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ABSTRACT 

Individuals fluent in sign language who have at least one deaf parent are considered 

native signers while those with non-signing, hearing parents are non-native signers. 

Musculoskeletal pain from repetitive motion is more common from non-natives than 

natives. The goal of this study was twofold: 1) to examine differences in upper extremity 

(UE) biomechanical measures between natives and non-natives and 2) upon creating a 

composite measure of injury-risk unique to signers, to compare differences in scores 

between natives and non-natives. Non-natives were hypothesized to have less favorable 

biomechanical measures and composite injury-risk scores compared to natives. 

Dynamometry was used for measurement of strength, electromyography for ‘micro’ rest 

breaks and muscle tension, optical motion capture for ballistic signing, non-neutral joint 

angle and work envelope, a numeric pain rating scale for pain, and the modified Strain 

Index (SI) as a composite measure of injury-risk. There were no differences in UE 

strength (all p≥0.22). Natives had more rest (natives 76.38%; non-natives 26.86%; 

p=0.002) and less muscle tension (natives 11.53%; non-natives 48.60%; p=0.008) for 

non-dominant upper trapezius across the first minute of the trial. For ballistic signing, 

no differences were found in resultant linear segment acceleration when producing the 

sign for ‘again’ (natives 27.59m/s2; non-natives 21.91m/s2; p=0.20). For non-neutral 

joint angle, natives had more wrist flexion-extension motion when producing the sign for 

‘principal’ (natives 54.93°; non-natives 46.23°; p=0.04). Work envelope demonstrated 

the greatest significance when determining injury-risk. Natives had a marginally greater 

work envelope along the z-axis (inferior-superior) across the first minute of the trial 

(natives 35.80cm; non-natives 30.84cm; p=0.051). Natives (30%) presented with a 

lower pain prevalence than non-natives (40%); however, there was no significant 

difference in the modified SI scores (natives 4.70 points; non-natives 3.06 points; 

p=0.144) and no association between presence of pain with the modified SI score 
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(r=0.087; p=0.680). This work offers a comprehensive analysis of all the previously 

identified UE biomechanics unique to signers and helped to inform a composite measure 

of injury-risk. Use of the modified SI demonstrates promise, although its lack of 

association with pain does confirm that injury-risk encompasses other variables in 

addition to a signer’s biomechanics. 
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CHAPTER 1 

INTRODUCTION 

1.1. Background 

A total of 271 sign languages, dialects, and other sign systems are being used around the 

world (Gallaudet University 2016). In 1972, the National Census of the Deaf Population 

estimated that as many as 500,000 individuals in the United States (U.S.) use sign 

language to communicate in the home (Schein and Delk 1974; Mitchell 2005; 

Williamson 2015). Since that time, no one has determined the prevalence of sign 

language use in the general population. As the total U.S. population has increased at 

least 61% since 1970 (Forstall 1996; USCB 2017), it is presumed that those using sign 

language to communicate is well over the original estimate.  

Communication between people who use sign language and people who use 

spoken language is facilitated by sign language interpreters. The American with 

Disabilities Act (ADA) requires that State and local governments, public businesses, and 

nonprofit organizations provide auxiliary aides and services for effective communication 

to people who have vision, hearing, or speech disabilities. For people who are deaf, this 

includes a qualified sign language interpreter (ADA 2014).   

The number of interpreters and translators is on the rise. The Registry of 

Interpreters for the Deaf (RID) is a national organization that collaborates with the deaf 

community and advocates for delivery of interpreting services (RID n.d.). RID’s total 

membership has increased 11% in the last eight years (RID 2009 [2016]) with a forecast 

to increase 18% in the next 10 years (BLS 2018). These gains, compared to an average 

occupational growth rate of only seven percent (BLS 2018), demonstrate that demand 

for sign language interpreting is growing faster than average.  
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1.2. Statement of the problem 

Preserving the health and reducing injury-risk and pain in those who use their hands and 

upper extremities (UEs) to communicate is not only paramount for the well-being and 

livelihood of interpreters, but also for those deaf and hearing individuals fluent in sign 

language. Sign language requires production of physical signs for visual, rather than 

auditory communication (Fisher et al. 2012). Since physical exertion in sign language 

interpreters is significantly greater compared to other professions (Dean et al. 2010), 

musculoskeletal (MSK) pain is common. Over 30% of sign language interpreters are 

injured on the job with 57% of the primary injuries reported from repetitive motion. Of 

those injured, 33% express concern about return to work and 32% are unable to undergo 

regular treatment because of time and money constraints (Kroeger 2014). This translates 

to lost workdays and decreased availability of interpreting services. A survey of working 

interpreters described the most commonly reported body regions of UE MSK 

dysfunction as: right shoulder (17%), right wrist-hand (10%), left shoulder (7%), and 

right forearm (6%). Prevalence of MSK injury in signers increases with age and is greater 

when compared to the general population (Woodcock and Fisher 2008). Roman and 

Samar (2015) reported that 81% of signers experienced varying intensities of MSK pain, 

reporting the neck with the highest pain prevalence (34%), followed by the wrist-hand 

(11%), elbow-forearm (10%), and shoulder (10%). In a 12-month period, Durand et al. 

(2001) found 81% of signers reported shoulder pain, 79% reported neck pain, and 74% 

reported forearm-wrist-hand pain. To maintain a high-quality of life for deaf and hearing 

individuals fluent in sign language, it is important that the underlying factors 

contributing to MSK injuries among signers are better understood so that interventions 

can be developed to minimize injury-risk. 

In a systematic review by Fisher et al. (2012), various factors impacting MSK 

dysfunction experienced by signers were identified. Of the evidence reviewed, increased 
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mechanical exposure, increased speaker pace, and increased psychological, psychosocial, 

and environmental stress were the strongest factors associated with the presence of MSK 

dysfunction. However, of the 23 studies that met the inclusion criteria, none were 

considered of high quality, five were of medium quality, and 18 were of low quality. Thus, 

the availability of high level evidence to inform the development of protocols for 

reduction and prevention of MSK dysfunction in signers is lacking. The purpose of this 

study was to provide much needed quality evidence exploring the differences in UE 

biomechanics and thus, promote a greater understanding of the contributors to 

increased pain in signers.  

 

1.3. Native and non-native signers 

It is estimated that deaf children are born to hearing parents more than 95% of the time 

(Mitchell and Karchmer 2004) and hearing children are born to deaf parents 80% of the 

time (Bishop and Hicks 2008; Mitchell et al. 2006). Deaf or hearing individuals who 

have at least one deaf parent can be considered native signers. Native signers, or heritage 

language users are an overlooked demographic within the sign language research 

(Williamson 2015). Demographic data on language acquisition status is not 

systematically collected by RID, however in a British Sign Language/English interpreting 

survey, 13% of the respondents identified as natives (Mapson 2014). Therefore, most 

interpreters are individuals born to non-signing, hearing parents and can be considered 

non-native signers. Williamson (2015) identified the handshapes and movement of 

heritage language users as native-like and unique from non-native signers. Podhorodecki 

and Spielholz (1993) found that MSK pain is more common from non-native than native 

signers. Clearly, exploring the differences in UE biomechanics of native versus non-

native signers is necessary to understand what may underlie the increased MSK injury-
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risk in non-natives. The idea that language acquisition status (native versus non-native) 

relates to level of injury-risk and pain prevalence warrants further investigation.  

 

1.4. Biomechanical considerations unique to signers 

Little work has examined the specific contribution of UE biomechanics to the high 

percent of MSK pain and injury in signers. The seminal work of Feuerstein and 

Fitzgerald (1992) on UE biomechanical factors affecting signers informed a text 

published by the Rochester Institute of Technology, National Technical Institute for the 

Deaf (NTID) in Rochester, NY on cumulative trauma disorders (RIT 2005). During the 

1989-90 academic year, 74% of the interpreting staff at NTID reported work-related 

MSK symptoms. This prompted a cross-sectional examination of the work style and 

demands of the staff (Feuerstein and Fitzgerald 1992) and results identified several 

factors unique to signers that may contribute to the MSK symptoms reported. They 

include: 1) insufficient ‘micro’ rest breaks, 2) muscle tension, 3) ballistic signing, 4) 

excessive hand and wrist deviations from a neutral position, and 5) movement outside 

the normal interpreting work envelope. ‘Micro’ rest breaks are brief periods during the 

interpreting task when one or both hands are lowered. Muscle tension is prolonged 

muscle contraction because of an awkward position or a physiological reaction to stress. 

Ballistic signing is defined as a consistently hard, forceful, or abrupt production of signs. 

Neutral joint positions are considered the midpoint of opposing motions within the same 

cardinal plane (e.g. midpoint between wrist flexion-extension in the sagittal plane), 

therefore non-neutral joint positions are deviations from neutral. Work envelope is 

defined as the area in which signs can be produced with a minimal amount of exertion. 

NTID described the normal work envelope height as the distance from the head to the 

waist, width as one inch beyond the shoulder distance, and depth as half the distance of a 

fully extended arm (RIT 2005). Whereas, the Occupational Health and Safety for Sign 
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Language Interpreters described ideal work envelope as hand movement in front of the 

chest within a boundary of 25cm2 (Feuerstein and Fitzgerald 1992; Woodcock and 

Fischer 2008). After institutional changes to interpreting processes were made (e.g. use 

of teaming, increased prep time, etc.), a follow-up report during the 1991-92 academic 

year revealed only five NTID interpreters out of a staff of 86, a 68% reduction from just 

two years prior, reported symptoms (RIT 2005). Further quantification of the 

biomechanical factors involved using more current instrumentation is needed to be able 

to generalize these findings beyond the group studied at NTID.   

 

1.5. High- and low-cumulative trauma disorder risk   

Marras and Schoenmarklin (1993) used goniometric instrumentation from the 

Biodynamics Laboratory at Ohio State University and quantified wrist kinematic 

variables, like range of motion (ROM), velocity, and acceleration. Industrial workers 

involved in high repetition, hand-intensive tasks were selected from eight participating 

companies and divided into high- and low-cumulative trauma disorder risk groups based 

on the median incidence rate of claims and average lost work days to injury. The high-

risk group had 18.4 reported claims and 111.5 lost days per 200,000 hours of worker 

exposure and the low-risk group had zero reported claims and zero lost days per 

200,000 hours of worker exposure. High- and low-cumulative trauma disorder risk for 

wrist flexion-extension, radial-ulnar deviation, and forearm pronation-supination ROM 

(°), angular velocity (°/second), and angular acceleration (°/second2) are conveyed in 

Table 1.1. Kinematic measurements greater than the high-risk value indicate high-risk 

for cumulative trauma disorder and vice versa. Using the methodology from Marras and 

Schoenmarklin (1993), Schoenmarklin et al. (1994) studied the predictability of each 

kinematic variable for determining high- and low-cumulative trauma disorder risk. Wrist 

flexion-extension angular acceleration was found to best discriminate level of risk. 
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Potentially, investigators could compare the wrist and forearm ROM, velocity, and 

acceleration of signers to that of industrial workers to categorize level of injury-risk. The 

demands on industrial workers, though similar, are not an exact comparison to the 

demands on signers, therefore more specific values to measure injury-risk in signers are 

needed.  
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Table 1.1. High- and low-cumulative trauma disorder risk for wrist and forearm motion (Marras and Schoenmarklin 
1993). 

 high-risk low-risk 

ROM (°) 

      wrist flexion-extension 35.63 27.95 

wrist radial-ulnar deviation 23.65 17.64 

forearm supination-pronation 86.63 69.91 

average angular velocity (°/sec) 

wrist flexion-extension 42.2 28.7 

wrist radial-ulnar deviation 25.9 17 

forearm supination-pronation 91.3 67.7 

average angular acceleration (°/sec2) 

wrist flexion-extension 824 494 

wrist radial-ulnar deviation 494 301 

forearm supination-pronation 1824 1222 
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1.6. Ergonomic risk assessment tools 

Like the high- and low-cumulative trauma disorder risk values, ergonomic risk 

assessment tools also allow investigators to categorize level of injury-risk. Use of 

ergonomic risk measures as a method of hazard control is associated with reduced MSK 

disorders and injury-risk in manufacturing production and maintenance workers 

(Cantley et al. 2014). Various ergonomic risk measures focusing on the repetitive high-

risk UE tasks in industry workers have been studied. Such measures include the Rapid 

Upper Limb Assessment (RULA), Strain Index (SI), concise exposure index (OCRA), 

Rapid Entire Body Assessment (REBA), and American Conference of Governmental 

Industrial Hygienists Threshold Limit Values (ACGIH TLV). No composite ergonomic 

measure of injury-risk presently exists for signers. Jones and Kumar (2007) performed a 

comparison of these five ergonomic risk assessment tools with 15 saw-filers, workers 

responsible for maintaining the condition of the various saws and knives, from four 

sawmill facilities. They found that only the SI and OCRA were sensitive to measuring 

differences across facilities in posture and in measures of frequency, such as hours per 

day, repetitions per day, and total exposure. A SI score threshold of less than or equal to 

three is considered safe, greater than or equal to seven is considered hazardous, and 

greater than three, but less than seven is considered at increased risk (Moore and Garg 

1995). For example, the mean SI score for the saw-filers was 14 (Jones and Kumar 2007), 

thus indicating hazardous work. 

 

1.7. Research aims and hypotheses 

The goal of this study was twofold and will be presented in two separate manuscripts: 1) 

to examine differences in biomechanical measures between natives and non-natives and 

2) upon creating a composite measure of injury-risk unique to signers, to compare 

differences in scores between natives and non-natives.  
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The overall objective for the first manuscript was attained by pursuing the 

following specific aim: quantify upper extremity strength, ‘micro’ rest breaks, muscle 

tension, ballistic signing, non-neutral joint position, and work envelope in native and 

non-native signers. Hypothesis: Non-natives will have less favorable biomechanical 

outcomes compared to natives.  

The overall objective for the second manuscript was attained by pursuing the 

following specific aim: quantify self-reported MSK pain and composite injury-risk scores 

in native and non-native signers. Hypothesis: Non-natives will have less favorable 

composite injury-risk scores compared to natives and scores will be associated with self-

reported MSK pain.   
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CHAPTER 2 

UPPER EXTREMITY BIOMECHANICS IN NATIVE AND NON-NATIVE 

SIGNERS  

(FIRST MANUSCRIPT) 

Abstract 

Over 30% of sign language interpreters are physically injured on the job. This study’s 

goal was to identify indicators of injury-risk by measuring upper extremity isometric 

strength, ‘micro’ rest breaks, muscle tension, ballistic signing, non-neutral joint angle, 

and work envelope in 10 native and 15 non-native signers. Non-natives were 

hypothesized to have less favorable (i.e. worse) biomechanical outcome measures 

compared to natives. Dynamometry, surface electromyography, and optical motion 

capture were used to respectively quantify strength, rest, tension, ballistic signing, non-

neutral joint angle, and work envelope. There was no difference with shoulder and wrist 

strength between natives and non-natives. Non-natives had less rest (p=0.002 with false 

discovery rate, FDR, correction) and more tension (p=0.008 with FDR correction) in 

non-dominant upper trapezius than natives. For ballistic signing, natives had greater 

jerk along the y-axis (p=0.03) than non-natives and for non-neutral joint angle, natives 

demonstrated greater wrist flexion-extension range of motion (p=0.04) than non-

natives. Lastly, for work envelope, natives demonstrated greater relative maximum 

(p=0.015) and greater relative minimum (p=0.019) position along the x-axis, and greater 

relative minimum position along the z-axes (p=0.027). This work suggests that 

associated rest, tension, jerk, and maximum and minimum segment positions are 

potential indicators of injury-risk and should be prioritized in the development of 

protocols for reduction and prevention of musculoskeletal dysfunction in signers.   
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Keywords  

sign language; ‘micro’ rest breaks; muscle tension; ballistic signing; non-neutral joint 

angle; work envelope 
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2.1. Introduction 

Over 30% of sign language interpreters are physically injured on the job with 57% of 

primary complaints from repetitive motion. Of those injured, 33% express concern about 

returning to work and 32% are unable to undergo regular treatment because of time and 

money constraints (Kroeger 2014). Demand for interpreters and translators is 

anticipated to grow 18% by 2026 (BLS 2018), suggesting higher numbers of sign 

language interpreters will suffer from musculoskeletal (MSK) pain, equating to lost 

workdays and decreased availability of interpreting services.  

Deaf or hearing individuals who have at least one deaf parent are considered 

native signers (Mitchell et al. 2006; Bishop and Hicks 2008) and are an overlooked 

demographic within the sign language research (Williamson 2015). Most interpreters are 

born to non-signing, hearing parents and considered non-native signers. 

Musculoskeletal pain secondary to high occupational health risks of sign language 

interpreting is more common from non-natives than natives (Podhorodeck and Spielholz 

1993), but the reasons underpinning this disparity in risk between native and non-native 

signers are unclear.    

Preserving the health and reducing injury-risk and pain in those who use their 

hands and upper extremities (UEs) to communicate is not only paramount for the well-

being and livelihood of interpreters, but also for those deaf and hearing individuals 

fluent in sign language. A survey of signers reported that upper extremity (UE) MSK 

dysfunction is most prevalent in the neck (28%) and right shoulder (17%) (Woodcock 

and Fisher 2008). Another study found 81% of signers experienced varying intensities of 

MSK pain, reporting the highest pain prevalence at the neck (34%), wrist-hand (11%), 

elbow-forearm (10%), and shoulder (10%; Roman and Samar 2015). Durand et al. (2001) 

found 81% of signers reported shoulder pain, 79% reported neck pain, and 74% reported 

forearm-wrist-hand pain over a 12-month period. Physical exertion in sign language 
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interpreters is similarly elevated across video relay, educational, freelance, and staff 

interpreting settings, however is significantly greater compared to other professions (e.g. 

medicine, education; Dean et al. 2010). Identification of the underlying factors among 

native and non-native signers is needed, so interventions can be developed to lower the 

risk of non-natives developing MSK symptoms. 

Little work has examined the specific contribution of UE biomechanics to the 

high percent of MSK pain and injury in signers. Fisher et al. (2012) suggests that 

increased mechanical exposure, increased speaker pace, and increased psychological, 

psychosocial, and environmental stress in signers were the strongest factors associated 

with MSK disorders. The seminal work of Feuerstein and Fitzgerald (1992) examined of 

the work style and demands of 29 interpreters (24 females and five males) at the 

National Technical Institute for the Deaf (NTID, Rochester, NY) and revealed five UE 

biomechanical considerations: insufficient ‘micro’ rest breaks, muscle tension, forceful 

or ballistic signing, excessive hand and wrist deviations, and movement outside the 

normal interpreting work envelope (RIT 2005). Based upon clinical examination, these 

participants were sub-grouped into those working with pain (n=16; 55%) and those 

working with no pain or minimal discomfort (n=13; 45%). An isokinetic dynamometer 

was used to measure wrist and forearm range of motion (ROM) and endurance, and 

video recordings of the participants while interpreting were used to measure the 

biomechanical variables of rest breaks per minute, high impact hand contacts, pace and 

smoothness of finger and hand movements, hand and wrist deviations from neutral, and 

work envelope excursions. There were no strength or flexibility differences between sub-

groups, however their findings suggest that interpreters with pain have fewer rest breaks, 

and more deviations from neutral joint position, lateral excursions from the work 

envelope and rapid finger and hand movements. This prior work was based on visual 

observation, and ratings of frequency and scale. Little quantitative information is 
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available to describe these biomechanical considerations or their influence on the 

increased MSK symptoms reported by non-natives.  

In a study of novice (less than two years of professional interpreting experience) 

and experienced (greater than or equal to five years) interpreters, Fisher et al. (2014) 

used an electromagnetic motion capture system to measure mean ROM, mean angular 

velocity, the number of kinematic ‘micro’ breaks, and time spent in ‘micro’ breaks for 

bilateral wrist flexion-extension, radial-ulnar deviation, and elbow flexion-extension 

during one hour of interpreting. ‘Micro’ breaks were defined as the time spent not in 

motion, or any period of more than 0.2 seconds with a velocity equal or less than 5°/sec. 

Comparing the first and last 15 minute increments, experienced interpreters increased 

their right elbow flexion-extension ROM. Novice interpreters reduced right wrist radial-

ulnar deviation and right elbow flexion-extension velocity and demonstrated increased 

number of breaks in right elbow flexion-extension. Both novice and experienced 

interpreters demonstrated increased right wrist flexion-extension ‘micro’ breaks during 

the latter increment. Reduced velocity and greater ‘micro’ breaks of novice interpreters 

were attributed to higher fatigue, but whether non-native and native signers 

demonstrate comparable levels of fatigue and rest is unknown.  

Delisle et al. (2005) used surface electromyography (EMG) to the bilateral upper 

trapezius to quantify time at rest and a biaxial dominant wrist goniometer to measure 

wrist flexion-extension and radial-ulnar deviation ROM, and angular velocity and 

acceleration. Nine sign language interpreters were studied over the course of four 30 to 

90-minute educational interpreting sessions. Greater EMG-based rest in non-dominant 

than dominant upper trapezius (12.4% and 8.1% proportion of the total time at rest, 

respectively) was found. The mean upper minus the lower confidence interval 

measurements for dominant wrist flexion-extension and radial-ulnar deviation ROM 

were 66 and 36 degrees. The dominant peak (90th percentile) angular velocity and 
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acceleration were 145°/sec and 1694°/sec2 for wrist flexion-extension and 74°/sec and 

851°/sec2 for radial-ulnar deviation, respectively. Delisle et al. (2005) reported gender, 

height, weight, and a range of experience, but did not report native or non-native status. 

The use of EMG to quantify muscle activation and rest in non-native and native signers 

in the work presented here could inform why non-natives report greater MSK symptoms 

than natives.   

In investigations comparing early- (learned sign language before graduating from 

high school) and late- (learned sign language after graduating from high school) signing 

interpreters (Donner 2012; Donner et al. 2016), biaxial bilateral electrogoniometers were 

used to measure wrist flexion-extension and radial-ulnar deviation displacement, mean 

angular velocity and acceleration, and pause percentage during a 20-minute interpreting 

task. No differences in mean wrist position, velocity, acceleration, or kinematic pause 

percentage were observed. However, a within-participant comparison of interpreters 

revealed, greater wrist position, faster wrist velocity, lower acceleration, and less pause 

percentage time when interpreting compared to when conversing. Between-participant 

comparison of interpreters and deaf college-aged students conversing revealed that deaf 

students sign with 16% greater right wrist displacement, and interpreters with an 

average pause percentage time of 50% compared to 33% for the deaf students (Donner et 

al. 2013). Early- and late-signing interpreters in Donner (2012) and Donner et al. (2016), 

and interpreters and deaf students in Donner et al. (2013) can be compared, respectively, 

to natives and non-natives in this study.  

Previous literature assessing the biomechanical considerations of ‘micro’ rest 

breaks, muscle tension, ballistic signing, non-neutral joint angle, and work envelope 

identified by NTID in signers has yet to reach a consensus, and existing literature is 

sparse with inconsistent methods and participant groupings. Feuerstein and Fitzgerald 

(1992) visually measured and scored hand and wrist deviations from a neutral position, 
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high-impact hand contacts, and pace and smoothness of finger and hand movements, 

while Donner (2012), Donner et al. ([2013] 2016), Fisher et al. (2014) and Delisle et al. 

(2005) measured wrist position, angular velocity and acceleration, and Fisher et al. 

(2014) additionally measured elbow joint kinematic variables. Feuerstein and Fitzgerald 

(1992) visually counted the number of times the dominant signing hand was lowered to 

constitute rest-break frequency, Donner (2012) and Donner et al. ([2013] 2016) 

measured kinematic pause percentage of the wrist using biaxial bilateral 

electrogoniometers, Fisher et al. (2014) measured kinematic wrist and elbow ‘micro’ 

breaks and time spent in ‘micro’ breaks using an electromagnetic motion capture system, 

while Delisle et al. (2005) measured EMG-based ‘micro’ rest breaks of the upper 

trapezius. These studies did not assess ‘micro’ rest breaks in the shoulder, such as the 

upper and middle trapezius or anterior and middle compartments of the deltoid. Some 

work has shown no differences in mean wrist position, velocity, acceleration, or the 

kinematic pause percentage time of early- compared to late-signing interpreters (Donner 

2012; Donner et al. 2016), while other work demonstrated that novice interpreters had 

reduced angular velocity and increased number of breaks compared to experienced 

interpreters (Fischer et al. 2014), and interpreters had greater pause percentage time 

when conversing compared to deaf students (Donner et al. 2013). The task being 

performed has been shown to influence wrist position, velocity, and pause percentage 

time. Specifically, interpreters had reduced position and velocity, and greater pause 

percentage time when conversing compared to interpreting (Donner et al. 2013). To the 

best of this author’s knowledge, the work of Feuerstein and Fitzgerald (1992) is the only 

previous work to quantify muscle tension and work envelope. Muscle tension was 

visually rated on a 10cm visual analog scale with 10 being analogous to overt tension 

with signs of muscular contraction or elevation of one or both shoulders and zero being 

no visible muscle tension, however values across sub-groups were not analyzed because 
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of low inter-rater reliability. A transparent grid based on the 25cm2 work envelope norm 

(Feuerstein and Fitzgerald 1992; Woodcock and Fisher 2008) was placed over the video-

viewing monitor screen and deviations outside of the work envelope were visually 

assessed. More work is needed on the quantification of muscle tension and work 

envelope. While NTID clearly identified the biomechanical considerations of rest, muscle 

tension, ballistic signing, non-neutral joint position, and work envelope, little structure 

was provided on how they should be evaluated. The above research has helped to reach a 

foundational basis for these biomechanical considerations, however the various sub-

groupings of signers and a lack of standardization limits application to further 

understand existing results.     

The goal of this study was to examine biomechanical measures of native and non-

native signers. Specifically, this study sought to quantify UE isometric strength, ‘micro’ 

rest breaks, muscle tension, ballistic signing, non-neutral joint position, and work 

envelope in natives and non-natives. It was hypothesized that non-natives will have less 

favorable (i.e. worse) biomechanical outcomes compared to natives.  

 

2.2. Materials and methods 

This study was approved by the Institute Review Board at Arizona State University.   

 

2.2.1. Participants 

Non-natives were defined as having non-signing, hearing parents; natives were defined 

as having at least one signing, deaf parent. A study population representing the 

surrounding community of native and non-native signers was obtained. Participants 

were recruited from local associations (Registry of Interpreters for the Deaf, Association 

for the Deaf, Children of Deaf Adults International), local schools, colleges and 

universities, the local Commission for the Deaf and Hard of Hearing, and a local video 
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relay service. Fifteen non-natives (mean age 43.9±11.4 years; 9 females/6 males; 11 

deaf/4 hearing; 12 right hand-dominant) and 10 natives (mean age 32.7±10.9 years; 7 

females/3 males; 6 deaf/4 hearing; 9 right hand-dominant) were studied (Table 2.1). All 

participants voluntarily provided written informed consent to participate. Sample size 

calculations were based on acceleration, the primary outcome for ballistic signing, as 

indicated by the work of Schoenmarklin et al. (1994). Power analysis (power=0.80 and 

alpha=0.05) using GPower 3.1.9.2 software (Dusseldorf, Germany) from the preliminary 

work of Qin et al. (2008) provided a total sample size of 12 participants equally 

distributed into stressed and non-stressed groups with a left wrist flexion-extension 

angular acceleration mean difference of 99°/second2 (stressed=713°/second2; non-

stressed=614°/second2) and respective standard deviations of 76°/second2 and 

74.5°/second2. A small (.2), medium (.5), or large (.8) effect size would achieve 

significance with an estimated 790, 120, and 22 total participants, respectively (Appendix 

B; Fig. B.1.). To bolster the likelihood of an effect between groups, a conservative total 

sample recruitment size of 25-30 participants was estimated. 
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Table 2.1. Participant demographics (n=25). 
 natives non-natives total 

n (%) n (%) n (%) 

10 (40) 15 (60) 25 (100) 

age (mean±SD) 43.9±11.4 32.70±10.9 39.4±12.3 

18-19 1 (10) 0 (0) 1 (4) 

20-29 3 (30) 1 (6.7) 4 (16) 

30-39 4 (40) 5 (33.3) 9 (36) 

40-49 1 (10) 4 (26.7) 5 (20) 

50-59 1 (10) 4 (26.7) 5 (20) 

60-69 0 (0) 1 (6.7) 1 (4) 

sex 

male 3 (30) 6 (40) 9 (36) 

female 7 (70) 9 (60) 16 (64) 

hearing status 

hearing 4 (40) 4 (26.7) 8 (32) 

deaf 6 (60) 11 (73.3) 17 (68) 

hand-dominance 

right 9 (90) 12 (80) 21 (84) 

left 1 (10) 3 (20) 4 (16) 
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All participants were ostensibly healthy, deaf or hearing adult participants 

greater than or equal to 18 years of age. Sign language fluency of hearing participants 

was measured by standards set forth by RID (RID 2015). At least one RID certification 

was required from all hearing participants. Acceptable certifications included: 

Comprehensive Skills Certificate, Certificate of Transliteration, Certificate of 

Interpreting, National Interpreter Certification, Educational Certificate: K-12 with 

greater than or equal to level four on the Educational Interpreter Performance 

Assessment, or a Specialist Certificate: Legal or Performing Arts. Use of sign language as 

primary language of communication either since birth, or during primary or secondary 

education equated to fluency for deaf participants. While formal RID certification for 

deaf participants was not required, one participant was a Certified Deaf Interpreter and 

others were preparing to become certified. Exclusion criteria included those enrolled in 

interpreter preparatory or training program, those with pacemakers, those who were 

pregnant, and/or those diagnosed with a neuromuscular disorder (e.g. Parkinson’s 

Disease).  

 

2.2.2. Data collection 

Isometric joint moment was used to assess UE strength and measured with a Humac 

Norm (CSMI, Stoughton, MA) isokinetic dynamometer (Fig. 2.1.). Measurements were 

taken in standard postures: supine for shoulder internal-external rotation, and sitting for 

shoulder abduction-adduction, flexion-extension, and wrist flexion-extension and radial-

ulnar deviation (Holzbaur et al. 2007; Vidt et al. 2012). A hydraulic hand dynamometer 

(Jamar Technologies, Hatfield, PA) was used to measure grip strength. Three five-second 

trials were performed for each test; one minute rest was given between trials and two-

minutes rest was given between tests to offset fatigue (Chaffin 1975). 
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Figure 2.1. Isometric a) shoulder internal-external rotation, b) shoulder flexion-extension, c) shoulder abduction-adduction, 

d) wrist flexion-extension, and e) wrist radial-ulnar deviation strength assessment using an isokinetic dynamometer. 
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At a self-selected pace, deaf and hearing participants interpreted three trials of 

seven-minute video source, which involved a deaf leader sharing her background and 

experience as a part of Deaf History Month. The video source was in sign language with 

audio overlay and closed-captioning (Fig. 2.2.a). Participants were encouraged to 

interpret the video source into their own sign language and not simply echo the signs 

produced by the presenter. At least five minutes rest was given between trials. For all 

trials, a 16-channel, wireless Noraxon DTS system (Noraxon, Inc., Scottsdale, AZ) was 

used to measure surface EMG. Skin was prepped by shaving, light abrasion, and 

cleansing with alcohol; two 2cm Ag/AgCl electrodes were placed over each muscle belly 

or muscle group. Measures were acquired bilaterally from upper, middle compartments 

of trapezius, anterior, middle compartments of deltoid, and wrist extension-flexion and 

radial-ulnar deviation muscle groups at 1000Hz (Fig. 2.2.b-c). Prior to data collection, 

maximal voluntary contraction (MVC) measures were acquired from each muscle 

compartment using postures that elicit maximal activity (Cram et al. 1998).  
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Figure 2.2. a) Participants signed from a video source in sign language with audio and closed captioning. b) Anterior and c) 

posterior views of electrode placement for surface EMG and surface marker placement for motion capture. d) A motion 
capture system tracking surface markers on upper limb segments. 
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An eight Kestrel camera motion capture system (Motion Analysis Corporation, 

Santa Rosa, CA) tracked 9mm reflective surface markers on the upper limb segments 

during sign production (Fig. 2.2.d). Prior to beginning the interpretation, a static 

recording was obtained for use in marker definition. A total of 23 surface markers were 

placed bilaterally on the second and fifth metacarpophalangeal (MCP) joints, the radial 

and ulnar styloids, medial and lateral epicondyles, posterolateral acromions, 

sternoclavicular joints, spinous process of the seventh cervical vertebra, xiphoid process, 

anterior midpoint of the proximal UEs, anterior midpoint of the forearms, and an offset 

marker on the left posterior shoulder (Fig. 2.2.b-c).     

 

2.2.3. Data processing 

Dynamometry 

Shoulder and wrist strength were quantified by identifying the maximum joint moment 

maintained for at least 0.5 seconds during each trial with a custom Matlab (MathWorks, 

Inc., Natick, MA) script (Holzbaur et al. 2007; Vidt et al. 2012). The maximum value 

across the three trials was considered the participant’s maximum. Hand grip strength 

was quantified by identifying the maximum grip strength value across the three trials.  

 

Electromyography 

Because an induced training effect was intended in effort to gather a natural capture of 

the participant’s motion, surface EMG data from the third trial was analyzed. Raw EMG 

signals were band-pass filtered from 10-490Hz with a fourth order Butterworth filter, 

rectified, and enveloped with a second order low-pass Butterworth filter with 3Hz cutoff 

frequency using a custom Matlab program. Signals were normalized by each muscle’s 

corresponding MVC. ‘Micro’ rest breaks were defined as a temporal delay greater than or 

equal to 0.2565 seconds between sequential signs with activation less than 18% MVC 
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over the first minute of the trial (Delisle et al. 2005). ‘Micro’ rest breaks were identified 

in the processed EMG signal and represented as the total percentage of time spent in rest 

(%rest). Mean muscle activation across the first minute of the third trial and from the 

start to the stop of the signs for ‘again’ (Fig. 2.3.a) and ‘principal’ (Fig. 2.3.b) was used, 

respectively, for quantifying the primary outcome for muscle tension (%MVC), and 

secondary outcomes for ballistic signing and non-neutral joint angle.   

 

Motion capture and computational modeling 

The first minute of motion capture data from the third trial was post-processed and 

smoothed using Cortex software (Motion Analysis Corporation, Santa Rosa, CA). Custom 

MatLab codes were used to quantify ballistic signing and work envelope. The C3D model 

builder module of the Motion Monitor (Innovative Sports Training, Inc., Chicago, IL) 

software was used to quantify non-neutral joint position. Dominant absolute maximum 

resultant instantaneous linear segment acceleration (change of velocity per unit of time 

or the second time derivative of position) during the participants production of the sign 

for ‘again’ (Fig. 2.3.a) was calculated as the primary outcome for ballistic signing, and 

segment force (segment mass via anthropometric tables multiplied by segment 

acceleration; Winter 2009), jerk (change of acceleration per unit of time or the third time 

derivative of position), and muscle tension served as secondary outcomes. Inverse 

kinematics in the Motion Monitor modeling environment calculated the maximum, 

minimum, and average wrist flexion-extension position during the participants 

production of the sign for ‘principal’ (Fig. 2.3.b). The maximum minus the minimum was 

used to represent total wrist flexion-extension ROM. Average wrist flexion-extension 

position and ROM served as the primary outcomes for non-neutral joint angle. The 

maximum and minimum positions, average wrist radial-ulnar deviation position and 

ROM, and muscle tension served as secondary outcomes. Work envelope was identified 
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in the post-processed motion capture data and represented by the boundary or the area 

of hand movement across the first minute of the third trial (Fig. 2.3.c). The boundary of 

the hand movement was calculated by taking the absolute value of the dominant 

maximum linear segment motion minus minimum linear segment motion of the relative 

difference between the dominant second MCP joint and ipsilateral acromion surface 

markers. Average position in space, two-dimensional (2D) area, and three-dimensional 

(3D) volume were calculated as secondary outcomes for work envelope.  
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Figure 2.3. a) Sign for ‘again.’ b) Sign for ‘principal.’ c) Visualization of work envelope. 
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2.2.4. Data analysis 

With statistical significance (α<0.05), all statistical analyses were performed using SPSS 

(v.24, IBM Corp., Armonk, NY). 

 

Strength, ‘micro’ rest breaks, and muscle tension  

Separate Mann Whitney U tests were used to evaluate differences between natives and 

non-natives for ‘micro’ rest breaks, muscle tension, and strength. Outcomes were 

evaluated separately for dominant and non-dominant sides. A false discovery rate (FDR) 

correction by way of a custom MatLab code was used to control for type I errors (the 

probability that one or more null hypotheses are mistakenly rejected) across the multiple 

comparisons of rest, muscle tension, and strength (Benjamini and Hochberg 1995; 

Benjamini and Yekutieli 2001). 

 

Ballistic signing, non-neutral joint position, and work envelope 

Upon achieving normality assumption (Shapiro-Wilk p≥0.05), a univariate general 

linear model was used to separately analyze group differences for native and non-native 

signers for the outcome variables representing ballistic signing, non-neutral joint 

position, and work envelope while adjusting for the covariates of gender, age, hearing 

status (deaf or hearing), and hand dominance. Dominant absolute maximum 

instantaneous linear segment acceleration when signing ‘again’ (Fig. 2.3.a) represented 

the primary outcome measure for ballistic signing. Mean dominant wrist flexion-

extension position and ROM when signing ‘principal’ (Fig. 2.3.b) represented the 

primary outcome measures for non-neutral joint position. Lastly, dominant maximum 

linear segment motion minus minimum motion represented the primary outcome 

measure for work envelope and was compared to the established norm of 25cm2 

(Feuerstein and Fitzgerald 1992; Woodcock and Fischer 2008).  
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2.3. Results 

 

2.3.1. Isometric upper extremity strength 

A FDR correction was applied to the p-values across the multiple comparisons of 

shoulder and wrist isometric joint moments and there were no significant differences (all 

p≥0.22 with FDR correction) between native and non-native signers (Fig. 2.4.).  
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Figure 2.4. Mean (±SE) dominant (D) and non-dominant (ND) shoulder and wrist isometric joint moment for native and 

non-native signers. 
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2.3.2. ‘Micro’ rest breaks 

Natives (mean±SE; 76.38±6.02%) had more ‘micro’ rest breaks for non-dominant upper 

trapezius (p=0.002 with FDR correction; Fig. 2.5.) than non-natives (26.86±7.41%).  
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Figure 2.5. Mean (±SE) dominant (D) and non-dominant (ND) shoulder and wrist ‘micro’ rest breaks for natives and non-

natives over the first minute of the trial. 
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2.3.3. Muscle tension 

The variability of muscle tension was greatly impacted by participants who presented 

with muscle tension values in a non-physiological range of 227-1122 %MVC. It is 

presumed there was increased noise from the participants’ forearm, wrist, and hand 

segments contacting their bodies or the wrist MVCs were elicited incorrectly, neither of 

which could be corrected for by filtering and smoothing the surface EMG data; therefore, 

descriptive data for muscle tension are presented here with those outliers removed. 

Natives (11.53±1.28%) had less non-dominant upper trapezius muscle tension (p=0.008 

with FDR correction; Fig. 2.6.) than non-natives (48.60±11.00%). 
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Figure 2.6. Mean (±SE) dominant (D) and non-dominant (ND) shoulder and wrist muscle tension for natives and non-

natives over the first minute of the trial. 
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2.3.4. Ballistic signing 

Mean dominant absolute maximum instantaneous linear segment acceleration (Fig. 

2.7.a) produced during the sign for ‘again’ represented the primary outcome measure for 

ballistic signing. Mean dominant segment force, mean dominant maximum segment jerk 

(Fig. 2.7.b-c), and muscle tension during the sign for ‘again’ (Fig. 2.8.) represented 

secondary outcomes. No statistically significant differences were found in the maximum 

resultant instantaneous linear segment acceleration (p=0.20) between natives 

(27.59±2.93m/s2)  and non-natives (21.91±2.39m/s2), nor for maximum instantaneous 

linear segment acceleration along the respective 3D planes (x: natives 17.43±1.34m/s2 

and non-natives 14.46±1.36m/s2, p=0.59; y: natives 17.19±2.88m/s2 and non-natives 

12.63±2.02m/s2, p=0.06; z: natives 10.72±1.92m/s2 and non-natives 9.77±1.27m/s2, 

p=0.86). No statistically significant differences were found in the resultant segment 

force (p=0.31) between natives (14.60±1.44N) and non-natives (11.61±1.67N), nor for 

segment force along the respective 3D planes (x: natives 9.42±0.93N and non-natives 

7.64±0.97N, p=0.36; y: natives 8.99±1.40N and non-natives 6.89±1.39N, p=0.19; z: 

natives 5.49±0.88N and non-natives 5.05±0.64N, p=0.65). There was a main effect 

between natives and non-natives for jerk along the y-axis when producing the sign for 

‘again’ (natives 319.71±50.86m/s3 and non-natives 257.34±35.15m/s3, p=0.03; Fig. 

2.7.c). Natives (6.87±2.16%) also had less non-dominant upper trapezius muscle tension 

from the start to the stop of the sign for ‘again’ (p=0.016 with FDR correction; Figure 

2.8.a) than non-natives (43.23±14.84%). Additionally, there was an effect of hearing 

status for maximum acceleration along the y-axis (hearing 20.54±3.64m/s2 and deaf 

11.59±1.43m/s2, p=0.012), for maximum jerk along the y-axis (hearing 

388.73±52.09m/s3 and deaf 232.20±29.10m/s3, p=0.006), and maximum resultant jerk 

(hearing 622.16±44.96m/s3 and deaf 454.68±40.99m/s3, p=0.015). As well, there was an 
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effect of hand dominance (right-hand dominant 262.34±30.16m/s3 and left-hand 

dominant 387.04±m/s3, p=0.047) for maximum jerk along the y-axis.     
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Figure 2.7. Maximum resultant and respective maximum values along the x-, y- and z-axes for a) mean (±SE) maximum 
linear segment acceleration b) segment force (±SE), and c) mean (±SE) maximum linear segment jerk for natives and non-

natives from the start to the stop of the sign for ‘again.’ 

a) 

 

b) 

c) 

* 
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Figure 2.8. Mean (±SE) dominant (D) and non-dominant (ND) shoulder and wrist muscle tension with outliers removed for 
natives and non-natives during the sign for a) ‘again’ and the sign for b) ‘principal.’ 

a) 

b) 
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2.3.5. Non-neutral joint angle 

Average wrist flexion-extension position and ROM (maximum – minimum position) 

represented the primary outcomes for non-neutral joint position. Maximum and 

minimum positions, average wrist radial-ulnar deviation position and ROM, and muscle 

tension during the sign for ‘principal’ represented secondary outcomes. When 

considering average wrist joint position, positive values indicated wrist flexion and ulnar 

deviation, and negative values indicated wrist extension and radial deviation. There was 

a main effect between natives and non-natives for wrist flexion-extension ROM when 

producing the sign for ‘principal’ (natives 54.93±6.41° and non-natives 46.23±3.79°; 

p=0.04; Fig. 2.9.). Natives (14.18±2.19%; non-natives 59.76±14.81%) also had less non-

dominant upper trapezius muscle tension during the sign for ‘principal’ (p=0.016 with 

FDR correction; Fig. 2.8.b). Additionally, there was an effect of hearing status for wrist 

flexion-extension ROM (hearing 39.71±5.44° and deaf 54.41±3.99°; p=0.006), radial-

ulnar deviation ROM (hearing 18.01±3.26° and deaf 39.42±5.75°; p=0.23), and 

minimum wrist flexion-extension position (hearing -35.29±7.98° and deaf -55.77±4.37°; 

p=0.21). As well, there was an effect of sex for average wrist flexion-extension joint 

position (female -28.52±5.87° and male -33.24±3.33°; p=0.029).
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Figure 2.9. Mean (±SE) wrist flexion-extension and radial-ulnar deviation range of motion (maximum-minimum wrist joint 
position) and average wrist joint position for natives and non-natives from the start to the stop of the sign for ‘principal.’ 
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2.3.6. Work envelope 

Natives and non-natives had a work envelope along the x-axis (medial-lateral) of 

58.08±4.11cm (132% greater than the recommended norm) and 45.32±2.67 (81% 

greater), and a work envelope along the z-axis (superior-inferior) of 35.80±2.09cm (43% 

greater) and 30.84±1.36cm (23% greater), respectively, compared to the 25cm x 25cm 

recommended norm (Table 2.2.). There was a main effect between natives and non-

natives for maximum (natives 32.08±3.20cm and non-natives 26.88±2.08cm; p=0.015; 

Table 2.2.; Fig. 2.10.) and minimum position (natives -26.02±2.45cm and non-natives    

-18.44±2.01cm; p=0.019; Table 2.2.; Fig. 2.10.) along the x-axis, and for minimum 

position along the z-axis (natives 9.30±1.44cm and non-natives 10.80±1.01cm; p=0.027; 

Table 2.2.; Fig. 2.10.). Natives had a marginally greater work envelope along the z-axis 

(p=0.051; Table 2.2.; Appendix B, Fig. B.2.) compared to non-natives. Additionally, there 

was an effect of hand dominance for work envelope along the z-axis (right-hand 

dominant 34.22±1.25cm and left-hand dominant 25.49±1.19cm; p=0.018), maximum 

position along the x-axis (right-hand dominant 31.35±1.53cm and left-hand dominant 

16.44±4.73cm; p=0.003), maximum position along the y-axis (right-hand dominant 

17.66±0.94cm and left-hand dominant 11.15±2.20cm; p=0.024), and minimum position 

along the x-axis (right-hand dominant -19.97±1.72cm and left-hand dominant                   

-29.33±4.05cm; p=0.009). As well, there was an effect of age for minimum position 

along the z-axis (participants greater than or equal to 40 years 11.84±1.15cm and 

participants less than 40 years 8.91±1.09cm; p=0.038).  
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Table 2.2. Mean (±SE) relative work envelope and %difference from the 25cm x 25cm norm for non-natives and natives 
(*p<0.05). 

 relative  
│relative max - relative min│ 

 
mean max Min 

x-axis (medial-lateral; cm) 

non-natives 26.88 ± 2.08 -18.44 ± 2.01 45.32 ± 2.67; 81% 5.18 ± 1.80 

natives 32.08 ± 3.20 -26.02 ± 2.45 58.08 ± 4.11; 132% 7.02 ± 2.23 

p-value 0.015* 0.019* 0.102 0.567 

y-axis (anterior-posterior; cm) 

non-natives 14.92 ± 1.03 -30.63 ± 2.75 45.55 ± 3.11 -5.29 ± 1.16 

natives 19.16 ± 1.64 -32.98 ± 2.22 52.15 ± 3.36 -4.72 ± 1.09 

p-value 0.056 0.238 0.555 0.935 

z-axis (superior-inferior; cm) 

non-natives 41.64 ± 1.26 10.80 ± 1.01 30.84± 1.36; 23% 24.81 ± 0.78 

natives 45.10 ± 1.23 9.30 ± 1.44 35.80± 2.09; 43% 25.05 ± 1.09 

p-value 0.260 0.027* 0.051 0.271 
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Figure 2.10. Mean (±SE) relative work envelope measures for natives and non-natives. 
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The calculated 2D area was 128% greater in non-natives and 240% greater in 

natives than the recommended 625cm2 norm. There were no significant differences in 

the calculated 2D area and 3D volume between natives and non-natives (Table 2.3.; 

Appendix B, Fig. B.3.). 
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Table 2.3. Mean (±SE) relative 2D area, %difference from the 25cm x 25cm norm, and 3D volume for non-natives and 
natives. 

 2D area using  
│relative max-relative min│ (cm2) 

3D volume using  
│relative max – relative min│ (cm3) 

non-natives 1422.87±127.21; 128% 67582.85±8535.61 
natives 2126.20±241.16; 240% 116252.45±18387.37 
p-value 0.59 0.143 
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2.4. Discussion 

 

2.4.1. Isometric upper extremity strength  

Outcomes for shoulder and wrist strength were hypothesized to be different between 

natives and non-natives, however no significant differences were found. While findings 

from this current work were not in support of this study’s hypothesis, they were 

consistent with past literature. Using an isokinetic dynamometer, Feuerstein and 

Fitzgerald (1992) studied wrist and forearm ROM and endurance of interpreters with 

and without pain and found no significant differences.  

In the ergonomics literature, automobile assembly line workers with lateral 

epicondylitis demonstrated greater muscle activity ratios of the extensor carpi radialis 

and the extensor carpi ulnaris compared to those workers without lateral epicondylitis 

(Choung et al. 2016). This suggests that overuse injuries in industry and in signers may 

be attributed to muscle activity imbalance rather than strength deficits.  

 

2.4.2. ‘Micro’ rest breaks  

‘Micro’ rest breaks are brief periods during the interpreting task when one or both hands 

are lowered (RIT 2005). Outcomes in the biomechanical measures for ‘micro’ rest breaks 

were hypothesized to be less favorable (i.e. worse) for non-natives compared to natives. 

Natives had more rest for non-dominant upper trapezius, demonstrating support of this 

study’s hypothesis as greater rest was thought to be more favorable.  

The significant ‘micro’ rest breaks found in this work were compared with the 

respective number of ‘micro’ breaks, time spent in ‘micro’ breaks, pause percentage, rest 

breaks, and time spent in rest found in previous literature. During an hour long 

interpreting task, Fisher et al. (2014) found an increased number of ‘micro’ breaks 
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during the latter time increment for right elbow flexion-extension and right wrist flexion-

extension of novice interpreters, which was attributed to fatigue. Novice interpreters in 

Fisher et al.’s study (2014) were all children of hearing parents, which is comparable to 

this study’s non-native signers. During the seven-minute interpreting task used here, 

non-natives compared to natives had decreased rest for non-dominant upper trapezius, 

rather than increased rest found by Fisher (2014). These different findings may be 

attributed to the different durations of the interpreting task studied.  

Donner et al. (2013) found an increased pause percentage in right wrist flexion-

extension and left radial-ulnar deviation for interpreters compared to deaf students 

when conversing. Comparisons can be made between these findings for interpreters and 

deaf students with the current study’s findings of rest for non-natives and natives, 

respectively. Natives in this study had more non-dominant upper trapezius rest 

compared to the less right wrist flexion-extension and less left wrist radial-ulnar 

deviation rest of the deaf students in Donner et al. (2013). Although comparisons across 

sub-groups can be drawn between current and prior work (Donner et al. 2013), 

interpretation and conversation are not equivalent tasks. Interpreting, particularly when 

interpreting from English to American Sign Language, is often simultaneous and 

ongoing, such as during a lecture. Conversation is interactive, allowing for back-and-

forth exchange, and therefore more inherent opportunities for rest. In this study, the 

task required continuous signing for the duration of three trials, which was more 

consistent with interpreting a lecture. In addition to performing a comparison of 

interpreters and deaf students, Donner et al. (2013) also performed a within-participant 

comparison of interpreters across interpretation and conversation tasks. Interpreters 

were found to have less pause percentage time when interpreting compared to when 

conversing.   
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In the work of Feuerstain and Fitsgerald (1992), participants were asked to 

interpret a 20-minute audiotape of a classroom lecture. Rest breaks were defined as 

placing the dominant hand on the non-dominant hand, the abdomen, or in the lap. 

Observation of rest break frequency demonstrated good inter-rater reliability (Pi=0.96). 

Interpreters with pain had significantly fewer rest breaks per minute (mean±SD; 0.8±1.0 

rest breaks/minute) when compared to interpreters without pain (1.7±1.0 rest 

breaks/minute), and a significant association between increased post-interpreting 

fatigue and decreased rest frequency was appreciated. Since the three trials of a seven-

minute interpreting task were similar in duration to the 20-minute interpreting task, 

comparisons can be made between the findings of rest break frequency for interpreters 

with and without pain reported in the work of Feuerstain and Fitsgerald (1992) with the 

current study’s findings of ‘micro’ rest breaks for non-natives and natives, respectively. 

‘Micro’ rest breaks in this research were consistent with rest breaks reported by 

Feuerstain and Fitsgerald (1992). Non-natives had less rest of the non-dominant upper 

trapezius compared to natives and interpreters with pain demonstrated fewer rest breaks 

than interpreters without pain. 

Delisle et al. (2005) measured lower average time spent in rest for the dominant 

(8.1%) and non-dominant upper trapezius (12.4%), than the average time spent in rest 

for dominant and non-dominant upper trapezius across the different sub-groups in this 

study. Dominant and non-dominant upper trapezius rest in all signers was measured as 

35.8% and 46.7%, all natives as 49.3% and 76.4%, and all non-natives as 26.8% and 

26.9%, respectively. Natives had significantly more non-dominant upper trapezius rest 

than non-natives, which was a favorable outcome and consistent with this study’s 

hypothesis. The work of Delisle et al. (2005) examined rest across four sessions of a 30 

to 90-minute educational interpreting task in the field, whereas the current study 

evaluated three trials of a seven-minute interpreting task in the lab. The difference in 
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values could relate to difference in duration of the task studied or the variety of factors 

associated with the presence of MSK disorders identified by Fisher et al. (2012) 

(mechanical exposure, speaker pace, and stress) across the different interpreting 

settings. Qin et al. (2008) found faster speaker pace (fast 5.54±0.93%; slow 6.88±1.23%) 

resulted in less wrist pause. There was no significant difference in the time spent in wrist 

pause between the stressed and non-stressed (stressed 6.00±1.09%; non-stressed 

6.41±1.06%) groups. Studies of additional independent variables and their implications 

on ‘micro’ rest breaks are needed. This study controlled for the effect of speaker pace by 

using a standardized video source. While participants may have perceived the same 

testing environment with varying stress levels, stress levels were not captured in this 

study. Future research should further evaluate the influence of speaker pace and stress 

on rest across different interpreting settings (e.g. field versus lab; video relay versus 

educational versus freelance versus staff). 

 

2.4.3. Muscle tension     

Muscle tension is prolonged muscle contraction because of an awkward position or a 

physiological reaction to stress (RIT 2005). Outcomes in biomechanical measures for 

muscle tension were hypothesized to be less favorable (i.e. worse) for non-natives 

compared to natives. Natives had less muscle tension in the non-dominant upper 

trapezius than non-natives, which was in support of this study’s hypothesis as less 

muscle tension was thought to be more favorable. 

To the best of this author’s knowledge, Feuerstein and Fitzgerald (1992) is the 

only previous literature that aimed to quantify muscle tension in signers. They defined 

muscle tension as the elevation of one or both shoulders or blatant muscular contraction 

of the hands, neck, or face while interpreting. Participants were visually observed via 

video recordings and muscle tension was measured across the entire 20-minute 
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interpreting task and across a five-minute portion of the task when the instructor used 

direct quotes and spoke quickly. Raters used a one to 10cm visual analog scale (zero 

signifying no muscle tension and 10 equating to extreme muscle tension). Muscle tension 

was not included in their statistical analysis because the scale demonstrated poor 

interrater reliability (Pi=0.36), therefore no comparable findings for this work are 

available. Additional studies on the implications of bilateral muscle tension are needed. 

Future research will help establish the influence of muscle tension on risk of MSK 

symptoms in signers.  

 

2.4.4. Ballistic signing 

Ballistic signing is defined as consistently hard, forceful, or abrupt production of signs 

(RIT 2005). Outcomes in biomechanical measures for ballistic signing were 

hypothesized to be less favorable (i.e. worse) for non-natives compared to natives. No 

statistically significant differences were found in the maximum instantaneous linear 

segment acceleration between natives and non-natives, however natives did demonstrate 

greater jerk along the y-axis than non-natives. The greater jerk measured in natives was 

not in support of this study’s hypothesis as less acceleration, less force, and less jerk were 

thought to be more favorable. While there was no significant difference between the 

dominant arm length of natives and non-natives (p=0.123), the arm length of natives 

(54.35±1.18cm) was slightly longer than non-natives (52.07±0.86cm) possibly 

influencing the greater jerk along the y-axis. 

 This work was compared to the velocity and acceleration of wrist flexion-

extension, wrist radial-ulnar deviation, forearm pronation-supination and elbow flexion-

extension, high-impact hand contacts, pace of finger and hand movements, and 

smoothness of finger and hand movements found in previous literature. Much of the 

past work has studied angular velocity (°/s) and acceleration (°/s2), whereas this study 



   
  

51 
       

quantified ballistic signing by way of linear acceleration (m/s2) and jerk (m/s3). In a 

comparison of novice and experienced interpreters, Fisher et al. (2014) found slower 

velocity during the latter time increment for right wrist radial-ulnar deviation and right 

elbow flexion-extension of novice interpreters, which was attributed to fatigue. The 

novice and experienced interpreters in Fisher et al.’s (2014) work and this study’s non-

native and native signers are comparable, respectively, however the hour long 

interpreting task cannot be compared to this study’s three trials of a seven-minute 

interpreting task. Experienced interpreters demonstrated a trend toward greater velocity 

in right wrist flexion-extension and right elbow flexion-extension compared to novice 

interpreters and this is consistent with this study’s findings of native signers 

demonstrating a trend toward greater resultant and respective 3D acceleration, force, 

and jerk compared to non-natives.  

 Upon studying the variables of speaker pace and induced stress across a sample 

of 12 interpreters, Qin et al. (2008) found faster speaker pace resulted in greater mean 

velocity and acceleration. Using biaxial bilateral electrogoniometers, wrist kinematics 

were measured while interpreting a videotaped lecture. Speaker pace was augmented by 

digitally speeding up or slowing down the audio and video footage, and stress was 

measured before and after the experiment by using the Stress-Arousal Checklist (Mackay 

et al. 1978). Being stressed had no significant impact on the velocity or acceleration of 

the right or dominant wrist (all interpreters were right-hand dominant), however stress 

did result in greater left or non-dominant wrist velocity and acceleration (except for left 

wrist radial-ulnar acceleration). The need for greater emphasis while interpreting when 

stressed was the hypothesized rationale for this finding. The highest mean velocities and 

accelerations, therefore when interpreters exhibit ballistic signing, were found in the 

stressed-fast paced condition, whereas the lowest were found in the non-stressed-slow 

paced condition. As previously mentioned when discussing ‘micro’ rest breaks, this study 
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eliminated the effect of speaker pace by using a standardized video source and did not 

capture stress levels. The previous work of Qin et al. (2008) indicates that the stress 

levels of native signers in this study may have been higher than the non-natives, thereby 

contributing to their greater biomechanical outcomes for ballistic signing. Four of the 10 

natives in this study worked as sign language interpreters. While this study’s aim was to 

examine the differences between native and non-native signers and the third trial was 

analyzed for purposes of inducing a training effect, the interpretation of the video source 

may have been more stressful for the natives who were not sign language interpreters, 

thereby causing them to sign more ballistically. However, in the work of Qin et al. 

(2008), stress only influenced greater velocity and acceleration on the non-dominant 

side, whereas all biomechanical outcomes for ballistic signing in this study were gathered 

on the dominant side. 

Consistent with the findings of this work, Donner (2012) and Donner et al. (2016) 

found no differences in the mean angular velocity and acceleration for wrist flexion-

extension and radial-ulnar deviation in early- (n=8) and late-signing (n=8) interpreters. 

However, in a comparison across the tasks of interpreting and conversing (Donner 2012; 

Donner et al. 2013), interpreters had decreased left wrist flexion-extension (p=0.002) 

and radial-ulnar deviation (p=0.001) mean velocity, and increased left wrist radial-ulnar 

deviation (p=0.032) acceleration and right wrist flexion-extension (p=0.021) and radial-

ulnar deviation (p=0.001) mean acceleration when conversing compared to interpreting. 

In a comparison of interpreters to deaf students (Donner et al. 2013), no significant 

differences were found in mean angular velocity or acceleration when conversing. Sub-

group comparisons can be drawn between the early- and late-signing interpreters, and 

interpreters and deaf students with the current work on non-native and native signers, 

respectively. The lack of significance upon comparing the acceleration and force between 

natives with non-natives was consistent with past findings when comparing angular 
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velocity and acceleration between early- and late-signing interpreters and interpreters 

and deaf students. Outcomes for ballistic signing, specifically quantification of jerk along 

the y-axis, did demonstrate a trend toward ballistic signing in natives compared to non-

natives, which was not consistent with prior work.  

Delisle et al.’s (2005) work was a cross-sectional study that provided angular 

velocity and acceleration values for nine interpreters (n=9). When referencing the high- 

and low-cumulative trauma disorder risk established by Marras and Schoenmarklin 

(1993), the median angular velocity and acceleration of the participants in Delisle et al.’s 

(2005) work are all considered low-risk. Participants were included in Delisle et al.’s 

(2005) work because they reported frequent pain, therefore it can be extrapolated that 

the low-risk quantification of angular velocity and acceleration in these participants did 

not play a role in their pain presentation. The work of Delisle et al. (2005) reported 

median angular velocity and acceleration, and the work of Marras and Schoenmarklin 

(1993) reported mean angular velocity and acceleration, so median and mean values are 

not an exact comparison. The current work was the first to calculate jerk in signers, 

however the linear calculations do limit this study’s comparability to the angular 

calculations of other studies. 

The measurements of the number of high-impact hand contacts, the pace of 

finger and hand movements, and the smoothness of finger and hand movements found 

in the work of Feuerstein and Fitzgerald (1992) can be used as additional quantifications 

of ballistic signing. Like ‘micro’ rest breaks and muscle tension, participants were 

visually observed via video recordings. High-impact hand contacts were defined as an 

audible slapping sound produced by high velocity movement of the dominant hand 

against the non-dominant hand. Raters used a zero to 10cm visual analog scale for pace 

of finger and hand movements (zero signifying slow pace, five signifying moderate pace, 

and 10 equating to rapid pace) and for smoothness of finger and hand movements. 
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Although somewhat subjective in their assessment, there was good inter-rater reliability 

for the number of high-impact hand contacts (Pi=1.0), pace of finger and hand 

movements (Pi=0.99), and smoothness of finger and hand movements (Pi=0.89). There 

was no significant difference between interpreters with pain and interpreters without 

pain for the number of high-impact hand contacts and smoothness of finger and hand 

movements, however interpreters with pain had greater pace of finger and hand 

movements (mean±SD; 6.1±1.7cm along the 10cm visual analog scale) compared to 

interpreters without pain (3.8±2.0cm). Out of the seven biomechanical measures 

assessed and six that were analyzed, Feuerstein and Fitzgerald (1992) found pace of 

finger and hand movements achieved the greatest significance between interpreters with 

and without pain. The lack of significance across interpreters with and without pain in 

the number of high-impact hand contacts and smoothness of finger and hand 

movements was similar to the lack of significance across native and non-native signers in 

this study for segment acceleration and force. The significance of interpreters with pain 

having a greater pace of finger and hand movements was not consistent when compared 

with native signers demonstrating greater jerk along the y-axis as natives are presumed 

to have less pain from signing when compared to non-natives. Greater ballistic signing in 

non-natives would have been more comparable to the greater pace measured in 

interpreters with pain and in support of this study’s hypothesis. Interestingly, the finding 

of greater jerk in native signers may perhaps be indicative of a counterintuitive self-

preservation response against injury-risk. For example, greater jerk in native signers, 

may lend itself to providing greater clarity and effectiveness in communicating thereby 

lessening the need for repetition and reiteration when signing; subsequently, improving 

efficiency, and reducing fatigue and injury-risk.  

 Upon adjusting for the covariates of gender, age, hearing status (deaf or hearing), 

and hand dominance, hearing participants (n=8) had greater maximum acceleration and 
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jerk along the y-axis, and greater maximum resultant jerk than deaf participants (n=17). 

The significance of these ballistic signing measures begs to question the sub-grouping of 

participants in this work. Would a comparison of hearing status (sub-groups of hearing 

and deaf), rather than language acquisition status (natives and non-natives) be better apt 

to distinguish the biomechanical measures indicative of injury-risk? Natives presented 

with greater jerk along the y-axis than non-natives, only one of the 12 measures used to 

quantify ballistic signing, and hearing participants presented with a significant 

difference compared to deaf participants in three of the 12 measures. Categorization into 

hearing and deaf sub-groups when studying biomechanical measures indicative of 

injury-risk should be considered with future research.  

Approximately ten percent of the population is left-hand dominant (Hardyck and 

Petrinovich 1977). There were four left-hand dominant participants in this study (16%), 

demonstrating a larger representation here than in the general population. Left-hand 

dominant participants (n=4, three of whom were non-natives) had greater jerk along the 

y-axis than right-hand dominant participants (n=21). Fisher et al.’s (2014) work had a 

total sample of 18 sign language interpreters and all self-identified as being right-hand 

dominant. Donner (2012) and Donner et al. (2016) had a total sample of 16 early- and 

late- signing interpreters with only one being left-hand dominant and in Donner et al. 

(2013), all nine deaf students were right-hand dominant. Although Delisle et al. (2005) 

coded their rest analysis of the upper trapezius as dominant and non-dominant, we do 

not know how many of the nine interpreters in that study were right- or left-hand 

dominant. Past evidence from Qin et al. (2008) conveyed higher values of right wrist 

velocity and acceleration when compared with the left wrists of 12 right-hand dominant 

interpreters. Since Qin et al.’s (2008) sample was all right-hand dominant interpreters, 

their findings could not be compared to left-hand dominant signers, like in this work. 

The work of Feuerstein and Fitzgerald (1992) did not differentiate based on hand 
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dominance. While the p-value from this work indicating significantly greater jerk along 

the y-axis for left-hand dominant participants was marginal (p=0.047), the relatively 

large representation of left-hand dominant participants in this sample beckons attention. 

The past evidence does not convey any significant findings when comparing right- and 

left-hand dominance, so this finding is unsubstantiated. As for anecdotal rationale, the 

person signing in the video source was right-hand dominant. This may have factored into 

this study’s left-hand dominant participants’ ‘jerkiness’ when providing their own 

rendition of the video source.  

 

2.4.5. Non-neutral joint angle 

Neutral joint positions are considered the midpoint of opposing motions within the same 

cardinal plane (e.g. midpoint between wrist flexion-extension in the sagittal plane), 

therefore non-neutral joint positions are deviations from neutral (RIT 2005). Outcomes 

in biomechanical measures for non-neutral joint angle were hypothesized to less 

favorable (i.e. worse) for non-natives compared to natives. Natives had greater wrist 

flexion-extension ROM than non-natives, which was not in support of this study’s 

hypothesis as less wrist ROM and a closer to neutral mean wrist position were thought to 

be more favorable. 

 This research was compared to the wrist joint minimum, maximum and mean 

position, and range of displacement or ROM found in previous literature. In Fisher et 

al.’s (2014) comparison of novice and experienced interpreters, there were no significant 

differences in wrist flexion-extension, radial-ulnar deviation, or elbow flexion-extension 

ROM between novice and experienced interpreters when examining each of the four 15-

minute time segments of an hour long interpreting task. However, upon examining 

experience by time interactions, experienced interpreters were found to increase their 

right elbow flexion-extension ROM from the first to the second 15-minute time segment. 
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The novice and experienced interpreters in Fisher et al.’s (2014) work and this study’s 

non-native and native signers are comparable, respectively. This study did not analyze 

elbow joint ROM to compare with Fisher et al.’s (2014) findings. However, we did find 

natives demonstrated greater wrist flexion-extension ROM while Fisher et al. (2014) did 

not find any significance between novice and experienced groups with wrist ROM. The 

experienced interpreters in Fisher et al.’s (2014) work and the native signers in this work 

increased their ROM in comparison to novice sign language interpreters and non-native 

signers, respectively. This contrasted with the work of Feuerstein and Fitzgerald (1992) 

where interpreters with pain (mean±SD; 10.2±3.4 hand and wrist deviations/minute) 

were found to have greater mean hand and wrist deviations per minute than interpreters 

without pain (7.5±3.3 hand and wrist deviations/minute). Anecdotally, natives are 

known to have less pain from signing when compared to non-natives. More wrist flexion-

extension ROM from non-natives, rather than natives, would be in support of this 

study’s hypothesis and more in line with the greater mean hand and wrist deviations per 

minute in interpreters with pain found by Feuerstein and Fitzgerald (1992). Similar to 

greater jerk in native signers, this increase in ROM with the experienced interpreters and 

native signers may be indicative of a counterintuitive self-preservation response against 

injury-risk. Greater ROM may lend itself to greater clarity, thus improving efficiency by 

lessening the need for repetition when signing.     

Although there was no difference in minimum, maximum and mean position, 

and overall range of displacement with wrist flexion-extension and radial-ulnar 

deviation between early- and late-signing interpreters the work of Donner (2012) and 

Donner et al. (2016), a significant difference in the wrist flexion-extension ROM between 

natives and non-natives was realized in this work. When comparing interpreters’ 

performance across interpretation and conversation tasks, Donner et al. (2013) 

discovered significant differences in mean range of wrist displacement (upper minus 
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lower confidence interval) for right wrist flexion-extension and right wrist radial-ulnar 

deviation. Interpreters demonstrated greater range of wrist displacement when 

interpreting, 22% greater on average, compared to when conversing. Donner et al. 

(2013) also compared the range of wrist displacement between interpreters and deaf 

students when conversing and found that deaf students demonstrated greater right wrist 

flexion-extension and right radial-ulnar deviation displacement. Upon comparing non-

native and native signers to interpreters and deaf students in Donner et al. (2013), 

respectively, we see that both the natives and deaf students demonstrated greater wrist 

flexion-extension wrist range of displacement. As seen in the comparison with ROM 

findings from Fisher et al. (2014), comparison of the increased dominant wrist flexion-

extension ROM in natives with the increased right wrist flexion-extension and radial-

ulnar deviation ROM in deaf students (Donner et al. 2013) may somehow demonstrate a 

counterintuitive effect on self-preservation against injury-risk.   

  Marras and Schoenmarklin (1993) created high- and low-cumulative trauma 

disorder risk values for wrist and forearm ROM. High- and low-risk mean wrist flexion-

extension ROM were established at 35.63° and 27.95°, and high- and low-risk mean 

radial-ulnar deviation ROM were established at 23.65° and 17.64°, respectively (Table 

1.1.). Descriptive statistics from Delisle et al. (2005) for mean ROM (90th – 5th percentile) 

of wrist flexion-extension and wrist radial-ulnar deviation were reported as 66° and 36°, 

respectively. Both of which are considered high-risk when referencing Marras and 

Schoenmarklin (1993). Qin et al. (2008) found no significant main effect of pace or 

stress on mean wrist position and did not compare wrist position with the established 

low- and high-risk values (Marras and Schoenmarklin 1993). The mean wrist flexion-

extension ROM (mean±SE; 54.93±6.41°) and radial-ulnar deviation ROM (33.81±5.96°) 

for natives and the mean wrist flexion-extension ROM (46.23±3.79°) and radial-ulnar 

deviation ROM (31.74±6.50°) for non-natives in this work are lesser ROM values when 
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compared to Delisle et al. (2005), although still considered high-risk for cumulative 

trauma disorders when referencing Marras and Schoenmarklin (1993). Measures from 

this study were gathered during the production of a sign (‘principal’) that was intended 

to differentiate between signers who deviate compared to signers who do not deviate 

from neutral wrist joint position. Mean ROM values over the course of one sign 

compared to over the course of an entire task may not be equivalent.    

Upon adjusting for the covariates of gender, age, hearing status, and hand 

dominance, this work found deaf participants (n=17) had greater mean wrist flexion-

extension ROM (mean±SE; deaf 54.41±3.99° and hearing 39.71±5.44°), greater mean 

radial-ulnar deviation ROM (deaf 39.42±5.75° and hearing 18.01±3.26°), and greater 

minimum wrist flexion-extension position (deaf -55.77±4.37° and hearing -35.29±7.98°) 

than hearing participants (n=8). These secondary outcomes are consistent with the work 

of Donner et al. 2013 who reported that deaf students demonstrated greater right wrist 

flexion-extension and right radial-ulnar deviation displacement compared to 

interpreters when conversing. Findings for the non-neutral joint angle echo the same 

sentiment mentioned in the ballistic signing discussion. Categorization into hearing and 

deaf sub-groups when studying biomechanical measures indicative of injury-risk is 

something that should be considered with future research. 

This work also found males (n=9) had a lesser average wrist flexion-extension 

joint position (mean±SE; -33.24±3.33°), indicating a greater deviation from neutral into 

wrist extension, than females (n=16; -28.52±5.87°) during the sign for ‘principal.’ This 

may simply be a stylistic difference across the sexes, however it does highlight a mean 

wrist flexion-extension position further from, rather than closer to neutral. Based on the 

work of Feuerstein and Fitzgerald 1992, hand and wrist deviations were found to be 

significantly greater in interpreters with pain making this is a less favorable outcome for 

males.  
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2.4.6. Work envelope 

Work envelope is defined as movement in front of the chest within a boundary of 25cm2 

(Feuerstein and Fitzgerald 1992; Woodcock and Fisher 2008). Outcomes in 

biomechanical measures for work envelope were hypothesized to be less favorable (i.e. 

worse) for non-natives compared to natives. Similar to the results for non-neutral joint 

position, natives had a greater maximum position along the x-axis, greater minimum 

positions along the x- and z-axes, and marginally greater work envelope along the z-axis 

compared to non-natives, which were not in support of this study’s hypothesis. 

Minimum and maximum positions, and work envelope measurements closer to the 

recommended 25cm x 25cm norm (Feuerstein and Fitzgerald 1992; Woodcock and 

Fischer 2008) were thought to be more favorable. The slightly longer dominant arm 

length of natives compared to natives (though not significant; p=0.123) may have 

influenced the greater work envelope values. 

Compared to the 25cm x 25cm recommended norm, natives and non-natives 

were 132% and 81% greater along the x-axis (medial-lateral), and 43% and 23% greater 

along the z-axis (superior-inferior), respectively. This recommended norm was originally 

proposed by Feuerstein and Fitzgerald (1992) and was based on seated work space 

design specifications of Hagberg (1984). Data for this study were gathered in standing; 

therefore, use of the mean values along the x- (mean±SE; 50.42±2.85cm), y- 

(48.19±2.35cm), and z-axes (32.82±1.24cm) from this study should help inform the 

development of 2D and 3D work envelope norms for signers while standing.  

To the best of this author’s knowledge, the study by Feuerstein and Fitzgerald 

(1992) is the only prior work available analyzing work envelope of signers. Like ‘micro’ 

rest breaks, muscle tension, ballistic signing, and non-neutral joint angle, participants 

were visually observed via video recordings. The frequency of excursions outside of the 
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25cm2 recommended work envelope norm were counted. There was good inter-rater 

reliability of this quantification for work envelope (Pi=0.95). Interpreters with pain 

(mean±SD; 2.7±3.1 excursions outside of the optimal work envelope per minute) had 

greater excursions outside of the optimal work envelope per minute than interpreters 

without pain (1.0±0.8 excursions outside of the optimal work envelope per minute). Sub-

group comparisons can be drawn between interpreters with and without pain with the 

current work on non-native and native signers, respectively. These findings of natives 

with greater maximum and minimum positions along the x-axis, greater minimum 

position along the z-axis, and marginally greater work envelope along the z-axis 

compared to non-natives are inconsistent with the larger excursion measurements 

outside of the optimal work envelope for interpreters with pain in the work of Feuerstein 

and Fitzgerald (1992). Anecdotally, there is some thought that a larger work envelope is 

safer and less injury-risk prone because it relies on the larger muscle groups of the 

shoulders and elbows, and therefore induces less repetitive motion to the smaller muscle 

groups of the wrists and hands.  

Upon adjusting for the covariates of gender, age, hearing status, and hand 

dominance, this work found right-hand dominant participants (34.22±1.25cm) had a 

larger work envelope along the z-axis (superior-inferior), a greater maximum position 

along the x-axis (medial-lateral; 31.35±1.53cm), and a greater maximum position along 

the y-axis (anterior-posterior; 17.66±0.94cm) compared to left-hand dominant 

participants (25.49±1.19cm, 16.44±4.73cm, 11.15±2.20cm, respectively). The greater 

maximum value along the x-axis for right-hand dominant participants is clear because 

the positive x-axis denotes the right side of the body where right-hand dominant 

participants presumably conduct much of their motion. The greater maximum motion 

along the z- and y-axes by right-hand dominant participants may simply relate to the 

larger representation of right-hand dominant participants in this study (n=21) compared 
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to left-hand dominant participants (n=4). While there was no significant difference 

between the dominant arm length of right- and left-hand dominant participants 

(p=0.136), the arm length of right-hand dominant participants (53.45±0.80cm) was 

slightly longer than left-hand dominant participants (50.50±0.96cm) possibly 

influencing the greater work envelope values along the z- and y-axes. Left-hand 

dominant participants (-29.33±4.05cm) had a greater minimum position along the x-

axis compared to right-hand dominant participants (-19.97±1.72cm). The greater 

minimum value along the x-axis for left-hand dominant participants is clear because the 

negative x-axis denotes the left side of the body where left-hand dominant participants 

presumably conduct much of their motion. 

Participants greater than or equal to 40 years of age did not have as great of a 

minimum position along the z-axis (11.84±1.15cm) as participants less than 40 years of 

age (8.91±1.09cm). While there was no significant difference between the arm length of 

participants greater than or equal to 40 years of age compared to participants less than 

40 years of age (p=0.140), the arm length of participants less than 40 years of age 

(53.71±0.96cm) was slightly longer than participants greater than or equal to 40 years of 

age (52.05±1.08cm) possibly influencing the greater minimum work envelope values. 

This lack of extreme minimum motion in the superior to inferior plane may relate to 

employment of greater energy conservation tactics with increased age.  

 

2.4.7. Study limitations 

There were a few limitations to this study. The observational cross-sectional design 

limits the ability to detect any cause and effect relationships between the variables. 

Dynamometry, EMG, and optical motion capture were used to quantify biomechanical 

outcomes in this work, however past work has used dynamometry, visual observation 
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with ratings of frequency and scale, biaxial unilateral and bilateral electrogoniometers, 

and electromagnetic motion capture. EMG-based rest and linear segment acceleration 

were used to quantify ‘micro’ rest breaks and ballistic signing in this work, whereas other 

work has used kinematic-based rest and angular joint acceleration. Inconsistent methods 

used to collect biomechanical outcomes and participant groupings make it difficult to 

compare across studies. Participant sampling targeted natives and non-natives, but did 

not match age, gender, or hearing status across sub-group comparisons. The typical 

interpreting demographic is approximately 75% female to 25% male (Brunson 2017). 

While the groups in this study were unbalanced between males and females (60% to 40% 

of native females to males and 70% to 30% of non-native females to males; Table 2.1.), 

these group distributions are consistent with the distribution of sex in the interpreting 

profession. The aim of this study was to compare differences between natives and non-

natives. Participants were encouraged to interpret the video source into their own sign 

language and not simply echo the signs produced by the presenter. Although the third 

trial was analyzed for purposes of inducing a training effect, those participants who were 

not sign language interpreters may have felt more stressed or uncomfortable with this 

methodology, thereby affecting the investigators ability to gather a natural capture their 

sign language expression. Measuring participant stress before and after the experiment 

may have helped to taper the influence of interpreting the video source, or comparing 

across the task of conversing, rather than the task of interpreting may have served as a 

better approach in capturing differences between natives and non-natives. Additionally, 

comparing native and non-native sub-groups based on hearing status would offer 

additional insight into the biomechanical considerations unique to signers and should be 

considered in future investigations. This study was powered to detect wrist acceleration 

as the primary outcome for ballistic signing, thus other analyses of UE strength, ‘micro’ 

rest breaks, muscle tension, non-neutral joint angle, and work envelope may be 
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underpowered. These data can now be used to power and design future studies exploring 

similar factors. Assessment of scapular muscle strength was not conducted in the current 

work. This would be a useful correlate measure to tension and rest found in the scapular 

musculature. EMG measures targeted the entire shoulder complex, whereas 

dynamometry targeted only the glenohumeral joint. Future work should include 

assessments of scapular muscle strength to further explore the implications of non-

dominant upper trapezius found in this study. Investigators used RID certification to 

ascertain sign language fluency for hearing participants, but no standard assessment was 

used to determine sign language fluency for deaf participants. Use of sign language as a 

primary language of communication either since birth, or during primary or secondary 

education was deemed sufficient evidence to prove fluency for deaf participants, but this 

could introduce possible discrepancies in future comparisons. Future work will include 

use of American Sign Language Proficiency Assessment to assess individual ability to 

communicate using sign language as a standard fluency measure with all hearing and 

deaf participants (Maller et al. 1999).     

 

2.5. Conclusions 

Sub-group comparisons demonstrated consistent results implicating non-dominant 

upper trapezius in the identified ‘micro’ rest breaks and muscle tension (across the first 

minute of the trial, and from the start to the stop of the signs for ‘again’ and ‘principal’) 

findings. Results from this work for rest and tension demonstrated more significance on 

the non-dominant, rather than the dominant side. The non-dominant upper trapezius of 

natives demonstrated significantly more rest and less tension, which was thought to be 

favorable. Given these results, biomechanists and clinicians alike should not be surprised 

by non-dominant symptom presentation in non-natives.  
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Use of dynamometry for strength, EMG for quantification of ‘micro’ rest breaks 

and muscle tension, and optical motion capture for ballistic signing, non-neutral joint 

angle, and work envelope will help to inform a composite measure of injury-risk specific 

to signers. This complete description of all the UE biomechanics unique to signers will 

help to deepen our understanding of their collective role as indicators of MSK symptoms. 

Natives in this study demonstrated favorable outcomes compared to non-natives for less 

muscle tension and more rest. If rest is notably decreased or increased, then the inverse 

for tension should be examined. Non-natives in this study demonstrated favorable 

outcomes compared to natives for ballistic signing, non-neutral joint angle, and work 

envelope. Since natives are, anecdotally, known to have less pain from signing when 

compared to non-natives, investigation of their greater jerk, increased wrist flexion-

extension ROM, and larger work envelope findings warrants further examination. 

Originally thought to be indicative of injury-risk, ballistic signing, greater non-neutral 

joint angle, and a larger work envelope may actually be indicative of a counterintuitive 

self-preservation response against injury-risk while signing. Increased jerk and greater 

non-neutral joint angle may improve clarity and effectiveness while signing, thus 

lessening the need for repetition and reiteration; subsequently, improving efficiency, and 

reducing fatigue and injury-risk. Additionally, a larger work envelope may be safer and 

less prone to injury because it relies on the larger muscle groups of the shoulders and 

elbows, thereby reducing repetitive motion of the smaller muscle groups of the wrists 

and hands.  

While consistency in methodology and participant groupings is needed to 

compare across studies with more ease, this work helps to build upon the UE 

biomechanics of signers in the available literature. To promote safe practices while 

signing, emulating the rest and tension of natives, and the ballistic signing, non-neutral 

joint angle, and work envelope of non-natives is suggested. 
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CHAPTER 3 

COMPOSITE MEASURE OF INJURY-RISK FOR SIGNERS  

(SECOND MANUSCRIPT) 

Abstract 

Self-reported musculoskeletal (MSK) pain ranges from 31-81% in signers. The goal of 

this study was to take a wider view of previously identified biomechanical tasks that may 

contribute to injury-risk in signers. A composite injury-risk measure (the modified Strain 

Index) specific to the biomechanics of signers was created, examined across the entire 

cohort of signers, and compared across the sub-groups of natives (participants with at 

least one signing, deaf parent) and non-natives (participants with non-signing, hearing 

parents). Non-natives were hypothesized to have less favorable (i.e. worse) modified 

Strain Index (SI) scores when compared to natives. It was also hypothesized that non-

natives will have a greater self-report of MSK pain, and that pain will be associated with 

the modified SI score and its respective biomechanical tasks. Fifteen non-natives (mean 

age 43.9±11.4 years; 11 deaf/4 hearing; 9 females/6 males; 12 right hand-dominant) and 

10 natives (mean age 32.7±10.9 years; 6 deaf/4 hearing; 7 females/3 males; 9 right hand-

dominant) used a numeric pain rating scale to rate whether they experience pain while 

signing. Modified SI methodology was developed and tested from a previously collected 

dataset. Tasks contained within the modified SI were: 1) duration of exertion, 2) muscle 

tension, 3) ballistic signing, 4) non-neutral joint angle, and 5) two-dimensional work 

envelope. Descriptive statistics and normative values from the Occupational Health and 

Safety for Sign Language Interpreters helped to create categorical ratings and a principal 

component analysis helped to establish multiplier weights. Participant performance was 

ranked, and the product of the multipliers for each task created a modified SI score. 

Modified SI scores across the entire cohort indicated a mild increased injury-risk 
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(3.71±3.16 points). There were no differences when comparing modified SI scores across 

the sub-groups of natives (4.70±3.2 points) and non-natives (3.06±3.05 points; 

p=0.144), however only 30% of all natives and 74% of the non-natives had safe modified 

SI scores. This was inconsistent with natives’ and non-natives’ subjective report of MSK 

pain. Native signers (30%) presented with a lower self-reported MSK pain prevalence 

than non-natives (40%). Pain intensity while signing was comparable across all natives 

(0.90±1.91 out of 10) and all non-natives (0.87±1.30), however natives with pain 

(3.00±2.65) had a slightly greater pain intensity report than non-natives with pain 

(2.17±1.17). Presence of pain and pain intensity were not associated with the modified SI 

score, and pain intensity was not associated with any of the biomechanical tasks reflected 

on the modified SI. Use of the modified SI for signers demonstrates promise as a more 

global assessment of the biomechanical factors that contribute to injury-risk, however 

further investigation of non-biomechanical contributors to pain and injury-risk in 

signers is needed.  

  

 

 

Keywords 

modified Strain Index; composite measure of injury-risk; native signers; non-native 

signers; biomechanics  
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3.1. Introduction 

Self-reported musculoskeletal (MSK) pain ranges from 31-81% in signers (Feuerstein 

and Fitzgerald 1992; Podhorodecki and Spielholz 1993; Kroeger 2014; Roman and Samar 

2015). Durand et al. (2001) found 81% of signers reported shoulder pain, 79% reported 

neck pain, and 74% reported forearm-wrist-hand pain over a 12-month period. Roman 

and Samar (2015) found 81% of signers experienced varying intensities of MSK pain, 

reporting the neck with the highest pain prevalence (34%), followed by the wrist-hand 

(11%), elbow-forearm (10%), and shoulder (10%). Johnson and Feuerstein (2005) found 

that signers reported symptoms in the neck (73.6%), hand and wrist (69.6%), shoulder 

(60.0%), low back (48.6%), forearm (44.2%), upper back (44.1%), and/or elbow (33.6%). 

The preeminent work of Feuerstein and Fitzgerald (1992) on upper extremity 

biomechanical factors affecting signers informed a text published by the Rochester 

Institute of Technology, National Technical Institute for the Deaf in Rochester, NY on 

cumulative trauma disorders (RIT 2005). Since Feuerstein and Fitzgerald’s (1992) 

seminal work, researchers continue to investigate joint position, velocity, acceleration 

and jerk, rest, muscle tension, and work envelope of the upper extremity (UE), in 

attempt to discern why signers report such a high prevalence of pain (Delisle et al. 2005; 

Donner 2012; Donner et al. 2013; Fisher et al. 2014; Donner et al. 2016). While the study 

of individual biomechanical factors further informs the literature, it is important to keep 

in mind that work-related musculoskeletal (MSK) disorders in signers are multi-

factorial. (Johnson and Feuerstein 2005; Delisle et al. 2007) 

Use of ergonomic risk assessment tools as a method of hazard control is 

associated with reduced MSK disorders and injury-risk in manufacturing production and 

maintenance workers (Cantley et al. 2014). No composite injury-risk measure presently 

exists for signers. Various ergonomic risk measures for repetitive high-risk UE tasks 
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have been studied, however many focus on the assessment of industry workers. The 

Rapid Upper Limb Assessment (RULA) uses diagrams of body postures to evaluate 

exposure to risk factors and was designed for occupations, like the garment-making, 

where upper limb disorders are commonly reported (McAtamney and Corlett 1993). The 

Strain Index (SI) is a multiple task analysis tool used to measure risk of distal upper 

extremity disorders in industry workers including manufacturing, meat and poultry 

processing, and manual material handling (Moore and Garg 1995). The concise exposure 

index (OCRA) is a proposed measure for occupations with repetitive movements of the 

upper limbs and considers an array of technical actions performed during a shift divided 

by a corresponding number of recommended actions during that shift, in effort to glean a 

measure of risk (Occhipinti 1998). The Rapid Entire Body Assessment (REBA) was 

developed to measure unpredictable work postures in the health care or service industry 

(Hignett and McAtamney 2000). The quantified version of the American Conference of 

Governmental Industrial Hygienists Threshold Limit Values for mono-task hand work 

(ACGIH TLV) estimates a normalized peak force relative to individual’s percent maximal 

voluntary contraction (MVC) divided by their hand activity level measured on a visual 

analog scale from zero to ten (zero signifying no regular exertions and 10 equating to 

rapid steady motion; ACGIH 2001). Jones and Kumar (2007) performed a comparison 

of these five ergonomic risk assessment tools with 15 saw-filers, workers responsible for 

maintaining the condition of the various saws and knives, from four sawmill facilities. 

They found that only the SI and OCRA were sensitive to measuring differences across 

facilities in posture and in measures of frequency, such as hours per day, repetitions per 

day, and total exposure. Since the SI demonstrated increased sensitivity compared to 

other ergonomic risk assessment tools (Jones and Kumar 2007), good test-retest 

reliability (Stephens et al. 2006), the tasks assessed (Moore and Garg 1995) were similar 
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to the ones within this study, a modified SI specific to the biomechanics of signers was 

created.  

The multiple tasks analyzed within the original SI are intensity of exertion, 

duration of exertion, efforts per minute, hand and wrist posture, speed of work, and 

duration of task per day (Table 3.1.). Intensity of exertion is an estimate of the strength 

required to perform the task. Duration of exertion is calculated by measuring the 

duration of all exertions during the observation period divided by the duration of the 

observation period and multiplied by 100. Efforts per minute are measured by counting 

the number of exertions that occur during an observation period divided by the duration 

of the observation period. Hand and wrist posture estimates the position of the hand or 

wrist in degrees of motion relative to neutral. Posture estimates for wrist flexion, 

extension, and ulnar deviation are available. Speed of work is an estimate of how fast the 

worker is working relative to a previously determined predicted pace. Lastly, duration of 

the task per day is obtained from plant personnel and measured in hours (Moore and 

Garg 1995). 
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Table 3.1. Quantitative and qualitative indicators for the original Strain Index (SI) 

task rating 
1 2 3 4 5 

intensity of exertion 
(% of muscle strength) 

<10 
light 

10-29 
somewhat hard 

30-49 
hard 

50-79 
very hard 

≥80 
near maximal 

multiplier 1.00 3.00 6.00 9.00 13.00 
duration of exertion 
(% of total time) 

<10 10-29 30-49 50-79 ≥80 

multiplier 0.50 1.00 1.50 2.00 3.00 
efforts per minute 
(minutes) 

<4 4-8 9-14 15-19 ≥20 

multiplier 0.50 1.00 1.50 2.00 3.00 
hand and wrist posture (°) 
(i.e. wrist extension) 

0-10 
very good 

11-25 
good 

26-40 
fair 

41-55 
bad 

≥60 
very bad 

multiplier 1.00 1.00 1.50 2.00 3.00 
speed of work 
(observed pace/predicted pace; %) 

≤80 
very slow 

81-90 
slow 

91-100 
fair 

101-115 
fast 

>115 
very fast 

multiplier 1.00 1.00 1.00 1.50 2.00 
duration of task per day (hours) ≤1 1-2 2-4 4-8 ≥8 
multiplier 0.25 0.50 0.75 1.00 1.50 
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Semi-quantitative participant performance during each task of the SI is ranked 

from one to five. Each rating category is associated with a multiplier. The higher the 

rating category, the higher the multiplier, and the greater the injury-risk. The product of 

the respective task multipliers provides a composite measure of injury-risk or what is 

known as the SI score (i.e. SI score=intensity of exertion multiplier* duration of exertion 

multiplier*efforts per minute multiplier*hand and wrist posture multiplier*speed of 

work multiplier*duration of task per day multiplier). A SI score threshold of less than or 

equal to three is considered safe, greater than or equal to seven is considered hazardous, 

and greater than three, but less than seven is considered at increased risk (Moore and 

Garg 1995). For example, the mean SI score for the previously mentioned saw-filers was 

14 (Jones and Kumar 2007), thus indicating hazardous work. 

The goal of this study was to take a wider view of the previously identified 

biomechanical tasks that may contribute to injury-risk in signers (Feuerstein and 

Fitzgerald 1992; RIT 2005). Specifically, this study sought to 1) quantify self-reported 

MSK pain, 2) modify the SI to make it appropriate for signers by establishing relevant 

tasks, rating values and multiplier weights, 3) calculate modified SI scores across a 

cohort of signers and compare across the sub-groups of natives (participants with at least 

one deaf, signing parent) and non-natives (participants with hearing, non-signing 

parents) signers, and 4) determine any associations of self-reported MSK pain with 

modified SI score and its respective biomechanical tasks. Non-natives were hypothesized 

to have greater self-reported MSK pain than natives. It was also hypothesized that non-

natives will have less favorable (i.e. worse) composite injury-risk scores when compared 

to natives and that self-reported MSK pain will be associated with the modified SI score 

and its respective biomechanical tasks.  
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3.2. Materials and methods 

This study was approved by the Institute Review Board at Arizona State University.   

 

3.2.1. Participants 

Non-natives were defined as having hearing, non-signing parents; natives were defined 

as having at least one deaf, signing parent. A study population representing the 

surrounding community of native and non-native signers was obtained. Participants 

were recruited from local associations (Registry of Interpreters for the Deaf, Association 

for the Deaf, Children of Deaf Adults International), local schools, colleges and 

universities, the local Commission for the Deaf and Hard of Hearing, and a local video 

relay service. Fifteen non-natives (mean age 43.9±11.4 years; 11 deaf/4 hearing; 9 

females/6 males; 12 right hand-dominant) and 10 natives (mean age 32.7±10.9 years; 6 

deaf/4 hearing; 7 females/3 males; 9 right hand-dominant) were studied (Table 3.2.).  
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Table 3.2. Participant demographics (n=25). 
 natives non-natives total 

n (%) n (%) n (%) 

10 (40) 15 (60) 25 (100) 

age (mean±SD) 43.9±11.4 32.70±10.9 39.4±12.3 

hearing status 

hearing 4 (40) 4 (26.7) 8 (32) 

deaf 6 (60) 11 (73.3) 17 (68) 

sex 

male 3 (30) 6 (40) 9 (36) 

female 7 (70) 9 (60) 16 (64) 

hand-dominance 

right 9 (90) 12 (80) 21 (84) 

left 1 (10) 3 (20) 4 (16) 
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All participants voluntarily provided written informed consent to participate and 

were ostensibly healthy, deaf or hearing adult participants greater than or equal to 18 

years of age. Fluency of hearing participants was measured by standards of Registry of 

Interpreters for the Deaf (RID) (RID 2015). Use of sign language as primary language of 

communication either since birth, or during primary or secondary education equated to 

fluency for deaf participants. While formal RID certification for deaf participants was not 

required, one participant was a Certified Deaf Interpreter and others were preparing to 

become certified. Exclusion criteria included those enrolled in interpreter preparatory or 

training programs, those with pacemakers, those who were pregnant, and/or those 

diagnosed with a neuromuscular disorder (e.g. Parkinson’s Disease).  

 

3.2.2. Data collection 

During the initial intake, participants were asked to self-report MSK pain using a 

numeric pain rating scale (Castarlenas et al. 2016; Kahl and Cleland 2005). Not focused 

to a specific body region, participants rated whether they typically experience pain while 

signing on a zero to 10 scale (zero signifying no pain and 10 equating to the worst 

imaginable pain).  

The modified SI was developed and tested from previously collected data (refer to 

Chapter 2). Variables extracted from this data set included values for ‘micro’ rest breaks, 

muscle tension, ballistic signing, non-neutral joint angle, and work envelope. ‘Micro’ rest 

breaks are brief periods during the interpreting task when one or both hands are 

lowered. Muscle tension is prolonged muscle contraction because of an awkward 

position or a physiological reaction to stress (RIT 2005). Participants watched and 

interpreted three trials of a seven-minute video source. ‘Micro’ rest breaks and muscle 

tension were quantified using a 16-channel, wireless Noraxon DTS system (Noraxon, 

Inc., Scottsdale, AZ) to measure surface electromyography (EMG). Measures were 
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acquired bilaterally from upper, middle compartments of trapezius, anterior, middle 

compartments of deltoid, and wrist extension-flexion and radial-ulnar deviation muscle 

groups at 1000Hz. Prior to data collection, a MVC measure was acquired from each 

muscle compartment using postures that elicit maximal activity (Cram, Kasman, and 

Holtz 1998). ‘Micro’ rest breaks were identified in the processed EMG signal, measured 

as a temporal delay greater than or equal to 0.2565 seconds between sequential signs 

with activation less than 18% MVC over the first minute of the third trial (Delisle and 

Lariviere 2005), and represented as the total percentage of time spent in rest (%rest). 

Muscle tension was quantified by taking the mean muscle activation across the first 

minute of the third trial (%MVC).   

Ballistic signing, non-neutral joint angle, and work envelope were quantified 

using an eight Kestrel camera motion capture system (Motion Analysis Corporation, 

Santa Rosa, CA), which tracked 9mm reflective surface markers on the upper limb 

segments during sign production. Ballistic signing is defined as a consistently hard, 

forceful, or abrupt production of signs. Neutral joint positions are considered the 

midpoint of opposing motions within the same cardinal plane (e.g. midpoint between 

wrist flexion-extension in the sagittal plane), therefore non-neutral joint positions are 

deviations from neutral. Work envelope is defined as the area in which signs can be 

produced with a minimal amount of exertion (RIT 2005). The Occupational Health and 

Safety for Sign Language Interpreters describes ideal work envelope as hand movement 

in front of the chest within a boundary of 25cm2 (Feuerstein and Fitzgerald 1992; 

Woodcock and Fischer 2008). Prior to beginning the interpretation, a static recording 

was obtained for use in marker definition. A total of 23 surface markers were placed 

bilaterally on the second and fifth metacarpophalangeal (MCP) joints, the radial and 

ulnar styloids, medial and lateral epicondyles, posterolateral acromions, sternoclavicular 

joints, spinous process of the seventh cervical vertebra, xiphoid process, anterior 
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midpoint of the proximal UEs, anterior midpoint of the forearms, and an offset marker 

on the left posterior shoulder. By way of tracking the dominant second MCP joint surface 

marker, ballistic signing was measured as the dominant absolute maximum resultant 

instantaneous linear segment acceleration from the start to the stop of the sign for ‘again’ 

(Fig. 3.1.a) Inverse kinematics using the C3D model builder module of the Motion 

Monitor (Innovative Sports Training, Inc., Chicago, IL) software calculated the average 

wrist flexion-extension position during the participants’ production of the sign for 

‘principal’ (Fig. 3.1.b) and the absolute value was used as the primary outcome for non-

neutral joint position. Work envelope was measured across the first minute of the third 

trial by tracking the maximum minus the minimum linear motion of the dominant 

second MCP joint surface marker relative to the ipsilateral posterolateral acromion 

surface marker along the respective two-dimensional (x-, medial to lateral, and z-, 

superior to inferior, axes) planes.  
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Figure 3.1. a) Sign for ‘again.’ b) Sign for ‘principal.’ 
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3.2.3. Data processing 

Self-reported MSK pain was compiled as a dichotomous variable (participants with pain 

had a rating greater than zero and participants without pain had a rating equal to zero). 

Pain intensities were also complied across the entire cohort of signers, and across the 

sub-groups of natives and non-natives.  

Upon comparing the tasks contained within the original SI to the proposed tasks 

to be contained within the modified SI for signers, the inverse of ‘micro’ rest breaks 

(%total - %rest time), muscle tension, ballistic signing, and non-neutral joint angle were 

analogous, respectively, to duration of exertion, intensity of exertion, speed of work, and 

hand and wrist posture. Work envelope along the x-axis and work envelope along the z-

axis were newly introduced tasks in to the modified SI, as efforts per minute or duration 

of task per day were not assessed.   

 Like the original SI, participant performance during each task of the modified SI 

was ranked one to five. Each rating category was assigned a multiplier. The higher the 

rating category, the higher the multiplier, and the greater the injury-risk. The product of 

the respective task multipliers was calculated, providing a composite injury-risk measure 

or a modified SI score (i.e. modified SI score=duration of exertion multiplier*muscle 

tension multiplier*ballistic signing multiplier*non-neutral joint angle multiplier*work 

envelope along the x-axis multiplier*work envelope along the z-axis multiplier; Table 

3.3.). The same thresholds used for the original SI (less than or equal to three considered 

as safe, greater than or equal to seven considered as hazardous, greater than three, but 

less than seven indicating increased risk; Moore and Garg 1995) were used to deduce the 

indications of the modified SI score for signers. 
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Table 3.3. Example procedure for calculating the modified SI score for signers. 
  

duration 
of 

exertion 
(%) 

 
muscle 
tension 

(%) 

 
ballistic 
signing 
(m/s2) 

 
non-neutral 
joint angle 

(°) 

 
work envelope 

 
along the x-

axis (cm) 
along the z-

axis (cm) 
raw data 31.44 25.31 34.21 36.62 49.47 75.54 
rating 2 3 3 3 3 5 
multiplier 0.75 1 1.75 0.75 2 3 
modified SI 
score 
calculation 

0.75*1*1.75*0.75*2*3=5.91 (signifying at increased risk) 
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3.2.4. Data analysis 

With statistical significance (α<0.05), all statistical analyses were performed using SPSS 

(v.24, IBM Corp., Armonk, NY). 

 

Modified SI rating values for signers  

Descriptive statistics from the total sample and norms from the Occupational Health and 

Safety for Sign Language Interpreters (Woodcock and Fisher 2008) were used to 

determine the categorical rating values for each biomechanical task in the modified SI.  

 

Modified SI multiplier weights for signers 

Upon achieving normality assumption (Shapiro-Wilk p≥0.05), principal component 

analysis was performed to determine multiplier weights in the modified SI. A scree plot 

was created with the principal components along the x-axis and the eigenvalues along 

the y-axis. The bend in the curve on the scree plot helped to determine the number of 

principal components to consider for analysis. A cut-off for the significance of the factor 

loadings was set to ±0.6. Only the factor loadings within the principal components that 

explained the most amount of variance were considered when establishing the multiplier 

weights. Analysis of the constructs surrounding each principal component was beyond 

the scope of this work. 

 

Additionally, in effort to confirm correct assignment of multiplier weights in the 

modified SI, Spearman correlation analyses were performed between self-reported pain 

intensities while signing and the respective biomechanical tasks. 
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Comparison of modified SI scores for natives and non-natives 

A Mann Whitney U test was used to analyze group differences in the modified SI score 

between native and non-native signers. 

 

Association of modified SI scores for signers with self-report of MSK pain 

Spearman correlation analyses were used to evaluate associations between presence of 

self-reported MSK pain and modified SI scores, and intensities of self-reported MSK 

pain and modified SI scores.  

 

3.3. Results  

 

3.3.1. Musculoskeletal pain 

Self-reported MSK pain was examined across the entire cohort of signers and compared 

across the sub-groups of non-natives and natives. Nine out of 25 signers (36%), three out 

of 10 (30%) natives, and six out of 15 (40%) non-natives self-reported pain (Fig. 3.2.). 

The (mean±SD) reported pain intensities for all signers, all natives, and all non-natives 

were 0.88±1.54, 0.90±1.91, and 0.87±1.30 out of 10, respectively. The reported pain 

intensities for signers, natives, and non-natives with reported MSK pain were 2.44±1.67, 

3.00±2.65, and 2.17±1.17 out of 10, respectively.  
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Figure 3.2. Self-reported musculoskeletal pain in a) all signers, b) native, and c) non-native signers. 

  

Pain
36%

No pain
64%

All signers (n=25)

Pain
30%

No pain
70%

Natives (n=10)

Pain
40%

No pain
60%

Non-Natives (n=15)

a) b) 

 

c) 
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3.3.2. Modified SI rating values for signers 

Descriptive statistics (mean±SD) were gathered for each biomechanical task (Table 3.4.). 

The variability of muscle tension was greatly impacted by participants who presented 

with muscle tension values in a non-physiological range of 227-1122 %MVC. It is 

presumed there was increased noise from the participants’ forearm, wrist, and hand 

segments contacting their bodies or the wrist MVCs were elicited incorrectly, neither of 

which could be corrected for by filtering and smoothing the surface EMG data; therefore, 

descriptive data for muscle tension are presented here with these outliers removed. 
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Table 3.4. Descriptive statistics (mean±SD) from the total sample for ‘micro’ rest breaks, duration of exertion, muscle 
tension, ballistic signing, non-neutral joint angle, and two-dimensional work envelope. 

biomechanical task  

‘micro’ rest breaks (%rest) 68.79±15.02 

duration of exertion (%total-%rest) 31.21±15.02 

muscle tension (%MVC) 18.46±7.43 

ballistic signing (m/s2) 24.19±9.49 

non-neutral joint angle (°) 33.74±12.17 

work envelope along the x-axis (medial-lateral; cm) 50.42±12.90 

work envelope along the z-axis (superior-inferior; cm) 48.19±11.75 
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Based on these findings and the norms from the Occupational Health and Safety 

for Sign Language Interpreters (Woodcock and Fisher 2008), the categorical ratings 

from one to five for the modified SI for signers were established (Table 3.7.).  

 

3.3.3. Modified SI multiplier weights for signers 

Upon entering the variables of duration of exertion (the inverse of ‘micro’ rest breaks), 

muscle tension (intensity of exertion), ballistic signing (speed of work), non-neutral joint 

angle (hand and wrist posture), and the new task of work envelope along its two-

dimensional x- (medial-lateral) and z- (superior-inferior) axes into a principal 

component analysis, the scree plot (Fig. 3.3.) indicated that principal components one 

through three were worthy of analysis as they collectively explained 83.99% of the total 

variance (Table 3.5.).  



    
  

 
       

9
0

 

 

 

 

 

 

Figure 3.3. Scree plot for the biomechanical factors of duration of exertion, muscle tension, ballistic signing, non-neutral 
joint angle, and work envelope along the x- (medial-lateral) and z- (superior-inferior) axes. 
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Table 3.5. Eigenvalues for each principal component and percent of variance explained. 
principal component eigenvalue percent variance explained (%) 

1 2.31 38.43 

2 1.80 30.05 

3 0.93 15.51 

4 0.53 8.76 

5 0.26 4.25 

6 0.18 3.01 

  

 

Table 3.6. Factor loadings for principal components one through three. 
 
biomechanical task 

principal component 

1 2 3 

duration of exertion 0.07 0.95 -0.03 

muscle tension 0.26 0.90 -0.04 

ballistic signing 0.77 -0.30 -0.11 

non-neutral joint angle 0.37 0.03 0.93 

work envelope along the x-axis 0.84 -0.07 -0.03 

work envelope along the z-axis 0.89 -0.02 -0.24 
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The first principal component explained 38.43% of the variance (Table 3.5.) and 

the highest factor loadings, respectively, were work envelope along the z-axis, work 

envelope along the x-axis, and ballistic signing (Table 3.6.). The second principal 

component explained 30.05% of the variance (Table 3.5.) and the highest factor 

loadings, respectively, were duration of exertion and muscle tension (Table 3.6.). Lastly, 

the third principal component explained 15.51% of the variance (Table 3.5.) and its 

highest factor loading was non-neutral joint angle (Table 3.6.). Based on these findings, 

modified SI multipliers were assigned from greatest to least amount of weight as follows: 

work envelope along the z-axis, work envelope along the x-axis, ballistic signing, 

duration of exertion, muscle tension, and non-neutral joint angle.  

Spearmen correlation analyses demonstrated no association between self-

reported MSK pain intensity during the initial intake and duration of exertion (r=0.267; 

p=0.196), self-reported MSK pain intensity and muscle tension (r=0.105; p=0.625), self-

reported MSK pain intensity and ballistic signing (r=0.103; p=0.652), self-reported MSK 

pain intensity and non-neutral joint angle (r=-0.144; p=0.494), self-reported MSK pain 

intensity and work envelope along the x-axis (r=0.001; p=0.997), and self-reported MSK 

pain intensity and work envelope along the z-axis (r=-0.061; p=0.774). In support of the 

reflected factor loadings from the principal component analysis, work envelope along the 

x-axis with work envelope along the z-axis (r=0.773; p=0.001), ballistic signing with 

work envelope along the z-axis (r=0.552; p=0.004), and duration of exertion with 

muscle tension (r=0.775; p=0.001) were associated. 

Based on the factor loadings, the correlational analyses, and previous multiplier 

framework of the original SI (Moore and Garg 1995), the multiplier weights for each 

biomechanical task in the modified SI for signers were established (Table 3.7.).  
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Table 3.7. Modified SI for signers. 

 
biomechanical task 

rating 
1 2 3 4 5 

muscle tension (%MVC) <9.99 
very light 

10-19.99 
light 

20-29.99 
medium 

30-39.99 
somewhat hard 

≥40 
hard 

multiplier 0.50 0.75 1.00 1.25 1.50 
duration of exertion (%total - %rest) 
 

<19.99 20-39.99 40-59.99 60-79.99 ≥80 

multiplier 0.50 0.75 1.00 1.25 1.50 
ballistic signing (m/s2) <14.99 

very slow 
15-24.99 

slow 
25-34.99 

fair 
35-44.99 

fast 
≥45 

very fast 
multiplier 0.75 1.25 1.75 2.25 2.75 
non-neutral joint angle (°) <9.99 

very good 
10-24.99 

good 
25-39.99 

fair 
40-54.99 

bad 
≥55 

very bad 
multiplier 0.25 0.50 0.75 1.00 1.25 
work envelope along the x-axis (cm) 
 

<24.99 25-39.99 40-54.99 55-69.99 ≥70 

multiplier 1.00 1.50 2.00 2.50 3.00 
work envelope along the z-axis (cm) 
 

<24.99 25-39.99 40-54.99 55-69.99 ≥70 

multiplier 1.00 1.50 2.00 2.50 3.00 
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3.3.4. Examination of modified SI scores across the entire cohort of 

signers, and between natives and non-natives 

Overall (n=25), modified SI scores ranged from 0.75 to 10.94 points and on average 

(mean±SD; 3.71±3.16 points), indicated a mild increased injury-risk. The modified SI 

scores for 14 out of 25 (56%) signers were considered safe (less than or equal to three), 

seven out of 25 (28%) were at increased risk (greater than three, but less than seven), 

and four out of the 25 (16%) were hazardous (greater than or equal to seven; Fig. 3.4.). 

Forty-four percent of the modified SI scores for signers in this overall participant sample 

reflected an increased injury-risk.    
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Figure 3.4. Mean (±SD) modified SI scores for signers (n=25) with modified SI score thresholds indicated by the dashed 
lines (less than or equal to three considered as safe, greater than or equal to seven considered as hazardous, and greater than 

three, but less than seven considered at increased risk). 
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There was no statistical difference in the modified SI scores (mean±SD) of 

natives (4.70±3.2 points) and non-natives (3.06±3.05 points; p=0.144). Of the natives, 

the modified SI scores of three out of the 10 (30%) were considered safe, five out of the 

10 (50%) were at increased risk, and two out of the 10 (20%) were hazardous. Of the 

non-natives, the modified SI scores of 11 out of the 15 (73%) were considered safe, two 

out of the 15 (13%) were at increased risk, and two out of the 15 (13%) were hazardous 

(Fig. 3.5.). Seventy percent of the natives’ and 26% of the non-natives’ modified SI scores 

reflected an increased injury-risk. 
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Figure 3.5. Mean (±SD) modified SI scores for natives (n=10) and non-natives (n=15) with modified SI score thresholds 
indicated by the dashed lines (less than or equal to three considered as safe, greater than or equal to seven considered as 

hazardous, and greater than three, but less than seven considered at increased risk). 
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3.3.5. Association of modified SI scores for signers with self-reported MSK 

pain 

Spearmen correlation analysis demonstrated no association between presence of self-

reported of MSK pain and modified SI score (r=0.087; p=0.680), nor was there an 

association between intensity of self-reported MSK pain and modified SI score             

(r=-0.035; p=0.869). On average, natives reporting pain had a pain intensity of 3.00 out 

of 10 and a modified SI score of 5.60 points indicating at increased risk and non-natives 

reporting pain had a pain intensity of 2.17 out of 10 and a modified SI score of 2.54 

points indicating safe practice (Fig. 3.6.).  
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Table 3.6. Musculoskeletal pain intensities and modified SI scores of natives and non-natives. 
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3.4. Discussion 

The overall 36% prevalence of self-reported MSK pain across all signers in this study was 

fairly consistent with the 31-81% reported in the literature (Feuerstein and Fitzgerald 

1992; Podhorodecki and Spielholz 1993; Kroeger 2014; Roman and Samar 2015). There 

was a 55% and 81% prevalence of pain reported by the signers studied in the work of 

Feuerstein and Fitzgerald (1992) and Roman and Samar (2015), respectively. In 

Podhorodecki and Spielholz (1993), 48.5% of signers had pain with zero percent of the 

deaf-parented (native or deaf participants signing since childhood) sub-group and 67% 

of the non-native sub-group reporting pain. The deaf-parented and non-native sub-

groups in Podhorodecki and Spielholz’s (1993) work were, respectively, comparable with 

this study’s native and non-native signers. Based on the findings from Podhorodecki and 

Spielholz (1993), greater MSK pain from non-natives than natives was anticipated in this 

study. Forty percent of non-natives reported MSK pain from sign language use compared 

to 30% of natives. While this was consistent with the past literature (Podhorodecki and 

Spielholz 1993) and clinical observation of non-natives presenting with greater self-

reported MSK pain over natives, the disparity between was expected to be greater than 

the 10% observed. Misalignment in the categorization of natives and non-natives across 

studies may explain the observed difference being smaller than anticipated.  

Across the entire cohort of signers in this study, pain intensity while signing on 

the numeric pain rating scale was (mean±SD) 0.88±1.54 out of 10 points at initial intake 

and this was comparable to the 10cm visual analogue scale measuring baseline pain of all 

interpreters (0.78±1.25cm) in the work of Feuerstein and Fitzgerald (1992). The sub-

grouping of interpreters working with pain and interpreters working without pain or 

minimal/transient discomfort in Feuerstein and Fitzgerald’s (1992) work and this study’s 

non-native and native signers were, respectively, comparable. A rating of greater than 

zero was considered pain in this work, therefore signers without pain reported a zero for 
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pain intensity and signers with pain reported a pain intensity of 2.44±1.67 out of 10 

points during the initial intake. Natives with pain reported a pain intensity of 3.00±2.65 

out of 10 points and non-natives with pain reported a pain intensity of 2.17±1.17 out of 10 

points. The interpreters working with no pain or minimal/transient discomfort in 

Feuerstein and Fitzgerald’s (1992) work had slightly higher pain intensities at baseline 

(0.46±1.4cm) and post-interpreting (0.65±1.7cm) than the signers without pain (0 out of 

10 points) in this work, however were comparable to the reported pain of 0.90±1.91 out 

of 10 points while signing across all natives. The interpreters working with pain in 

Feuerstein and Fitzgerald’s (1992) work had comparable pain intensities at baseline 

(1.09±1.1cm) and post-interpreting (3.44±2.0cm) with the signers with pain (2.44±1.67 

points), natives with pain (3.00±2.65 points), and non-natives with pain (2.17±1.17 

points) in this work; however, the same could not be said when comparing interpreters 

with pain at baseline and post-interpreting in the work of Feuerstein and Fitzgerald 

(1992) with all non-natives (0.87±1.30 points) in this work. This begs to question the 

potentially unfair assumption that non-native signers will report similarly to interpreters 

with pain. This study’s hypothesis was that non-natives will have greater reported MSK 

pain than natives. Indeed, the prevalence of self-reported pain was greater in non-

natives (40%) than natives (30%), however pain intensity was slightly greater in all 

natives (0.90±1.91 points) and natives with pain (3.00±2.65 points) compared to all 

non-natives (0.87±1.30 points) and non-natives with pain (2.17±1.17 points).  

Feuerstein and Fitzgerald (1992) also considered associations across all 

interpreters between post-interpreting pain and the biomechanical factors of rest, hand 

and wrist deviations, work envelope, and pace of finger and hand movements. This study 

did not find any association between presence of pain or pain intensity with the modified 

SI score, nor were associations found between pain intensity with any of the 

biomechanical tasks reflected on the modified SI. Feuerstein and Fitzgerald (1992), 
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however, found a significant correlation between post-interpreting pain with hand and 

wrist deviations (r=0.47; p<0.01) indicating that a greater pain intensity after 

interpreting was associated with greater hand and deviations. This significant 

association in the work of Feuerstein and Fitzgerald (1992) highlights the importance of 

hand and wrist deviations, unlike in this study’s correlation analysis of pain with non-

neutral joint angle where no association was found and in the principal component 

analysis where non-neutral joint angle helped to explain the least amount of variance. 

These differences can likely be explained by the differences in quantifying hand and wrist 

deviations and non-neutral joint angle across the two studies. Feuerstein and Fitzgerald 

(1992) used a visual assessment method to measure collective deviations from optimal 

wrist extension-flexion, radial-ulnar deviation, and forearm pronation-supination 

position across a 20-minute interpreting task, whereas this work considered the average 

wrist flexion-extension position from the start to the stop of the sign for ‘principal.’ The 

sign for ‘principal’ was elected for analysis, rather than average wrist flexion-extension 

and radial-ulnar deviation joint position across the first minute of the trial or the entire 

trial because, anecdotally, ‘principal’ allows for easy observation of gross deviations from 

neutral wrist position in signers who tend to sign with more hand and wrist deviations.  

The lack of association between presence of pain and pain intensity with the 

modified SI score, and between pain intensity and any of the biomechanical tasks was 

not in support of this study’s hypotheses. The assessment of various biomechanical tasks 

to explain a signer’s report of MSK pain, rather than an individual task, was a step in the 

right direction toward developing a more global assessment of pain; however, this lack of 

association confirms that pain encompasses other variables in addition to a signer’s 

biomechanics. The non-native and deaf-parented sub-groups’ subjective pain and 

presence of objective abnormalities from Podhorodecki and Spielholz (1993) helps to 

inform the discrepancies found between the subjective report of MSK pain in signers and 
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the objective findings on the modified SI in this work. Podhorodecki and Spielholz 

(1993) used motor and sensory nerve conduction studies to investigate the presence of 

symptomatic and occult ulnar and median nerve entrapment. There was no significant 

difference in the action potential latencies between the interpreter (n=33; 24 non-native 

and nine deaf-parented) and control (n=21) groups, however within the interpreter 

group, five participants had findings suggestive of mild median neuritis (carpal tunnel 

syndrome), three were suggestive of mild ulnar neuritis (guyon’s canal syndrome), and 

two participants had both conditions. Seven of the 24 non-natives (29%) had mild 

electrophysiological abnormalities while 67% conveyed a subjective report pain (16 of 

24) and three of the nine deaf-parented participants (33%) demonstrated mild 

electrophysiological abnormalities while zero percent (zero of the nine) reported pain. 

Unlike the greater abnormal electrophysiological in non-natives reported by 

Podhorodecki and Spielholz (1993), more natives had at risk or hazardous objective 

findings on the modified SI compared to non-natives in this work. Of the four non-

natives who had at risk or hazardous modified SI scores, one reported MSK pain and of 

the seven natives who had at risk or hazardous modified SI scores, two reported MSK 

pain. The remaining signers with reported MSK pain all had safe modified SI scores. 

Forty-four percent of the overall participant sample had at risk modified SI scores and 

36% reported pain. While these measures were not associated, the composite injury-risk 

measure seemed to be in line with the reported pain prevalence. Seventy percent of the 

native sub-group had at risk or hazardous modified SI scores while only 30% reported 

pain, and 26% of non-native sub-group had an at risk or hazardous modified SI scores 

while 40% reported pain. These findings were consistent with Podhorodecki and 

Spielholz (1993). Abnormal pathoanatomical (nerve conduction studies) and at risk or 

hazardous biomechanical (modified SI) objective findings were less apt to translate to 

pain in natives, whereas abnormal pathoanatomical and biomechanical objective 
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findings, or lack thereof were more apt to translate to pain in non-natives. Use of the 

modified SI for signers as a more global assessment of the biomechanical factors that 

contribute to injury-risk demonstrates promise, however further investigation of non-

biomechanical contributors to pain and injury-risk in signers is needed. 

A few studies have helped to enhance our understanding of multifactorial pain in 

signers. Johnson and Feuerstein (2005) surveyed interpreters (n=1398) to glean their 

perspectives on what initiates or exacerbates symptoms related to UE MSK disorders in 

signers. Thirty percent felt that job content and task, and 28% felt that personal and 

social factors played a role in the initiation or exacerbation of symptoms, whereas only 

nine to 12% felt that interpreting style, ergonomic factors, and health had implications. 

The findings from the work of Johnson and Feuerstein (2005) support further 

examination of the influence of job content and task, and personal and social factors on 

report of MSK pain in signers. In the work of Delisle et al. (2007), seven sign language 

interpreters with baseline pain participated in a cross-over design study receiving a 

stress-management intervention for seven sessions and a workstyle intervention for five 

sessions, each over the course of nine weeks with a seven-week washout period in 

between. The stress management intervention provided an emphasis on reducing 

psychological distress and promoting healthy living habits, whereas the workstyle 

intervention aimed at reducing the number and amplitude of signs, hand impacts, and 

promoting micro-breaks. Both interventions demonstrated potential to reduce pain, 

therefore supporting the broader influences on a signer’s pain. Since one intervention 

was not more effective than the other on reducing pain outcomes, the authors suggest 

integrating both as preventative strategies with signers. Interesting to note, and 

potentially worthy of future investigation, that the workstyle intervention may be more 

efficient and cost-effective at reducing pain, as it did not meet for as many sessions as the 

stress management intervention but had similar effectiveness in reducing pain.  
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From the principal component analysis, the modified SI multipliers were 

assigned from greatest to least amount of weight as follows: work envelope along the z-

axis, work envelope along the x-axis, ballistic signing, duration of exertion, muscle 

tension, and non-neutral joint angle. The biomechanical factors studied by Feuerstein 

and Fitzgerald (1992) can be ranked from greatest to least amount of statistical 

significance as follows: pace of finger and hand movement (t=3.24; p<0.01; interpreters 

with pain: 6.1±1.7 and interpreters without pain: 3.8±2.0cm on a 10cm visual analogue 

scale), rest breaks per minute (t=2.23; p<0.05; interpreters with pain: 0.8±1.0 and 

interpreters without pain: 1.7±1.0 rest breaks per minute), hand and wrist deviations 

(t=2.18; p<0.05; interpreters with pain: 10.2±3.4 and interpreters without pain: 7.5±3.3 

deviations per minute), and excursions from optimal work envelope (t=2.11; p<0.05; 

interpreters with pain: 2.7±3.1 and interpreters without pain: 1.0±0.8 excursions per 

minute). In this study, work envelope along the z- and x-axes demonstrated the greatest 

significance when determining injury-risk and thus, were assigned the greatest 

multiplier weights. In Feuerstein and Fitzgerald (1992), while work envelope was 

significantly different across sub-groups, it was the least significant when compared to 

pace of finger and hand movement, rest, and hand and wrist deviations. Pace of finger 

and hand movement, total frequency of high-impact hand contacts, and smoothness of 

finger and hand movements are all analogous to ballistic signing. In this study, ballistic 

signing was ranked with the second highest multiplier weight, whereas in the work of 

Feuerstein and Fitzgerald (1992), pace of finger and hand movement had the highest 

significance, and total frequency of high-impact hand contacts and smoothness of finger 

and hand movements were not significant. In this study, rest and muscle tension were 

ranked with the third highest multiplier weight, whereas in the work of Feuerstein and 

Fitzgerald (1992) rest was ranked second and muscle tension was not analyzed. As 

previously mentioned, a greater pain intensity post-interpreting was previously 



    
  

106 
         

associated with greater hand and deviations (Feuerstein and Fitzgerald 1992), however 

that was not realized here. There was a lack of association between self-reported MSK 

pain intensity and any of the biomechanical tasks. Non-neutral joint angle demonstrated 

the greatest factor loading in the third principal component helping to explain 15.51% of 

the variance compared to the 68.48% variance explained by the other four variables; 

therefore, it was ranked with the lowest multiplier weight. In the work of Feuerstein and 

Fitzgerald (1992), hand and wrist deviations were ranked third out of seven factors. 

More work is needed to determine which of the previously identified biomechanical 

considerations unique to signers (Feuerstein and Fitzgerald 1992; RIT 2005) has the 

greatest significance in determining injury-risk and differentiating between signers with 

and without pain. 

 Since the modified SI was developed and tested from previously collected data, 

there were a few limitations from that work (refer to Chapter 2). Additionally, there were 

a few limitations to this study regarding the small sample size. These data were powered 

to detect wrist acceleration as the primary outcome for ballistic signing based on the 

work of Qin et al. (2008) and not to determine differences in self-reported MSK pain and 

modified SI scores. Thus, the reader is cautioned about using these limited data to derive 

generalizations about pain intensities and composite injury-risk scores as the study may 

be underpowered. While normality assumption was achieved for all biomechanical tasks 

reflected on the modified SI, use of a principal component analysis is typically done with 

a much greater sample size and with disassociated factors. The recommended ratio of 

participants to factors is 10 to one (Kerlinger 1986), indicating a sample of 60 

participants for this statistical analysis. Knowing this, a principal component analysis 

was pursued as a means to offer a more rigorous approach for discerning multiplier 

weights when compared with a correlation analysis alone. The generalizability of the 
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modified SI for signers would be strengthened by a larger sample with a broader array of 

pain intensities. 

        

3.5. Conclusions 

Self-reported MSK pain and injury-risk in signers are multifactorial. When determining 

the injury-risk of signers based on their performance of various biomechanical tasks, use 

of the modified SI for signers as a semi-quantitative composite measure of injury-risk 

demonstrates promise. The following tasks contained within the modified SI reflect the 

biomechanics unique to signers: 1) duration of exertion (the inverse of ‘micro’ rest 

breaks), 2) muscle tension, 3) ballistic signing, 4) non-neutral joint angle, and 5) two-

dimensional work envelope. The multipliers for work envelope along the z- and x-axes, 

ballistic signing, rest and muscle tension, and non-neutral joint angle were weighted 

from highest to lowest. Like the original SI (Moore and Garg 1995), participant 

performance on each biomechanical task is ranked from one to five and the product of 

the respective task multipliers is calculated providing a modified SI score. Modified SI 

scores less than or equal to three are considered safe, greater than or equal to seven are 

considered hazardous, and greater than three, but less than seven are considered at 

increased risk. 

 The modified SI scores across the entire cohort indicated only a mild increased 

injury-risk with 56% of signers demonstrating a safe performance (modified SI score less 

than or equal to three points). There were no statistically significant differences when 

comparing across the sub-groups of natives and non-natives, however only 30% of all 

natives, and 74% of the non-natives had modified SI scores indicating safe practice. This 

was inconsistent with natives’ and non-natives’ subjective report of MSK pain. Native 

signers presented with a lower self-reported MSK pain prevalence than non-natives. 
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While self-reported pain intensities (zero signifying no pain and 10 equating to the worst 

imaginable pain) when signing were comparable across all natives and all non-natives, 

natives with pain had a slightly greater pain intensity report than non-natives with pain. 

Presence of pain and pain intensity were not associated with the modified SI score, and 

pain intensity was not associated with any of the biomechanical tasks reflected on the 

modified SI.     

Assessment of biomechanical factors using the modified SI for signers is a step in 

the right direction toward addressing prevention of pain in signers, however future work 

should consider additional correlates of pain such as psychological distress, healthy 

living habits (Delisle et al. 2007), job content and task, and personal and social factors 

(Johnson and Feuerstein 2005). Further investigation on the efficiency and effectiveness 

of stress management or workstyle interventions for pain prevention may also help to 

further enhance the health of signers. More work is needed to determine which of the 

previously identified biomechanical considerations unique to signers (Feuerstein and 

Fitzgerald 1992; RIT 2005) have the greatest significance in determining injury-risk and 

differentiating between signers with and without pain. The modified SI for signers 

demonstrates that previously established ergonomic risk assessment tools can be 

curtailed to the unique needs of different study populations. Use of this measure in 

additional research on signers will help to improve its ability to implicate injury-risk.  
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CHAPTER 4 

CONCLUSION 

The goal of this study was twofold: 1) to examine differences in biomechanical 

measures between natives and non-natives and 2) upon creating a composite measure of 

injury-risk unique to signers, to compare differences in scores between natives and non-

natives.  

Upon examining the differences in biomechanical measures between natives and 

non-natives, this study used dynamometry for strength, EMG for quantification of 

‘micro’ rest breaks and muscle tension, and optical motion capture for ballistic signing, 

non-neutral joint angle and work envelope. There were no significant differences in 

shoulder and wrist strength between native and non-native signers. Natives had more 

‘micro’ rest breaks and less muscle tension for non-dominant upper trapezius compared 

to non-natives across the first minute of the trial. Natives also had less non-dominant 

upper trapezius muscle tension compared to non-natives from the start to the stop of the 

signs for ‘again’ and ‘principal.’ An inverse relationship exists between rest and tension, 

and more significance was demonstrated on the non-dominant rather than the dominant 

side. Given these results, if a signer exhibits reduced rest, then the observer should 

assess for increased tension and vice versa. Also, biomechanists and clinicians alike 

should not be surprised by non-dominant symptom presentation in non-natives. For 

ballistic signing, no significant differences were found in the resultant or along the 

respective 3D planes for maximum instantaneous linear segment acceleration, or for 

segment force between natives and non-natives from the start to the stop of the sign for 

‘again.’ However, native, hearing, and left-hand dominant participants all demonstrated 

greater maximum linear segment jerk along the y-axis. Additionally, hearing participants 

demonstrated greater maximum acceleration along the y-axis and greater maximum 
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resultant jerk than deaf participants. Slightly longer arm lengths in natives may have 

influenced their greater jerk compared to non-natives, however the shorter arm lengths 

of hearing or left-hand dominant participants did not help explain their greater ballistic 

measures compared to their deaf and right-hand dominant counterparts. Of the 10 

natives in this study, four were hearing and only one was left-hand dominant. While this 

further sub-categorization of this study’s small sample does not permit generalization, a 

slight concern regarding injury-risk for hearing natives who are left-hand dominant 

presents itself in these ballistic signing results. For non-neutral joint angle, natives and 

deaf participants had more wrist flexion-extension ROM when producing the sign for 

‘principal.’ Deaf participants also had more wrist radial-ulnar deviation ROM and 

greater minimum wrist flexion-extension position than hearing participants. Male 

participants demonstrated a greater absolute average wrist flexion-extension joint 

position than females. The findings for ballistic signing and non-neutral joint angle 

beckon future examination across the hearing status (hearing versus deaf) of signers, 

rather than hearing acquisition status (native versus non-native). For work envelope, 

there was a greater maximum and minimum position along the x-axis, a greater 

minimum position along the z-axis, and a marginally greater work envelope along the z-

axis for natives. For right-hand dominant participants, there was a greater work 

envelope along the z-axis, and a greater maximum position along the x- and y-axes. 

Slightly longer arm lengths, although not significant, in natives and right-hand dominant 

participants may have influenced their greater work envelope measures compared to 

their non-native and left-hand dominant counterparts. Left-hand dominant participants 

demonstrated a greater minimum position along the x-axis and younger participants had 

a greater minimum position along the z-axis. There is some thought that a larger work 

envelope is safer and less injury-risk prone because it relies on the larger muscle groups 

of the shoulders and elbows, and therefore induces less repetitive motion to the smaller 
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muscle groups of the wrists and hands. Since natives are known to have less pain from 

signing when compared to non-natives, their larger work envelope, greater non-neutral 

joint angle, and increased jerk while signing may somehow have a counterintuitive effect 

on self-preservation against injury-risk. 

It is important to keep in mind that work-related MSK disorders in signers are 

multi-factorial (Johnson and Feuerstein 2005; Delisle et al. 2007). The examination of 

individual biomechanical factors of signers made it possible to inform a composite 

measure of injury-risk, which was a critical development of this study. The Strain Index 

(SI) is one of many ergonomic risk assessment tools that measure the risk of UE 

disorders. Since the SI demonstrated increased sensitivity compared to other ergonomic 

risk assessment tools (Jones and Kumar 2007), good test-retest reliability (Stephens et 

al. 2006), and the tasks assessed (Moore and Garg 1995) were similar to the ones within 

this study, a modified SI specific to the biomechanics of signers was created. Duration of 

exertion (or the inverse of ‘micro’ rest breaks; %total - %rest time), muscle tension 

(%MVC), ballistic signing (resultant instantaneous linear segment acceleration; m/s2), 

non-neutral joint angle (mean wrist flexion-extension position; °), and work envelope 

along the x- (medial-lateral; cm) and z- (superior-inferior; cm) axes were the proposed 

tasks for the modified SI for signers. Descriptive statistics and normative values from the 

Occupational Health and Safety for Sign Language Interpreters (Woodcock and Fisher 

2008) were used to create categorical rankings and a principal component analysis 

provided multiplier weights. Modified SI multipliers were assigned from greatest to least 

amount of weight as follows: work envelope along the z-axis, work envelope along the x-

axis, ballistic signing, duration of exertion, muscle tension, and non-neutral joint angle. 

Participant performance during each task was ranked from one to five. Each rating 

category was associated with a multiplier. The higher the rating category, the higher the 

multiplier, and the greater the injury-risk. The product of the respective task multipliers 
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was calculated to provide a composite injury-risk measure or a modified SI score. The 

same thresholds used for the original SI (less than or equal to three is considered safe, 

greater than or equal to seven is considered hazardous, greater than three, but less than 

seven is considered at increased risk; Moore and Garg 1995) were used to deduce the 

indications of the modified SI score. 

Modified SI scores across the entire cohort ranged from 0.75 – 10.94 points and 

on average, indicated a mild increased injury-risk. Fifty-six percent of all signers had 

modified SI scores demonstrating safe practice. There were no differences when 

comparing modified SI scores across the sub-groups of natives and non-natives, however 

only 30% of all natives, and 74% of the non-natives had modified SI scores 

demonstrating safe practice. This was inconsistent with natives’ and non-natives’ 

subjective report of MSK pain. Natives presented with a lower self-reported MSK pain 

prevalence than non-natives. Although self-reported pain intensities (zero signifying no 

pain and 10 equating to the worst imaginable pain) while signing were comparable 

across all natives and all non-natives, natives with pain had a slightly greater pain 

intensity (3.00 out of 10) report than non-natives with pain (2.17 out of 10). At risk or 

hazardous modified SI scores were less apt to translate to self-reported pain in natives, 

whereas at risk or hazardous modified SI scores, or lack thereof were more apt to 

translate to self-reported pain in non-natives. There were no associations between pain 

intensities and the biomechanical tasks within the modified SI, nor were there any 

associations between presence of pain and modified SI score or pain intensity and 

modified SI score.  

The observational cross-sectional design limits the ability to detect any cause and 

effect relationships between language acquisition status and UE biomechanics, and 

biomechanical tasks and self-reported MSK pain and injury-risk. There was a dichotomy 

between how the biomechanical outcomes were quantified in this research as compared 
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to previous work. For example, dynamometry, EMG, and optical motion capture were 

used, whereas past work has used dynamometry, visual observation with ratings of 

frequency and scale, biaxial unilateral and bilateral electrogoniometers, and 

electromagnetic motion capture. Inconsistent methodology used to collect biomechanical 

measures makes it difficult to compare across studies. This study used EMG-based rest 

to quantify ‘micro’ rest breaks, where other studies have used kinematic-based rest via 

electrogoniometric and motion capture data. This study used linear segment acceleration 

to quantify ballistic signing, whereas other work has used angular. And lastly, this study 

defined natives as having at least one deaf, non-signing parent, where another study 

defined native as being deaf and signing since childhood regardless of the parents’ 

hearing status.  

Participant sampling targeted native and non-native signers, but did not match 

age, gender, or hearing status across sub-group comparisons. The typical demographic 

for professional interpreters is approximately 75% female to 25% male (Brunson 2017). 

While the groups in this study were unbalanced between males and females (Table 2.1.), 

these group distributions are consistent with the distribution of sex in the interpreting 

profession.  

The aim of this study was to compare differences between natives and non-

natives. Participants were encouraged to interpret the video source into their own sign 

language and not simply echo the signs produced by the presenter. Although the third 

trial was analyzed for purposes of inducing a training effect, those participants who were 

not sign language interpreters may have felt more stressed or uncomfortable with this 

methodology, thereby affecting the investigators ability to gather a natural capture their 

sign language expression. Measuring participant stress before and after the experiment 

may have helped to taper the influence of interpreting the video source, or comparing 

across the task of conversing, rather than the task of interpreting may have served as a 
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better approach in capturing differences between natives and non-natives. Additionally, 

comparing native and non-native sub-groups based on hearing status would offer 

additional insight into the biomechanical considerations unique to signers and should be 

considered in future investigations.  

This study was powered to detect wrist acceleration as the primary outcome for 

ballistic signing, thus other analyses of UE strength, ‘micro’ rest breaks, muscle tension, 

non-neutral joint angle, work envelope, self-reported MSK pain, and modified SI scores 

may be underpowered. These data can now be used to power and design future studies 

exploring similar factors. Assessment of scapular muscle strength was not conducted in 

the current work. This would be a useful correlate measure to the significant tension and 

rest found in the non-dominant trapezius. Electromyography measures targeted the 

entire shoulder complex, whereas dynamometry targeted only the glenohumeral joint. 

Future work should include assessments of scapular muscle strength to further explore 

the implications of scapular musculature found in this study. 

Investigators used RID certification to ascertain sign language fluency for hearing 

participants, but no standard assessment was used to determine sign language fluency 

for deaf participants. Use of sign language as a primary language of communication 

either since birth, or during primary or secondary education was deemed sufficient 

evidence to prove fluency for deaf participants, but this could introduce possible 

discrepancies in future comparisons. Future work will include use of American Sign 

Language Proficiency Assessment to assess individual ability to communicate using sign 

language as a standard fluency measure with all hearing and deaf participants (Maller et 

al. 1999).  

While normality assumption was achieved for all biomechanical tasks reflected 

on the modified SI, use of a principal component analysis is typically done with a much 

greater sample size and with disassociated factors. The recommended ratio of 
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participants to factors is 10 to one (Kerlinger 1986), indicating a sample of 60 

participants for this statistical analysis. Knowing this, a principal component analysis 

was pursued as a means to offer a more rigorous approach for discerning multiplier 

weights when compared with a correlation analysis alone. The generalizability of the 

modified SI for signers would be strengthened by a larger sample with a broader array of 

pain intensities.        

This was the first study since the seminal work of Feuerstein and Fitzgerald 

(1992) to use current instrumentation and offer a comprehensive analysis of all the 

previously identified UE biomechanics unique to signers. This work fulfilled the lacking 

precedent for quantification and analysis of muscle tension and work envelope in 

signers. Two- and three-dimensional work envelope were explored and norms for work 

envelope in signers while standing were provided. Results made it possible to inform the 

first available composite measure of injury-risk specific to the biomechanical tasks of 

signers. Creation of the modified SI demonstrated that previously established ergonomic 

risk assessment tools for industry workers can be curtailed to the unique needs of 

different study populations.  

More work is needed to determine which previously identified biomechanical 

consideration unique to signers (Feuerstein and Fitzgerald 1992; RIT 2005) has the 

greatest significance in determining injury-risk and differentiating between signers with 

and without pain. The findings from this study support further investigation of non-

biomechanical contributors to pain and injury-risk in signers. Assessment of multiple 

biomechanical tasks to explain a signer’s report of MSK pain, rather than an individual 

task, is a step in the right direction toward developing a more global assessment of pain. 

Use of the modified SI for signers as a composite measure of injury-risk holds promise as 

a tool to predict injury-risk in signers.  However, the lack of association between self-

reported MSK reported pain in this sample and the modified SI clearly suggests that pain 
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encompasses other variables in addition to a signer’s biomechanics. Future studies 

should include psychological distress, healthy living habits, job content and task, and 

personal and social factors (Delisle et al. 2007; Johnson and Feuerstein 2005) as 

additional variables on a composite measure of injury-risk for signers.  
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Little work has examined all the biomechanical considerations identified by 

NTID and whether they contribute to the high incidence of UE MSK injury in singers. 

The preeminent work of Feuerstein and Fitzgerald (1992) examined the work style and 

demands of 29 interpreters (24 females and five males) at NTID. Based upon clinical 

examination, these participants were sub-grouped into those working with pain (n=16; 

55%) and those working with no pain or minimal discomfort (n=13; 45%). On a zero to 

10cm visual analogue scale, baseline pain intensity was (mean±SD) 1.09±1.1cm and 

0.46±1.4cm, and post-interpreting pain intensity was 3.44±2.0cm and 0.65±1.7cm for 

interpreters with and without pain, respectively. An isokinetic dynamometer was used to 

measure wrist and forearm ROM and endurance, and video recordings of the 

participants while interpreting were used to measure the biomechanical variables of rest 

breaks per minute, high impact hand contacts, pace and smoothness of finger and hand 

movements, hand and wrist deviations from neutral, and work envelope excursions. 

There were no flexibility or endurance differences between sub-groups, however their 

findings suggest that interpreters with pain have fewer rest breaks, and more deviations 

from neutral joint position, lateral excursions from the work envelope and rapid finger 

and hand movements.  

Feuerstein and Fitzgerald (1992) provides the only known comparable study to 

have quantified muscle tension and work envelope in signers. Muscle tension was 

quantified by using a zero to 10cm visual analogue scale (zero signifying no muscle 

tension and 10 equating to extreme muscle tension). Unfortunately, since the inter-rater 

reliability was low, it was not included in their statistical analysis making this study the 

first to analyze muscle tension in signers. Work envelope, defined as the optimal signing 

area with minimal UE exertions (RIT 2005), was measured by aligning a transparent 

grid over the video-viewing monitor with the participant’s midline and level with their 

bilateral shoulders. Work envelope deviations were defined as lateral excursions beyond 
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the width of the participant’s shoulders and hips. The ROM (ratio of flexibility 

comparing involved to uninvolved UE at 180°/second) and endurance (ratio of effort 

comparing involved to uninvolved UE at 180°/second) in this prior work can be 

compared to the isometric joint moments (N) gathered in this study because both were 

measured using an isokinetic dynamometer. The zero to 10cm visual analogue scale in 

this prior work and the zero to 10 numeric pain rating scale used in this study allow for a 

comparison of pain prevalence and pain intensities across studies, as well.  

In a study of 33 sign language interpreters (24 non-native and nine native 

signers) who were age-matched with 21 non-signing controls, Podhorodecki and 

Spielholz (1993) used motor and sensory nerve conduction studies to investigate the 

presence of symptomatic and occult ulnar and median nerve entrapment. Forty-nine 

percent (16 of 33 total sample) of the sign language interpreters reported UE pain 

ranging in duration. Pain intensities were not reported. All interpreters reporting pain 

were non-native signers. There was no significant difference in the action potential 

latencies between the interpreter and control groups, however within the interpreter 

group, five participants had findings suggestive of mild median neuritis (carpal tunnel 

syndrome), three were suggestive of mild ulnar neuritis (guyon’s canal syndrome), and 

two participants had both conditions. Twenty-nine percent of non-native signers (seven 

of 24 non-native signers) had mild electrophysiological abnormalities while 67% 

conveyed a subjective report of pain (16 of 24) and 33% of native signers (three of nine 

native signers) demonstrated mild electrophysiological abnormalities while zero percent 

(zero of nine) reported pain.  

Delisle et al. (2005) used surface EMG and a biaxial dominant wrist goniometer 

to quantify physical exposure measures of nine sign language interpreters during three 

to four sessions of a 30 t0 90-minute educational interpreting task. EMG measured 

bilateral upper trapezius frequency of rest and time at rest, and the biaxial wrist 
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goniometer assessed dominant wrist flexion-extension and radial-ulnar deviation ROM, 

and angular velocity and acceleration. Descriptive statistics for mean overall ROM (95th 

– 5th percentile), maximum (90th percentile) angular velocity and acceleration, and 

median (50th percentile) angular velocity and acceleration of wrist flexion-extension and 

radial-ulnar deviation are conveyed in Table A.1. The mean overall wrist flexion-

extension and radial-ulnar deviation ROM measures in Delisle et al.’s (2005) work 

indicate high-cumulative trauma disorder risk, and the median wrist flexion-extension 

and radial-ulnar deviation angular velocity and acceleration indicate low-risk (Marras 

and Schoenmarklin 1993). Mean time at rest for the dominant upper trapezius was 8.1% 

and non-dominant upper trapezius was 12.4%. Gender, height, weight, and a range of 

experience were all reported, but not native or non-native status.  
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Table A.1. Mean dominant ROM, angular velocity and acceleration across all conditions in the work of Delisle et al. (2005) 
compared to high- and low-cumulative trauma disorder risk (Marras and Schoenmarklin 1993). 

  high-risk low-risk 
overall ROM (95th – 5th percentile; °) 
          wrist flexion-extension 66 35.63 27.95 
          wrist radial-ulnar deviation 36 23.65 17.64 
maximum angular velocity (90th percentile; °/sec) 
          wrist flexion-extension 145  
          wrist radial-ulnar deviation 74 
median angular velocity (50th percentile; °/sec) 
          wrist flexion-extension 26 42.2 28.7 
          wrist radial-ulnar deviation 14 25.9 17 
maximum angular acceleration (90th percentile; °/sec2) 
          wrist flexion-extension 1694  
          wrist radial-ulnar deviation 851 
median angular acceleration (50th percentile; °/sec2) 
          wrist flexion-extension 329 824 494 
          wrist radial-ulnar deviation 171 494 301 
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Qin et al. (2008) used biaxial bilateral electrogoniometers to measure the effects 

of speaker pace and stress on wrist flexion-extension and radial-ulnar deviation position, 

angular velocity and acceleration, and time spent in wrist pause of 12 full-time sign 

language interpreters. All participants were right-hand dominant. Each performed a 

slow- and fast-paced interpreting segment of equal duration and was assigned to a 

stressed or non-stressed sub-group based on difference between their baseline and post-

interpreting Stress-Arousal Checklist (Mackay et al. 1978) scores. There was no 

significant main effect of pace or stress on mean wrist position. Qin et al. (2008) did not 

compare wrist position values with the established high- and low-risk values established 

by Marras and Schoenmarklin (1993). There were significant differences between fast- 

and slow-paced groups for mean velocity on all motions of the right and left wrist 

flexion-extension, but not left radial-ulnar deviation. The fast-paced group demonstrated 

greater mean acceleration and less mean time spent in wrist pause across all wrist planes 

of motion compared to the slow-paced group. There was significant change between 

stressed and non-stressed groups for mean velocity on all motions of the left wrist, 

however no significant difference in the right wrist motions. The stressed group 

demonstrated greater left wrist flexion-extension acceleration, but no change in left wrist 

radial-ulnar deviation and right wrist motion acceleration. Greater involvement of the 

non-dominant hand only was attributed to the need for greater emphasis and clarity 

when stressed. There was no significant difference in the time spent in wrist pause 

between the stressed and non-stressed groups. The mean angular velocity across all 

conditions for wrist flexion-extension and radial-ulnar deviation studied by Qin et al. 

(2008) indicated high-cumulative trauma disorder risk when compared to the values 

established by Marras and Schoenmarklin (1993). The mean angular acceleration across 

all conditions for wrist flexion-extension and radial-ulnar deviation studied by Qin et al. 



    
  

128 
         

(2008) indicated between high- and low-cumulative trauma disorder risk on the left, and 

high-cumulative trauma disorder risk on the right (Table A.2.).  
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Table A.2. Mean angular velocity and acceleration across all conditions in the work of Qin et al. (2008) compared to high- 
and low-cumulative trauma disorder risk (Marras and Schoenmarklin 1993). 

 left right high-risk low-risk 
mean angular velocity (°/sec)   
          wrist flexion-extension 46.5 79.3 42.2 28.7 
          wrist radial-ulnar deviation 27.3 43.1 25.9 17 
mean angular acceleration (°/sec2)   
          wrist flexion-extension 664 1219 824 494 
          wrist radial-ulnar deviation 376 640 494 301 
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In a study of eight early-signing (learned sign language before graduating from 

high school) interpreters and eight late-signing (learned sign language after graduating 

from high school) interpreters, Donner (2012) and Donner et al. (2016) used biaxial 

bilateral electrogoniometers to measure wrist flexion-extension and radial-ulnar 

deviation displacement, angular velocity and acceleration, and pause percentage during 

a 20-minute interpreting task. The minimum (5th percentile), mean, and maximum (95th 

percentile) positions, angular velocity and acceleration, and pause percentages for right 

wrist flexion-extension in early- and late-signing interpreters are conveyed in Table A.3. 

Wrist displacement, velocity, acceleration, and pause percentage values for left wrist 

flexion-extension and bilateral wrist radial-ulnar deviation were provided, but not 

conveyed here because no significant differences across all planes were observed 

between the early- and late-signing groups. The mean values for wrist flexion-extension 

and radial-ulnar deviation velocity and acceleration reported by Donner (2012) and 

Donner et al. (2016) exceed the high-risk values established by Marras and 

Schoenmarklin (1993) by 81% for wrist flexion-extension and 63% for radial-ulnar 

deviation velocity, and 30% for wrist flexion-extension and 20% for radial-ulnar 

deviation acceleration. The left hand had significantly greater pause percentage when 

compared to the right hand, however this was explained by all interpreters being right-

hand dominant. Native and non-native status was not specifically reported, but the mean 

age for first use of sign language was 6.1 years in the early-signing and 24.3 years in the 

late-signing interpreters.  
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Table A.3. Right wrist position, velocity, acceleration, and pause percentage of early- and late-signing interpreters in the 
work of Donner (2012) and Donner et al. (2016) compared to high- and low-cumulative trauma disorder risk (Marras and 

Schoenmarklin 1993). 

 early-
signing 

late-
signing 

high-
risk 

low-
risk 

right wrist flexion-extension position (°) 
          minimum -26.6 -30.8   
          mean 2.8 -0.9 
          maximum 40.4 35.3 
right wrist flexion-extension mean angular velocity (°/sec) 77 75.7 42.2 28.7 
right wrist flexion-extension mean angular acceleration (°/sec2) 995 1411 824 494 
right wrist flexion-extension pause percentage (%) 5.3 7.4  
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Donner et al. (2013) also performed a within-participant comparison of the 16 

early- and late-signing interpreters (Donner 2012) across the tasks of interpreting and 

conversing, and a between-participant comparison with nine college-aged deaf students. 

Biaxial bilateral electrogoniometers were again used to measure range of wrist flexion-

extension and radial-ulnar deviation displacement, mean angular velocity and 

acceleration, and pause percentage during a 10-minute conversational task. All the deaf 

students were right-hand dominant. When comparing between interpreting and 

conversing tasks for the interpreters, 22% greater range of wrist displacement overall 

was measured when interpreting compared to when conversing and significant 

differences were noted for right wrist flexion-extension and right radial-ulnar deviation 

displacement. Average wrist velocity was seven percent greater overall when interpreting 

compared to conversing and significant differences were measured in left wrist flexion-

extension and left radial-ulnar deviation velocity. Average wrist acceleration was eight 

percent greater overall when conversing compared to interpreting and significant 

differences were measured in right wrist flexion-extension and bilateral radial-ulnar 

deviation acceleration. Interpreters demonstrated a greater average pause percentage 

when conversing compared to interpreting across all measured wrist planes of motion 

with an overall 50% pause average when conversing and only 13% when interpreting. 

When comparing between interpreters and college-aged deaf students, the students had 

16% more range of wrist displacement with significant differences noted in right wrist 

flexion-extension and right radial-ulnar deviation displacement. No differences were 

noted across groups with mean wrist velocity and acceleration. An average pause 

percentage of 50% for interpreters compared with 33% for students with significant 

differences measured for right wrist flexion-extension and left radial-ulnar deviation.  

In a study of nine novice (less than two years of experience) and nine experienced 

(greater than or equal to five years of experience) interpreters, Fisher et al. (2014) used 
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an electromagnetic motion capture system to measure the influence of experience and 

interpreting duration on mean ROM, velocity, number of micro breaks, and time spent 

in micro-breaks for bilateral wrist flexion-extension, radial-ulnar deviation, and elbow 

flexion-extension during a one-hour simulated classroom interpreting session. This was 

the first study to examine biomechanics of the elbow in signers. All participants were 

right-hand dominant. All novice interpreters were non-natives and of the experienced 

interpreters, three were natives and six were non-natives. Experienced interpreters 

demonstrated increased right elbow flexion-extension ROM between the first and second 

15-minute increments, however consistent ROM was maintained thereafter. Significant 

differences between novice and experienced interpreters were found upon on comparing 

the first and last 15-minute increments for the variables of mean angular velocity and 

number of micro-breaks. Experienced interpreters maintained consistent mean 

velocities throughout, while novice interpreters decreased mean angular velocities for 

right wrist ulnar-radial deviation and right elbow flexion-extension. In the last 15-minute 

increment, the novice interpreters increased right elbow flexion-extension and right 

wrist flexion-extension number of micro-breaks and the experienced interpreters 

increased right wrist flexion-extension number of micro-breaks. Time spent in micro-

breaks significantly increased over each time increment for right elbow flexion-extension 

in novice interpreters. Greater micro-breaks of novice interpreters were attributed to 

higher fatigue.  

In addition to high- and low-cumulative trauma disorder risk values, ergonomic 

risk assessment tools allow investigators to categorize level of injury-risk. Various 

ergonomic risk measures focus on the repetitive high-risk UE tasks in industry workers. 

The RULA uses diagrams of body postures to evaluate exposure to risk factors and was 

designed for occupations, like the garment-making, where upper limb disorders are 

commonly reported (McAtamney and Corlett 1993). The SI is a multiple task analysis 
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tool used to measure risk of distal upper extremity disorders in industry workers 

including manufacturing, meat and poultry processing, and manual material handling 

(Moore and Garg 1995).  The OCRA is a proposed measure for occupations with 

repetitive movements of the upper limbs and considers an array of technical actions 

performed during a shift divided by a corresponding number of recommended actions 

during that shift, in effort to glean a measure of risk (Occhipinti 1998). The REBA was 

developed to measure unpredictable work postures in the health care or service industry 

(Hignett and McAtamney 2000). The quantified version of the ACGIH TLV for mono-

task hand work estimates a normalized peak force relative to individual’s percent 

maximal voluntary contraction (MVC) divided by their hand activity level measured on a 

visual analog scale from zero to ten (zero signifying no regular exertions to 10 equating 

to rapid steady motion; ACGIH 2001).  

The SI is sensitive to measuring differences across facilities in posture and in 

measures of frequency (Jones and Kumar 2007) and demonstrates good test-retest 

reliability (Stephens et al. 2006). The multiple tasks analyzed within the original SI are: 

intensity of exertion, duration of exertion, efforts per minute, hand and wrist posture, 

speed of work, and duration of task per day. Intensity of exertion is an estimate of the 

strength required to perform the task. Duration of exertion is calculated by measuring 

the duration of all exertions during the observation period divided by the duration of the 

observation period and multiplied by 100. Efforts per minute are measured by counting 

the number of exertions that occur during an observation period divided by the duration 

of the observation period. Hand and wrist posture estimates the position of the hand or 

wrist in degrees of motion relative to neutral. Posture estimates for wrist flexion, 

extension, and ulnar deviation are available. Speed of work is an estimate of how fast the 

worker is working relative to a previously determined predicted pace. Lastly, duration of 
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the task per day is obtained from plant personnel and measured in hours (Moore and 

Garg 1995; Table A.4.). 
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Table A.4. Quantitative and qualitative indicators for the original Strain Index (SI). 

task rating 
1 2 3 4 5 

intensity of exertion  
(% of muscle strength) 

<10 
light 

10-29 
somewhat hard 

30-49 
hard 

50-79 
very hard 

≥80 
near maximal 

multiplier 1.00 3.00 6.00 9.00 13.00 
duration of exertion  
(% of total time) 

<10 10-29 30-49 50-79 ≥80 

multiplier 0.50 1.00 1.50 2.00 3.00 
efforts per minute  
(minutes) 

<4 4-8 9-14 15-19 ≥20 

multiplier 0.50 1.00 1.50 2.00 3.00 
hand and wrist posture (°) 
(i.e. wrist extension) 

0-10 
very good 

11-25 
good 

26-40 
fair 

41-55 
bad 

≥60 
very bad 

multiplier 1.00 1.00 1.50 2.00 3.00 
speed of work  
(observed pace/predicted pace; %) 

≤80 
very slow 

81-90 
slow 

91-100 
fair 

101-115 
fast 

>115 
very fast 

multiplier 1.00 1.00 1.00 1.50 2.00 
duration of task per day (hours) ≤1 1-2 2-4 4-8 ≥8 
multiplier 0.25 0.50 0.75 1.00 1.50 
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Semi-quantitative participant performance during each task of the SI is ranked 

from one to five. Each rating category is associated with a multiplier. The higher the 

rating category, the higher the multiplier, and the greater the injury-risk. The product of 

the respective task multipliers provides a composite measure of injury-risk or what is 

known as the SI score (i.e. SI score=intensity of exertion multiplier* duration of exertion 

multiplier*efforts per minute multiplier*hand and wrist posture multiplier*speed of 

work multiplier*duration of task per day multiplier).  

 

A.1. Summary and conclusions 

Existing literature is sparse with inconsistent methods and participant groupings. The 

methodology used to collect biomechanical variables and study injury-risk in signers has 

ranged from dynamometry to measure ROM and endurance, to simple visual 

observation through video recordings, to more complex motor and sensory nerve 

conduction studies, and rigorous EMG, biaxial electrogoniometric and electromagnetic 

motion capture studies. Lack of standardization of the methodology makes it challenging 

to compare across studies, reach a consensus, and inform signers of best recommended 

practices.  
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APPENDIX B 

SUPPLEMENTAL STATISTICAL FIGURES 
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Figure B.1. Power analysis (power=0.80 and alpha=0.05) using GPower 3.1.9.2 software (Dusseldorf, Germany) from the 
preliminary work of Qin et al. (2008). 
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Figure B.2. Three-dimensional plot of the dominant second metacarpophalangeal joint surface marker location relative to the 
ipsilateral acromion surface marker location for natives (cyan) and non-natives (blue) with recommended 25cm x 25cm work 

envelope norm (red). 
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Figure B.3. a) Mean (±SE) relative two-dimensional area and b) three-dimensional volume for native and non-native signers.

a) b) 



      
 
  
 

 142    
         
 

APPENDIX C 

INSTITUTE REVIEW BOARD APPROVAL FROM ARIZONA STATE 

UNIVERSITY 
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Meghan Vidt 

SNHP: Exercise Science and Health Promotion 

mvidt@asu.edu  

 

Dear Meghan Vidt: 

On 2/3/2016 the ASU IRB reviewed the following protocol: 

Type of Review: Initial Study 

Title: Upper extremity biomechanics in American Sign 

Language: native versus second language users 

Investigator: Meghan Vidt 

IRB ID: STUDY00003832 

Category of review: (6) Voice, video, digital, or image recordings, (4) 

Noninvasive procedures, (7)(a) Behavioral research 

Funding: None 

Grant Title: None 

Grant ID: None 

Documents Reviewed: • PROTOCOLTemplate_GR_Modifications.docx, 

Category: IRB Protocol; 

• ASLDataCollectionForm-Strength, Category: 

Technical materials/diagrams; 

• ASL-ScreeningQuestionnaire, Category: Screening 

forms; 

• ASLDataCollectionForm-MovementAssessment, 

Category: Technical materials/diagrams; 

• ASL_NPRS, Category: Technical 

materials/diagrams; 

• CONSENT BIOSCIENCE_Revision2.pdf, Category: 

Consent Form; 

• Flyer_ASLBiomechanics_for_upload.pdf, Category: 

Recruitment Materials; 

The IRB approved the protocol from 2/3/2016 to 2/2/2017 inclusive. Three weeks before 

2/2/2017 you are to submit a completed Continuing Review application and required 

attachments to request continuing approval or closure. 
 

If continuing review approval is not granted before the expiration date of 2/2/2017 

approval of this protocol expires on that date. When consent is appropriate, you must use 

final, watermarked versions available under the “Documents” tab in ERA-IRB. 

https://era.oked.asu.edu/IRB/Personalization/MyProfile?Person=com.webridge.account.Person%5BOID%5B5271642E3D08154E800451064D474D70%5D%5D
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https://era.oked.asu.edu/IRB/RMConsole/Organization/OrganizationDetails?detailView=true&amp;Company=com.webridge.account.Party%5BOID%5B977C3C2A1082BA47B46DBECCEEACE0F9%5D%5D
https://era.oked.asu.edu/IRB/RMConsole/Organization/OrganizationDetails?detailView=true&amp;Company=com.webridge.account.Party%5BOID%5B977C3C2A1082BA47B46DBECCEEACE0F9%5D%5D
https://era.oked.asu.edu/IRB/RMConsole/Organization/OrganizationDetails?detailView=true&amp;Company=com.webridge.account.Party%5BOID%5B977C3C2A1082BA47B46DBECCEEACE0F9%5D%5D
https://era.oked.asu.edu/IRB/RMConsole/Organization/OrganizationDetails?detailView=true&amp;Company=com.webridge.account.Party%5BOID%5B977C3C2A1082BA47B46DBECCEEACE0F9%5D%5D
https://era.oked.asu.edu/IRB/RMConsole/Organization/OrganizationDetails?detailView=true&amp;Company=com.webridge.account.Party%5BOID%5B977C3C2A1082BA47B46DBECCEEACE0F9%5D%5D
https://era.oked.asu.edu/IRB/RMConsole/Organization/OrganizationDetails?detailView=true&amp;Company=com.webridge.account.Party%5BOID%5B977C3C2A1082BA47B46DBECCEEACE0F9%5D%5D
mailto:mvidt@asu.edu
https://era.oked.asu.edu/IRB/Personalization/MyProfile?Person=com.webridge.account.Person%5BOID%5B5271642E3D08154E800451064D474D70%5D%5D
https://era.oked.asu.edu/IRB/Personalization/MyProfile?Person=com.webridge.account.Person%5BOID%5B5271642E3D08154E800451064D474D70%5D%5D
https://era.oked.asu.edu/IRB/Personalization/MyProfile?Person=com.webridge.account.Person%5BOID%5B5271642E3D08154E800451064D474D70%5D%5D
https://era.oked.asu.edu/IRB/Personalization/MyProfile?Person=com.webridge.account.Person%5BOID%5B5271642E3D08154E800451064D474D70%5D%5D
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In conducting this protocol you are required to follow the requirements listed in the 

INVESTIGATOR MANUAL (HRP-103). 
 

Sincerely, 

IRB Administrator 

 

cc: 

Gretchen Roman 
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APPROVAL: CONTINUATION 
 

Meghan Vidt 

SNHP: Exercise Science and Health Promotion 

mvidt@asu.edu  

 

Dear Meghan Vidt:  

On 1/5/2017 the ASU IRB reviewed the following protocol: 

Type of Review: Continuing Review  

Title: Upper extremity biomechanics in American Sign 

Language: native versus second language users 

Investigator: Meghan Vidt  

IRB ID: STUDY00003832 

Category of review: (6) Voice, video, digital, or image recordings, (4) 

Noninvasive procedures, (7)(a) Behavioral research 

Funding: None 

Grant Title: None 

Grant ID: None 

Documents Reviewed: • CONSENT BIOSCIENCE_GR_MODIFIED2.pdf, 

Category: Consent Form; 

 

 

The IRB approved the protocol from 1/5/2017 to 2/1/2018 inclusive.  Three weeks before 

2/1/2018 you are to submit a completed Continuing Review application and required 

attachments to request continuing approval or closure.  

If continuing review approval is not granted before the expiration date of 2/1/2018 

approval of this protocol expires on that date. When consent is appropriate, you must use 

final, watermarked versions available under the “Documents” tab in ERA-IRB. 

In conducting this protocol you are required to follow the requirements listed in the 

INVESTIGATOR MANUAL (HRP-103). 

 

Sincerely, 

IRB Administrator 

 

cc:  

Shannon Kenny, Kristina Huffman, Gretchen Roman, Jeffrey Landram, Naoaki 

Ito, Aaron Tran, Hikaru Fujita 
 

https://era.oked.asu.edu/IRB/Personalization/MyProfile?Person=com.webridge.account.Person%5BOID%5B5271642E3D08154E800451064D474D70%5D%5D
https://era.oked.asu.edu/IRB/Personalization/MyProfile?Person=com.webridge.account.Person%5BOID%5B5271642E3D08154E800451064D474D70%5D%5D
https://era.oked.asu.edu/IRB/RMConsole/Organization/OrganizationDetails?detailView=true&amp;Company=com.webridge.account.Party%5BOID%5B977C3C2A1082BA47B46DBECCEEACE0F9%5D%5D
https://era.oked.asu.edu/IRB/RMConsole/Organization/OrganizationDetails?detailView=true&amp;Company=com.webridge.account.Party%5BOID%5B977C3C2A1082BA47B46DBECCEEACE0F9%5D%5D
https://era.oked.asu.edu/IRB/RMConsole/Organization/OrganizationDetails?detailView=true&amp;Company=com.webridge.account.Party%5BOID%5B977C3C2A1082BA47B46DBECCEEACE0F9%5D%5D
https://era.oked.asu.edu/IRB/RMConsole/Organization/OrganizationDetails?detailView=true&amp;Company=com.webridge.account.Party%5BOID%5B977C3C2A1082BA47B46DBECCEEACE0F9%5D%5D
https://era.oked.asu.edu/IRB/RMConsole/Organization/OrganizationDetails?detailView=true&amp;Company=com.webridge.account.Party%5BOID%5B977C3C2A1082BA47B46DBECCEEACE0F9%5D%5D
https://era.oked.asu.edu/IRB/RMConsole/Organization/OrganizationDetails?detailView=true&amp;Company=com.webridge.account.Party%5BOID%5B977C3C2A1082BA47B46DBECCEEACE0F9%5D%5D
mailto:mvidt@asu.edu
https://era.oked.asu.edu/IRB/Personalization/MyProfile?Person=com.webridge.account.Person%5BOID%5B5271642E3D08154E800451064D474D70%5D%5D
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APPROVAL:CONTINUATION 

Pamela Swan 
SNHP: Exercise Science and Health Promotion 
602/827-2281 
PSwan@asu.edu 
 
Dear Pamela Swan: 
On 1/18/2018 the ASU IRB reviewed the following protocol: 

Type of Review: Continuing Review 

Title: Upper extremity biomechanics in American Sign 
Language: native versus non-native signers 

Investigator: Pamela Swan 

IRB ID: STUDY00003832 
Category of review: (6) Voice, video, digital, or image recordings, (4) 

Noninvasive procedures, (7)(b) Social science 
methods, (7)(a) Behavioral research 

Funding: None 
Grant Title: None 

Grant ID: None 
Documents Reviewed:  

 
The IRB approved the protocol from 1/18/2018 to 1/31/2019 inclusive.  Three weeks 
before 1/31/2019 you are to submit a completed Continuing Review application and 
required attachments to request continuing approval or closure.  
If continuing review approval is not granted before the expiration date of 1/31/2019 
approval of this protocol expires on that date. When consent is appropriate, you must 
use final, watermarked versions available under the “Documents” tab in ERA-IRB. 
In conducting this protocol you are required to follow the requirements listed in the 
INVESTIGATOR MANUAL (HRP-103). 
 
 
Sincerely, 
IRB Administrator 
 
 
cc:  

Thurmon Lockhart, Daniel Peterson, Gretchen Roman 
 
 
 
 
 
 
 
 

https://era.oked.asu.edu/IRB/Personalization/MyProfile?Person=com.webridge.account.Person%5BOID%5B0556BAE4C84C374B865A8506B57844B5%5D%5D
https://era.oked.asu.edu/IRB/RMConsole/Organization/OrganizationDetails?detailView=true&Company=com.webridge.account.Party%5BOID%5B977C3C2A1082BA47B46DBECCEEACE0F9%5D%5D
mailto:PSwan@asu.edu
https://era.oked.asu.edu/IRB/Personalization/MyProfile?Person=com.webridge.account.Person%5BOID%5B0556BAE4C84C374B865A8506B57844B5%5D%5D
https://era.oked.asu.edu/IRB/Personalization/MyProfile?Person=com.webridge.account.Person%5BOID%5B0556BAE4C84C374B865A8506B57844B5%5D%5D
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C.1. Consent Form: Bioscience 
 
Title of research study: Upper extremity biomechanics in American Sign 
Language: native versus non-native signers 
 
Investigator: Meghan Vidt, PhD 
 
Why am I being invited to take part in a research study? 
We invite you to take part in a research study because you are an ostensibly healthy adult 
(e.g. no neuromuscular disorders, such as Parkinson’s disease and no pacemakers), older 
than 18 years, with fluency in American Sign Language (ASL). A history of upper 
extremity pathology secondary to sign language use (e.g. carpal tunnel or cubital tunnel 
syndrome, cervical muscular strain, subacromial impingement) is allowable. Your 
participation is completely voluntary. Please take your time to make your decision and 
ask the study investigators or staff to explain or interpret any information that you do 
not understand.  
 
Pregnant individuals will be excluded because increased abdominal size, 
particularly from later stages of pregnancy, may artificially alter arm 
kinematics during signing.  
 
Why is this research being done? 
The purpose of this research is to confirm or deny the presence of 5 biomechanical 
measures unique to signers. Biomechanics refers to how we move our bodies in space. 
Using motion capture and electromyography (EMG) data, this research will compare the 
observed biomechanics of native and non-native signers. We also plan to investigate if 
there an association between biomechanics and musculoskeletal pain from 
communicating in sign language. Lastly, we will also investigate if there is an association 
between strength and musculoskeletal pain from communicating in sign language.    
 
If you choose to participate in this research study, there may not be any direct benefit to 
you. We believe that the benefits of participation include confirmation that biomechanics 
are unique to signers, and being able to differentiate between native versus non-native 
signers and those with and without pain. Studying the biomechanics of signers without 
pain will help to educate future generations of signers and lessen the incidence of painful 
conditions associated with sign language.    
 
How long will the research last? 
We expect that individuals will spend approximately five hours in a single study visit 
participating in the proposed activities. 
 
How many people will be studied? 
We expect about 50 people will participate in this research study. 
 
What happens if I say yes, I want to be in this research? 
It is up to you to decide whether or not to participate. If you take part in this study, you 
will have the following tests and procedures: 
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You will be asked to come to the Arizona Biomedical Complex – 1 (ABC-1) building on 
Arizona State University’s Downtown Phoenix campus. During one visit, lasting 
approximately five hours, all tests and procedures associated with the study will be 
performed. For this visit, you will be asked to remove your shirt (male study 
participants) or wear a sports bra (female study participants) for the testing to ensure 
proper placement of markers and electrodes. Alternatively, you may wear a close-fitting 
tank top.  
 
Measurements of height, weight, and body segment length and circumference will be 
taken. Body height and weight will be measured with a scale and measuring stick. 
Lengths and circumferences of your upper arms, forearms, and whole arms will be 
measured. Measurements will be taken in the Movement Analysis Laboratory in ABC-1. 
 
You will also be asked to communicate a variety of sign language utterances. Before the 
analysis begins, reflective markers will be attached to anatomical landmarks (e.g. 
inner/outer elbow, inner/outer wrist, side of the shoulder and chest bone) on your body 
using tape, pre-wrap and/or ace bandages. Cameras will be used to record the movement 
of these markers so we can determine how you move during the tasks. These cameras 
only record the markers and no image of your face or body is taken. The motion capture 
assessment will take place in the Movement Analysis Laboratory in ABC-1. 
 
Also, during these tasks, we will measure the activations of muscles on your arms and 
torso using EMG. To measure muscle activity, we will use tape to place electrodes on the 
skin over top of your muscles. Specifically, muscles on the forearms, upper arms, 
shoulder blades, ribcage, and neck will be monitored. Your skin will be prepared before 
electrode placement to ensure we get a good measurement; as necessary, your skin may 
be prepared by shaving, light abrasion, and cleansed with alcohol. The electrodes will 
measure when your muscles are activated and they do not send any signal to you. You 
will not feel anything from the electrodes. We do not want you to become fatigued or 
experience any discomfort or pain at any time during the testing session. Please inform 
the study staff if you feel fatigued or experience any discomfort or pain. You can 
discontinue participation in the study at any time. EMG assessment will take place in the 
Movement Analysis Laboratory in ABC-1. 
 
Study staff want you to feel comfortable. We will need to place the markers and 
electrodes on you to ensure proper placement. If you are a female participant and prefer 
a female study staff or a male participant and prefer a male study staff assist you with the 
marker/electrode placement, just let us know. Body hair can impede transmittal of EMG 
signal, and you may be asked to shave the region where the electrodes will be placed. You 
will be free to shave prior to your arrival; while on site a disposable razor will be used to 
shave the area where electrodes will be placed. Alternatively, you may shave the location 
on your torso/arms under the guidance of the study staff prior to electrode placement. If 
you are not interested in having markers/electrodes placed on your body, you should not 
participate in this study.  
 
We will ask you a few questions about pain. Pain will be measured with a self-report 
measure called the numeric pain rating scale. You will be asked to indicate on a scale 
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between 0 and 10 the number that best describes your pain at the time. Zero means ‘no 
pain’ and 10 means the ‘most severe pain.’ 
 
A dynamometer is a device that allows us to measure your strength. Sitting with your 
arms relaxed at your side and your elbow bent, grip strength will be measured using a 
hand-held dynamometer. Sitting with straps across your chest to prevent torso 
movement and braces to prevent other arm joint movement, strength testing of your 
shoulders and wrists will be measured using an isokinetic dynamometer. All strength 
assessments will take place the Exercise Physiology Laboratory on the 1st floor of ABC-1. 
For all aspects of the testing for this study, you will interact with members of the 
research team. Upon completion of these tests during your visit, your participation in the 
study is complete. There is no follow-up associated with this study. The research team 
may ask if you would be willing to include your name on an internal (for the laboratory’s 
use only) list of individuals who are willing to be contacted about possible research study 
participation in the future. Such inclusion is completely voluntary. 
 
What happens if I say yes, but I change my mind later? 
Taking part in this research study is voluntary. You can leave the research at any time 
and it will not be held against you. This is not an intervention study or a clinical trial, and 
no adverse consequences related to the study are anticipated if you decide to leave the 
research. If you decide to leave the research, contact the investigator so that the 
investigator can answer any questions or concerns you have about the study and 
document your termination.  
 
If you stop being in the research, already collected data will not be removed from the 
study database. If your withdrawal from the study is related to concerns about the risks 
associated with a testing procedure(s), you may be asked whether you would like to 
participate in remaining testing procedure(s) associated with the study. 
 
Is there any way being in this study could be bad for me? 
Being in this study involves some minimal risk to you. You should discuss the risks of 
being in this study with the study staff. The risks related to the tests involved with this 
study include: 
 

• Physical risks:  
Motion Capture Testing, Dynamometry and Electromyography 
There is a small risk of injury during the motion capture testing, dynamometry, 
and electromyography, such as a muscle strain or pull, or a joint injury. If you are 
sensitive or allergic to adhesives or the gel on electrodes, it is possible you could 
experience a skin irritation or rash where tape or electrodes come into contact 
with your skin. These reactions typically go away in a short period of time. All 
tests will be supervised by study staff who will instruct you in proper technique. 
The staff will supervise a practice session, which will allow you to become 
accustomed to the movements during the test and also help to decrease the 
potential for discomfort or the occurrence of muscle soreness or injury. 
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• Privacy risks:  
Taking part in this research study may involve providing information that you 
consider confidential or private. Efforts will be made to keep your information 
safe, including de-identifying research records, keeping research records secure, 
and only allowing authorized people to access research records. 

 
Will being in this study help me any way? 
We cannot promise any benefits to you or others from your taking part in this research. 
However, possible benefits include providing valuable information about which 
biomechanical factors are associated with musculoskeletal pain from sign language use 
and will serve as a platform upon which to build future research. It is also anticipated 
that the information gained from this research will inform interventions for pain 
reduction specific to signers, such as strategies for adopting neutral upper extremity 
biomechanics or upper extremity strengthening.  
 
What happens to the information collected for the research? 
Efforts will be made to limit the use and disclosure of your personal information, 
including research study and medical records, to people who have a need to review this 
information. We cannot promise complete secrecy. Organizations that may inspect and 
copy your information include the IRB and other representatives of this organization. 
Data collected from this research study will be securely maintained for 7 years, or as long 
as required by law, before hard and electronic copies of identifying information is 
securely destroyed. No reference will be made to individual participants in any reports, 
presentations, or publications that result from this research study. 
 
What else do I need to know? 
Each participant who completes the study will receive $100 (cash) to compensate them 
for their time and effort toward the research study. If needed, participant parking costs 
while participating in the study will be covered. Should you agree to participate in the 
study, consent does not waive any of your legal rights. However, no funds have been set 
aside to compensate you in the event of injury. 
 
The primary purpose of this research is to use motion capture and EMG to scientifically 
investigate biomechanical components unique to signers. However, following completion 
of the study, it is possible that some results may be shared with the community through 
academic manuscripts. Any data will be anonymized and reported in aggregate form. 
You can contact Dr. Gretchen Roman to request a copy of any article(s) produced which 
describe the results from this study.  
 
Who can I communicate with? 
If you have questions, concerns, or complaints, or think the research has hurt you, talk to 
the research team at: 
Meghan Vidt, PhD 
Principal Investigator 
Exercise Science and Health Promotion 
ABC-1, Room 224 
425 North Fifth Street  
Phoenix, AZ 85004 
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602-827-2280  
mvidt@asu.edu 
 
This research has been reviewed and approved by the Bioscience IRB (“IRB”). You may 
talk to them at (480) 965-6788 or research.integrity@asu.edu if: 

• Your questions, concerns, or complaints are not being answered by the research 
team. 

• You cannot reach the research team. 

• You want to talk to someone besides the research team. 

• You have questions about your rights as a research participant. 

• You want to get information or provide input about this research. 
 
 
 
Signature Block for Capable Adult 

Your signature documents your permission to take part in this research. 

   

Signature of participant  Date 

 
 

Printed name of participant 

   

Signature of person obtaining consent 
 
 

 Date 

                   Printed name of person obtaining consent  
 
 
 
Are you interested in being contacted for possible research study participation in the 
future? 
____Yes ____No 
 
If yes, please provide your contact information: 
Mailing address: _______________________________ 
 
   _______________________________ 
 
 
Email address: _______________________________ 
 
Phone number: _______________________________ 
 

 

mailto:mvidt@asu.edu

