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ABSTRACT 

 

Internet of Things (IoT) is emerging as part of the infrastructures for advancing a 

large variety of applications involving connections of many intelligent devices, leading to 

smart communities. Due to the severe limitation of the computing resources of IoT devices, 

it is common to offload tasks of various applications requiring substantial computing 

resources to computing systems with sufficient computing resources, such as servers, cloud 

systems, and/or data centers for processing. However, this offloading method suffers from 

both high latency and network congestion in the IoT infrastructures. 

Recently edge computing has emerged to reduce the negative impacts of tasks 

offloading to remote computing systems. As edge computing is in close proximity to IoT 

devices, it can reduce the latency of task offloading and reduce network congestion. Yet, 

edge computing has its drawbacks, such as the limited computing resources of some edge 

computing devices and the unbalanced loads among these devices. In order to effectively 

explore the potential of edge computing to support IoT applications, it is necessary to have 

efficient task management and load balancing in edge computing networks.  

In this dissertation research, an approach is presented to periodically distributing 

tasks within the edge computing network while satisfying the quality-of-service (QoS) 

requirements of tasks. The QoS requirements include task completion deadline and security 

requirement. The approach aims to maximize the number of tasks that can be 

accommodated in the edge computing network, with consideration of tasks’ priorities. The 

goal is achieved through the joint optimization of the computing resource allocation and 

network bandwidth provisioning. Evaluation results show the improvement of the 
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approach in increasing the number of tasks that can be accommodated in the edge 

computing network and the efficiency in resource utilization. 

Index terms edge computing, Internet of Things, load balancing, network flow, 

optimization, quality-of-service, and task distribution 
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Chapter 1 

 

INTRODUCTION 

 

1.1 Overview 

With its capability of interconnecting a large number of various intelligent devices 

across wide geographical areas, IoT has become part of the infrastructures for many 

advanced applications leading to smart cities and other connected communities. This trend 

has inspired the development of a large variety of applications with connected intelligent 

devices, such as healthcare applications based on wearable IoT devices, public safety 

applications based on surveillance IoT devices, and smart home applications based on 

connected IoT appliances. IoT applications and devices have been deployed to many 

scenarios, including healthcare environments, smart city, intelligent transportation, smart 

manufacturing, smart grids, etc [63]. 

However, despite the rapid progress of IoT-related technologies, a major bottleneck 

of IoT applications is the limited computing resources available of each IoT device, 

including CPU, storage, network bandwidth, etc. In addition, as most IoT devices are 

powered by batteries, energy supply is also a limitation for their operations [27]. For IoT 

devices, especially mobile IoT devices, factors such as weight, size, battery life, and heat 

dissipation are often more important than computing resources. The improvement of these 

factors often limits the improvement of the computing resources of IoT devices. Hence, 

although technologies advance, the computing resources of IoT devices will always be 

limited [51]. 
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In addition, IoT applications become more sophisticated, involve more 

computation, require more storage and bandwidth, and consume more energy. For example, 

nowadays there are surveillance cameras that run computation heavy image/video 

processing, computer vision and machine learning programs for human/object detection. 

Such programs require significant amounts of computing resources. Hence, the 

proliferation of IoT applications further exacerbates the situation that most IoT devices are 

lack of resources. 

A common way to overcome the limited computing resources of IoT devices in 

various applications is to offload some tasks of IoT applications to resourceful servers [12] 

[27] [28] [35] [46] [68]. The most widely used “resourceful server” is the cloud computing 

system, such as Amazon Web Services and Microsoft Azure. Task offloading to cloud 

computing systems has two major benefits. One is to improve the performance of IoT 

applications, as the computing resources in cloud computing systems are usually much 

more powerful than those in IoT devices. The other major benefit is to reduce the energy 

consumption for IoT devices. As the power consuming computations are offloaded, the 

energy consumption in IoT devices can be largely reduced, which is an important factor to 

increase user experiences [23] [24] [25] [27] [46]. The amount of energy can be saved for 

IoT devices by task offloading is related to factors such as network bandwidth and the 

amount of data needs to be transmitted to cloud computing systems. Researches have been 

conducted on quantifying the benefit of task offloading [22] [66] [67]. 

However, this offloading method has two major drawbacks [18] [51] [77]. One is 

the long and unpredictable latency introduced by data transmission through Wide Area 

Networks (WAN), which is especially harmful to latency-sensitive IoT applications, such 
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as healthcare applications and public safety applications. This long and unpredictable 

WAN latency brings very negative user experiences. The other major drawback is network 

congestion. IoT devices generate huge amounts of data, and if all the data is poured into 

the Internet, it will easily cause network congestion. Besides the congestion in computer 

networks, the huge amount of data also overloads of cloud computing systems. Cloud 

computing systems process not only data generated by people but also unprecedented 

amounts of data generated by IoT devices and other machines. The trend of global 

digitization brings huge effects of IoT data on global cloud computing systems [6]. 

According to the Cisco Global Cloud Index [6], by 2021, there will be 850 zettabytes data 

generated by all people, IoT devices per year, and approximately 10 percent is useful and 

needs to be processed. At the same time, the capacity of cloud computing systems traffic 

will only reach 21 zettabytes per year. Hence, sending all the IoT data to cloud computing 

systems is not a practical solution, as the cloud computing systems will be severely 

overloaded. Such a severe overload of cloud computing systems will exacerbate the first 

drawback, making the latency even more unpredictable and unacceptable. 

The drawbacks of task offloading to remote computing systems motivate the recent 

development of edge computing [4] [5] [51] [57] [60], which uses network devices with 

large computing resources, such as cloudlets, computing-enabled routers or switches, and 

computing-enabled base stations at the edge of computing networks, to support IoT 

applications. The network devices that support edge computing are called edge computing 

devices, or edge nodes [4] [51]. In this dissertation, edge computing device and edge 

computing node will be used interchangeably, as there are with the same meaning. 
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Due to the proximity to IoT devices, edge computing networks can decrease the 

latency of IoT applications and make larger bandwidth available for interconnecting IoT 

devices compared to remote cloud computing systems. Usually, the distances between edge 

computing networks and IoT devices are negligible compared to the distances between 

remote cloud computing systems and IoT devices. Edge computing networks can be set up 

in an office building, in a community, or in a smart city. The network connections between 

edge computing networks and IoT devices are mostly Local Area Networks (LAN). In 

contrast, cloud computing data centers usually locate in another city, or in another state, 

which can be hundreds of miles away. The network connections between cloud computing 

systems and IoT devices are both LAN and WAN. By avoiding data transmission through 

WAN, edge computing can largely reduce the overhead of data transmission, which, in 

turn, largely reduces the latency for its connected IoT applications. Another benefit of edge 

computing is to reduce network congestion, as mentioned in the Cisco Global Cloud Index 

[6], over 75% of data generated by people, IoT devices cannot be digested by cloud 

computing systems. Edge computing networks can help to digest part of the 75% data, 

which will reduce the network congestion problem. In addition, edge computing networks 

can also relieve the power constraint of battery-powered IoT devices [52]. 

Yet, task offloading to edge computing networks has its own problems. The major 

problem is the unbalanced workload among edge computing devices, which may result in 

network congestion in edge computing networks. There are two reasons for this problem: 

One is that the computing resources of single edge computing devices are not always 

enough to process all the IoT tasks it received [9], especially for computation-heavy tasks, 

such as computer vision tasks, and machine learning tasks. The other is that the workloads 
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on different edge computing devices are naturally unbalanced. Edge computing devices 

connecting more IoT devices usually have more workload. In addition, edge computing 

devices are heterogeneous. Some edge computing devices are resource-rich, while some 

are resource-poor. Hence, it is common that some edge computing devices are overloaded, 

while nearby edge computing devices may have normal workloads, or even be idle. If the 

workload in edge computing networks is not well managed, the QoS of both IoT 

applications and edge computing networks cannot be guaranteed. Enabling resource 

sharing and task offloading among edge computing devices has been used for addressing 

this problem [18] [44] [47] [49] [50] [52] [77]. 

In this dissertation, an effective approach to distributing tasks within the edge 

computing network will be presented. The approach is to periodically distribute batches of 

tasks among edge computing devices, which are not limited to tasks' access edge 

computing devices so that the number of tasks that can be accommodated by the edge 

computing network can be maximized. Our approach considers the priorities of tasks as 

weighting factors in the optimization objective. The task distribution solution generated by 

our approach is ensured to satisfy all the accommodated tasks' QoS specifications required 

by their IoT applications. The QoS specifications refer to tasks’ completion deadlines and 

security requirements [46]. The benefits of our approach include balancing the workload 

among edge computing devices and reducing network congestion within edge computing 

networks. 
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1.2 Organization of Dissertation 

The dissertation is organized as follows: the current state of the art related to this 

dissertation research will be presented in Chapter 2. Our task distribution approach will be 

presented in Chapter 3. The simulations results will be presented in Chapter 4. The 

conclusion of this dissertation work and future research directions will be presented in 

Chapter 5. 
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Chapter 2 

 

CURRENT STATE OF ART 

 

2.1 Edge Computing Use Cases 

The concept of edge computing is first introduced in [5] [51]. “Fog computing” has 

also been used to refer to edge computing [5] [18] [25] [44] [47] [60] [75] [77]. There are 

many use cases of edge computing, such as smart cities [14] [31] [52] [56] [73] and 

intelligent healthcare systems [18] [52] [53] [59]. 

Figure 1 IoT devices, Edge Computing and Cloud Computing [61] 
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Figure 1 shows the three-level architecture of edge computing [61]: IoT devices as 

the bottom layer, edge computing servers as the middle layer and cloud data centers as the 

top layer. The IoT devices at the bottom layer can be smartphones, or sensors on smart cars, 

or augmented reality/virtual reality glasses, or connected surveillance camera. The edge 

computing servers can be network devices, such as network switches, routers, cellular base 

stations, or “Cloudlet” [51]. The cloud data center can be Amazon AWS or Microsoft 

Azure. 

Li and Wang [31] introduce edge computing in a smart city scenario. Their edge 

computing servers are deployed in base stations in the city. Figure 2 shows the distribution 

of 3233 base stations in Shanghai and the authors propose the deployment scheme for edge 

computing servers among these base stations. This is a smart city use case where edge 

computing servers can be deployed in these base stations and IoT devices can connect to 

edge computing servers to run IoT applications. 

Figure 2 Distribution of 3233 Base Stations in Shanghai [31] 
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Gu, Zeng, Guo, Barnawi, and Xiang [18] introduce fog computing supported 

medical cyber-physical system (FC-MCPS), which is an edge computing enabled health 

care system. The FC-MCPS can be depicted in Figure 3. This work discusses the enabling 

of edge computing to the MCPS discussed in [30]. [30] defines the virtual medical device 

(VMD), which connects multiple medical devices, runs multiple clinic algorithms, and 

defines how the connected medical devices should interact with each other as specified in 

the clinic algorithms. VMDs can be deployed on edge computing servers, to get access to 

more resources to support more medical devices and more complex medical applications. 

As medical applications are mostly highly sensitive to latency, edge computing is a better 

choice than cloud computing in this scenario, as edge computing usually has much less 

latency compared to cloud computing [18] [51] [77]. 

 

Figure 3 An overview of Fog Supported Medical Cyber-Physical Systems [18] 
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2.2 Computation Offloading 

The prerequisite of task distribution in edge computing networks is computation 

offloading. Hence, I will first discuss the researches on computation offloading for IoT 

devices to both cloud computing systems and edge computing networks. Computation 

offloading for IoT devices, which includes mobile devices, has attracted significant 

research interests since the booming development of IoT devices [27]. There have been 

researches on both how to make computation offloading decisions and how to offload 

computation.  

Researches on how to make computation offloading decisions focus on quantifying 

and comparing the performance and energy consumption of conducting computation for 

both locally on IoT devices and offloaded to remote resourceful servers [2] [7] [19] [20] 

[21] [22] [32] [33] [34] [42] [45] [48] [62] [66] [67]. Researches on how to offload 

computation generally fall into two categories, static computation offloading and dynamic 

computation offloading [27]. Static computation offloading means that programs are 

partitioned during the program development phase. Static partition has lower overhead 

during execution but less accuracy compared to dynamic offloading. Dynamic offloading 

offloads computation during run-time, and has higher overhead, but more accuracy [19] 

[22] [24] [48] [66]. Dynamic offloading has higher overhead because it needs to monitor 

the run-time conditions, for example, the network bandwidths. There are also researches 

on what part(s) of the computation of an application should be offloaded. Different 

program partition algorithms are proposed in [7] [11] [22] [32] [33] [34] [42] [43] [58] [62] 

[67].  
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Current researches on computation offloading mainly use cloud computing systems 

as the offloading target. As edge computing networks is indeed a form of cloud computing 

system at the edge of computer networks, most of these computation offloading techniques 

are applicable to edge computing networks. 

 

2.3 Task Distribution in Edge Computing 

Task distribution in edge computing networks has been studied in [3] [17] [18] [36] 

[44] [49] [50] [65] [77]. These works are differentiated from each other in three major 

aspects, which are the system model, the optimization objective, and the perspective of 

their optimizations. In the following paragraphs, I will discuss current research works on 

task distribution in edge computing networks in these three aspects. 

For the system model, it includes the service model for tasks and the infrastructure 

model for edge computing networks. Different works are usually based on differently built 

system models for edge computing networks and IoT tasks. Zeng, Gu, Guo, Cheng, and 

Yu [77] present a joint optimization of task scheduling and image placement to minimize 

the average task completion time for fog computing supported software-defined embedded 

system. First, this work considers the situation that the data of tasks is not generated and 

sent from IoT devices, but stored in storage servers. It also considers the I/O interruptions 

(e.g. page faults) of such storage servers. Hence, the data flow in this work is from storage 

servers to computation servers. Secondly, this work also assumes that all tasks will be 

completed either at devices sides or on edge computing nodes. Gu, Zeng, Guo, Barnawi, 

and Xiang [18] present a joint optimization of user association, virtual machine deployment, 
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and task distribution to minimize the cost of operation for fog computing supported medical 

cyber-physical system. This work considers the association of devices and access edge 

nodes as a variable for the optimization problem. Oueis, Strinati, and Barbarossa [44] 

present an approach to load distribution for small cell cloud computing and a joint 

optimization of computational and radio resources to minimize the power consumption for 

dynamically formed small cell cloud systems. This work assumes that the data size of each 

task is proportional to each task’s workload. Chen, Jiao, Li, and Fu [9] present an approach 

to optimize the multi-user computation offloading in multi-channel wireless contention 

environments. This work considers the association of devices and access edge nodes as a 

variable for the optimization problem, which is similar as in [18]. Munoz, Iserte, and Vidal 

[41] present a framework to jointly optimize the computation and communication resources 

to analyze the tradeoffs between energy consumption and latency. This work allows task 

partition, so part of a task can be executed locally on IoT devices and the other part can be 

offloaded. 

For the optimization objective, it can be minimizing the average task completion 

time, minimizing the sum of operation cost to complete tasks, or minimizing the energy 

consumption for IoT devices, etc. Zeng, Gu, Guo, Cheng, and Yu [77] aim to minimize the 

average task completion time with a joint optimization of task scheduling and storage 

image placement. Gu, Zeng, Guo, Barnawi, and Xiang [18] aim to minimize the cost of 

operation of tasks is based on this consideration, as optimizing the association may reduce 

the operation cost of task execution. Oueis, Strinati, and Barbarossa [44] aim to minimize 

the power consumption for each user. Sardellitti, Barbarossa, and Scutari [50] present a 

joint optimization approach to minimize the energy consumption at the mobile terminal 
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side. Barbarsossa, Sardellitti, and Lorenzo [3] present a similar joint optimization approach 

for mobile application offloading scenario with the same optimization objective. Both 

works optimize the computation resource allocation and communication resource 

allocation with consideration of latency constraints. Sardellitti, Scutari, and Barbarossa [49] 

present a joint optimization of radio and computational resources for mobile edge 

computing. First, this work does not take storage limitation as a constraint when formatting 

the optimization problem. Secondly, this work does not consider the compatibility between 

virtual machines and tasks. Sardellitti, Scutari, and Barbarossa [49] aim to minimize the 

overall users’ energy consumption at the mobile terminal side. Wen, Zhang, and Luo [65] 

present an approach to optimize both the computation and communication, with the 

objective to minimize the energy consumption for IoT devices. Gedawy, Habak, Harras, 

and Hamdi [17] present an approach to optimize the task scheduling in edge femtocloud, 

which is defined as a cluster of heterogeneous mobile and IoT devices. The optimization 

objective of this work is to maximize the computational throughput of the edge femtocloud 

while maintaining the energy consumption constraints. Li and Wang [31] present an 

approach to optimize the edge servers’ placements to reduce energy consumption and 

improve resources utilization of edge servers. Although this work does not involve task 

distribution, its approach to distributing edge servers is related to task distribution in edge 

computing networks. This work assumes that the edge server placement is a variable, which 

is a major difference from most existing researches. The perspective of the optimization 

objective to minimize the energy consumption is edge server, but not IoT device, which 

differentiates this work from other works aiming to optimize energy consumption [44] [49] 

[65]. Nimmagadda, Kumar, Lu, and Lee [42] compare the performance of executing tasks 
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onboard of a robot and the performance of executing the same tasks offloaded to a Linux 

server. According to their system setup, the server is a regular standalone Linux server at 

the network edge. Hence, this work belongs to the scenario of edge computing, but not 

cloud computing. As this work considers a scenario of one single edge computing node, it 

does not involve task distribution or load balancing of edge computing devices. The goal 

is to study the advantages and disadvantages of computation offloading edge devices. Zhao, 

Guo, Zhang, and Li [82] propose a multi-objective task scheduling algorithms, which was 

to minimize the overhead of task executions and minimize the number of failed tasks. 

For the perspective of optimization, it can be the perspective of IoT devices, the 

perspective of IoT applications, or the perspective of edge computing networks. Gu, Zeng, 

Guo, Barnawi, and Xiang [18] have the perspective of IoT tasks as they aim to minimize 

the average task completion time. Oueis, Strinati, and Barbarossa [44] and Sardellitti, 

Scutari, and Barbarossa [49] have the perspective of IoT devices as they aim to minimize 

the power consumption for each IoT device. Li and Wang [31] have the perspective of edge 

computing servers as they aim to minimize the energy consumption of edge computing 

servers. Chen, Wang and Sheng [8] have the perspective of edge computing devices as they 

aim to achieve virtual energy sharing in edge computing networks through task 

reallocations. 

In this dissertation research, for the system model, we consider both the 

performance requirement and the security requirement of tasks. When generating the task 

distribution solution, we not only generate the mappings between tasks and edge computing 

devices, but also the data routings of tasks in the edge computing network. Hence, both the 



15 
 

computing resources of edge computing devices and the network resources of the edge 

computing network will be considered. Compared to our work, existing efforts mainly 

consider either computing resource allocation and network provisioning separately [75]. 

For the optimization objective, this dissertation research aims to maximize task 

accommodation number with the consideration of tasks’ priorities. Our task distribution 

solution guarantees the QoS requirements of tasks, which include task completion deadline 

and security requirement. For the perspective of optimization, our approach is from the 

perspective of edge computing networks.  
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Chapter 3  

 

OUR TASK DISTRIBUTION APPROACH 

 

3.1 Overview 

In this chapter, our overall approach to task distribution in edge computing 

networks will be presented [55].  

One assumption is made in our approach, which is: The tasks to be processed in 

edge computing networks do not have any dependency relationships between them. By 

dependency, it means information flows between tasks. This assumption is normally valid 

as the tasks are from multiple IoT applications and/or various IoT devices. 

A task refers to a program from IoT applications, and it is static. An IoT application 

may contain multiple tasks. An IoT device may run multiple IoT applications. When the 

task is being executed in a virtual machine on edge computing devices, it could be one or 

multiple processes during the run-time. 

As tasks to the edge computing network are continuously sent from IoT devices, 

our task distribution approach periodically applies our task distribution process, which 

takes inputs from tasks need to be processed and the edge computing network, and 

generates task distribution solution. Let ϭ be the time interval between two consecutive 

applications of task distribution processes. Because input tasks are dynamically changing 

in terms of both arrival rate and specifications (workload, data size, deadline, etc.), ϭ 
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should be dynamically adjusted to maintain acceptable performance of our task distribution 

process at each application. As the performance of our task distribution process could be 

measured by the rate of successful task distributions in the edge computing network, which 

is a value between 0 and 1, inclusive, ϭ should be adjusted based on the rate of successful 

task distributions. If the rate of successful task distributions falls below a preset threshold, 

for example, 0.6, ϭ should be reduced so that our task distribution process will be applied 

more frequently. 

With our task distribution approach, the following two questions will be answered: 

(1) Which edge node shall the tasks be distributed to? The assigned edge node 

should satisfy a task’s security requirement and complete the task within its deadline. There 

are three factors should be taken into consideration when making this decision, the 

currently available resources of the edge node, the QoS requirements of the task, and the 

available network bandwidth resource between the task’s IoT device and its execution edge 

node. 

(2) How much network bandwidth should be reserved for transmitting a task from 

its access edge node to its execution edge node? If a task is to be executed locally, there is 

no need to reserve any bandwidth, as there is no data transmission in the edge computing 

network for the task. If a task is to be executed outside its access node, we need to decide 

how to transmit its data from its access node to its execution node, how to select the 

network routes as there are usually multiple routes between two nodes, and how to assign 

flow on each route. All these questions will be answered by our task distribution approach. 
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Figure 4 Our Task Distribution Process 
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3.2 The Task Distribution Process 

Our task distribution process can be depicted in Figure 4 and summarized as follows.  

Table 1  

Notations for Task Distribution Process 

𝑇𝑖𝑛
𝑖  Set of input tasks from IoT devices between task distribution 

processes 𝑖 − 1 and 𝑖 

𝑇𝑎𝑐𝑐
𝑖  Set of accommodated tasks in task distribution process 𝑖 

𝑇𝑢𝑛𝑎𝑐𝑐
𝑖−1  Set of unaccommodated tasks in task distribution process 𝑖 − 1 

𝑇𝑟𝑒𝑗
𝑖  Set of rejected tasks in task distribution process 𝑖 

𝑅𝑖 Available resources of the edge computing network at the 

application of task distribution process 𝑖 
ϭ Time interval between two consecutive task distribution processes 

 

There are three inputs for each task distribution process, except for the first task 

distribution process, which has two inputs and does not have Input 2, as there is no task 

distribution process before the first task distribution process. Input 1, denoted as 𝑇𝑖𝑛
𝑖 , 

includes all the tasks sent from IoT devices between task distribution process 𝑖 − 1 and 𝑖. 

Input 2, denoted as 𝑇𝑢𝑛𝑎𝑐𝑐
𝑖−1 , includes all the tasks that cannot be accommodated from the 

task distribution process 𝑖 − 1. Input 3, denoted as 𝑅𝑖, includes the available resources of 

the edge computing network when applying task distribution process 𝑖. All the information 

from these three inputs will be preprocessed in Step 1. 

In Step 2, our proposed algorithm solves the task distribution problem and generate 

four outputs. Output 1, denoted as 𝑇𝑟𝑒𝑗
𝑖 , includes the tasks that cannot be completed by the 

edge computing network. Rejected tasks are either too larger or have too tight requirement 
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to be completed by the edge computing network, and they will be sent back to IoT devices 

as the edge computing network is unable to complete these tasks. Output 2, denoted as 

𝑇𝑢𝑛𝑎𝑐𝑐
𝑖 , includes tasks that cannot be completed during the task distribution process 𝑖 . 

Different from tasks in Output 1, the tasks in output 2 can be completed by the edge 

computing network, but not in current task distribution process, hence, they will be sent to 

task distribution process 𝑖 + 1 as its Input 2. An adjustment is required for these tasks that 

in task distribution process 𝑖 + 1, the deadline requirements of these tasks will be reduced 

by the amount of current ϭ, which is the time interval between the task distribution 

processes 𝑖 and 𝑖 + 1. Output 3, denoted as 𝑇𝑎𝑐𝑐
𝑖 , includes the accommodated tasks in task 

distribution process 𝑖. These tasks will be forwarded to their corresponding execution edge 

nodes. Output 4 is ϭ, which is the feedback for the adjustment of the time interval between 

task distribution processes 𝑖  and 𝑖 + 1 . As discussed in Section 3.1 Overview, ϭ is 

dynamically adjusted based on the task accommodation rate of each task distribution 

process. For example, if the task accommodation rate of current process falls below a preset 

threshold, ϭ should be reduced by a preset factor, so that our task distribution process will 

be applied more frequently, and the performance of the edge computing network will be 

increased and the resource utilization will be more optimized. On the other hand, if the task 

accommodation rate of current task distribution process is above the preset threshold, there 

is no need to adjust ϭ. 

Within a task distribution process, there are two steps. Step 1) is the preprocessing 

of the task distribution problem. Step 1.1) takes the QoS requirements of tasks and resource 

availability of the edge computing network to formulate the task distribution problem to a 

mixed-integer nonlinear program (MINLP). It then linearizes the MINLP, which can not 
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be solved in polynomial time. Step 1.2) further reduces the problem size by eliminating 

unfeasible task distributions. Step 2) uses our proposed algorithm to generate the task 

distribution solution. Step 2.1) initializes the data structures for executing the algorithm. 

Step 2.2) relaxes integer variables to continuous variables, which derives a linear program 

relaxation (LPR) of the MINLP. Step 2.3) solves the LPR and rounds solutions of relaxed 

continuous variables back to integers. Step 2.4) validates rounded solutions of variables. If 

the solution of a variable is not validated, it goes back to Step 2.3) and redo the rounding. 

Otherwise, the solution is validated, and the algorithm proceeds to process next task until 

it finishes all tasks. 

Table 2  

Constants of Edge Commuting Networks 

𝑉 = {𝑣0, ⋯ 𝑣ℎ, ⋯ 𝑣𝜂−1} Set of types of VM 

𝑠𝑒𝑐ℎ Lower bound of security strength that the VM 

type 𝑣ℎ has [72] 

𝐷 = {𝑑0, ⋯ , 𝑑𝑖 , ⋯ , 𝑑𝑚−1} Set of edge computing devices 

𝑙𝑖
ℎ The number of available VM of type 𝑣ℎ on node 

𝑑𝑖 

𝑟𝑖 Computing rate of VMs on node 𝑑𝑖 

𝑠𝑡𝑖 Available storage of node 𝑑𝑖 

𝐸 = {𝑒0, ⋯ , 𝑒𝑗 , ⋯ , 𝑒𝑛−1} Set of edge links 

𝑖𝑛(𝑖) Set of incoming links of node 𝑑𝑖 

𝑜𝑢𝑡(𝑖) Set of outgoing links of node 𝑑𝑖 

𝑏𝑗 Available bandwidth of link 𝑒𝑗 

 

3.2.1 Preprocessing the Task Distribution Problem 

To preprocess the task distribution problem in edge computing networks, we first 

describe the edge computing network and the tasks. Then we generate the objective 
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function with various constraints of edge computing networks and QoS requirements of 

tasks. 

 

3.2.1.1 Preprocessing Tasks and Edge Computing Networks 

3.2.1.1.1 Infrastructure Model for Edge Computing Networks 

An edge computing network is built on the traditional network infrastructure, where 

devices such as cellular base stations, access points, routers, and switches, are associated 

with certain amounts of computing and storage resources [4] [18] [69] [70] [77]. 

An edge computing network can be represented by a directed graph 𝐺 = (𝐷, 𝐸), 

where 𝐷 = {𝑑0, ⋯ , 𝑑𝑖 , ⋯ , 𝑑𝑚−1} is the set of edge nodes, and 𝐸 = {𝑒0, ⋯ , 𝑒𝑗 , ⋯ , 𝑒𝑛−1} is 

the set of edge links.  

The set of incoming links of edge node 𝑑𝑖  is denoted by 𝑖𝑛(𝑖), and the set of 

outgoing links of edge node 𝑑𝑖 is denoted by 𝑜𝑢𝑡(𝑖). Let 𝑏𝑗 be the available bandwidth of 

link 𝑒𝑗   of the edge computing network at the time of applying the task distribution process. 

Each edge node runs a number of VMs, and each VM performs one task at a time. 

Different types of VMs are supported in our approach [51]. VMs can be different in two 

ways. The first difference is the operating system. For example, Windows and Linux are 

two different operating systems. The second difference is the version/release. For example, 

Windows 7 and Windows 10 are two different Windows versions. Another example is 

Ubuntu 16.04 and Ubuntu 18.04 are two different releases. There are compatibility 

constraints between tasks and different types of virtual machines. Assigning tasks to 
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incompatible virtual machines results in rejection of tasks. Hence, our task distribution 

process takes into consideration the compatibility constraints between tasks and different 

types of virtual machines. Let 𝑙𝑖
ℎ be an integer representing the count of VM 𝑣ℎ available 

on edge node 𝑑𝑖 at the time of applying our task distribution process. The length of the list 

is the number of the type of VM supported by the edge computing network. 

Each VM on edge node 𝑣𝑖 is granted with computing rate 𝑟𝑖. There are two major 

methods to quantify the computing rate in related optimization works. One method is to 

quantify computing rate as the number of instructions per second [3]. The other method is 

to quantify computing rate as CPU cycles per second [9] [38] [65]. In this work, there is 

no specification on which quantification method should be applied, as both work fine. Let 

𝑠𝑡𝑖 be the available storage of edge node 𝑣𝑖 at the time of applying our task distribution 

process. For storage capacity, it does not need to be associated with each VM, as in most 

cases, the storage capacity for each VM is elastic, as long as there is available storage 

capacity on the edge node. 

Let 𝑠𝑒𝑐ℎ  be the lower bound of the security strength that VM  

𝑣ℎ  has. There are two major methods to quantitatively measure security strength. One 

method is based on the parameter configurations of security mechanisms applied in 

computing systems. For example, in [72], the security parameter used to determine security 

strength are security functionality, security algorithm, key length, and protection 

percentage. The security functionality can be confidentiality, integrity, and non-repudiation. 

The security algorithm can be DES or AES for confidentiality. Key length is an important 

factor for security strength. Usually, longer key length is more secure but consumes more 

resources. Protection is also an important factor. Larger protection percentage is more 
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secure but consumes more resources [71] [72]. The other major method to quantify security 

strength is through trust establishment [16] [51] [54]. For example, in [54], a trust 

establishment tool “Trust-Sniffer” is introduced. The “Trust-Sniffer” establishes trust with 

three steps. It first uses a minimal trusted operating system to validate the host OS. Then, 

the trusted host OS is booted and validates applications. At last, the host OS only permits 

trusted applications to execute. In this work, there is no specification on which security 

quantification method should be applied, as both work fine.  

Table 3  

Constants of Tasks 

T = {t0, ⋯ , tk, ⋯ , tψ−1} Set of tasks 

𝑎𝑘 Access node of task 𝑡𝑘 

𝑤𝑘 Computation workload of task 𝑡𝑘 

𝑑𝑘 Data size of task 𝑡𝑘 

𝑠𝑡𝑘
′  Storage requirement of task 𝑡𝑘 

𝑠𝑒𝑐𝑘
′  Upper bound of the required security strength of 

task 𝑡𝑘 

𝛿𝑘 Completion deadline of task 𝑡𝑘 

𝑏𝑎𝑘
 Access bandwidth of task 𝑡𝑘 

𝑝𝑘 Priority of task 𝑡𝑘 

𝑙′𝑘
ℎ The binary indicator of compatibility between 

VM 𝑣ℎ and task  𝑡𝑘 

 

3.2.1.1.2 Service Model for Tasks 

Let 𝑇 = {𝑡0, ⋯ , 𝑡𝑘 , ⋯ , 𝑡𝜓−1} be the set of tasks to be processed at the time of 

applying our task distribution process. A task is defined as 𝑡𝑘 =

(𝑎𝑘 , 𝑤𝑘, 𝑑𝑘, 𝑠𝑡𝑘
′ , 𝑠𝑒𝑐𝑘

′ , 𝛿𝑘, 𝑝𝑘, 𝑙𝑘
′ ) . 𝑎𝑘  is the access node of 𝑡𝑘 . 𝑤𝑘  is the computation 

workload [27] of 𝑡𝑘 , which can be quantified as the number of instructions [3], or the 
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number of CPU cycles [9] [38] [65]. 𝑑𝑘 is the data size of 𝑡𝑘. 𝑠𝑡𝑘
′  is the storage requirement 

of 𝑡𝑘. 𝑠𝑒𝑐𝑘
′  is the upper bound of the required security strength of 𝑡𝑘. 𝛿𝑘 is the completion 

deadline of 𝑡𝑘 . 𝑝𝑘  is the priority of 𝑡𝑘 . Let 𝑙′𝑘
ℎ  be a binary indicator representing the 

compatibility of task 𝑡𝑘  and VM 𝑣ℎ  supported by the edge computing network. An 

indicator with a value of 1 means the task and VM are compatible, while a value of 0 means 

they are not compatible The length of the list is 𝜂, which is the number of the type of VM 

supported by the edge computing network.  

As all the tasks are initially sent from IoT devices to their connected access nodes, 

we further denote 𝑏𝑎𝑘
 as the access bandwidth for 𝑡𝑘, which is the bandwidth between the 

IoT device that sends 𝑡𝑘 and its access point 𝑎𝑘.  

 

3.2.1.1.3 Constraints of Task Distribution 

Before discussing these constraints, we need to identify the variables for task 

distribution due to the characteristics of the task distribution problem.  

Let binary variable 𝑥𝑘,𝑖 be the task distribution indicator. 𝑥𝑘,𝑖 = 1 if 𝑡𝑘 is decided 

to be distributed to 𝑑𝑖, and 𝑥𝑘,𝑖 = 0 if tk is decided not to be distributed to 𝑑𝑖. Let 𝑓𝑘,𝑗, 0 ≤

𝑓𝑘,𝑗 ≤ 𝑏𝑗, be the required bandwidth on edge link 𝑒𝑗 for the flow of task 𝑡𝑘 to pass through 

𝑒𝑗.  

The constraints of the task distribution problem are given below: 

C-1: Task assignment constraint: 

In this work, each task is atomic and independent. A task 𝑡𝑘 can be assigned to at 

most one edge node and must be executed and completed on the assigned edge node. Hence, 
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the summation of all the task distribution variable of task 𝑡𝑘 should be either 0 or 1. A 

summation equal to 0 means that task 𝑡𝑘 is successfully distributed. A summation equal to 

1 means that task 𝑡𝑘 is not distributed. That is, 

 
∑ 𝑥𝑘, 𝑖

𝑚−1

𝑖=0
≤ 1 . 

(1) 

C-2: Node storage constraint:  

To execute a task, edge nodes must receive the task data from the task’s IoT device. 

An edge node 𝑑𝑖 must have sufficient storage to store the data of all the tasks distributed 

to 𝑑𝑖. Hence, the summation of the storage requirement of all the tasks distributed to edge 

node 𝑑𝑖 should be no larger than the storage capacity of 𝑑𝑖. That is, 

 
∑ 𝑥𝑘, 𝑖𝑠𝑡𝑘

′
𝜓−1

𝑘=0
≤ 𝑠𝑡𝑖  . 

(2) 

C-3: Security constraint:  

One of the two QoS requirements of tasks we consider is the security requirement 

of tasks. To be capable of completing task 𝑡𝑘, the VMs on each node 𝑑𝑖 must be sufficiently 

secure in order to satisfy the specified security requirement of 𝑡𝑘. The methods to quantify 

security strength is discussed above in this section. The security constraint is formulated 

as, 

 𝑥𝑘,𝑖𝑠𝑒𝑐𝑘
′ ≤ 𝑠𝑒𝑐𝑖  . (3) 

C-4: VM availability constraint:  

The compatibility of a task and a type of VM is discussed above in this section. To 

be capable of completing task 𝑡𝑘, edge node 𝑑𝑖 must have VMs that are compatible with 

tasks 𝑡𝑘 available at the application of the task distribution process. That is, 
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 𝑥𝑘,𝑖𝑙′𝑘
ℎ ≤ 𝑙𝑖

ℎ . (4) 

C-5: Task completion time constraint:  

This is the second one of the two QoS requirements of tasks we consider in this 

dissertation research. It means that each accommodated task 𝑡𝑘 must be completed within 

the deadline specified by its IoT application. 

The completion time of 𝑡𝑘 on an edge node 𝑑𝑖 consists of two components: 𝑡𝑘’s 

data transmission time between 𝑡𝑘 ’s IoT device and its execution node 𝑑𝑖 , and the 

execution time of 𝑡𝑘 on its execution node 𝑑𝑖. The initial setup time for establishing the 

connection between IoT devices and edge nodes, the time of sending the IoT applications’ 

programs from IoT devices to edge nodes, and the time for nodes to send computation 

results back to IoT devices are negligible compared to the task execution time and data 

transmission time [27]. So, all these time factors are not considered here. In addition, for the 

network delay, the processing delay, the queuing delay, and the propagation delay are also 

not considered in this work and only transmission delay is considered [29]. 

The first component consists of the 𝑡𝑘’s data transmission time between 𝑡𝑘’s IoT 

device and its access node 𝑎𝑘, and the data transmission time between 𝑡𝑘’s access node 

𝑎𝑘 and its execution node 𝑑𝑖. Recall that we use 𝑏𝑎𝑘
 to denote the bandwidth between 𝑡𝑘’s 

IoT device and its access node 𝑎𝑘. Let 𝑏𝑑𝑖

𝑎𝑘 be the bandwidth for task 𝑡𝑘 to transmit its data 

from its access node 𝑎𝑘  to its execution node 𝑑𝑖 , then the bandwidth between the IoT 

device and the execution node 𝑑𝑖 is 

 𝑚𝑖𝑛 {𝑏𝑎𝑘
, 𝑏𝑑𝑖

𝑎𝑘}.  
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The data transmission time between 𝑡𝑘 ’s IoT device and the execution node, 

denoted as 𝜏𝑘
𝑡𝑟(𝑑𝑖), is then given by 

 𝑑𝑘

𝑚𝑖𝑛{𝑏𝑎𝑘
,𝑏𝑑𝑖

𝑎𝑘}
 .  

The second component of the task completion time of 𝑡𝑘, is the execution time of 

𝑡𝑘 on 𝑑𝑖, denoted as 𝜏𝑘
𝑒𝑥(𝑑𝑖), is given by 

 𝑤𝑘

𝑟𝑖
 .  

The constraint on the completion time for each task 𝑡𝑘, denoted as 𝜏𝑘, is the sum of 

both is data transmission time 𝜏𝑘
𝑡𝑟(𝑑𝑖)  and task execution time 𝜏𝑘

𝑒𝑥(𝑑𝑖) . To meet 𝑡𝑘 

completion deadline, the completion time of 𝑡𝑘 should be no larger than 𝑡𝑘’s deadline 𝛿𝑘. 

That is, 

τk 
= ∑ 𝜏𝑘(𝑑𝑖)𝑥𝑘,𝑖

m−1

i=0
 

 
 

 
= ∑ [τk

tr(di) + τk
ex(di)]xk,i

m−1

i=0
 

 

 

= ∑ [
𝑑𝑘

𝑚𝑖𝑛 {𝑏𝑎𝑘
,  𝑏𝑑𝑖

𝑎𝑘}
+

𝑤𝑘

𝑟𝑖
] 𝑥𝑘,𝑖

m−1

i=0
 

 

 ≤ 𝛿𝑘. (5) 

C-6: Link bandwidth sharing constraints:  

Note that in constraint C-5, the bandwidth allocation for each task between its 

access edge node and execution node has yet been decided. Due to the path diversity and 

the dynamic bandwidth availability in the edge computing network, we use the network 

flow abstraction to capture the network sharing among different tasks [10]. The flows in 

the edge computing network are the data transmitted from tasks’ access edge nodes to their 

execution edge nodes. A flow in a flow network satisfies two properties, which are (1) 
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capacity constraint for each link and (2) flow conversation for each node, except the source 

node and the destination node.  

Hence, there are two constraints for edge link bandwidth sharing by multiple tasks 

in the edge computing network. The first constraint C-6.1 is derived from the flow 

conservation property. It concerns the difference between the total bandwidth of all the 

incoming and all the outgoing links used by the flow of task tk of each node in the edge 

computing network. The second constraint C-6.2 is derived from the capacity constraint 

property. It concerns the link capacity constraint of each link in the edge computing network, 

which comes from the second property of network flow. 

C-6.1: Link bandwidth conservation constraint: 

For an edge node 𝑑𝑖, which is neither the access node, nor the execution node, of 

𝑡𝑘, the sum of the required bandwidth on all the incoming links to 𝑑𝑖 for the flow of 𝑡𝑘 

must be the same as the sum of the required bandwidth on all the outgoing links from 𝑑𝑖 

for the flow of 𝑡𝑘.  

For an edge node 𝑑𝑖, which is the execution node of 𝑡𝑘, the sum of the required 

bandwidth for the flow of 𝑡𝑘 on all the incoming links to 𝑑𝑖 must be greater than the sum 

of the required bandwidth for the flow of 𝑡𝑘 on all the outgoing links from 𝑑𝑖 by 𝑏𝑑𝑖

𝑎𝑘, which 

is the bandwidth for task 𝑡𝑘 to transmit its data from its access node 𝑎𝑘to its execution node 

𝑑𝑖. For the access node 𝑎𝑘, which is the source node for task 𝑡𝑘’s data flow, the sum of the 

required bandwidth for the flow of 𝑡𝑘 on all the incoming links to 𝑎𝑘 must be smaller than 

the sum of the required bandwidth for the flow of 𝑡𝑘 on all the outgoing links from 𝑎𝑘 by 

𝑏𝑑𝑖

𝑎𝑘. As the sum of flows through the source node and the destination node is zero, there is 
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no need to add the flow conservation of the source node as a constraint, as it is represented 

by the flow conservation of the destination node. 

 

Hence, the flow conservation constraint is expressed as follows, 

 ∑ 𝑓𝑘,𝑗

𝑒𝑗∈𝑖𝑛(𝑖)

− ∑ 𝑓𝑘,𝑗

𝑒𝑗∈𝑜𝑢𝑡(𝑖)

= 𝑏𝑑𝑖

𝑎𝑘 ∙ 𝑥𝑘,𝑖 .  

(6) 

C-6.2: Link bandwidth constraint:  

For each link ej, the sum of the required bandwidth for the flows of all the tasks to 

pass through ej must be no greater than the capacity of link ej. That is, 

 
∑ 𝑓𝑘,𝑗

𝜓−1

𝑘=0
≤ 𝑏𝑗  . 

(7) 

 

3.2.1.1.4 The Task Distribution Program 

Note that due to Constraint (1), some tasks may not be distributed to any edge node 

for execution. In practice, not all tasks can be accommodated for processing in the edge 

computing network because of the limited resources in edge computing network [9]. 

The objective of the task distribution generated by our approach is to maximize the 

number of tasks that can be accommodated in the edge computing network, with the 

consideration of tasks priorities. To consider the priorities of tasks, we add them as 

weighting factors in our objective function. Without the consideration of resource 

consumption, completing a task with a higher priority means better performance for the 

edge computing network than completing a task with a lower priority. However, in certain 

cases, a task with a higher priority consumes more computing resources and network 

bandwidth than a task with a lower priority. From the perspective of the edge computing 



31 
 

network, we want to increase the performance of the entire system, not only one task. 

Hence, in the objective function, we introduce the priorities as weighting factors of each 

task. Our problem formulation considers resource utilization while doing optimization. 

Through the optimization process, a trade-off will be made between priority weighted 

accommodation number and resource utilization. The task distribution problem can be 

formulated as follows: 

 

 𝑚𝑎𝑥 ∑ ∑ 𝑝𝑘𝑥𝑘,𝑖

𝑚−1

𝑖=0

𝜓−1

𝑘=0
 , 

 

(8) 

 𝑠. 𝑡. (1) − (7).  

Note that (8) is a mixed-integer nonlinear program (MINLP), and is NP-hard 

because of the following reason: Consider a special case of the task distribution program, 

which assumes that all VMs in the edge computing network finish their assigned tasks 

instantly, all nodes have the same storage available, satisfy the maximum security strength, 

and all edge links have infinite bandwidth, is equivalent to the decision version of Bin 

Packing problem, which is NP-hard [15]. Because this special case is NP-hard, (8) is NP-

hard. Due to the NP-hard nature of (8), it is impossible to generate the optimal solution for 

(8) in polynomial time, unless 𝑃 = 𝑁𝑃 [15]. 

In order to achieve the goal of our task distribution approach, we will use a mixed-

integer linear program (MILP) by simplifying Constraint (5) and (6) in (8). 

 

3.2.1.1.5 Linearization of the Task Distribution Program 

The nonlinearity of (8) is due to Constraints (5) and (6), which are both nonlinear 

because they involve both 𝑥𝑘,𝑖  and 𝑏𝑑𝑖

𝑎𝑘 . By assuming that the execution of all 

accommodated tasks will be completed exactly at their respective deadlines, 𝑏𝑑𝑖

𝑎𝑘 can be 
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replaced by a constant �̂�𝑑𝑖

𝑎𝑘 , which will be defined in (11). This assumption does not 

increase any limitations on the services provided by the edge computing network since 

each accommodated task still satisfies its completion time duration requirement. The 

details of the linearization are explained as follows: 

Given an execution node 𝑣𝑖, Constraint (5) now becomes 

 𝑑𝑘

𝑚𝑖𝑛 {𝑏𝑎𝑘
,  𝑏𝑑𝑖

𝑎𝑘}
+

𝑤𝑘

𝑟𝑖
≤ 𝛿𝑘 . 

(9) 

Therefore, we can solve (9), and have the following inequality: 

 𝑚𝑖𝑛 {𝑏𝑎𝑘
,  𝑏𝑑𝑖

𝑎𝑘} ≥ �̂�𝑑𝑖

𝑎𝑘  , (10) 

Where 

 
�̂�𝑑𝑖

𝑎𝑘 =
𝑑𝑘

𝛿𝑘 −
𝑤𝑘

𝑟𝑖

 . 
(11) 

In other words, if 𝑏𝑎𝑘
< �̂�𝑑𝑖

𝑎𝑘 or �̂�𝑑𝑖

𝑎𝑘 < 0, then node 𝑑𝑖 cannot be assigned as 𝑡𝑘’s 

execution node, because Constraint (5) is not satisfied. On the other hand, if 0 < b̂di

ak ≤

bak
, then Constraint (5) is equivalent to the following 

 𝑏𝑑𝑖

𝑎𝑘 ≥ �̂�𝑑𝑖

𝑎𝑘  . (12) 

Note that letting equality hold for (12), which means that all tasks are completed 

exactly on their respective deadlines, has no impact on the optimal solution set, since 

bandwidth allocation may only reduce on each link with a lower bandwidth requirement of 

�̂�𝑑𝑖

𝑎𝑘. Hence the variable 𝑏𝑑𝑖

𝑎𝑘is now resolved to a constant number �̂�𝑑𝑖

𝑎𝑘 in Constraint (5).  
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To sum up, the linearization consists of two components: first, for each task 𝑡𝑘, 

remove all potential execution nodes 𝑑𝑖 ∈ 𝐷 where 𝑏𝑎𝑘
< �̂�𝑑𝑖

𝑎𝑘 or �̂�𝑑𝑖

𝑎𝑘 < 0; second, replace 

Constraints (5) and (6) with the following: 

 ∑ 𝑓𝑘,𝑗

𝑒𝑗∈𝑖𝑛(𝑖)

− ∑ 𝑓𝑘,𝑗

𝑒𝑗∈𝑜𝑢𝑡(𝑖)

= �̂�𝑑𝑖

𝑎𝑘 ∙ 𝑥𝑘,𝑖  , (13) 

 for ∀𝑑𝑖 ∈ 𝐷\{𝑎𝑘}.  

The resultant program is now an MILP: 

 

3.2.1.2 Problem Size Reduction 

We first reduce the size of Program (14) by removing unnecessary 𝑥𝑘,𝑖 variables by 

setting unfeasible 𝑥𝑘,𝑖 variable to a fixed value 0. Define 𝐷𝑘 = {𝑑𝑖 ∈ 𝐷|𝑠𝑒𝑐𝑖 < 𝑠𝑒𝑐𝑘
′ } as 

the set of candidate execution nodes for task 𝑡𝑘 who satisfy the security constraint. 

We can then restrain the set of task assignment variables to only contain 𝑥𝑘,𝑖 where 

𝑑𝑖 ∈ 𝐷𝑘, and remove Constraints (3). 

Secondly, we reduce the size of Program (14) by removing tasks that cannot be 

completed by the edge computing network.  

Generate a min flow program for the data routing in the edge computing network 

by replacing the objective function in the LPR of (14) with a new objective function, which 

is to minimize the sum of the flows of all tasks in the edge computing network. That is, 

 
𝑚𝑎𝑥 ∑ ∑ 𝑝𝑘𝑥𝑘,𝑖

𝑚−1

𝑖=0

𝜓−1

𝑘=0
 , 

 

(14) 

 𝑠. 𝑡. (1) − (4), (7), (13).  
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𝑚𝑖𝑛 ∑ ∑ 𝑓𝑘,𝑗

𝑛−1

𝑗=0

𝜓−1

𝑘=0
 , 

 

(15) 

 𝑠. 𝑡. (1) − (4), (7), (13).  

For each input task 𝑡𝑘, we solve the min-flow Program (15) with the assumption 

that 𝑡𝑘 is the only input task. If Program (15) does not have a feasible solution, it means 𝑡𝑘 

cannot be completed by the edge computing network. On the other hand, if Program (15) 

has a feasible solution, it means 𝑡𝑘 can be completed by the edge computing network and 

it will be considered in Step 2 of the task distribution process. All tasks that cannot be 

completed by the edge computing network will be added to a rejected task set 𝑇𝑟𝑒𝑗. 

 

3.2.2 Generation of Task Distribution Solution 

We generate the task distribution by solving the MILP (14), which is the Step 2 of 

our overall task distribution process. It has four sub-steps, which will be presented as 

follows.  

Step 2.1) Initiate this sub-step by setting both be the set of accommodated tasks, 

𝑇𝑎𝑐𝑐, and the set of failed tasks, 𝑇𝑢𝑛𝑎𝑐𝑐, as empty sets.  

Step 2.2) Relax the MILP (14) by replacing the binary variables 𝑥𝑘,𝑖 ∈ {0, 1} with 

new continuous variables �̅�𝑘,𝑖 ∈ [0, 1] , that is each x̅k,i  has a value between 0 and 1, 

inclusive. The resultant program with relaxed variables �̅�𝑘,𝑖  is called a linear program 

relaxation (LPR) of the original program (14). 
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Step 2.3) Solve the LPR of (14) over T ∪ Tacc, and obtain the values of the relaxed 

variables �̅�𝑘,𝑖. Find the variable �̅�𝑘,𝑖 with the largest value, round off its value to 1, and all 

other variables �̅�𝑘,𝑖′ (𝑑𝑖
′ ≠ 𝑑𝑖) for the same task 𝑡𝑘 to 0. Then go to Step 2.4).  

Step 2.4) Update 𝑇𝑎𝑐𝑐 to 𝑇𝑎𝑐𝑐 ∪ 𝑡𝑘. Validate the rounding in Step 2.3) by checking 

if (15) with the updated accommodated task set, has any feasible solution. If there is a 

feasible solution, the rounding of the values of �̅�𝑘,𝑖 and �̅�𝑘,𝑖′in Step 2.3) is validated, and 

move 𝑡𝑘 from 𝑇 to 𝑇𝑎𝑐𝑐. In addition, put the tasks with all their variables �̅�𝑘,𝑖 marked as 

failed the validation to 𝑇𝑢𝑛𝑎𝑐𝑐. Then go to Step 2.3) if 𝑇 is not empty. On the other hand, if 

there is no feasible solution for (15), the rounding of the values of �̅�𝑘,𝑖 and �̅�𝑘,𝑖′ in Step 2.3) 

will be undone, variable �̅�𝑘,𝑖 will be marked as failed the validation. Then go back to Step 

2.3) to round off the variable with the next largest value. The solution of last min flow 

program that has a feasible solution is used to update network bandwidth resources.  

As mentioned in Section 3.1, ϭ, which is the time interval between two consecutive 

task distribution processes, should be adjusted dynamically to maintain a satisfactory 

performance of the edge computing network. The input of this adjustment of ϭ is generated 

in Step 2.4), based on the task accommodation rate. At the end of Step 2.4), all tasks are 

labeled as accommodated, unaccommodated, or rejected. Hence, the task accommodation 

rate can be computed, which is a value between 0 and 1, inclusive. If the rate of successfully 

distributed tasks falls below a preset threshold, for example, 0.6, ϭ should be reduced so 

that our task distribution process will be applied more frequently. 
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This section is implemented by Algorithm 1. Algorithm 1 solves a sequence of LP-

relaxations and the corresponding min flow data routing sub-problems (15) to obtain a 

feasible solution over the relaxed versions.  

Line 1 initializes the accommodated and unaccommodated sets 𝑇𝑎𝑐𝑐 and 𝑇𝑢𝑛𝑎𝑐𝑐 to 

empty. Line 2–20 is the outer loop over the set of all input tasks except rejected tasks in 

Step 1.2 Problem Size Reduction. In each iteration of the outer loop (except the last one), 

exactly one task is added to 𝑇𝑎𝑐𝑐 . To do this, first, we solve the LP-relaxation at the 

beginning of each iteration in Line 3. Let 𝑋 be the set of (relaxed) task assignment variables 

optimized in this iteration’s LP (Line 4).  

The inner iteration (Line 5–16) then iterates over all variables in 𝑋, in descending 

order of their optimized values. In each inner iteration, the currently picked variable �̅�𝑘,𝑖 

will have its value set to 1, and all other variables �̅�𝑘,𝑖 for the same task set to 0 (Line 6). 

We then solve the min flow data routing sub-problem (15) over the subset of tasks defined 

by 𝑇𝑎𝑐𝑐 ∪ 𝑡𝑘  (all successfully scheduled tasks and the current task), with all task 

assignment variables fixed (for tasks in 𝑇𝑎𝑐𝑐, it is based on the node assigned in previous 

iterations), in Line 7. Note that the min flow data routing sub-problem with fixed task 

assignment is also an LP, hence can be solved efficiently. If the min flow data routing sub-

problem returns a feasible solution, it means that the current task assignment of 𝑇𝑎𝑐𝑐 ∪ 𝑡𝑘 

can be satisfied by the network. We then fix the task assignment for 𝑡𝑘 in Line 9, move 𝑡𝑘 

from 𝑇  to Tacc  in Line 10, and terminate the inner loop. Otherwise, the current task 

assignment of 𝑇𝑎𝑐𝑐 ∪ 𝑡𝑘 is infeasible. We then undo the assignment of variables in Line 13, 

remove this variable 𝑥𝑘,𝑖 from 𝑋 in Line 14, and proceed to the next largest variable until 
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all variables are iterated in the inner loop. After the inner loop, the algorithm checks 

whether if there are any task 𝑡𝑘 that cannot be satisfied with the currently scheduled tasks 

𝑇𝑎𝑐𝑐: if all variables 𝑥𝑘,𝑖  has been iterated in the inner loop for task 𝑡𝑘  and no feasible 

solution is found, we then move the task to the unaccommodated set 𝑇𝑢𝑛𝑎𝑐𝑐in Line 18.  

After all tasks’ distributions have either been successfully decided (moved to Tacc 

or 𝑇𝑢𝑛𝑎𝑐𝑐), the algorithm terminates and returns the accommodated and unaccommodated 

task sets, the per-successful task assignment, and the corresponding min flow data routing 

solutions {𝑓𝑘,𝑗}. Note that the min flow data routing solution is obtained from the last inner 

iteration that is feasible, which essentially includes all tasks that finally result in 𝑇𝑎𝑐𝑐. 

Algorithm 1 terminates in polynomial time. To see this, observe that in each outer 

iteration (Line 2-20), either a task is added to 𝑇𝑎𝑐𝑐 at Line 10, or all the rest tasks in 𝑇 fail 

the validation and be moved to 𝑇𝑢𝑛𝑎𝑐𝑐 at Line 18. The size of 𝑇 is reduced by at least 1 in 

each outer iteration. Hence the outer loop terminates in at most 𝜓 iterations (𝜓 is the 

number of tasks initially in 𝑇). The inner loop (Line 5-16) iterates over all task distribution 

variables, which is at most of the size 𝑂(𝜓𝑚), where m is the number of nodes in 𝐷. Since 

LPs in each iteration can be solved in polynomial time [74], the algorithm terminates in 

polynomial time as well. 
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Algorithm 1: Task Distribution and Data Routing (TDDR) 

Input: The edge computing network 𝐺 =  (𝐷, 𝐸), set of tasks to be processed 𝑇 

Output: Set of accommodated tasks 𝑇𝑎𝑐𝑐, set of unaccommodated tasks 𝑇𝑢𝑛𝑎𝑐𝑐, task 

distribution {𝑥𝑘,𝑖}, flow of tasks {𝑓𝑘,𝑗} 

1 𝑇𝑎𝑐𝑐 ← ∅, 𝑇𝑢𝑛𝑎𝑐𝑐 ← ∅ 

2 while 𝑇 ≠ ∅ do 

3  Solve LPR of (14) and obtain {𝑥𝑘,𝑖} and {𝑓𝑘,𝑗} 

4  𝑋 ← {�̅�𝑘,𝑖|𝑡𝑘 ∈ 𝑇, 𝑑𝑖 ∈ 𝐷}; 

5  for each �̅�𝑘,𝑖 ∈ 𝑋 in descending order of value do 

6   Assign �̅�𝑘,𝑖  ← 1, and �̅�𝑘,𝑖′  ← 0 for ∀𝑑𝑖
′ ≠ 𝑑𝑖; 

7   Solve a min-flow program (15) for 𝑇𝑎𝑐𝑐 ∪ 𝑡𝑘 with fixed task assignment; 

8   if the min-flow program has a feasible solution 

9   then 

10    Fix task assignment for 𝑡𝑘; 

11    𝑇𝑎𝑐𝑐 ← 𝑇𝑎𝑐𝑐 ∪ 𝑡𝑘 , 𝑇 ← 𝑇 \ {𝑡𝑘}; 

12    break; 

13   else 

14    Un-assign �̅�𝑘,𝑖 and �̅�𝑘,𝑖′ values in Line 6; 

15   end 

16  end 

17  for each 𝑡𝑘 ∈ 𝑇 where �̅�𝑘,𝑖 ∉ 𝑋 for ∀𝑑𝑖 ∈ 𝐷 do 

18   𝑇𝑢𝑛𝑎𝑐𝑐 ←  𝑇𝑢𝑛𝑎𝑐𝑐 ∪ 𝑡𝑘 , 𝑇 ← 𝑇 \ {𝑡𝑘}; 

19  end 

20 end 

21 return 𝑇𝑎𝑐𝑐, 𝑇𝑢𝑛𝑎𝑐𝑐, {𝑥𝑘,𝑖}, {𝑓𝑘,𝑗} 
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Chapter 4 

 

EVALUATIONS 

 

4.1 Overview 

In this section, we will present the evaluation of our approach to task distribution 

in the edge computing network. The simulation results show the improvement of our 

approach on increasing the accommodation number of tasks the edge computing network, 

with consideration of priorities, compared to the four comparison approaches. The four 

comparison approaches are the local execution approach (Local) and random distribution 

approach (Random), the greedy distribution approach based on fastest completion time 

(Greedy-Fastest), and the greedy distribution approach based on slowest completion time 

(Greedy-Slowest). The two greedy based approaches are based [18] and [77]. 

The Local approach does not involve task distribution in the edge computing 

network. In the Local approach, each task is executed locally on its access node. For all the 

input tasks, we first sort them according to the priorities from high to low. We use merge 

sort based sorting as merge sort is a stable sorting algorithm. Hence, for the tasks with the 

same priorities, they are computed based on the order of arrivals. For each task in the sorted 

order, we solve the task with the min-flow data routing Program (15). If it does not have 

any feasible solution, this task is moved to the unaccommodated set. If it has a feasible 

solution, this task is moved to the accommodates set and we use the solution of Program 

(15) to update the resources of the edge computing network, which includes, the storage 

capacity of the edge node, the VM availability of the edge node and the bandwidth of the 
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network links. This step is to reserve resources for the accommodated tasks. Then we move 

to the next task until finish all tasks. 

The Random approach randomly selects an edge node for each task as its execution 

node. We first sort all the tasks based on the same sorting rules in the Local approach. For 

each task, we randomly select an edge node as its execution node. Then we solve the min 

flow data routing Program (15). If it has a feasible solution, we update the resources of the 

edge computing network and move this task to the accommodated set. If it does not have 

any feasible solution, we randomly select the next edge node and solve Program (15). If all 

the edge nodes have been tested and none of them has a feasible solution of Program (15), 

this task is moved to the unaccommodated set. 

The Greedy-Fastest approach and the Greedy-Slowest approach perform all steps 

the same as the Random approach, exception the selection of execution node for each task. 

The Greedy-Fastest selects an eligible node for each task that could complete the task 

fastest. If the fastest node could not complete a task within the deadline, the task will be 

moved to the unaccommodated set. Otherwise, the task will be moved to accommodated 

set and we update resources of the edge computing network. The Greedy-Slowest approach 

selects an eligible node for each task that could complete the task slowest but within the 

deadline. The slowest and acceptable completion time for a task is the deadline. Hence, if 

an edge node can complete a task on the deadline, its completion time is the slowest and 

acceptable, and this edge node will be the execution node. 

Greedy based task distribution algorithms have been proposed and implemented for 

the purpose of comparison. Zeng, Gu, Guo, Cheng, and Yu [77] implemented two greedy 
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based comparison algorithms. One is server greedy algorithm, which greedily distributes 

tasks to resourceful servers until servers reach saturation. The other one is client greedy 

algorithm, which greedily distributed tasks to clients until clients reach saturation. Gu, 

Zeng, Guo, Barnawi, and Xiang [18] implemented a greedy based algorithm for user 

association and execution edge node selection. As mentioned in Chapter 2 Current State of 

Art, the system model in this work regards user association as a variable. Their greedy 

algorithm first greedily associate users to a base station that has the smallest uploading cost. 

It then selects a base station that has the smallest incremental cost as the task’s execution 

node. The incremental cost includes VM deployment cost and inter base stations 

communication cost. 

 

4.2 Simulations Setup 

We run all the simulations on a Linux virtual machine on a Dell PC. The processor 

of the Dell PC is Intel(R) Core(TM) i7-3770 with 4 cores. The base frequency is 3.40 GHz. 

The RAM of the Dell PC is 8.00 GB. The operating system of the Dell PC is Windows 10 

Enterprise, version 1709, OS build 16299.611 and 64-bit. For the Linux virtual machine, it 

is installed on the Dell PC through Oracle VM VirtualBox of version 5.2.12. There are 

three cores allocated to this VM out of the 4 cores the Dell PC has. The RAM allocated to 

this VM is 4.00 GB. The operating system of the Linux VM is Ubuntu 16.04.1 and 64-bit.  

We use IBM CPLEX as the engine to solve the linear programs. The version of 

IBM CPLEX we used is 12.7.0. The program of linear program solver is written in C++. 
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Our approach and the four approaches used for comparison are written in Java. The Java 

version on the Ubuntu virtual machine is 1.8.0_181. 

We use Waxman model [64] to generate network topologies for edge computing 

networks. The major benefit of applying Waxman model to generate the edge computing 

network topology is that Waxman model is simple to implement while its generated 

topologies satisfy the requirements of edge computing networks. Beside Waxman model, 

there are two major types of network topology models [37], hierarchical topology model, 

and power-law based model.  

To the best of my knowledge, there are no requirements regarding the hierarchical 

structure and node degree for edge computing network. In the edge computing network, all 

edge computing devices can connect endpoint IoT devices, hence, the edge computing 

network is flat, and no hierarchical structures are required. Hence, hierarchical topology 

generators, such as Tiers [13] and the Transit-Stub [76] are not feasible for our research. 

Power-law based topology generators, such as Inet2 [26], the BRITE [40], and PLRG [1], 

define the degree distribution of network nodes according to certain power laws. Indeed, 

Waxman model is equivalent to a special case of BRITE 1.0 [39]. For the edge computing 

networks in our simulations, there are no requirements on the node degree, hence, power-

law based topology generators are not necessary.  

To conclude, Waxman model is sufficient to generate random network topologies 

for our simulations with the least effort to implement. 

The formulation of Waxman model is: 
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p(u, v) = α ∙ exp(−d(u, v)/(β ∙ L)), 

where p(u, v) is the probability of the connection of nodes u and v. There are two 

adjustable parameters of Waxman model, which are α and β, both in the range of (0, 1]. A 

larger value of α yields to more links. And a larger value of β yields to a larger ratio of 

long links relative to shorter links. We further process the resultant network to make sure 

that all the edge nodes are interconnected. Hence, the resultant edge computing network is 

a directed graph. 

The comparison metric in our simulations is the accommodated number of tasks, 

the accommodated rate of tasks, the weighted accommodated number of tasks, the 

bandwidth utilization of the edge computing network, the average number of links used by 

each task, the storage utilization of the edge computing network, and the VM utilization of 

the edge computing network.  

To investigate the effects of different factors on the performance of task distribution 

process, we conduct three simulations with different settings. The first set of simulation is 

varying the number of tasks, which is to investigate the effect of the total workload. The 

second set of simulation is varying the data size of tasks, which is also to investigate the 

effect of the total workload. The last set of simulation is varying the connectivity of the 

edge computing network, which is to investigate the effect of network capacity and the 

degree of resources sharing between edge nodes. To make our result more reliable, for each 

of the three simulations, we run each simulation 10 instances and get the average of each 

comparison metric. In addition to showing the average of each metric, we also show the 

standard deviation of each metric in each plot. The standard deviations show the amount 
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of variation of each set of data. We observe that our approach has acceptable standard 

deviations. 

 

4.3 Simulation with Varying Number of Tasks 

To better simulate the real edge computing, we have two set of edge nodes. One set 

contains resource-rich nodes and the other set contains recourse-poor nodes. 

For each recourse-rich node, the storage capacity is normally distributed in the 

range of [1000, 5000] MB The upper bound of security strength provided by VMs is 

normally distributed in the range of [0.4, 1]. (The quantification of security strength is 

discussed in Section 3.2.1 Preprocessing the task distribution problem). The computing 

rate of VMs on each resource-rich edge node is normally distributed in range the range of 

[2, 4] (The quantification of workload is discussed in Section 3.2.1 Preprocessing the task 

distribution problem). The number of each type of VM on each resource-rich edge node is 

normally distributed in the range of [20, 30].  

For each recourse-poor node, the storage capacity is normally distributed in the 

range of [100, 500] MB. The upper bound of security strength provided by VMs is normally 

distributed in the range of [0.4, 0.9]. The computing rate of VMs on each resource-poor 

edge node is normally distributed in the range the range of [1, 2]. The number of each type 

of VM on each resource-rich edge node is normally distributed in the range of [5, 15]. 
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There are 3 different types of VMs in the edge computing network. The access 

bandwidth of each edge node is normally distributed in the range of [100, 200] Mbps. The 

bandwidth of each edge link is normally distributed in the range of [50, 250] Mbps. 

The settings of the tasks in this simulation are as follows. The data size of each task 

is normally distributed in the range of [1, 200] MB. We assume that the storage requirement 

of each task is the same as the task’s data size. The lower bound of security strength 

required by each task is normally distributed in the range of [0.2, 1] (The quantification of 

security strength is discussed in Section 3.2.1 Preprocessing the task distribution problem). 

The deadline of each task is normally distributed in the range of [10, 20] seconds. The 

Figure 5 Accommodated Number for Simulation with Varying Task Number 
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workload of each task is normally distributed in the range of [1, 30] (The quantification of 

workload is discussed in Section 3.2.1 Preprocessing the task distribution problem). The 

access edge node of each task is uniformly distributed among all the edge nodes. The 

priority of each task is uniformly distributed in the range of [90, 100]. For each task, its 

compatible VM is uniformly set among all the types of VMs. 

In this simulation, to generate the edge computing network, we set the number of 

edge nodes to 8, and both α and β in the Waxman model to 0.9. We change the number of 

tasks to be processed from 100 to 500, with a step of 100, to examine the effect of the 

number of tasks. 

Figure 6 Accommodated Rate for Simulation with Varying Task Number 
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Figure 5 shows the accommodated numbers of all the five approaches. It shows that 

on average, our approach achieves 54.4% more accommodated number than the Local 

approach, 168.2% more accommodated number than the Random approach, 29.1% more 

accommodated number than the Greedy-Fastest approach and 31.0% more accommodated 

number than the Greedy-Slowest approach. The coefficients of variation of our approach 

for different task number (from 100 to 500 with the step of 100) are 7.7%, 9.1%, 12.1%, 

11.0%, and 11.6%.  

When the number of tasks is small, the differences of accommodated numbers are 

small as the edge computing network resources, which include both edge nodes resources 

and edge network bandwidth resources, are enough for tasks’ computation and 

transmission. As the number of tasks gets larger, the edge computing network resources 

become scarcer for tasks completion. As our approach performs even better when the 

number of tasks is larger, it proves that our approach is efficient for resource management. 

The performance of the Random approach is worse than the Local approach, hence, we 

conclude that it is better not distributing tasks, rather than distributing tasks randomly. 

Greedy-Fastest performs slightly better and more stable than Greedy-Slowest. Figure 5 also 

show the standard deviation 

Figure 6 shows the average accommodated rate of all the five approaches. It shows 

that on average, our approach achieves 54.4% more accommodated rate than the Local 

approach, 168.2% more accommodated rate than the Random approach, 29.1% more 

accommodated rate than the Greedy-Fastest approach and 31.0% more accommodated rate 

than the Greedy-Slowest approach.  
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The statistics in Figure 6 are the same to those in Figure 5. However, the plot shows 

a different view of the comparison between the performances of different approaches. The 

interpretation of this figure is very similar to the previous figure as they are dependent. We 

find that as the number of tasks gets larger, the accommodated rate gets smaller. This is 

because of the limitation of resources of the edge computing network. The highest 

accommodated rate of all the five approaches is when the number of tasks is 50 with our 

approach. Hence, this simulation is run in the condition that the edge computing network 

resources are not enough for tasks. We find that our approach always has the highest 

accommodated rate. 

Figure 7 Weighted Accommodated Number for Simulation with Varying Task Number 
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Figure 7 shows the weighted accommodated number of all the five approaches. 

The weighted accommodated number has each task’s priority as the weight factor on 

each task’s accommodation. It shows that on average, our approach achieves 53.7% more 

weighted accommodated number than the Local approach, and 164.4% more weighted 

accommodated number than the Random approach, 27.7% more weighted accommodated 

number than the Greedy-Fastest approach, and 29.2% more weighted accommodated 

number than the Greedy-Slowest approach.  

As the number of tasks increases, our approach performs even better than other 

comparison approaches. This is because (1) the optimization objective of our approach is 

Figure 8 Bandwidth Utilization for Simulation with Varying Task Number 
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to maximize the weighted accommodated number, (2) our approach is a joint optimization 

of computing resources and network bandwidth provisioning, so our approach could 

manage the tradeoff between weighted accommodated number and resource utilization 

much better than other approaches.  

The difference between Figure 5 and Figure 7 is small and it comes from the priority 

of tasks. As weighted accommodation number is adjusted from the accommodation number 

using the priorities of tasks, Figure 5 and Figure 7 have a minor difference. Figure 7 also 

shows that the Random approach performs much worse than Local approach. Hence, we 

conclude that with a less efficient task distribution approach, the performance will be even 

worse than not doing any computation offloading. This proves that a good selection of task 

distribution approach is very important. 

Figure 8 shows the average bandwidth utilization of all the five approaches. It 

shows that on average, the Random approach uses 15.4% more bandwidth capacity than 

our approach, the Greedy-Fastest approach uses 6.0% more bandwidth capacity than our 

approach, the Greedy-Slowest approach uses 17.9% more bandwidth capacity than our 

approach.  

The bandwidth utilization is an important indicator of the efficiency of network 

resource management of different approaches. For the same tasks, the selection of different 

execution nodes results in different data routing for the task. Even for the same task and 

the same execution node, the selection of data routing can still be different. Hence, the 

selection of execution nodes and the data routings between tasks’ access nodes and 

execution nodes are very important to the efficiency of bandwidth utilization. 
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From the previous three figures, we conclude that our approach outperforms all 

other four comparison approaches. Hence, even if the bandwidth utilization is the same, 

our approach is better in network resource management. In this Figure, we find that our 

approach uses the smallest bandwidth resources, which proves that our approach performs 

the best in terms of network resource management. Although the Random approach 

performs when the number of tasks is small, it has the worst performance overall. This is 

because random distribution doesn’t have any management over the network bandwidth. 

In Figure 8, we observe that both when the number of tasks is very small and very larger, 

the bandwidth utilization is small. For the first situation when the number of tasks is small, 

low bandwidth utilization is because of the small workload. For the second situation when 

Figure 9 Average Links per Task for Simulation with Varying Task Number 
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the number of tasks is large, low bandwidth utilization is because of low accommodated 

rate, which could be found in Figure 6. 

Figure 9 shows the average links per task for each approach. It shows that on 

average, the Random approach uses 155.7% more links per task than our approach, the 

Greedy-Fastest uses 24.2% more links per task than our approach, and Greedy-Slowest 

uses 27.1% more links per task than the Greedy-Slowest approach. 

The number of average links per task is similar to the bandwidth utilization in the 

way that for the same task and/or the same execution node, the average links per task can 

be different because of the data routings in the edge computing network. 

For Local approach, it does not involve task distribution among edge computing 

devices, so its average links per task are always zero. For the Random approach, its 

performance is the worst, as it doesn’t have any management over task distribution and 

routing selection. For all the other three approaches, there are managements over the task 

distribution and routing selection. Hence, their performances are much better than the 

performance of the Random approach. For average links per task, the smaller the value is, 

the less overhead of the network has. For each task, if only one link is needed, the task is 

only transmitted once. However, if multiple links are needed, multiple amounts of data get 

transmitted, which will enlarge the overhead of the edge computing network. For a task, 

two factors make a difference in the value of average links per task. One is the selection of 

the task’s destination node. Different approaches may select different destination edge 

nodes for the same task. The second factor is the selection of routes for data routing for the 

task. For the same task and the same destination edge computing node, there can be 
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different routes to transmit data from the task’s access node to its destination node. Figure 

9 shows that our approach has the best performance on these two factors. In addition, as 

the number of tasks gets larger, the average links per tasks get smaller. This is because as 

the number of tasks gets larger, network resources get more limited for long distance data 

transmission and tasks tend to be executed closer to their access nodes. 

Figure 10 shows the storage utilization of all the five approaches. It shows that on 

average, our approach achieves 29.9% more storage than the Local approach, 146.7% more 

storage than the Random approach, 10.9% more storage than the Greedy-Fastest approach 

and 11.1% more storage than the Greedy-Slowest approach. 

Figure 10 Storage Utilization for Simulation with Varying Task Number 
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Storage utilization is not like bandwidth utilization. For each task, its required 

bandwidth resource is not fixed. The amount of the bandwidth required to finish a task 

depends on the route between its access edge node and execution edge node. However, for 

storage, for each task, it is fixed. In this dissertation research, without loss of generality, 

we use a task’s data size as its required storage. For the Random approach, we observe that 

after 200 tasks, its plot becomes flat, which means saturation for storage. This limitation 

can be overcome by task distribution. It is clear that other four task distribution approaches 

do not have this limitation. 

Figure 11 VM Utilization for Simulation with Varying Task Number 
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Figure 11 shows the VM utilization of all the five approaches. It shows that on 

average, our approach utilizes 54.4% more VMs than the Local approach and 168.6% more 

VMs than the Random approach, 28.9% more VMs than the Greedy-Fastest approach and 

30.7% more VMs than the Greedy-Slowest approach.  

The utilization of VM is similar to the utilization of storage: if a task is fixed, its 

VM utilization and storage utilization are fixed. This is different from the bandwidth 

utilization, which depends on the data size of tasks, the selection of execution nodes and 

the data routing between the task’s access edge node and execution edge node. 

 

Figure 12 Accommodated Number for Simulation with Varying Data Size 
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4.4 Simulation with Varying Data Size of Tasks 

Same to the settings in Section 4.3 Simulation with Varying Task Number, in this 

set of simulation, we also have two set of edge nodes. One set contains resource-rich nodes 

and the other set contains recourse-poor nodes. The settings of the edge computing network 

and the tasks are the same to those in Section 4.3 Simulation with Varying Task Number, 

except the data size of tasks and the task number. We set the number of tasks to be 

processed to 300, and change the data size of tasks from 20 MB to 100 MB, with a step of 

20 MB, to examine the effect of the data size of tasks. 

Figure 13 Accommodated Rate for Simulation with Varying Data Size 
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Figure 12 shows the accommodation number of all the five approaches. It shows 

that on average, our approach achieves 38.1% more accommodation number than the Local 

approach, 162.3% more accommodation number than the Random approach, 16.3% more 

accommodation number than the Greedy-Fastest approach and 20.6% more 

accommodation number than the Greedy-Slowest approach. The coefficients of variation 

of our approach for different data size (from 20MB to 100 MB with the step of 20MB) are 

8.7%, 8.4%, 9.2%, 12.0%, and 17.7%. 

As the number of total tasks is 300, no approach accommodates all tasks. This 

means the edge computing network resources, which include both edge nodes resources 

and edge network bandwidth resources, are scarce for tasks’ computation and transmission. 

Figure 14 Weighted Accommodation Number for Simulation with Varying Data Size 
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Our approach always performs better than other comparison approaches. The performance 

of the Random approach is always worse than the Local approach, hence, we conclude that 

it is better not distributing tasks, rather than distributing tasks randomly. 

Figure 13 has the same statistics as Figure 12, as in this set of simulations, the 

number of tasks is fixed. 

Figure 14 shows the weighted accommodated number of all the five approaches. 

The weighted accommodated number has each task’s priority as the weight factor on each 

task’s accommodation. It shows that on average, our approach achieves 38.2% more 

weighted accommodated number than the Local approach, and 159.3% more weighted 

Figure 15 Bandwidth Utilization for Simulation with Varying Data Size 
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accommodated number than the Random approach, 15.7% more weighted accommodated 

number than the Greedy-Fastest approach, and 20.0% more weighted accommodated 

number than the Greedy-Slowest approach.  

Figure 15 shows the average bandwidth utilization of all the five approaches. It 

shows that on average, the Random approach uses 19.0% more bandwidth capacity than 

our approach, the Greedy-Fastest approach uses 3.1% more bandwidth capacity than our 

approach, the Greedy-Slowest approach uses 13.1% more bandwidth capacity than our 

approach.  

Figure 16 Average Links per Tasks for Simulation with Varying Data Size 
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In Figure 15, we observe that both when the size of data is very small and very 

large, the bandwidth utilization becomes large. For the first situation when the size of data 

is small, high bandwidth utilization is because of the high accommodated rate. As data size 

is small, the overhead of network transmission is small, hence, more tasks are 

accommodated and more network resources are used. For the second situation when the 

size of data is large, high bandwidth utilization is because of the large workload of tasks. 

Although the accommodated rate is low when the data size is large, the total data size needs 

to be transmitted increases as the data size of single tasks increases. 

Figure 17 Storage Utilization for Simulation with Varying Data Size 
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Figure 16 shows the average links per task for each approach. It shows that on 

average, the Random approach uses 159.5% more links per task than our approach, the 

Greedy-Fastest uses 6.6% more links per task than our approach, and Greedy-Slowest uses 

21.1% more links per task than the Greedy-Slowest approach. 

Figure 17 shows the storage utilization of all the five approaches. It shows that on 

average, our approach achieves 37.6% more storage than the Local approach, 159.4% more 

storage than the Random approach, 15.7% more storage than the Greedy-Fastest approach 

and 21.3% more storage than the Greedy-Slowest approach.  

Figure 18 VM Utilization for Simulation with Varying Data Size 
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Figure 18 shows the VM utilization of all the five approaches. It shows that on 

average, our approach utilizes 38.2% more VMs than the Local approach and 162.1% more 

VMs than the Random approach, 16.3% more VMs than the Greedy-Fastest approach and 

20.7% more VMs than the Greedy-Slowest approach.  

 

4.5 Simulation with Varying Connectivity of the Edge Computing Network 

Same to the settings in Section 4.3 Simulation with Varying Task Number, in this 

set of simulation, we also have two set of edge nodes. One set contains resource-rich nodes 

and the other set contains recourse-poor nodes. The settings of the edge computing network 

Figure 19 Accommodated Number for Simulation with Varying Network Connectivity 
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and the tasks are the same to those in Section 4.3 Simulation with Varying Task Number, 

except the network connectivity and the task number. In this simulation, we set the number 

of edge nodes to 15. We set the number of tasks to be processed to 200, the data size of 

each task to 50 MB and change the two parameters of Waxman model (α and β) from 0.2 

to 0.8, with a step of 0.2, to examine the effect of the connectivity of the edge computing 

network. 

Figure 19 shows the accommodated number of all the five approaches. It shows 

that on average, our approach achieves 61.1% more accommodated number than the Local 

approach, 223.7% more accommodated number than the Random approach, 18.6% more 

Figure 20 Accommodated Rate for Simulation with Varying Network Connectivity 
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accommodated number than the Greedy-Fastest approach and 26.2% more accommodated 

number than the Greedy-Slowest approach. The coefficients of variation of our approach 

for different value of the two parameters of the Waxman model (from 0.2 to 0.8 with the 

step of 0.2) are 7.4%, 8.1%, 7.6%, and 5.9%.   

First of all, as the Local approach doesn’t involve task distribution, the difference 

in network connectivity doesn’t have any effects on the performance of the Local approach. 

In Figure 16, the plot of the Local approach is a very flat line. All the other four approaches 

reply on the network to distribution tasks, hence, we see a clear trend that as the network 

connectivity gets better, the performances of all the other four approaches get better. The 

Figure 21 Weighted Accommodated Number for Simulation with Varying Network 

Connectivity 
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random approach always performs worse than the Local approach. Hence, we conclude 

that it is better not to distribute tasks, rather than randomly distributing tasks. The 

performance of Greed-Fastest becomes slightly better than that of Greedy-Slowest, hence, 

we conclude that Greedy-Fastest relies more on the connectivity of the network. Greedy-

Fastest approach always selects the fastest execution node for each task, hence, it is 

reasonable that the Greedy-Fastest approach consumes more bandwidth to expedite the 

transmission time of task completion. Hence, as the connectivity of the network grows, 

more bandwidth resources could be provided, and the performance of Greedy-Fastest gets 

better. Our approach always performs better than all other approaches. 

Figure 22 Bandwidth Utilization for Simulation with Varying Network Connectivity 
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Figure 20 has the same statistics as Figure 19, as in this set of simulations, the 

number of tasks is fixed. 

Figure 21 shows the weighted accommodated number of all the five approaches. 

The weighted accommodated number has each task’s priority as the weight factor on 

each task’s accommodation. It shows that on average, our approach achieves 60.8% more 

weighted accommodated number than the Local approach, and 220.0% more weighted 

accommodated number than the Random approach, 17.9% more weighted accommodated 

number than the Greedy-Fastest approach, and 25.2% more weighted accommodated 

number than the Greedy-Slowest approach.  

Figure 23 Average Links per Task for Simulation with Varying Network Connectivity 
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Figure 22 shows the average bandwidth utilization of all the five approaches. It 

shows that on average, the Random approach uses 4.2% more bandwidth capacity than our 

approach, the Greedy-Fastest approach uses 6.4% more bandwidth capacity than our 

approach, the Greedy-Slowest approach uses 22.0% more bandwidth capacity than our 

approach.  

In Figure 22, we observe that both when the network connectivity is very low and 

very high, the bandwidth utilization is small. For the first situation when the network 

connectivity is low, the resource sharing within the edge computing network is difficult as 

there are few links available and the total network capacity is low. For the second situation 

Figure 24 Storage Utilization for Simulation with Varying Network Connectivity 



68 
 

when the network connectivity is high, low bandwidth utilization is because of large 

network capacity. When the Waxman parameters reach 0.8, there are 80 links between the 

15 edge nodes, which forms a well-connected network. 

Figure 23 shows the average links per task for each approach. It shows that on 

average, the Random approach uses 232.5% more links per task than our approach, the 

Greedy-Fastest uses 40.6% more links per task than our approach, and Greedy-Slowest 

uses 60.0% more links per task than the Greedy-Slowest approach. 

As the network connectivity gets better, the number of average links per task gets 

larger. This is because more network capacity makes it easier for data transmission. 

Figure 25 VM Utilization for Simulation with Varying Network Connectivity 
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Figure 24 shows the storage utilization of all the five approaches. It shows that on 

average, our approach achieves 61.1% more storage than the Local approach, 222.7% more 

storage than the Random approach, 18.6% more storage than the Greedy-Fastest approach 

and 25.9% more storage than the Greedy-Slowest approach. 

Figure 25 shows the VM utilization of all the five approaches. It shows that on 

average, our approach utilizes 61.1% more VMs than the Local approach and 223.7% more 

VMs than the Random approach, 18.6% more VMs than the Greedy-Fastest approach and 

26.0% more VMs than the Greedy-Slowest approach. 

 

Figure 26 Running Time for Simulation with Varying Task Number 
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4.6 Running Time Performance 

According to the time complexity analysis of our approach in Section 3.2.2 

Generation of Task Distribution Solution, the running time of our approach is related to (1) 

the task number, (2) the node number and (3) the size of the program to be solved using 

the IBM CPLEX linear programming solver. The third component (the size of the program), 

is related to three factors, the number of tasks, the number of edge nodes, and the number 

of edge links. Hence, in this section, we show the running time performance of our 

Figure 27 Running Time for Simulation with Varying Node Number 
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approach with varying number of tasks, varying number of edge nodes and varying 

network connectivity.  

Figure 26 shows the running time of our approach with varying task number. The 

node number is set to 5. The two parameters in the Waxman model are set to 0.2. The task 

number is set from 100 to 500, with a step of 100. It shows that as the task number increases, 

the running time also increases. This is because as the task number increases, the number 

of task distribution variables increases proportionally. It shows that on average, the Local 

approach runs 52.6% faster than our approach, and the Random approach runs 43.6% faster 

than our approach. Our approach runs 52.1% faster than the Greedy-Fastest approach and 

Figure 28 Running Time for Simulation with Varying Network Connectivity 
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46.2% faster than the Greedy-Slowest approach. The coefficients of variation of our 

approach for different task number (from 100 to 500 with the step of 100) are 17.9%, 20.0%, 

21.7%, 12.3%, and 18.3%. 

Figure 27 shows the running time of our approach with varying edge node number. 

The task number is set to 100. The two parameters in the Waxman model are set to 0.2. 

The node number is set from 5 to 15, with a step of 1. It shows that on average, the Local 

approach runs 61.4% faster than our approach, and the Random approach runs 55.8% faster 

than our approach. Our approach runs 60.0% faster than the Greedy-Fastest approach and 

63.7% faster than the Greedy-Slowest approach. It shows that as the node number increases, 

the running time also increase. This is because as the node number increases, both the 

numbers of task distribution variables and flow variables increase proportionally. The 

coefficients of variation of our approach for different node number (from 1 to 14 with the 

step of 1) are 15.6%, 25.0%, 12.7%, 15.8%, 7.3%, 8.4%, 12.6%, 14.5%, 7.4%, and 9.7%.   

Figure 28 shows the running time of our approach with varying connectivity of the 

network, which reflects the varying link number in the network. The task number is set to 

100 and node number is set to 10. The two parameters in the Waxman model are set from 

0.2 to 0.8, with a step of 0.2. It shows that on average, the Local approach runs 68.5% faster 

than our approach, and the Random approach runs 64.2% faster than our approach. Our 

approach runs 41.7% faster than the Greedy-Fastest approach and 40.9% faster than the 

Greedy-Slowest approach. The coefficients of variation of our approach for different 

values of the two parameters of Waxman model (from 0.2 to 0.8 with the step of 0.2) are 

11.2%, 11.2%, 11.4%, and 13.4%. 
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For the running time performance, the Local and Random approaches run fasters 

than other three approaches, which is because they have much fewer iterations of linear 

programming in Step 2) of the task distribution process. Our approach performs better than 

the two greedy based approaches. The reason is that through the optimization of Algorithm 

1, our approach can (1) reduce the number of variables that are infeasible to the objective 

function, and (2) reduce the number of iterations of linear programming, through the 

sequential rounding in Step 2) of the task distribution process.  

As the goal of our approach is to maximize the number of accommodated tasks, in 

this dissertation research, different approaches are evaluated by the number of 

accommodated tasks, not the running time performance. 

 

4.7 Summary of the Simulations 

We find that in all the three simulations, our approach outperforms both the baseline 

approaches, in terms of the number of accommodated tasks. We also find that in the 

following circumstances, the benefit of our approach is even larger: (1) the overall 

workload in the edge computing network is high, as shown in Figure 5, when the number 

of tasks is large, and as shown in Figure 12, when data size of tasks is large; (2) the 

connectivity of edge network is high, as shown in Figure 19. 

These simulation results show that our approach has a much better efficiency in 

terms of bandwidth utilization and network flows routing. For a task, the network 

bandwidth resource it requires is not like the parameter of storage or virtual machines, 

which are fixed. For each task, the bandwidth resource reservation is dynamic, which 
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depends on the selection of execution nodes and the data routings between the task’s access 

node and its execution node. Through the figures, we find that our approach is more 

efficient in (1) selecting the execution nodes and (2) routing data from the task’s access 

node and execution node to reduce unnecessary data transmission in the network. This 

advantage of our approach brings two benefits to the whole system, which are faster 

execution of tasks and less network bandwidth resources utilization. 

The following is the summary of the comparisons between all the five approaches: 

(1) Local: 

a. Does not consume network bandwidth 

b. Has average performance in terms of both task accommodation number and 

weighted task accommodation number 

c. Has average performance in terms of resource utilization 

(2) Random: 

a. Has the worst performance in terms of both task accommodation number 

and weighted task accommodation number 

b. Consumes the most amount of bandwidth, and the most average links for 

each task, which are the bottleneck of Random as its performance is limited 

by the network resources. 

(3) Greedy-Fastest 

a. Preforms better than greedy-slowest when resources are enough, or the total 

workload is small, as the Greedy-Fastest approach tends to accommodate 

maximum resource to tasks  
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(4) Greedy-Slowest 

a. Performs better than Greedy-Fastest overall, as Greedy-Slowest approach 

tends to finish tasks at their deadlines, which consumes less energy than the 

Greedy-Fastest approach.  

b. Performs well when resources are limited or the total workload is large 

(5) Our approach: 

a. Has the best performance in terms of both task accommodation number and 

weighted task accommodation number 

b. Has the best performance in terms of resource utilization 

c. Has acceptable variation, which can be observed in Figure 5, 12, and 19. 

The reason that our approach has the best performance with the least network 

resource utilization is our joint optimization of both task distribution and data routing. The 

optimization of task distribution results in high performance in terms of the number of 

accommodated tasks. The optimization of data routing results in the low network resource 

utilization. 
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Chapter 5 

 

CONCLUSION AND FUTURE RESEARCH 

 

5.1 Conclusion 

In this dissertation research, our approach to task distribution in edge computing 

networks for IoT applications is presented. The objective of our approach is to maximize 

the number of tasks that can be accommodated in the edge computing network with the 

consideration of the priorities of tasks. Our approach guarantees to satisfy all 

accommodated tasks’ QoS requirements, which include the completion deadline and 

security requirement. Two research problems have been addressed. (1) How to distribute a 

set of tasks to a set of interconnected edge computing devices for the goal of maximizing 

the number of accommodated tasks with the consideration of the priorities of tasks. (2) 

How to efficiently arrange data routing in the edge computing network to transmit the data 

of the accommodated tasks from their access edge computing devices to their assigned 

execution edge computing devices. 

In Chapter 3, we presented our approach to distributing tasks within the edge 

computing network. The problem was formulated as a joint optimization of task 

distribution and data routing. The problem is originally formulated to a mixed integer non-

linear program (MINLP), which is NP-hard. We first linearized the MINLP with the 

requirement that all accommodated tasks are completed exactly on the deadline. Then we 

reduced the problem size by removing unfeasible variables using the security requirements 

of tasks. At last, we applied our proposed TDDR algorithm to sequentially relax, round and 



77 
 

validate the solutions of variables until we get the final task distribution and data routing 

solution. In Chapter 4, we conducted three sets of simulations on our approach and four 

other comparison approaches. The four comparison approaches are local execution 

approach, random distribution approach, and two greedy-based distribution approaches. 

The three different sets of simulations were designed to investigate different factors on the 

performance of our approach. They are simulations with varying number of tasks, 

simulations with varying data size of tasks, and simulations with varying connectivity of 

networks. The simulation results showed that our approach can greatly improve the 

performance while utilizing less network bandwidth resources compared to the four 

comparison approaches. The factors being examined are the workload of tasks, the data 

size of tasks and the connectivity of edge computing networks. 

 

5.2 Future Research Directions 

There are two future research directions, which are (1) exploring other optimization 

objectives, (2) including dependencies among tasks. 

In this dissertation research, the optimization objective is to maximize the number 

of tasks that can be accommodated in the edge computing network with the consideration 

of the priorities of tasks. Other different objectives of optimization can be explored. For 

example, minimizing average/shortest/longest tasks’ completion time, minimizing energy 

consumption of IoT devices/edge computing devices, and minimizing the operational cost 

of edge computing networks, etc. The priorities are included in our objective function as 

weighting factors. Another way to incorporate the priorities of tasks is through the 
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consideration of utility of the edge computing network [78] [79] [80] [81]. The utility here 

defines the revenue for the edge computing network to provide services to IoT applications. 

For example, the utility can be defined as the price paid by each task owner to have its 

request instantiated and executed by the edge computing network. In the view of the edge 

computing network, the priority of each task can be represented by the utility that the task 

provides to the edge computing network. Hence, for the objective function, it can be 

established with the consideration of utility, for example, maximizing the utility of the edge 

computing network. In addition, more comprehensive utility functions can be considered. 

For example, the utility of the edge computing network will not only consider the income 

from tasks but also the payment for using network resources. As the income is related to 

priority and the payment related to task workload, this comprehensive utility function will 

consider both priorities and workload of tasks. 

Most IoT tasks are not related as there are naturally from different IoT devices and 

IoT applications, hence, in this dissertation research, we have one assumption that the tasks 

in our approach are not dependent with each other, which is practical. As IoT applications 

grow more and more complex, some IoT application may involve the collaboration of 

multiple IoT devices, which brings the dependencies between tasks from multiple IoT 

devices. For example, the virtual medical devices [30] connect multiple medical devices 

and run multiple clinic algorithms. Hence, for these kinds of IoT tasks, the preprocessing 

steps should be revised to represent the constraints of such a dependency. The data flow 

between tasks should also be considered when modeling the network bandwidth 

provisioning.  
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