order to decide the

discrepancies from different professionals and then generate a corresponding graph.

The outcome graph is usually small due to different viewpoints of human experts and

it is limited for learning purposes since most useful KG’s are larger in terms of com-

prehensiveness. Another approach is the automated data from web pages and online

books which are retrieved by the computers rather than humans, i.e., Wikimindmap.

There are various solutions been proposed within the last decade of research on build-

ing the KG: Mahdisoltani, Biega and Suschanek [11] have shown how to construct a

KG from Wikipedia in multiple languages and extended existing YAGO knowledge

bases; Punuru and Chen [12] presented their work on automatic ontology extraction

from domain texts using different machine learning techniques; Nickel, Murphy, Tresp

and Gabrilovich [13] gave a comprehensive review on training statistical models for

large KG’s, and further used them to predict new edges in the graph. In 2003, J.

7

Undercoffer, A. Joshi and J. Pinkston[14] developed the most significant ontology on

model attacks and related entities. Since then this ontology has been extended to

the cybersecurity area which acquires U.S. National Vulnerability Database (NVD)

[15] by A. Joshi et al. [16] in 2013. After a few years, M. Iannacone et al. [17] de-

veloped and created an ontology for cybersecurity knowledge graphs which included

15 entity types and 115 properties in total. The common things on these works are

focused on the specific cybersecurity categories that are not working well for rookies

in the cybersecurity area, and it is not for the educational purpose. To compare with

traditional ontology which describes the types, properties, and interrelations between

entities as part of knowledge representation for big data processing [18], the KG, as

a graph form, is the learning repository for the collection of entities, instances and

relationships to capture the data used by problem-solving.

Word embedding has recently been drawn attention to various learning tasks.

It is about mapping words or phrases to a low dimensional numerical vector. For

computer to understand natural languages and the knowledge within, we need a way

to represents words efficiently. Traditionally, natural language processing systems

treat words as discrete symbols which lead to data sparsity which commonly means

that more data is needed in order to successfully train the statistical models. While a

word can be understood by the human when it appears in the context, its numerical

model has to be constructed based on the complex contexts using the neural network.

Using vector representations makes natural language computer-readable which allows

us to perform powerful mathematical operations on words to detect their similarities.

The distributed representation of words as vectors has significant advantages over

the traditional words representation, e.g., higher accuracy of finding the similarity

between words.

GloVe (Global Vector) [19] and Word2Vec [20] both are pathfinder methodologies

8

with unsupervised learning for word embedding. GloVe is the count-based model by

using matrix factorization and local context window size to train on the co-occurrence

matrix, producing word embedding. This approach may cause overfitting which de-

creases the accuracy during evaluating the massive size of data (due to the unaccept-

able low accuracy compared to Word2Vec methodology in our generated data, this

approach has been withdrawn in our research). In 2013, Tomas Mikolov et al. [8],

[2] proposed Word2Vec, a two-layer neural network that embeds text by using two

possible models: CBOW (Continuous Bag of Words) and Skip-Gram to minimize the

complexity in computation on continuous vector representation. It either uses the

context to predict a target word or, vice versa, uses a word to predict the target con-

text. Its input is a text corpus and the output are a set of vectors: feature vectors for

words in that corpus. These two models generate word embedding by capturing many

syntactic and semantic relations between words where a relation is also represented as

the translation between two different word embedding vectors. With sufficient data,

context and use cases, Word2Vec is able to make highly accurate estimates regarding

the meaning of a word based on its occurrences in history. Word2vec trains words

against other neighboring words fast and efficient, in addition it has shown the state-

of-art performance in similar tasks calculating similarities. The KG-based similarity

of terminologies can be then constructed using Word2Vec by joining vectors for sim-

ilar words into the same vector space, which helps to connect highly related words in

the constructed KG.

According to the previous work done by Milne and Witten [21], two pages from

Wikipedia are said to be more similar when they have more common information being

shared. Other research, e.g., Tsai and Roth [22] showed that using the Anchor texts

of Wikipedia led to good performance for learning the phrase vectors. Grefenstette

and Muchemi [23] represented their work on constructing the specialized dictionary

9

by using Word2vec to train the Wikipedia. Speer, Chin, and Havasi [24] represented

a KG - ConceptNet5.5 which combines several sources to acquire word embeddings by

using distributional semantics, e.g. Word2vec. On the other hand, Musto, Semeraro-

Marco, Gemmis, and Lops [25] showed their work on learning word embedding from

Wikipedia dataset to construct the content-based recommendation system (CBRS)

to learn user profiles.

10

Chapter 3

METHODOLOGIES AND IMPLEMENTATION

Figure 3.1: KG Construction Flowchart

In this chapter, we will present our research work of building KG for cybersecurity

education. The goal of this research work is to automatically construct a cybersecurity

area KG based on the similarity between concepts. The overall work flowchart is given

in Figure 3.1, that we describe the steps of dataset preparing and processing at the

beginning; then we explain how we apply different methods to train the words and

terminologies vectors. The detailed evaluation and comparison will also be discussed.

11

After that, each term being trained in previous tasks’ categorization of Wikipedia

Pages will be used to find the most related research article from IEEE Xplore Digital

library. In the end, the constructed KG with related research paper recommendation

will be discussed.

3.1 Dataset Preparing and Processing

3.1.1 Full Wikipedia

In this research, the English version of Wikipedia database dump has been used

which was dumped by on February 1st, 2018 from https://dumps.wikimedia.org. The

detailed data preprocess with two approaches flowchart is given in 3.2.

After gathering the database dump, the toolkit has been designed and developed

by using Python together with its several open source libraries to extract 18, 213, 244

pages from the XML files in English Wikipedia by that date. The extraction took

about 6 hours to complete on a single PC running Linux OS, and the processed wiki

data is divided into many parts as individual text files, while each file contains several

Wikipedia pages (plain text without graphs). Wikipedia contains different types of

pages, e.g., a page in Wikipedia can be reclassified by its function, for instance,

redirect, help, category and etc. The full list of types and corresponding descriptions

has been shown in Appendix A as reference [5], [26]. These pages have been removed

by using the toolkit that we developed. As a result, there are 5,415,342 unique

Wikipedia pages been acquired and the corresponding classified type map generated

for each selected page. In the meantime, each page’s information, including the plain

text of concepts, internal links, and external links, will be extracted.

12

Figure 3.2: Full Wikipedia Preprocess Flowchart

13

Data Processing

We have proposed two approaches to process the full Wikipedia dataset as shown in

Figure 3.2 and the detailed descriptions as follows.

Approach I In this type of experimental approach, the pages which have at least

one external link are applied. The basic tasks for text preprocessing, for instance, re-

moving all punctuation characters, converting texts to lower case, are included. Then

we have matched the title of internal links as initial anchors with their corresponding

Page ID’s which are marked by the Wikipedia users. To make the anchors more com-

prehensive, we have added the new anchors to the page if there is at least one anchor

on the page. For instance, if token ’malware’ is given in the page list then ’malware’

will be added as anchor of that page. In addition, there is no self-link (no page links

to the page title itself) in the page by Wikipedia policy. However, we added the title

of the page as anchor as well since it is common that the title of the page itself is

repeated on that page. As a result, there are 4,724,129 entries found after removing

all other texts and deduplication by using the toolkit in this approach.

Approach II The Stanford CoreNLP toolkit 3.9.1 [6] has been used for sentence

tokenization to preprocess Wikipedia pages’ plain text only (process Wikipedia article

pages only) as another approach. As a linguistic analysis tool, it helps to simplify the

analyses of a bunch of texts. The basic tasks, for instance, split sentence, remove sen-

tence which is less than five tokens and convert numbers to zero, have been included.

The total number of tokens generated from the given dataset by this approach is over

two billion.

With these two approaches demonstrated that we can compare the word embed-

ding results with different size of the corpus. The data samples generated from these

14

two approaches are been shown in Appendix B.

3.1.2 Wikiepdia Category

We have designed and developed a toolkit by using Python to scrape Wikipedia

pages for the category in computer security section to acquire more accurate related

information as the test dataset. The tool that we developed iterates through cat-

egories and stores a list of the corresponding information. All pages in computer

security and pages in the first level, second level and third level of subcategories have

been scrapped. There are 303 pages from the first level, 2,173 pages from the second

level and 5,265 pages from the third level are obtained in computer security category

after deduplication in this experiment as the demo.

3.1.3 IEEE Xplore Library

According to the data accessible by the end of February 2018, there are 4,529,571

articles in IEEE Xplore Library. In this research, we have selected three content types

of articles from the online library: Conferences (3,172,527), Early Access Articles

(15,840) and Journals & Magazines (1,296,339). We also designed and developed

toolkits by using Python and Selenium [27] to scrape the related information from

the website as needed. As a result of scrapping a few frequently used terms from the

SANS Glossary of Security Terms [28] as sample test, we have acquired information

for 25,867 unique articles (includes article title, authors, abstract and references)

as well as extracted 146,080 keyword terms among the given available terms from

IEEE Xplore Digital Library. The obtained keyword terms, which include IEEE

Keywords, INSPEC: Controlled Indexing, INSPEC: Non-Controlled Indexing and

Author Keywords, were then used to get the related Wikipedia terms.

In addition, we have used the toolkits which we developed to download 882 full

15

PDF format papers automatically from this online library.

3.1.4 Other Resources

To obtain more data in the cybersecurity area, we have designed and developed a

toolkit by using Python to process 71 PDF format ebooks which cover network secu-

rity, hacking area, and 882 full PDF format papers from IEEE Xplore Library to plain

text format. These data sources and 5,265 Wikipedia plain text pages obtained in

3.1.2 are combined as the cybersecurity domain training data. Then we have applied

the Stanford CoreNLP toolkit to process the above plaintext data, with Approach II

described, as CyberData 1. In addition, we have extracted nouns only as a subset of

CyberData 1 to be CyberData 2.

3.2 Training Methods Comparison and Discussion

3.2.1 Background

A Word is the basic unit in linguistic analysis. Unlike weather, temperature, length

and others of which the characteristic can be measured with meaningful numerical

values, a word is simply represented as string (a sequence of letters) in computer

coding which is meaningless to computer. The representation of words in forms of

numerical vectors is the foundation task to help computer in learning and under-

standing human languages that has a high impact on the performance of a learning

system.

One-Hot Representation

The legacy representation, e.g., one-hot representation, to represent the word as vec-

tors, is the symbolic representation and does not include any semantic information.

16

For instance, we have created a vocabulary V consists three words with a unique

sequence number like Dog is 1, House is 2 and Animal is 3. Each word in this vo-

cabulary will be represented as a vector and the size of the vector is the same as the

size of the vocabulary set. The vector contains all zeros except for a single one at the

position associated with the corresponding word index as shown below:

V = {Dog,House, Animal}

The one-hot vector representation is

Dog =

1

0

0

 House =

0

1

0

 Animal =

0

0

1

As the localist representation with one dimension, there is no natural notion of sim-

ilarity between with two similar words’ vectors are orthogonal, e.g. (Dog)T (Animal) =

0. In addition, this kind of representation computation is very expensive and over-

fitting while training with massive data set given the fact that a extremely high

dimensional vector will be used (e.g. if there are billions of words in a data set, a

vector with the length of billions will be needed).

Distributional Representation

In 1954, Z. S. Harris standardized distributional hypothesis as the theoretical basis for

embedding semantic into word representations: Words that occur in similar contexts

tend to have similar meanings [29]. A few years later, J. R. Firth phrased this theory

in 1957 that a word is characterized by the company (context) it keeps [30]. Assuming

that each word is represented as the size of vocabulary |V | dimensional vector, we

searched for the occurrence of the target word |T | and its neighborhood words with a

defined the context |c| in the entire corpus as the vector. Then we can normalize the

17

vector by using the updated frequency of the target word and its neighborhood words

to get the probability distribution. To compare with one-hot representation, the

distributional representations can be effectively applied to reduce the dimensionality

to the word co-occurrence matrix of size |V | divided by |T |.

For several years development of this theory, there are three major types of word-

representation-based models: the distributional-semantic models which are based on

the matrix, the distributional-clustering-based model and the distributed-representation-

based model using neural network. With the upgrade of hardware performance and

algorithms optimization breakthrough, Great advantages have been shown for neural

network applied in various areas. By using neural network to construct effective word

representation with contexts becomes the mainstream approach in these years.

Word Embedding

Neural-network-based distribution representations are known as word embedding or

distributed representation [31]. It is the task of mapping words or phrases to a

low-dimensional (the dimension size range is typically between 50 to 1000 which is

significantly smaller than the vocabulary size) numerical vector. With the lower

dimension representation, the semantics can be preserved by this embedding, for

instance, two words that are semantically close if they are close in the mapped vector

space.

Word embedding deploys neural network method to construct the model from con-

texts and the relationship between contexts and target words. Unlike the counting-

based approach to simply find the occurrence of the neighborhood words, word embed-

ding is learned from a given text corpus without supervision, but only by predicting

the context of each word or, vice versa, predicting the current word given its context,

yielding that the vectors will be learned in here [32], [33]. By starting with the random

18

vector for each word, the target word and its neighborhood words will be updated

until they become closest in the vector space. For example, given the trained network

and an input word ’Food’, the possibilities of output are much higher for words like

’Cooking’ or ’Fruit’ than unrelated words like ’Airplane’ or ’Zoo’. The neural network

is trained by the feed of word pairs found in our input text. The network then learns

the statistics according to the number of times that each pairing is found. Eventually

the network will get greatly more training samples between ’Food’ and ’Fruit’ than

the samples between ’Food’ and ’Zoo’. Once the training is finished, using the word

’Food’ as input, the trained network will output a much higher probability for ’Fruit’

than ’Zoo’ based on the semantic similarity calculated from the network.

As for the high flexibility in neural network, word embedding can therefore rep-

resent complex contexts. In addition, when the neural network expresses n grams, n

words can be combined by certain patterns which limits the number of parameters

growing only at a linear speed to avoid dimensionality catastrophes. With this ad-

vantage, neural network models can be used to model contexts with more complexity

that contain richer semantic information in word vectors.

3.2.2 Training Experiment

In this training experiment, we will train both CBOW and Skip-Gram model

by using the Python implementation of Word2Vec in the Gensim package which

is the open source tool for computing the distributed representation of words [34].

Word2Vec trains words against other neighboring words, the main idea for word

embedding is that the words occur in similar contexts can be represented by vectors

in close nearness to each other [8] then estimated the probability prediction of the

central word in CBOW model/context words in Skip-Gram model.

We will first analyze the structure of these two models and the training algorithms

19

in this section to understand the theory of acquiring effective word embedding and

efficient computation of the output probabilities. The performance of word embedding

training depends on the various training parameters. To investigate and analyze

the effects of word embedding generation, the varied dimensionality of word vectors,

context-window size will be applied in this training section. Then the same experiment

setting will be used on the Approach I and Approach II dataset to compare the

accuracy and impartiality. The detailed experiment settings and parameters settings

have been given in Table 3.1.

Table 3.1: Experiment Settings

Category Experiment Settings

Model CBOW, Skip-Gram

Datasets Approach I

Approach II

CyberData 1

CyberData 2

Parameter Settings Dimension size: 50, 100, 200, 300, 400, 500, 1000

Window size: 10(fixed), sentence size(dynamic)

Fixed # of minimum count: 5

Continuous Bags of Words (CBOW)

The CBOW model is a simplified model as a combination of the Neural Network

Language Model(NMLM) [32] and C&W model [35], to predict the suitable word

given the surrounding context as shown in Figure 3.3. By given only one context word

x which will be calculated from the average context words c as input ωi−(n−1), ..., ωi

20

in 3.1, then the model has to learn (predict) the target word ω.

xxx =
1

n− 1

∑
ωωω∈c

e(ωj)e(ωj)e(ωj) (3.1)

As one type of Neural Network, the CBOW model contains only input, projection,

and output layer by removing the hidden layer in a typical Neural Network. Due to

the removal of hidden layers, the context words as the input layer in this model will

be used to predict the target word.

P (ω|c) =
exp(e

′
(ω)Tx))∑

ω′∈v exp(e′(ω′)Tx))
(3.2)

The CBOW model has been translated into linear ’log’ function and the training speed

of model has been increased significantly. Similar to other NMLMs, the likelihood of

the CBOW model can be maximized by:∑
(ω,c)∈D

logP (ω|c) (3.3)

Figure 3.3: CBOW Model Structure

21

Skip-Gram

The Skip-Gram model has a structure which is similar to the CBOW model, except

for the difference that the Skip-Gram model used one word to predict its contexts

(a reverse logic compare to the CBOW model which is predicting word based on the

given context) as shown in Figure 3.4. By given a target word ω to find the similar

word from one of the context words c. The prediction of this model can be represented

as

P (ω|ωj) =
exp(e

′
(ω)T e(ωj)))∑

ω
′∈v exp(e′(ω′)T e(ωj)))

(3.4)

and the likelihood of this model can be maximized by 3.5.∑
(ω,c)∈D

∑
(ω,j)∈c

logP (ω|ωj) (3.5)

Figure 3.4: Skip-Gram Model Structure

According to the existing research works [8], it is shown that the Skip-Gram model

22

performs better than CBOW model. We will verified this argument in detail in the

later section of this chapter .

3.2.3 Window Sizes

The training patterns in Word2Vec are extracted from the window of words in

sentences of training files. In the original Word2Vec implementation, we need to set

a fixed window size for training. For example, we have a sentence ”I drink milk

everyday” and we set the window size is 2, the steps to achieve training patterns will

be shown as follows:

(1) Take ’I’ as the target word, the right side neighborhood words are ’drink’ and

’milk’;

(2) The ’drink’ as the target word, left side word ’I’ and two right side words ’milk’

and ’everyday’ are the neighborhood words;

(3) The third-word ’milk’ as the target word, the left side word ’I’ and ’drink’ and

the right side word ’everyday’ are the neighborhood words of the target word;

(4) Take the last word ’everyday’ as the target word, the neighborhood words are

’drink’ and ’milk’

In conclusion, we have (I, drink, milk), (drink, I, milk, everyday), (milk, I drink,

everyday), (everyday, drink, milk) as the training patterns from the given sentence.

As we can see that the fixed window size limit the neighborhood words in the orig-

inal Word2Vec method and then leads to the insufficient of the training patterns

during analyzing large size data. Sometimes, the target word may be related to the

neighborhood sentences not only in the own sentence.

23

To verify the effect of using different window size in Word2Vec training results,

we have trained the Approach II data with Skip-Gram model, dimensionality of 400

and set window size from 5 to 50 in the original proposed Word2Vec method. The

results are shown in Figure 3.5. From Figure 3.5, we can find that the top two highest

accuracy range is between window size 20 and window size 30 for this dataset.

Figure 3.5: Accuracy comparison for different window size with a dimension size of

400

According to the calculation, we find that the average length of sentences in

Approach II data is around 25 which is in the top two highest accuracies range’s

window sizes.

In addition, to verify the impact of fixed window size and dynamic window size

with different dimensionalities, we have used the fixed window size (window of 10

has been set in this verification) and the dynamics window size which varies based

on the length of sentences in Approach II data, trained from the Skip-Gram model.

24

The comparison results are shown in Figure 3.6. From the results, we can see that

the proposed method, by using dynamic window, can reach the highest accuracy -

72.97% among all other methods.

Figure 3.6: Accuracy comparison of fixed window size(original) and dynamic

window size(modified) by using Skip-Gram Model

3.3 Evaluation

3.3.1 Comparison of Similarities

In this experiment, we have used the same parameters to train two types of pre-

processed Wikipedia datasets as comparison. From S. Lai’s research work result, large

dimensions of word vectors performed better on word embedding training [36]. 50,

100, 200, 300, 400, 500, 1000 are used as the dimension size input for the user-defined

Word2Vec parameter, for performance comparison purposes. As tokens reach over 2

billion for Approach II containing plural words, we have removed these plural forms

25

of the word in the Approach II trained result to get a clear comparison.

In Word2vec, the similarity distance is calculated from the cosine distance of two

vectors. The similarity is calculated by the dot product of two words’ numeric vectors

represented as x and y, and it is normalized by the product of the vector lengths,

yielding that if two words are close to each other, the distance tends to positive and

close to 1.0 with a indication of high similarity. The formula is shown as below 3.6:

cosineSimilarity(xxx,yyy) =
xxx · yyy

||xxx|| · ||yyy|| (3.6)

Approach I and Approach II

The test results of top 5 similarities as sample are given for CBOW and Skip-gram

model from Table 3.2 to Table 3.5 for the two different datasets with dimension size

of 400.

Table 3.2: Top5 similarities for “Botnet” by using CBOW model to train Approach I

Most similar word Similarity Distance

Zero-day (computing) 0.978682

Operation Tovar 0.975276

Srizbi botnet 0.972704

Antivirus software 0.971838

Conficker 0.971023

26

Table 3.3: Top5 similarities for “Botnet” by using Skip-Gram model to train

Approach I

Most similar word Similarity Distance

Operation: Bot Roast 0.884675

ZeroAccess botnet 0.874679

Cutwail botnet 0.873807

MoColo 0.873506

DarkOde 0.872759

Table 3.4: Top5 similarities for “Botnet” by using CBOW model to train Approach

II

Most similar word Similarity Distance

honeypot 0.851286

cryptolocker 0.767310

malware 0.765936

ransomware 0.751337

ddos 0.732009

27

Table 3.5: Top5 similarities for “Botnet” by using Skip-Gram model to train

Approach II

Most similar word Similarity Distance

honeypot 0.825247

malware 0.765143

ddos 0.755441

phisihing 0.727613

spamming 0.722274

From these test samples, we found that the closest terminologies of ’Botnet’ (given

in 3.3) are almost interrelation from each other which are defined in the Wikipedia

Pages. Given in 3.2 are the descriptions of the closest terminologies from their

Wikipedia Pages, which all contains the word ’Botnet’. In Table 3.4 and 3.5, the

frequent words that appear with ’Botnet’ at the same time are given.

Phrase similarity is one of the tasks used to evaluate different word embeddings.

To evaluate the quality of vectors in cybersecurity area, we have designed and devel-

oped a phrase similarity dataset of cybersecurity which is based on the SANS Glossary

of Security Terms. As a result, we have set 224 pairs in this dataset which contains

two words with high similarity assigned by the cybersecurity expert, for instances,

’Botnet’ and ’Malware’ as one of the pairs from the dataset. We have applied this

dataset onto two approaches with different dimension size setting and calculate the

average similarity distances by using the formulation in 3.7. The results is shown in

Table 3.6 and Table 3.7.

Average Similarity Distance =
1

N

N∑
i=1

SimilarityDistancei (N=224) (3.7)

28

Table 3.6: Average Similarity distances for using Approach I

Model CBOW Skip-Gram

Size 100 0.5718 0.6573

Size 200 0.6613 0.6921

Size 300 0.6823 0.7118

Size 400 0.6896 0.7209

Table 3.7: Average Similarity distances for using Approach II

Model CBOW Skip-Gram

Size 100 0.4795 0.5397

Size 200 0.4920 0.5728

Size 300 0.5239 0.5927

Size 400 0.5702 0.5969

We found that using a window size of 400, both Approach I and Approach II

reach their highest similarity in average with Skip-Gram model which aligns with the

conclusion from previous research work.

CyberData 1 and CyberData 2

According to the previous comparison between Approach I and Approach II, we ver-

ified that the Skip-Gram model works better than CBOW model. The test results

of top 5 similarities for ”botnet” are given as an example for Skip-gram model from

Table 3.8 to Table 3.9 for the two different datasets with dimension size of 100 and

dynamic window size that we proposed.

29

Table 3.8: Top5 similarities for “botnet” by using Skip-Gram model to train

CyberData 1

Most similar word Similarity Distance

bot 0.804090

infection 0.755443

backdoor 0.672041

detect 0.668269

herder 0.657947

Table 3.9: Top5 similarities for “botnet” by using Skip-Gram model to train

CyberData 2

Most similar word Similarity Distance

bot 0.857493

zombie 0.779758

worm 0.749846

crimeware 0.683296

trojan 0.678619

From the above tables, we found that the quality of the training results from these

two datasets is not as expected by comparing with the ones obtained from Approach

I and Approach II. We have verified that sufficient data is required in order to archive

good word embeddings, given the following analysis: the size of the data is too small

and not sufficient enough for training purposes (does not include irrelevant data for

the machine to learn due to ambiguity in the data).

30

3.3.2 Similarity Accuracy

In order to select a good model for cybersecurity area training, terms in ’Computer

security’ category 1st level and terms in its 1st level subcategories are used as test

dataset by using the toolkit developed previously: there are 303 terms in ’Computer

security’ category 1st level and 25 subcategories with 2,165 terms in total being

scrapped. The accuracy of the trained similarity in each category can be evaluated

by using the top number of terms in each category. For instance, there are 303 terms

in ’Computer security’ category, the top 303 similarities for ’Computer security’ will

be evaluated. The formulation to calculate the accuracy is given in 3.8. And the

average accuracy from these categories will be calculated as the final result.

Accuracy =
Number of similarities for ’Computer security’ in category

Number of total terms in category
(3.8)

The test results of the accuracy are as shown in Table 3.10, 3.11.

Model CBOW Skip-Gram

Size 100 25.18% 31.68%

Size 200 25.84% 34.32%

Size 300 37.16% 47.52%

Table 3.10: Accuracy of training results for using Approach I

Model CBOW Skip-Gram

Size 100 16.81% 24.19%

Size 200 17.02% 26.21%

Size 300 28.72% 34.13%

Table 3.11: Accuracy of training results for using Approach II

31

From the above results, the model trained with Skip-Gram model with high dimen-

sion yields better performance than others. We can find that the Skip-Gram model

trained in approach I has the best result among multiple different experiments.

3.3.3 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a procedure to reduce the high dimen-

sional data to low dimensional space linearly by using Singular Value Decomposition

(SVD). As being used in previous research work, this method was to deal with high

dimensional data [37], [38]. In our experiment, we implemented two types of data to

test the trained Skip-Gram Model in Approach I with dimension size 300:

(1) Set 20 groups of cybersecurity terms with its top 5 similarities. For instance,

top 5 similarities for ’Botnet’ and its related terms. In SANS glossary of security

terms, the ’Botnet’ definition related to the ’Spamming’, ’Malware’ and ’Denial-of-

service attack’. We have used this example result as a sample.

(2) Terms in 1st layer of ’Computer security’ in Wikipedia category from the

previous experiment.

To interpret the data clustering of models, we have applied PCA method to check

the vectors of these terms distributed status which among the complete trained model.

The 2D diagrams are given in Figure 3.7 to Figure 3.8, respectively.

32

Figure 3.7: Top 5 similarities for ’botnet’ and its related terms

From Figure 3.7, we can find that the ’Botnet’ is close with ’Denial-of-service

attack’ and ’Malware’ as expected. In addition, the same category is close to each

other, for instance, Denis Stepanov and Ivan Makskov are the people under the same

category.

33

Figure 3.8: Terms in 1st layer of ’Computer security’ in Wikipedia category

3.4 Research Articles Recommendation

By using the right keywords in the article, it becomes easier to know the major

contributions of the article that can be reliably discovered. There are four types of

keywords in IEEE Xplore Library for an article and they are described as below:

(1) Author Keywords: assigned by authors manually in their article.

(2) IEEE Keywords: automatically assigned to the research articles from the con-

trolled vocabulary which created by IEEE.

(3) INSPEC: Controlled Indexing: assigned to articles from a controlled vocabulary

of over 10,000 scientific terms created by INSPEC.

(4) INSPEC: Non-Controlled Indexing: This type of keywords are not the part of (3)

assigned to articles may with new concepts which describe the topics or subjects

of a document.

34

In this research articles recommendation part, we have developed a toolkit to

compare the terminologies categorization in Wikipedia pages to match at least three

keywords (include the term itself) in a combination of the four types of keywords for

each article. We will only use the highest matched results as the most related research

paper recommended by the built KG.

3.5 Knowledge Graph Construction

KG can be viewed as a special kind of semantic network. It is a way of representing

knowledge by labeled nodes and links between these nodes. The construction of a

KG starts with the extraction of information from texts. Originally, these tasks

are handled by human experts. They did text analysis and get a list of concepts,

represented as labeled points, and a list of links between these nodes. A small graph

from a single author is called author graph. The next step is to combine graphs from

various authors into one large graph by identifying points with each other. When the

texts of the nodes deal with the same subject, points with the same label are identified

first. Also, when an author used synonyms for a concept, points are also connected

even with different labels. In addition, there is a way to compare neighborhoods of

points to identify identical points. Then, similarity index is introduced to measure

the similarity between two sets of points. It is then used to decide upon identification

of two concepts, which can eventually help us to detect homonyms (the same label

but referring to different contents).

After data gathering in previous sections, we constructed a basic KG from Wikipedia

dataset. As to know that each Wikipedia page represents a concept and its expla-

nation (which contains knowledge). There are also links within each Wikipedia page

that links to other concepts. By analyzing the URL links within one Wikipedia page,

we get a simple author graph, e.g., on the ’DDoS’ page, there are hyperlinks that are

35

linked to ’Exploit’, ’Trojan Horse’, ’IDS’, ’IPS’, ’Computer Fraud’, ’Botnet’, ’Firewall’

and ’Computer Virus’. With 2,173 pages under the second level of computer security

category in Wikipedia as a demo, we now have 2,173 single author graph ready to

be merged together. Then we utilizes the similarity data obtained from Word2Vec

training results (Approach I with modified Skip-Gram model with a dimension size

of 400 been used) to further connect these author graphs. Figure 3.9 shows how we

merge graphs of ’Firewall’ and ’DDoS’ graph into a single graph. Words paired like

’Antivirus’, ’Computer virus’, ’Spyware’, ’Trojan Horse’ are connected together as

a result of their high similarity calculated based on word embedding. We set the

similarity lower bound to 0.8 (while 0 means no relationship and 1 means the two

concepts share the same embedding) and connect all node pairs over this similarity

threshold together. After that, we get one unified and meshed connected KG ready

for further utilization. We have also tried to use more author graphs (5,265 pages

under the third level of computer security category) with the same threshold (0.8),

resulting in more than thousands of nodes not being connected, which means that

these concepts are not close enough under computer security category. As a result

of this demo, we have obtained 2,095 nodes connected in KG. In other words, the

deeper levels of the category is, the higher possibilities that two terms are not close

enough.

36

Figure 3.9: Merge two small graph together base on overlap and word embedding

similarity.(Firewall Graph on the left, DDoS graph in the middle and merged result

on the right.)

37

Chapter 4

KNOWLEDGE GRAPH VISUALIZATION

In this chapter, we will represent the KG’s - CyberKG-Research and CyberKG-

Lab in an interactive Graphical User Interface (GUI) to empower learning and details

of the visualization.

4.1 CyberKG-Research (KG with Research Articles Recommendation)

After data gathering and preprocessing from previous tasks, we have developed a

toolkit by using mixed-language programming, including Python, JavaScript, HTML

and open source visualization libraries, to visualize the terminologies of the rela-

tionships under cybersecurity area by using semantic similarity measurement, with

research articles recommendation embedded. At first, we used the developed toolkit

to process and generate new data (which includes the node descriptions, relations and

related article recommendation) with JSON format as data representation obtained

from previous sections (section 3.4 and section 3.5) results. Then we generated the

KG by integrating the related files developed to the web framework.

The built KG is an abundant graph model, the entity of which can be represented

as a node and the link can be represented by the relationships between nodes. The

attribute can be also represented in each node and its link. Figure 4.1 shows the

processed result by using the developed toolkit for part of terminologies graph to

present the relations in terms of similarities among the terminologies captured in the

knowledge base (which was already set up in the previous tasks).

38

Figure 4.1: CyberKG-Research: Sample Visualized Knowledge Graph

39

In this graph, each circle represents a cybersecurity term from Wikipedia pages,

and each link represents a relation with highest similarities (only show up when

the similarity distance is higher than a user-defined threshold, e.g., 0.8). The graph

represents the relations among different terminologies with ordered level, i.e., the node

size from big to small indicates the level from up to down, respectively, as shown in

Figure 4.2. Take ’Network security’ as an example, it is related to ’Stateful firewall’

and further ’Stateful firewall’ links to ’Network Access Control’, ’Next-Generation

Firewall’ and ’UDP flood attack’.The color of the node is made random, however,

the size of each node is decided based on the count of directly connected nodes.

Each link is associated with the cosine similar distance (though not visible in the

graph), e.g., cosine similar distance between ’Stateful firewall’ and ’Network security’

is 0.8192, which represents relation discovered in terms of similarity between the two

terminologies.

40

Figure 4.2: CyberKG-Research: Sample graph showing the relation among

terminologies

In addition, we represented our graph data as a force-directed graph, then add

more interactive functions:

1. Mouse Hangover function to show each node’s terminology and gray out unlined

nodes. The sample graph is given in Figure 4.3.

41

Figure 4.3: CyberKG-Research: A sample of the KG showing linked nodes

2. Mouse Click function to redirect to the corresponding Wikipedia page of the

node to browse more detailed information.

3. Drag and drop function to re-arrange/resize the graph based on the user pref-

erence.

42

Figure 4.4: CyberKG-Research: A subset of our knowledge graph showing most

related reading research article.

43

Figure 4.4 shows the visualization result when a user enlarges the graph and hover

mouse over ’Computer security’ nodes. The first ordered nodes related to ’Computer

security’ have been connected and shown with different colors in the graph. The

combined information - part of terminology descriptions from Wikipedia and the

related research article title, authors and truncated article abstract will be shown on

the left side of the node for users to briefly go through the basic information about

’Computer Security’.

4.2 CyberKG-Lab (KG for Cybersecurity Online Lab - ThothLab)

To build the KG for ThtothLab, we have designed and developed a toolkit by

using Python to extract keywords for each lab by matching the lab descriptions with

extracted concepts from the computer security category (5,265 concepts from the

third level of computer security category are used) at first. For example, the keywords

extracted from the ”Buffer Overflow Vulnerability Lab” (one of the labs available in

the ThothLab repository) include ”Dynamic linker”, ”Shellcode”, ”Buffer overflow”,

”chmod”, ”setuid” and ”Password”. Some of these concepts, like Password, setuid are

not directly related to ”Buffer Overflow Vulnerability”, but are necessary knowledge

for each student to finish the lab successfully. Instructors may also edit these concepts

before adding them to the lab repository if they think some important concepts were

skipped by our system.

With the KG represents in a graph data structured, the next step is to represent

the graph in an interactive GUI to empower instructor and students who are actively

using it. Since the virtual lab platform itself is a pure web-based lab environment,

we want to integrate our CyberKG system into the Web UI seamlessly. We utilized

JavaScripts and Echarts (a web-based visualization library that features a plethora

of API’s) to create interactive and dynamic contents on the web. In this KG, we

44

applied threshold 0.8 (only show up when the similarity distance of two keywords is

higher than 0.8) and visualized our graph using different ways as described below.

1. There are 48 labs in the current ThothLab system and can be classified by Se-

curity Labs, Software Labs, Network Labs, System Labs and Cloud Computing

Labs [39]. We randomly set 48 colors for each lab and the color as well as the

corresponding nodes (keywords) in each lab. The graph section is blank at the

beginning. Users can select labs to learn the key concepts which are covered

in the corresponding labs. The CyberKG-Lab will be presented to the user as

shown in Figure 4.5.

45

Figure 4.5: Sample Visualized CyberKG-Lab: User select all labs under Software

and Web Security category

46

In addition, the shortcut key button - ”Select All Labs” has been created for

selecting all labs in ThothLab system. When the user clicks this button, all

keywords from 48 labs will be shown in Figure 4.6. Note that if labs contain

common keywords, the color of the first lab will be applied to the corresponding

node. The graph will be updated based on the user selection of labs (select more

or unselect selected labs). By clicking on the ”Reset” button, current selections

will be cleared and graph section is back to blank as initialized.

47

Figure 4.6: Sample Visualized CyberKG-Lab: User select all labs in ThothLabs

System

2. The user may zoom in/out the graph and hover mouse onto nodes in the graph

to highlight nodes’ neighborhood (as well as the first level children nodes) and

gray out unconnected nodes, as shown in Figure 4.7. At the same time, the

similarity between two words will be shown on the corresponding links.

48

Figure 4.7: Sample Visualized CyberKG-Lab: Hang Over ’Web application security’

node and highlight its neighborhood nodes

3. The user can click on one node to learn more details of the node. The related

labs of the node, responding Google Scholar and Wikipedia link will be shown

in Figure 4.8. By clicking on the link, the web page will be redirected to the

corresponding Google Scholar Page or Wikipedia page of the node to browse

more detailed information. The node’s information window can be dragged or

closed.

49

Figure 4.8: Sample Visualized CyberKG-Lab: Click ’setuid’ node to display

corresponding infomration

50

4. After clicking on one node, there is a button ”Go to the treemap’s” shown in

Figure 4.8. By clicking on this button, the selected node will become the root

to generate an updated treemap as shown in Figure 4.9.

Figure 4.9: Sample Visualized CyberKG-Lab: Tree map of node ’setuid’

To avoiding a child node being displayed for more than once, this treegraph

generated by using Breadth First Search (BFS) algorithm as shown in 1 on the

previous undirected graph (data) which only contains nodes and relations.

51

Algorithm 1 Breadth First Search(BFS) algorithm

1: procedure BFS(G, s) . G is the undirected graph and s is the source node

2: create a queue Q

3: Q.enqueue(s) . Adding s in queue

4: mark s as visited

5: while Q is non-empty do

6: u = Q.dequeue() . removing the head u from Q

7: for all neighbours n of u in Graph G do . using all edges

8: if n is not visited then

9: Q.enqueue(n) . adding unvisited n in Q to further visits its

neighbour

10: mark n as visited

The leaves (children nodes) in this treemap can be expanded or collapsed. The

treemap also will be updated based on the user selection of labs like the graph

(Note that the treemap may be blank for unselecting the labs of current root

exist). Click on the ”Back to Graph” button to redirect to the previous graph.

5. By clicking on the ”Search Related Terms” button, user will be directed to the

new page for search and learn any term’s relation. In this page as shown in

Figure 4.10, enter a term ’Password’ in the search box and drag the slider to

set 10 as the number of related terms(range: 1 to 100) and set 0.8 as the expect

similarity (similarity range from 0.5 to 1).

52

Figure 4.10: Sample Visualized CyberKG-Lab: Searching relate terms

After finishing the above settings then click on search button, the result will be

displayed as shown in the Figure 4.11.

53

Figure 4.11: Sample Visualized CyberKG-Lab: Searching ’Password’ related terms

54

Same as the previous treemap, the related nodes in this search result tree can

be expanded or collapsed based on the user preference. Expanding one of the

nodes is shown in Figure 4.12.

55

Figure 4.12: Sample Visualized CyberKG-Lab: Expanding related node ’Password

cracking’ in ’Passowrd’ related terms search result

56

In addition, the relationship of the nodes (root and children nodes) similarity

will be shown by hovering mouse on the node as shown in Figure 4.13. Note

that the result of related node similarity is sorted from high to low as well as

from up to down while generating the search treemap.

57

Figure 4.13: Sample Visualized CyberKG-Lab: Hovering mouse on the ’Password

cracking’ node

58

Chapter 5

CONCLUSIONS AND DISCUSSIONS

5.1 Conclusions

In this research work, we described and discussed in details how we construct the

KG in cybersecurity education to represent the concepts and their relationships, in

addition, to recommend related research articles. We have applied two datasets by

using different approaches to process the Wikipedia database dump - (1) only use the

anchors from Wikipedia and (2) use full article contexts in Wikipedia for concepts

embedding. We implemented CBOW model and Skip-Gram model which are from

Word2Vec to train above approaches. We have verified that large corpus size does

not always have better performance in some tasks. The completed results have been

shown and discussed in section 3.3 of Chapter 3. Several flexible toolkits have been

developed for data scraping, data preprocessing and graph construction. In addition,

we have defined several test datasets based on our own judgment which contain similar

word pairs of cybersecurity domain for comparing and evaluating different models.

Besides constructing the cybersecurity KG’s, we have visualized the generated graph

with its most related articles recommendation by using semantic similarity and a

visualized graph for cybersecurity online learning lab.

By these cybersecurity knowledge graphs developed, students and lecturers are

able to review the specific knowledge structure without learning required courses or

working on hands-on labs. They have a general guidance and are able to dig more

related topics/ materials according to their interests.

59

5.2 Discussions

Our current KG generation module relies on Word2Vec model to represent termi-

nologies with vectors and uses these vectors to calculate the cosine similarity. How-

ever, there are known limitations in this task: due to the hidden layer being removed in

the Word2Vec, the word order information in CBOW model and Skip-Gram model is

mostly neglected. This simplification adopted by these models leads to more efficient

in computational time, but may reduce the ability of semantics capture. Another

challenge in this research is to evaluate and validate the training results in cyber-

security area. In English language domain, there are several datasets are defined

by human experts for evaluating phrase/word similarity and phrase/word analogy,

e.g. phrase analogy dataset which contains 3,218 analogy questions defined in [2],

Rubenstein and Goodenough dataset(RG-65) as the classical word similarity dataset

[40] and WordSim353 as the test collection for measuring word similarity or related-

ness [41]. These datasets are widely used as evaluation baseline for NLP processing

modules in English language domain but no work exists for such in cybersecurity

domain. Although we have assigned several datasets based on own judgments for

models evaluation in cybersecurity area, it is still far from completion to serve as

baseline purpose.

60

Chapter 6

FUTURE WORK

In this section, we will discuss the possibility future works on current work im-

provement and extension.

Improvement

In future work, we plan to study how to incorporate more unstructured data into our

system, including but not limited to textbooks, internet web pages, and online video

transcripts. We also plan to incorporate cybersecurity ontology which is intended to

support our knowledge graph generation. By adding ontology in CyberKGs, edges in

our knowledge graph will get the semantic definition which is much more useful than

the similarity value we currently used. Our ultimate goal is to build a knowledge base

that will serve as the core of the cybersecurity domain, which would evolve and grow

with additional cybersecurity data sets as they become available.

Extension

Multiple flexible toolkits have been designed and developed in this research work,

we can base our current work then improve extend to other areas for improving the

knowledge learning.

61

REFERENCES

[1] Demand to fill cybersecurity jobs booming. URl:
http://peninsulapress.com/2015/03/31/cybersecurity-jobs-growth/.

[2] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Dis-
tributed representations of words and phrases and their compositionality. In
Advances in neural information processing systems, pages 3111–3119, 2013.

[3] David Yarowsky. Unsupervised word sense disambiguation rivaling supervised
methods. In Proceedings of the 33rd annual meeting on Association for Compu-
tational Linguistics, pages 189–196. Association for Computational Linguistics,
1995.

[4] Wikipedia. URl: https://www.wikipedia.org.

[5] Ehsan Sherkat and Evangelos E Milios. Vector embedding of wikipedia concepts
and entities. In International Conference on Applications of Natural Language
to Information Systems, pages 418–428. Springer, 2017.

[6] Christopher Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven
Bethard, and David McClosky. The stanford corenlp natural language processing
toolkit. In Proceedings of 52nd annual meeting of the association for computa-
tional linguistics: system demonstrations, pages 55–60, 2014.

[7] Ieee xplore digital library. URl:http://ieeexplore.ieee.org/Xplore/home.jsp.

[8] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation
of word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[9] C.J. Chung D. Huang Y. Deng, D. Lu and Z. Zeng. Personalized learning in
a virtual hands-on lab platform for computer science education. In 2018 IEEE
Frontiers in Education Conference (FIE) Proceedings, Oct 2018.

[10] I. Hsiao D. Huang Z. Zeng, Y. Deng and C.J. Chung. Improving student learning
performance in a virtual hands-on lab system in cybersecurity education”, in
proceedings of ieee frontiers in education. In 2018 IEEE Frontiers in Education
Conference (FIE) Proceedings, Oct 2018.

[11] Farzaneh Mahdisoltani, Joanna Biega, and Fabian M Suchanek. Yago3: A knowl-
edge base from multilingual wikipedias. In CIDR, 2013.

[12] Machine learning techniques for automatic ontology extraction from domain
texts. URl: http://csc.lsu.edu/ jianhua/Ontology-learning.ppt.

[13] Maximilian Nickel, Kevin Murphy, Volker Tresp, and Evgeniy Gabrilovich. A
review of relational machine learning for knowledge graphs. Proceedings of the
IEEE, 104(1):11–33, 2016.

62

[14] Jeffrey Undercoffer, Anupam Joshi, and John Pinkston. Modeling computer
attacks: An ontology for intrusion detection. In International Workshop on
Recent Advances in Intrusion Detection, pages 113–135. Springer, 2003.

[15] Nvd.nist.gov. URl: https://nvd.nist.gov/.

[16] Arnav Joshi, Ravendar Lal, Tim Finin, and Anupam Joshi. Extracting cyber-
security related linked data from text. In Semantic Computing (ICSC), 2013
IEEE Seventh International Conference on, pages 252–259. IEEE, 2013.

[17] Michael Iannacone, Shawn Bohn, Grant Nakamura, John Gerth, Kelly Huffer,
Robert Bridges, Erik Ferragut, and John Goodall. Developing an ontology for
cyber security knowledge graphs. In Proceedings of the 10th Annual Cyber and
Information Security Research Conference, page 12. ACM, 2015.

[18] Chen Yinong. Service-oriented computing and system integration: Software, iot,
big data, and ai as services. 2017.

[19] Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global
vectors for word representation. In Proceedings of the 2014 conference on empir-
ical methods in natural language processing (EMNLP), pages 1532–1543, 2014.

[20] word2vec. URl: [15] https://code.google.com/archive/p/word2vec/.

[21] David Milne and Ian H Witten. Learning to link with wikipedia. In Proceedings
of the 17th ACM conference on Information and knowledge management, pages
509–518. ACM, 2008.

[22] Chen-Tse Tsai and Dan Roth. Cross-lingual wikification using multilingual em-
beddings. In Proceedings of the 2016 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technolo-
gies, pages 589–598, 2016.

[23] Gregory Grefenstette and Lawrence Muchemi. Determining the characteristic
vocabulary for a specialized dictionary using word2vec and a directed crawler.
arXiv preprint arXiv:1605.09564, 2016.

[24] Robert Speer, Joshua Chin, and Catherine Havasi. Conceptnet 5.5: An open
multilingual graph of general knowledge. In AAAI, pages 4444–4451, 2017.

[25] Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, and Pasquale Lops.
Learning word embeddings from wikipedia for content-based recommender
systems. In European Conference on Information Retrieval, pages 729–734.
Springer, 2016.

[26] URl: https://en.wikipedia.org/wiki/Special:Export/FULLPAGENAME.

[27] Selenium. URl: https://www.seleniumhq.org/.

[28] Sans glossary security of terms. URl: https://www.sans.org/security-
resources/glossary-of-terms/.

63

[29] Zellig S Harris. Distributional structure. Word, 10(2-3):146–162, 1954.

[30] Dan Jurafsky and James H Martin. Speech and language processing, volume 3.
Pearson London:, 2014.

[31] Joseph Turian, Lev Ratinov, and Yoshua Bengio. Word representations: a simple
and general method for semi-supervised learning. In Proceedi ngs of the 48th
annual meeting of the association for computational linguistics, pages 384–394.
Association for Computational Linguistics, 2010.

[32] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A
neural probabilistic language model. Journal of machine learning research,
3(Feb):1137–1155, 2003.

[33] Marco Baroni, Georgiana Dinu, and Germán Kruszewski. Don’t count, pre-
dict! a systematic comparison of context-counting vs. context-predicting seman-
tic vectors. In Proceedings of the 52nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), volume 1, pages 238–247,
2014.

[34] Radim Řeh̊uřek and Petr Sojka. Software Framework for Topic Modelling with
Large Corpora. In Proceedings of the LREC 2010 Workshop on New Challenges
for NLP Frameworks, pages 45–50, Valletta, Malta, May 2010. ELRA. http:
//is.muni.cz/publication/884893/en.

[35] Ronan Collobert and Jason Weston. A unified architecture for natural language
processing: Deep neural networks with multitask learning. In Proceedings of the
25th international conference on Machine learning, pages 160–167. ACM, 2008.

[36] Siwei Lai, Kang Liu, Shizhu He, and Jun Zhao. How to generate a good word
embedding. IEEE Intelligent Systems, 31(6):5–14, 2016.

[37] Charles Bouveyron and Camille Brunet-Saumard. Model-based clustering of
high-dimensional data: A review. Computational Statistics & Data Analysis,
71:52–78, 2014.

[38] Hans-Peter Kriegel, Peer Kröger, and Arthur Zimek. Clustering high-dimensional
data: A survey on subspace clustering, pattern-based clustering, and correlation
clustering. ACM Transactions on Knowledge Discovery from Data (TKDD),
3(1):1, 2009.

[39] Yuli Deng, Dijiang Huang, and Chun-Jen Chung. Thoth lab: A personalized
learning framework for cs hands-on projects (abstract only). In Proceedings of
the 2017 ACM SIGCSE Technical Symposium on Computer Science Education,
SIGCSE ’17, pages 706–706, New York, NY, USA, 2017. ACM.

[40] Herbert Rubenstein and John B. Goodenough. Contextual correlates of syn-
onymy. Commun. ACM, 8(10):627–633, October 1965.

[41] The wordsimilarity-353 test collection. URl:
http://www.cs.technion.ac.il/ gabr/resources/data/wordsim353/.

64

http://is.muni.cz/publication/884893/en
http://is.muni.cz/publication/884893/en

[42] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing In Science &
Engineering, 9(3):90–95, 2007.

[43] Deqing Li, Honghui Mei, Yi Shen, Shuang Su, Wenli Zhang, Junting Wang, Ming
Zu, and Wei Chen. Echarts: A declarative framework for rapid construction of
web-based visualization. Visual Informatics, 2018.

65

APPENDIX A

TYPE OF WIKIPEDIA PAGES

66

Figure A.1: Sample XML files in Wikipedia dump

List of types in Wikipedia dump has been removed in this work to acquire unique

article pages as shown below:

1. Redirect: with <’ns0:redirect> tag in the xml file.

2. Help/Help talk: ’Help:’/’Help talk:’ in the first part of page name

3. Category/Category talk: ’Category:’/’Category talk:’ in the first part of page

name

4. Template/Template talk: ’Template:’/’Template talk:’ in the first part of page

name

5. File/File talk: ’File:’/’File talk:’ in the first part of page name

6. Topic/Topic talk: ’Topic:’/’Topic talk:’ in the first part of page name

7. Mediwiki/Mediwiki talk: ’Mediwiki:’/’Mediwiki talk:’ in the first part of page

name

67

8. Portal/Portal talk: ’Portal:’/’Portal talk:’ in the first part of page name

9. ListPage: with ’List of’ in the first part of the page name

10. Wikipedia/Wikipediat talk: ’Wikipedia:’/’Wikipedia talk:’ in the first part of

page name

11. Book/book talk: ’Book:’/’Book talk:’ in the first part of page name

12. Draft/Draft talk: ’Draft:’/’Draft talk:’ in the first part of page name

13. Timetext/Timetext talk: ’Timetext:’/’Timetext talk:’ in the first part of page

name

14. Module/Module talk: ’Module:’/’Module talk:’ in the first part of page name

15. Disambiguation: 1) with ’(disambiguation)’ in the page name 2)with ’may refer

to:’ or ’may also refer to’ in the text file.

16. SmallPage: The Pages which have incoming links lower than 5 threshold.

17. NoneEnglishTitle: without redirect or alias

18. Education Program/Education Program talk: ’Education Program:’/Education

Program talk:’ in the first part of page name

68

APPENDIX B

DATA SAMPLES

69

Table B.1: Dataset Sample I: Concept pages from Wikipedia dataset with

corresponding ID and Title

FolderID:PageID,Title PageID Title

0 1:12,Anarchism 12 Anarchism

1 1:25,Autism 25 Autism

2 1:39,Albedo 39 Albedo

3 1:290,A 290 A

4 1:303,Alabama 303 Alabama

Table B.2: Dataset Sample II: Replace PageIDs for matched titles Wikipedia

concept pages’ description

Format

0 anarchism is a 23040 that advocates 191161 soc. . .

1 autism is a 536032 characterized by troubles w. . .

2 albedo 1007667 albedo whiteness is the measure. . .

3 a 378194 plural as a s a s a s or aes is the f. . .

4 alabama is a 18618239 in the 179553 of the 343 . . .

70

Table B.3: Dataset Sample III: Extract PageIDs only from Dataset Sample II

Format

0 23040 191161 4228181 13993 26271818 28151 4558. . .

1 536032 161744 5177 4475349 2092692 3232713 177. . .

2 1007667 51331 44364 35553026 41644 35553026 277. . .

3 378194 3675310 32693 21440570 929 265914 17803. . .

4 18618239 179553 3434750 30395 48830 18933066 2. . .

Table B.4: Dataset Sample IV: Convert PageIDs in Dataset Sample III to

corresponding titles

Format

0 Political philosophy Self governance Stateless...

1 Developmental disorder Interpersonal relations...

2 Hispanic and Latino Americans Dimensionless qu...

3 English alphabet Letter (alphabet) Vowel Iso b...

4 U.S. state Southern United States United State...

71

Figure B.1: Data Sample V: Processed with Stanford CoreNLP

72

APPENDIX C

OPEN SOURCE LIBRARIES

73

The following open source libraries are applied in this research work:

• Wikiextractor: www.github.com/attardi/wikiextractor

• Mwparserfromhell: www.github.com/earwig/mwparserfromhell

• Gensim[34]: https://radimrehurek.com/gensim

• Matplotlib[42]: https://matplotlib.org

• ECHARTS[43]: https://ecomfe.github.io/echarts-doc/public/en/index.html

74

	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	Problem Statements
	Research Questions
	Contributions
	Outline

	RELATED WORK
	METHODOLOGIES AND IMPLEMENTATION
	Dataset Preparing and Processing
	Full Wikipedia
	Wikiepdia Category
	IEEE Xplore Library
	Other Resources

	Training Methods Comparison and Discussion
	Background
	Training Experiment
	Window Sizes

	Evaluation
	Comparison of Similarities
	Similarity Accuracy
	Principal Component Analysis (PCA)

	Research Articles Recommendation
	Knowledge Graph Construction

	KNOWLEDGE GRAPH VISUALIZATION
	CyberKG-Research (KG with Research Articles Recommendation)
	CyberKG-Lab (KG for Cybersecurity Online Lab - ThothLab)

	CONCLUSIONS AND DISCUSSIONS
	Conclusions
	Discussions

	FUTURE WORK

	REFERENCES
	Type of Wikipedia Pages
	Data Samples
	Open Source Libraries

