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ABSTRACT

Much evidence has shown that first language (L1) plays an important role in the

formation of L2 phonological system during second language (L2) learning process.

This combines with the fact that different L1s have distinct phonological patterns to

indicate the diverse L2 speech learning outcomes for speakers from different L1 back-

grounds. This dissertation hypothesizes that phonological distances between accented

speech and speakers’ L1 speech are also correlated with perceived accentedness, and

the correlations are negative for some phonological properties. Moreover, contrastive

phonological distinctions between L1s and L2 will manifest themselves in the accented

speech produced by speaker from these L1s. To test the hypotheses, this study comes

up with a computational model to analyze the accented speech properties in both

segmental (short-term speech measurements on short-segment or phoneme level) and

suprasegmental (long-term speech measurements on word, long-segment, or sentence

level) feature space. The benefit of using a computational model is that it enables

quantitative analysis of L1’s effect on accent in terms of different phonological prop-

erties. The core parts of this computational model are feature extraction schemes

to extract pronunciation and prosody representation of accented speech based on ex-

isting techniques in speech processing field. Correlation analysis on both segmental

and suprasegmental feature space is conducted to look into the relationship between

acoustic measurements related to L1s and perceived accentedness across several L1s.

Multiple regression analysis is employed to investigate how the L1’s effect impacts

the perception of foreign accent, and how accented speech produced by speakers from

different L1s behaves distinctly on segmental and suprasegmental feature spaces. Re-

sults unveil the potential application of the methodology in this study to provide

quantitative analysis of accented speech, and extend current studies in L2 speech

learning theory to large scale. Practically, this study further shows that the compu-
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tational model proposed in this study can benefit automatic accentedness evaluation

system by adding features related to speakers’ L1s.
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Chapter 1

INTRODUCTION

1.1 Problem Statement

Languages are different. Linguistic typology studies classification of world lan-

guages depending on their structural and functional features. Because of the diversity

of different languages, many criteria can be used to classify languages into different

groups (Dryer and Haspelmath, 2013). For example, according to subject-verb-object

positioning, languages can be grouped into different sets: SOV (such as French, Ger-

man, Spanish and Chinese), SVO (such as English and Chinese) and so on, where the

abbreviation represents the order of subject(S), verb(V) and object(O). Phonologi-

cally, patterns in the structure and distributions of sound systems are investigated

by linguistics to classify world languages based on phonological properties. As sum-

marized by Dryer and Haspelmath (2013), properties including vowel and consonant

inventories, consonant-vowel ratio, syllable structures, rhythm types, etc. are used to

represent the difference in phonology across different languages. Some of those prop-

erties mainly measure segmental information while others measure suprasegmental

information of one language’s phonological system. Those phonological properties

result in diverse acoustic characteristics when we listen to speech recordings in d-

ifferent languages. One important outcome of the different phonological properties

across languages is that when a speaker speaks in a language other than his mother

tongue, the speech he produced will be perceived to have accent, which comes from

the interplay of the phonological difference of the first language (L1, the speaker’s

mother tongue) and second language(L2, the language the speaker is speaking). The
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study in this dissertation will focus on accented speech.

Accented speech is the result of L2 speech being produced by a sensorimotor con-

trol system that has overlearned L1 phonological patterns, including both phoneme

sound contrasts and prosodic composition. Huge amount of studies have been explor-

ing how a leaner, who is not a L2 native speaker, acquires the phonological patterns of

the L2, and where the accent comes from. Among these studies, the most influential

theory is the Speech Learning Model (SLM) (Flege, 1995). The SLM hypothesizes

that there exists a shared phonological space for both L1 and L2 speech sounds, and

uses “equivalence classification” to explain why a learner might not create a new pho-

netic category for an L2 sound perceived as similar to an L1 sound. Basically, SLM

emphasizes the influence of pre-established L1 phonetic categories on the perception

of L2 sounds, how it changes over time and also the formation of phonetic categories

which is used to produce L2 speech sounds for L2 learners. The SLM mainly focus on

the phonetic aspect of a phonological system. Later studies reported that for speech

prosody acquisition, the influence from the speaker’s L1 also plays a big role in the

formation of phonological patterns to produce L2 speech prosody.

Accentedness is usually used to measure the perceived difference between accented

speech produced by L2 learners and speech produced by native speakers. There are

multiple ways to define accentedness. A more general definition in literature was pro-

posed by McCullough (2013a): accentedness refers to perception of deviations from

a pronunciation norm that a listener attributes to the talker not speaking the target

language natively. This definition focuses on the difference of foreign accented speech

compared to speech produced by native speakers. In second language learning and

education practice, accentedness evaluation is very important to designing specific

learning targets for different learners based on their level of accentedness, monitor-

ing the learning progress and qualifying or quantifying the learning outcomes. One
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common experimental design in the study of foreign accent perception is to have

participants rate the degree of accentedness in various auditory stimuli, and then to

relate these ratings to acoustic properties measured in the stimuli. Much research has

been done to study the relationship between perceived foreign accents and acoustic

characteristics of accented speech, such as voice onset time (VOT) (Major, 1987a),

word duration, stressed or unstressed vowel duration ratio (Shah, 2002), formants

movement deviation from L2 acoustic values (Munro, 1993), etc. In addition to the

segmental acoustic properties suggested by the findings of previous studies, some s-

tudies focus on suprasegmental information, including rhythmic and global temporal

properties, of foreign accented speech (Munro et al., 2010; Kang, 2010). Both segmen-

tal and suprasegmental acoustic measurements have been shown to be correlated with

perceived accentedness. Instead of using human-developed acoustic measurements,

a lot of computational models have proposed to automatically extract acoustic mea-

surements and related it to perceived foreign accent. A computational model enables

analysis on larger scale with more speakers and provide quantitative analysis of how

accentedness can be explained by acoustic measurements. Great success has been re-

ported to use such computational models in automatic accentedness evaluation, and

apply them to computer based L2 speech learning and education (Franco et al., 1997;

Sangwan and Hansen, 2012; William et al., 2013; Chen and Jang, 2015; Tao et al.,

2016; Qian et al., 2017).

Though it is clear that accentedness correlates strongly with how far the phono-

logical patterns of produced accented speech are from patterns of native L2 speech,

what has not been studied is whether the distance to the phonological patterns of the

speaker’s mother tongue matters. According to SLM, phonetic systems of L2 learn-

ers respond to L2 sounds by adding new phonetic categories, or modifying existing

L1 phonetic categories (Flege, 1995). SLM claims that new phonetic categories may

3



be formed for an L2 sound given sufficient dissimilarity from the closest L1 sound;

equivalence classification may block the category formation for an L2 sound, thus the

original L1 phonetic category will be used to process both L1 and L2 sound, resulting

in similar L2 production with L1 sound. Since SLM mainly focuses on the phonetic

system, later studies also investigate the acquisition of L2 rhythm patterns (Rasier

and Hiligsmann, 2007; Ordin and Polyanskaya, 2015). The findings in these studies

reveal that while the general trend is moving closer to the L2 prosodic patterns as the

foreign accent is milder, there still exist effects of L1 rhythm patterns for speakers

from different L1 groups. However, existing studies only prove the L1’s effect exists

in both segmental and suprasegmental properties acquisition, there is no quantitative

analysis of the L1’s effect. Based on these observations, we may ask:

1. How does the distance from the functional phonological system for accented

speech to the actual L1 phonological system relate to the perceived accented-

ness? If the distance is quantified with acoustic measurements extracted from

acoustic signal, are there specific dimensions negatively correlated with the per-

ceived accentedness? Will these L1-related acoustic measurements benefit the

acoustic modeling of accentedness perception?

2. Different L1s are at distinctive relative positions with L2 in subspaces of the

phonological system, mainly including phonetic space and rhythmic space. For

example, German and English are both stress-timed languages, and thus are

closer to each other in prosodic space compared to French; Mandarin is syllable-

timed language and has different phonetic inventory compared to English, so

it is far from English in both subspaces. Will these contrastive phonological

properties be transferred to the accented speech during L2 acquisition? Fur-

thermore, will those measurements on phonetic space contribute more to the
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perception of accentedness compared to measurements on prosodic space for

German speakers speaking English?

To answer these questions, the following hypotheses will be tested in this disser-

tation:

1. The phonological distance between accented speech and speakers’ L1s are also

related to perceived accentedness; specifically, L1 related acoustic measurements

will have negative correlation with perceived accentedness, considering the neg-

ative influence of L1 related factors on L2 acquisition. If these measurements

are added to the feature sets for automatic accentedness evaluation, the perfor-

mance will be improved.

2. Various L1s are relatively different in terms of the distance to L2 in both pho-

netic subspace and prosodic subspace. Based on this observation, this study

hypothesizes that phonological properties in different subspaces (phonetic or

prosodic) of accented speech produced by speakers from different L1 back-

grounds will have distinct contribution to foreign accent perception. For ex-

ample, German is close to English in prosodic subspace but relatively far from

English in phonetic subspace. With the hypothesis, it can be predicted that

prosodic features of accented speech produced by German speakers is less cor-

related with accentedness score compared to phonetic features.

The above are the research hypotheses this dissertation will test. Specifically,

the current study will explore the relationship between acoustic measurements of

phonological system with perceived accentedness using a computational model that

extracts representative features of both phonetic and prosodic subspaces. The benefit

of a computational model lies in its ability to do quantitative analysis on the L1’s
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effect on both phonation and prosody acquisition during L2 speech learning. Given

that the deviation of accented speech from the target L2 phonological patterns highly

correlates with the accentedness score, this study investigates whether the deviation

of accented speech from the original L1 phonological patterns has negative correla-

tion with the accentedness score (i.e. the higher the deviation, the milder the accent);

whether integrating L1-related acoustic measurements can improve the modeling ca-

pability of accentedness perception, and whether contrastive patterns between L1s

and target L2 can be transferred to accented speech.

1.2 Significance of the study

Billions of people are learning a second (or higher order) language nowadays. The

number of people living in a second language environment is also increasing with eco-

nomic globalization. A good understanding of the process of second language learning

and accented speech perception is of great importance to successful speech commu-

nication in terms of both education, social science and communication science. The

current study investigates the perception of accented speech. It aims to achieve better

understanding of how the L1s of second language learners affect native L2 speakers’

perception of their accentedness phonologically, and how the phonetic system and

prosodic patterns contribute to the perception respectively. With a interdisciplinary

research methodology combining speech learning and perception theories with speech

processing technologies, the current study will have impact on both the theoretic

development of second language learning and accented speech perception, and the

technologies of Computer Assisted Pronunciation Training (CAPT) and Computer

Aided Language Learning (CALL).
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1.3 Outline of the dissertation

The dissertation is divided into 8 chapters. Chapter 2 introduces the general back-

ground of the current study by reviewing several bodies of research on second language

learning and accent speech perception theories and practices: including differential

analysis of world languages, second language learning theories, acoustic characteris-

tics of accented speech and computational model of accentedness perception. The

motivation and predictions are then presented based on the literature review. Chap-

ter 3 describes the methodology employed in this study including data collection,

acoustic analysis and experimental design. Chapter 4 investigates the influence of

L1’s phonetic system on the accented speech perception. Chapter 5 investigates the

influence of L1’s prosodic patterns on the accented speech perception, and provide a

general discussion on the combined results from this chapter and chapter 4. Chapter

6 combines information of L1’s phonetic and prosodic patterns to build a compu-

tational model for better automatic accentedness evaluation. Chapter 7 provides a

general discussion of the experimental results and tries to extend the current theories

on L2 speech learning and accented speech perception. It also introduced the possible

implications to both theoretic and practical studies on accented speech. Chapter 8

concludes the current study.
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Chapter 2

LITERATURE REVIEW

This chapter will review the literatures related to the research questions in this

dissertation. Section 2.1 introduces studies on language typology with a focus on dif-

ferential analysis of phonological patterns among different languages. The phonologi-

cal difference between two languages results in foreign accent when learning a second

language. Section 2.2 reviews the L2 speech learning theories on both segmental and

suprasegmental phonological properties with a focus on the reveal of L1’s effect on

the formation of foreign accent, which motivates the research questions in this dis-

sertation. Section 2.3 reviews existing studies investigating the relationship between

acoustic measurements and perceived accentedness, and studies using computational

models to automatically evaluate the accentedness of accented speech. The studies

in this section inspires the methodology used in this dissertation. Finally, detailed

motivations and expectations of the current study are introduced.

2.1 Differential Analysis of Languages

Language is a system that consists of the development, acquisition, maintenance

and use of complex systems of communication, particularly the human ability to

do so; and a language is any specific example of such a system. Estimates of the

number of human languages in the world varies between 5,000 and 7,000. Languages

as communication tools are different in many ways. Recall that when you first learn

a second language (L2), the alphabet or words in that language looks so strange,

especially for those languages using different sets of characters (for example Chinese

and English). You may regard those words as a sequence of graphs without any

8



meanings. Also, when you first listen to a sentence in an L2 or two people talking

in an L2, the sound waves are just noise to you. However, you are still aware that

those sentences (either in text or sound format) are conveying specific information in

a different way from your own language. How are languages different; where do those

differences come from?

Language (or linguistic) typology is the science that studies “similarities and dif-

ferences among languages that do not stem from shared genetic relationship, language

contact, or shared environmental conditions” (Moravcsik, 2012b). The goal of lan-

guage typology is to describe and explain the common properties and structural di-

versity of the world’s languages and how those properties generalize in cross-linguistic

case (Bickel, 2001). This discipline includes several subfields, depending on the ways

languages are grouped into same classes. An introductory categorization is provided

by Moravcsik (2012a):

1. Lexical typology: deals with characteristic ways in which language packages

semantic material into words. For example, English uses different words for

“foot”/“leg” and “finger”/“toe” while languages like Japanese and Russian use

one word to represent “foot”/“leg” (“ashi” in Japanese and “noga” in Russian)

and “finger”/“toe” (“yubi” in Japanese and “palec” in Russian).

2. Syntactic typology: deals with characteristic ways in which language packages

words into sentences syntactically. For example, according to subject-verb-

object positioning, languages can be grouped into different sets: SOV (such as

French, German, Spanish and Chinese), SVO (such as English and Chinese)

and so on, where the abbreviation represents the order of subject(S), verb(V)

and object(O).

3. Morphological typology: deals with characteristics ways in which language form-
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s words by combining morphemes. For example, morphological typology cat-

egorize languages into analytic languages and synthetic languages. Analytic

languages, including Chinese and Vietnamese, contain very little inflection (in-

flection refers to “the modification of a word to express different grammati-

cal categories such as tense, case, voice, aspect, person, number, gender, and

mood”), instead relying on features like word order and auxiliary words to

convey meaning while synthetic languages, including most Indo-European lan-

guages, form words by affixing a given number of dependent morphemes to a

root morpheme and word order is less important for synthetic languages.

4. Phonological typology: dealing with characteristics ways in which sounds are

distributed across languages and phonological phenomena such as phoneme in-

ventories, syllable structure, phonological alternations, stress/tone/intonation,

prosodic morphology and so on. For example, in terms of consonant-vowel

ratio, English is relatively low and Russian is relatively high. In terms of sylla-

ble structure, English is relatively complex while Mandarin is relatively simple

(Dryer and Haspelmath, 2013).

As introduced in Chapter 1, the current study focuses on phonological patterns of

L1 and L2, and how they affect the phonological patterns of accented speech. This sec-

tion introduces the phonological difference among different languages and will ignore

those non-phonological differences. There are several data sources for phonological

typology: UCLA Phonological Segment Inventory Database (Maddieson, 1992), Word

Atlas of Language Structures (WALS) (Dryer and Haspelmath, 2013), URIEL Typo-

logical Database (Littel et al., 2016), PHOIBLE (Moran et al., 2014), to name a few.

Different databases contain different data sources and language samples. Here, the

features provided by WALS are used to illustrate the phonological difference among
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several languages for the reason that WALS provides simple ways to visualize and

download the data.

Figure 2.1: Consonant-vowel ratios across sampled languages by WALS. Different
colors represent different levels of consonant-vowel ratios: blue for low level, light blue
for moderately low level, white for average level, magenta for moderately high level
and red for high level.

First, in figure 2.1, the consonant-vowel ratio illustrates how phonological patterns

are different across world’s languages. Higher ratio means there are more consonants

and fewer vowels in that language, while lower ratio means the opposite. Take some

commonly used languages as examples: English, German and French all have low

ratios; Spanish, Persian and Mandarin have average ratios; Russian has a high ratio.

Next, it is clear to do differential analysis of different languages with phonological

patterns, and to illustrate the distances among different languages on phonological

feature space. To achieve this, several phonological features pre-summarized by WAL-

S are selected. Based on whether their definitions are segmental or suprasegmental,

those features are categorized into phonetic features and rhythmic features. Two

1Although Consonant-Vowel Ratio looks like a phonetic feature because it is the ratio of the

number of consonants and vowels, most studies regard it as a rhythmic feature (Gil, 1986).
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Table 2.1: 19 language phonological features summarized by WALS. The last column
indicates whether the feature is phonetic or rhythmic feature.

Feature name Phonetic or Rhythmic

Consonant Inventories Phonetic

Vowel Quality Inventories Phonetic

Consonant-Vowel Ratio Rhythmic1

Voicing in Plosives and Fricatives Phonetic

Voicing and Gaps in Plosive Systems Phonetic

Uvular Consonants Phonetic

Glottalized Consonants Phonetic

Lateral Consonants Phonetic

The Velar Nasal Phonetic

Vowel Nasalization Phonetic

Front Rounded Vowels Phonetic

Syllable Structure Rhythmic

Tone Rhythmic

Fixed Stress Locations Rhythmic

Weight-Sensitive Stress Rhythmic

Weight Factors in Weight-Sensitive Stress System Rhythmic

Rhythm Types Rhythmic

Absence of Common Consonants Phonetic

Presence of Uncommon Consonants Phonetic
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groups of features represent language phonological patterns on phonetic space and

rhythm space respectively. Table 2.1 includes those features’ names and indicates

whether each feature is phonetic or rhythmic 2 . WALS assigns feature values to

languages based on the structural properties of languages that describe one aspect

of cross-linguistic diversity. For example, the feature “Rhythm Types” can take five

values: Trochaic (left-hand syllable in the foot is strong), Iambic (right-hand syllable

in the foot is strong), Dual (system has both trochaic and iambic feet), Undetermined

(no clear foot type) and Absent (no rhythmic stress). Those feature values are stored

as a number, usually starting from 1, to represent each category they belong to. To

visualize those languages on a 2-dimensional space, the numeric values of each feature

are employed. If one feature is not applicable to a language, 0 is used instead. As

a result, each language will have a 19-dimensional feature vector representing values

of those features in table 2.1. Each feature vector is also split into phonetic and

rhythmic feature vectors. Since each feature actually indicates a category, to make

sure the distances among different categories are the same, one-hot encoding converts

the integer feature values to a vector consisting of 0s and 1s. The length of the en-

coded vector equals to the number of categories that feature can be. For example,

the “Rhythm Types” feature has 5 categories. Then, a number of 3 will be encoded

as “00010”. Multidimensional scaling (MDS), which seeks a low-dimensional repre-

sentation of those feature vectors in which the distances respect well the distances

in the original high-dimensional space, is employed to illustrate the 2-dimensional

representation of each language in all phonological feature space (as shown in figure

2.2), phonetic feature only space (as shown in figure 2.3) and rhythmic feature only

space (as shown in 2.4) with the encoded language features.

2Downloadable from https://cdstar.shh.mpg.de/bitstreams/EAEA0-7269-77E5-3E10-0/
wals_language.csv.zip
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Figure 2.2: 2D visualization of all features
with MDS.

Figure 2.3: 2D visualization of phonetic only
features with MDS.

Figure 2.4: 2D visualization of rhythmic only
features with MDS.
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Table 2.2: Normalized pairwise distance on all features space.
German Spanish French Russian Hindi English Mandarin

German 0 0.92 0.33 0.67 0.67 0.33 0.83

Spanish 0 0.83 0.67 0.75 0.67 0.50

French 0 0.67 0.58 0.58 1.00

Russian 0 0.42 0.58 0.75

Hindi 0 0.50 0.92

English 0 0.83

Mandarin 0

Along with the 2-dimensional visualization, normalized pair-wise distance matrices

are also shown in table 2.2 for all features, table 2.3 for phonetic features and table

2.4 for rhythmic features. The pairwise distance between two languages is calculated

as follows: count the number of different values for corresponding dimensions of the

feature vectors of two languages without one-hot encoding. This will result in a N×N

matrix where N is the number of languages; normalize the matrix by the maximum

value in the matrix. The feature visualization and normalized pair-wise distance

matrices suggest that English, German and French are relatively close to each other,

while other languages are relatively far from those three languages. Since the scale

is different for phonetic and rhythmic feature spaces, it is impossible to compare if

a language is closer to English on phonetic feature space or rhythmic feature space.

However, within phonetic feature space, it indicates the order by distance to English

is German < Spanish < French ≈ Mandarin; within rhythmic feature space, the

order by distance to English is German < French < Spanish < Mandarin (those

four languages are used as example). One important question this study wants to

investigate is whether those L1 to L2 distance patterns will manifest in the accented

speech, and how the relative importance of segmental features and suprasegmental

features to foreign accent perception relates to the distance to L2 on phonetic and

rhythmic spaces.

The previous features are summarized by linguistics on a high systematic lev-
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Table 2.3: Normalized pairwise distance on phonetic features only space.
German Spanish French Russian Hindi English Mandarin

German 0 1.00 0.29 0.71 0.86 0.43 0.71

Spanish 0 1.00 0.57 0.71 0.57 0.43

French 0 0.71 0.57 0.71 1.00

Russian 0 0.29 0.57 0.71

Hindi 0 0.71 0.86

English 0 0.71

Mandarin 0

Table 2.4: Normalized pairwise distance on rhythmic features only space.
German Spanish French Russian Hindi English Mandarin

German 0 0.80 0.40 0.60 0.40 0.20 1.00

Spanish 0 0.60 0.80 0.80 0.80 0.60

French 0 0.60 0.60 0.40 1.00

Russian 0 0.60 0.60 0.80

Hindi 0 0.20 1.00

English 0 1.00

Mandarin 0

el. How do those features manifest themselves in the acoustic recordings of different

languages? How do the languages’ differences manifest themselves in the key parame-

ters of acoustic speech signal, including intensity, pitch, formants, envelop and so on?

Several studies have investigated this. An early study (Parmenter and Blanc, 1933)

compared the acoustic characteristics between English and French reading speech,

and showed that pitch is more important as an element of accent than intensity for

French speech, while intensity is more important for English speech. Also, French

speech has more pitch variation than English. Studies by Jongman et al. (1989);

Bradlow (1995); Al-Tamimi and Ferragne (2005) investigated the relationship be-

tween vowel inventories and vowel space (defined as the two-dimensional area bound-

ed by lines connecting first and second formant frequency coordinates of vowels (Fant,

1973)), and concluded that vowel space depends on the size of vowel inventory: the

larger the inventory, the bigger the acoustic space. The work by Wagner and Braun

(2003) showed that predominant factors in voice quality are different across different
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Figure 2.5: Distribution of languages over the (%V , ∆C) plane. EN: English, PO:
Polish, DU: Dutch, SP: Spanish, IT: Italian, FR: French, CA: Catalan, JA: Japanese.
Taken from (Ramus et al., 1999)

languages. In terms of speech rhythm, an influential study by Ramus et al. (1999)

investigated the representation of speech rhythm in acoustic speech signal. Several

acoustic measurements for speech rhythm are proposed to discriminate the rhythm

classes of different languages. Those measurements include the percentage of vocalic

segment in an utterance (%V ), the standard deviation of consonant intervals (∆C)

and the standard deviation of vowel intervals (∆V ). Figure 2.5 is taken from (Ra-

mus et al., 1999) to show how %V and ∆C can discriminate languages. Based on

this study, other measurements like variational coefficient of consonant/vowel inter-

vals (Dellwo, 2006) and pairwise variability index (PVI) of consonant/vowel intervals

(Grabe and Low, 2002) are also proposed. Studies that correlate those linguistical-

ly summarized phonological language features with acoustic measurements lay the

foundation of the methodology used in this study.
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2.2 L2 speech learning theories

In literature, there is a huge body of research on L1 acquisition: how a child ac-

quires a complicated linguistic system including different levels of information without

explicit guidance. As summarized by Chang (2010), those studies both investigated

the effect of an innately endowed Universal Grammar, and the effect of the timely

input on L1 acquisition. A similar research track has been borrowed to study the L2

learning theories: investigating both the influence of already built linguistic system

(L1) and some universal effects that are independent of the already built linguistic

system. It has been shown that while moving toward to the target L2 linguistic sys-

tem, L2 learners usually show trackable difference from the implementation of native

L2 speakers, which is attributed to the influence of the learner’s L1. In terms of

phonology, this is where the perceived foreign accent comes from. Considering L1

interference mechanism, i.e., the phonological knowledge transfer from L1 to L2, are

focused by the majority of the literature and is more related to the current study,

in this chapter research body on L2 speech learning will be reviewed. Specifically,

some well-established L2 speech learning theories focusing on the phonetic system

acquisition will be introduced first. Then, studies on speech prosody acquisition in

L2 speech learning will be covered. The last subsection will focus on the role of L1 in

L2 speech learning, and elaborate more on the L1’s interference in L2 speech learning.

2.2.1 Phonetic acquisition

There have been studies trying to explain the origin of the foreign accent in pro-

ducing L2 phonemes. The critical period hypothesis from L1 acquisition was extended

to L2 speech learning, positing that there is a critical age or period after which L2

speech production could not be native-like because of the neurological maturation
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(Long, 1990). Other studies assume the failure to acquire native-like production of

L2 is caused by factors like inaccurate perception of L2 sounds, inadequate phonetic

input, insufficient motivation, psychological reasons and incorrect L2 speech learning

habit because of incorrect instructions (Flege, 1988). Although all these observations

partly show evidence of the origin of the foreign accent, they fail to explain the L2

speech learning process in a systematic way, and how L2 learning is different from

L1 acquisition. Nonetheless, there is consensus achieved by the community that the

earlier one starts to learn an L2, the better 3 .

Developed by Flege (1995), the speech learning model (SLM) is the most in-

fluential study in L2 speech learning literature. Different from the critical period

hypothesis, SLM assumes that the phonetic systems used in the production and per-

ception of vowels and consonants is active during the whole life span. It functions

like a dynamic system that can encode all phonetic input. As mentioned in (Flege,

1995), “the phonetic systems reorganize in response to sounds encountered in an L2

through the addition of new phonetic categories, or through the modification of old

ones”. L1 and L2 phonetic categories exist in a shared system, and there is motiva-

tion to keep them distinct from each other. This indicates that the formation of the

phonetic system of accented speech is based on the L2 learner’s already-established

L1 phonetic system. To explain this age-related L2 speech learning process, SLM has

4 postulates and 6 hypotheses. The 4 postulates (Flege, 1995) are:

1. The mechanisms and processes used in learning the L1 sound system, including

category formation, remain intact over the life span, and can be applied to L2

speech learning.

2. Language-specific aspects of speech sounds are specified in long-term memory

3There are still some outliers found by researchers, for example it was reported that both early
L2 learners still failed to achieve native-like production while late L2 learners did (Flege, 1995)
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representations called phonetic categories.

3. Phonetic categories established in childhood for L1 sounds evolve over the life

span to reflect the properties of all L1 or L2 phones identified as a realization

of each category.

4. Bilinguals strive to maintain contrast between L1 and L2 phonetic categories,

which exist in a common phonological space.

The 6 hypotheses are based on those 4 postulates and on evidence from data

analysis in previous studies on speech produced by L2 learners. Next, each hypothesis

together with evidence and predicts will be introduced (most of them can be found

in the review paper by Flege (1995)).

Hypothesis 1: sounds in the L1 and L2 are related perceptually to one anoth-

er at a position-sensitive allophonic level, rater than at a more abstract phonemic

level. L2 learners will perceive positional allophones in the L2 to the most similar

positionally defined allophone in the L1. Studies have shown that it is easier for L2

learners to produce and perceive certain allophones of English phonemes than others.

Native Japanese speakers are taken as an example. It is hard for native Japanese

speakers producing and perceiving English /l/ and /r/, because in Japanese, there

is only one liquid while English has two. Thus, the contrast between /l/ and /r/ is

difficult to attain. However, it has been found that the production accuracy of these

two liquids depends on phonological environments. In (Strange et al., 1992), the

authors showed that native Japanese learners of English characteristically perceive

and produce English liquids more accurately in word-final than word-initial position.

They attributed this to that the acoustic difference between English /l/and /r/ is

more robust in final than initial position (Sheldon and Strange, 1982). This indicates

the position-sensitive relationship between L1 and L2 sounds in allpphonic level.
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Hypothesis 2: a new phonetic category can be established for an L2 sound

that differs phonetically from the closest L1 sound if bilinguals discern at least some

of the phonetic differences between the L1 and L2 sounds. The likelihood of the

formation of a new phonetic category increases with the dissimilarity between an

L2 sound and the closet L1 sound. Several studies have shown that when a novel

phoneme (not exists in L1 or very different from L1 phonemes) is encountered, L2

learners can usually produce it accurately. In (Flege, 1987), the authors found that

native English speakers can produce the French vowel /y/, a vowel that does not

exist in English, relatively accurately compared to native French speakers. Flege

(1997) further showed that native Dutch speakers can produce the English vowel /æ/

accurately, and similar results were found in another study on German speakers (Flege

and Bohn, 1997). Those findings suggest that if the phonetic differences between the

L2 sound to the closet L1 sound are obvious, the production of the L2 sound can be

accurate because a new phonetic category is employed to produce the sound.

Hypothesis 3: The likelihood of phonetic differences between L1 and L2 sounds,

and between L2 sounds that are noncontrastive in the L1, being discerned decreases

as the age of learning increases. For example, the study by Butcher (1978) showed

that the perceived distance between /ae/ in English and /E/ in German is greater for

German children than adults. Weiher (1975) also showed that German adults, but

not children, have difficulty discriminating /ae/ in English and /E/ in German. Based

on this hypothesis, it can be predicted that, with the increasing of the age of learning,

more sounds in L2 will be inaccurately produced. Thus, a linear relationship between

perceived accentedness and age of learning is shown in figure 2.6, in contrast to the

sharp discontinuity in the L2 pronunciation ability suggested by the critical period

hypothesis (Long, 1990).

Hypothesis 4: Category formation for an L2 sound may be blocked by the
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Figure 2.6: The mean foreign accent ratings (Y-axis) of English sentences spoken
by native Korean immigrants to US. X-axis represents the age of arrival. Taken from
(Flege et al., 1999).

mechanism of equivalence classification. When the block occurs, speakers tend to

use a single phonetic category to process perceptually similar L1 and L2 sounds,

resulting in inaccurate production of L2 sounds. The study by Flege (1987) showed

that French learners who are native American English speakers produce the French

phoneme /u/ with second formant (F2) values higher than native French speakers,

which is influenced by the high-F2 /u/ in English. Chang et al. (2008) also reported

that native American English speakers also produce Mandarin phoneme /u/ with
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higher F2. Flege (1987) further showed that native English speakers produce French

voiceless stops with too long voice onset times (VOTs), under influence from the

long-lag VOT of English voiceless stops.

Hypothesis 5: The phonetic category established for L2 sounds by a bilingual

may differ from a monolingual’s if: 1) the bilingual’s category deviates from an L2

category to maintain phonetic contrast between categories in a common L1-L2 phono-

logical space; or 2) the bilingual’s representation is based on different features, or

feature weights, than a monolingual’s. The evidence can be found in the study by

Munro (1993), where the authors showed that even experienced L2 English speakers,

who are native Arabic speakers, produce vowels that are considered to have accent.

According to the study, the accentedness was due to non-native production of du-

ration differences between tense and lax English vowels. They suggest that in this

case, the L2 tense and lax categories might have been interpreted as long and short

categories, which exist in Arabic. The evidence of the second point is shown in the

study by Munro et al. (1996). This study showed that English learners with Italian as

the native language can not produce accurate phoneme /Ä/, although those learners

started to speak English at ten years of age and were rated to have a very mild foreign

accent. The authors considered the reason to be related to the retroflex feature that

is used to discriminate from other English vowels, but the feature does not exist in

Italian.

Hypothesis 6: The production of a sound eventually corresponds to the prop-

erties represented in its phonetic category representation. This hypothesis can be

regarded as the result of hypothesis 2, 4 and 5, stating that the L2 sound will eventu-

ally be produced as specified in phonetic category representation. If the presentation

matches the category for native L2 speakers, then the L2 sound can be produced

accurately; if new phonetic category for L2 sounds is not formed or different from
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monolingual’s, there will be inaccurate pronunciation.

To summarize, SLM claims that the age of learning has significant influence on sec-

ond language learning: this can be seen from those hypotheses that the age of learning

directly influences the formation of phonetic categories to produce L2 sounds. Also,

pre-established L1 phonetic categories will affect the way L2 sounds are perceived,

and thus will also influence the formation of phonetic categories for L2 sounds. If

sounds in L2 are too close to sounds in L1, then equivalence classification will use

the same phonetic category to produce the similar sounds, resulting in perceivable

inaccurate pronunciation. Sometimes, phonetic categories built for novel L2 sounds

can still be different from native’s due to the dissimilation occurs between L1 and

L2 phonetic categories to maintain phonetic contrast between categories in a com-

mon L1-L2 phonological space. This study mainly reviews the SLM model because

it is highly related with the current study in a way that it directly explains how L2

learners develop inaccurate pronunciation of L2 sounds. Another well-known model,

the Perception Assimilation Model (PAM) (Best, 1995; Best and Tyler, 2007) mainly

deals with how a listener perceptually assimilates contrastive information between his

L1 and a new language he does not know or just starts learning. However, this study

mainly deals with speakers who are not beginners of L2 speech learning. Thus, the

literature on PAM is not reviewed here.

SLM mainly deals with phonetic acquisition, i.e. the segmental inaccuracy of

L2 production. However, several studies have shown that inaccurate suprasegmental

productions can also result in perceivable foreign accent (Rognoni and Busà, 2013;

Winters and O’Brien, 2013). In the next subsection, speech prosody acquisition in

the literature will be reviewed to reveal the mechanism L2 learners use to learn the

L2 speech prosody.
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2.2.2 Prosody acquisition

In the previous subsection, fundamental studies on L2 speech learning are re-

viewed. Those studies mainly focus on the phonetic part of the whole phonological

system. Although the study by Munro (1993) investigated the durations of tense and

lax English vowels produced by native Arabic speakers and durations of vowels are

related to speech prosody (Ramus et al., 1999), most analysis in these studies only

dealt with pronunciation of specific phonemes; some even used isolated phonemes or

words (Flege, 1987). Whether the theories proposed by these studies can be applied

to prosodic inaccuracy of non-native L2 speech is still questionable (Rasier and Hiligs-

mann, 2007). On the other hand, a review survey by Gut (2009) showed that for all

studies on L2 speech learning from 1969 to 2008, L2 intonation was only investigated

in nine studies and L2 speech rhythm was only investigated in four studies (Mennen,

2004; Altmann, 2006; Rasier and Hiligsmann, 2007; Lin and Wang, 2008). This indi-

cates that the speech prosody in L2 speech is quite underexplored. This subsection

will review literatures on acquisition of speech prosody acquisition during L2 speech

learning.

The study by Mennen (2004) investigated how the non-native speakers of Greek

whose L1 is Dutch realize the timing of a phonologically identical rise: nonfinal or

prenuclear rises. This phonological property was realized differently by native Dutch

and native Greek speakers: 1) at a different time: the peak in the rise appeared earlier

in Dutch than in Greek. 2) The peak time in Dutch depends on the the phonological

length of the vowel of accented syllable while Greek did not. By analyzing the timing

patterns of the rise using five native Dutch speakers speaking Greek, the authors

concluded that there existed a bi-directional interference in the realization of the rising

accent: the L1 Dutch affected the realization in Greek and the L2 Greek also affected
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the realization in Dutch. The dissertation by Altmann (2006) studied the perception

and production of advanced learners of English with different L1 backgrounds (Arabic,

Chinese, French, Japanese, Korean, Spanish, Turkish) to investigate the effect of L1

stress properties on the L2 acquisition of primary word stress. The results showed

that native speakers of L1s with predictable stress found it difficult to locate the

stress in English although they were able to produce the correct stress patterns; native

speakers of L1s without word-level stress or predictable stress performed well in stress

perception but had difficulties in stress production. These results seem to contradict

the SLM: good perception of stress patterns does not mean good production. Rasier

and Hiligsmann (2007) reviewed the prosody acquisition of L1 learning and proposed a

general framework to study the prosody transfer from L1 to L2 in L2 speech learning.

The model was tested in a study of accent in L2 Dutch proposed by native French

speakers and L2 French produced by native Dutch speakers. Their results showed

that the difference between French and Dutch on accent placement influenced the

acquisition process of accentuation. The “Markedness” proposed in Eckman (1977)

is an important factor in predicting and explaining learning difficulties in L2 prosody

learning.

The previous studies mainly focus on stress and accent. The following introduced

studies in this paragraph investigate the rhythmic properties’ acquisition in terms of

duration and duration variability measurements, which have been shown to able to

discriminate among languages belonging to different rhythmic classes Ramus et al.

(1999); Grabe and Low (2002). Those measurements include:

1. ∆V : the standard deviation of vocalic intervals

2. ∆C: the standard deviation of consonantal intervals

3. %V : percentage of vocalic intervals in the sentence
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4. V arcoV : the standard deviation of vocalic intervals divided by the mean vocalic

interval duration and multiplied by 100

5. V arcoC: the standard deviation of consonantal intervals divided by the mean

consonantal interval duration and multiplied by 100

6. nPV I − V : the normalized PVI for vocalic intervals

7. rPV I − C: the raw PVI for consonantal intervals

One study (Stockmal et al., 2005) examined speech rhythm of the Latvian pro-

duced by native Russian learners. In their result, there was no clear increase in vocalic

variability between experienced and low-level learners, despite the fact that Latvian is

significantly less stress-timed than Russian. They concluded that even if the learner’s

L1 is stress-timed and has higher vocalic variability, at the early stage of acquisition

the accented speech can still match the L2 in terms of lower vocalic variability. They

also found that the consonantal duration variability increased significantly during L2

acquisition and attributed to the difficulties of consonants articulation. White and

Mattys (2007) used all the seven rhythmic measurements, showing that those mea-

surements were able to separate stress-timed English and Dutch and syllable-timed

Spanish and French. They also applied the measurement to quantifying the influence

of L1 on L2 rhythm acquisition when switching between stress-timed and syllable-

timed. In an experiment consisting of native Spanish subjective speaking English and

native English speakers speaking Spanish, it was found that the V arcoV , nPV I − V

and rPV I − C were in the intermediate stage during the transfer from L1 to L2,

indicating clearly the influence of L1 rhythm on l2. In the experiment consisting

of native Dutch subjective speaking English and native English speakers speaking

Dutch (both the two languages are stress-timed), it was found that there was no clear
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influence of L1. The authors believed that if L1 and L2 are already rhythmically

similar, the L2 learners tend to make little accommodation and use their L1 rhyth-

mic patterns. Lin and Wang (2008) examined the accented English speech produced

by native Mandarin speakers in terms of four measurements of speech rhythm: %V ,

∆C, rPV I − C and nPV I − V . With the reading and conversational recordings of

6 subjects, the authors showed that the value of %V of Mandarin accented English

is in the middle of the value of native English speakers (lower) and native Mandarin

speakers (higher). They explained that this indicated the L1 rhythm patterns had an

effect on L2 rhythm patterns in terms of %V . The average nPVI value was very close

to native English speakers, and the authors attributed this to that those Mandarin

subjects mastered the vocalic variability. However, the average values of the other two

measurements are way higher than native English speakers. The authors believed it

was because the consonantal duration patterns were much harder to acquire for Man-

darin speakers when speaking English. Similar results were also reported by Kawase

et al. (2016). In this study, the rhythmic acquisition of native Japanese (mora-timed)

learners of English (stress-timed) was studied. Li and Post (2014) conducted experi-

ments on durational variation in L2 English productions by L1 Mandarin learners and

L1 German learners and compared it to native control values in English. The results

showed that the L1 groups followed comparable developmental paths in their acqui-

sition of vocalic variability and accentual lengthening. However, the two L1 groups

diverged in the proportion of vocalic materials in their L2 utterances and indicated

L2 acquisition patterns that are consistent with direct transfer from the L1. Thus,

they claimed that there was a multisystemic model of L2 rhythm acquisition. Both

transferred L1 knowledge and universal effects independent of L1 played a role. Ordin

and Polyanskaya (2015) did similar experiments to examine the differences in dura-

tional variability (several rhythmic measurements) between proficiency levels in L2
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English spoken by French and German learners. They found that speech rhythm in

L2 English learners in both groups developed from more syllable-timed toward more

stress-timed patterns irrespective of the L1 had similar rhythmic patterns. However,

they also showed that there were differences between the German and French group-

s: German learners achieved a degree of durational variability typical of the target

language while French learners exhibited lower variability than native speakers.

Some recent studies investigated the relative importance of suprasegmental mea-

surements to accentedness perception compared to segmental measurements. Rognoni

and Busà (2013); Winters and O’Brien (2013) transplanted the prosody measure-

ments (F0 and duration) between native English speech and accented English speech

in both directions to analyze the relative importance of segmental and suprasegmen-

tal features’ contribution to accentedness perception. They both found that though

prosodic features contributed to the perception of accentedness, segmental features

were more important than suprasegmental features. The study by Polyanskaya et al.

(2016) applied the similar transplantation method to speaking rate and speech rhyth-

m and concluded that speech rhythm contributed more to accentedness perception

than speaking rate. A later study by van Maastricht et al. (2017) further investigated

the interplay of different prosodic measurements including intonation, rhythm and

speech rate. The authors found that while all measurements contributed to accented-

ness perception, intonation contributed the most for Dutch learners. However, all of

these studies only did the transplantation on one foreign language (Italian, German,

French or Spanish) and the contrastive information among different L1s was ignored.

Another work by Saito et al. (2016) studied the relative contribution of segmental

and suprasegmental to accentedness at different proficiency levels through regression

analysis. Their subjects were Japanese who were learning English at different stages.

The prosody acquisition during L2 speech learning can be summarized as follow-
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ing:

1. Although there are evidences showing that some universal effects exist in prosody

acquisition, most studies report the influence of the L1 on the prosody produc-

tion of L2. This is similar to the phonetic acquisition.

2. Not all of the prosodic properties depend on the L1 during speech prosody

acquisition, despite the fact that those properties can well discriminate between

L1 and L2.

3. When the contrastive information between L1 and L2 can be well perceived,

the prosody acquisition follows a path from L1 prosody features to L2 prosody

features; when the contrastive information between L1 and L2 is not well per-

ceived or the L1 and L2 prosodic patterns are very close, there is no clear sign

of the influence of L1 prosodic patterns.

2.2.3 Role of L1 in L2 speech learning

In the last two subsections, studies dealing with the phonological system acqui-

sition during L2 speech learning are introduced. However, many studies only inves-

tigate one pair of L1 and L2: a one to one mapping, which can not reveal whether

the difference of L1s can be projected to the accented L2 speech. Combining the

acquisition of L2 in both segmental and suprasegmental perspective, it can be found

that different L1s can result in different developments of L2 acquisition. A following

question is how the segmental and suprasegmental production developments of L2

learners from different L1s are different. Since L1s have very different segmental and

suprasegmental characteristics compared to L2, L2 learners from those L1s should

undergo different procedures in both segmental and suprasegmental feature space, as

in the findings by Ordin and Polyanskaya (2015), although there exist some universal
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effects. In this subsection, a brief introduction of studies examining multiple L1s and

one or multiple L2s are reviewed. Arslan and Hansen (1997) calculated four temporal

measurements: word-final stop closure duration, VOT, average voicing duration and

word duration, across three L1 accents (German, Mandarin and Turkey) for a set of

English words (“target”, “teeth”, “catch”, “communication”), which included a stop

consonant in the initial position. While word-final stop closure duration was found to

be most discriminative among accents, various accents showed very different patterns

in terms of the four measurements. English words with Mandarin accents are the

most different from native produced words. German and Turkey speakers are rela-

tively closer to native produced words compared to Mandarin. McCullough (2013b)

investigated the correlation between different segmental measurements in non-native

speech and the perceived accentedness. Speakers from different L1 backgrounds (Hin-

di, Mandarin and Korean) were rated and analyzed based on their produced English

speech. They showed that Hindi had the strongest accent compared to Mandarin and

Korean speakers. Analysis of measurements including VOT, vowel quality (measured

by F1 and F2 of vowel), vowel durations and F0 differences indicated that non-native

speech produced by Hindi speakers showed clear difference compared to Mandarin

and Korean speakers, while Mandarin and Korean speakers had similar patterns. For

suprasegmental measurements, Ramus et al. (1999) studied the rhythmic properties

across eight languages (English, Polish, Dutch, French, Spanish, Italian, Catalan and

Japanese) and applied acoustical rhythmic measurements to language discrimination.

They plotted these eight languages on a three dimensional rhythmic space consisting

of 1) the proportion of vocal intervals within the sentence 2) the standard deviation

of the duration of vocalic intervals within each sentence 3) the standard deviation

of the duration of consonantal intervals within each sentence. The results indicat-

ed that there may be more information decided by speech rhythm rather than just
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the classification of stress-, syllable and mora-timed languages. Also, the difference

among different L1s was very obvious. This study inspired the work by White and

Mattys (2007) and Lai et al. (2013), where the authors applied similar acoustic anal-

ysis of the rhythm properties of both reading and spontaneous L2 speech. White

and Mattys (2007) applied similar acoustical rhythmic measurements to quantifying

the influence of L1 on L2 rhythm. They expected that speakers switching “rhythm

class (stress-timed or syllable timed)” should show rhythm scores different from both

their native and target languages. They found that the standard deviation of vocal-

ic interval duration divided by the mean vocalic interval duration offered the most

discriminative ability of L1, L2 and L1 accented L2, which suggested L1 accented

L2 is at an intermediate stage during the transfer from L1 to L2, and speakers with

different L1 backgrounds show differences in their accented L2 speech in terms of

these rhythmic features. While previous studies used reading speech as material, the

work by Lai et al. (2013) investigates the rhythmic measurements of spontaneous L2

speech produced by speakers from different L1 backgrounds. TOEFL Practice On-

line assessment of 239 speakers from 50 L1 backgrounds was used as speech material.

They compared the rhythmic properties of accented L2 speech with measurements

proposed in the study by Ramus et al. (1999), and showed the difference between

rhythmic properties of L1 speech and L1 accented L2 speech, as well as the difference

between rhythmic properties of reading and spontaneous accented L2 speech. How-

ever, the different rhythmic properties of different L1s were mostly kept in the L1

accented L2 speech.

It can be concluded that in the phonological space of languages, at least on some

dimensions (including both segmental and suprasegmental dimensions), L2 learners

from different L1 backgrounds follow a speech acquisition path that starts from their

L1s and goes towards the target L2. On the path, the L2 speech produced by different
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L1 learners still show distinctions that depend on the L1s. However, the methodolo-

gies used in these studies are only capable of showing the existence of L1’s influence on

the formation of accent and different phonological characteristics of accented speech

by speakers from different L1s, but are very limited to quantify the L1’s effect on L2

speech learning.

2.3 Computational models for accentedness perception

Previous sections reviewed the language differences, second language acquisition

of both segmental and suprasegmental phonological properties and how different L1s

will result in different development pathes in L2 speech learning. This section deals

with the learning outcome: accentedness, which is usually defined as the degree of

perceived foreign accent. Specifically, this section focuses on how accentedness is

related to acoustic characteristics of accented speech, and whether the accentedness

of a speaker can be predicted with computational models given produced accented

speech. Furthermore, investigating the relationship between perceived accentedness

and acoustic measurements is also a commonly used methodology in L2 speech learn-

ing studies (Ordin and Polyanskaya, 2015; Saito et al., 2016).

Abundant studies have been done to investigate the relationship between per-

ceived accentedness and acoustic information, such as segmental and suprasegmental

measurements, and these studies lay the foundation of computational models for ac-

centedness perception. Segmental features measured in short time periods, including

voice onset time (VOT, defined as the duration between the release of a consonant and

the onset of voicing )(Lisker and Abramson, 1964; McCullough, 2013b,b), pronunci-

ation of vowels and consonants (Flege, 1995; Deterding, 2006; Sangwan and Hansen,

2012), vowel quality, vowel duration, short-time F0 and harmonics (McCullough,

2013a,b), have been shown to contribute significantly to the perception of accented-
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ness. Suprasegmental measurements are also found to be significantly important to ac-

centedness perception. For example, Hardman (2014) investigated the interlanguage

match effect of Mandarin-accented English. They found that Mandarin accent had a

large negative effect on intelligibility, but the talker’s accuracy was still high. They

considered that low intelligibility was due to a combination of the segmental variation

and its misalignment with higher levels of prosody. This means that accented speech

can be segmentally close to native speech, but still results in low intelligibility and

high accentedness score due to suprasegmental mismatch. The studies by Munro and

Derwing (2001); Mok and Dellwo (2008); Kang (2010) found that suprasegmental

measurements such as speaking rate, consonantal/vocalic/syllabic durations, pauses,

stress and pitch range of non-native L2 speakers also contribute to the perception of

accentedness. How to convert those measurements (although some of them are com-

puted automatically, most are measured with human labor) in previously introduced

studies to acoustic features that can be computed automatically from acoustic signal

is the main goal of a computational model for accentedness perception.

Those studies in phonological linguistics have inspired research on computational

models for accentedness perception. In the field of computer-assisted pronunciation

training (CAPT) and computer-aided language learning (CALL), which has proved

to be able to improve language learning, especially word pronunciation (Neri et al.,

2008), many studies investigated improving second language learning and education

using computer based accentedness evaluation systems. The goal of automatic ac-

centedness evaluation is to build a statistical machine learning model that predicts

the accentedness score of non-native speakers, which is supposed to be highly corre-

lated with humans’ ratings of accentedness. Acoustic features that can represent the

segmental and suprasegmental measurements of accentedness speech are extracted in

an automatic way and the evaluation model is responsible for learning the mapping
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from acoustic features to accentedness score in a supervised learning way. Some stud-

ies only focus on the pronunciation part of non-native L2 speech, while some recent

work also includes suprasegmental features.

The first work that aims to develop computer based systems for language learning

instruction was conducted in Speech Technology and Research Laboratory at SRI In-

ternational. Their early pronunciation scoring systems (Bernstein et al., 1990) were

designed as text-dependent, which means nonnative speakers must read fixed words

or sentences. Text-dependency makes these systems very hard to use for real lan-

guage training and evaluation. Their following work focused on a text-independent

system. The corpus the authors developed consisted of 100 native French speakers

from Paris and 100 American students speaking French. Nonnative French speakers

were asked to read designed speech materials including common sentences, newspaper

sentences and imitated speech after listening to a native reading the same sentence.

Nonnative speakers were rated by language experts on a 1-5 (unintelligible to native

quality) scale. The task was to automatically grade the pronunciation performance

of nonnative speakers. In the study by Neumeyer et al. (1996), an automatic pro-

nunciation scoring system was proposed based on an ASR system. First, nonnative

speech was segmented using the alignments provided by the ASR system. Four scores

were calculated including Hidden Markov Model (HMM) log-likelihood score on each

segment, phone classification scores on each segment, segment duration scores calcu-

lated by log probability of a phone duration model trained with native speakers, and

time scores calculated by averaged and normalized time between syllables. Corre-

lation with human raters showed that segment duration scores provided the highest

correlation (sentence level: 0.46, speaker level: 0.74).They reported improvement in

their following work. For example, sentence level correlation improved to 0.50 and

speaker level correlation improved to 0.88 by using average phone segment posterior
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probabilities, which was calculated by frame-based phone posterior probability. And

using score combination (input to linear or nonlinear regression models), sentence

level correlation rose to 0.62 (Franco et al., 1997). This line of research was extend-

ed to assessing pronunciation quality on individual phone segment using the same

database (Kim et al., 1997). Listeners were asked to only rate certain segments, and

same scores were calculated on each segment. Similarly, log-posterior probability s-

cores provided the highest correlation. The overall speaker level correlation was 0.88.

The authors show that human-machine correlation was higher than human-human

correlation on both phone segment level and speaker level. Xi et al. (2010) reported

a summarization and extension of their previous work on pronunciation scoring. In

this research, Spanish was the L2 speech and Spanish learners were native Ameri-

can English speakers. They found word duration scores provided better results than

phone duration scores.

Sangwan and Hansen (2012) proposed an automatic accent analysis system of

Mandarin accented English using phonological features. With a trained HMM-based

phonological feature classification system, they built two Markov Models to cap-

ture the dynamics of phonological features for both American English speech and

Mandarin-accented English. State transitions and state durations of phonological

features were believed to carry very important accent-related information. For a giv-

en English word produced by a Mandarin speaker, accentedness was represented by

delta log-likelihood that is calculated by the log-likelihood of the two trained phono-

logical features Markov models. The accentedness indicator was on a scale from -1 to

+1 (from non-native like to native like). Through experiments on CU-Accent corpus

(Angkititrakul and Hansen, 2006), a correlation of 0.8 was reported between human

assigned scores and scores provided by the proposed system. William et al. (2013)

proposed a new algorithm for automatic accentedness evaluation. The system had two
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parts. In the alignment part, speech utterance was processed using a Weighted Finite

State Transducer (WFST) based decoder of an ASR system to automatically estimate

the pronunciation mismatches including substitution, deletion and insertion errors.

In the scoring part, two scoring systems which utilized the pronunciation mismatches

from the alignment phase were proposed: a WFST-scoring system to measure the de-

gree of accentedness on a scale from -1 (non-native) to +1 (native), and a Maximum

Entropy (ME) based system to assign perceptually motivated scores to pronunciation

mismatches. The proposed algorithm was also evaluated on CU-Accent corpus. The

results showed that the correlation between human raters and machine system was

as high as 0.89. Chen and Jang (2015) proposed a learning-to-rank based automatic

pronunciation scoring framework. The motivation was that they believed it is easier

for a human rater to make a relative judgement than to assign an exact score. The

authors used similar feature sets as the study by Kim et al. (1997). These phone-

level scores were then converted to word-level scores, which were used to train the

learn-to-rank model. The output of the learn-to-rank model was quantized onto the 1

(unintelligible)-5 (intelligible) scale, which was the rating scale for listeners. The re-

sults on a Taiwan Mandarin speech corpus showed that the proposed system achieved

a better correlation compared to human ratings. Rasipuram et al. (2015) developed

an automatic acccentedness evaluation system based on comparison of instances of

native and nonnative speakers at the acoustic-phonetic level. The main advantage of

their system was its capability to go beyond the instantaneous phoneme level scoring,

and provided utterance level and speaker level scoring of accentedness. A Deep Neu-

ral Network (DNN) based acoustic model was used to map the input feature vectors

into sequences of HMM states. A dynamic programming based sequence matching

algorithm was employed to calculate the pronunciation mismatch between nonnative

speakers and native speakers. Human ratings on a scale of 0 (no foreign accent)-6
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(foreign accent) was collected for Finnish, German and Mandarin-accented English

and final reported correlations for Mandarin-accented English between human raters

and system’s output were 0.66 on the sentence level and 0.73 on the speaker level.

Nativeness evaluation of nonnative English speakers was also introduced into In-

terspeech 2015 paralinguistic challenge (Schuller et al., 2015). The dataset included

nonnative English speakers with multiple mother tongues including Mandarin. In

their baseline system, Opensmile (Eyben et al., 2010) was used to extract acoustic

features from utterances. Support vector regression (SVR) was employed to predict

the nativeness score. The challenges of this task were that the rating scale of train,

development and test sets were different and it was a cross-corpora task. The reported

correlation coefficient between predicted nativeness and human ratings was around

0.4 on sentence level. Several papers were submitted to improve the baseline system.

In the study by Grósz et al. (2015), instead of using SVR, DNN and Gaussian Process

regression were employed for regression analysis with the same acoustic feature sets

as the baseline system. They reported higher correlation coefficients than the base-

line system. Ribeiro et al. (2015) developed several feature sets besides the baseline

features. Their feature sets, including phonotactic models (for language identifica-

tion) based features, n-grams counts based features and ivectors, were both employed

as the input feature sets for SVR, which means three complex models needed to be

prepared: a language identification model, an ASR model and an ivector extraction

model. The correlation reported on test set was 0.58, which was much higher than

the baseline system. Black et al. (2015) also focused on feature development for na-

tiveness evaluation. Different from previous study that employed several feature sets

from other related tasks, this paper developed multiple feature sets at multiple time

scales to include both segmental and suprasegmental information. These feature sets

consisted of data-driven features, including baseline acoustic features and other low
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level descriptors used in their previous studies, and knowledge based features, in-

cluding utterance level pausing features, speaking rate related features, lexical stress,

intonation and speech rhythm related features, and phone-level pronunciation fea-

tures. Extraction of knowledge based features needed an ASR system trained on

native speakers to provide alignment and phone-level likelihood. Their result was the

best among all submissions, with correlation coefficient as high as 0.75 on test set.

In recent studies, state-of-the art ASR systems based on recent advancement in

DNNs are investigated in automatic non-native speech assessment. Tao et al. (2016)

trained a non-native spontaneous speech ASR system, using over 800 hours of native-

speech recordings. They investigated three ASR systems: a traditional GMM-HMM

system, a DNN-HMM system and a GMM-HMM system using DNN as feature ex-

tractor. Several feature sets for nativeness evaluation, part of which was based on

the trained ASR systems, were extracted from non-native speech. These feature sets

were categorized into fluency, rhythm/intonation/stress, pronunciation, grammar and

vocabulary use of the non-native speech, covering both the segmental and supraseg-

mental measurements of non-native speech. Their system could achieve as high as a

0.78 correlation coefficient with human raters on non-native spontaneous speech. In

the study by Qian et al. (2017), a Recurrent Neural Network (RNN) acoustic mod-

el was applied to children’s speech recognition to improve the automatic assessment

system of children’s non-native speech. Their motivation was that most current au-

tomatic accentedness assessment systems used ASR trained on adults which did not

perform well for children’s speech. Their ASR system was purely trained on chil-

dren’s speech, and the same feature sets as in the study by Tao et al. (2016) were

used to represent the proficiency of children’s speech. Their final reported correlation

coefficient between the system’s prediction and human raters was 0.76 on non-native

children’s speech.
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To summarize, the most important part of computational models for accentedness

perception is the feature extraction, i.e. to extract foreign accent related represen-

tations from acoustic signals. Most studies use ASR systems trained on native L2

corpus to quantify how well the L2 learners pronounce each segment (phoneme or

word), and results have shown that those measurements based on ASR can give

good results. Some small scale studies also prove the effectiveness of features such

as VOT, formants, pitch, and so on. For speech prosody, no standard feature ex-

traction scheme exists yet. Recent studies extract durational measurements based

on computer-generated phoneme forced-alignments to represent speech prosody, and

good results have been reported. The most beneficial part of computational model is

its ability to quantify the relationship between a specific phonological properties and

accentedness. This could facilitate better understanding of L1’s effect on L2 speech

learning, thus motivating the methodology in this dissertation.

2.4 Motivations and predictions

1. Clear evidences have been shown that either on phonetic system acquisition or

prosodic system acquisition, the L1 of the speaker has significant impact on

the formation of foreign accent in L2 speech learning literature. However, these

studies only show the L1’s effect exists by investigating some specific phonolog-

ical properties of accented speech, without investigating its relationship to the

degree of foreign accent. Furthermore, there is no way to quantize the amount of

L1’s effect during L2 speech learning. Literatures on the relationship between

acoustic measurements and perceived accentedness also ignore the measure-

ments that are related to speakers’ L1s. The study in this dissertation proposes

a computational model that extracts both segmental and suprasegmental acous-

tic measurements from accented speech signal to analyze the L1’s effect on the
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formation of foreign accent. It is expected that how close the selected acoustic

measurements in accented speech to L1’s patterns are also correlated with the

degree of foreign accent, and it is natural to predict the correlation is negative.

2. Literatures on automatic accentedness evaluation only includes acoustic features

derived with L2 phonological patterns to predict degree of foreign accent. Con-

sidering L1’s influence to the formation of foreign accent, this study proposes to

add acoustic features that represent the phonological distance between accented

speech and L1s to automatic accentedness evaluation systems. It is expected

that the performance of automatic accentedness evaluation will be boosted by

integrating L1’s information compared to only considering the acoustic devia-

tion from L2 phonological patterns.

3. Although some studies have investigated the relative contribution of segmental

and suprasegmental measurements to the perception of foreign accents, all of

these studies evaluated the transplantation methodology on only one foreign

language (Italian, German, French or Spanish), thus ignoring if the relative

importance of segmental and suprasegmental measurements depends on the s-

peaker’s L1s. This study utilizes a computational model to investigate whether

segmental or suprasegmental acoustic measurements can better explain the vari-

ation of accentedness, and to use the accentedness predictability of segmental

and suprasegmental acoustic measurements as indication of the relative contri-

bution to the perception of foreign accent. This study also expects that the

relative contribution depends on the contrastive information between speaker’s

L1 and L2 in segmental and suprasegmental feature space.

41



Chapter 3

METHODOLOGY OVERVIEW

3.1 Introduction

To answer the research questions and test the hypotheses proposed in chapter

1, this dissertation adopts a computational model to investigate the relationship be-

tween acoustic representation of accented speech and perceived accentedness. Given

accented speech dataset, the core modules of a computational model include feature

extraction algorithms to convert acoustic signal to representations related to per-

ceived accentedness, and data analyses to explore the relationship between acoustic

representations and perceived accentedness. A following methodology with 3 steps

will be employed:

1. Accented speech recordings collection. The very first step is to acquire accented

speech data. Then, the accentedness score of each accented speaker needs to be

collected to quantify how strong the foreign accent is for native L2 speakers.

2. Measurements related to perceived accentness will be extracted from the a-

coustic signals. This involves different feature extraction schemes. Some mea-

surements represent pronunciation characteristics and some represent prosodic

characteristics. This study will extract measurements that quantify how close

the pronunciation of accented speech is to L2, and measurements that quantify

how close the prosody of accented speech is to L1.

3. Statistical data analysis is to examine how the perceived accentedness scores

(dependent variables) are decided by those acoustic measurements (independent
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variables) extracted from the acoustic signals. It includes correlation analysis

between independent variables and dependent variables, and regression analysis

between groups of independent variables and dependent variables. This study

will do regression analyses with different groups of independent variables, for

example group of independent variables that are only related to L2, and group

of independent variables that are related to both L1 and L2.

This chapter will mainly focus on the first two parts and following chapters will

introduce the details of data analysis and corresponding results. Part of this chapter

is excerpted from a conference paper by the author (Tu et al., 2018).

3.2 Data collection

3.2.1 Dataset selection

Many non-native speech datasets have been published in the literature (Raab

et al., 2007). However, most of them are either not publicly available nor do not

have speakers from several different L1s. To have more control on the datasets, the

GMU speech accent archive (SAA) (Weinberger, 2013) was chosen as the data source

of the speech recordings used in this dissertation. The SAA provides speech samples

recorded by speakers from over 300 different L1s. More than 2000 speakers (there are

600 native English speakers currently) read the same paragraph in English:

Please call Stella. Ask her to bring these things with her from the store: six spoons

of fresh snow peas, five thick slabs of blue cheese, and maybe a snack for her brother

Bob. We also need a small plastic snake and a big toy frog for the kids. She can

scoop these things into three red bags, and we will go meet her Wednesday at the train

station.

This paragraph was chosen because it includes all of the phonological features
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considered part of native English speech (Kunath and Weinberger, 2010). With

transcription available, it is also easy to derive fine-grained measurements on small

phonological unit with computed start and end time. SAA also provides detailed in-

formation of the speaker, including age, gender, birth place, native language, English

residence country, length of residence and age of English onset. Part of these infor-

mation is decisive to their degree of foreign accent. The non-native speech corpus

used in this study is a subset of the GMU SAA. Four foreign languages: German (9

females, 21 males), French (15 females, 15 males), Mandarin (15 females, 15 males)

and Spanish (15 females, 15 males), each of which has 30 speakers. 30 native English

speakers (15 females, 15 males) are also added to the set as control native speakers.

The four foreign languages are selected because they have diverse contrastive prop-

erties with English in both phonetic and prosodic subspaces. The English residence

country is limited to the USA, and native English speakers are also born in the US-

A. This resulted in 150 speakers in the final dataset. The length of each speaker’s

recording varies in a range from 15-40 seconds. The sampling rate was reduced to

16kHz from 44.1kHz.

3.2.2 Accentedness score collection

SAA does not provide accentedness scores for their speech recordings. In order

to quantify the perceived accentedness score , the best way is to ask native speakers

of American English to rate the foreign speakers in the dataset. Considering the

time and money cost of on-site data collection, Amazon Mechanical Turk (AMT),

which is the most popular online crowdsourcing platform, will be chose to acquire

the accentedness scores from multiple native American English speakers. The study

by Kunath and Weinberger (2010) also collected accentedness scores for recordings

in SAA on AMT, and they reported that the collected ratings were reliable enough.
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Figure 3.1: The four steps of the annotation webpage.

The first step of the accentedness score collection is to find annotators to par-

ticipate in the task, and determine the accentedness score scale. The current ac-

centedness annotation task has several requirements for the annotators: 1) Born in

the USA (must be native speaker of American English) 2) Monolingual (only speak

American English) 3) Don’t speak the four target foreign languages (further make

sure they do not speak any of the four foreign languages). 4) No hearing impairment

(Make sure they can perceive the foreign accent). 5) At least finished 10 Human

Intelligence Task (HIT) 1 that are approved (make sure they have experience us-

ing the AMT). 6) HIT approval rate is over 90% on AMT (make sure they devote

themselves to each annotation task). Only qualified participants are allowed to do

the annotation. To discretize the accentedness, this study employs a four-point scale

where one represents no accent/negligible accent, two represents mild accent, three

represents strong accent, and four represents very strong accent. This scale has been

used in previous collected datasets for example the CSLU: Foreign Accented English

datasets (Choueiter et al., 2008), and it is believed that for non-expert annotators a

4-point scale is of less amount of annotation work and higher accuracy compared to

a larger scale.

AMT needs an annotation protocol that clearly introduces the whole procedure

to finish the annotation task. A website was designed to realize this protocol. The

diagram in figure 3.1 shows the whole procedure of the data annotation process.

1. The annotators will first see a webpage (as shown in figure 3.2), asking them to

1The annotation task on AMT is called HIT.
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create a new user or login as a return user. The user ID will be used as identifier

to locate their ratings.

2. After finishing step 1, a detailed task instruction and information will be shown

to the annotators. The detail is in appendix A. There is also a consent form (in

appendix B) for the annotators.

3. Then, four recordings, which are with no accent, mild accent, strong accent

and very strong accent respectively, are presented to the annotators for them

to get familarization with the 4-point rating scale, as shown in figure 3.3. The

groundtruth labels are provided by experienced native American English speak-

ers. This step also enables the annotators be familiar with the content of the

recordings.

4. At last, annotators move to the real listening task, as shown in figure 3.4.

Each annotator first listens to the recording, then make a choice about the

degree of perceived foreign accent and whether the annotator is confident in

the response. All 150 speech recordings (including native English speech and

accented speech) are randomly permuted in order. If the workers on AMT are

asked to listen all of the utterances, the task would take more than 1 hour,

and a lot of factors will impact the quality of the collected ratings, such as

worker’s fatigue (Rzeszotarski et al., 2013). To avoid this, all the utterances are

segmented to retain only the first 10 seconds, resulting in 25 minutes listening

time for each worker. Previous study (Munro and Derwing, 1995) has shown

that the sentence length in the range of 7-13 seconds has little impact on the

perceived accentedness. Considering the annotation time and a 2 minutes break,

each worker needs to spend about 30-40 minutes for this task. Those annotators

finish the task will be rewarded $1.5.
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Figure 3.2: Annotator’s login page.

Figure 3.3: Example accented speech recordings with groundtruth accentedness
scores.

Finally, 13 evaluators finished all the listening tasks. The average ratings of all

13 evaluators are taken as the final accentedness rating of each speaker; other studies

have used the average of 10 AMT non-expert annotations in other natural language

tasks (Snow et al., 2008). The pairwise average inter-rater correlation coefficients are

shown in figure 3.5 for each rater, which is calculated by taking the average of the

correlation coefficients of the current worker’s ratings with other worker’s ratings.

The average inter-rater correlation coefficients (calculated as the average of all an-

notators’ correlation with other annotators) is 0.73, which is higher enough to prove

the consistency of the ratings from 13 evaluators. In figure 3.6, the histograms of

the collected ratings across four different foreign languages are presented. It can be

found that Mandarin speakers have the strongest accent while German speakers have

the mildest accent. This is consistent with expectations considering the phonolog-
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Figure 3.4: How speech samples are presented to the annotators in listening task.
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Figure 3.5: Pairwise average correlation coefficients of each worker.

ical similarity between German and English as opposed to other 3 languages. The

low accentedness and lack of strongly-accented speakers in the German and French

database also means that the variances of the accentedness ratings for these language

are relatively low. This poses a challenge in the statistical modeling, which will be

further examined in later chapters. In contrast, the average accentedness rating of

native English speaker in the dataset is 1.07, which further validate the efectiveness

of the annotation.
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Figure 3.6: Histograms of accentedness scores of different L1s.

3.3 Acoustic analysis

With the accentedness score for each speaker in the accented speech dataset col-

lected, the next step is to extract measurements from the acoustic signal to represent

the foreign accent. As mentioned in chapter 1, this study will analyze acoustic mea-

surements in two subspaces: one is characterized by phonetic measurements and the

other is characterized by prosodic measurements. Thus, the acoustic analysis here is

also done in the two subspaces. Specifically, pronunciation scores of phonemes (in-

cluding vowels and consonants) and syllables are calculated as representation of the

phonetic subspace. The pronunciation scores are computed based on previous studies

on phoneme-level goodness of pronunciation (GOP) (Witt and Young, 2000), which
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Figure 3.7: Diagram of a typical ASR system. The content of the speech signal is
“what do you mean”.

relies on an already-trained automatic speech recognition (ASR) system on native

L2 speech. Prosodic measurements are calculated based on the studies by Ramus

et al. (1999); Grabe and Low (2002). In this dissertation, more prosodic measure-

ments are included as in (Lai et al., 2013). Furthermore, the main contribution of

this study is to investigate the relationship between L1 related acoustic measurements

and accentedness scores. To calculate L1 related acoustic measurements, corpus of

different L1s (German, French, Spanish and Mandarin in this study) are also need-

ed. The remaining part of this section will first briefly review the basic concepts of

an ASR system. Then, L1 corpus used in this study will be introduced. Finally,

acoustic feature extraction scheme for both phonetic and prosodic information will

be presented.

3.3.1 A brief introduction to ASR

Basically, ASR is trying to recognize the content, i.e. what the speaker is saying, in

a speech signal. It requires knowledge from different fields, including psychoacoustics,

signal processing, linguistics and machine learning 2 . A simplified diagram of an

ASR system is shown in figure 3.7. The input waveform is first analyzed within short

windows (e.g. 25ms), which are also referred to as frames. Frame based analysis of

speech signal is based on the assumption that spectral information is stationary in a

2Recent developments on ASR mainly focus on the machine learning part.
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Figure 3.8: How an HMM aligns input feature vectors with the output state se-
quence.

short window. This process is done frame by frame. Then, a feature (usually based on

Discrete Fourier Transformation, DFT) vector is calculated to represent the spectral

information in each frame. The 1-dimensional time domain signal is then converted to

a 2-dimensional time-frequency representation (DFT dimension × number of frames).

Since phonemes can be discriminated based on spectral information in acoustic signal,

this feature vector is believed to carry information of the identity of phonemes.

Then, the feature vectors of a sentence are sent to a recognizer, which includes

three parts: acoustic model, language model and pronunciation model. The acoustic

model builds the relationship between feature representation and phonemes. A se-

quential machine learning model called Hidden Markov Model (HMM) is employed

to learn the dynamic transition from one phoneme to another based on the observed

feature vectors by aligning each frame with a state of an HMM model (Rabiner,

1989). The reason to use HMM is that the number of frames is different from the

number of phonemes in a sentence. There must be a way to correspond each frame

to a sub-phoneme unit, which is called a state in an HMM. Each HMM models one

phoneme, and the final acoustic model will have many HMMs. As the HMM shown

in figure 3.8, input feature vectors o1 to o6 are mapped to a state sequence s1 to s6,
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each of which corresponds to a state ID in {1, 2, 3}. At each frame, it either moves

to the next state or stay at the current state. State 0 and 4 are the entrance and exit

states of the HMM, which allows transition from a previous phoneme and exit from

the current phoneme. Most of the time, a triphone(for example [k-ae+t], [k] is to the

left of [ae] and [t] is to the right) instead of a single phone([ae]) is used as the basic

modeling unit of an HMM, for the reason that triphone can better model the coartic-

ulation among neighboring phonemes and improve model capability. The possibility

a feature vector in one frame is generated by a specific HMM state is modeled with

a Gaussian Mixture Model (GMM) or Deep Neural Network (DNN). The possibility

a state is transited from another state is decided by an HMM. In summarization, the

acoustic model converts a sequence of feature vectors to a sequence of HMM states

(with GMM-HMM or GMM-DNN models), and then to phoneme sequence according

to the mapping from HMM states to phonemes.

The language model is to convert phoneme sequences output by acoustic model to

feasible word sequences, which complies with human usage of words. The pronuncia-

tion model involves in this process: it gives the phoneme sequence of each single word

in a language. In a nutshell, the pronunciation model is just the lexicon(or dictionary)

of a language in most of the time. Pronunciation model will also be used to convert

word sequences in transcriptions to phoneme sequences during training stage of the

acoustic mode. There is another term commonly seen in ASR field: forced-alignment.

It refers to the process to find the start and end time of a phoneme, word or even

sentence in a speech signal given the transcription. This can be achieved using acous-

tic model and pronunciation model. A lot of studies in computational linguistics use

forced-alignment to avoid locating phonemes and words in a speech signal by hand.

Practically, Kaldi toolkit (Povey et al., 2011) is the most commonly used software to

build an ASR system, and it has been well accepted by both academia and industry.
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3.3.2 Native speech corpus

In this study, both the L2 and L1s acoustic models and pronunciation models are

needed to extract pronunciation score based phonetic features. To build the L2 acous-

tic model (English for this study), the LibriSpeech corpus (Panayotov et al., 2015)

with 960 hours of native English speech recordings was used, and the correspond-

ing training scripts 3 in the Kaldi toolkit. The final acoustic model is a triphone

model trained with GMM-HMM on 960 hours of speech data. The feature input

is a 39-dimensional second order Mel-Frequency Cepstral Coefficient (MFCC) with

utterance-level cepstral mean variance normalization and linear discriminant analysis

transformation.

For Mandarin, the publicly accessible AIShell Mandarin Speech corpus (approxi-

mately 150 hours training data) (Bu et al., 2017) and the corresponding Kaldi scripts

4 are used. A pronunciation dictionary is included in the dataset. For the remaining

three languages (Spanish, French and German), there are no well organized publicly

available data. This study uses data from the Voxforge project, and downloads the

speech corpora for French (≈ 30 hours), German (≈ 50 hours) and Spanish (≈ 50

hours). Kaldi scripts 5 for the Voxforge English dataset are adapted to train the

acoustic models of the three foreign languages. The dictionary for these three lan-

guages are from the CMU Sphinx system (Download available 6 ). Compared to

English and Mandarin acoustic models, the quality of the German, French and Span-

ish acoustic models trained on Voxforge dataset are not that good (due to varying

vocabulary sizes, different number of speakers across languages; some recordings are

3https://github.com/kaldi-asr/kaldi/tree/master/egs/librispeech/s5

4https://github.com/kaldi-asr/kaldi/tree/master/egs/aishell/s5

5https://github.com/kaldi-asr/kaldi/tree/master/egs/voxforge/s5

6https://sourceforge.net/projects/cmusphinx/files/Acoustic%20
and%20Language%20Models/
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with background noise; pronunciation model is not designed for the datasets). Fea-

ture types and structures of acoustic models for the four languages are the same as

those used in the English acoustic model.

3.3.3 Pronunciation score based phonetic feature extraction

Features based on the L2 acoustic model

The trained L2 acoustic model can be regarded as the phonetic patterns of native L2

speakers, and it is natural to measure how good non-native L2 speakers’ pronunci-

ation is with the native L2 phonetic patterns. Motivated by the work by Witt and

Young (2000), the goodness of pronunciation for each phoneme is calculated in the

accented speech. To do this, the accented speech is first force-aligned at the phoneme-

level using the L2 acoustic model to provide the start and end frame indices of each

phoneme. The pronunciation score (PSL2) of the target phoneme p after alignment

is defined as

PSL2(p) = log(P (p|Op))/ |Op|

= log

[
P (Op|p)P (p)∑
q∈Q P (Oq|q)P (q)

]
/ |Op| ,

(3.1)

where Op is the feature matrix of phoneme p, |Op| is the number of frames of phoneme

p after alignment, and Q is the set of all phonemes. If we assume equal priors for all

phonemes, we approximate the denominator in Eq. 3.1 with max operator,

PSL2(p) = log

[
P (Op|p)

maxq∈Q P (Oq|q)

]
/ |Op| . (3.2)

The conditional likelihood of each phoneme (given the speech frames of the cor-

responding aligned segment) can be calculated by decoding the sequence of speech

features using the L2 acoustic model. It is clear that if the most likely phoneme re-

turned by the acoustic model is the same as the target phoneme p, then PSL2(p) = 0;
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otherwise, this value will be negative. The interpretation is that the closer PSL2(p)

is to zero, the closer the pronunciation of phoneme p is to that of native speakers.

L1 acoustic model based measurements

Similarly, the trained L1s acoustic models can be regarded as the phonetic patterns

of the L1s of accented speakers. These phonetic patterns can decide how much the

pronunciation of L2 is influenced by accented speakers’ L1s. In contrast to the PSL2

score, there is no transcript to measure the pronunciation of the phonemes in L1. We

define a new way to calculate the pronunciation score with the L1 acoustic model

which quantifies how close the pronunciation of a phoneme in L2 is to a specific

phoneme in L1. The forced-alignment calculated with the L2 acoustic model is used

here. The speech frames are first decoded with the L1 acoustic model and find the

state path with the highest likelihood. In the path, the corresponding phonemes

of each HMM state are recorded and the phoneme with the highest occurrence is

considered as the most likely L1 phoneme for a given speech segment. Then, the

pronunciation score is calculated as

PSL1(p) =

∑
t∈Tp

log

∑
s∈Sp

P (ot|s)∑
s∈S P (ot|s)

 / |Tp| , (3.3)

where ot is the feature vector for frame t and p is the phoneme with the highest

occurrences in the best decoding path of the current segment. Tp is the set of frames

where each frame corresponds to an HMM state of phoneme p. Sp is the set of

HMM states that belong to phoneme p and S is the set of all HMM states. PSL1(p)

essentially quantifies the confidence of the L1 acoustic model that phoneme p was

produced for a speech segment. With equation 3.3, a pronunciation score based on

the L1 acoustic model can be calculated for each phoneme segment in the original
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alignment. The implementations of both feature sets are available on Github 7 .

Sentence-level integration

Previous introduced feature extraction methods will output both PSL2 and PSL1

on phoneme level. However, accented speech of each speaker is a sentence. Thus,

a sentence-level integration method is proposed to convert phoneme-level pronuncia-

tion scores to a sentence-level feature vector. Specifically, after phoneme-level features

PSL2(p) and PSL1(p), are extracted, a sentence-level feature extraction scheme was

used to convert phoneme-level measurements to a feature vector with a fixed di-

mension for each utterance. The pronunciation features for vowels, consonants and

syllables are first grouped together, and four statistics for each of these three pho-

netic categories are then calculated: for both PSL2(p) and PSL1(p), the minimum,

mean, standard deviation and mean-normalized standard deviation (standard devi-

ation divided by mean) of phoneme-level pronunciation scores of vowels, consonants

and syllables in each utterance are calculated (implementation available 8 ). This re-

sults in a total of 12 utterance-level features, and a total of 24 utterance-level features

combining both pronunciation information from L1 and L2 acoustic models.

3.3.4 Prosodic feature extraction

To represent speech prosody, durational rhythmic measurements of phonemes and

syllables are adopted as the studies by Ramus et al. (1999); Grabe and Low (2002).

Specifically, an extended speech rhythmic feature set proposed in (Lai et al., 2013) are

employed in this study. First, the same forced-alignment results achieved in previous

section is reused here to get the start and end time of each phoneme. Then, the

7https://github.com/tbright17/kaldi-dnn-ali-gop

8https://github.com/tbright17/accent-feat
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following measurements are calculated:

1. Mean, standard deviation and mean-normalizd standard deviation (standard

deviation divided by mean) of durations of vowels, consonants and syllables.

2. Duration proportion of vowels, consonants and syllables, calculated as the total

length of vowels, consonants and syllables divided by the length of the sentence

(with starting and ending silence removed).

3. Raw Pairwise Variability Index (rPVI) of durations of vowels, consonants and

syllables, calculated as:

rPV I =
m−1∑
k=1

|dk − dk+1|/(m− 1), (3.4)

where dk is the duration of kth phoneme or syllable and m is the total number

of phonemes or syllables in a sentence.

4. Normalized Pairwise Variability Index (nPVI) of durations of vowels, consonants

and syllables, calculated as:

nPV I =
m−1∑
k=1

| dk − dk+1

(dk + dk+1)/2
|/(m− 1), (3.5)

where the notations are the same as in equation 3.4.

Finally, a 18-dimensional feature vector can be extracted from each speech signal.

In this study, this rhythmic feature extraction scheme is applied to both L1 speech,

L2 speech and accented speech to do contrastive analysis between accented speech

and L1, and between L2 speech and accented speech. For the four foreign languages,

1000 sentences with more than 40 phonemes in each are randomly selected from the

corresponding native speech corpus. In order to achieve better forced-alignment,

another forced-alignment tool (McAuliffe et al., 2017) is employed to align phoneme
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Figure 3.9: Diagram of the methodology used in this study.

sequences with speech recordings because it comes with well-trained foreign language

acoustic models (However, because of lack of information, it can not be used to do

the computation in section 3.3.3). For native English speech, those measurements

are directly calculated on the 30 native American English sentences from SAA using

the native English acoustic model trained on Librispeech dataset. The average of

rhythmic features of each language (four L1s and English) will be used as the speech

prosodic patterns of those languages.

3.4 Procedure

The diagram of the methodology used in this study is shown in figure 3.9. After

extracting acoustic measurements from native L1 speech, accented speech and native

L2 speech, differential analysis, the goal of which is to quantify the difference between

two sets of features, is applied to the L1-accented pair and L2-accented pair. Then,

two sets of features can be obtained: the L2 normalized acoustic measurements repre-

sent how close the phonological properties in accented speech is to native L2 speech;
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the L1 normalized acoustic measurements represent how close the phonological prop-

erties in accented speech is to native L1 speech. The segmental feature extraction

scheme in section 3.3.3 directly output the L1 and L2 normalized acoustic measure-

ments. This is because the input to that scheme in this case is accented speech and

L1 or L2 phonetic patterns (defined by L1 or L2 acoustic models), and the output

can represent the difference between accented speech and L1/L2 phonetic pattern-

s. In contrast, differential analysis needs to be done for the suprasegmental feature

extraction method in section 3.3.4. The L2 and L1 normalized feature sets can be

further categorized into segmental measurements and suprasegmental measurements.

The first data analysis, which will be introduced in chapter 4, will investigate the

effect of L1 phonetic patterns on the perception accented speech. The second da-

ta analysis, which will be introduced in chapter 5, will investigate the effect of L1

prosodic properties on the perception of accented speech. The third data analysis,

which will be introduced in chapter 6, will investigate the effect of L1 phonetic and

prosodic patterns on the perception of accented speech, and propose a new compu-

tational model to do automatic accentedness evaluation. The data analysis methods

used in this study are mainly correlation analysis, which examines how the acoustic

measurements and accentedness score are correlated, and multiple regression analy-

sis, which examines how well the combination of multiple acoustic measurements can

predict the accentedness score. The whole data analysis procedure involves feature

preprocessing, feature selection and mode regularization, which will be introduced in

detail in later chapters.
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Chapter 4

L1’S EFFECT ON PHONETIC PROPERTIES OF ACCENTED SPEECH

4.1 Introduction

This section will investigate the statistical relationship between the phonetic a-

coustic measurements extracted from accented American English speech (independent

variables) and the perceived accetendenss score provided by native American English

speakers (dependent variables). Two sets of features will be used as independent vari-

ables: one is the pronunciation score based features extracted only using L2 acoustic

model, and the other one is the pronunciation score based features extracted using

both L1 and L2 acoustic models. This corresponds to the data analysis 1 in figure

3.9 using only L2 normalized segmental acoustic measurements, and the combination

of both L1 and L2 normalized segmental acoustic measurements. First, correlational

relationship between independent variables and dependent variables is investigated.

Second, multiple regression analysis will be employed to analyze how well each set of

features can predict the accentedness scores. Results and discussion are in the final

part.

4.2 Methods

For each foreign language, the correlation analysis will be done between each

dimension of the feature vector and the accentedness scores ( average of all 13 anno-

tators). The correlation analysis is done L1 dependently in hope that some L1 specific

information will be revealed for testing the second hypothesis in 1. The Pearson cor-

relation coefficients and the corresponding p-value for testing non-correlation will be
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Figure 4.1: Diagram of the procedure for multiple regression analysis between pro-
nunciation based acoustic measurements and accentedness score.

calculated in this part. Higher correlation coefficients means better correlation, and

lower p-value means correlation is more significant.

The whole procedure of multiple regression analysis is shown in figure 4.1. The

upper part of the figure shows the feature extraction scheme in section 3.3.3, and will

not be described here. Each speaker has a 12-dimensional feature vector quantifying

how close the pronunciation is to the L2, and another 12-dimensional feature vector

quantifying how close the pronunciation is to the L1. After extracting utterance-level

features for all speakers, each speaker has a feature vector and a corresponding ac-

centedness score (in the range of 1 to 4). For speakers that belong to the same L1

category, a linear regression model with a L2-norm regularizer (or ridge regression) is

built with data from 29 speakers used to train the model and the remaining speaker

used to evaluate the model. The feature vectors are mean and variance normalized

first. Feature selection based on univariate linear regression test (Saeys et al., 2007) is

also used to select the most predictable features. Basically, the feature selector calcu-

lates a score (based on the correlation coefficients between independent variables and
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dependent variables) for each independent variables given labels in training set and

select the independent variables with highest scores. The scikit-learn toolkit is used

to implement feature normalization, feature selection and ridge regression (Pedregosa

et al., 2011). To generate accentedness predictions for all speakers, leave-one-speaker-

out CV based evaluation is performed; this means that a feature selector and a ridge

regression model is trained on all combinations of 29 speakers out of 30 speakers, and

tested on the 1 remaining. For different input features (12-dimensional utterance-level

features or 24-dimensional utterance-level features), the hyperparameters are tuned

to achieve the best performance.

As mentioned in section 3.2, the accentedness label distributions for German and

French speakers do not span the 1-4 rating scale uniformly. The initial result reveals

that the model performance on German and French speakers was comparatively lower

(but there was still improvement by adding the feature vector extracted using L1

acoustic model). In an attempt to train our model with more uniformly distributed

labels, the German speakers are randomly downsampled from 30 to 18 and French

speakers from 30 to 22 in an attempt to uniformly sample the labels. For other two

languages, there are still 30 speakers in the results. The Pearson correlation coefficient

(PCC, higher better) and the mean absolute error (MAE, lower better) are used to

measure the relationship between model prediction and human scores.

4.3 Results

4.3.1 Results of correlation analysis

In table 4.1, PCC (first line) together with p-value (second line) between acoustic

measurements extracted from L1 and l2 acoustic models and accentedness scores

of four different foreign languages are presented. The results of German and French
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Table 4.1: Pearson correlation coefficients (first line) together with p-value (second
line) between acoustic measurements extracted from L1 and l2 acoustic models and
accentedness scores of four different foreign languages.

Based on L2 AM Based on L1 AM

German French Mandarin Spanish German French Mandarin Spanish

Minimum of

vowels’ PS

-0.36

1.48E-01

0.17

4.60E-01

-0.53

2.78E-03

-0.17

3.58E-01

-0.14

5.81E-01

0.12

6.08E-01

0.12

5.27E-01

0.35

5.89E-02

Minimum of

consonants’ PS

-0.45

6.16E-02

-0.37

1.02E-01

-0.11

5.69E-01

-0.47

9.26E-03

0.23

3.64E-01

0.02

9.28E-02

-0.03

8.82E-01

0.07

7.30E-01

Minimum of

syllables’ PS

0.00

9.94E-01

0.08

7.33E-01

-0.33

7.69E-02

-0.20

2.82E-01

-0.10

7.01E-01

0.23

3.16E-01

0.31

9.80E-02

0.20

2.98E-01

Average of

vowels’ PS

-0.48

4.31E-02

-0.27

2.28E-01

-0.64

1.43E-04

-0.69

2.21E-05

-0.25

3.14E-01

0.40

7.17E-02

0.55

1.52E-03

0.53

2.68E-03

Average of

consonants’ PS

-0.50

3.60E-02

-0.55

1.04E-02

-0.64

1.40E-04

-0.69

2.08E-05

0.12

6.26E-01

0.60

3.99E-03

0.33

7.18E-02

0.31

9.56E-02

Average of

syllables’ PS

-0.44

6.86E-02

-0.52

1.59E-02

-0.68

3.07E-05

-0.68

2.86E-05

-0.02

9.29E-01

0.59

4.81E-03

0.56

1.17E-03

0.44

1.40E-02

STD of

vowels’ PS

0.51

3.02E-02

-0.11

6.41E-01

0.61

2.76E-04

0.43

1.62E-02

0.35

1.59E-01

-0.24

2.85E-01

-0.47

9.05E-03

-0.31

9.40E-02

STD of

consonants’ PS

0.45

6.31E-02

0.44

4.76E-02

0.40

3.05E-02

0.61

3.45E-04

-0.20

4.19E-01

-0.02

9.38E-01

0.38

4.00E-02

-0.16

3.88E-01

STD of

syllables’ PS

0.23

3.49E-01

0.06

7.95E-01

0.43

1.87E-02

0.34

6.48E-02

0.13

5.99E-01

-0.28

2.23E-01

-0.10

5.94E-01

-0.53

2.49E-03

STD norm of

vowels’ PS

0.30

2.34E-01

0.63

2.17E-03

0.36

5.30E-02

0.52

2.97E-03

-0.26

2.94E-01

-0.01

9.57E-01

-0.22

2.35E-01

-0.23

2.20E-01

STD norm of

consonants’ PS

0.35

1.51E-01

0.48

2.77E-02

0.73

4.97E-06

0.56

1.22E-03

0.24

3.30E-01

-0.32

1.60E-1

-0.44

1.54E-02

-0.01

9.73E-01

STD norm of

syllables’ PS

0.50

3.58E-02

0.69

5.29E-04

0.69

2.82E-05

0.57

9.85E-04

-0.19

4.56E-01

0.06

7.81E-01

-0.33

7.26E-02

0.21

2.63E-01
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Figure 4.2: Scatter plots between accentedness scores and one dimension of features
for Mandarin (first row) and Spanish (second row) speakers.

speakers are based on a downsampled subset because it is found that with the original

30 speakers the correlation coefficients are relatively low. Similar downsampling is also

used in multiple regression analysis. In the table, “AM” is short for “acoustic model”;

“PS” is short for “pronunciation score”; “STD” is short for “Standard deviation”;

“STD norm” is short for “mean normalized standard deviation”. For each feature

set (based on L2 AM or based on L1 AM), the highest correlation coefficient between

each feature and accentedness scores is in bold for all four foreign languages. From

the table, there are several interesting observations:

1. For minimum and average based features (row 3 to row 8), the correlation co-

efficients with low p-value (means significantly correlated) achieved with L2

64



acoustic model are negative, while those achieved with L1 acoustic model are

positive in most cases. This can be interpreted by the physical meanings of

the two feature sets. As introduced in section 3.3.3, for these pronunciation

score based features, higher value means closer to pronunciation patterns mod-

el by corresponding acoustic models. Thus, for minimum and average features

extracted with L1 acoustic model, higher value means the pronunciation of

English is closer to pronunciation patterns of the L1; If a speaker is using the

pronunciation patterns of his L1 to produce English, very possibly he has a high

accentedness score (towards 4 on the scale); Thus, the correlation coefficients

between minimum and average features and accentedness scores are positive.

On the contrary, for minimum and average features extracted with L2 English

acoustic model, higher value means the pronunciation with accent is closer to

pronunciation patterns of native English speakers; Thus, the correlation coef-

ficients are negative. In most cases, the correlation coefficients of minimum

features are relatively low while the correlation coefficients of average features

are relatively high, which tells that the accentedness score can not be deter-

mined by one or two phonemes with very low pronunciation scores in a whole

utterance.

2. For STD features (row 9 to row 11), the patterns are on the other side compared

to minimum and average features. This is also easy to interpret: higher STD

means there are some very low pronunciation scores; In terms of features ex-

tracted with L2 acoustic models, this means possibly higher accentedness score;

In terms of features extracted with L1 acoustic models, this means possible

lower accentedness score. The correlation coefficients of STD features are also

relatively low compared to average features.

65



3. STD norm features (row 12 to row 14) extracted with L1 acoustic model are

not very correlative with accentedness score. However, those extracted with L2

acoustic models can have very high correlation coefficients (such as Mandarin

speakers). STD norm features are calculated by dividing values of STD fea-

tures with values of average features. Ideally, it should have same correlational

pattern with STD features considering average features and STD features are

oppositely correlated with accentedness score.

4. While the features achieved with L2 acoustic models have higher correlation

coefficients with accentedness score, features extracted with L1 acoustic models

also show high correlations. This partly supports the first hypothesis in chap-

ter 1, at least in phonetic subspace. In figure 4.2, the scatter plots between

average of vowels’ PS and accentedness score are presented for Mandarin and

Spanish speakers. Based on this observation, it is more likely that when com-

bining features extracted with both L1 and L2 acoustic models can better fit

the accentedness score.

4.3.2 Results of multiple regression analysis

In table 4.2, both the PCCs and MAEs between model predicted accentedness

and human annotated accentedness for 4 groups of speakers are presented. The

results of German and French speakers before down-sampling are also showed in the

parentheses. There is a clear improvement when adding L1 acoustic model based

features for all 4 L1s. These results show that there is an improvement in model

performance consistently and across all languages after adding features from the L1

acoustic model. It proves that the L1 contrastive information between accented speech

and L1 can provide extra information for accentedness prediction. This is despite the

fact that the annotators know little about the acoustic properties of the speakers’
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Table 4.2: PCCs and MAEs between predicted accentedness and human scores for
speakers of 4 different L1s.

PSL2 only PSL2 and PSL1

PCC MAE PCC MAE

Mandarin 0.707 0.343 0.727 0.329

Spanish 0.681 0.535 0.730 0.464

German
0.734

(0.082)

0.204

(0.301)

0.833

(0.144)

0.163

(0.287)

French
0.531

(0.254)

0.335

(0.406)

0.619

(0.411)

0.303

(0.370)

L1s.

In order to show that features extracted with L1 acoustic model really helps with

predicting accentedness scores, in table 4.3, L1 acoustic model based features that

are selected to predict accentedness scores are showed. Since the multiple regression

analyses are done language-independently, different sets of features are selected for

different languages, and the number of features selected for each language is also p-

resented in the table. Note that for German and French, the feature selection results

are based on subsets of speakers after downsampling. It can be found that for all

four languages, the average pronunciation score of vowels, consonants and syllables

together with minimum of vowels’ pronunciation score and standard deviation of vow-

els’ pronunciation scores are selected. This indicates that the first order information

of pronunciation scores extracted with L1 acoustic model can help predict the ac-

centedness score. The results of the multiple regression analysis further validate the

first hypothesis in chapter 1 that L1-related acoustic measurements can help explain

variation in accentedness scores.
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Table 4.3: Selected features that are extracted with L1 acoustic model for each
language. “num feature” stands for the total number of selected features by feature
selection.

German (num feat=24) French (num feat=16) Mandarin (num feat=14) Spanish (num feat=14)

Minimum of

vowels’ PS
Yes Yes Yes Yes

Minimum of

consonants’ PS
Yes

Minimum of

syllables’ PS
Yes Yes

Average of

vowels’ PS
Yes Yes Yes Yes

Average of

consonants’ PS
Yes Yes Yes Yes

Average of

syllables’ PS
Yes Yes Yes Yes

STD of

vowels’ PS
Yes Yes Yes Yes

STD of

consonants’ PS
Yes

STD of

syllables’ PS
Yes Yes Yes

STD norm of

vowels’ PS
Yes

STD norm of

consonants’ PS
Yes Yes Yes

STD norm of

syllables’ PS
Yes Yes
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4.4 Discussion

The results in table 4.2 reveal that the improvement in performance of regression

model varies across different L1s. There are several possible reasons for this including

the different modeling quality of the L1s’ ASR systems, the accentedness annota-

tion quality, or the contribution of articulation features to perceived impressions of

accentedness for different languages. Another interesting aspect that is worthy of

additional investigation is that although there is knowledge transfer from L1 to L2

during L2 acquisition, this influence can vary across different L1s and even different

speakers. For example, some research suggests that there exist some universal effects

in L2 speech learning process that are independent of a speaker’s L1 Chang (2010).

The approach in this study may provide a means of comparing L1-specific and L1-

agnostic pronunciation errors in an attempt to computationally identify some of the

universal effects. Specifically, comparing the L1 and L2 acoustic pronunciation scores

of English phonemes produced by L2 learners can indicate which English phonemes

are not pronounced well due to the speaker is using a similar way with phonemes in

L1 phonetic system (high L1 acoustic model based pronunciation score), and which

English phonemes are not pronounced well but they also have low L1 acoustic model

based pronunciation score (means the pronunciation pattern has nothing to do with

the L1 phonetic system).

It has been shown that the proposed feature sets can boost the performance of

accentedness prediction. However, there is still room for improvement. First, as

mentioned previously, the GMU speech accent archive dataset has a limited number

of speakers and small variation of accentedness for some languages. The recording

environment also varies by speaker. A cleaner dataset with uniform accentedness

ratings is better suited for our application. Second, the amount and quality of training
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data for L1 acoustic models can be improved since it is quite limited for some of the

languages (Spanish, German and French in this study). More accurate L1 acoustic

models may result in an improvement of algorithm performance. Third, it is well

known that accentedness is related to both pronunciation and prosodic features. This

chapter mainly focuses on pronunciation based features. In the next chapter, the same

framework will be extended to speech prosody features.
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Chapter 5

L1’S EFFECT ON PROSODIC PROPERTIES OF ACCENTED SPEECH

5.1 Introduction

The previous chapter applies the proposed methodology for accentedness percep-

tion to pronunciation based segmental features, and proves that integrating L1 pro-

nunciation information by extracting pronunciation scores of accented English speech

with L1 acoustic model can improve the prediction accuracy of accentedness percep-

tion. This chapter will focus on applying the same methodology to speech prosodic

features to study whether L1 prosodic patterns affect the perception of accentedness.

As mentioned in chapter 3, durational rhythmic features will be used as proxy of

speech prosody. The methods and analysis of results are almost the same as chapter

4. Details will be introduced in following sections.

5.2 Methods

Chapter 3 describes the procedure to extract durational rhythmic features. The

extracted rhythmic features for native L1, accented L2 speech and native L2 are

represented with xL1, Xacc and xL2 respectively. Note that xL1 and xL2 are vectors

because they are the average of features extracted from multiple speech recordings.

These three sets of features are converted to accent related features by taking the

absolute difference between xL1 and Xacc and xL2 and Xacc. |xL2 −Xacc| represent

the difference between the rhythmic patterns of accented speech and target L2 speech,

while |xL1 −Xacc| represents the difference between the rhythmic patterns of accented

speech and speaker’s L1 speech. Here, the subtraction is broadcasted to every row of
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Xacc to get the contrastive information for each speaker with accent.

The first analysis is the correlation analysis between speech prosodic features and

accentedness scores averaged on 13 annotators. Similarity, the PCC is calculated

between every features of the 18-dimensional feature vectors in a language-dependent

way. The procedure is different from previous chapter observing that the feature

dimension is higher than pronunciation features. Thus, only the top-12 features with

highest PCC with accentedness scores are shown for each language together with the

p-values (lower p-value stands for more statistically significant correlation).

Same multiple regression analysis is done except that the number of input fea-

tures is changed to 18. Downsampling is not used since it does not help for German

speakers. Thus, for each language, multiple regression analysis is conducted between

18-dimensional speech rhythmic measurements and accentedness scores of 30 speak-

ers. Specifically, |xL2 −Xacc| is used as the baseline model which only takes the

difference of speech rhythmic patterns between accented speech and L2 into consider-

ation. Then, |xL1 −Xacc| can be combined into the baseline feature set to model the

distance between accented speech and L1 on suprasegmental feature space. Finally,

input to the baseline model is a 18-dimensional feature vector, and adding L1-related

information result in a 36-dimensional feature vector.

As in chapter 4, the input feature vectors are first normalized with mean and

standard deviation on each dimension. Then, a feature selector based on univariate

regression test is applied to select the most predictable features. Ridge regression is

used to learn the relationship between input features and accentedness score. The

same leave-one-speaker-out CV is employed to evaluate the performance on accented-

ness prediction. Hyperparameters including number of features selected and strength

of 2-norm regularization in ridge regression are tuned to achieve the best CV perfor-

mance. PCC and MAE are reported language dependently. To better illustrate the
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Figure 5.1: Diagram of the procedure for multiple regression analysis between
suprasegmental prosodic features and accentedness scores. Here, xL1 and xL2 are
the average of features of all speech recordings. xacc is the feature vector for one
accented speech recording.

process, figure 5.1 shows the whole procedure of multiple regression analysis.

5.3 Results

5.3.1 Results of correlation analysis

In figure 5.2, PCCs together with p-values between two sets of speech rhyth-

mic features and accentedness scores of four different foreign languages are presented.

German speakers are the from the downsampled subsets with 18 speakers. There is no

downsampling for French speakers because the correlation coefficients are not affected

by the non-uniform distribution of accentedness scores. Feature names on X-axis are

abbreviations: per{V,C,Syl} represents the percentage of durations of vowels, con-

sonants and syllables, avg{V,C,Syl} represents the average durations, std{V,C,Syl}

represents the standard deviation of durations, Vacro{V,C,Syl} represents the mean-
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Figure 5.2: Bar plots of the top-12 features highly correlated with accentedness
scores in feature sets |xL2 −Xacc| (upper panel in each subfigure) and |xL1 −Xacc|
(lower panel in each subfigure). Y-axis includes the correlation coefficients with ac-
centedness score and X-axis includes feature names. The numbers on top of each bar
are the p-value for testing non-correlation.
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normalizd standard deviation of durations, rPVI{V,C,Syl} represents the Raw PVI of

durations and nPVI{V,C,Syl} represents the Normalized PVI) of durations. Several

interesting observations can be summarized:

1. Except for German speakers, rhythmic features of other three languages all have

relatively high correlation coefficients (>0.6) with accentedness scores. This

can be attributed to the similarity of rhythmic patterns between English and

German (as shown in figure 2.4 and table 2.4, also in the study by Li and Post

(2014)). It becomes hard to use rhythmic features to differentiate between mild

and strong accent when the rhythmic patterns of L1 is already very close to L2.

2. As shown in previous chapter, the most predictable features extracted with L1

acoustic models have opposite correlation with accentedness scores compared

to features extracted with L2 acoustic models. However, for rhythmic features,

it can be found that most features of both |xL2 −Xacc| and |xL1 −Xacc| are

positively correlated with accentedness scores (except for German speakers).

Only a few dimensions of |xL1 −Xacc| have negative correlation with accented-

ness scores. This indicates that for some speakers, values of feature dimensions

in Xacc are not within the range from values of xL2 to values of xL2 in corre-

sponding dimensions, while values on some feature dimensions are between the

values in L1 and L2. This is also observed in the study by White and Mattys

(2007). This observation is consistent with the founds in (Li and Post, 2014)

where the authors believe that for speech rhythm acquisition there is a multi-

systemic model of L2 rhythm acquisition and both transferred L1 knowledge

and universal effects independent of L1 played a role.

3. For languages that have high correlation coefficients, it can be found that the

average durations features and PVI features are the most correlated ones. This

75



is also consistent with studies by Ordin and Polyanskaya (2015) where they

show the different rhythmic feature values in different proficiency levels: begin-

ners, intermediate and advanced, in spite that they did not provide correlation

coefficients between rhythmic feature values and how strong the accent is.

5.3.2 Results of multiple regression analysis

During the experiment, it was found that For French and Mandarin, using feature

set [|xL2 −Xacc|, |xL2 −Xacc|-|xL1 −Xacc|] as the way to integrate L1 information

gave the best performance of leave-one-speaker-out CV; for Spanish and German,

feature set [|xL2 −Xacc|, |xL1 −Xacc|] gave the best performance. Since for French

and Mandarin, using [|xL2 −Xacc|, |xL1 −Xacc|] can also achieve better performance

than the baseline model, the difference of the best feature sets across languages is

probably due to different speech prosody patterns. In table 5.1, both the PCCs and

MAEs between model predicted accentedness and human annotated accentedness

for 4 groups of speakers are presented. The results for German speakers are based

on the 18 speakers after downsampling (same as chapter 4). However, there is no

downsampling for French speakers, because without downsampling, the performance

on French speakers is already satisfied. There is consistent improvement when adding

L1 rhythmic patterns based features for all 4 L1s. These results show that there is

benefit to model performance consistently and across all four languages after adding

features from contrastive information with L1 rhythmic patterns. It proves that

the rhythmic contrastive information between accented speech and L1 can provide

extra information for accentedness prediction. This is also despite the fact that the

annotators know little about the acoustic properties of the speakers’ L1s.

In order to show that features extracted with L1 rhythmic patterns really helps

with predicting accentedness scores, in table 5.2 L1 rhythmic patterns based features
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Table 5.1: PCCs and MAEs between predicted accentedness and human scores for
speakers of three different L1s.

[|xL2 −Xacc|] With |xL1 −Xacc|

PCC MAE PCC MAE

German 0.583 0.202 0.772 0.180

French 0.647 0.310 0.680 0.289

Mandarin 0.581 0.425 0.712 0.380

Spanish 0.698 0.507 0.729 0.482

Table 5.2: Selected L1-related feature dimensions. “num feature” stands for the
total number of selected features by feature selection.

Selected L1-related features

German

(num feat=18)

avgV,avgC,avgSyl,stdC,VacroC,VacroSyl,perV

perC,perSyl,rPVIC,nPVIV,nPVIC

French

(num feat=25)

avgC,avgSyl,stdV,stdC,stdSyl,VacroC,perV,perC

perSyl,rPVIV,rPVIC,rPVISyl,nPVISyl

Mandarin

(num feat=15)
avgV,avgC,stdV,VacroSyl,perV,rPVIV,rPVIC

Spanish

(num feat=11)
avgV,avgC,avgSyl,stdC,stdSyl,rPVIC,rPVISyl,nPVIC

that are selected to predict accentedness scores are showed. Since the multiple re-

gression analyses are done language-dependently, different sets of features are selected

for different languages, and the number of features selected for each language is also

presented in the table. It can be found that for French and Spanish speakers, the du-

rational measurements of L1 consonants and syllables are more often selected, while

for Mandarin speakers the durational measurements of L1 vowels are more import

features. The study by Li and Post (2014) compared durational measurements of
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Mandarin accented English and native English. They showed that vocalic rhythmic

measurements can well discriminate Mandarin learners at different proficiency lev-

els. For French and Spanish speakers, there are no studies showing the progressive

change of consonantal and syllable rhythmic measurements along proficiency levels.

The results are reasonable considering both French and Spanish are syllable-timed

languages while English is stress-timed languages. For German speakers, L1-related

vocalic, consonantal and syllabic measurements are all important for accentedness

prediction. The results of the multiple regression analysis further validate the first

hypothesis in chapter 1.

5.4 Discussion

This chapter shows that the speech prosodic properties transferred from L1 can

also help deciding how strong the foreign accent of L2 learners is . This conforms with

previous studies, where the authors show the L1’s effect on L2 prosody acquisition

(Rasier and Hiligsmann, 2007; Stockmal et al., 2005; White and Mattys, 2007; Li

and Post, 2014; Ordin and Polyanskaya, 2015). However, based on the correlation

analysis in figure 5.2, on most feature dimensions, it does not indicate that if the

rhythmic property on that dimension is further from L1, the foreign accent is milder.

This is in contrast to the results in table 4.1. The first possible reason is that while

previous studies show the effect of L1 on L2 rhythmic pattern acquisition, there are

also obvious universal effect that are independent of L1. For example, the study

Ordin and Polyanskaya (2015) showed that the PVI measurements of English speech

produced by French speakers can be even higher than native English speakers given

that English speech has much higher PVI measurements than French speech. The

second possible reason is that all the rhythmic measurements in this study are based

on automatic forced alignment. For speakers with not very strong accent, there
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will be much fewer forced-alignment errors. However, for speakers with very strong

accent, the forced-alignment results may not be very accurate. This will also affect

the correlation analysis between features and accentedness scores.

There are also some interesting implications combining the findings in this chap-

ter and chapter 4. Compared to the results in chapter 4, for German and Mandarin

speakers, using only segmental pronunciation based features can better predict ac-

centedness scores than using only suprasegmental rhythmic features; while for French

and Spanish, the suprasegmental rhythmic features perform better. Based on the

language differential analysis presented in chapter 2, where it shows the relative dis-

tances of different L1s to English on both phonetic space and rhythmic space, the

results suggest the relative contribution of segmental and suprasegmental acoustic

characteristics to the perception of foreign accent for different L1s. For example,

German and English have very similar rhythmic patterns, thus segmental measure-

ments characterizing phoneme pronunciation can better discriminate speakers with

strong and weak foreign accent. Mandarin is far to English on both phonetic and

prosodic subspaces, and the results indicates that for native English speakers, the

pronunciation of English phonemes is more decisive to determine the accentedness.

Spanish and French are all syllable-timed languages, thus native English speakers

attribute the foreign accent of Spanish and French speakers more to suprasegmental

inaccuracy than to segmental inaccuracy. In contrast to previous studies using phono-

logical properties transplantation to investigate the relative importance of segmental

and suprasegmental in accentedness perception, this study provide a new way to look

at the same problem with the advantage that this method can provide quantitative

analysis. This study further demonstrates that the relative importance of segmental

and suprasegmental features to the perception of foreign accent may vary accord-

ing to accented speaker’s L1 background, and the variation is due to the contrastive
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patterns between L1 and L2 in segmental and suprasegmental feature spaces. These

findings support the second hypothesis in 1, which claims that “phonological prop-

erties in different subspaces (phonetic or prosodic) of accented speech produced by

speakers from different L1 backgrounds will have distinct contribution to perceived

accentedness”.

This study shows that with extra speaker’s L1 information, the perception of ac-

centedness can be better modeled compared to only using the deviation from native

L2. At first thought, this is against intuition, especially considering the annotators

in this study do not know the identification of the speakers’s L1, neither can speak

those L1s. However, previous study (Yuan et al., 2010) has shown that the accented-

ness perception of non-native speech by non-native L2 speakers has preference over

L1 backgrounds. In the study, eight Mandarin judges who were considered as experi-

enced English speakers were asked to rate the accentedness of speakers speaking eight

different L1s. The results showed that Mandarin judges tended to underestimate the

accentedness of Cantonese and Mandarin speakers the most, followed by German,

Japanese and Vietnamese speakers, and French, Spanish and Russian speakers the

least. The authors suggested that structural similarities or differences between the

L1 languages of the speakers and the listeners play an important role in the listeners’

perception of accentedness. Flege et al. (1995) reviewed the factors that affecting the

perception of accentedness by native L2 speakers. However, since degree of foreign

accent is originally defined as the native L2 speaker’s perception of deviations from

a pronunciation norm that a listener attributes to the talker not speaking the target

language natively (McCullough, 2013a), there is no way to study if native L2 speakers

have preference depending on the phonological differences and similarities between

L1 and L2. This study tends to believe that the difference or similarities on specif-

ic phonological dimensions between L1 and L2 play a decisive role in accentedness
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perception. This effect could vary across speakers (as concluded by Major (1987b)

that the amount of L1’s influence decreased as learners become more proficient in L2,

and this behavior may vary for different learners) instead of simply decided by the

distance between averaged L1 phonological patterns and averaged L2 phonological

patterns. Chapter 7 will take Mandarin speakers as an example to show the effect of

L1 on both phonetic and prosodic properties of accented speech.
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Chapter 6

A COMPUTATIONAL MODEL FOR ACCENTEDNESS PERCEPTION WITH

L1 INFORMATION

6.1 Introduction

This chapter will use the knowledge derived from previous chapters, and propose

a new scheme for automatic accentedness evaluation system. The system features a

novel acoustic feature extraction process, which not only combines both segmental

and suprasegmental information but also integrates speakers’ L1 information. The

way of adding L1 information in this study is also novel in automatic accentedness

evaluation literature except for one study. Moustroufas and Digalakis (2007) used

utterance-level pronunciation scores extracted from both L1 and L2 acoustic models,

calculated frame-wise and averaged over the utterance. However, the proposed sys-

tem has an important difference: the pronunciation scores are calculated on phoneme

segments and provide more specific information regarding the accentedness of differ-

ent phonemic categories. Suprasegmental acoustic measurements representing speech

prosody are also included. Furthermore, Moustroufas and Digalakis (2007) assume

the human evaluator can speak both L1 and L2 and experiments were conducted

on only one L1. This study wants to investigate if the L1 acoustic model can help

improve prediction even if the human evaluators have no knowledge of the underlying

L1.

To validate the proposed system, the dataset introduced in chapter 3 will be

employed again to conduct experiments on automatic accentedness evaluation both

L1-dependently and L1-independently. Same leave-one-speaker-out CV will be used
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Figure 6.1: Diagram of the proposed computational model. The blocks within red
box are the highlights of the current model.

to evaluate the performance of the system. Finally, possible extensions and improve-

ments over the state-of-the-art systems are discussed.

6.2 Method

The diagram of the proposed computational model is shown in figure 6.1. Prereq-

uisites include a well trained acoustic model (hybrid system built on GMM-HMM or

DNN-HMM) on native L2 speech, a well trained acoustic model on native L1 speech,

a corpus of native L2 speech for extracting L2 prosodic patterns and a corpus of native

L1 speech for extracting L1 prosodic patterns. First, accented speech in L2, native

L1 speech and native L2 speech are processed with forced-alignment tools to obtain

the durations of each phoneme in the transcripts. There are many available forced-

alignment tools with open access 1 . Some of them support forced-alignment for

multiple languages. For accented speech, usually the forced-alignment performance

is inferior compared to native speech because those tools also use acoustic models

trained on native speech. To relieve this problem, some recent studies trained the

1As summarized in https://github.com/pettarin/forced-alignment-tools
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acoustic models for accented speech forced-alignment directly on accented speech to

achieve data matching (Tao et al., 2016; Qian et al., 2017). However, it requires huge

amount of non-native speech recordings which is usually inaccessible. This study

employs a forced-alignment tool with an acoustic model trained on a native English

speech corpus with about 1000 hours training data to get the phonemes durations

of accented speech. After obtaining the phoneme durations of native L1 speech, na-

tive L2 speech and accented speech, the feature extraction procedure introduced in

section 3.3.4 will be applied to get the prosodic patterns of native L1 and L2. This

can be achieved by averaging over the sentence-level features over all native L1 and

L2 utterances. At the same time, prosodic feature vectors of each accented speech

utterances are saved for following process. What previous studies have investigated

is that computing the difference between prosodic measurements of accented speech

and native L2 speech gives the deviation from native prosodic patterns. This study

improves this by adding the difference between prosodic measurements of accented

speech and native L1 speech to represent how much the prosodic patterns of accented

speaker are affected by L1. This results in two sets of suprasegmental feature vectors

for each accented speech utterance.

In parallel, accented speech recordings are also sent to both L1 and L2 acous-

tic models to get the pronunciation scores of each phoneme in the utterance based

on the corresponding acoustic model. The algorithms proposed in section 3.3.3 are

used to convert phoneme-level pronunciation score to sentence level pronunciation

measurements. Different from previous studies in the literature, this study not only

measures the pronunciation mismatch with native L2 speech but also how much the

pronunciation in L2 is affected by the speaker’s L1. This again results in two sets of

segmental feature vectors for each accented speech utterance. Up to now, there are

four feature sets for each accented speech utterance. All of them can be concatenated
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to form a larger feature vector. Feature vectors without L1 information will be used

as baseline system in this study, which has been adopted by recent studies (Black

et al., 2015; Tao et al., 2016; Qian et al., 2017).

Almost all studies in literature treat the accentedness (or nativeness) evaluation

as a regression problem. With the developed sentence-level features, each speaker be-

comes a data sample with a labeled accentedness score. The accentedness score can

be on different scales depending on tasks. This study use a 4-point scale to annotate

the accentedness score. Usually, the label will be the average of multiple annotators

to reduce inter-rater variability. With feature representation and labels, a regression

model can be trained to learn the mapping from input feature to accentedness score.

Considering the relatively small number of speakers, this study adopts ridge regression

(linear regression with L2-norm regularization) together with a simple feature selec-

tion algorithm based on univariate regression analysis. Depending on the dataset,

different regression models can be used to achieve better performance. For example,

support vector regression (Black et al., 2015), Gaussian process (Grósz et al., 2015),

random forest (Qian et al., 2017) and Deep neural networks (Grósz et al., 2015) are

also used in previous studies. SVR is also tried in this study but it is not better than

linear regression.

To evaluate the proposed systems, experiments are conducted on both L1-dependent

and L1-independent tasks. For L1-dependent task, the system is built on speakers

from one L1; for L1-independent task, the system is built on speakers from different

L1s. In both cases, leave-one-speaker-out CV is used to evaluate the system’s per-

formance because leave-one-out CV is almost the unbiased estimate of generalization

error (Elisseeff et al., 2003). As previous chapters, PCC and MAE on all speakers are

used as performance indicators.

85



Table 6.1: Performance of accentedness score prediction with different feature sets
for different L1s.

PCC MAE

German French Mandarin Spanish German French Mandarin Spanish

L2 seg 0.734 0.254 0.707 0.681 0.204 0.406 0.343 0.535

+L1 seg 0.833 0.411 0.727 0.730 0.163 0.370 0.329 0.464

L2 supraseg 0.583 0.647 0.581 0.698 0.202 0.310 0.425 0.507

+L1 supraseg 0.772 0.680 0.712 0.729 0.180 0.289 0.380 0.482

L2 seg + L2 supraseg 0.494 0.667 0.733 0.846 0.251 0.308 0.319 0.404

L1,2 seg+L1,2 supraseg 0.590 0.709 0.771 0.898 0.225 0.277 0.296 0.341

6.3 Results

Table 6.1 shows the performance of accentedness score prediction in L1-dependent

way with different feature sets. Part of the results is from table 4.2 and 5.1. “L2 seg”

stands for L2 pronunciation features. “+L1 seg” means adding L1 pronunciation

features to original L2 pronunciation features. “L2 supraseg” stands for L2 prosodic

features; “+L1 supraseg” means adding L1 prosodic features to original L2 prosodic

features. “L2 seg+L2 supraseg” represents combining both L2 pronunciation features

and L2 prosodic features. “L1,2 seg+L1,2 supraseg” represents combining all four

sets of features together. The results on German speakers are achieved with the 18-

speaker subset, and all 30 French speakers are used here. The results show that when

combining both segmental and suprasegmental features, the performance is better

than either only using segmental features or only using suprasegmental features. For

Spanish speakers, the improvement is the largest. However, this observation does

not hold for German speakers: the performance degrades a lot after combining both

segmental and suprasegmental features. Possible reasons for this could be model

overfitting considering there are only 18 data samples, resulting in worse prediction

accuracy when combining two feature sets. This problem can be relieved by using
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Figure 6.2: Bar plots and detailed values of results in L1-independent way.

an ensemble of two ridge regression model trained on segmental and suprasegmental

features separately. Actually, when applying a weighted sum on the predictions of

segmental model and suprasegmental model, the correlation and MAE are 0.791 and

0.171 respectively, which are better than single model. To keep the results consistent,

only performance on feature-level fusion are presented. When adding L1 related

information to the feature sets, the prediction accuracy is further improved for all

four L1s. For Spanish speakers, the PCC is as high as 0.9 (but the MAE is also the

highest). Again, the ensemble model performance of German speakers is 0.890 for

PCC and 0.137 for MAE, which are also big improvement compared to model trained

without L1-related features. This improvement is expected based on the results shown

in previous two chapters.

Figure 6.2 shows the results when all speakers from German (18-speaker subset),

French, Mandarin and Spanish are taken into account. Improvement over baseline

model (employed in current state-of-the-art automatic accentedness evaluation sys-
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Figure 6.3: Scatter plots of the true labels (X-axis) and predictions (Y-axis) of
speakers from different L1s. The fitting line for each L1 is also shown here together
with the R-squared values.

tem) without L1-related features can be observed when adding L1-related features to

the input, although the improvement is relatively marginal compared to L1-dependent

experiments. It proves that the L1 related information can also help the prediction

in L1-independent case. However, it can be found that the improvement in L1-

independent experiment is less than the improvement in L1-dependent experiment.

The reason for this will be discussed in next section. Since the improvement is not

that large, figure 6.3 only shows the scatter plots achieved with all four feature sets for

different L1s. Speakers from different L1s are plot individually with fitting lines and

R-squared values. It can be found that Spanish speakers are fitted the best with the

highest R-squared value. German and French speakers are not fitted well compared

to Spanish and Mandarin speakers. The overall correlation coefficient is 0.811 as

shown in figure 6.2, which indicates a strong relationship between model predictions

and groundtruth accentedness scores.

To further show the validity of the model, native English speakers are included in
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Figure 6.4: Box plots of both predicted (outlined diamond grid) and real (diagonal
stripes) accentedness scores of accented speakers and native English speakers. Pre-
dicted accentedness scores are achieved by the model with only L2 segmental and
suprasegmental features as input.

the leave-one-speaker-out CV together with other accented speakers. Since there are

no L1 features for native English speakers, only model predictions with L2 features

(both segmental and suprasegmental features) are derived. In figure 6.4, box plots

of both predicted and real accentedness scores are given. It can be found that for

accented speakers, the model tends to underestimate the accentedness; however for

native English speakers, the model overestimates the accentedness. Overall, the mod-

el can still predict that Mandarin speakers have the strongest foreign accent while

German speakers have the mildest foreign accent, which is consistent with the labels

given by annotators. Although the model overestimates the accentedness of English

speakers, it is still in an acceptable range and the average of predicted accentedness

scores is 1.51.
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6.4 Discussion

This chapter derives a computational model for automatic accentedness evalua-

tion based on findings in previous chapters. The core idea is a new feature extraction

scheme that not only quantifies the deviation from native L2 phonological patterns

but also how much the accented speech is affected by L1 phonological patterns. Exper-

iments on both L1-dependent and L1-independent tasks show that there is consistent

improvement when combining L1 information in the input feature sets.

As a computational model, some blocks of the proposed system can be flexible

depending the specific task and resources available. For example, more powerful a-

coustic models can be used to derive better pronunciation features. More accurate

forced-alignment can also be achieved with better forced-alignment tools, thus im-

proving the prosodic features. Depending on the size of dataset, regression models

with different complexity can be applied to achieve better performance. Although

the evaluation in the current study is done on speaker-level, the proposed framework

can be easily extended to sentence-level evaluation.

As mentioned before, the performance improvement of the proposed system on L1-

independent tasks is smaller than L1-dependent tasks. This is due to the variability

introduced by different L1 acoustic models and different forced-alignment tools for

different L1s. This may result in the scales of L1 related features variate for different

L1s. This problem can be relieved by using equally powerful L1 acoustic models

and forced-alignments, although it could cost much more effort. Another possible

solution is to normalize the L1-dependent features with the distance between L1 and

L2 pronunciation patterns or the distance between L1 and L2 prosodic patterns. It

is not easy to directly calculate the distance between pronunciation patterns of two

language given their acoustic models. This study tried to normalize the L1 prosodic
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measurements with the distance between prosodic patterns of L1 and L2, which almost

does not change the final results. This is possibly because there is too much variation

of the forced-alignment quality of different L1s. However, this study still believe this

is a direction worth more investigation.
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Chapter 7

GENERAL DISCUSSION

7.1 Introduction

This chapter provides a general discussion about the experiments and findings in

this study. Specially, both theoretic and practical implications of the current study

will be introduced. The first section will focus on how the current study contributes

to L2 speech learning theories, and the second section will focus on how the current

study contributes to automatic accentedness evaluation.

7.2 Implication for L2 speech learning theories

As reviewed in chapter 2, a bunch of studies have investigate the effect of L1 in

the acquisition of L2 phonological properties. This effect presents in both segmental

(as shown by Strange et al. (1992); Flege (1987); Chang et al. (2008); Munro (1993);

Derakhshan and Karimi (2015)) and suprasegmental acquisition (as shown by Men-

nen (2004); Stockmal et al. (2005); White and Mattys (2007); Lin and Wang (2008);

Li and Post (2014); Ordin and Polyanskaya (2015)). However, for segmental proper-

ties acquisition, almost all previously mentioned studies have several limitations to

comprehensively reveal the detail about the L1’s effect on L2 acquisition:

1. Almost all studies only focus on a specific phonological phenomenon, and ana-

lyze how L1 affect the production in L2.

2. Usually the numbers of analyzed speakers and L1s are quite limited.
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3. Those studies can only show the L1’s effect exist, but there is no way to quantize

the influence of L1.

4. Few studies investigate the relationship between L1’s effect and degree of foreign

accent.

For suprasegmental properties acquisition, thanks to the study by Ramus et al.

(1999); Grabe and Low (2002), several publications use durational rhythmic measure-

ments to show the change of those measurements at different stage of L2 learning.

However, these studies still have the similar limitations that the numbers of L1s and

speakers per L1 are small. Moreover, no quantified speakers’ accentedness scores are

available in those studies, only some qualitative ranges (for example, from beginners

to advanced learners).

Different from the methodology presented in previous work, the current study pro-

poses to use a computational framework to quantify the L2 speech learning outcomes

of tens of speakers from multiple L1s. Both segmental and suprasegmental phonology

acquisition are investigated. The analyses done in this study further validate that the

influence of L1 exists in both segmental and suprasegmental phonology acquisition

during L2 learning. More importantly, with the L1s’ information, multiple regression

analysis reveals that the accentedness can be better explained. Besides this, the cur-

rent study further shows that the difference originates from speakers’ L1s will also

be presented in their accented speech through the analysis of relative importance of

segmental and suprasegmental features to accentedness scores. In the following, Man-

darin speakers will be taken as examples to illustrate how the methodology proposed

by this study can be further utilized to investigate the L2 speech learning process.

Figure 7.1 shows the average pronunciation scores of vowels in accented speech

by Mandarin speakers using both L2 (X-axis) and L1 (Y-axis) acoustic models. Each
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Figure 7.1: The average pronunciation scores of vowels in accented speech by Man-
darin speakers using both L2 (X-axis) and L1 (Y-axis) acoustic models. Larger pro-
nunciation score means closer vowel pronunciation to the pronunciation pattern de-
fined by corresponding acoustic model.

speaker (a cross in the figure) has an average vocalic pronunciation score calculated

from L2 acoustic model (avgV L2), and the other one (avgV L1) is calculated from L1

acoustic model. Larger pronunciation score means closer vowel pronunciation to the

pronunciation pattern defined by corresponding acoustic models. The accentedness

score of each speaker is also shown along with the crossing on the scatter plot. As

shown in figure 4.2, the avgV L2 has a negative correlation with accentedness score

while avgV L1 has a positive correlation. In order to better show the L1’s effect

on L2 pronunciation for speakers at different positions on the accentedness scale,

this figure plots how similar each speaker’s L2 pronunciation is with native L2 and

native L1, and together with the accentedness scores. There are several interesting

findings in the figure. First, the orange dash line demonstrates the general trend that

if one speaker’s L2 pronunciation is closer to native L2 speaker, his avgV L1 score

will be lower (means further from L1 pronunciation, thus less affected by L1 phonetic
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patterns). Second, it can be found that very accented speakers are at the lower-

right corner while mildly accented speakers are at the upper-left corner. However,

pronunciation can not explain all the variations of accentedness, as indicated by some

outliers. For example, two speakers (one with 2.8 accentedness score and the other

3.0) has good pronunciation but are still considered to have strong accented. Third,

since the pronunciation score is calculated as the similarity between accented speech

and native speech, the positions of native L1 and L2 can not be put on this scatter

plot. The L2 can be considered to have 0 avgVL2 value but the avgV L1 value can not

be decided using the current computational model (similar for L1). However, given

enough number of speakers, the distance between L1 and L2 can be approximated

by the avgV L1 values of speakers with mildest accent. Fourth, another observation

is that there are some obvious outliers which are not right on the transferring path

from L1 to L2. For example, both the avgV L2 (around -1.9) and avgV L1 (around

-5.3) values of the speaker with 2.6 accentedness score 2.6 are relatively low. Those

outliers can be attributed to the universal effects mentioned in previous studies (as

reviewed by White (1989)), which claim a learner’s L2 system have traits that are

neither related to L1 nor L2. Major (1987b) also found that the amount of L1’s

influence decreased as learners become more proficient in L2, and this behavior may

vary for different learners.

Figure 7.2 demonstrates the scatter plot between two speech rhythmic measure-

ments: the percentage of vocalic and consonantal durations extracted from Mandarin

speakers. These two measurements are chosen because they show more L1’s effect

for strong accented speakers. X-axis is the percentage of vocalic duration (perV) and

Y-axis is the percentage of consonantal duration (perC). Since these measurements

are absolute values, both the values of L1, L2 and accented speech can be calculated

independently. In the figure, the blue diamond is the position of native English; the
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Figure 7.2: Scatter plot of two rhythmic measurements of accented speech by Man-
darin speakers: percentage of vocalic (X-axis) and consonantal (Y-axis) durations.
The measurements of native English (Blue diamond) and Mandarin (Red diamond)
are also shown.

red diamond is the position of native Mandarin; the orange crossings are accented

speakers. The trend line (orange dash line) and R-square value are on the accented

speakers only. Compared to English, Mandarin has high perV value but lower perC

value. It can be found that measurements of most of accented speakers are around

the native English, and only part of them are on the path from native L1 to native

L2. This observation is in line with previous studies on L2 speech rhythm acquisition

(Stockmal et al., 2005; Lin and Wang, 2008; Li and Post, 2014) where the authors

show evidences that speech rhythmic measurements are not on the path from L1 to

L2, indicating existence of effects that are independent from L1. However, the speaker

with the highest accentedness score (3.8) clearly uses the L1 patterns to pronounce

English. The results suggests that the prosodic patterns of accented speakers can be

affected by L1, but may only influence a few prosodic dimensions or even be inde-

pendent from L1; some speakers may not be affected by L1 prosodic patterns when
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producing L2 speech; speakers with mild accent also show no sign of being affected

by L1 prosodic patterns.

To summarize, besides the conclusions drew by this study, it is expected that

the methodology used in this study could facilitate further research directions on

the interference of L1 in L2 speech learning process in a larger scale than previous

studies. It can potentially reveal different factors that contribute to the perceived

accentedness other than L1’s effect. It can also benefit the L2 education field by

individually giving a quantitative approximation of the process of L2 speech learning,

and providing detailed feedback on which part of the English phonology the learners

should focus on in following studies.

7.3 Implication for practical computational models for speech applications

Besides theoretical implications, this study can also contribute to the study on

automatic accentedness evaluation. Automatic accentedness (or nativeness) evalu-

ation plays an important role in computer-assisted pronunciation training (CAPT)

and computer-aided language learning (CALL). State-of-the-art automatic system

includes both the segmental and suprasegmental speech features to model the per-

ception of foreign accent. However, they ignore the effect of L1 in L2 speech learning,

and thus can be improved with the computational model proposed in this study. As

already shown in chapter 6, adding the contrastive information between accented

speech and L1 can improve the performance on accentedness prediction.

Another field that could benefit from the current study is speech intelligibility

evaluation of pathological speech. This field is emerging as another important appli-

cation area of speech technologies with the developing of telemedicine and increasing

population impacted by speech disoreders. Although there is great interest in de-

veloping computational models for this application, current studies usually develops
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a feature extraction scheme or directly use existed feature extraction scheme such

as Opensmile (Eyben et al., 2010), and then build a machine learning model on the

features as presented in my previous studies (Tu et al., 2016a, 2017a,b). The limita-

tion is that existing feature extraction schemes for pathological speech only focus on

low-level acoustic features directly calculated on time or frequency domain of origi-

nal speech signal. This may be suboptimal when the machine learning model is not

powerful enough or the amount of data is limited. As shown by Tu et al. (2016b),

the performance of ASR have very strong correlation with the overall intelligibility

of pathological speech. Thus, the computational model proposed in this study (with-

out L1, and replace accented speech with pathological speech and accentedness with

intelligibility or severity) can also be used for automatic evaluation of pathological

speech.

However, a concern is that whether it is easy to obtain those L1 related features

considering the need for a L1 acoustic model. In this study, L1 acoustic models trained

on tens of or even over a hundred hours of speech recordings are employed. These

L1 datasets may not be available in practice, especially for L1s with small amount of

resources (Gales et al., 2017). Indeed, the pronunciation scores based features require

acoustic models, but the acoustic models can be trained on small amount of data

with phonemes as HMM modeling unit, thus reduce the model space and required

training data. There is no need for large vocabulary ASR which usually requires much

more speech data. Also, with a simpler acoustic model, the performance of forced-

alignment will not be affected very much given known transcription of the accented

speech.
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Chapter 8

CONCLUSION

8.1 Main findings

This dissertation has investigated the L1’s effect on L2 speech learning outcomes

using a computational model to analyze accented speech. Motivated by previous

findings that L1 can influence phonological system of accented speech in L2, the com-

putational model proposed in this study further validate the statement in a quan-

titative way by showing how similar the phonological system is with the speaker’s

L1 phonology. This is achieved by analyzing accented speech in both segmental and

suprasegmental feature space macroscopically instead of only looking at one specific

phonological phenomenon. Specially, for segmental features, a system for calculating

pronunciation scores of phonemes in accented speech from both L1 and L2 acoustic

models is proposed to study the pronunciation patterns of accented speech in terms of

vowels, consonants and syllables, and compare them to the patterns of native L1 and

L2. The pronunciation scores calculated with L1 acoustic model quantify how close

the pronunciation of L2 phonemes is to the native pronunciation of the speaker’s L1,

while the pronunciation scores calculated with l2 acoustic model quantify how close

the pronunciation of L2 phonemes is to the native pronunciation of L2. For supraseg-

mental feature space, speech rhythmic measurements based on durations of vowels,

consonants and syllables are calculated by automatic forced-alignment on accented

speech. The patterns of native L1 and L2 are also obtained by applying same algo-

rithms on native L1 and L2 speech. Contrastive analysis is done between rhythmic

measurements of L1 and accented speech, and L2 and accented speech to quantify
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the similarity between L1 and accented speech, and L2 and accented speech. Corre-

lation analysis and multiple regression analyses have been conducted on an accented

speech dataset consisting of four L1s and 30 speakers from each L1. The findings are

summarized as following:

1. The overall pronunciation patterns and prosodic patterns of accented speech are

affected by L2 learners’ L1. On some specific phonological dimensions, the influ-

ences of L1 may be significant while on other dimensions the influence may not

be significant. The L1’s interference has a negative correlation with accented-

ness, indicating the negative influence of L1 on L2 speech learning. The results

also indicate that there may exist some universal effects, which are independent

from L1, influencing the formation of phonological system of accented speech.

For example, for learners speaking a syllable-timed language, the general trend,

which is independent from learners’ L1s, is going towards more stress-timed

learning outcome. The inaccuracy may comes from other factors, such as the

difficulty to master specific prosodic properties. The computational model em-

ployed in this study can quantize the influence of L1 on specific phonological

properties.

2. Multiple regression analysis on either segmental or suprasegmental feature space

shows that adding contrastive information between L1 and accented speech can

improve the perception of accentedness. This proves that L1-related information

can help explain the variation of accentedness. Selected L1-related features can

provide extra information to the perception of accentedness. When applying the

proposed computational model to automatic accentedness evaluation system,

adding contrastive L1 information can improve the performance of the system.

3. The relative contribution of segmental and suprasegmental features to the per-
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ception of foreign accent depends on how different L1 is from L2 on correspond-

ing feature spaces. The methodology used in this study provides a quantitative

way to show the relative importance of segmental and suprasegmental inaccu-

racy to the perception of foreign accent.

8.2 Future work

There is extra work can be done to improve the accuracy of the computational

model used in this study:

1. As mentioned in the dissertation, the accuracy of forced-alignment may affect

the accuracy of prosodic measurements. An acoustic model with better perfor-

mance on accented speech can achieve this.

2. There should be similar scales for L1-related features extracting from different

L1s. More consistent L1 acoustic models should be used to extract pronun-

ciation scores. A method to normalize the L1-related features should also be

investigated to further improve the performance on automatic accentedness e-

valuation when there are speakers from multiple L1s.

3. When preparing accented speech dataset, a better control of the distribution of

accentedness, which means similar number of speakers at different proficiency

level, can further improve the persuasiveness of the results.

There are several interesting directions based on the current study that deserve further

investigation:

1. The current study only looks at the overall pronunciation scores of vowels,

consonants and syllables. Further investigation on specific phonemes can be

done to reveal the L1’s effect on specific phonemes, especially for those phonemes

that are close to or different from specific L2 phonemes.
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2. This study uses speech rhythmic measurements as proxy of speech prosody.

Actually, speech prosody includes other factors such as intonation, stress, tempo

and pause. Analysis on those prosodic features can result in more comprehensive

understanding of L1’s effect on L2 speech prosody acquisition.

3. More studies on the amount of L1’s effect and universal effects should be done to

figure out when and where L1’s effect plays a role and when and where universal

effects play a role.

4. Applying the methodology to pathological speech is also very intriguing. It

can facilitate the study of pathological speech and disease’s impact on both

segmental and suprasegmental speech features.
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APPENDIX A

INSTRUCTIONS AND TASK INFORMATION FOR ACCENTEDNESS SCORE
COLLECTION ON AMT
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1. Please do not use Back/Refresh buttons during this task.

2. In case you want to end, close the tab. To resume, log back in.

3. This task is about the degree of accentedness of the speaker speaking English.
Please focus on how different the speaker sounds from a native speaker of Amer-
ican English in the pronunciation of sounds and words, stress and intonation
position, the way to combine different sounds and words into a sentence.

4. You will be asked to give your general impression of the speakers degree of
accentedness on a 1-4 scale (1 for negligible/no accent, 2 for mild accent, 3
for strong accent and 4 for very strong accent) and whether you are certain
about your answer (certain or uncertain). There will be four examples before
the listening task for you to better understand the degree of accentedness.

5. There are 150 audio files in this task, each of which is 10 seconds. This task
will take about 40 minutes.

6. You are allowed to listen to each sentence twice.

7. Please find a quiet place to perform this task.

8. We recommend using Chrome for this task.

9. Go to the URL, create an account (no pw required), and complete the task.
Remember your created username and write it down in the textbox below.
This is IMPORTANT because we’ll use it to link your work with your MTurk
account so that we can pay you if approved. Note that you have to COMPLETE
the whole task to receive the reward, and we’ll only take ONE completed task
from each participant. So please enter only one username in the textbox below.

10. Please do the task in the survey link URL.
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CONSENT FORM FOR ACCENTEDNESS SCORE COLLECTION ON AMT
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Introduction

The purposes of this form are to provide you (as a prospective research study partic-
ipant) information that may affect your decision as to whether or not to participate
in this research and to record the consent of those who agree to be involved in the
study.

Researchers

Dr. Julie Liss, a Professor in the Department of Speech & Hearing Sciences (College
of Health Solutions) at ASU, and Dr. Visar Berisha, an Assistant Professor in the
Department of Speech & Hearing Sciences and the School of Electrical, Computer,
and Energy Engineering at ASU, have invited your participation in a research study.

Study purpose

We are collecting perceived degree of accentedness from people aged 18 and older who
have normal hearing. We will use these accentedness ratings to study the impact of
non-native English speakers native language on the perceived accentedness.

Description of research study

If you decide to participate, then you will join a study involving research of the
perception of accented speech. Your participation will be completely online and will
last no longer than 1 hour. If you agree to participate, we ask that you be seated in a
quiet room in front of a computer. You will listen to a paragraph spoken by different
individuals in English and asked to give a general impression of the accentedness of
each speaker on a 1-4 scale. Research completed based on these accentedness ratings
will provide an understanding of the impact of non-native English speakers native
language on perceived accentedness.

Risks

There are no known risks from taking part in this study.

Benefits

Although there may be no direct benefits to you, these transcriptions may improve
our understanding of accented speech. This may, in turn, allow for the development
of computer-aided second language learning system.

Confidentiality

All information obtained in this study is strictly confidential. The results of this
research study may be used in reports, presentations, and publications, but the re-
searchers will not identify you.
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Withdraw privilege

Your participation in this project is completely voluntary. There is no penalty for
not participating, or for choosing to withdraw from participation at any time. Your
decision will in no way affect your relationship with ASU or your grade in any course.
Should you choose to withdraw from the study, your digital audio-video files will not
be saved and will be discarded electronically.

Costs and payments

The researchers want your decision about participating in the study to be absolutely
voluntary. Yet they recognize that your participation may pose some inconvenience.
You will receive $1.5 for your participation, paid via Amazon Mechanical Turk.

Voluntary consent

Any questions you have concerning the research study or your participation in the
study, before or after your consent, will be answered by Dr. Julie Liss at (480) 965-
9136. If you have questions about your rights as a subject/participant in this research,
or if you feel you have been placed at risk; you can contact the Chair of the Human
Subjects Institutional Review Board, through the ASU Office of Research Integrity
and Assurance, at 480-965 6788. This form explains the nature, demands, benefits
and any risk of the project. By signing this form you agree knowingly to assume any
risks involved. Remember, your participation is voluntary. You may choose not to
participate or to withdraw your consent and discontinue participation at any time
without penalty or loss of benefit. In signing this consent form, you are not waiving
any legal claims, rights, or remedies. A copy of this consent form will be offered to
you.

By clicking “Agree”, you consent to participate in the above study and indicated
that:

1. you have read the above information

2. you voluntarily agree to participate

3. you are at least 18 years of age
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