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ABSTRACT

Hardware implementation of deep neural networks is earning significant importance

nowadays. Deep neural networks are mathematical models that use learning algo-

rithms inspired by the brain. Numerous deep learning algorithms such as multi-layer

perceptrons (MLP) have demonstrated human-level recognition accuracy in image

and speech classification tasks. Multiple layers of processing elements called neu-

rons with several connections between them called synapses are used to build these

networks. Hence, it involves operations that exhibit a high level of parallelism mak-

ing it computationally and memory intensive. Constrained by computing resources

and memory, most of the applications require a neural network which utilizes less

energy. Energy efficient implementation of these computationally intense algorithms

on neuromorphic hardware demands a lot of architectural optimizations. One of

these optimizations would be the reduction in the network size using compression

and several studies investigated compression by introducing element-wise or row-

/column-/block-wise sparsity via pruning and regularization. Additionally, numerous

recent works have concentrated on reducing the precision of activations and weights

with some reducing to a single bit. However, combining various sparsity structures

with binarized or very-low-precision (2-3 bit) neural networks have not been com-

prehensively explored. Output activations in these deep neural network algorithms

are habitually non-binary making it difficult to exploit sparsity. On the other hand,

biologically realistic models like spiking neural networks (SNN) closely mimic the

operations in biological nervous systems and explore new avenues for brain-like cog-

nitive computing. These networks deal with binary spikes, and they can exploit the

input-dependent sparsity or redundancy to dynamically scale the amount of computa-

tion in turn leading to energy-efficient hardware implementation. This work discusses

configurable spiking neuromorphic architecture that supports multiple hidden layers
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exploiting hardware reuse. It also presents design techniques for minimum-area/-

energy DNN hardware with minimal degradation in accuracy. Area, performance

and energy results of these DNN and SNN hardware is reported for the MNIST

dataset. The Neuromorphic hardware designed for SNN algorithm in 28nm CMOS

demonstrates high classification accuracy (>98% on MNIST) and low energy (51.4 -

773 nJ per classification)[1]. The optimized DNN hardware designed in 40nm CMOS

that combines 8X structured compression and 3-bit weight precision showed 98.4%

accuracy at 33nJ per classification [2].
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Chapter 1

INTRODUCTION

Deep neural networks (DNNs) have seen exceptional success in numerous cognitive

applications such as image classification [8] and speech recognition [9]. However, the

large number of operations and parameters in state-of-the-art DNN algorithms have

posed significant challenges for energy-efficient DNN hardware designs. In partic-

ular, devices that are constrained by limited computing resources and memory are

compelling hardware implementations to use techniques to reduce the neural net-

work size and lower the energy consumption. To accomplish this various prior works

investigated methods to (1) lower the precision of activations and weights and (2)

apply pruning and compression techniques for DNNs while maintaining high classifi-

cation accuracy. Low-precision techniques rely on quantizing the DNN weights and

activations with a small number of bits. The extreme case of DNN quantization is

binarizing the weights and activations. BinaryConnect[10] pointed that binarizing

the weights does not adversely affect accuracy and, in some cases, can improve the

accuracy compared to non-binarized DNN. Binarized Neural Network (BNN) [11] ex-

tended the approach by binarizing both weights and activations and XNOR-Net [12]

used a binarized network for ImageNet classification. Many prior works have also

attempted to compress DNNs[13] through pruning of neurons and weights. How-

ever, generating a scattered sparsity may not necessarily result in acceleration on

hardware [14, 15] and can also increase the storage overhead for encoding sparsity.

Coarse Grain Sparsity (CGS) is proposed in [16], where static sparsity is applied to

randomly selected blocks of weights throughout training. While these prior works

investigated low-precision and structured compression in isolation, there has been
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little work that systematically applied and optimized both techniques in a single

framework. Deep compression [11] used pruning and quantization on weights; how-

ever, the sparsity remained non-structured. Prior CGS work [8] employed block-wise

structured sparsity, but only quantized the weights and activations after training was

complete, resulting in limited precision reduction (5-6 bit). Quantization of weights

and Structured sparsity was applied throughout the training minimizing the index

overhead that stores sparsity information, resulting in prominent acceleration with

a low area/- energy hardware implementation. This work presents a custom energy

efficient digital hardware for various combinations of low-precision and structured

compression. The proposed methodology is empirically validated by implementing

the inference phase of DNNs for MNIST dataset. The DNN for MNIST with 8-bit

activations, 3-bit weights, and 8X CGS compression showed 98.4% accuracy at 33

nJ per classification, which is a >10X energy improvement compared to the baseline

DNN. Traditionally, neural networks comprise an enormous amount of multiplica-

tion operations which contribute to a significant amount of logic power consumption.

Therefore, another way to optimize neural networks for energy is to get relieved of

multiplication operations. This can be achieved by using spiking neural networks

comprising of spiking neurons. SNN’s transfers the information through a sequence

of spikes (binary messages) or timing of spikes [17]. These networks are closely re-

lated to our biological nervous systems. Since the neurons communicate through

spikes, it eliminates the need for multipliers in the neuron model. However, achieving

classification accuracy close to that of traditional neural networks using SNN’s is a

challenging task. Many SNN algorithms proposed for image recognition varies with

different hidden layers and neuron models. To support various SNN algorithms, the

hardware should be programmable. Along with energy efficient DNN architectures,

this work also discusses configurable spiking neuromorphic architecture that supports
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multiple hidden layers exploiting hardware reuse.

1.1 Motivation

Though neural networks are incredibly efficient in several applications because of

their complexity, hardware implementations suffer from large silicon area, high mem-

ory, and power consumption. Multiply-and-accumulate (MAC) operations account

for 99% of total operations in some neural networks and therefore, dominate both

processing run-time and energy consumption [18]. Operations in neural networks

exhibit a high level of parallelism. Conventional computers with Von Neumann ar-

chitecture are sequential, thus making them inefficient in handling parallelism. Their

performance is restricted due to frequency and power issues. This inefficiency of

uniprocessors calls for the implementation of neural networks on hardware that sup-

ports the high level of parallelism like GPU’s. Due to their huge power consumption

researchers are motivated towards implementing custom hardware (ASIC) instead of

GPU’s where parallelism can be exploited and better performance, concerning power

and throughput can be achieved. Around 95% of the neural network inference work-

loads at google datacenters are from Multi-Level perceptrons (MLP), Convolution

Neural Networks (CNN) and Recurrent Neural Networks (RNN), out of which 60 %

of it is from MLPs [19]. Therefore, there is a need to accelerate the neural networks

for energy efficiency and better performance.

1.2 Deep Neural Networks

An artificial neuron is the fundamental building block of all artificial neural net-

works. It performs the weighted sum of all the input activations and weights. The

sum of input-weight products is passed through an activation function which squashes
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Figure 1.1: Artificial Neuron Model, Adapted from [3]

the weighted sum into bounded values (1.1).

Y = a(
N∑
i=1

xiwi) (1.1)

Where xi are inputs, wi are weights , a(x) is activation function and Y is the output

of the neuron. Figure 1.1 shows the block diagram of simple neuron model where

x and w are input values and weights. There are multiple variants of the neural

network. The basic one is a multilayer perceptron which consists of multiple layers

of neuron units as shown in figure 1.2. Each neuron in layer N is connected to all

the neurons present in layer N+1. The Weight parameter determines the strength

of these connections. The first layer, intermediate layers, and last layer are referred

as the input layer, hidden layers, and the output layer respectively. In inference

stage, these three layers create a feedforward architecture in which inputs are given

to the input layer and their output activations are passed to the succeeding layers.

Hence output activations of layer N serve as inputs for layer N+1. Each layer extracts

particular features of the images and passes it on to the succeeding layer. For example,

for handwritten digit classification, the first hidden layer may find the edges of the

image. The next layer takes these edges and finds patterns in it. Ultimately, based
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Figure 1.2: Multilayer Perceptrons with One Hidden layer, adapted from [4]

on these patterns the output layer classifies the handwritten digit.

1.3 Spiking Neural Networks

In a biological nervous system, information is processed in the form of electrical

pulses called ’spikes.’ These spikes travel through the axon which is linked to the

dendrites of other neurons via synapses. Synapses present at all dendrites determines

the strength of the connection between neurons which is defined during the learning

process. An Incoming spike can increase or decrease the membrane potential of the

neuron making it excitatory or inhibitory. When membrane potential of these post-

synaptic neurons exceeds the threshold, they send spikes to the next set of neurons.

Figure 1.3 shows a spiking neuron with many synaptic inputs and its variation of

membrane potential. Spiking neural networks (SNN) represent a particular class of

artificial neural networks (ANN) where neuron models communicate by sequences of

spikes [20]. These neural network models have been employed for pattern recogni-

tion tasks that use more biologically plausible mechanisms. One popular approach
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Figure 1.3: A Biological Spiking Neuron Model

to train these models is to rely on backpropagation training and converting an artifi-

cial neural network (ANN) into a spiking neural network (SNN), which is termed as

rate-based learning [21, 22, 23]. While they show superior performance on tasks like

the classical machine learning benchmark MNIST, this rate-based learning is not very

biologically plausible and it requires many time steps to achieve high accuracy. SNN’s

gains power from its additional dimension; the delay variable that exists between the

spikes. Along with rate-based information, it can process the temporal information

between spikes.

1.4 Thesis Organization

Chapter 2 presents SNN and DNN based image classification algorithms that are

implemented in hardware. This section comprises rate based and temporal based

learning algorithms for SNN and structured compression technique adopted in DNN

to reduce memory utilization. Hardware implementation details of these algorithms

, which includes approaches and optimizations applied to design an energy efficient

neural network hardware, are detailed in Chapter 3. It also covers the detailed design
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of programmable hardware for MLP SNN’s. Chapter 4 presents the key results and

provides a discussion of the results. Chapter 5 summarizes this work and sheds light

on some possible future work ideas.
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Figure 2.1: An Example of Discrete-Time N-MNIST Input Spikes (digit 7) at Four

Timesteps (t = 0, 5, 10, 15), Adapted from [5]

Chapter 2

IMAGE CLASSIFICATION ALGORITHMS FOR MNIST AND NMNIST

MNIST is a dataset of handwritten images which has served as the foundation for

benchmarking classification algorithms. It provides 60000 greyscale 28x28 training

images and has a test set of 10000 examples [24]. The Neuromorphic-MNIST (N-

MNIST) dataset is a spiking version of the original frame-based MNIST dataset.

NMNISTdataset images (34 ∗ 34 pixels) are generated by moving an asynchronous

time-based image sensor (ATIS) in front of the MNIST images [5]. Figure 2.1 is an

example of discrete-time N-MNIST input spikes of digit 7 at four time steps (t = 0,

5, 10, 15). Note that the digit seven is moving downward. In this chapter, we present

SNN and DNN based image classification algorithms designed for the classification of

MNIST and NMNIST datasets.

2.1 Spiking Neuron Models with Binary Activations

A spiking neuron model provides a formulation of how a neuron processes the

incoming spikes and triggers firing accordingly. Hodgkin and Huxley developed the
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Figure 2.2: Hodgkin and Huxley Spiking Neuron Model, Adapted from [6]

first spiking neuron model [6] in 1952. It modeled the electrophysical of the neural

membrane through conductance of ion channels. Hodgkin and Huxley description of

the electrical behavior of neuron membrane potential is shown in figure 2.2 and it

follows equation (2.1).

I = CM
dV

dt
+ Ii, (2.1)

Where I is the total membrane current density, Ii is the ionic current density, V is the

displacement of the membrane potential from its resting value, CM is the membrane

capacity per unit area, and t is time. Though this model laid the framework for the

development of SNN neuron models, many biological relevant behaviors of the neuron

could not be mapped using this model. The leaky integrate-and-fire model introduced

the leak term into the models making them more biologically realistic. A simplistic

digital implementation of LIF neuron [7] is summarized in equations (2.2)(2.3)(2.4).

Vj(t) = Vj(t− 1) +
N−1∑
i=0

xi(t)si (2.2)
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Vj(t) = Vj(t) − λj (2.3)

if vj(t) > αj, Vj(t) = Rj, spike (2.4)

For any jth neuron in the tth timestep, the membrane potential Vj(t) is the sum of

the membrane potential in the previous timestep Vj(t − 1) and the synaptic input.

For each of the N synapses, the synaptic input is the sum of the spike input to the

synapse xi(t) at the current timestep multiplied by the signed synaptic weight si.

λj represents the linear leak factor which is subtracted from Vj(t) every timestep.

Then Vj(t) is compared with threshold αj. If the membrane potential is greater than

or equal to the threshold voltage, the neuron fires a spike and resets its membrane

potential. Figure 2.3 depicts the graphical model illustrating the functionality of a

LIF neuron [7]. The Izhikevich model [25] combined the biological plausibility of

HodgkinHuxley-type dynamics and the computational efficiency of integrate-and-fire

neurons. In this section, we examine two variants of discrete-time leaky integrate-fire

(LIF) spiking neuron models that are suitable for BP-based training of deep SNNs.

2.1.1 Spiking Neuron with Discontinuous Integration (SNN-DC)

In ANNs, the activation output of a neuron k in layer L is:

alk = y(
m∑
i

(aL−1
i wL−1

i,k ) + bLk ) (2.5)

where y(x) is the activation function, wL−1
i,k the synapse weight connecting neuron i to

neuron k, and bLk is the bias. One popular activation function is rectified linear unit

(ReLU) as illustrated in Figure 2.4. Compared to these artificial neurons, spiking

neurons have two distinct properties: (1) the neuron value (membrane potential) is

integrated over time and (2) each neuron outputs a binary spike. The SNN algorithm

incorporates these by introducing a discrete time step variable t and by choosing a
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Figure 2.3: Top: Variation of LIF Neuron Membrane Potential Vj(t) with Time t

Bottom: Spike Raster Plot with Excitatory Inputs (green), Inhibitory Inputs (red)

and Output Spikes (blue), , Adapted from [7]

special binary activation function.

vLk (t) =
m∑
i

(aL−1
i (t)wL−1

i,k ) + bLk ), (2.6)

alk(t) = yb(v
L
k (t)) (2.7)

where vLk (t) is the membrane potential and yb(x) is a binary activation function de-

picted in Figure 2.4 yb(x) = 1 if x > θ, otherwise yb(x) = 0 , where θ is firing

threshold. This spiking neuron model performs synaptic integration in a discontin-

uous manner and is denoted as SNN-DC. In other words, vLk (t) is reset to zero at

the beginning of every time step t, before the neuron integrates the presynaptic in-

jections and the bias term. If the membrane potential after integration at time step

11



Figure 2.4: Comparison of Neuron Models for ANN with ReLU Activation and

Discrete-time SNN with Binary Activation (SNN-DC and SNN-CT)

t exceeds threshold θ, the neuron fires (aLk (t) = 1); otherwise, the neuron remains

silent (aLk (t) = 0). Since the neuron membrane potential is discontinuous between

sequential time steps, time is not incorporated into SNN training. Thus, the SNN-DC

model can be reduced to a form similar to equation (2.5) except that the activation

is a unique binary activation function yb(x). SNNs trained with the SNN-DC model

is suitable for rate coding spike inputs such as Poisson spikes, which assume no tem-

poral correlation between adjacent time steps. Compared to the SNNs converted

from ANNs in [21, 22], which are also designed for rate-coding spike inputs, SNNs in

this algorithm. By using the SNN-DC model, good accuracy can be achieved with

much fewer time steps (even with one-time step) because the proposed SNNs are

directly trained over many single-time-step training samples. Figure 2.5 illustrates

the variation of classification accuracies with time steps for various algorithms. We

can observe that SNN-DC can achieve high accuracy even with just one-time step,
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Figure 2.5: MNIST Accuracies of Various SNN Designs for Different Timesteps

whereas the SNNs converted from ANN (ANN2SNN) requires 4-16 more time steps

to achieve the same accuracy.

2.1.2 Spiking Neuron with Continuous Integration (SNN-CT)

For spike input encodings other than rate-coding, the SNN-DC model may not

be sufficient to capture the temporal correlation between time steps. By including

membrane potential integration across multiple time steps, the SNN-DC model can be

extended to a spiking neuron model with continuous integration, denoted as SNN-CT:

vLk (t−) =
m∑
i

(aL−1
i (t)wL−1

i,k ) + bLk + vLk (t− 1), (2.8)

alk(t) = yb(v
L
k (t−)), (2.9)

vLk (t) = vLk (t−) − θ.alk(t), (2.10)
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where vLk (t−) and vLk (t) are the membrane potentials of neuron k at time step t be-

fore and after the neuron firing check. The initial membrane potential is set to zero

(vLk (−1) = 0 ). When vLk (t−) exceeds the threshold θ, the neuron fires and the mem-

brane potential is decremented by θ as shown in equation(2.10) [22]. Compared to

conventional frame-based ANNs, SNN-CT generates outputs with one more dimen-

sion: time. The N-MNIST dataset was used for training and testing a discrete-time

MLP SNN with the SNN-CT model. The N-MNIST dataset was augmented by adding

upward and downward movement for the static images. An MLP SNN, consisting

of two 256-neuron hidden layers of 256 neurons and a 12-neuron output layer, was

trained for this augmented N-MNIST benchmark. The MLP SNN was trained for

dual tasks with ten output neurons for digit classification and two output neurons

for upward and downward motion recognition. Figure 2.6 shows N-MNIST accura-

cies of digit classification and motion recognition of the proposed MLP SNN-CT as

a function of time steps. Digit classification and motion recognition accuracies are

96.33% and 99.83%, respectively. For both tasks, accuracies increase as the number

of time steps increase. Fewer input spikes in the last few time steps cause the motion

recognition accuracy to slightly decrease.

2.2 Deep Neural Networks with Coarse Grain Sparsity

2.2.1 Overview

As the majority of computations in DNN are multiply-and accumulate (MAC)

operations, constraining the weights and activations to low precision during training

can result in a significant reduction in energy with appropriate hardware design for

classification. BinaryConnect [10] employs the quantized value of the real-valued

weights for forward and backward phases of backpropagation. With the weights
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Figure 2.6: N-MNIST Accuracies of Digit Classification and Motion Recognition

constrained to just 1-bit, the MAC operations can be replaced with simple additions

and subtractions. BNN [11] quantized both weights and activations to +1 or -1,

where MAC operations become bit-wise XNOR and accumulate operations. Authors

in [10, 11] argue that the quantization noise acts as a regularizer and hence can give

good test accuracy even with 1-bit quantization. Compared to BNN, XNOR-Net

[12] showed significant improvement in ImageNet classification accuracy with binary

weights and activations.

Structured Sparsity learning (SSL) [14] applies group Lasso regularization [26] to

the weights belonging to a DNN structure. This prunes the weights corresponding to

the unnecessary structures in the DNN model. SSL generates compact DNN struc-

tures which can be efficiently implemented in hardware with less memory utilization,

thereby saving silicon area and power. Scalpel [15] applies DNN sparsity depending

on the level of data-parallelism of the target hardware. Matrix multiplications on a
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sparse matrix need extra computations to decode the sparse format of the matrix. For

low-parallelism hardware, SIMD-aware weight pruning maintains weights in aligned

fixed-size groups to fully utilize the SIMD units. For high-parallelism hardware, node

pruning is applied so that the dense matrix is retained, but redundant nodes are

removed. For moderate-parallelism hardware, a combination of SIMD-aware weight

and node pruning is performed.

2.2.2 Coarse-Grain Sparsity

Coarse-Grain sparsity (CGS) [16] is a technique to generate structured sparsity

by randomly dropping blocks of weights within the DNN weights matrix throughout

training. The overall sparsity depends on the CGS block size and the CGS compres-

sion ratio (CGS ratio). Since sparsity is formed on a block-by-block basis, the index

overhead is minimized allowing the final trained weights to be efficiently mapped onto

SRAM arrays.

2.2.3 Combining Low Precision and Structured Sparisty

Training algorithm was based on BNN with additional structured sparsity con-

straints of Coarse-Grain Sparsity (CGS). Before training, blocks of weights were ran-

domly dropped off according to the CGS block size and CGS compression ratio.

These blocks remain zero during training and inference. The training algorithm for

non-sparse blocks of weights are similar to that of BNN training using backpropaga-

tion. For fully-connected layers, the weight matrix is divided into square blocks. For

x ∗x block size, each block contains x2 weights. Once the weights are segregated into

blocks, a large number of blocks are randomly dropped off with probability equal to

the CGS ratio. These blocks remain zero during training and inference and hence do

not contribute to the physical memory. Figure 2.7 shows an example weight matrix
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Figure 2.7: Illustration of CGS with Weight Matrix of 1024x1024 having 87.5% of

Weights Dropped with Block-Wise Sparsity

for a fully-connected layer of size 1024 ∗ 1024, where each square represents a block

of weights of size 16 ∗ 16. Grey squares represent blocks where eligible connections

are present and white squares represent blocks with the absence of connections. Fig-

ure 2.7 (right) illustrates the blocks with active connections, compressed along the

row, after applying 8X CGS ratio [16, 27]. The sparse weight matrix/tensor, gener-

ated after applying CGS is trained using backpropagation by quantizing weights and

activations.

A Multi-Layer Perceptron (MLP) architecture with two hidden layers was used

for training MNIST. Model selection for best architecture was performed based on

accuracy study on different architectures. Test accuracy for different architecture

settings have been compared in Figure 2.8 for different models. Examining of test

accuracies of architectures with 1, 2 and 3 hidden layers with a different number

of neurons per hidden layer (128, 256, 512, 1024 neurons), we can observe that the
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Figure 2.8: Design Point Selection of MLP for MNIST Dataset

2-hidden layer architecture with 512 neurons provides uncompromised test accuracy

with fewer neurons/layers. Hence, 2-hidden layer architecture with 512 neurons was

used for the MLP investigation of MNIST dataset.
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Chapter 3

IMAGE CLASSIFICATION HARDWARE DESIGN

In this chapter, we discuss the hardware implementations of SNN and DNN algorithms

for classification of MNIST/N-MNIST dataset. The SNN algorithm had two different

modes namely SNN-DC and SNN-CT which differed in synaptic integration. Both

SNNs have two 256-neuron hidden layers. The SNN-DC (SNN-CT) for MNIST (N-

MNIST) has 784 (1,156) input neurons and 10 (12) output neurons. All the weights

and biases were stored in on-chip SRAM arrays, and membrane potentials of the

neurons were saved in registers. A configurable hardware architecture was developed

to support both modes of operation, thereby supporting the classification tasks of both

MNIST and NMNIST dataset. Additionally, hardware reuse was also introduced to

the architecture to make it more programmable. CGS compression technique was

employed in DNN algorithm for MNIST digit classification. Compressed weights

and corresponding index information were saved in on-chip SRAM arrays. A CGS

decompressor unit was designed to decompress the weights which were then passed to

MAC units. To explore various sparsity structures with low precision neural networks,

different memory modules were used and demanded changes/optimizations were done

in RTL to obtain different custom hardware implementations for all chosen design

points. All of this DNN hardware supported two hidden layers with 512 neurons and

10 output layer neurons.
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Figure 3.1: Classification Accuracies for Different Precision of Weights.

3.1 Neuromorphic Hardware for Discrete-time MLP SNN’s

3.1.1 Weight Precision Study

Due to power/area limitations, high precision synaptic weights cannot be em-

ployed in the hardware implementation of neural networks. Hence, we need to con-

vert high precision weights into the fixed-point format. Due to this pre-processing

of weights, we endure little loss in accuracy. Figure 3.1 shows the variation of clas-

sification accuracy with weight precision. We selected 7-b weight precision for both

SNN-DC and SNN-CT resulting in negligible accuracy loss compared to floating-point

precision.

3.1.2 Hardware Architecture Supporting SNN-DC and SNN-CT

Figure 3.2 shows the overall hardware architecture where synchronous clocking is

used with extensive clock gating. This feed-forward pipelined design consists of a spike

scheduler to recognize the active spike position, two hidden layers of 256 accumulation

units and one output layer of 12 accumulation units acting as artificial neurons and

control logic to ensure the precise functionality of pipelining. We employ parallel
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Figure 3.2: Hardware Architecture for the Proposed MLP SNNs

Figure 3.3: Block Diagram of Spike Scheduler Unit

output neurons for the hidden/output layers while the input spikes of the neurons are

processed serially in each clock cycle. SNN-CT (SNN-DC) having network structure

of 1156 − 256 − 256 − 12 (784 − 256 − 256 − 10) requires 346kB (289kB) of memory

for 7 bit weights. Design of each block is discussed in next subsections.

Spike scheduler for event-driven operation: Spike scheduler was used to uti-

lize the spike sparsity. Figure 3.3 shows the block diagram of spike scheduler unit

consisting of a priority encoder and a position finder unit. Output spikes generated
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Figure 3.4: Block Diagram of Prioriry Encoder

at every timestep are given to the priority encoder to obtain a unique active spike.

In the next cycle, the previous unique spike is masked using an ’AND’ gate thereby

generating a new spike input to the priority encoder. The position finder unit ob-

tains the index values of the sequentially generated unique active spikes. Hence,

the spike scheduler unit featuring 256-/1156-input priority encoders sequentially gen-

erates active presynaptic neuron indices from binary input spike vectors. An 1156

bit priority encoder hinders the high-frequency operation because of its vast critical

path. To break this critical path without increasing the latency, architecture shown

in figure 3.4 was employed for priority encoders. The maximum delay was either the

delay of small priority encoder or the or gate chain. The generated neuron index is

transferred to the weight memory to fetch the weights for all parallel postsynaptic
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Figure 3.5: State Diagram used to Generate Handshaking Signals for First Hidden

Layer

neurons. These weights are integrated into the neurons membrane potentials. Af-

ter all input spikes are processed, the postsynaptic neurons fire if their membrane

potentials exceed the threshold. Since only a small fraction (only 4.8% in the SNN-

CT for N-MNIST dataset) of the presynaptic neurons are active at each time step,

the spike scheduler enables event-driven computation for only active neuron spikes,

substantially reducing the latency and energy.

Pipeline architecture and handshaking : All SNN layers are pipelined to en-

hance throughput. Since the number of active spikes varies with layer and time,

handshake signals are exchanged between adjacent layers to reduce the overall la-

tency. Figure 3.5 shows the state diagram used to generate handshaking signals for

the first hidden layer. The first hidden layer can start its computation only when the

next stage takes the computed output else the output will be overwritten resulting in

the improper operation. Two conditions have to be verified to start computation of

second hidden layer:

(1) Outputs of the first hidden layer should be ready so that second hidden layer can

begin processing it.
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Figure 3.6: State Diagram used to Generate Handshaking Signals for Second

Hidden Layer

(2) The output computed by the second hidden layer should be taken by output layer

ensuring that it will not be overwritten when new input is processed.

Since the number of active spikes in each layer varies with every timestep, any of

the above two conditions can happen first. Figure 3.6 shows the state diagram which

assures proper stalling of the second hidden layer. Only when both conditions are

satisfied the ’H2 start’ signal is generated. Figure 3.7 shows the state diagram used

to produce handshaking signals for the output layer. The state diagram of output

is similar to second hidden layer, but the conditions are varied. The output layer

can start its computation only when both second hidden layer and output layer has

completed their previous calculations.

Configurable neuron units : Binary spikes in spiking neural networks benefit in

getting rid of multipliers inside the neuron architecture. The figure 3.8 shows the con-
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Figure 3.7: State Diagram used to Generate Handshaking Signals for Output Layer

figurable neuron architecture designed to support SNN-DC and SNN-CT algorithms.

After receiving the active neuron index from the spike scheduler, SRAM modules

provides synaptic weights to all the postsynaptic neurons. These 7-bit weights are

accumulated and passed to flooring/ceiling unit to guarantee that the accumulated

values will not suffer from overflow/underflow errors. The ’done’ signal is created

by spike scheduler unit when there are no active spikes left. After the completion

of computation, the accumulated values are compared with the threshold (θ), and

a spike is generated. The ’refresh’ signal is used to configure the neuron to SNN-

DC/SNN-CT mode. If refresh signal is asserted then neuron supports SNN-DC by

resetting the membrane potential after every timestep else membrane potential of

the previous time step is retained. In SNN-CT mode, after the spike generation, the

membrane potential of the neuron is subtracted from the threshold and passed to the

accumulator. Two logical ’AND’ gates are used to generated right control signals for

the MUX’s ensuring correct operation.

25



Figure 3.8: A Configurable Neuron Supporting SNN-DC and SNN-CT

3.1.3 Programmable Hardware Design for MLP SNN’s

The SNN-DC/SNN-CT hardware architecture was augmented practicing hard-

ware reuse to support algorithms with a different number of hidden layers. Figure 3.9

shows the flowchart of the algorithm used where N represents the number of hidden

layers, i represents current layer and A, B, C represents 256-256-12 accumulator lay-

ers present in hardware respectively. After each hardware re-use, new weights were

uploaded to every memory module and the intermediate spike outputs were saved

SRAM blocks. Based on i and N(even/odd), layers B and C were bypassed using

control signals. Figure 3.10 shows an example of hardware reuse for five hidden layers.

In this example, we can see that example layer B is bypassed in the last iteration.

During each iteration, pipelining was done between active layers, thereby reducing

the latency.
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Figure 3.9: Flowchart Depicting the Algorithm used for ProgrammableHardware

3.2 Hardware Design of Deep Neural Networks with Coarse Grain Sparsity

Figure 3.11 shows the overall DNN acceleration system. The hardware supports

two hidden layers with 512 neurons and 10 output layer neurons. On-chip SRAM

arrays stored the weight and bias values. Each layer constitutes a set of MAC units

followed by batch-norm and activation layer. In each hidden layer, input neurons

are processed serially whereas the accumulation of weighted sum is done in parallel.

Since the significant amount of output activations were zero’s, zero-skipping block

was deployed to improve latency similar to SNN hardware. By finding the active

input neuron index, the zero skipping block skips the computation cycles for zero

input activations. Active input neuron index is sent to on-chip compressed weight

memory to fetch weights for all parallel MAC units. By exploiting the sparsity of

input activations, latency can be reduced by 4.2X, on average, for the DNN using

27



Figure 3.10: An Example of Hardware Reuse when N=5

input images from the MNIST dataset. All the layers in feedforward architecture

were pipelined to increase the throughput. The number of cycles consumed by each

layer depends on the number of non-zero input activation’s. Since the number of non-

zero input values varies with input data, handshake signals are exchanged between

adjacent layers to ensure proper execution of pipeline.

3.2.1 Coarse Grain Sparsity in Hardware

Weights dominate fully connected DNN memory. To reduce the memory uti-

lization CGS-based compression is used to store the weights. To achieve structured

compression, the neural network is trained by dividing DNN weights into blocks and

randomly dropping them with a probability. Only the non-dropped weights with

their corresponding index values are stored in on-chip SRAM arrays. Weight vectors
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Figure 3.11: Hardware Architecture used for Fully-Connected DNNs.

are decompressed using decoders by providing the index bits as select signals. Block

diagram of a CGS decompressor unit for a block size of 128, weight precision of 8

bit and 50% CGS is shown in fig 3.12. Considering 512 neurons in hidden layers and

weight precision of 8-bits, each row in the weight memory will accommodate 512 eight

bit weights. These weights are divided into 4 blocks, each of block size 128 (i.e. 128

x 8 bits). Given a CGS of 50%, 2 out of these 4 blocks are randomly dropped with a

probability. The index values of two chosen blocks are provided to the index decoder

unit. Decoder helps in activating the path only for the selected weight block. The

bitwise AND gate aids in passing the selected weight block to the activated path. As

there is no possibility of both decoders selecting same weight block, a bitwise OR gate

is used so that each decompressed weight block can get is weights from any of the

selected two weight blocks. As every index values require a decoder unit, the number

of decoders increases as we decrease the block size. All the non selected weight blocks

will be zeros in the decompressed output. The final decompressed weight row of (512

x 8 bits) is given to the output neurons. The results of DNN hardware shown in next

sections are obtained for a block size of 16.
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Figure 3.12: Block Diagram of CGS Decompressor (Block size:128, Weight

Precision:8 bits, 50% CGS)

3.2.2 Implementation of Batch Norm and Low Precision Neuron Models

Conventional batch normalization follows equation (3.1),(3.2),(3.3) where we need

to perform three additions, one multiplication, and one division operation.

x
′
=

n∑
i

wi.ai (3.1)

x = x
′
+ b (3.2)

y =
x− µ

σ
.γ + β (3.3)

Where ai is input activation, wi weight, bis bias, x
′
s the weighted sum, y is the out-

put value before activation, and µ andσ are the mean and standard deviation of the

weighted sums in a batch, respectively. γ and β are batchnormalization scaling and

shifting parameters. These operations are optimized by using new constants, namely,

addition parameter β
′
and multiplication parameter γ

′
then equation (3.1),(3.2),(3.3)

are reduced to equation (3.4), where only one multiplication and one addition oper-
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ation is needed. This results in significant reduction in power and area.

y = x
′
.γ

′
+ β

′
(3.4)

where β
′
= (β + b−µ

σ
).γ and γ

′
= γ

σ
.

For low precision weights (¡3 bits), MAC multipliers are replaced by shifters follow-

ing the scheme in LightNN [28]. Each possible weight value is encoded with a signed

shift value. For example, 2-bit weights are encoded as 00: -1/4, 01: -1/2, 10:1/2,

11:1/4 and multiplication of these weights with input activations was performed by

shifters. High precision weights followed conventional MAC architecture.
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Chapter 4

RESULTS

4.1 SNN Hardware for SNN-CT and SNN-DC

The hardware architecture supporting SNN-DC and SNN-CT was implemented

in TSMC 28nm LP CMOS. Synapse weights are stored in SRAM generated from a

commercial memory compiler, and digital logic is synthesized using standard cells.

The SNN hardware consisted of three memory blocks of size 1156x256x7, 256x256x7,

and 256x12x7 bits respectively. The 1156x256x7 bit memory block was implemented

employing fourteen 1024x128 and 256x128 blocks. Similarly, 256x256 bit block was

implemented using fourteen 256x128 blocks. Figure 4.1 shows the placement of these

Figure 4.1: Macro Placemnet and Floorplanning of SNN Hardware
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Figure 4.2: Layout View of the Neuromorphic Processor after Adding Filler Cells

43 macros (blue:1156x256x7 , red:256x256x7, green:256x12x7) and floorplan designed

for SNN hardware in Cadence Innovus. Power distribution for all macros was done

using power rings, and power grids (till M7) were used for logic. Placement of standard

cells near the macroblocks was avoided by using hard blockages near all macroblocks.

Figure 4.2 shows the layout view of the neuromorphic processor after adding filler cells.

Test accuracy and latency are obtained from post-layout simulation for the entire

MNIST test dataset of 10k images. The total post-layout neuromorphic processor

area is 1.65 mm2, with 0.79 mm2 logic and 0.86 mm2 memory. At the nominal supply

voltage of 0.9V , power consumption results are obtained from Cadence Innovus with

data switching activity information from post-layout simulation. The proposed SNN

hardware implementation results are summarized in table 4.1 where the capability to

train/classify with a small number of time steps greatly reduced the energy down to

51.4 nJ per classification. Figure 4.3 shows a comparison to previous MNIST hardware

designs [29, 30, 31] for accuracy and energy. Compared to a recent 28nm ANN design
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SNN Design No. of Freq. Latency Power Energy per

timesteps (N) (MHz) (Cycles) (mW ) classification (nJ)

SNN-DC 1 163 119 70.4 51.4

for MNIST 16 163 1780 70.8 773

SNN-CT for

N-MNIST
16 163 654 73.2 294

Table 4.1: SNN Hardware Implementation Results

[29], the proposed SNN-DC reduces energy by 3X at iso-accuracy between 98% and

99%. Note that our reported energy is based on post-layout simulation while others

are based on chip measurement results.

4.2 DNN Hardware Implementation Results

The hardware architecture for DNN was implemented in TSMC 40nm LP CMOS

with high Vt devices. All the designs, with different weight and activation precisions,

are synthesized at 100MHz with extensive clock gating. DNN weights are stored in

SRAM arrays generated from a commercial memory compiler. For each design with

different weight precisions, new SRAM arrays were generated such that 512 weights

fit in one row. Test accuracy and latency are obtained from postsynthesis simulation

for the entire MNIST test dataset of 10k images. Power numbers are obtained from

Synopsys Primetime PX using data activity of fully connected DNN layerspostsyn-

thesis netlist. Figure 4.4 shows the accuracy and post-synthesis power breakdown of

the competing designs. Compressing the memory using CGS significantly reduces the

power consumption by reducing the memory size and number of weight accumulations.

The total logic power is dominated by accumulation of weighted sum. This exceeds
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Figure 4.3: MNIST Accuracy and Energy Comparison to Hardware Design

Literature

the memory power which has been reduced due to aggressive weight compression. The

controller power remains almost constant for all design points. For a constant CGS

ratio, reducing the activation precision from 8b to 3b showed a vital decrease in total

power. Figure 4.5 shows the accuracy and post-synthesis area of memory and logic

for different weight/activation precisions and CGS ratios. When using higher CGS

compression ratio and lower precision, the memory area significantly decreases and

the logic area starts dominating the total area. Reducing the weight precision is more

effective for the overall area reduction compared to lowering the activation precision.

The smallest area of 0.47mm2 is achieved by the BNN design (1- bit activation and

1-bit weight) with 8X CGS compression. Figure 4.6 shows the energy per image and

the classification accuracy tradeoff for different activation/weight precision values and

CGS compression ratios. With 8-bit activations, 3-bit weights, and 8X compression,

98.4% MNIST accuracy was achieved with 20nJ energy per classification which is
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Figure 4.4: Power Breakdown for Different Combination of Weight Precision,

Activation Precision and CGS Compression Ratio.

a favorable accuracy-energy trade-off compared to much lower precision DNNs with

less compression (BNN achieves 13nJ energy at 97% accuracy). Compared to the

uncompressed DNN with 8-bit precision, we achieve greater than 10X energy reduc-

tion with only 0.6% accuracy loss, by optimal combining of low precision and CGS

compression. Automatic Place and Route was done for design points resting on the

forefront of Pareto optimal curve using Cadence Innovus. Floorplan of each design

varied because of different sized memory modules. Figure 4.7 shows the floor plan

and macro placement of the DNN hardware with 8b weights, 3b activations and 50%

CGS. The area highlighted by blue color represents the logic modules (CGS decom-

pressor, MAC units, batch norm module) of hidden layer 1. Similarly red and green

color indicates logic modules related to hidden layer 2 and output layer respectively.

The SRAM modules were of sizes 1024x128x16, 512x128x16 and 512x80 supporting

8-bit weight precision and 50% CGS. Placement of these blocks was made near their
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Figure 4.5: Area Breakdown for Different Combination of Weight Precision,

Activation Precision and CGS Compression Ratio.

individual write data pins ensuring no routing congestion. Macros were covered with

hard blockages to avoid placing violations. Figure 4.8 shows the overall layout view

of DNN hardware after adding filler cells. The post-layout area, power, and energy

numbers of design points present on the forefront of Pareto optimal curve are sum-

marized in table 4.2. The post-layout energy numbers were almost 2x higher than

the post-synthesis results. This increase in energy is mainly because of metal rout-

ing resulting in layout parasitics. Figure 4.9 gives the comparison of post-synthesis

and post-layout energy numbers. The difference in energy numbers is not constant

because of the different routing optimizations done by the tool.
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Figure 4.6: Classification Energy and Test Accuracy of MNIST MLP Designs with

Different Precision and Sructured Compression.

Figure 4.7: Macro Placemnet and Floorplanning of DNN Hardware (8b weights and

50% CGS)
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Figure 4.8: Layout View of the DNN Hardware (8b weights and 50% CGS) after

Adding Filler Cells

Design Name Power (mW ) Latency Energy Area

Memory Logic Total Cycles nJ mm2

8b 50p 61.2 57.2 118.4 168 198.912 5

3b 50p 19.3 27.1 46.4 164 76.096 2.25

3b 25p 10.4 17.9 28.3 167 47.261 1.81

3b 12.5p 5.5 13.7 19.2 172 33.024 1.56

1b 1b 12.5p 2.19 9.71 11.9 178 21.182 1

Table 4.2: DNN Hardware Post-Layout Results at 100Mhz

39



Figure 4.9: Post-synthesis and Post-layout Classification Energy Comparison
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Chapter 5

CONCLUSION

In this work, we presented techniques for energy efficient hardware design of neu-

romorphic algorithms. By operating on SNN algorithms (SNN-DC and SNN-CT)

input and output activations were made as binary which aided in getting relieved

of multiplier units. We have demonstrated 20.8X improvement in latency (for N-

MNIST dataset) by exploiting spike sparsity using a spike scheduler unit. Pipelining

was exercised in classification hardware to improve the throughput. We have pointed

that pipeline stalls can be decreased by handling handshake signals between pipeline

stages. We have introduced a configurable neuron unit and time-multiplexed hard-

ware using which programmability was added to the SNN MLP hardware. We also

presented an analysis on an optimized combination of very low precision and struc-

tured compression for favorable energy, area, and accuracy tradeoffs, based on many

DNN implementations in 40nm LP CMOS. Using structured compression showed 20X

weight memory reduction on DNN MLP compared to floating-point DNN counter-

parts, with minimal accuracy degradation (less than 0.5%). The MLP DNN designed

with 8-bit activations, 3-bit weights, and 8X structured compression showed 98.4%

accuracy at 33nJ energy per classification at 100Mhz, outperforming further lower

precision designs with less structured compression. The programmable MLP SNN was

implemented in 28nm CMOS, demonstrating high accuracy and low energy. SNN-DC

shows 98.0-98.70% accuracy at 51.4773 nJ per classification for MNIST and SNN-CT

shows 96.33% accuracy at 294nJ per classification for N-MNIST.
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