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ABSTRACT 

Semiconductor memory is a key component of the computing systems. Beyond the 

conventional memory and data storage applications, in this dissertation, both mainstream 

and eNVM memory technologies are explored for radiation environment, hardware 

security system and machine learning applications.  

In the radiation environment, e.g. aerospace, the memory devices face different 

energetic particles. The strike of these energetic particles can generate electron-hole pairs 

(directly or indirectly) as they pass through the semiconductor device, resulting in photo-

induced current, and may change the memory state. First, the trend of radiation effects of 

the mainstream memory technologies with technology node scaling is reviewed. Then, 

single event effects of the oxide based resistive switching random memory (RRAM), one 

of eNVM technologies, is investigated from the circuit-level to the system level.  

Physical Unclonable Function (PUF) has been widely investigated as a promising 

hardware security primitive, which employs the inherent randomness in a physical system 

(e.g. the intrinsic semiconductor manufacturing variability). In the dissertation, two 

RRAM-based PUF implementations are proposed for cryptographic key generation (weak 

PUF) and device authentication (strong PUF), respectively. The performance of the RRAM 

PUFs are evaluated with experiment and simulation. The impact of non-ideal circuit effects 

on the performance of the PUFs is also investigated and optimization strategies are 

proposed to solve the non-ideal effects. Besides, the security resistance against modeling 

and machine learning attacks is analyzed as well.  

Deep neural networks (DNNs) have shown remarkable improvements in various 

intelligent applications such as image classification, speech classification and object 



ii 

 

localization and detection. Increasing efforts have been devoted to develop hardware 

accelerators. In this dissertation, two types of compute-in-memory (CIM) based hardware 

accelerator designs with SRAM and eNVM technologies are proposed for two binary 

neural networks, i.e. hybrid BNN (HBNN) and XNOR-BNN, respectively, which are 

explored for the hardware resource-limited platforms, e.g. edge devices.. These designs 

feature with high the throughput, scalability, low latency and high energy efficiency. 

Finally, we have successfully taped-out and validated the proposed designs with SRAM 

technology in TSMC 65 nm. 

Overall, this dissertation paves the paths for memory technologies’ new applications 

towards the secure and energy-efficient artificial intelligence system.  
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1 INTRODUCTION 

Semiconductor memory represents a significant portion of the semiconductor market. 

It is a key component of the computing system and widely used in various applications (for 

smart phone, tablet, laptop, server, data center, network, communication, gaming, 

consumer, etc.). The requirements for different applications are different in memory 

bandwidth, latency, system performance, power, capacity size, and so on. To meet the 

growing needs for semiconductor market with diverse requirements, there are different 

types of memory technologies that are being used. As the demands grow, new memory 

technologies are being introduced and the existing technologies are being further developed. 

1.1 Overview of MOS Memories 

From a system viewpoint, semiconductor memories are divided into two major 

categories: volatile memory and non-volatile memory (NVM). Volatile memory loses its 

storing connect when the power is removed. In contrast, non-volatile memory is able to 

retain its stored data virtually forever when the power is turned off. Within the volatile 

memory, there are two major types: dynamic random access memory (DRAM) and static 

random access memory (SRAM). Within the NVMs, there are a few different major types 

of memory technology, including Mask ROM, programmable read only memory (PROM) 

and Flash memory. For Mask ROM, data are written during chip fabrication by the use of 

a photo mask that contains the write data. For the PROM, however, data are written after 

chip fabrication. Depending on its erasable or non-erasable characteristics, PROM is 

further classified into two categories: EPROM (Erasable PROM, typically by ultra-violet 

light source) and EEPROM (Electrically Erasable PROM). In compared to the other NVMs, 
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the Flash memory is a random access memory that can be written to, as well as read from. 

On the other hand, the FLASH memory has many advantages over the other NVMs.  

1.2 Mainstream MOS Memory Technologies 

Fig. 1.1 shows schematic circuits of mainstream MOS memory cells, which store 

binary information, “1” or “0”, on the above-described memory arrays.  

 
Fig. 1.1  Mainstream memory cell schematics (a) SRAM; (b) DRAM; (c) FLASH. 

1.1.1 SRAM 

A conventional SRAM cell usually consists of six transistors (Fig. 1.1(a)), referred to 

as 6T SRAM. Two cross-coupled inverters are used to store the bi-stable information like 

in a latch. Two pass gate transistors are needed for the access control during the write and 

read operations. To write the value to the cross-coupled inverters, a differential voltage 

between a high voltage (i.e. VDD) and a low voltage (i.e. ground) is first applied to a pair 

of bit lines (i.e. BL and BLB) and then the value can be written to storage nodes (i.e. N1 

and N2) by turning on the two access transistors, PG1 and PG2. For example, logic “1” is 

written to storage node N1 and logic “0” is written to storage node N2. First, BL and BLB 

are pre-charged to VDD and ground, respectively. Then the data is written the N1 and N2 

by turning on PG1 and PG2. The read operation is performed by detecting the polarity of 

differential signal voltage developed on the bit lines through a sense amplifier. More 
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specifically, both BL and BLB are first pre-charged to VDD. With turning on the access 

transistors, the voltages on BL and BLB could be discharged depending on the data stored 

in the storage nodes, thus resulting a voltage difference between bit lines. On the other 

hand, the data in SRAM cell is held statically as long as the power is applied. 

1.1.2 DRAM 

A DRAM cell consists of an access transistor and a capacitor for storing charges, as 

shown in Fig. 1.1(b). The level of charge on the storage capacitor determines the data stored 

in the DRAM: the presence of charge in the capacitor indicates a logic “1” and the absence 

of charge indicates a logical “0”. To write a value into the DRAM cell, switch on the access 

transistor by applying a high voltage (Vpp) to the WL; then apply a voltage (VDD or 

ground) to the BL depending on the data to be written into DRAM cell, thus the storage 

capacitor (Cs) being charged or discharged accordingly. For example, logic “1” is written 

to storage capacitor. VDD is applied to BL and Cs is charged to a high voltage. In the read 

operation, charge sharing takes place between bit line and storage capacitance. BL is pre-

charged to Half VDD in the read operation. Then with asserting WL, charge redistribution 

occurs between BL and Cs. Depending on the stored data at the Cs, we will see different 

resultant voltage developed on the BL, which is sensed by a sense amplifier connected to 

the bit line. Since the charge redistribution destroys the stored information in the read 

operation read operation is destructive in DRAM and a simultaneous write-back must be 

contained, which is conducted by the sense amplifier during the sensing phase. Besides, 

the leakage current (e.g. through off-state current of the access transistor, or the reversed 

biased the drain-body PN junction in the storage node) degrades an initial high stored 

voltage, finally causing the loss of information. Therefore, a “refresh” operation is 
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necessary to retain the value in the storage capacitor before the stored voltage becomes 

excessively decayed. The “refresh” operation is usually performed by a read operation 

since it has a write-back operation in DRAM. A succession of refresh operation at a given 

time interval retains the data. The time interval, which is determined by the leakage current, 

is about 64ms. The name DRAM is derived from the fact that data is dynamically retained 

by refresh operation, which differs from SRAM.  

1.1.3 FLASH 

Each FLASH memory cell consists of the transistor structure with the source and drain 

electrodes separated by the channel. Above the channel in the FLASH memory cell there 

is a floating gate which is separated from the channel by a tunneling oxide layer as shown 

in Fig. 1.1(c). Above the floating gate is the control gate isolated with an inter-poly oxide 

layer. The presence of charge in the floating gate will then determine the threshold voltage 

thereby whether the channel will conduct or not. During the read operation, a “1” at the 

output corresponds to a low threshold voltage or the channel being in its low resistance 

state. The program/erase cycle for FLASH memory uses a process called Fowler-Nordheim 

tunneling. The process is performed by applying sufficient large the voltage accross the 

control gate and the substrate. If the energy barrier is like a triangular shape with thin 

enough tunneling thickness, electrons could quantum tunnel through the tunneling oxide 

layer. Generally the program/erase process is needs hundreds of microseconds. 

There are two basic types of FLASH memory: NAND and NOR FLASH memory. 

Although they use the same basic technology, the way they are addressed for reading and 

writing is slightly different with different array architectures. NAND FLASH memory has 

a string of floating gate transistors, and is accessed sequentially and must be erased by 
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block. When NAND FLASH memory is to be read, the contents must first be paged into 

memory-mapped RAM. This makes the presence of a memory management unit essential. 

NOR FLASH memory is able to read individual transistor cell randomly with similar array 

architecture like DRAM. NAND FLASH memory has higher integration density while 

NOR FLASH memory has much faster read speed, thus they are suitable for different 

applications, e.g. massive data storage for NAND while code storage for NOR. 

1.3 Advantages and Disadvantages of Memory Technologies 

Table 1.1  Device Characteristics of Mainstream Memories 

 SRAM DRAM 
FLASH 

NOR NAND 

Cell Area > 100 F2 6 F2 10 F2 < 4 F2 (3D) 

Multi-bit 1 1 2 3 

Voltage < 1V < 1V > 10V > 10V 

Access Time ~ 1ns ~ 10ns ~ 50ns ~ 10µs 

Write 

Energy/bit 
~fJ ~10fJ ~100pJ ~10fJ 

Endurance > 1016 > 1016 > 105 > 104 

Retention Volatile ~64ms > 10years > 10years 
 

 

There are various advantages and disadvantages between different memory 

technologies. Table 1.1 presents to performance metrics of those memory technologies 

discussed above. It is necessary to consider all of these when determining the optimum 

type of memory to be used. If we compare the cell are and access time among different 

memory technologies, we will see that the SRAM shows the fastest access speed but the 

largest cell area, however, NAND Flash shows the smallest cell area but the slowest access 

speed. For a given capacity size, the memory technology with larger cell area is more 

expensive. However, the programmers desire fast memory with large capacity size, which 
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is challenging to be satisfied with only one of the memory technologies we discussed. In 

practical, most programs do not access all code or data uniformly, which is referred as to 

the principle of locality. Locality occurs in time (temporal locality) and in space (spatial 

locality). With taking advantages of locality and trade-offs between cost and access speed 

of memory technologies, an economical solution was led to hierarchies based on memories 

of different speeds and cell areas. Due to the advantage of low cost, despite medium speed, 

DRAM is widely and extensively used for the main memory, while SRAM, which features 

high speed, despite high cost, is used for the cache memory in computers and mobile 

devices.  

 
Fig. 1.2  Typical memory hierarchies in a personal mobile devices.[1] 

1.4 Memory Hierarchy 

Fig. 1.2 shows a multilevel memory hierarchy used in mobile device, including typical 

sizes and speeds of access. From top layers to bottom layers, SRAM, DRAM, and FLASH 

are the mainstream memory technologies serving as cache, main memory, and solid-state-

drive (SSD), respectively. Moving left the hierarchy, the memory write/read latency 

decreases. Moving right the hierarchy, the memory capacity increases. Since fast memory 

is expensive, a memory hierarchy is organized into several levels. The one closer to 

processor is smaller, faster, and more expensive than the next lower level, which is farther 

from the processor. 
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1.5 Emerging Non-Volatile Memory (eNVM) Technologies 

1.5.1  Overview 

All these mainstream memory technologies discussed above are charged-based 

memories, which means the charges are used to represent the storing information. They are 

facing challenges with technology node scaling to 10 nm node or beyond, due to reduced 

amount of the charges stored in the storing node and the easy loss of them at nanoscale. As 

a result, it causes degradation of the performance, reliability, and noise margin, etc. In this 

context, non-charge based emerging memory technologies proposed by the research 

community and are under active research and development in the industry, but none of 

them is mature for high-volume production yet. The emerging NVM (eNVM) candidates 

are spin-transfer-torque magnetic random access memory (STT-MRAM) [2], phase change 

random access memory (PCRAM) [3], and resistive random access memory (RRAM) [4].  

All these emerging NVM technologies are non-volatile two-terminal devices, and they 

differentiate their states by the switching between two resistance states: a high resistance 

state (HRS) and a low resistance state (LRS). The switching between the two states can be 

enabled by electrical inputs. However, each of the eNVMs has its unique switching physics 

as shown in Fig. 1.3. The resistance of STT-MRAM is determined by the relative direction 

of two ferromagnetic layers separated by a thin tunneling insulator layer, which 

corresponds to LRS if they are in parallel configuration, HRS otherwise. The resistance of 

PCRAM is determined by the phase of chalcogenide material, which corresponds to LRS 

if it is in crystalline phase and HRS if it is in amorphous phase. RRAM relies on the 

formation (corresponding to LRS) and the rupture (corresponding to HRS) of conductive 

filaments in the insulator between two electrodes.  



8 

 

 
Fig. 1.3  Diagrams of switching mechanism of emerging memory technologies[5]. © 2016 

IEEE 

Due to the different underlying physics, the device characteristics are also different 

among different emerging NVM technologies. Table 1.2 compares the typical device 

characteristics between the eNVMs and the mainstream memory technologies. For 

different eNVM technology could be used for different applications with considering their 

unique characteristics. For example, the STT-MRAM was proposed for the SRAM 

replacement in the last-level cache in [6]. The RRAM was proposed to replace the NOR 

FLASH for code storage and more ambitiously to replace NAND FLASH as data storage 

in [7].  
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Table 1.2  Device Characteristics of Mainstream and Emerging Memories[5]. 

 

1.5.2 Emerging NVM Array Architectures 

Array Architectures 

In general, there are two types of RRAM array architectures for integration. The first 

integration architecture is the one-transistor and one-resistor (1T1R) structure (see Fig. 

1.4(a)), where each RRAM cell is in series with a cell selection transistor, as shown. The 

addition of a selection transistor is able to isolate the selected cell from other unselected 

cells. The word line (WL) controls the gate of the transistor, thus voltage amplitude applied 

to the WL can determine the compliance current of the RRAM cell. The bit line (BL) 

connects to the RRAM anode (top electrode) and contact via of the drain of the transistor 

connects to the RRAM cathode (bottom electrode). The source line (SL) connects to the 

source of the transistor. The minimum cell area for the 1T1R architecture is six F2 (F is the 

lithography feature size) if a minimum size transistor is used with aggressive borderless 

DRAM design rules. The cell area increases as the size of the selection transistor is 

increased when a minimum sized transistor cannot provide sufficient programming current. 

The second integration architecture is crossbar structure, where rows and columns are 

perpendicular to each other with RRAM cells sandwiched in between, as shown in Fig. 

1.4(b). The crossbar architecture can achieve a smaller footprint of four F2, thus it can 
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support a higher integration density than the 1T1R architecture. Crossbar architecture 

consists of only RRAM devices without selection transistors in the array. At the edge of 

the array, RRAM devices on the same word line (WL) or bit line (BL) share a common 

driver (e.g. CMOS inverter). The driver should provide sufficient current for the 

programming current of the selected cell in addition to the sneak path current of the 

unselected cells. A simple crossbar array suffers from a problem known as “sneak paths” 

that limits the array size, increases power consumption, and degrades write/read margins. 

Therefore, today’s crossbar designs typically use stacked cell structures composed of 1-

selector and 1-resistor (1S1R) in series. The use of two-terminal selector devices with 

strong I-V nonlinearity has been shown to significantly suppress sneak currents 

 
Fig. 1.4  Schematic and layout diagram of (a) 1T1R and (b) crossbar array architectures[8]. 

© 2015 IEEE. 

Write and Read Schemes 

To write the RRAM device, it includes two operations, SET and RESET.  

For the 1T1R architecture, a positive voltage (i.e. VWL) is applied to WL to turn on the 

transistor of the selected cell and the WLs of the other unselected cells are grounded. 

During the SET operation a write voltage (i.e. VBL) is applied to the BL of the selected cell 
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while SL is grounded. During the SET operation, in contrast, a write voltage (i.e. VSL) is 

applied to the SL of the selected cell while BL is grounded to reverse the current, as the 

typical RRAM operation needs bipolar switching. During the both SET and RESET 

operation, all the BLs and SLs of the unselected cells are grounded. In the read operation, 

the bias configuration is similar to the SET operation. The only difference is that a smaller 

VBL, typically less than 0.5 V, is used in the read operation to suppress the read disturbance. 

The sense amplifier are generally used in the read operation to compare the read-out current 

along the BL with a reference to determine if the RRAM cell is in HRS or LRS. Because 

the transistors are turned off for the unselected cells, there is no cross-talk or interference 

issues in the 1T1R array, and each cell can be independently and randomly accessed. 

Multiple-bits can be written (or read) in parallel into (or from) the same row by activating 

multiple columns. It is necessary to point out that different WL voltages are used for SET, 

RESET and read, respectively. Typically, the WL voltage in RESET operation is larger 

than the ones in both SET and read operations because part of the SL voltage is dropped 

on the RRAM cell; thus a larger WL voltage is needed to turn on the transistor. Due to 

different WL voltages, the SET and RESET operations cannot be performed 

simultaneously on the same selected row. Therefore, a two-step programming process is 

needed if we have both “1”(s) and “0”(s) to be rewritten into the 1T1R cells on the same 

row. 

For the crossbar architecture, cross-talk or interference exists between cells in the 

crossbar array doe to no selection transistors in the array. In order to write the RRAM cells 

successfully, the V/2 scheme is usually employed. During the SET operation, a write 

voltage (i.e. VW) is applied to WL of the selected cell while the BL of the selected cell is 
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grounded. During the RESET operation, in contrast, a write voltage (i.e. VW) is applied to 

BL of the selected cell while the WL of the selected cell is grounded. The WLs and BLs of 

the unselected RRAM cells in both SET and RESET operations are biased to VW/2. During 

the read operation, the WL of the selected cell is grounded and the rest of WLs and BLs 

are applied by a read voltage (i.e. VR).  

1.6 Overview of Contribution 

In this dissertation, both mainstream memory and eNVM technologies are investigated 

and explored in radiation environment, hardware security system and machine learning 

applications.  

For the use in radiation environment, single event effects are investigated on the oxide 

based RRAM with two different architectures (1T1R and crossbar array architectures). A 

physics-based SPICE model calibrated with HfOx RRAM is employed for circuit and 

array-level simulations. The model captures the resistance switching dynamic responses to 

ion-induced voltage transients. RRAM state-flipping is attributed to transient photocurrents 

at neighboring transistors. SBU caused by either single-event upset (SEU) or multiple-

event upset (MEU) is studied in the 1T1R array. The simulation results correlate with 

experimentally observed phenomena in HfOx RRAM under heavy ion irradiation. In 

addition, circuit simulation is performed to investigate the impact of transient induced soft 

errors in a crossbar array. The crossbar array itself is transistor-free, thus the sensitive 

locations are the peripheral circuitry (i.e. drivers) only at the edge of the array. The 

simulations show that the crossbar array with HfOx based RRAM is highly radiation 

tolerant thanks to the V/2 bias scheme. However, multiple-bits upset (MBU) occurs if other 

oxides are used that lower activation energies in pursuit of low operation voltage. The 



13 

 

voltage spikes generated at the edge of the array may propagate along the rows or the 

columns, causing MBUs since there is no isolation between cells in the crossbar array. 

Thus a trade-off between low power operation and radiation hardness, has to be considered 

when the crossbar array is designed for use in radiation environments. Besides, the SEU 

sensitivity is investigated from the system-level. From a circuit-level perspective, the 1T1R 

is only susceptible to SBU due to the isolation of cells, while in the crossbar, MBU may 

occur because ion-induced voltage spikes generated on drivers may propagate along rows 

or columns. Three factors are considered to evaluate system-level susceptibility: the upset 

rate, the sensitive area, and the vulnerable time window. Our analysis indicates that the 

crossbar architecture has a smaller maximum bit-error-rate (BER) per day as compared to 

the 1T1R architecture for a given sub-array size, I/O width and susceptible time window. 

The result will be presented in Chapter 2. 

For the hardware security system application, two RRAM-based Physical Unclonable 

Function (PUF) implementations are proposed for cryptographic key generation (weak 

PUF) and device authentication (strong PUF), respectively. In the weak PUF 

implementation, the entropy source or randomness comes from stochastic switching 

mechanism and intrinsic variability of the RRAM devices, which is unlike conventional 

manufacturing process variation based silicon PUFs. The RRAM weak PUF properties 

such as uniqueness and reliability are experimentally evaluated with 1 kb HfO2 based 

RRAM arrays. Firstly, our experimental results show that selection of the split reference 

and offset of the split sense amplifier (S/A) significantly affect the uniqueness. More 

dummy cells are able to generate a more accurate split reference, and relaxing transistor’s 

sizes of the split S/A can reduce the offset, thus achieving better uniqueness. The average 
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inter-Hamming distance (HD) of 40 RRAM weak PUF instances is ~42%. Secondly, we 

propose to use the sum of the read-out currents of multiple RRAM cells for generating one 

response bit, which statistically minimizes the risk of early retention failure of a single cell. 

The measurement results show that with 8 cells per bit, 0% intra-HD can maintain more 

than 50 hours at 150 °C or equivalently 10 years at 69 °C by 1/kT extrapolation. Finally, 

we propose a layout obfuscation scheme where the entire S/A are randomly embedded into 

the RRAM array to improve the RRAM weak PUF’s resistance against invasive tampering. 

The RRAM cells are uniformly placed between M4 and M5 across the array. If the 

adversary attempts to invasively probe the output of the S/A, he has to remove the top-

level interconnect and destroy the RRAM cells between the interconnect layers. Therefore, 

the RRAM weak PUF has the “self-destructive” feature. In the strong PUF implementation, 

the sneak paths in the resistive X-point or cross-point array are exploited as the entropy 

source. The entanglement of the sneak paths in the X-point array greatly enhances the 

entropy of the physical system, thereby increasing the space of challenge-response pairs 

(CRPs). To eliminate the undesired collision or diffuseness in X-point PUF with “analog” 

resistance distribution, “digital” resistance distribution is employed. The effect of design 

parameters and non-ideal properties in X-point array on the performance of X-point PUF 

is comprehensively investigated by SPICE simulation. The simulation results show that: 1) 

the PUF’s performance presents strong dependence on the percent of cells in the on-state, 

thus should be carefully optimized for the robustness against the reference current variation 

of the S/A; 2) the interconnect resistance decreases the column current thus the reference 

current should scale down with the scaling of technology node; 3) larger on/off ratio is 

desired to achieve low power consumption and high robustness against reference current  
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variation; 4) the device-to-device variation might degrade the performance of X-point PUF, 

which can be mitigated with write-verify programming scheme in the PUF construction 

phase. In addition, the proposed X-point PUF presents no correlation between challenges 

and responses, and strong security against the possible SPICE modeling attack and machine 

learning attack. Compared to the conventional Arbiter PUF, the X-point PUF has benefits 

in smaller area, lower energy and enhanced security. The design methodologies and results 

will be presented in Chapter 3. 

For the application in machine learning, increasing efforts have been devoted to 

develop hardware accelerators. Various hardware platforms (i.e.  GPU and FPGA) are used 

to process DNNs and the various optimizations (i.e. ASIC chips) are used to improve 

throughput and energy efficiency without impacting application accuracy. However, all of 

them are based on Von Neumann architecture and memory bottleneck still exists. In the 

context, in-memory computing was proposed by embedding computing within memory 

and reducing intermediate data transfer in order to achieve area, throughput and energy 

efficiency improvement. In our work, two binary neural networks, i.e. hybrid BNN (HBNN) 

and XNOR-BNN, are explored for the hardware resource-limited platforms, e.g. edge 

devices. In the HBNN,  the weights are binarized to +1/-1 while the neuron activations are 

binarized to 1/0. In contrast, both the weights and neuron activations are binarized to +1/-

1 in XNOR-BNN. With SRAM technology, 6T SRAM and custom 8T SRAM are proposed 

as bit cells for HBNN and XNOR-BNN implementations, respectively. With RRAM 

technology, 2 1T1R cells and 4 1T1R cells are proposed as bit cells for HBNN and XNOR-

BNN implementations, respectively. In our design, the high-precision multiply-and-

accumulate (MAC) is replaced by bitwise multiplication for HBNN or XNOR operation 
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for XNOR-BNN plus bit-counting operations. To parallelize the weighted sum operation, 

we activate multiple word lines in the SRAM or RRAM array simultaneously and digitize 

the analog voltage developed along the bit line by a multi-level sense amplifier (MLSA). 

To enable the design scalability for arbitrary size of weight matrices in DNNs, we digitized 

the analog weighed sums collected from each memory array to digital ones with higher 

precision rather than binary with MLSAs. In order to maintain the sufficient partial sum 

precision, we propose to use the learned nonlinear quantization technique rather than linear 

quantization to mitigate the accuracy degradation due to quantization. With 64×64 sub-

array size and 3-bit MLSA, HBNN and XNOR-BNN architectures can minimize the 

accuracy degradation to 2.37% and 0.88%, respectively, for an VGG-like network on the 

CIFAR-10 dataset. Design space exploration of the proposed architectures with the 

conventional row-by-row access scheme and our proposed parallel access scheme are also 

performed, showing significant benefits in the area, latency and energy-efficiency. Finally, 

we have successfully taped-out and validated the proposed HBNN and XNOR-BNN 

designs with SRAM technology in TSMC 65 nm process with measured silicon data, 

achieving access time ~2.3ns, and energy-efficiency ~111 TOPS/W for HBNN and ~65 

TOPS/W for XNOR-BNN, respectively. The design methodologies and result will be 

presented in Chapter 4. 
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2 MEMORIES USED IN RADIATION ENVIRONMENT 

2.1 Overview 

Radiation-induced transient faults arise from energetic particles, such as alpha particles 

from packaging material and neutrons from the atmosphere, generating electron-hole pairs 

(directly or indirectly) and transient photocurrent as they pass through a semiconductor 

device. A sufficient amount of accumulated charge or transient current spike may change 

the state of a logic device, such as a latch, or gate, thereby introducing a logical fault into 

the circuit’s operation. Because this type of fault does not reflect a permanent malfunction 

of the device, it is referred to as soft error.  

2.1.1 Major Radiation Resources 

Typical sources of ionizing radiation are the cosmic rays, the Van Allen radiation belts, 

Solar flares, nuclear reactors in power plants, particle accelerators, residual radiation from 

isotopes in chip packaging materials, and nuclear explosions. 

Cosmic rays consist of approximately 90% protons (i.e hydrogen), 9% alpha particles 

(i.e. helium), and 1% heavy ions, together with x-ray and gamma ray radiation [9]. Earth's 

magnetic field and atmosphere shields the planet from 99.9 percent of the radiation from 

space. Therefore, they are primarily a concern for spacecraft and high-altitude aircraft. Van 

Allen radiation belts contain electrons (up to 10 MeV) and protons (up to 100 MeV) trapped 

in the geomagnetic field [10]. The particle flux density and the location of the peak flux 

can vary wildly depending primarily on solar activity and the magnetosphere. Due to their 

position, they endanger satellites. Solar particle events come from the sun and consist of a 

large flux of high-energy (several GeV) protons and heavy ions, and together with x-ray 

radiation, which will present a significant radiation hazard to spacecraft. Nuclear reactors 
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produce gamma radiation and neutron radiation, which can affect sensor and control 

circuits in nuclear power plants. Particle accelerators produce high energy protons and 

electrons, and the secondary particles produced by their interactions produce significant 

radiation damage on sensitive control and particle detector components, of the order of 

magnitude of 10 MRad[Si]/year for systems such as the Large Hadron Collider (LHC). 

Chip packaging materials were an insidious source of radiation that was found to be 

causing soft errors in DRAM chips in the 1970s [11]. Traces of radioactive elements in the 

packaging of the chips were producing alpha particles, which were then occasionally 

discharging some of the capacitors used to store the DRAM data bits. These effects have 

been reduced today by using purer packaging materials, and employing error-correcting 

codes (ECC) to detect and often correct DRAM errors. Nuclear explosions produce a short 

and extremely intense surge through a wide spectrum of electromagnetic radiation, an 

electromagnetic pulse (EMP), neutron radiation, and a flux of both primary and secondary 

charged particles.  

2.1.2 Types of Single-Event Effects 

In recent years, the dominant radiation effect in space electronic systems has become 

the family of single-event effects (SEEs). SEEs arise through the action of a single ionizing 

particle as it penetrates sensitive nodes within electronic devices. There are a variety of 

possible single event effects and they are very important as they can cause malfunctions in 

microelectronics devices operating in the space environment. The basic effects are as 

follows: 

(1) SET—single-event transient, which means the transient introduce by single event. 
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(2) SEU—single-event upset, which means the temporary state change of memory or 

register. This do not cause lasting damage to the device. A single ion can cause 

single-bit upset (SBU) or multiple-bit upset (MBU) in several adjacent memory cell 

in advance technology nodes. SEU will be the primary effect in our study.  

(3) SEFI—single-event functional interrupt, which means the control circuits (e.g. state 

machines) are corrupted into an undefined state by an single-even upset 

(4) SEL—single event latchup, which means device with a parasitic PNPN structure is 

latched in high current state or “shorted”. 

(5) SES—single-event snapback, which means regenerative current mode in NMOS 

(6) SEB— single-event burnout, which means device draws high current and burns out. 

This is hard error.  

(7) SEGR— single-event gate rupture, which means gate is destroyed in power 

MOSFETs. 

Considering these and other problems in the space systems, it becomes important to 

understand the single particle errors in the integrated circuit (IC) systems for the space-

based use. This problem becomes even more important becomes even more important as 

device dimensions scale, and denser integrated systems are placed in space or satellite 

applications. With the device dimensions keeping scaling, a single bit information in the 

memory devices is represented by an extremely small value of charge and noise margins 

are very tight as well. For example, if a typical dynamic random access memory (DRAM) 

can tolerate approximately 100mV of noise on the bit storage node with 10’s fF of storage 

capacitance, then this value of noise corresponds to a charge of only 10’s thousands 

electrons. Any disturbance of this delicate balance by an incident particle is intolerable. 



20 

 

Therefore, it is essential to recognize and get familiar with the effects of space radiation on 

the electronics in that hostile environment. 

 
Fig. 2.1  Charge generation and collection phases in a reverse-biased PN junction [12].© 

2005 IEEE. 

 
Fig. 2.2  The resultant current transient caused by an ion strike on silicon device with a 

reverse-biased PN junction in Fig. 2.1[12]. © 2005 IEEE. 
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2.2 Physical Mechanism of Radiation Effects in MOS Device.  

When an ion strikes a silicon device, the ion track leaves a dense plasma of electron-

hole pairs along its path as shown in Fig. 2.1(a). If the electron-hole plasma is generated in 

a region with an electric field, e.g. at a PN junction, electrons and holes are rapidly split by 

the electric field creating a large current or voltage transient at the circuit node [12]. The 

charge collection has two phases. First, a prompt collection phase that lasts for the order of 

hundreds of picoseconds and the carries are collected in the original depletion region and 

the funnel region [13], as shown in Fig. 2.1(b). Second, a delayed phase that lasts for 

hundreds of nanoseconds and the carries diffuse up to the depletion region and are quickly 

collected by the junction electric field (Fig. 2.1(b)). Fig. 2.2 shows the resultant current 

transient in the different phases shown in Fig. 2.1. The reverse-biased PN junction is the 

most charge-sensitive part of circuits.  

2.3 Radiation Effects in Mainstream Semiconductor Memories.  

Extensive investigation on the radiation effects on the mainstream semiconductor 

memories has been reported in past a few decades since they have reached the industrial 

maturity. In this section, only the trend of soft errors with technology node scaling is 

summarized for different memory technologies.  

2.3.1 DRAM 

The radiation-induced soft error was first reported in 1970s, which mainly caused by 

the alpha particles emitted by uranium and thorium impurities in packaging materials [11]. 

With technology node scaling, The volume of charges on the storing node decreases as 

with the decreasing area of the junction (junction/well doping also plays a role) while cell 

capacitance remains relatively constant with scaling since it is dominated by the external 
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3-D capacitor cell. Such DRAM device scaling results in DRAM cell voltage scaling. 

Voltage reduction reduces the critical charge (Qcrit), but with concurrent aggressive 

junction volume scaling, a much more significant reduction in collected charge is observed. 

The net result to DRAM soft error rate (SER) is shrinking about 4~5× per generation. While 

DRAM bit SER has been reduced by more than 1000 times over seven generations, the 

DRAM system SER has remained essentially unchanged [12]. System requirements have 

increased the memory density (bits/system) almost as fast as the SER reduction provided 

by technology scaling. Thus, DRAM system reliability has remained roughly constant over 

many generations. 

2.3.2 SRAM 

In contrast, early SRAM was more robust against SER because of high operating 

voltages and the fact that data in an SRAM are stored as an active bi-stable state (made up 

of two cross-coupled inverters), each one strongly driving the other to keep the SRAM bit 

in its programmed state. The Qcrit for the SRAM cell is largely defined by the charges on 

the node capacitance which keep the node voltage at the proper value. With technology 

scaling, the SRAM junction area has been deliberately minimized to cell area. On the other 

hand, the SRAM operating voltage has been scaled down to minimize power as well. With 

each successive SRAM generation, reductions in the amount of charges in the storing node 

due to cell area shrinking have been cancelled out by big reductions in operating voltage 

and reductions in node capacitance. SRAM single bit SER was initially increasing with 

each successive generation. Most recently, as the technology nodes have been reduced into 

the deep submicron regime (< 0.25 µm), the SRAM bit SER has saturated and may even 

be decreasing. This saturation is primarily due to the saturation in voltage scaling, 
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reductions in amount of junction charges, and increased charge sharing due to short-

channel effects with neighboring nodes. Although the SRAM bit SER has saturated in the 

deep submicron region, the SRAM system SER does not saturate as scaling also implies 

increased memory density. The exponential growth in the amount of SRAM in processors 

has led the SRAM system SER to increase with each generation with no end in sight. This 

trend is of great concern to chip manufacturers since SRAM constitutes a large part of all 

advanced integrated circuits today. 

2.4 Radiation Effects of Emerging NVM Technology  

Emerging NVM technologies include STT-MRAM, PCRAM, and RRAM. The oxide-

based resistive random access memory (OxRAM) is one of the most promising emerging 

NVM technologies due to its attractive attributes including  excellent scalability (<10 nm), 

low programming voltage (<3 V), fast switching speed (<10 ns), high on/off ratio (>10), 

high endurance (up to 1012 cycles) and compatibility with the silicon CMOS technology 

[4]. In general, there are two types of RRAM array architectures for integration, 1T1R and 

crossbar array architectures. A simple crossbar array suffers from “sneak path” that limits 

the array size, increases the power consumption, and degrades the write/read margin [14]. 

However crossbar designs now use stacked cell structures composed of one-selector and 

one-resistor  (1S1R) in series [15, 16]. The use of 1S1R structures has been shown to 

significantly suppress sneak current [17, 18]. In the recent years, industrial development 

efforts focused on oxide RRAM has led to the production of various prototype chips, e.g. 

ITRI’s 4Mb HfOx 1T1R array [19], Panasonic’s 8Mb TaOx crossbar array [20], 

SanDisk/Toshiba’s 32Gb MeOx crossbar array [21]. 
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For the space applications, the lack of low-cost high-density radiation-hardened NVM 

is one of the key challenges in the design of systems for the hostile space environment. 

Today’s FLASH technology can only sustain a total ionizing dose (TID) up to 75 krad(Si) 

and FLASH suffers functional failures during write due to the radiation-induced charge 

pump degradation [22]. Oxide RRAM devices have already been demonstrated to be robust 

to TID > 1 Mrad (Si) in individual cell [23-26]. However, there are limited studies on the 

SEE-induced soft errors in RRAM at the array-level. There are a few paper reporting on 

the single event effect (SEE) susceptibility of HfOx-based [27], TaOx-based [28] and 

chalcogenide-based 1T1R structures [29].  

Single event modeling plays a key role in the understanding of the observed-error 

mechanisms in existing systems, as well as the prediction of errors in newly designed 

systems. There are two different aspects of interest. First is the analysis of various types of 

single event experiments to help understand the phenomena. Second is the modeling of the 

various aspects of the phenomena that allow prediction of SEE rates in space. SEU plays a 

key role in memory devices. In this section, we mainly focus on the investigation of SEU 

in RRAM design with both 1T1R and crossbar architectures at the circuit level. 

2.4.1 Modeling the RRAM Device 

We employed a physics-based RRAM SPICE model [30] with adding new feature of 

resistance retention failure mechanism that is essential for RRAM reliability evaluation. 

The heat conduction process in the transient form is also reformulated, which is necessary 

for applications that explore ultrafast I-V responses below nanoseconds, e.g., in assessing 

the susceptibility of RRAM devices to a heavy ion strike. The model parameters are 

validated with the experimental data of IMEC HfOx-based RRAM devices [31-33]. It is 
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known that the switching characteristics of oxide based RRAM are strongly dependent on 

the distribution of oxygen vacancies in the oxide layer, where vacancies act as electron 

hopping sites for current conduction. In this model, a single dominant conductive filament 

in one dimension is assumed. The primary internal variable that determines the resistance 

is the gap distance, which is defined as the average distance between the electrode and the 

tip of the conductive filament. Gap distance is modulated under the sufficient electric field, 

thereby changing the RRAM resistance through an electron tunneling conduction 

mechanism.  

We first use the RRAM SPICE model in a 1T1R cell structure to determine its 

programming conditions for SET and RESET. If not specified, the PTM model of the 45nm 

bulk transistors [34] is used in the HSPICE simulations in this work. In the 1T1R array 

architecture, the SET operation is performed by applying positive voltage pulse on the BL 

and WL, while grounding the SL and body of the transistor. RESET is performed by 

applying positive pulses on WL and SL, while grounding BL and the body. The WL pulse 

has a longer width than the BL or SL pulses as shown in Fig. 2.3(a) and (b). Fig. 2.3(c) 

shows the current transients of BL and Fig. 2.3(d) plots the resistance transients of RRAM 

during SET and RESET operations. In SET operation, a relatively lower voltage pulse is 

applied on WL (1.15 V for a transistor with W/L ~ 3) to provide a compliance current 

which sets a lower-bound for the LRS resistance (~100 kΩ). In RESET, a larger positive 

bias is applied on the WL (3 V for transistor with W/L ~ 3) so that the resistance of 

transistor is low enough that most of the voltage on the SL and BL drops across the RRAM. 

If different sized transistors are used in 1T1R, bias conditions are varied in order to switch 

RRAM between the same HRS (~1 MΩ) and LRS (~100 kΩ). Table 2.1 lists bias 
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conditions for transistor with W/L ratios of 1, 2 and 3, respectively. Higher voltage biases 

are needed to provide the same amount of switching current for smaller W/L transistors. 

 
Fig. 2.3  Transient waveforms of 1T1R in SET and RESET operation using RRAM SPICE 

model. © 2015 IEEE. 

Table 2.1  Three Sizes of Selection Transistor and Associated Programming Conditions 

W/L V_WL (V) 

SET/RESET 
V_BL (V) V_SL (V) 

1 2.2/3.9 2.4 3.28 

2 1.4/3.2 2.2 2.8 

3 1.15/3.0 2.0 2.6 
 

2.4.2 Modeling the Photocurrent at the Device 

When a heavy ion strikes the reverse biased PN junction formed by the drain and body 

of the transistor, it will create electron-hole pairs, resulting in photocurrent flowing 
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between the drain and the bulk. We employ a photocurrent model as a function of LET 

following prior work [18]. The total energy lost per unit path length when the particle 

strikes the drain of a transistor can be expressed in terms of LET as,  

𝐸 = 𝐿𝐸𝑇 × 𝜌0 (2.1) 

where ρ0 is density of the irradiated material, in this case Si. 

When the ionizing particle penetrates through the drain-body junction, electron-hole 

pairs can be rapidly collected in drain (electrons) and body (holes) due to the reverse bias 

field. The electron-hole pair generation rate (G) can be estimated as, 

𝐺 =
𝐸

𝑤 × 𝜋 × 𝑟2 × 𝜏
 (2.2) 

 

where w is a material property that specifies the energy required to generate a single 

electron-hole pair, τ is the ion transit time, and r is the path track radius. Here we assumed 

that the radius is a linear function of LET with α being the constant of proportionality 

between r and LET [35], 

𝑟 = 𝑟0 + 𝛼 × 𝐿𝐸𝑇 (2.3) 

The transport of electron-hole pairs result in a reverse drain-body diode current, namely 

a transient photocurrent (Iph) [36] that can be approximated as, 

𝐼𝑝ℎ = 𝑞𝐴𝐺(𝑥𝑗 + 𝐿𝑒) (2.4) 

where q is the electronic charge, A is the drain area, xj is the junction depth of the drain 

and Le is electron diffusion length. Table 2.2 summarizes the parameters in the 

photocurrent model. 

In order to validate the model described above, we simulated 10-CMOS-inverter delay 

chain as in [37]. The particle strike occurs on the drain of the off-NMOS of the first inverter 

in the chain. The transistor model used here is the 0.13μm bulk transistors in the PTM 
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model. In addition, a dynamic capacitor, in parallel with photocurrent, is modeled as the 

changing capacitance due to shrinking of the depletion region of PN junction and electron 

and hole pairs generated by the particle strike [38]. The parameters used for simulation are 

the same as those used in [37]. The peak current through the NMOS transistor during the 

strike as a function of LET is shown in Fig. 2.4. The result shows that our analytical 

photocurrent model fits well to the TCAD simulation results in [37].  

 

In this work, the photocurrent model as described above is used to simulate the effects 

of ion strikes with various LETs. Fig. 2.5 shows peak photocurrent as a function of LET 

and transistor size. The results indicate that the photocurrent increases monotonically with 

the increase in LET and W/L ratio. 

2.5 RRAM Sensitivity for Upset  

As discussed in session 1.5.2, 1T1R and crossbar are the two typical architectures for 

integration. In the 1T1R design, each RRAM cell is integrated with a selection transistor. 

Crossbar architecture consists of only RRAM devices without selection transistors in the 

Table 2.2  Variable Declaration 

Variables Value 

ρ0 2.33e3 mg/cm-3 

w 3.6e-6 Mev 

r0 1e-5 cm 

τ 10e-12 s 

α 1.05e-7 

xj 1.4e-6 cm 

Le 1e-4  cm 
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array. At the edge of the array, RRAM devices on the same WL or BL share a common 

driver (e.g. CMOS inverter).  

 
Fig. 2.4  Peak transient current as a function of strike LET for 0.13μm bulk technology 

[37]. © 2015 IEEE. 

 
Fig. 2.5  Photocurrent transient peak as a function of strike LET and transistor size [8]. © 

2015 IEEE. 

The write operation involves two processes, SET and RESET. In the 1T1R architecture, 

the WL of the selected cells are set to a positive voltage (i.e. V_WL) to make sure the 

selection transistor is “ON” when a cell is being written (SET) or erased (RESET). In the 

SET operation, the selected BL is fixed to a positive voltage of V_BL and source line (SL) 
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is grounded (Fig. 2.6(a)). In the RESET operation, the selected BL is grounded and the 

selected SL are biased by a positive voltage of V_SL. The other unselected WL, SL and 

BL are all grounded. In the crossbar architecture, the 1/2 V bias scheme is usually 

employed [14]. In this scheme, unselected WLs and BLs are all biased to half write voltage 

Vw/2, while the selected WL and BL are biased to full write voltage Vw and 0 V for the 

SET operation, 0 V and Vw for the RESET operation, respectively. Therefore, during either 

SET or RESET, some cells share either WL or BL signals with the selected cell. These 

“half-selected” cells are colored as purple (WL shared) or blue (BL shared) in (Fig. 2.6b). 

As these “half-selected” cells are biased, they suffer certain degree of undesired write 

disturbance. All the unselected cells sharing neither WL nor BL with the selected cell will 

have 0 V applied across the electrodes if neglecting the interconnect wire resistance. We 

focus on the 1/2 V bias scheme for the crossbar architecture. 
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Fig. 2.6  Schematic of (a) the 1T1R architecture and (b) crossbar architecture with 1/2 V 

bias scheme. 

2.5.1 Sensitivity for Upset in 1T1R Architecture 

In the 1T1R architecture, each RRAM device has a selection transistor in series. The 

susceptible RRAM are the cells in blue in the same column as the selected cells being 
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written (see Fig. 2.6(a)). In the SET operation, the sensitive locations are the drain-body 

junctions tied through unselected RRAM devices to the selected BL. The generated holes 

will sink to the body of the transistor, while the electrons will be collected to the drain of 

the transistor. Therefore, ion-induced positive photocurrent will flow through the RRAM 

cell from anode to cathode. Depending on the magnitude of current, voltage on the cathode 

might be pulled down even to a negative potential. This could cause a suitably high positive 

voltage differential between anode and cathode thereby making an RRAM cell susceptible 

to HRS to LRS flipping. However, in the RESET operation, the sensitive locations are 

source-body junctions tied to the selected SL. A negative photocurrent is generated only 

for the angular strike. This is because there is a parasitic bipolar effect caused by the 

forward biasing of body-drain junction [39]. This may cause a spurious transition from 

LRS to HRS under extreme circumstances. In work [40], no LRS to HRS upset was shown 

in their experiments. This suggests the flipping from LRS to HRS has a very small 

possibility in the 1T1R structure. Therefore, only HRS to LRS transition with normal 

incidence strike is considered for the 1T1R architecture at the circuit level modeling and 

system level analysis. 

SEU  

An SEU occurs when a single incident ion changes the RRAM’s state. For memory 

application with binary states, we define that it is an HRS to LRS upset when the resistance 

falls below 100kΩ from an initial high state (i.e. HRS). In contrast, it is an LRS to HRS 

upset when resistance increases above 1MΩ from an initial low state (i.e. LRS). Given a 

sufficiently high photocurrent, the drain voltage, which initially is 2V as in the case of 

IMEC HfOx RRAM device and when the transistor W/L ratio is three, drops to a negative 
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value. This results in a corresponding net positive voltage transient across the RRAM, 

which triggers the HRS to LRS upset in the 1T1R. 

 
Fig. 2.7  Simulated voltage transients generated across 1T1R and their corresponding 

resistance change. The threshold LET is in range of 3 to 4 MeV·cm2/mg [8]. © 2015 IEEE. 

Fig. 2.7 presents the voltage transient waveforms and the corresponding resistance 

transition, respectively, of a RRAM with 1T1R structure under the particle strike. The 

simulation result indicates the threshold LET of SEU is ranging from three to four 

MeV*cm2/mg. Since the RRAM resistance change is more strongly dependent on voltage 

than current [41, 42], the likelihood of an upset increases substantially when a larger 

positive bias is applied on the BL during the particle strike [40]. In fact, our simulation 

result shows that the threshold LET decreases less than three MeV·cm2/mg when the access 

transistor W/L ratio is two. This is because a larger BL voltage (i.e. 2.2 V) is required to 

SET RRAM (see Table 2.1). It is noted that the threshold LET obtained here is smaller 

than what was reported in [40] because the transistor’s drivability in our study is smaller 

than the transistors used in [40], thus a higher BL voltage is needed, increasing the 

susceptibility. 
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MEU 

RRAM is stable in a continuum of resistance levels. If multiple ions strike the same 

cell before a new data is written into the cell, the cumulative change in resistance by each 

particle strike can eventually upset the cell, even though each strike itself is not able to 

change state of the cell. Multiple-event upset (MEU) was experimentally observed in the 

heavy ion irradiation test on 1T1R [40]. Fig. 2.8 shows that a MEU occurs when several 

ions with the same LET of three MeV·cm2/mg (which is smaller than the threshold LET) 

strike the drain of the transistor consecutively. 

 
Fig. 2.8  Resistance change in accumulative fashion, causing MEU. The incident ion LET 

is 3MeVcm2/mg, which is smaller than the threshold LET for SEU [8]. © 2015 IEEE. 

2.5.2 Sensitivity for Upset in Crossbar Architecture 

Crossbar array is an architecture attractive for ultra-high density applications and holds 

the potential for the 3D integration. In order to support a large-scale crossbar array, a 

selector is generally stacked with the RRAM cell to suppress parasitic sneak currents from 

unselected cells. In our simulation, a state-of-the-art selector, FAST selector is employed 

[18], which shows excellent I-V nonlinearity, steep turn on slope and high endurance. With 

the help of the selector, the resistance of the half selected cells is assumed to be 109 Ω, 

which is able to support a 1024 × 1024 array. 
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In the crossbar array, there are drivers (i.e. CMOS inverters) at the edge of the array to 

drive WLs and BLs. Any “OFF” transistor of the driver has a reversed biased PN junction, 

which is sensitive to the incident ion strike. If an incident particle strikes the drain of the 

“OFF” transistor (PMOS or NMOS), a transient voltage spike occurs at the output of the 

driver. The spike generated on the driver at the edge propagates along the WL or BL since 

there is no isolation between cells in the crossbar array. This is a particular problem in the 

crossbar architecture, which, however, does not exist in 1T1R design. This can lead to a 

MBU.  

 

 
Fig. 2.9  (a) Schematic of simulation circuit for analyzing the crossbar array taking into 

account the parasitic wire capacitance and resistance, (b) Single event transient spike 

propagation in 1024×1024 RRAM array. The transient spike is significantly attenuated 

when it propagates across the entire array [8]. © 2015 IEEE. 

Fig. 2.9(a) shows a schematic used to examine the MBU mechanism in the RRAM 

crossbar array. We consider a 1024×1024 array where one WL drives 1024 RRAM cells. 

Each cell unit consists of a wire resistor and a wire capacitor and a RRAM cell with a 
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FAST selector. The wire resistance and capacitance are calculated in 45 nm using the ITRS 

table [43]. Once a single event transient has been produced in the struck device, e.g., PMOS 

of an inverter at the edge of WL, its transient evolution along the WL can be simulated in 

HSPICE. To deliver programming current to the crossbar array, the driver’s NMOS W/L 

is set to be three, and PMOS W/L is set to be six. Fig. 2.9(b) illustrates the voltage spike 

transient’s propagation at the extremes of the WL in 1024 ×1024 crossbar array. For a 

given LET, the voltage transient, although substantial at the stuck node at the edge of the 

array, is significantly attenuated as it travels along the WL. Therefore, only a certain 

number of cells that are closer to the edge of the array may see sufficiently large net voltage 

transient to flip the states. In addition, we also investigate the numbers of cells which will 

be susceptible to the heavy ion strike on the transistors at the near edge of the array. 

The net voltage difference across RRAM cells can be either positive or negative 

depending on whether the incident ion strikes the drain of the driver’s PMOS or the NMOS. 

This implies both HRS to LRS and LRS to HRS upsets can occur with roughly the same 

probability. Table 2.3 summarizes all possible sensitive transistors (“OFF” transistors) and 

the potential upset types during SET or RESET operation in the crossbar architecture as 

shown in Fig. 2.6(b). The drivers at edge are classified into six categories depending on 

their bias voltages. Drivers A and B are the drivers with outputs of Vw/2 on the rows (WL) 

and columns (BL), respectively, in both SET and RESET operations. Drivers C and E are 

WL drivers with outputs of Vw in SET and ground in RESET, respectively. Drivers D and 

F are BL drivers with output of ground in SET and Vw in RESET, respectively. The 

descriptions of the driver categories can be referred to Fig. 2.6(b). Due to parasitic 

capacitances, wire resistances and the loading effects of other cells, the generated spike 
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amplitude is degrading while traveling. Thus only the cells that are close to the driver at 

edge are susceptible to the upset. Depending on the LET of ion, different numbers of cells 

may experience upsets, namely, from PA (LET) for Driver A to PF (LET) for Driver F.  

 
Fig. 2.10 Multiple-bit upset in crossbar array induced by single event transient with RRAM 

having different switching voltage or Ea. (a) HRS to LRS flipping and (b) LRS to HRS 

flipping [44]. © 2016 IOP. 

It should also be noted that the susceptibility of the RRAM crossbar array strongly 

depends on bias voltage. If Vw is 2V as in the case of IMEC HfOx RRAM, then half-

selected RRAM cell may see -1.7V spike on it in the worst case. As -1.7V is less (in 

absolute value) than the RESET voltage (-2V), half-selected RRAM may not be flipped 

from LRS to HRS. If Vw requirement for switching is smaller, e.g. 1V, then half-selected 

RRAM may see net -1.2V voltage spike in the worst case. As -1.2 V is larger (in absolute 

value) than the RESET voltage (-1V), half-selected RRAM cell could be flipped from LRS 

to HRS. On the other hand, the switching voltage of RRAM strongly is also determined by 

the activation energy (Ea) of oxygen vacancy migration, which is strongly dependent on 

the material set of the RRAM.  

Next, we will reduce the Ea in the RRAM device model to lower the Vw required for 

the write operation. In practice, lowering Ea can be achieved by changing RRAM oxide 
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materials. Table 2.4 lists the Vw required for different RRAMs with different Ea. The Vw 

is reduced to be 0.6 V when Ea is decreased to 0.5 eV. Fig. 2.10 illustrates the simulation 

results of MBU for HRS to LRS flipping and LRS to HRS flipping, respectively. It is seen 

that the reduced switching voltage of RRAM (i.e., lower Ea) significantly increases the 

number of bit upsets in the crossbar array. We interpret this phenomena as a certain particle 

strike is more easily to cause more number of RRAM cells with lower Ea to see net voltages 

exceeding their switching voltages. It is also noted that the threshold LET of a PMOS struck 

is smaller than that of NMOS struck because the area of PMOS is twice the size of NMOS 

in an inverter. It is also observed that HRS to LRS flipping has a lower threshold LET than 

LRS to HRS flipping as the RESET needs a larger voltage than SET as predicated by the 

RRAM model. 

Table 2.3  Sensitive Transistors and Potential Upset Types in Fig. 2.6(b) 

Process Driver 

(Inverter) 
Bias 

Off 

Transistor 
Upset Type Upset Bits 

SET 

A 1/2Vw NMOS LRS -> HRS PA(LET) 

B 1/2Vw NMOS HRS -> LRS PB(LET) 

C Vw NMOS LRS -> HRS PC(LET) 

D GND PMOS LRS -> HRS PD(LET) 

RESET 

A 1/2Vw NMOS LRS -> HRS PA (LET) 

B 1/2Vw NMOS HRS -> LRS PB (LET) 

E GND PMOS HRS -> LRS PE(LET) 

F Vw NMOS HRS -> LRS PF(LET) 
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Table 2.4  Required Vw of RRAM with Different Ea 

Ea (eV) Vw (V) 

1.5 2 

1 1.3 

0.75 0.95 

0.5 0.6 
 

2.6 Sensitivity Comparison between 1T1R and Crossbar Architectures  

As the MBU effect only occurs in the low-voltage operation, to compare the sensitivity 

for upset between 1T1R and crossbar, Vw is designed to be 1V by changing the activation 

energy of an oxide material in the RRAM SPICE model. Table 2.5 shows the voltage biases 

with same RRAM oxide material during SET and RESET operations in the 1T1R and 

crossbar architectures. 

Table 2.5  Voltage Bias for 1T1R and Crossbar Architectures 

 1T1R Crossbar 

Process V_WL (V) V_BL (V) V_SL (V) VW (V) 

SET 0.7 1.0 0 1.0 

RESET 1.6 0 1.1 1.0 
 

 

Fig. 2.11  (a) SBU from HRS to LRS due to SEE in 1T1R array. (b) MBU from HRS to 

LRS or from LRS to HRS induced by SET [44]. © 2016 IOP. 
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As mentioned above, only SBUs are assumed to occur when a heavy ion strikes the cathode 

node of RRAM during the SET operation in a 1T1R structure. 

 

Fig. 2.11(a) presents the simulated single cell upset probability for HRS to LRS flipping 

as a function of the incident ion LET. The threshold LET is found to be 1.8 MeV·cm2/mg 

from the HSPICE simulations. The threshold LET is generally affected by a few factors. 

The first factor is the sensitive area, which decides the magnitude of ion-induced photo-

current and the net voltage differential across RRAM. The second factor is the intrinsic 

switching voltage of RRAM, which determines how much net voltage across RRAM can 

flip its desired state. The third factor is the applied voltage on BL, which will determine 

how much voltage transient is required to cause enough voltage difference on the RRAM. 

Compared to work [28], our simulation results presented a larger LET at a given applied 

voltage on BL. For example, the threshold LET of 1T1R was around 4 MeV·cm2/mg and 

it might be less than 1 MeV·cm2/mg at a given BL voltage of 2 V (extrapolated in work 

[28]). This is because the sensitive area or size of access transistor used in our work (i.e. 

W = 135 nm, L = 45 nm) is much smaller than that in work [28] (i.e. W = 1 µm, L = 100 

nm). The threshold LET in this work (1.8 MeV·cm2/mg) is decreased from simulation 

results shown in previous section (i.e. 3-4 MeV·cm2/mg). The reason is that the RRAM 
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switching voltage is reduced by reducing the activation energy of an oxide material in the 

RRAM SPICE model. 

For the crossbar architecture, both HRS to LRS and LRS to HRS flipping can occur in the 

crossbar architecture as discussed earlier. In order to quantify the number of upsets of 

either type that may occur, HSPICE simulations are performed on arrays programed with 

two data patterns. One array is preprogrammed with all the cells in LRS (~100 kΩ) to get 

the number of upsets from LRS to HRS. The other one is preprogrammed with all the 

cells in HRS (~1 MΩ) to obtain the number of upsets from HRS to LRS. In the crossbar 

array simulation, the parasitic capacitances and wire resistances (for 45nm node) are 

considered. 

 

Fig. 2.11(b) shows the MBU effect simulation result for a 128 × 128 array when only 

one bit is written into the array. It indicates that the number of upsets increases as the 

incident ion LET increases. This can be attributed to the larger voltage spike generated at 

the output of the driver when the incident ion LET is larger. It also suggests that the number 

of upsets strongly varies with the types of drivers being struck. First, Drivers A and B have 

the same output voltage of 1/2 Vw and sensitive transistor (i.e. NMOS).  A strike on the 

NMOS drain of driver A on the row can cause LRS to HRS upset. However, a strike on the 

NMOS drain of driver B on the column can cause HRS to LRS upset. The number of upsets, 
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PA, is smaller than PB for a given LET due to a lower switching voltage from HRS to LRS 

in the RRAM model. The difference between PD and PE has a similar explanation. 

Compared to PB, PE presents more upsets because the drain area of PMOS is larger than 

that of NMOS, which results in a larger photocurrent and larger voltage spike. Finally, PF 

has a smaller number of upsets compared to PB for a given LET because higher WL voltage 

(i.e. Vw) requires higher photocurrent to pull it down to a certain voltage. 

 
Fig. 2.12  The number of upset bits increases as the lower quality threshold selector with 

lower OFF resistance is employed [44]. © 2016 IOP. 

In addition, we found that the quality of selector also affects the number of upsets in 

the crossbar architecture. Fig. 2.12 shows the number of upsets under the PB condition for 

different threshold selector with different ROFF resistances. The result suggests that a 

selector with higher off-resistance is desired in the design of crossbar memory for stronger 

radiation hardness. If we compare the 1T1R and the crossbar architectures, the crossbar 

architecture generally presents a higher threshold LET than the 1T1R architecture. 

2.6.1 Single Event Upset Rate 

Since the number of upsets varies significantly with the types and locations of 

transistors being struck and the states of RRAM cells, especially in the crossbar 

architecture, we have to consider all the strike scenarios. In order to obtain an “expected” 
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number of upset cells when an incident ion strikes a sensitive transistor, the average number 

of upsets is calculated by considering the probability of each strike.  

In the 1T1R architecture, it has been assumed that an SEU only occurs during the SET 

operation. Due to the selection transistor, only one bit may be flipped when a heavy ion 

strikes one of the sensitive locations. Then the average SEU rate (number of upsets) is 

𝑅𝑆𝐸𝑈 = 𝑃𝑆𝐸𝑈_𝑆𝐸𝑇𝜌𝐻𝑅𝑆𝜌𝑆𝐸𝑇𝑊𝐵 , (2.5) 

where 𝑃𝑆𝐸𝑈_𝑆𝐸𝑇 is the number of bits, either zero or one, flipped for a given ion LET (see 

 

Fig. 2.11(a)), ρHRS is the probability that a RRAM cell not accessed and in the same column 

is in HRS, ρSET is the probability that a cell programming process is performing the SET 

operation, and WB is the number of bits to be written in parallel into the array in each 

address loop. The value for WB determines the number of BLs being activated in the SET 

operation. The average SEU rate for the 1T1R architecture is not dependent on the sub-

array size because it only involves SBUs. 

In the crossbar architecture, an SEU can occur during both SET and RESET operations. 

Due to the MBUs, the number of upsets is dependent on the size of sub-array (i.e. N × N) 

and the number of activated BLs (i.e. WB) in both SET and RESET operations. During 
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SET operation, when an ion hits one of the “OFF” transistors, the average SEU rate in an 

N × N array is 

𝑅𝑆𝐸𝑈_𝑆𝐸𝑇 = [(𝑁 − 1)𝑃𝐴𝜌𝐿𝑅𝑆 + (𝑁 − 𝑊𝐵)𝑃𝐵𝜌𝐻𝑅𝑆 + 𝑃𝐶𝜌𝐿𝑅𝑆 + 𝑊𝐵𝑃𝐷𝜌𝐿𝑅𝑆]/2𝑁 (2.6) 

where ρLRS is the probability of a RRAM cell in LRS. Similarly, the average SEU rate for 

the RESET operation is 

𝑅𝑆𝐸𝑈_𝑅𝐸𝑆𝐸𝑇 = [(𝑁 − 1)𝑃𝐴𝜌𝐿𝑅𝑆 + (𝑁 − 𝑊𝐵)𝑃𝐵𝜌𝐻𝑅𝑆 + 𝑃𝐸𝜌𝐻𝑅𝑆 + 𝑊𝐵𝑃𝐹𝜌𝐻𝑅𝑆]/2𝑁 (2.7) 

If the probability of a write process performing SET is ρ_SET and performing RESET is 

ρRESET, then the average SEU rate in a write process in the crossbar architecture is 

𝑅𝑆𝐸𝑈 = 𝑅𝑆𝐸𝑈_𝑆𝐸𝑇𝜌𝑆𝐸𝑇+𝑅𝑆𝐸𝑈_𝑅𝐸𝑆𝐸𝑇𝜌𝑅𝐸𝑆𝐸𝑇 (2.8) 

Where, 

𝜌𝐿𝑅𝑆 + 𝜌𝐻𝑅𝑆 = 1 (2.9) 

𝜌𝑆𝐸𝑇 + 𝜌𝑅𝐸𝑆𝐸𝑇 = 1 (2.10) 

 
Fig. 2.13  Average SEU rate in a 128 × 128 array with one bit written in the crossbar 

architecture [44]. © 2016 IOP. 

We assume that RRAM cells have the equal probability to be in HRS and LRS and the 

SET operation has the same frequency as the RESET operation. Thus, the average SEU 

rate in the 1T1R and in the crossbar can be determined using the above equations. Fig. 2.13 

shows the average SEU rate of a crossbar array with a size of 128 × 128 when only one bit 
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is written into the array. In practice, the size of the driver varies with array size and the 

number of bits to be written into an array simultaneously in one address loop.  

Table 2.6  Driver Size of Crossbar for Different Array Size  

Array Size Number of Activated Cells in an Array W/L of NMOS 

128 × 128 

1 1 

4 1 

16 3 

256 × 256 

1 1 

4 2 

16 4 

512 × 512 

1 2 

4 3 

16 6 

Table 2.6 shows the size of the NMOS of the driver for crossbar arrays with different 

array size and different numbers of bits to be written in parallel into an array. The PMOS 

of the driver is twice as large as the NMOS. In the photocurrent model, the photocurrent 

will scale with drain area of the device when the drain width and length are smaller than 

200 nm, which is comparable with the ion radius (~100 nm) [37]. Fig. 2.14(a) shows that 

the SEU rate increases with more bits written into an array in parallel. This is mainly 

because a larger driver is used to provide enough drive current when more bits are written 

into an array simultaneously. For a given incident ion LET, the larger driver can generate 

larger photocurrent and incur larger transient voltage on the output of the driver, resulting 

in more upsets. The driver size may also be increased with larger array size. However, the 

parasitic resistances and capacitances of the wires and the loading effect of other cells 

increase with the array size as well. As a result, the generated spike attenuates faster as it 
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propagates along WL or BL in a larger array than that in a smaller array. Therefore, a trade-

off exists between SEU rate and array size in the crossbar architecture. The 256 × 256 array 

presents the lowest SEU rate, as shown in Fig. 2.14(b). 

 
Fig. 2.14  (a) Average SEU rate increases with increasing the number of bits to be written 

in the 128 × 128 array. (b) Average SEU rate varies with array size for a given number of 

bits to be written. The 256 × 256 array presents the lowest SEU rate [44]. © 2016 IOP. 

2.6.2 Bit Error Rate per Day Estimation 

BER per day at the system level caused by SEU can be calculated by integrating the 

SEU rate, the ion flux, the sensitive area and the susceptible time window as 

𝐵𝐸𝑅 ∙ 𝐷𝑎𝑦(𝐿𝐸𝑇) = ∬ 𝑅𝑆𝐸𝑈(𝐿𝐸𝑇)𝜙(𝐿𝐸𝑇)𝑑𝐴𝑑𝑡 (2.11) 

where RSEU (LET) is the SEU rate (from Eq. (4) for 1T1R or (6) for crossbar), ϕ(LET) is 

the integral ion flux. The susceptible time window is only when the programming operation 
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(either SET or RESET) is performed in the RRAM system. In this work, we employed an 

integral LET spectra for galactic cosmic rays during solar minimum to calculate the SEU-

induced BER in the RRAM system (Fig. 6 in work [45]). For the 1T1R architecture, as 

mentioned above, the sensitive locations are the drain-body junctions of the “OFF” 

transistors tied to the selected BL in SET operation. Therefore, the sensitive area is the total 

area of the drains of the “OFF” transistors connected to the selected BL. Then for an N × 

N array with W_B bits to be written simultaneously, the sensitive area can be calculated as 

𝐴𝑟𝑒𝑎1𝑇1𝑅 =  𝐴𝐷_𝑁(𝑁 − 1)𝑊𝐵𝑛 (2.12) 

where N-1 is number of “OFF” transistors tied to a selected BL, and WB is number of 

selected BLs, and n is the number of activated arrays in the RRAM system. If I/O bit width 

of the system is NIO, then 

𝑛 =  𝑁𝐼𝑂/𝑊𝐵 (2.13) 

Thus the sensitive area of the 1T1R becomes 

𝐴𝑟𝑒𝑎1𝑇1𝑅 =  𝐴𝐷_𝑁(𝑁 − 1)𝑁𝐼𝑂 (2.14) 

which is only determined by the I/O width no matter how many sub-arrays are activated. 

For the crossbar architecture, in contrast, the sensitive area is the total area of the drains of 

the both N-type and P-type “OFF” transistors of the edge drivers. For an N × N crossbar 

array, the total number of drivers is 2N. In the SET operation, all the WL are biased to Vw 

or 1/2Vw and all the N-type transistors are “OFF”; WB of BLs are grounded if WB bits are 

written into the simultaneously, hence there are N-WB N-type and WB P-type “OFF” 

transistors on the BL. In total, 2N-WB N-type and WB P-type “OFF” transistors in SET 

operation. The analysis is similar in the RESET operation. Thus the sensitive area is 

calculated as 
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𝐴𝑟𝑒𝑎𝑐𝑟𝑜𝑠𝑠𝑏𝑎𝑟 =  {[(𝐴𝐷_𝑁(2𝑁 − 𝑊𝐵) + 𝐴𝐷_𝑃𝑊𝐵)𝜌𝑆𝐸𝑇]

+ [(𝐴𝐷_𝑁(2𝑁 − 1) + 𝐴𝐷_𝑃)𝜌𝑅𝐸𝑆𝐸𝑇]}𝑁𝐼𝑂/𝑊𝐵 

(2.15) 

which is not only determined by the I/O width but also how many sub-arrays are activated. 

For example, for the 64 bits I/O used in the system, if we write 8 bits into one sub-array in 

parallel, we need to activate eight sub-arrays.  

In this work, we assume the RRAM cell write latency is 20 ns. Then the write latency 

of a page (e.g. 4kB) is same as Ref. [46]. In addition, the most write-intensive workload in 

a solid-state-drive (SSD) in Ref. [47] is used to calculate the total write time window for 

the system, which is 308.9 s/day. Taking those assumptions into account, Fig. 2.16(a) and 

(b) show the maximum BER/day for the 1T1R array and the crossbar array, respectively. 

In the 1T1R architecture, it indicates that the maximum BER per day is exponentially 

increased with the sub-array size. However, it has no dependency on the bits to be written 

simultaneously in a sub-array (Fig. 2.16(a)). The reason is that the sensitive area is only as 

a function of I/O bit width of a system (from Eq. (2.13)). In the crossbar architecture, 

however, both the number of bits to be written in one sub-array and the array size can affect 

the maximum BER per day even for a given I/O bit width (i.e. 64 bit) and total write time 

window (i.e. 308.9 s/day). It suggests that array size of 256 × 256 has the lowest maximum 

BER per day if a single bit is written into one array as shown in Fig. 2.16(b).  

If we compare the 1T1R and the crossbar architectures, the crossbar array does not have 

transistor in the array (only at the edge), thus it has smaller sensitive area than the 1T1R 

array. On the other hand, the 1T1R only shows SBU, the crossbar array may have MBUs, 

thus once the crossbar is struck, it would generate more bit errors. However, the threshold 

LET of the crossbar structure is much higher than that of the 1T1R structure. In addition, 

the integral LET spectra for galactic cosmic rays is decreased exponentially with ion LET 
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(see Fig. 2.15). As a result of all the aforementioned factors, our analysis shows that the 

crossbar architecture still has a smaller maximum BER/day as compared to the 1T1R 

architecture. 

 
Fig. 2.15 An integral LET spectra for galactic cosmic rays during solar minimum [45]. © 

2016 IOP. 
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Fig. 2.16  Maximum Bit-Error-Rate per day for various array sizes and numbers of bits 

to be written in one array for (a) 1T1R array and (b) the crossbar array, respectively. © 

2016 IOP. 

2.7 Summary 
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and SRAM, only the trend of soft errors with technology node scaling is summarized since 

they are mature memory technologies—DRAM system reliability has remained roughly 

constant over many generations, however, SRAM system reliability become severer with 

each generation. 

For emerging NVM technology, we investigated the radiation induced soft error 

systematically. First, an RRAM SPICE model and a photocurrent model for incident 

particle strikes with various LETs were used to analyze and gain insights into underlying 

mechanisms behind the soft errors. In 1T1R, the half selected cell is only vulnerable in 

HRS, when a particle strikes the drain of the NMOS during the SET process. In contrast, 

the cell in the crossbar array has the potential to be flipped in both HRS and LRS. The 

radiation hardness of the crossbar array is found to be strongly dependent on the write 

voltage. The crossbar array exhibits extremely high robustness to the heavy ion strike if 

the half of the write voltage is larger than the PN junction turn on voltage (~0.7V). However, 

if the half of the write voltage is comparable to 0.7V, then one strike at the edge of the 

crossbar array may cause a sequence of bits flipping along the rows or columns, resulting 

in MBUs. By contrast, the susceptibility of the 1T1R array does not show such strong 

dependence on the write voltage. When comparing 1T1R with crossbar, the 1T1R array 

has a larger sensitive area since all the transistors in the array have the possibility of being 

struck, while the crossbar array is transistor-free inside the array with transistors only at 

the edge. However, the MBUs in a crossbar at low voltage operation effectively increases 

the sensitive area. Second, to compare the sensitivity for single-event upset, a methodology 

to calculate the BER/day at the system level was developed. The average SEU rate was 

obtained to simulate the expected the number of upset bits considering the possibilities of 
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ion strikes at the “OFF” transistors sharing same BLs as the selected RRAM cells in the 

1T1R architecture and the “OFF” transistors of edge drivers in the crossbar architecture. 

SPICE simulation results indicate the number of upsets increases as the number of bits to 

be written in parallel increases in the crossbar architecture. There is a trade-off between 

number of upset bits and array size. At the system-level, BER/day is evaluated in a RRAM 

system with I/O of 64 bits used in the write-intensive applications. In general, the crossbar 

architecture presents a stronger tolerance to SEEs than the 1T1R architecture. 
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3 MEMORIES FOR HARDWARE SECURITY APPLICATIONS 

3.1 Overview 

Electronic information exchange between mobile devices and cloud on the data center 

is now pervasive in our everyday life, such as electronic-commerce and mobile-banking. 

Unfortunately, this increases the identity and secure information leaks since it provides 

more opportunities for the adversaries to access user’s secure and private information. The 

security problem is likely to be exacerbated in the Internet-of-Things (IoT) era where 

millions of devices in our homes, offices and cars are digitally connected [48]. Every 

connected IoT device provides more attack possibilities and increases the potential risk. 

Therefore, it is necessary to equip each device with a unique and secure device signature 

(like the fingerprint) from the hardware itself during authentication through the cloud [49]. 

Physical Unclonable Function (PUF) has been widely investigated as a promising 

hardware security primitive, which employs the inherent randomness in a physical system 

(e.g. the intrinsic semiconductor manufacturing variability). By inquiring the PUF device 

with a challenge (input), a unique response (output) is produced correspondingly [50]. This 

challenge-response pairing behavior is device-specific and easy to be evaluated but 

prohibitively difficult to be predicted. In general, PUF is used for two applications: 

cryptographic key generation and device authentication, as shown in Fig. 3.1. Hence, the 

PUFs are classified into two types: 1) weak PUFs and 2) strong PUFs. Weak PUFs are 

typically used for cryptographic key generation and have limited number of challenge-

response pairs (CRPs) [51]. In contrast, strong PUFs are used for device authentication and 

they require a very large number of possible CRPs to make it not feasible to measure or 
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predict all CRPs within a short time frame [51]. In addition, the used CRPs are deleted 

from the database and are never reused in the future.  

 
Fig. 3.1  (a) PUF-based authentication protocol; (b) PUF-based encryption protocol.  

3.2 PUF Basics 

There are a few important metrics to assess the fundamental PUF performance, 

consisting of uniformity, diffuseness, uniqueness, and reliability.  

Uniformity is an indicator of the ratio of “1” and “0” in the response vector. An ideal 

PUF should have the equal probability of “1” and “0” in response. The uniformity is 

defined as: 

𝑈𝑛𝑖𝑓𝑜𝑟𝑚𝑖𝑡𝑦 =  
1

𝑛
∑ 𝑟𝑖,𝑗 × 100% 

𝑛
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(3.1) 

where ri,j is the jth binary bit of an n-bit response from a response vector i. The ideal value 

is 50%.  

Diffuseness is the degree of variations among responses for different challenges 

applied to the same PUF. When the CRP space is too large, diffuseness can be measured 

by calculating the mean of hamming distance (HD) of a random sample of response vectors 

generated by the same PUF. The diffuseness is defined as: 
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Diffuseness =  
2

𝑚(𝑚 − 1)
∑ ∑

𝐻𝐷(𝑟𝑖, 𝑟𝑗)

𝑛
× 100% 

𝑚

𝑗=𝑖+1

𝑚−1

𝑖=1

 

(3.2) 

where m is the number of response vectors randomly selected from the CRP space. ri and 

rj are two different n-bit response vectors corresponding to 2 different challenges. The ideal 

value is 50%. A poor diffuseness results in collision in responses. 

Uniqueness measures the difference between the response vectors which are evaluated 

from the same challenge on different PUF instances. The uniqueness is indicated by the 

inter-hamming distance (inter-HD) with an ideal value of 50%. The uniqueness of k PUFs 

is defined as: 

Uniqueness =  
2

𝑘(𝑘 − 1)
∑ ∑

𝐻𝐷(𝑟𝑖, 𝑟𝑗)

𝑛
× 100% 

𝑘

𝑗=𝑖+1

𝑘−1

𝑖=1

 

(3.3) 

where ri and rj are two different n-bit response vectors generated from 2 different PUF 

entities for the same challenge. 

Reliability represents how well a PUF can reproduce the response bits in different 

operating conditions and measurement trials. The reliability is measured by intra-hamming 

distance (intra-HD) which should be close to 0% in the ideal case.  

intraHD =  
1

𝑚
∑

𝐻𝐷(𝑟𝑖,𝑟𝑒𝑓, 𝑟𝑖,𝑡)

𝑛
× 100% 

𝑚

𝑡=1

 
(3.4) 

where r(i,ref) is the reference response which is recorded at the normal operating condition, 

r(i,t) is the tth measured response at a different operation condition, m is the total number of 

measurement trials. 

3.3 SRAM PUF Implementations 

There are several implementations of PUFs with CMOS technology. The most common 

ones are delay-based PUFs and memory-based PUFs. The arbiter PUF [52] is a delay-based 

PUF where the difference in the delay of the two paths is used to determine whether the 
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output is a 0 or a 1. While this PUF is easy to be implemented using standard CMOS logic 

circuits, it can be characterized by a linear delay model and the output response can be 

predicted by modeling attacks (e.g. the machine learning algorithms) [53] or side-channel 

attacks [54]. To make the delay model non-linear, XOR arbiter PUF [52] and lightweight 

arbiter PUF [55][20] have been introduced. Nevertheless, these variants of the delay-based 

PUFs (including the Ring-Oscillator PUF) are not inherently immune to modeling attacks 

or side-channel attacks.  

The memory-based PUFs are typically SRAM or Flip-Flop based PUFs. In this design, 

then randomness or the entropy source comes from the randomness of startup values of the 

cross coupled inverters of a 6T SRAM cell due to the fabrication variation [56]. The SRAM 

PUFs and its variants such as Latch or Flip-flops [57] all suffer from semi-invasive or 

invasive tampering attacks. For example, the SRAM PUF has been characterized by photon 

emission analysis and cloned by Focused Ion Beam (FIB) circuit edit [58]. In addition, 

many of the aforementioned PUFs’ response is not very stable under environmental 

variations such as supply voltage or temperature variations. Therefore, additional units 

such as error correction [51] or fuzzy extractors [59] are needed to stabilize the PUF’s 

response. Unfortunately, the use of helper data in these units may leak sensitive information 

in the PUF’s response as demonstrated in [60].  

Therefore, it is important and necessary to develop new PUF primitives that can 

mitigate the threats from these attacks. 

3.4 RRAM Weak PUF Design 

Recently, emerging non-volatile memory based PUFs have been proposed, including 

PCM PUFs [61], STT-MRAM PUFs [62] RRAM, or memristor PUFs [63-65]. Next, we 
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will discuss an implementation of RRAM PUFs for both cryptographic key generation. The 

performance and reliability will be also investigated.  

3.4.1 Entropy Source in RRAM 

Experimentally, the RRAM device presents a relatively large variability in resistance 

distribution, which poses a significant design challenge for NVM applications. However, 

this intrinsic resistance randomness can be exploited to as the entropy source in hardware 

security applications. Here we leverage RRAM’s resistance variability to design a weak 

PUF. The physical mechanism of oxide-based RRAM swiching is generally attributed to 

the formation and rupture of conductive filaments with oxygen vacancies between two 

metal electrodes. Due to the randomness of the oxygen vacancies’ generation and 

annihilation, the dimension and composition of the conductive filament inevitably vary 

from cell to cell, and even from cycle to cycle for a given RRAM cell. Therefore, the 

resistance variability of RRAM is the combined outcome of inherent randomness in its 

physical mechanism and the manufacturing process variation. Since conduction in the HRS 

is dominated by the tunneling mechanism between the tip of the residual filament and the 

electrode, a small variation of tunneling gap distance results in a significant variation in 

HRS resistance, which provides a sufficient entropy for PUF application. Therefore the 

larger variability in HRS (rather than in LRS) is used as the entropy source to implement 

RRAM weak PUF in our design. 

3.4.2 RRAM Weak PUF Architecture 

Fig. 3.2 shows the circuit diagram of the proposed weak PUF design with 1T1R 

structure. Different from the conventional memory design, there are two set of sense 

amplifiers (SAs), split sense amplifier which is dedicated for the construction phase and 
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normal sense amplifiers which are used in the operation phase. During the construction 

phase, a forming process using voltage pulse is first performed on each RRAM cell to 

initiate the subsequent switching. And a current criteria is reinforced in this process to 

ensure all the cells are initiated to the almost uniform resistance. Sequentially, all the cells 

in the array are attempted to reset to HRS one by one with an exactly same voltage pulse,  

 
Fig. 3.2  Circuit Diagram of the RRAM weak PUF design [66]. © 2015 IEEE. 

 
Fig. 3.3  Top view of the fabricated 128×8 1kb 1T1R RRAM array with a built-in 

decoder under the microscope. The inset is cross-sectional microscopic image of 

TiN/TaOx/HfO2/TiN RRAM device [66]. © 2015 IEEE. 

W
L 

D
e

co
d

e
r

1T1R Array

W
L 

a
d

d
re

ss

SL/BL Mux

WL<0>

WL<n-1>

SL
<0

>

SL
<n

-1
>

B
L<

0
>

B
L<

n
-1

>

R<0> R<n-1>

RRAM

Control 
Logic

Split 
SA

SA SA

SL/BL address

EN

EN

ResponseResponse

C
h

a
lle

n
ge



57 

 

thus the variation that occurs in the first-time RESET process becomes the entropy source 

for the RRAM PUF. Then a read operation is conducted to measure the read currents for 

all RRAM cells in the array. We demonstrated this construction phase on an 1kb 1T1R 

array (see Fig. 3.3). Fig. 3.4(a) shows the measured read current distribution after forming 

process and first time RESET process, indicating significant randomness (i.e. wide 

resistance range). Next, a split reference current (Ref_Split) is selected within the 

distribution. The cells with currents larger than the reference are SET into LRS, as Fig. 

3.4(b). This split process aims to digitize the randomness and improve the PUF’s reliability 

against resistance noises [63]. Fig. 3.4(c) and (d) show the analog data pattern right after 

the first RESET operation and digital data pattern after split, respectively. The large 

window between the two split states are advisable such that the design of sense amplifier  

 
Fig. 3.4  (a) Initial distribution of read current of HRS in an RRAM array and (b) 

distribution after a part of cells are programmed into LRS according to the reference. (c) 

Analog data pattern after the first RESET operation. (d) Digital data pattern after split.[66] 

© 2015 IEEE. 
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could be relaxed to differentiate the read current. Ultimately, the challenge-response pairs 

(CRPs) are measured and enrolled in the database for future use and the RRAM PUF 

construction is completed. In this design, the challenge is the address applied to the WL 

decoder and response is the digital outputs of the read sense amplifiers. During the 

operation phase when deployed in the field, only read operations will be performed. 

3.4.3 Performance Evaluation of RRAM Weak PUF  

To evaluate the uniqueness experimentally, 40 PUF instances are prepared through five 

1 kb 1T1R arrays with size of 128 × 8. By applying the same challenge inputs (activating 

all rows one by one), 128-bit responses are measured. Then the uniqueness is evaluated by 

inter-HD of the responses pair-wisely compared across the 40 PUF instances. In addition, 

we also investigated the impact of non-ideal factors of peripheral circuits on the 

performance of the proposed RRAM weak PUF. 

 
Fig. 3.5  Distribution of fractional inter-Hamming distance (HD) of 128-bit responses with 

split reference current obtained from a dummy column. The best and worst cases of 40 split 

references from 40 dummy columns are shown [67]. © 2015 IEEE. 

Exp.
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3.4.4 Impact of Split Reference on RRAM Weak PUF’s Uniqueness 

One factor that affects the RRAM PUF’s uniqueness is the split reference used in the 

split process. Ideally, the reference should a read current that can make an equal 50% 

probability of generating “0” or “1”, although this restriction will reduce the possible 

configurations of the response bit stream. In experiments, we used a dummy column to 

generate the split reference. Then the split reference is set as the median current of the 128 

dummy cells in one column. We prepared 40 dummy columns. Hence we have 40 possible 

split references. Due to variations between column and column, the generated 40 possible 

references distribute in a wide range from (74 nA to 238 nA). We choose one with smallest 

deviation from the ideal reference and the other one with largest deviation from ideal 

reference to conduct the split process. Fig. 3.5 shows the fractional inter-HD distributions 

when using these two split references. When the split reference is closer to the ideal, a good 

average inter-HD is can be achieved, e.g. ~49.8% with a tight distribution. However, when 

split reference is further away from the ideal value, the average inter-HD is bad, e.g. 

~24.2%. This suggests the importance of generating a good split reference. 

Impact of Split S/A on RRAM Weak PUF’s Uniqueness 

Split sense amplifier is used as a comparator in the split process. Under ideal conditions, 

an idea S/A should be able to amplify a very small input differential signals correctly. In 

reality, however, process variations in the transistors of an S/A introduce an input offset, 

which results in a skewed preference to generate “1” or “0”. A voltage mode sense 

amplifier (Fig. 3.6(a)) is employed in the split process as a case of study to investigate the 

impact of offset on the uniqueness. The two differential inputs are V_DL and V_REF. At 

first, pre-charge transistor (Q10) is turned on and the BL is charged to V_read. Then Q10 

is turned off and BL is being discharged through RRAM cell for a short period of time to 
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develop a voltage sense margin. Depending on the RRAM cell’s current, V_DL’s decay 

can be fast or slow. Finally, SAEN is turned on and the difference between V_DL and 

V_REF is amplified by the latch based load and the digital output is generated in SA1 and 

SA2. In a naive implementation, all the transistors in S/A can be minimum sized. To assess 

the input offset of this S/A, 1000 Monte Carlo simulation runs were performed in Cadence 

Spectre in TSMC 65 nm node using library “TSMC65-GP-1p9m_6X1Z1U_ALRDL_2.0”. 

The simulation shows that the S/A with minimum sized transistors has an offset voltage σ 

of 25.9 mV. If S/A with 3σ input offset voltage is used in the split process, it might have a 

much skewed preference to generate more “0”s or “1”s. As a result, the distribution of the 

fractional inter-HD decreases to 30.6% as shown in Fig. 3.6(b). Therefore, minimizing S/A 

offset voltage is necessary in the split process. 

 
Fig. 3.6  (a) Schematic of a voltage mode sense amplifier (S/A) used in the split process as 

a comparator. (b) Distribution of fractional inter-HD of 128-bit responses without or with 

S/A offset (σ= 25.9 mV). Minimum sized transistors are used. [67] © 2015 IEEE. 
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measurement. Fig. 3.7 shows the 1 kb RRAM array’s read current degradation without 

voltage bias at 150 °C. The experimental result shows that the tail bits in HRS  and tail bits 

in LRS crossed-over in less than 2 hours (or equivalently less than a 25 days at 85 °C), 

which means errors occur in the PUF’s response if a PUF response bit is represented by a 

single RRAM cell. This experimental result illustrates the necessity of improving RRAM 

PUF’s reliability. 

 
Fig. 3.7  Measured retention degradation of 1 kb RRAM array baking at 150 °C. Error 

occurs within 2 hours if a single cell represents a PUF response bit [66]. © 2015 IEEE. 

3.4.5 Improving RRAM Weak PUF’s Performance and Reliability 
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HD is centered at 47.78% with a small σ of 5.56% in the worst case. In the practical design, 

there are two ways to obtain a good split reference. First, it can be obtained by off-chip 

pre-calibration. A dummy array (or a few dummy arrays) can be manufactured in same 

batch. The same programming conditions are performed on the dummy array. It is easy to 

find the median of read current by a simple sorting algorithm off-chip. Second, a dummy 

array are designed adjacent to the real array on-chip, and a custom circuit is needed to do 

the sorting. Since the split process is only done once in the PUF construction phase, finding 

a good split reference from off-chip pre-calibration is more efficient in terms of area and 

energy. 

Table 3.1  Uniqueness Evaluation with Ref_Split Generated from A Dummy Array 

Uniqueness 
Ref_Split generated from Array No. 

1st 2nd 3rd 4th 5th 

Mean (%) 49.48 48.97 49.79 47.77 49.80 

Std (%) 4.90 5.06 4.87 5.56 4.86 
 

Accurate Split Reference Generation by Dummy Array 

As technology node scales down, the input offset of S/A increases due to the overall 

increase in local (i.e. within-die) process variation, e.g. random dopant fluctuation (RDF). 

It is known that the standard deviation of the transistor’s threshold voltage (Vth) 

distribution is proportional to 1/(WL)1/2 [18]. Sizing the transistors is a flexible option and 

is employed in this work. The key contributor to the offset is from the input differential 

pair (Q7 and Q8 in Fig. 3.6(a)), thus their sizes should be increased most. Besides Q7 and 

Q8, Q1, Q2, Q3, Q4 in the latch based load and Q9 in the bottom current source are also 

critical transistors that should increase sizes. Table 3.2 and Table 3.3 list two sets of 

transistor’s sizes that can reduce the offset σ to 7.868 mV and 6.511 mV respectively. In 
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addition, in order to reduce the input offset from layout point of view, symmetrical and 

common centroid layout design is employed. Fig. 3.8(a) is the distribution of input voltage 

offset obtained by running 1000 Monte Carlo simulations with transistor sizes listed in 

Table 3.3. When the standard deviation of input offset is reduced to 6.511 mV, the average 

inter-HD can be improved to 42% as shown in Fig. 3.8(b). Such a relaxed design of split 

S/A does not increase the total area of RRAM PUF macro too much because there is only 

one split S/A per PUF used in the construction phase, while other read S/A to generate 

response bits used in the operation phase can still be minimum sized. 

Table 3.2  Split S/A Transistor Sizing to Reduce Offset to 7.858 mV 

Transistor Q1/Q2 Q3/Q4 Q5/Q6 Q7/Q8 Q9 Q10/Q11 

Gate Length (nm) 60 60 60 180 60 60 

Width (nm) 240 240 120 900 120 120 
 

Table 3.3  Split S/A Transistor Sizing to Reduce Offset to 6.511 mV 

Transistor Q1/Q2 Q3/Q4 Q5/Q6 Q7/Q8 Q9 Q10/Q11 

Gate Length (nm) 60 60 60 180 60 60 

Width (nm) 240 240 120 1800 240 120 
 

 
Fig. 3.8  (a) Distribution of split S/A voltage offset from 1000 Monte Carlo simulations 

with sizing the transistors in Table 3.3. (b) Distribution of fractional inter-HD with 

considering S/A different 3σ voltage offsets [67]. © 2015 IEEE. 
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Multi-Cell-Per-Bit to Improve Reliability 

To improve the retention properties, we propose to use multiple RRAM cells to produce 

a response bit. The concept behind is that if multiple RRAM cells in parallel are wired as 

one group, the read-out current will be added up. Due to inherent cell to cell variations, 

some cells may fail later than others, and the redundancy can minimize the probability of 

early lifetime failure for the whole group. In the practical design, multiple BLs can be wired 

together before sending the BL current to the read S/A. In the PUF construction phase, we 

can program each cell (not including the redundant cells) individually using separate source 

lines (SLs). Then both the cell and redundant cells should be programmed to the same state 

as a group according to the comparison result with the split reference. Therefore, we do not 

average out the variation by grouping the cells together. Fig. 3.9 shows the retention time 

for different number of RRAM cells representing one PUF response bit that is measured at 

150 °C. In general, longer retention time can be achieved with more redundant cells as 

expected. When each response bit is represented by 8 parallel RRAM cells, it can be 

sustained for more than 50 hours at 150 °C for a given PUF instance with high reliability  

(Fig. 3.10(a)). The on/off ratio of readout the currents for the tail bits is larger than 2.5×, 

 
Fig. 3.9  Measured retention time when a PUF response bit is represented by different 

number of cells [67]. © 2015 IEEE. 
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which can be reliably sensed by the read S/A. Fig. 3.10(b) shows the equivalent retention 

time extrapolated to 85 °C and 27 °C using the 1/kT extrapolation with activation energy 

(Ea=1.15 eV, determined in another experiment). Eight RRAM cells in parallel can 

possibly generate a highly reliable response for 1.75 years at 85 °C, and 10 years at 69 °C. 

In addition, we have examined that the multiple-cell-per-bit approach has negligible impact 

on the PUF’s uniqueness. 

 
Fig. 3.10  (a) Measured retention degradation of 1 kb RRAM array baking at 150 °C if 8 

cells represent one response bit. (b) Extrapolated retention time using Ea=1.15 eV. 8 cells 

per bit can possibly ensure 10-year lifetime at 69 °C [67]. © 2015 IEEE. 

Layout Obfuscation for Tamper Resistance 

A basic requirement for a weak PUF is that the adversary should not have access to the 

response bits, as the number of CRPs in a weak PUF is limited. However, the adversary 

can perform semi-invasive or invasive tampering attacks to obtain the response bits. For 

example, the SRAM’s data pattern can be seen under near-infrared imaging because the 

hot carriers in the transistors emit photons. It is expected that RRAM’s conduction in oxide 

does not emit photons under laser or X-ray scanning (at. least not reported yet). However, 

the digital responses of RRAM PUF are still read out through the S/A. Hence, the read S/A 

might be a potential weak spot that an adversary can micro-probe to access the output and 

read out the secret information. Fig. 3.11 shows RRAM PUF architecture with 1T1R 
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memory array. Eight cells are grouped together to generate one response bit. The 

conventional design places the read S/A at the edge of the array, thus they are easy to be 

identified under the microscope thus vulnerable to the probing attack.  

 
Fig. 3.11  RRAM PUF architecture with 1T1R memory array. Eight cells are grouped 

together to generate one response bit. The conventional design places read S/A at the edge 

of the array, thus vulnerable to the probing attack [67]. © 2015 IEEE. 

 
Fig. 3.12  (a) Tamper-resistant RRAM PUF architecture with read S/A randomly 

embedded into the array and hiding underneath a sea of real and fake RRAM cells. (b) 

Layout obfuscation of a block including read S/A, 8 real RRAM cells and 12 fake RRAM 

cells. (c) Cross-section view for cutting through S/A and cutting through the real RRAM 

cells respectively. [67] © 2015 IEEE. 
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In order to obfuscate the adversary, we propose to hide the S/A within the 1T1R array 

and randomize the locations of S/A, as shown in Fig. 3.12(a). Between M4 and M5, we 

uniformly place the RRAM contact vias across the array. Fig. 3.12(b) shows the Cadence 

layout of a block including S/A, 8 real RRAM cells and 16 fake RRAM cells on top of S/A. 

The RRAM contact vias on top of the 1T1R are the real RRAM cells, while the RRAM 

contact vias on top of the S/A are fake RRAM cells. Fig. 3.12(c) presents the cross-section 

of the die for a cut through S/A with fake RRAM cells and a cut through region with the 

real RRAM cells respectively. When an adversary attempts to probe the S/A’s output 

underneath the uniformly distributed RRAM cells, it is difficult for him to differentiate 

between the real RRAM cells and the fake RRAM cells from the top-view. The real RRAM 

cells which implement a secure key storage might be permanently destroyed when the 

adversary tries to invasively probe, thus the proposed layout obfuscation enables a “self-

destructive” feature for the RRAM PUF. 

Area Cost and Performance Overhead Analysis 

All the proposed design strategies such as relaxing split S/A’s transistor sizes, multiple-

cell-per-bit, and layout obfuscation with S/A hiding are associated with hardware overhead 

including more area, larger latency and energy consumption. In order to evaluate the 

overhead, we use Cadence and HSPICE to evaluate the area cost and performance of a 64 

× 128 RRAM PUF macro. Three designs are evaluated. The first one is 1-cell-per-bit 

without S/A hiding as the baseline, which has the poorest reliability and the lowest security. 

The second one is 8-cell-per-bit without S/A hiding, which is highly reliable but not tamper 

resistant. The last one is 8-cell-per-bit with S/A hiding, which is of highest reliability and 

tamper resistance. All the designs are benchmarked at TSMC 65 nm node using “TSMC65-

GP-1p9m_6X1Z1U_ALRDL_2.0” library. Table 3.4 shows the benchmark results. 
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Compared to the baseline, the highly reliable design introduce 1.52× latency, 1.55× energy, 

and 4.70× area, and the highly reliable plus tamper-resistant design introduce  3.88× 

latency, 1.84× energy, and 24.53× area. Depending on the application scenarios, the 

designers can choose the appropriate design strategies. For example, if the security is a not 

topmost requirement but still 10-year lifetime is necessary, the highly reliable design but 

without S/A hiding may be sufficient. 

 

3.5 RRAM Strong PUF Design 

3.5.1 Entropy Source in RRAM 

The typical PUF-based device authentication protocol is shown in Fig. 3.1(a). During 

the enrollment phase, a large number of responses are collected by applying a random set 

of challenges to an authentic PUF entity when a trusted party is in physical possession of 

the device. When the enrollment phase is finished, these collected CRPs are safely stored 

in a database for future authentication use. During the deployment phase in the field, to 

check the authenticity of a device to be authenticated, a recorded but unused challenge is 

selected from the database and is sent to the device by the trusted party. Then a PUF 

response is received from the device side and compared with the corresponding response 

previously recorded in the database. If they are close enough, the device is authenticated. 

Otherwise, it will be denied. In the authentication application, the used CRPs will be 

Table 3.4  Area and Performance of RRAM Weak PUF with Array Size of 64 × 128 

Architecture 
S/A hiding 

(w/ or w/o) 

Latency 

(ns) 

Energy 

(pJ) 

Area 

(mm2) 

1-cell-per-bit w/o 4.24 9.59 0.0083 

8-cell-per-bit 
w/o 6.46 14.87 0.0390 

w/ 16.45 17.69 0.2036 
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deleted from the database to protect against the man-in-the-middle attacks in the 

communication channel as shown in Fig. 3.1 (a). Therefore, a large number of CRPs are 

needed for device authentication. 

For emerging NVM based PUFs, one or a few memory cells are usually used to 

generate a single response bit. Therefore, it cannot provide a sufficient number of CRPs 

and be used as strong PUF for device authentication, due to the limited capacity of memory 

cells in the emerging NVM arrays. To achieve a large CRP space, we propose a strong PUF 

design by exploiting the sneak paths in the X-point array. An X-point array is essentially a 

resistor network if there is no isolation transistors or selectors in the RRAM array. When 

bias voltages are applied on selected rows/columns and unselected rows/columns are 

floated, sneak currents flow through the entire array. For a given set of bias voltages applied 

to the array, if the resistance pattern of the resistor network is random, the currents 

measured from the end of columns are also random. Such randomness could be amplified 

when there are more rows and/or columns left floating. For memory applications, such 

sneak paths are detrimental to the read-out sense margin [5], however, we take an 

advantage of sneak paths for PUF design in this design. 

3.5.2 X-point PUF Architecture 

Fig. 3.13 shows the proposed architecture of X-point PUF. For an N (rows) × N 

(columns) array, the resistance pattern is constructed before the enrollment phase and will 

be discussed in detail in the next section. During the enrollment phase and deployment 

phase, the binary challenge vector (i.e. an N-bit vector) decides the bias voltages of the 

rows or wordlines (WLs) in the N × N array. For a given challenge vector, if ith element in 

the N-bit challenge is “1”, a read voltage is applied to the ith row; if jth element is “0”, then 
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the corresponding row is floating. For example, if the N-bit challenge vector is 

‘10010…001’’, a positive read voltage is applied to 1st row since the first element of the 

challenge vector is “1”, and the 2nd row is floating because the second element of the 

challenge vector is “0”. The portion of “1” in a challenge vector is defined as WL activity. 

Then the N-bit response vector can be generated from the columns or bitlines (BLs) by a 

sense amplifier (S/A). In practice, multiple columns may share one S/A, thus a multiplexer 

(MUX) may be used to do the time-multiplexing. Specifically, selected columns are 

connected to S/A, and the other unselected columns are floating. Then the current from 

each column (including the sneak path current) is measured and converted into binary 

fashion “0” or “1” by S/A according to a reference. The generated digital response element  

is stored in the register before the element is to be read out. After a few read cycles, all the 

N response elements are collected from S/A and stored in the register. This means a 

challenge-response pair generation is finished and ready for use, e.g. authentication. In this 
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Fig. 3.13  Proposed resistive X-point strong PUF circuit leveraging the sneak paths (green) 

to create CRPs [68]. © 2018 IEEE. 
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work, we assume the current mode S/A is used and the current reference (I_ref) is a current 

which is set to be the median value of the column output current distribution. In practice, 

the current reference could be obtained by off-chip pre-calibration. A bare array (or a few 

bare arrays) can be manufactured in the same batch. The same programming conditions are 

performed on these arrays. It is straightforward to find the median of read current by a 

simple sorting algorithm off-chip. Since the split process is only done once in the PUF 

construction phase, finding a good split reference from off-chip pre-calibration is more 

efficient in terms of area and energy. 

3.5.3 Security Issue in “Analog” X-point PUF 

In prior work [69], we used “analog” resistance distribution of RRAM cells in the array 

to implement the X-point PUF. The experimental results showed good uniqueness and 

reliability for a 12 × 12 array, however, this design has a potential security problem when 

the array size is larger. Fig. 3.14 shows the simulated diffuseness of responses over 100 

different challenges collected from the same X-point PUF instance when the array size is 

 
Fig. 3.14  Collison problem in “analog” X-point PUF: (a) standard deviation and (b) 

average hamming distance (HD) of responses over 100 challenges with different reference 

currents of SA for the same PUF. The resistance of the cells is randomly selected from a 

log-normal distribution within a range from 100kΩ to 10MΩ [68]. © 2018 IEEE. 

0

2

4

6

8

10

35.0µ 36.0µ 37.0µ 38.0µ 39.0µ 40.0µ

0

2

4

6

8

10

Standard Deviation of HD of Responses 

of 100 Challenges

Array Size: 128  128

RRRAM Range: 100k 10M

Read Voltage: 0.25V

 

 

S
td

 H
D

 o
f 

R
e

s
p

o
n

s
e

s
  

(%
)

Average HD of Responses of 100 Challenges

Array Size: 128  128

RRRAM Range: 100k 10M

Read Voltage: 0.25V

 

 

A
v
g

 H
D

 o
f 

R
e
s
p

o
n

s
e
s
  

(%
)

Ref_current(A)



72 

 

128 × 128. In the simulation, we assumed the cell resistances are log-normally distributed 

within a range from 100kΩ to 10MΩ. The diffuseness is always less than 1% irrespective 

of the magnitude of I_ref used for S/A. This means the responses for difference challenges 

are similar, namely collision problem. This is because the BL current is dominated by the 

sneak paths in a large array. As a result, the adversary can easily guess the possible response 

for any challenge based on the known CRPs of the same PUF. This is undesired for a secure 

PUF design. 

 
Fig. 3.15  BL current distribution over 100 different challenges with different WL activities 

in “digital” X-point PUF. © 2018 IEEE. 
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lower than the split reference are further SET into LRS with resistance R_on and the cells 

with resistance above the reference are further RESET to off-state with resistance R_off. 

3.5.4 CRP Space of X-point PUF 

Theoretically, in this design, the maximum number of CRP of an N × N array is 2N 

since each WL has two options: either applying read voltage or floating. For different WL 

activities, however, the readout column currents present different current distribution 

ranges as shown in Fig. 3.15. Lower WL activity shows lower readout column currents and 

higher WL activity shows higher readout column currents. Consequently, the response bit 

is more likely to be “0” (or “1”) with lower (or higher) WL activity for a given I_ref, which 

is not secure for a PUF design. Hence, the activity of WL should be specified to generate 

a comparable range of column currents for different challenges. Thus the preference of the 

response bit to be “1” or “0” is not decided by the WL activity. To achieve the largest CRP 

space, the WL 50% activity is employed in this work. Then the number of CRPs is  𝐶𝑁
𝑁/2

for 

an N × N array. When the array size is 128 128, the CRP space is around 2  1037, which 

is quite large against the brute-force guessing within a short time frame. 

3.5.5 Ron Activity of X-point PUF 

In this section, extensive simulations were performed to investigate the dependence of 

the proposed “digital” X-point PUF’s performance on the R_on activity, which is defined 

as the percentage of the on-state cells in the array. The simulation study was carried out at 

circuit level using HSPICE. To simplify the simulation at this stage, interconnect resistance 

and resistance variation were not considered in the simulation, which will be considered 

later in Section V as non-ideal factors. As a case of study, we assumed the RRAM array 

was 128 × 128 for the X-point PUF design and R_on = 100 kΩ and R_off = 10 MΩ for 
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typical RRAM devices, where the R_on and R_off were randomly distributed in the array 

for a given R_on activity. To save the simulation time, we prepare 100 challenge-response 

pairs to evaluate each performance metric in most cases since the difference between the 

evaluation results with 100 CRPs and a larger set of CRPs (e.g. 1000) are negligible (i.e. 

less than 0.1%) as found in our simulations. 

 
Fig. 3.16  Mean of HD over 100 random response vectors generated by the same X-point 

PUF with different I_ref when R_on activity is (a) 4% and (b) 10%. I_ref tolerance range 

for different R_on activity when (c) diffuseness is larger than 40% and (c) the portion of 

“1” is in range of (40%, 60%) [68]. © 2018 IEEE. 
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challenge vector. Subsequently, a 128-bit response is generated by sensing the column 

current via S/A with a given reference current (I_ref). Fig. 3.16(a) and (b) show the 

distribution of average HD over 100 random responses generated by the same PUF for 

different I_ref and R_on activities (4% and 10% respectively). The simulation results 

indicate that the diffuseness of X-point PUF is significantly impacted by the I_ref. By 

choosing a good I_ref, the diffuseness of the “digital” X-point PUF can be close to its ideal 

value (i.e. 50%), thus eliminating the severe collision problem as found in the “analog” 

design of X-point PUF. However, when the I_ref varies at different operating conditions 

the diffuseness of the “digital” X-point PUF might be degraded. Therefore, high resistance 

against I_ref variation is preferred for a secure and robust PUF design. If we set a target to 

the diffuseness, e.g. mean of HD should be larger than 40%, then an I_ref tolerance range 

can be extracted for different R_on activities, as shown in Fig. 3.16(c). For example, with 

R_on activity=10%, the I_ref tolerance range is from 31.4 µA to 31.8 µA, which is 0.4 µA, 

and with R_on activity = 4%, the I_ref tolerance range is from 14.2 µA to 14.8 µA, which 

is 0.6 µA. Similarly, the uniformity of the responses presents dependence on the I_ref and 

R_on activity. Fig. 3.16(d) shows the extracted I_ref tolerance range for different R_on 

activities when the probability of “1” in the response bits is in range of 0.4 and 0.6. From 

Fig. 3.16(c) and (d) we can see that when the R_on activity is 4%, an excellent diffuseness 

can be achieved for a good given I_ref: diffuseness is around 49.5% and the standard 

deviation is 1.8%. In addition, the uniformity is centered at 50.4% with a standard deviation 

of 3.5%.  

Uniqueness 

To study the dependence of uniqueness of the “digital” X-point PUF on R_on activity, 

we prepared 100 different X-point PUF instances for a given R_on activity. The uniqueness 
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is a function of I_ref and R_on activity. The extracted I_ref tolerance range for different 

R_on activities is shown in Fig. 3.17 when the target average inter-HD is set to >40%. 

The simulation results again suggest that 4% is an optimal R_on activity to achieve the 

strongest robustness against I_ref variation’s effect on the uniqueness. Therefore, in the 

rest of paper, 4% R_on activity (and corresponding I_ref=14.5 µA) will be used in the 

simulation by default if not specified. 

 
Fig. 3.17  I_ref tolerance range for different R_on activity average inter-HD is larger than 

40% [68]. © 2018 IEEE. 
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the geometry parameters [43]. The calculated wire resistance per segment of the array is 

0.73 Ω for 65 nm and 2.42 Ω for 22 nm. Table 3.5 shows the performance evaluation results 

(i.e. diffuseness, uniformity and uniqueness) of the X-point PUF without interconnect 

resistance and with interconnect resistance at 65 nm and 22m, respectively. The same I_ref 

(i.e. 14.5 µA) is used in the evaluation for all the cases. This result suggests that the change 

of performance is negligible for 65 nm technology node. However, uniqueness and 

uniformity of X-point PUF present noticeable degradation due to the higher interconnect 

resistance when the technology node is scaled to 22 nm. The higher interconnect BL 

currents without interconnect resistance, which cannot be neglected anymore. It is more 

reasonable to scale down the I_ref with the technology node. The performance evaluation  

Table 3.5  X-point PUF’s Performance with Wire Resistance at 65 nm and 22 nm 

Metrics Tech. node (nm) Mean (%) Standard deviation (%) 

Diffuseness (%) 

w/o R_wire 48.36 5.27 

65 48.10 3.46 

22 47.67 5.17 

Uniformity (%) 

w/o R_wire 50.05 3.47 

65 48.10 3.46 

22 43.14 3.61 

Uniqueness (%) 

w/o R_wire 50.44 4.20 

65 50.44 4.20 

22 49.77 4.06 
 

Table 3.6  X-point PUF’s Performance with Scaled I_ref (i.e. 14.38 µA) at 22 nm 

Metrics Mean (%) Standard deviation (%) 

Diffuseness (%) 50.05 4.48 

Uniformity (%) 50.07 3.36 

Uniqueness (%) 50.36 4.16 
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results are shown in Table 3.6 for 22 nm technology node with a scaled I_ref (i.e. 14.38 

µA). The performance is as good as the results without interconnect resistance. In summary, 

to achieve good performance, the I_ref should be scaled with different technology nodes 

since the interconnect resistance will cause BL current reduction. 

 
Fig. 3.18  I_ref tolerance range (in blue) when the uniformity is in range of (45%, 65%) 

and the average current (in red) for different RRAM on/off ratios [68]. © 2018 IEEE. 
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evaluation metric to study the effect of RRAM’s on/off ratio on the performance and 

robustness of the X-point PUF, as shown in Fig. 3.18. The I_ref tolerance range decreases 

as the RRAM’s on/off ratio decreases, which becomes more severe when the on/off ratio 

is less than 10. This means the lower switching ratio make the X-point PUF more sensitive 

to the operating conditions. In addition, lower on/off ratio for a given R_on resistance 

results in larger column current (Fig. 3.18), which is not desired for the low-power 

applications. 

 
Fig. 3.19  Average HD of 100 random responses generated from one X-point PUF with 

different device-to-device variation on R_off and R_on. The I_ref is 14.5 µA [68]. © 2018 

IEEE. 
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10% R_off variation only. We can see that the uniqueness degradation is mainly caused by 

the variation of R_on cells (instead of R_off cells), because R_on cells dominate the BL 

current. The device-to-device resistance variation has the similar impact on the other 

performance metrics (e.g. uniformity and uniqueness) and the simulation results are shown 

in Table 3.7. 

 
Fig. 3.20  Fractional HD distributions of 100 random responses generated from one X-

point PUF with 10% device-to-device variation on (a) both on-state and off-state cells and 

(b) only the on-state cells [68]. The I_ref is 14.5 µA. © 2018 IEEE. 

Table 3.7  Average Uniformity and Uniqueness with Different Device-to-Device 

Variation 

Variation (%) 5 10 15 20 

Uniformity (%) 52.45 56.07 61.08 65.64 

Uniqueness (%) 49.95 48.74 46.97 44.18 
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tolerance criterion (e.g. 5%), the SET is successful. Otherwise, more SET-and-read 

processes are conducted until the readout resistance is within the desired range. A similar 

process can be done for the cells in off-states, but as discussed earlier, the variation in off-

state may not be critical. 

Reliability of RRAM Device 

For PUF application, RRAM device reliability has two aspects: data retention and read 

disturb. Data retention refers to how long the RRAM resistance states can be maintained. 

Generally, it is expected that an RRAM device can maintain the resistance state for longer 

than 10 years (~3×108 s) for nonvolatile memory applications. To evaluate the retention 

time, temperature-accelerated failure method is typically employed: the device is baked at 

elevated temperatures over a span of time and read out the resistance by applying read 

voltage at specific times. With the recorded time-to-failure at each temperature, the lifetime 

of the expected operating temperature can be extrapolated by the Arrhenius (1/kT) plot. 

With material engineering and programming scheme optimization, the RRAM device is 

able to maintain its resistance state for more than 10 years at 85°C (i.e., the operating 

temperature on chip) and even higher temperatures [70, 71]. Read disturb refers to the 

resistance of RRAM cell changing over time caused by the continuous read operations. 

During the deployment phase, only read operation is performed to generate the response. 

Typically, a read voltage with a specific polarity is applied to RRAM array in the X-point 

PUF circuit. This will cause the RRAM resistance drifting over time. For example, if 

positive read voltage is employed to read out the column currents of the X-point PUF it 

can enable the filament growth gradually, thus resulting in resistance gradually decreasing 

over time. To avoid the read disturb in the RRAM array, a low voltage (e.g. 0.25 V) is 

preferred in the read operation to inhibit the read disturb process. Also the I-V nonlinearity 
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is not a significant issue at such low read voltages. Furthermore, we also propose to use an 

RRAM dummy column to generate the I_ref to mitigate the read disturb error occurrence 

since the I_ref will drift along with the RRAM cells following the same trend over 

continual reading. 

 
Fig. 3.21  Correlation between column currents with sneak path currents and without sneak 

path currents of 100 different challenges for different number of active columns per read 

operation [68]. © 2018 IEEE. 
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read operation increases, because there are fewer columns left floating. In the extreme case 

(i.e. active all the columns simultaneously in one operation), the BL currents with sneak 

path currents are almost the same as the currents without sneak path currents since BL 

currents are dominated by the main currents instead of sneak path current. This will pose a 

security issue for X-point PUF because the adversary may be able to microprobe the cell 

resistance of the array and then use superposition principle to estimate the BL currents for 

a given challenge. This means that the adversary can produce the response for any 

challenge by a simple hand calculation. To eliminate this vulnerability, a lower number of 

active columns per read operation could be employed since the sneak path currents are 

comparable with the main currents, presenting less correlation between BL currents with 

and without sneak paths. For example, the BL current without sneak paths = 9.1 µA, the 

corresponding BL currents with sneak paths may spread between 13.9 µA to 15.1 µA. If 

the I_ref of SA is 14.5 µA, the response bit may be either “1” or “0”, thus unpredictable 

from a simple superposition. 

The other potential security issue is the correlation between challenges and responses. 

Since the BL current is decided by the challenge vector, the difference between the BL 

currents generated by two different challenges is more likely to be small if the HD of the 

two challenge vectors is small. As a result, the response is more likely to be similar. We 

prepared 100 random CRPs from one PUF instance to investigate the correlation between 

challenges and responses and results are shown in Fig. 3.22. Although the HD of challenges 

spreads across a wide range, the HD of responses is always centered at around 50% with 

some spread. This means that the responses have no dependence on the challenges and it 

will not introduce undesired security problem for X-point PUF design. 
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Fig. 3.22  Correlation between hamming distances of challenges and associated responses 

[68]. The I_ref is 14.5uA. © 2018 IEEE. 
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difference between a real PUF device that can sense response within 2 µs on-chip and an 

adversary who has to run the time-consuming (>seconds) SPICE simulation, can be used. 

Numerical Modeling Attack 

Delay-based strong PUFs (i.e. Arbiter PUF) are prone to the machine learning attack 

and the predication rates could be even larger than 99% [53], therefore it is necessary to 

check the proposed X-point PUF’s resistance against such modeling attacks. We used a 

well-established machine learning (ML) algorithm: multi-layer perceptron (MLP) with 

backpropagation for this purpose. In this work, a 3-layer MLP is employed to attack the 

RRAM PUF with a relatively large network topology (i.e. 128-256-256-128) to achieve a 

good learning capability. The challenge-response pairs (CRPs) used in our ML experiments 

were generated in the following procedure: first, a set of challenges (e.g. 1,000) was 

selected randomly from all possible challenges; finally, the corresponding responses were 

simulated by HSPICE. To train the MLP algorithm, 10, 000 CRPs were prepared as the 

training set. 1,000 CRPs which do not appear in the training set were used as the testing 

set. Fig. 3.23 shows the ML attack results with different sizes of training set. The prediction 

rate of correct bits in the response vectors fluctuates around 50% even with increasing the 

training set to 10,000. 50% correct rate of a single bit means a pure random guess of the 

response vectors. In addition, we also investigated the machine learning attack of X-point 

array with a 5% device-to-device variation under the assumption that the write-verify 

programming scheme is able to suppress the device-to-device variation within 5%. The 

simulation results suggest that the security of X-point PUF is not degraded although device-

to-device variation might cause performance degradation. In summary, the X-point strong 

PUF has very high resistance against the machine learning attack. 
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Fig. 3.23  Prediction rate of correct bits in response vectors with size of training set varied 

from 1,000 to 10,000. The CRPs are simulated without and with 5% device-to-device 

variation, respectively. The prediction rate does not increase as the number of training set 

increases for both cases. © 2018 IEEE. 

3.5.8 Comparison with Other Strong PUFs 

We developed a circuit-level macro model that can be used estimate the area, latency, 

energy consumption for both X-point PUF and Arbiter PUFs, following the principle of 

NeuroSim [73]. The hierarchy of the simulator consists of different levels of abstraction 

from the RRAM cell parameters and transistor technology parameters, to the gate-level 

sub-circuit modules and then to the array architecture including the peripheral circuits. In 

the evaluation, the circuit modules for the X-point PUFs include: RRAM array, WL switch 

matrix, BL MUX and the mux decoder and sense amplifiers; the circuit modules for the 

Arbiter PUFs include: multiplexor chain, latch, switch matrix and XOR circuit which is 

only considered in the 4-XOR PUF. Table 3.8 summarizes the estimation results of X-point 

PUF with one active column and eight active columns in each operation, Arbiter PUF and 

4-XOR Arbiter PUF [50, 53] at 65 nm. Compared to Arbiter PUF and 4-XOR Arbiter PUF, 

the X-point PUF presents a  significant advantage in area because the area of RRAM arrays 

in X-point PUFs is much smaller than the area of CMOS logic gates based multiplexer 
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chains in the Arbiter PUFs.  However, the latency of X-point PUF is larger than that of the 

Arbiter PUFs. The latency of X-point PUF is dominated by the S/A, which is assumed to 

be one ns in the simulation.  Compare to X-point PUFs with 1-column active, the X-point 

PUFs with 8-column active presents significant advantages in area, latency and energy. 

The RRAM array (i.e. 128×128) and WL switch matrix are same for both designs. However, 

BL mux, the mux decoder and the number of S/As cause the area difference. For PUF with 

1-column active, only one S/A is required and shared among 128 columns. Since only one 

of 128 columns is selected to connect with S/A each time, a 7-bit (27=128) mux decoder 

is required. While for PUF with 8-column active, 8 out of 128 columns are active and eight 

S/As are required. This can be considered that 128 columns are split into eight groups and 

each group contains 16 columns, such that, the mux decoder is only 4-bit (24=16). In 

summary, the PUF with 1-column active requires one S/A and a 7-bit mux decoder; the 

PUF with 8-column active needs eight S/As and a 4-bit mux decoder. With the normalized 

the area, 1) each S/A contributes ~1 unit area; 2) 4-bit mux decoder contributes ~10 unit 

area and the area for the associated BL mux and routing is ~34 unit area; 3) 7-bit mux 

decoder requires 109 unit area and the area for the associated BL mux and routing is ~269 

unit area. Overall, the area of S/As, mux decoder, BL mux and routing is 379 unit area for 

the PUF with 1-column active and 52 unit area for the PUF with 8-column active, 

respectively. Hence, the PUF with 1-column active occupies more area than the one with 

8-columns active. Considering the tradeoff between latency and security (correlation 

between column currents with and without sneak path currents as discussed), eight active 

columns in each operation might be an optimized choice for X-point PUF, since it can 

improve the latency by ~8X in comparison to one active column, and it also shows 
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negligible correlation degradation between column currents with and without sneak path 

currents (Fig. 3.21). In addition, the energy consumption is also reduced by ~ 7X if eight 

columns instead of one column are activated in each operation. Compared with 4-XOR 

Arbiter PUF, the X-point PUF with 8 active columns is able to reduce the area by a factor 

~215X, reduce energy by a factor ~ 18X, while increase the latency by a factor of less than 

3X. 

Table 3.8  Benchmark Results of X-point PUF and Arbiter PUFs at 65 nm 

Performance 
X-point 

Arbiter 
4-XNOR 

Arbiter 1-column active 8-column active 

Area (µm2) 7890.69 4503.67 242133 971294 

Latency (ns) 128.387 16.25 5.43 5.47 

Energy (pJ) 94.79 13.17 59.02 233.87 
 

 

3.6 Summary 

In this chapter, we presented two RRAM based PUF implementations: one for key 

generation and the other for device authentication.  

For the RRAM weak PUF design, we experimentally evaluated RRAM PUF’s 

characteristics such as uniqueness and reliability on 1 kb 1T1R arrays. Design strategies to 

improve uniqueness, reliability and security have also been proposed. The uniqueness of 

RRAM PUF can be improved by selecting a more accurate split reference from more 

dummy cells and minimizing the input offset of the split S/A with relaxed transistor’s sizes. 

The reliability of RRAM PUF can be improved by using multiple RRAM cells to generate 

one response bit. The security in terms of tamper resistance can be improved by layout 

obfuscation of hiding S/A into the array and underneath fake RRAM cells. As these 

proposed strategies come with the expense of latency, energy consumption and area 
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efficiency, trade-offs should be considered given the application’s priorities. The realistic 

data measured from the RRAM arrays in this work will be valuable for system designers 

to develop the practical protocols using the RRAM PUF at the system level. 

For the digital X-point PUF, the sneak path currents in the X-point array were employed 

as the entropy source. To improve the poor diffuseness in the “analog” X-point PUF design, 

we proposed to digitize resistance distribution into on-states and off-states. In order to 

avoid the dependence of the preference of the response bit to be “1” or “0” on the WL 

activity, a fixed WL activity (i.e. 50%) was used with the largest CRP space. In each 

evaluating operation, only one column should be activated to greatly mitigate the 

correlation between BL current with and without sneak path current. The PUF’s 

characteristics, such as diffuseness, uniformity, and uniqueness, were comprehensively 

evaluated on 128×128 X-point arrays by SPICE simulation. The simulation results showed 

that the performance of the proposed PUF design was strongly dependent on the R_on 

activity and I_ref of S/A. 4% R_on activity presented as an optimal design since it showed 

the strongest resistance against I_ref variation. On the other hand, the effect of non-ideal 

properties of the X-point array and RRAM devices on the performance of X-point strong 

PUF were investigated as well. The interconnect resistance reduces column currents, which 

become more severe for more advanced technology nodes. However, its impact could be 

mitigated if the I_ref is scaled by a certain factor for different technology nodes. Higher 

on/off ratio of the RRAM devices is preferred to maintain a good robustness against I_ref 

variation. The device-to-device variation might cause a significant degradation in the 

performance of X-point PUF design and we proposed to employ low read voltage and 

write-verify programming scheme during resistance preparation phase to mitigate the 
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effect. In the end, we also discussed the security of X-point PUF through numerical SPICE 

modeling and machine learning attacks. It showed that the X-point PUF possesses a very 

high resistance against the numerical SPICE modeling and the machine learning attack. 

We also compared X-point PUF with Arbiter PUF and 4-XOR PUF in terms of area, 

latency and energy. Compared with 4-XOR Arbiter PUF, the X-point PUF with 8 active 

columns could reduce the area by a factor ~215X, reduce energy by a factor ~ 18X, while 

increase the latency by a factor of less than 3X.  
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4 MEMORIES FOR MACHINE LEARNING APPLICATIONS 

4.1 Overview 

4.1.1 Machine Learning 

Machine learning is a large sub-field within artificial intelligence (AI), which uses 

statistical techniques to give computers the ability to learn with data, without being 

explicitly programmed. Within the machine learning field, there is an area that is often 

referred to as brain-inspired computation. The brain-inspired computation is a program or 

algorithm that emulates some aspects of its basic form or functionality that the brain works. 

It is generally believe that the main computational element of the brain is the neuron. The 

neurons themselves are connected together with a number of elements entering them called 

dendrites and an element leaving them leaving them called an axon. These input and output 

signals are called activations. The connection from a neuron to a neighboring neuron is 

referred to as a synapse. There are approximately 86 billion neurons 1000 trillion synapses, 

respectively, in the average human brain. A key characteristic of the synapse is that it can 

modulate the input signal crossing it. That modulation factor can be referred to as a weight. 

The brain is believed to conduct learning in a way of adjusting the weights associated with 

the synapses. Thus different weights result in different responses to an input. This 

characteristic makes the brain an excellent inspiration for a machine-learning-style 

algorithm.  

Within the brain-inspired computation, there is a sub-area called spiking computing. 

The network of this area is generally referred to as the spiking neural network (SNN). 

SNNs take their inspiration from the biological learning rules in brain, such as spike-

timing-dependent plasticity (STDP), and the communication on the dendrites and axons 
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are spike-like pulses. Note that the information being conveyed is not only based on a 

spike’s amplitude but also the time when the pulse arrives. A well-known example of a 

project that was inspired by the SNN is the IBM’s TrueNorth [74]. In contrast to spiking 

computing, another sub-area of brain-inspired computing is called artificial neural network 

(ANN). ANN takes their inspiration from the notion that a neuron’s computation involves 

a weighted sum of the input values. These weighted sums correspond to the value scaling 

performed by the synapses and the combining of those values in the neuron. Furthermore, 

the output of each artificial neuron is generated only if the weighted sum cross some 

threshold, which is implemented by a non-linear function. In ANN, typically, artificial 

neurons are aggregated into layers. Different layers may perform different kinds of 

transformations on their inputs. Fig. 4.1 shows a picture of a simple 2-layer neural network. 

The neurons in the input layer receive some values and propagate them to the neurons in 

the middle layer (also called hidden layer). The outputs of hidden layer are ultimately 

propagated to the output layer.  
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Fig. 4.1  2-layer neural network. 

Within the artificial neural networks, there is an area called deep learning, in which the 

neural networks have more than three layers, i.e. more than hidden layers. The neural 
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networks used in deep learning are referred to as deep neural networks (DNNs). DNNs are 

capable of learning high-level features with more complexity and abstraction than 

shallower neural networks. For example, in an image recognition application, the raw input 

may be a matrix of pixels; the first representational layer may abstract the pixels and encode 

edges and lines; the subsequent layers may combine the edges and lines into a higher level 

features (e.g. shapes). Finally, the last layer may recognize that the image contains an object 

or scene. Deep learning has had waxed and waned history, which was first proposed in 

1940s. The first practical application happened until 1989 with LeNet network for 

recognizing handwritten digits [75]. These systems are widely used by ATMs for digit 

recognition on checks. Thanks to advances in computer hardware and software 

infrastructure and availability of big training data, the deep learning resurges currently, for 

example, Microsoft’s speech recognition system in 2011 [76] and AlexNet system for 

image recognition in 2012 [77]. The successes of these early DNN applications opened the 

floodgates of algorithm development. It has also inspired the development of several 

frameworks, such as Caffe, Tensorflow, Torch, Theano and etc. The existence of such 

frameworks are not only a convenient aid for DNN researchers and application designers, 

but also invaluable source of workloads for hardware researchers for exploring hardware-

software trade-offs. 

4.1.2 Training and Inference 

The machine learning algorithms usually have two phases—training and inference. In 

the specific case of DNNs, the training involves learning and determining the value of the 

weights (and bias) in the network. Once trained, the program can perform its task by 

computing the output of the network using the weights determined during training, which 
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is referred to as inference. In this dissertation, we will focus on the efficient processing of 

DNN inference instead of training. 

4.1.3 Popular Datasets for Image Classification 

Image classification is the most common task, which involves being given an image, 

and selecting one of N classes to which the image most likely belongs. MNIST is widely 

used dataset for digit classification [78]. It consists of 28 × 28 pixel grayscale images of 

handwritten digits. There are 10 classes and 60,000 training images and 10,000 test images. 

CIFAR is a dataset that consists of 32 × 32 pixel colored images of various objects [79]. 

The CIFAR-10 dataset consists of 60,000 images, in 10 classes, with 6000 images per class. 

There are 50,000 training images and 10,000 test images. The CIFAR-100 dataset has 100 

classes containing 600 images each. There are 500 training images and 100 testing images 

per class. ImageNet is a large scale dataset that consists of 256 × 256 pixel colored image 

with 1000 classes [77]. There are 1.3M training images and 100,000 testing images (100 

per class) and 50,000 validation images (50 per class). MNIST is a fairly easy dataset, 

while ImageNet is a challenging one. Therefore, it is important to consider the dataset on 

which the accuracy is measured when we evaluate the accuracy of a given DNN model. 

4.1.4 Overview of DNNs 

DNNs have shown remarkable improvements in various intelligent applications such 

as image classification [77], speech classification [80] and object localization and detection 

[80]. DNNs can be composed solely of fully-connected layers (FCLs), which is also 

referred to as multilayer perceptron, or MLP, as shown in the rightmost layers of Fig. 4.2.  
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n-layer CNVL

 

m-layer FCL

Deep Neural Network (DNN)

Input image
 

Fig. 4.2  A DNN with convolution layers (CNVL) and fully-connected layers (FCL). 

In a FCL, all the output neurons from previous layer are fully connected to each neuron in 

the next layer as inputs. Hence, the output activations of the next layer are determined by 

a weighted sum of all input activations of the previous layer. This requires a significant 

amount of storage and computation. Recently, a common form of DNNs is Convolutional 

Neural Networks (CNNs), which are composed of multiple convolutional layers (CNVLs) 

to learn the important features, followed by a small number (e.g. 1 to 3) of FCL for 

classification, as shown in Fig. 4.2. In a CNVL, an output feature map (IFM) is the result 

of multiply-and-accumulate (MAC) operations on a collection of weights (or filters, 

donated by K) operating in a sliding window fashion over a set of the input feature maps 

(OFMs), each of which is called a channel, as shown in Fig. 4.3. On the other hand, the 

computation of a CNVL can be defined as 

𝑂𝐹𝑀(𝑚, 𝑥, 𝑦) = 𝐵(𝑚) +  ∑ ∑ ∑ 𝐼𝐹𝑀(𝑐, 𝑥 + 𝑖, 𝑦 + 𝑗)  × 𝐾(𝑚, 𝑐, 𝑖, 𝑗)

𝐾𝑦−1

𝑗=0

𝐾𝑥−1

𝑖=0

 

𝐶−1

𝑐=0

 (4.1) 

where 𝐼𝐹𝑀(𝑐, 𝑥, 𝑦) is the activation at position (𝑥, 𝑦) of 𝑐𝑡ℎ(0 ≤ 𝑐 ≤ 𝐶) input feature 

map; 𝐾(𝑚, 𝑐, 𝑖, 𝑗) is the weight at position (𝑖, 𝑗) of 𝑐𝑡ℎ filter in the set of filters associated 

with 𝑚𝑡ℎoutput feature map; 𝑂𝐹𝑀(𝑚, 𝑥, 𝑦) is the result of MAC of activation at position 

(𝑥, 𝑦) of 𝑚𝑡ℎ(0 ≤ 𝑚 ≤ 𝑀) output feature map;  𝐵(𝑚) is the bias for 𝑚𝑡ℎ output feature 

map. 
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Fig. 4.3  Three-dimensional convolutions with multiple channels in CNNs. k, C and M 

refer as to the size of filter, number of channels of input featur maps and number of 

channels of output feature maps, respectively.  

A non-linear activation function is typically applied after each CNVL and FCL are used 

to introduce non-linearity into the DNN, including sigmoid or hyperbolic tangent as well 

as rectified linear unit (ReLU) [81]. ReLU has become popular in recent years due to its 

simplicity and its ability to enable fast training. Beside, a pooling layer can be found in a 

DNN to reduce the dimensionality of a feature map. Pooling, which is applied to each 

channel separately, enables the network to be robust and invariant to small shifts and 

distortions. There are two typical pooling techniques, i.e. max pooling and average pooling. 

It can be configured based on the size of its receptive field (e.g., 2×2) and typically occurs 

on non-overlapping blocks (i.e., the stride is equal to the size of the pooling). Furthermore, 

a normalization layer can also be found in a DNN to control the input distribution across 

layers and can help to significantly speed up training and improve accuracy.   
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Many DNN models have been developed over the past decade. Each of these models 

has a different ‘network architecture’ in terms of number of layers, layer types, layer shapes 

(i.e., filter size, number of channels and filters), and connections between layers. Table 4.1 

summaries the popular DNNs. Increasing the depth of the network tends to provide higher 

accuracy. Furthermore, most of the computation has been placed on CNVLs rather than 

FCLs. In addition, the number of weights in the FCLs is reduced and in most recent 

networks (since GoogLeNet) and the CNVLs dominate in terms of weights. Thus, the focus 

of hardware implementations should be on addressing the efficiency of the CNVLs, which 

in many domains are increasingly important. 

Table 4.1  Summary of Popular DNNs, adopted from [82]. 

 

4.2 Hardware Platforms for DNN Processing 

The most fundamental and intensive computation in DNN (CNVLs and FCLs) are the 

MAC operations. In order to achieve high performance, it is common to devote to 

parallelize the MAC operations. CPUs or GPUs employ a variety of techniques to improve 

parallelism such as vectors (SIMD) or parallel threads (SIMT). All the arithmetic-logic 

units (ALUs) share the same control and on-chip memory (register file). These ALUs can 
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only fetch data from the memory hierarchy (Fig. 1.2) and cannot communicate directly 

with each other. On the other hand, the popular DNN modes, as shown in Table 4.1, 

requires tens to hundreds of megabytes of parameter for the millions of MAC operations. 

For example, VGG-16 network [83] requires 138M parameters and requires 15.5G 

floating-point precision MAC operations to classify one 224 × 224 input image. This 

creates significant data movement from on-chip and off-chip memories to support the 

computation. In fact, the data movement between memories can be more energy-

consuming than computation [84]. Therefore, the processing of DNNs has to not only 

provide high computation parallelism for high throughput but also optimize the data 

movement to achieve high energy efficiency. To optimize the data movement, it is 

important to understand the memory access energy in the memory hierarchy, i.e. the access 

energy is higher when the memory is farther from the ALUs. For example, the energy cost 

of DRAM access is as ~200× much as the energy cost of on-chip memory access. Some 

projects have taken significant strides in this direction. In contrast to the temporal 

architecture used in general-purpose processor, like CPUs and GPUs. The spatial 

architecture are commonly used nowadays for DNNs in ASIC and FPGA-based designs, 

where the on-chip memory is distribute to each ALU such that it is closer to the 

computation unites, such as Eyeriss architecture [85]. There are also been efforts to move 

the data and compute closer to reduce data movement, thus reducing the memory access 

cost. For example, advanced memory technology can reduce the access energy for high 

density memories, such as DRAM. DaDianNao architecture used an embedded DRAM 

(eDRAM) to bring the high density memory on-chip in their architecture design [86]. The 

eDRAM is 321× more energy efficient than DRAM (DDR3). eDRAM also offers higher 
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bandwidth and lower latency. In addition, the DRAM can also be stacked on the top of the 

chip using through silicon vias (TSV). This technology is often referred to as 3D memory. 

Tetris [87] demonstrated a DNN accelerator with 3D DRAMs. The same concept has also 

been explored with 3D SRAM to further reduce the memory access latency [88].  

However, the architectures of aforementioned accelerators are still von Neumann 

architecture and the challenge in memory access degrades the overall performance and 

energy efficiency of the system. In the context, a new computing paradigm has emerged in 

recent years as an attractive alternative, which is referred to as compute-in-memory (CIM) 

or in-memory computing. In contrast to the separation of memory and computation in von 

Neumann architecture, the CIM architecture integrate the computation into memory, thus 

reducing the energy of memory access significantly. In the next section, we will discuss 

the CIM-based hardware accelerator designs.  

4.3 Compute-in-Memory Based Hardware Accelerator Design 

In earlier work, the DNN models were designed to maximize the accuracy without 

much consideration of the implementation complexity. However, the high demands on 

memory storage capacity and computational resources make it challenging to implement 

and deploy state-of-the-art DNNs on resource-limited platforms such as embedded and 

mobile devices. It becomes even more challenging as the DNN models trend to be deeper. 

Various techniques such as network pruning [89] and fixed-point precision [90] were 

proposed to reduce the energy and area cost of the storage. Recently, it is demonstrated 

that the precision can be aggressively reduced to 1-bit in Binary Neural Networks (BNNs) 

[91, 92], which are still able to achieve a reasonable classification accuracy on 

representative image datasets (e.g., MNIST, CIFAR-10, and ImageNet). Since both the 
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weights and neuron activations are binarized to +1/-1, thus 1) the memory storage 

requirement for these BNNs is dramatically reduced; 2) computational resources are 

significantly reduced as high-precision MAC operations are replaced by XNOR and bit-

counting operations. Therefore, BNNs provide a promising solution for on-chip 

implementation of DNNs. In BNNs, both the weights and activations are constrained to 

+1/-1. Hence, multiplications between activations and weights can be simplified as bitwise 

XNOR operations and accumulation of their products are equivalent to bit-counting 

operation. We refer this type of BNN to as XNOR-BNN. We also constrain the weights 

and activations in a different binary fashion—weights are binarized to +1/-1 while neuron 

activations are binarized to 0/1. We refer this type of BNN as hybrid BNN (HBNN). Then 

the multiplications between activations and weights can be replaced by bitwise 

multiplications and accumulation of their products are equivalent to bit-counting operation 

as well. Both BNNs have advantages and disadvantages, targeting to different applications. 

In this work, we trained both types of BNNs using similar algorithms proposed in [2,3] 

on the Theano platform. Note that the binarization function for binary activations in HBNN 

is: 

1  if 0,

0  otherwise,( )b xx Sign x    (4.2) 

The binarization function for binary weights in XNOR-BNN is: 

, 1  if 0,

-1  otherwise,( )b xx Sign x     
(4.3) 

where 
bx  is the binarized weight or activation and x  is the real-valued variable. A 

convolutional neural network (CNN) (refer to as inspired VGG-16) with 6 convolution 

layers and 3 fully-connected layers are trained and binarized for evaluations on the CIFAR-

10 dataset. The corresponding classification accuracy with floating point (FL) precision is 
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89.99%. The classification accuracy slightly drops from 89.98% to 88.48% for HBNN and 

to 88.34% for XNOR-BNN. 

 
Fig. 4.4  (a) The conventional deep neural network accelerator where the processing 

element (PE) arrays exploit parallelized computation but with inefficient row-by-row 

access to the weights stored in shared buffers (i.e. SRAM). (b) The diagram of compute-

in-memory (CIM) architecture where the input vectors activate multiple rows and the dot-

product output is obtained as column voltage or current [93]. © 2018 ACM 

In the DNN accelerator designs with von Neumann architecture, SRAM cache is 

commonly utilized to store the synaptic weights; however, the extensive computation such 

as MAC is performed using other logic circuits, e.g. processing element (PE) [85, 94], as 

shown in Fig. 4.4(a). To improve the data utilization efficiency, parallelized computation 

is exploited across multiple PE arrays but still with inefficient row-by-row access to the 

weights stored in the shared SRAM buffers. Therefore, it is more attractive to integrate the 

computation into the memory array itself (i.e. CIM) as shown in Fig. 4.4(b). The CIM 

technology can enabled parallel vector-matrix multiplication that the input vectors are send 

to memory row and activate multiple rows, thus the weighted sum is obtained as column 

voltage or current. To design the CIM based hardware accelerator, there are various 

memory technologies are available, e.g. SRAM, DRAM, FLASH and eNVM. Due to the 

disadvantage in requiring interval “refresh” and large voltage operations in DRAM and 
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FLASH, respectively, SRAM and eNVM are chosen as the memory technologies to design 

CIM based hardware accelerator for XNOR-BNN and HBNN, respectively, in this 

dissertation. 
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Fig. 4.5  (a) Crossbar eNVM array architecture. (b) Pseudo-crossbar array by 90o rotation 

of SL to enable weighted sum operation. 

4.3.1 Synapse Cell Design 

eNVM  

eNVM based synaptic devices can represent the weight with their conductance states, 

HRS or LRS for binary use. The most compact eNVM based synaptic array structure is the 

crossbar array structure (Fig. 4.5(a)). Although the crossbar array architecture is simple, it 

suffers from the write disturbance issue, as there is no isolation between cells, thus leading 

to inaccurate weighted sum. To eliminate the write disturbance, “pseudo-crossbar” are 

proposed by rotating source lines (SLs) by 90o of the existing conventional 1-transistor-1-

resister (1T1R) array (Fig. 4.5(b)). 

For HBNN, two 1T1R cells are used as the unit synapse cell as shown in Fig. 4.6(a) 

[95]. We can represent weight +1 as RL = HRS and RR = LRS and the reversed pattern is 

used for weight -1. The binary neuron activation of 0/1 can be represented by WL of 0/1, 
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correspondingly. In this way, the value of the discharge current or voltage along the BL 

during the read-out is dependent on the combination of WL input pattern and bit-cell 

pattern. Fig. 4.6(b) lists the coding schemes and truth table with possible combination 

patterns of binary neuron and weight. The corresponding bitwise multiplication results are 

also shown. The current or voltage difference BL and BLB is effectively a product of input 

neuron value and the weight value stored in the unit synapse cell. For XNOR-BNN, four 

1T1R cells are used as the unit synapse cell as shown in Fig. 4.6(c) [96]. The coding 

schemes are shown in Fig. 2(d), which is slightly different from the ones for the HBNN. 

 
Fig. 4.6  eNVM based unit synapse cell designs for HBNN and XNOR-BNN, respectively. 

(a) and (c) are the schematics, respectively. (c) and (d) are the coding schemes, 

respectively. Current difference of BL and BLB is taken as the output. 

SRAM 

Although eNVMs hold great advantages on area-efficiency and standby power 

reduction, those eNVM technologies are still premature for large-scale integration at this 

moment due to the manufacturing challenges such as the yield, variability, and reliability. 

In contrast, SRAM has reached the industrial maturity. Therefore, we also proposed two 

SRAM based CIM designs for DNNs [93, 97].  
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Fig. 4.7  SRAM based unit synapse cell designs for HBNN and XNOR-BNN, respectively. 

(a) and (c) are the schematics, respectively. (c) and (d) are the coding schemes, 

respectively. Current difference of BL and BLB is taken as the output. [93] © 2018 ACM 

SRAM stores bi-stable information in one cell. For the HBNN, a conventional 6T 

SRAM cell is used as a unit synapse cell, as shown in Fig. 4.7(a). Fig. 4.7(b) presents the 

coding schemes of binary input and weight. For XNOR-BNN, we proposed a customized 

8T SRAM cell as shown in Fig. 4.7(c). There are two complementary WLs and two pairs 

of pass gates (PGs). The first pair of PGs controlled by WL connects Q and QB to BL and 

BLB, respectively. In contrast, the second pair of PGs controlled by WLB connects Q and 

QB to BLB and BL, respectively. This design is also different from the conventional 8T 

SRAM that aims to improve the static noise margin. In our 8T SRAM design, the synaptic 

weight is stored in Q and QB similarly as in 6T SRAM. However, the input binary neuron 

is represented with a pair of complimentary WLs (Fig. 4.7(d)). To evaluate the 

multiplication or XNOR function with both 6T and 8T SRAM synapse cell, BL and BLB 

will be charged (iC) or discharged (iD) depending on the input and weight pattern since 

both BLs could decay below VDD. For the evaluation of weighted sum along a column, 
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we essentially compare the number of ‘1’s coupled to BL and BLB since ‘1’ results in 

current discharge and iD is significantly larger than iC. 

 
Fig. 4.8  Diagram of proposed eNVM CIM architectures with (a) 2-1T1R and (b) 4-1T1R 

unit synapse cells and peripheral circuits for activating multiple rows in parallel. © 2018 

ACM. 

 
Fig. 4.9  Diagram of proposed SRAM CIM architectures with (a) 6T SRAM and (b) 8T 

XNOR-SRAM unit synapse cells and peripheral circuits for activating multiple rows in 

parallel [93]. © 2018 ACM. 
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4.3.2 CIM Macro Design 

With all the unit synapse cells discussed above, the MAC operation is replaced by 

bitwise multiplication for HBNN or XNOR for XNOR-BNN plus bit-counting operations. 

To parallelize the weighted sum operation, we activate multiple word lines in the both 

eNVM and SRAM arrays simultaneously and digitize the analog current or voltage 

developed along the BLs by a multi-level sense amplifiers. Fig. 4.8 and Fig. 4.9 show the 

circuit diagrams of proposed eNVM and SRAM CIM designs, respectively. Compared to 

conventional design for memory application, some peripheral circuits are different. We 

will take the SRAM based design as example to explain.  

 
Fig. 4.10  An example of bit-wise XNOR and parallel bit-counting in an XNOR SRAM 

column. (a)  Ideal value and corresponding currents on BL and BLB. (b) Current flowing 

directions along the column. Note iD>iC. (c) Comparison of total currents on BL and BLB. 

First, a WL decoder is generally used to drive the WL in the conventional design and 

each time there is only one row is activated. To calculate the weighted sum, only one bit in 

the input neuron vector is fed into WL and the output from the BL (or BLB) with a fixed 
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current or voltage reference of a binary sense amplifier (SA) to determine the binary output. 

Then, the adders and registers are needed to perform row-by-row summation and store the 

partial sums, respectively, when the rows are activated consecutively. In our design, a WL 

switch matrix is employed to activate multiple WLs simultaneously according to the input 

neuron vector to enable the parallel read-out. Note that in the 8T SRAM design, each bit 

in the input vector is encoded to a pair of complementary signals to enable one WL and 

disable the other. In the parallel access design, the currents from multiple rows along the 

same column contribute together to discharge the bit line (BL or BLB). The MAC operation 

in the parallel access scheme is performed as follows. The total discharging current or 

residual voltage after discharge from BL or BLB depends on both input pattern but also 

weight pattern. Fig. 4.10 shows an example of bit-wise XNOR and parallel bit-counting in 

an 8T SRAM design. Assume we are doing the 3-bit vector and vector multiplication, and 

the weight vector is “+1-1-1” and the input neuron vector “+1+1-1”. The ideal value of the 

weighted sum is +1. If we store the weight vector as the data stored in the SRAM cell in a 

column and we encode the input neuron vector as a voltage vector applied to WL, we will 

see different current or voltage from BL and BLB. Specifically, the BL will see current of 

1 iD (iD: discharging current from one SRAM cell) and the BLB will see current of 2iD in 

this example. The current difference between BLB and BL is iD, which can be taken as the 

weighted in analog fashion. Fig. 4.10(b) shows the current flowing directions in the 

XNOR-SRAM column determined by the input and weight vectors. With binary activation 

function, the comparison result of total currents of BL and BLB determines the output 

polarity (Fig. 4.10(c)). Essentially, we compare the number of ‘1’s coupled to BL and BLB 

since ‘1’ means discharge and iD is significantly larger than iC.  
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Second, a binary sense amplifier (S/A) is generally used to read the binary data in the 

SRAM out. For large-scale matrices in FCLs or after unrolling hundreds of convolution 

kernels in multiple channels in CNVLs, the array partition is necessary to split a large 

matrix into multiple small sub-arrays. However, the accuracy may be substantially 

degraded if the binary activation is still used to accumulate the partial sums from the sub-

arrays. Hence, the multi-level sense amplifier (MLSA) is employed as an analog to digital 

conversion (ADC) to maintain higher precision for partial sums, as shown in Fig. 4.11. We 

also design a reference generation circuit to generate the references to the MLSA. 

Theoretically, we need a 7-bit MLSA if the array size is 64 × 64 since the range of analog 

weighted sum is from -64iD to +64iD. This will pose a significant design challenge and 

area overhead to the overall design. In order to mitigate the design challenge of the MLSA, 

we proposed to quantize the partial sums for each sub-array.  

 
Fig. 4.11  (a) Schematic illustration and waveform of the multi-level sense amplifier 

(MLSA) and (b) Dynamic Input-Aware Reference Generation [97]. © 2018 IEEE. 

4.3.3 Partial Sum Quantization 
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like distribution. To minimize the quantization error of the partial sums, we performed non-

linear quantization where quantization edges (or references) are determined via Lloyd-Max 

algorithm [98]. The idea is to make the quantization edges denser in the center of the 

distribution thus each quantization level has roughly the same number of partial sums. Fig. 

4.12 presents the distribution of partial sums for HBNN and XNOR-BNN with seven 

quantization edges (or references), and eight quantization levels acquired from the Lloyd-

Max algorithm. Due to the reduced quantization error, nonlinear quantization achieves 

significantly better accuracy than linear quantization given the same number of 

quantization levels. For example, the XNOR-BNN with inspired VGG-16 on CIFAR-10 

achieves an accuracy degradation of 0.88% with nonlinear quantization and of 74.07% with 

linear quantization for 8 quantization levels. 

 
Fig. 4.12  Distribution of partial sums of (a) HBNN and (b) XNOR-BNN collected from 

inspired VGG-16 on CIFAR-10. Sub-arrays are assumed to be 64×64. Red lines are 7 

nonlinear quantization edges (or references) and red diamonds indicate 8 quantization 

levels [93]. © 2018 ACM. 

Fig. 4.13 shows the high-level architecture of the CIM system. MLSAs take the “non-

linear” quantization edges as references and generate digital outputs, which then go through 

thermometer-to-binary (TM2B) encoders and look-up tables (LUTs) to be converted to the 

corresponding quantization values as partial sums. Those partial sums are added up with 

-64 -48 -32 -16 0 16 32 48 64
0.0

2.0x10
9

4.0x10
9

6.0x10
9

8.0x10
9

XNOR-Net

Inspired VGG-16

on CIFAR-10

 Quantization edges

 Quantization levels

C
o

u
n

t

Partial Sum 

-64 -48 -32 -16 0 16 32 48 64
0.0

2.0x10
9

4.0x10
9

6.0x10
9

8.0x10
9

HBNN

Inspired VGG-16

on CIFAR-10

 Quantization edges

 Quantization levels

C
o

u
n

t

Partial Sum 

(a)

(b)

-64 -48 -32 -16 0 16 32 48 64
0.0

2.0x10
9

4.0x10
9

6.0x10
9

8.0x10
9

XNOR-Net

Inspired VGG-16

on CIFAR-10

 Quantization edges

 Quantization levels

C
o

u
n

t

Partial Sum 

-64 -48 -32 -16 0 16 32 48 64
0.0

2.0x10
9

4.0x10
9

6.0x10
9

8.0x10
9

HBNN

Inspired VGG-16

on CIFAR-10

 Quantization edges

 Quantization levels

C
o

u
n

t

Partial Sum 

(a)

(b)



110 

 

adder trees to generate a final sum, which then goes through the binary activation to 

generate the neuron output. 

 
Fig. 4.13  Generic system diagram for implementing a large matrix with multiple small 

XNOR-SRAM unit cores [93]. © 2018 ACM. 

We investigate the impact of quantization levels on the accuracy loss for both HBNN 

and XNOR-BNN as shown in Fig. 4.14. The simulation results indicate that the XNOR-

BNN can achieve slightly better performance than HBNN on CIFAR-10. This is probably 

because that the XNOR-BNN will have sparser edges than HBNN. Note that the partial 

sum distribution for XNOR-BNN has an interval of two in between each other, while the 

interval for HBNN is one. However, the HBNN can achieve satisfying accuracy if the 

image dataset is relatively simple. For instance, for the same given system, HBNN can 

achieve an accuracy of 98.83% for LeNet-5 on MNIST, showing only 0.17% degradation 

compared to the accuracy of ideal BNN algorithm. We also investigate the dependence of 

classification accuracy degradation on the sub-array sizes (Fig. 4.14(c)). The simulation 

results suggest that the system with larger sub-array size will cause a slightly larger 

accuracy degradation than a system with a smaller sub-array size for a given quantization 

level. 
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Fig. 4.14  (a) The classification accuracy degradation as a function of quantization levels 

when the partial sums are compressed by linear and non-linear quantization for (a) HBNN 

and (b) XNOR-BNN (c) different sub-array size, for inspired VGG-16 on CIFAR-10 [93]. 

© 2018 ACM. 

4.3.4 Comparison between Row by Row and Parallel Computation 

We customized a circuit-level macro model NeuroSim [15] that can be used to estimate 

the area, latency, and energy consumption of hardware accelerators implemented by 

SRAM synaptic arrays. The hierarchy of the simulator consists of different levels of 

abstraction from the memory cell parameters and transistor technology parameters, to the 

gate-level sub-circuit modules, and then to the array architecture. In this work, we 

estimated the area, latency, and energy-efficiency of conventional row-by-row 6T SRAM, 

parallel 6T SRAM for HBNN and 8T SRAM for XNOR. 3-bit MLSA is employed for 

partitioning a 512×512 weight matrix at 65 nm technology node. Standard 6T SRAM is 

assumed for row-by-row SRAM architecture. Regarding the MLSA design, two 

implementation strategies are explored here. First, the MLSA can be implemented by a 1-

bit SA with different VREF in successive sensing cycles, which is referred to as MLSA_S. 

Second, the MLSA can be designed with a few stacked 1-bit SAs with different VREF in 

parallel, which is referred to as MLSA_P. The normalized simulation results in Fig. 7(a) 

suggest that—1) with MLSA_S, HBNN and XNOR-BNN can achieve both area and 

latency reduction and energy-efficiency improvement by a factor of >38%, >86%, and >7X; 
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2) with MLSA_P, latency and energy-efficiency can be improved further but with 

increased area overhead. Fig. 7(b) shows the comparison results of performance metrics 

for different sub-array sizes. The sub-array size of 32×32 is taken as the baseline for 

comparison in each case. With increasing the sub-array size, both area and latency can be 

further reduced while the energy-efficiency shows a slightly further improvement. 

 
Fig. 4.15  (a) Comparison between different parallel access designs, and the results are 

normalized to the row-by-row access design. (b) Comparison between different sub-array 

sizes for parallel designs, and the results are normalized to 32×32 sub-array size [93]. © 

2018 ACM. 

We also taped-out and validated the proposed HBNN with 6T SRAM and XNOR-BNN 

with customized 8T SRAM in TSMC 65 nm process. Fig. 8(a) and (b) show the fabricated 

die photo and the summary of the design parameters and measured performance. The 

MLSA_S scheme was employed in our tape-out. Fig. 8(c) is the transient waveform of a 

2-bit MLSA. In the tape-out, to further reduce energy consumption during read-out, we 

customized the 6T SRAM cell where we control the two pass gates with two different WLs 

and only one WL and associated BL are turned on during the read-out operation [16]. 

Therefore the energy consumption can be reduced by around 50% as compared to the 
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standard 6T SRAM. The measured silicon data shows that HBNN and XNOR-BNN can 

achieve energy-efficiency >100 TOPS/W and >50 TOPS/W, respectively, as WL is 0.8 V 

and VDD for other circuits is 1.0V. Here the one OP is defined as half a 1-bit MAC 

operation. 

 
Fig. 4.16  (a) Die photo of the 6T SRAM macro for HBNN and 8T SRAM for XNOR, (b) 

Summary table of design parameters, and (c) the transient waveform diagram of 1-bit 

MLSA [93]. © 2018 ACM. 

4.4 Summary 

In this chapter, we have discussed the current hardware platforms and critical issues, 

i.e. throughput and energy efficiency, for the machine learning applications. To save the 

memory and computation cost, techniques, e.g. pruning and quantization, are proposed in 

the algorithm. From hardware, compute-in-memory is proposed to further reduce the data 

transfer, suppress intermediate data. We explored the design space of two BNNs, HBNN 

and XNOR-BNN with two memory technologies, i.e. SRAM and eNVM or RRAM. For 

HBNN, 6T SRAM is used as bit-cell. For XNOR-BNN, a customized 8T SRAM with 

complementary WLs is used as bit-cell. To parallelize the weighted sum operation, we 

activated multiple WLs in the SRAM array and digitize the accumulated analog voltage 

along BL by MLSA. Array partition was adopted for implementing large-matrices in DNNs. 

To reduce the quantization error, non-linear quantization was employed for the partial sums 
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collected from each SRAM array. The impact of the quantization levels on the 

classification accuracy was also analyzed. We also benchmarked of the area, latency, and 

energy for row-by-row access and parallel access, showing significant improvement in the 

parallel access design. Finally, we have validated the proposed HBNN [16] and XNOR-

BNN designs with a tape-out in TSMC 65 nm process. A trade-off exists: 6T SRAM based 

HBNN design could achieve better energy-efficiency than 8T SRAM based XNOR-BNN 

design due to a simpler bit-cell. However, XNOR-BNN design shows a better accuracy for 

implementing deeper network on a larger dataset. 
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5 CONCLUSIONS  

 In this dissertation, we investigated the SEEs on oxide based RRAM with both 1T1R 

and crossbar array architectures from device-level, circuit-level and system. 1T1R array 

suffers from SBU cause by SEU during the set operation. Crossbar array, however, suffers 

MBU if other oxides are used that lower activation energies in pursuit of low operation 

voltage due to the propagation of radiation-induced transient spike on the driver at the edge 

of the array. To compare radiation resistance between 1T1R and crossbar, three factors are 

considered to evaluate system-level susceptibility: the upset rate, the sensitive area, and the 

vulnerable time window. Our analysis indicates that the crossbar architecture has a smaller 

maximum bit-error-rate (BER) per day as compared to the 1T1R architecture for a given 

sub-array size, I/O width and susceptible time window. 

Second, a RRAM weak PUF and a RRAM strong PUF were proposed for cryptographic 

key generation and device authentication, respectively. The characteristics of RRAM weak 

PUF were experimentally evaluated with 1 kb HfO2 based RRAM arrays. Design strategies 

to improve uniqueness, reliability and security have also been proposed. The uniqueness 

of RRAM PUF can be improved by selecting a more accurate split reference from more 

dummy cells and minimizing the input offset of the split S/A with relaxed transistor’s sizes. 

The reliability of RRAM PUF can be improved by using multiple RRAM cells to generate 

one response bit. The security in terms of tamper resistance can be improved by layout 

obfuscation of hiding S/A into the array and underneath fake RRAM cells. As these 

proposed strategies come with the expense of latency, energy consumption and area 

efficiency, trade-offs should be considered given the application’s priorities. The RRAM 

strong PUF’s characteristics, such as diffuseness, uniformity, and uniqueness, were 
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comprehensively evaluated on 128×128 X-point arrays by SPICE simulation. The 

simulation results showed that the performance of the proposed PUF design was strongly 

dependent on the R_on activity and I_ref of S/A. 4% R_on activity presented as an optimal 

design since it showed the strongest resistance against I_ref variation. On the other hand, 

the effect of non-ideal properties of the X-point array and RRAM devices on the 

performance of X-point strong PUF were investigated as well. The interconnect resistance 

reduces column currents, which become more severe for more advanced technology nodes. 

However, its impact could be mitigated if the I_ref is scaled by a certain factor for different 

technology nodes. Higher on/off ratio of the RRAM devices is preferred to maintain a good 

robustness against I_ref variation. The device-to-device variation might cause a significant 

degradation in the performance of X-point PUF design and we proposed to employ low 

read voltage and write-verify programming scheme during resistance preparation phase to 

mitigate the effect. In the end, we also discussed the security of X-point PUF through 

numerical SPICE modeling and machine learning attacks. It showed that the X-point PUF 

possesses a very high resistance against the numerical SPICE modeling and the machine 

learning attack. We also compared X-point PUF with Arbiter PUF and 4-XOR PUF in 

terms of area, latency and energy. Compared with 4-XOR Arbiter PUF, the X-point PUF 

with 8 active columns could reduce the area by a factor ~215X, reduce energy by a factor 

~ 18X, while increase the latency by a factor of less than 3X. 

Third, we explored the design space of two BNNs, HBNN and XNOR-BNN and 

designed 4 CIM based hardware accelerator for those two types of BNNs with SRAM and 

RRAM technologies. With SRAM technology, 6T SRAM and custom 8T SRAM are 

proposed as bit cells for HBNN and XNOR-BNN implementations, respectively. With 
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RRAM technology, 2 1T1R cells and 4 1T1R cells are proposed as bit cells for HBNN and 

XNOR-BNN implementations, respectively. To parallelize the weighted sum operation, 

we activated multiple WLs in the SRAM array and digitize the accumulated analog voltage 

along BL by MLSA. Array partition was adopted for implementing large-matrices in DNNs. 

To reduce the quantization error, non-linear quantization was employed for the partial sums 

collected from each SRAM array. The impact of the quantization levels on the 

classification accuracy was also analyzed. We also benchmarked of the area, latency, and 

energy for row-by-row access and parallel access, showing significant improvement in the 

parallel access design. Finally, we have validated the proposed HBNN and XNOR-BNN 

designs with a tape-out in TSMC 65 nm process. A trade-off exists: 6T SRAM based 

HBNN design could achieve better energy-efficiency than 8T SRAM based XNOR-BNN 

design due to a simpler bit-cell. However, XNOR-BNN design shows a better accuracy for 

implementing deeper network on a larger dataset. 

Overall, this dissertation explores the memory technologies’ new applications beyond 

memory and data storage towards aerospace applications, secure and energy-efficient 

computing, and artificial intelligence hardware.  
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