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ABSTRACT

Vision processing on traditional architectures is inefficient due to energy-expensive

off-chip data movements. Many researchers advocate pushing processing close to

the sensor to substantially reduce data movements. However, continuous near-sensor

processing raises the sensor temperature, impairing the fidelity of imaging/vision

tasks.

The work characterizes the thermal implications of using 3D stacked image sen-

sors with near-sensor vision processing units. The characterization reveals that near-

sensor processing reduces system power but degrades image quality. For reasonable

image fidelity, the sensor temperature needs to stay below a threshold, situationally

determined by application needs. Fortunately, the characterization also identifies op-

portunities – unique to the needs of near-sensor processing – to regulate temperature

based on dynamic visual task requirements and rapidly increase capture quality on

demand.

Based on the characterization, the work proposes and investigate two thermal

management strategies – stop-capture-go and seasonal migration – for imaging-aware

thermal management. The work present parameters that govern the policy decisions

and explore the trade-offs between system power and policy overhead. The work’s

evaluation shows that the novel dynamic thermal management strategies can unlock

the energy-efficiency potential of near-sensor processing with minimal performance

impact, without compromising image fidelity.
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Chapter 1

INTRODUCTION

Imaging and vision systems allow computing systems to sense and react to real-world

situations and to capture images for human consumption. This affords a range of

utilities on many devices spanning a wide variety of power profiles, including smart-

phones and tablets, wearable headsets, personal computers, security cameras, drones,

automobiles, and security and monitoring systems. Unfortunately, imaging requires

high data rates to transfer pixel data from the image sensor to computational units.

In traditional systems (Fig. 1.1a), where the computational units are separated from

the sensor via long interconnects, e.g., ribbon cables, data rates create bottlenecks

to energy efficiency and processing. Thus, current vision systems result in power

profiles on the order of multiple watts; it has been shown that state-of-the-art con-

volutional neural network efficiency need at least 1 W of processing power to process

low resolution QVGA frames at 30 fps Azarkhish et al. (2018); Pena et al. (2017). For

high performance processing at high resolutions and framerates, the power require-

ments rapidly rise, easily going up to over 10 W of processing power on mobile-based

implementations Cavigelli et al. (2015).

This has motivated a trend towards three-dimensional ”stacked” integrated cir-

cuit architectures (Fig. 1.1b) for sensor capture and processing, i.e., near sensor

processing. A 3D stacked sensor stacks the sensor, vision processor unit (VPU), and

memory on top of each other in the same package. By processing data near the

sensor, various proposed and implemented systems can achieve energy-efficient vision

processing LiKamWa et al. (2016); Du et al. (2015), and bursts of high-speed cap-

ture Nose et al. (2018). With advances in fabrication, stacked image sensors have

1
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Figure 1.1: Due to Energy-expensive Interface Data Movements, Traditional Pipelines

Are Inefficient. Near-sensor Processing Helps Greatly Reduce Data Traffic Promoting

Energy-efficiency.

been commercially released since 2012 3D-IC-blog (2016), and are still under active

development for high performance Lee et al. (2012) and efficiency Amir et al. (2018).

Unfortunately, sensor sensitivity to temperature prevents a full adoption of near-

sensor processing, creating noise in captured images. Furthermore, low light envi-

ronments force the sensor to operate at high exposure and ISO 1 to capture the

scene, which increases a sensor’s vulnerability to noise. Despite a plethora of CPU

dynamic thermal management (DTM) mechanisms, current techniques do not suffice

imaging requirements; traditional DTM reduces package cooling costs and maintains

maximum temperature limits, i.e., TDP, turning a blind eye to the transient imag-

ing needs of near-sensor processing. Thus, despite performance and energy benefits

of near-sensor processing, the temperature profile of visual computing limits stacked

architectures in many situations.

1ISO controls the sensitivity of an image sensor to light

2



To assess thermal issues, in §3 we characterize the temperature implications of

stacked near-sensor processing for visual workloads. In addition to confirming and

modeling relationships between near-sensor processing power and sensor temperature,

our characterization reveals a consequential insight: despite the long time constants

for the sensor to settle to steady-state temperatures, removing near-sensor power

results in an immediate and dramatic reduction in transient junction temperature of

the sensor. For example, for a 2.5 W system, the sensor temperature drops by 13◦ C in

20 ms, when we turn off the processing. This stems from the high thermal capacitance

of chip packaging and low thermal capacitance of the die. This immediate temperature

drop is neglected by existing dynamic thermal management works, whose primary

aim is to confine chip temperature below an emergency limit. However, as reducing

transient temperature raises sensing fidelity, this observation allows on-demand high-

fidelity capture.

In §4, we build on characterized challenges and opportunities to provision for

imaging-specific temperature management. We design two mechanisms – stop-capture-

go and seasonal migration – for effective near-sensor vision processing that minimizes

system energy consumption and affords performance computation and high fidelity

capture. Stop-capture-go suspends the processing briefly to allow for a high fidelity

capture and resumes the processing after the capture. On the other hand, seasonal

migration occasionally shifts processing to a thermally isolated far-sensor processing

unit for high fidelity capture. We design Stagioni, a runtime that orchestrates the

temperature management for near-sensor processing.

In §6, we evaluate the effectiveness of our mechanisms in managing sensor temper-

ature to suit imaging needs. We also demonstrate Stagioni’s robustness in smoothly

handling the dynamic fidelity needs. In §7, we contextualize our work by discussing

3



future avenues of research towards temperature-aware stacked sensor architectures

for near-sensor processing.

Vision case study - Continuous life-logger: Enabling high performance

and high efficiency near-sensor processing would unlock the potential for several vi-

sion/imaging applications, including sophisticated dashboard cameras, continuous

augmented reality tracking, and other futuristic use cases. Throughout this work,

we study the implications of near-sensor processing and evaluate the policies around

a life-logger case study. A wearable life-logger device chronicles important events and

objects in a person’s life. The device runs object detection and tracking algorithms

to continuously figure out the objects in the scene and track them. Meanwhile, the

device performs occasional captures upon detecting any important event, e.g., a per-

son entering the scene. This can form the basis for personalized real-world search

engines, and assist those with memory impairments or visual impairments.

4



Chapter 2

BACKGROUND AND RELATED WORK

Near-sensor processing paradigm: The paradigm of near-sensor processing

emerged in the early 1990s to reduce the communication and storage overhead of off-

sensor processing. Early works Forchheimer and Astrom (1994) leveraged the physical

properties of the sensor to perform low-level image processing tasks, e.g., median

filtering. Later, researchers integrated image processing units Shi and Lichman (2005)

after the read-out circuits in the imaging plane, outputting extracted image feature.

With advancement in 3D circuit integration technology, recent works Amir et al.

(2018) design 3D stacked image sensors, which include a system on a chip (SoC).

Inside the SoC, sensor, processor, and memory are stacked into the same package.

This architecture performs high-level image processing tasks, such as ConvNet-based

classification.

3D stacked architectures have also seen commercial advances. For slow-motion

capture, Sony Haruta et al. (2017) stacked a DRAM beneath the sensor layers. With

local memory, the sensor captures and buffers frames at 1000 fps, later sending them

across the slower camera interface to the host. Samsung TechInsights (2018) uses a

similar sensor for their recent Galaxy smartphone. For surveillance, Sony Kumagai

et al. (2018) integrated a motion estimation block, microcontroller, and DRAM in

the 3D stacked sensor.

VPU architectures and power profiles: Though vision can be done through

handcrafted feature analysis Lowe (1999), the current trend uses Convolutional Neu-

ral Networks (ConvNets) for visual tasks on a wide range of architectures. High

5



programmability, performance, and energy-efficiency are desired to meet the rapid

pace at which ConvNets are evolving.

General-purpose platforms built around GPUs provide highly programmable and

high performance software libraries Jia et al. (2014); Abadi et al. (2016) to implement

ConvNets at the expense of more power, e.g., 60 fps at 10s to 100s of watts BVLC

(2018); Pham et al. (2012); Cavigelli et al. (2015). FPGAs also provide high perfor-

mance and scalability, but at reduced power. The state-of-the-art FPGA implemen-

tations Zhang et al. (2015); Pham et al. (2012); Zhang et al. (2016) typically consume

several watts of power. In recent years, we see the rise of domain specific processors

such as Myriad2 Pena et al. (2017) that provide programmable SIMD capabilities on

a RISC processor. This brings down the power to a few watts Pena et al. (2017),

but at the cost of performance, e.g., 3 fps. Meanwhile, academic ASICs Chen et al.

(2016); Han et al. (2016); Du et al. (2015) provide energy-efficiency and performance

for ConvNets. However, the benefits are heavily bottlenecked by DRAM accesses.

For example, Eyeriss Chen et al. (2016) achieves 278 mW @ 35 fps for AlexNet. But

when scaled for VGG16 Simonyan and Zisserman (2014), performance drops to about

10 fps within the same power budget.

For reasonable performance, scalability, and mobility, the system power profile

ranges from 1 - 15 W. Placing these VPUs near the sensor and solving tempera-

ture challenges would unlock substantial improvements in performance and energy-

efficiency through near-sensor processing.

Thermal noise in image sensors: Image sensors are susceptible to different types

of noise due to imperfections in lighting, sensing elements, and the underlying imaging

circuitry. Sources of noise can be grouped into fixed-pattern noise and temporal noise.

Fixed-pattern noise arises due to non-uniform sensitivities of photodiodes to light. As

it remains constant over time, conventional strategies read it once and subtract it later

6



to eliminate its effect. In contrast to fixed-pattern noise, temporal noise sources vary

with every capture.

Temporal noise sources include read noise and dark current shot noise, which ex-

hibit strong dependence on temperature. All electronic noise sources, e.g., readout

elements, amplifiers, are grouped together as read noise, which has a variance of kT/C.

This noise is due to random thermal activity of the electronic charge carriers. Dark

current shot noise also stems from similar phenomenon happening in photodiodes;

high temperatures trigger randomness in the photodiode charge carriers, thereby in-

ducing more noise in images. Unfortunately, thermal noise cannot be fully corrected

using signal processing techniques without generating imaging artifacts Levoy (2014).

The only solution is to manage the sensor temperature.

Dynamic thermal management in microprocessors: For efficient thermal

management, different techniques have been explored for multi-core processors. Stop-

and-go Brooks and Martonosi (2001) suspends the execution of a thread, for a while,

when a core on which it is running gets overheated and resumes its operation once the

core cools down. Heat-and-run Gomaa et al. (2004) technique migrates the thread

from a hotter core to a cooler one to allow the hotter core to cool down. Traditional

DTM techniques are designed to keep the processor power within a thermal design

power (TDP). We are inspired by the same core mechanisms – stop-go and seasonal

migration – for power and temperature reduction. In contrast to the existing works,

we redesign these mechanisms to fulfill the dynamic imaging needs.

Thermal problems in 3D stacked image sensor: Recent works report tem-

perature issues in 3D stacked image sensors. One of them Amir et al. (2018) stack a

DRAM and a deep neural network (DNN) processor beneath the sensor layer. They

report that sensor temperature can increase due to DNN computation, resulting in

higher noise and lower ConvNet accuracy. Another work Lie et al. (2014) report

7



similar issues for their 3-layer stack architecture with a image compression unit in-

tegrated inside the stack. Similar to earlier works, we report similar issues for our

characterized 3D stacked image sensor. However, previous works provide design time

solutions. e.g., statically partitioning computation to execute partial ConvNets on

the sensor and the rest on the host. Our work is complementary to theirs by providing

runtime solutions for thermal management.

8



Chapter 3

MODELING THE ENERGY, TEMPERATURE, AND FIDELITY

IMPLICATIONS OF NEAR SENSOR PROCESSING

In this section, we examine the implications of using 3D stacked integration to place

a VPU layered underneath an image sensor for near-sensor processing. In particu-

lar, we study the relationship of near-sensor processing with system energy, sensor

temperature, and image noise. Our studies confirm that near-sensor processing min-

imizes the off-chip data movements, thereby substantially reducing system power.

With near-sensor processing in our case study, we can reduce the system power of

ResNet-based classification by 36%.

We also relate near-sensor processing power to image fidelity through tempera-

ture simulation, confirming that image fidelity degrades over time with additional

near-sensor processing power. However, we also observe that removal of near-sensor

processing power favorably leads to rapid drops in sensor temperature, reducing sen-

sor temperature by 13◦ C in 20ms. We can exploit this observation to allow the sen-

sor to operate at higher temperatures and lower image fidelities for energy-efficient

vision, e.g., continuous object detection, while immediately switching to low tempera-

ture operation for high-fidelity image capture when an application needs high quality

imaging, e.g., photographing a particular object.

3.0.1 Energy-efficiency of near-sensor processing

Near-sensor processing reduces energy-expensive data movement across the lengthy

interconnects between different chips. Here, we examine energy profiles of vision

pipelines, comparing traditional and near-sensor processing pipelines.

9



Table 3.1: Energy-per-pixel of Various Components in the Traditional Vision Pipeline.

Communication Cost Is Atleast an Order of Magnitude More than Other Costs.

Component Energy (pJ/pixel)

Sensing 595

Communication (Sensor - SoC) 900

Communication (SoC - DRAM) 2800

Storage (Read) 283

Storage (Write) 394

Energy analysis of vision pipeline components

Traditional pipelines operate across chips to connect a variety of subsystems: camera,

processing unit, memory, as shown in Fig. 1.1a. The camera chip connects to process-

ing units on the System-on-Chip (SoC) through a standard camera serial interface

(CSI) for data transfer and an I2C interface for control and configuration. Meanwhile,

the SoC uses DRAM through an external DDR interface to buffer image frames for

processing.

Using regression models on measurements and reported values, we construct a

coarse energy profile model to motivate the need for near-sensor processing. As

shown in Table 3.1, we find that sensing, processing, and storage consume energy on

the order of 100s of pJ per pixel. On the other hand, communication interfaces draw

more than 3 nJ per pixel.

Sensing requires an energy of 595 pJ/pixel LiKamWa et al. (2013); Choi et al.

(2015), mostly drawn from three components: pixel array, read-out circuits, and

analog signal chain, which consume 25 pJ/pixel, 43 pJ/pixel, and 527 pJ/pixel, re-

spectively. DRAM storage on standard mobile-class memory chips (8 Gb, 32-bit

10



LPDDR4) draws 677 pJ/pixel for writing and reading a pixel value technologies

(2018). This roughly divides into 283 pJ/pixel for reading and 394 pJ/pixel for

writing. Communication over CSI and DDR interfaces incur 3.7 nJ/pixel, mostly

due to operational amplifiers on both transmitter and receiver. We measure the

interface power consumption Xilinx (2018b) on 4-lane CSI interfaces and LPDDR4

interfaces by inputting several data rates. From this information, we construct a

linear-regression model to estimate the energy per pixel to be 0.9 nJ/pixel over CSI

and 2.8 nJ/pixel over DDR. For computation, we gather reported power consumptions

of various ConvNet architectures from the literature.

Energy of trad. sensor processing architecture

To present different architectures, Table 6.1 lists estimated system power numbers

alongside the type of ConvNet and the performance of the processing. We combine

reported computation values with modeled sensing, storage, and communication costs

to estimate system power. When operating at FullHD (1920 X 1080) @ 30 fps, and

using ResNet for inference on the SoC VPU at 30 fps, the modeled system power uses

4 W. On the other hand, increasing the framerate to 60 fps demands 10 W of power on

an FPGA. Our energy models provide coarse estimation; actual numbers will depend

on architectural decisions, patterns of execution, and several other factors.

Energy of near-sensor processing architecture

On-chip data movement is known to be significantly more efficient than off-chip data

movement by six orders of magnitude Borkar (1999). Advances in near-sensor process-

ing leverage this insight for energy-efficiency gains, as shown in Fig. 1.1b. Near-sensor

processing moves the DRAM into the sensor to eliminate off-chip DDR movement,

and moves the VPU into the sensor to reduce the CSI interface data rate. Thus, the

11
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Figure 3.1: Using the Well-known Duality Between Thermal and Electrical Phe-

nomena, Thermal Modeling of Stacked Sensors Can Be Performed by Analyzing an

Equivalent RC Circuit.

output of the sensor can be reduced from a few MB to a few bytes. This information

can be sent across efficient low data rate interfaces, e.g., I2C. Altogether, when ap-

plying our energy profile models to the near sensor processing pipeline, we find that

the FullHD VPU near sensor system consumes 2.5 W, thereby yielding 36% savings

over traditional architectures.

3.0.2 Thermal implications of near-sensor processing

Though tight integration yields energy-efficiency and performance benefits, near-

sensor processing generates heat at the sensor through thermal coupling between

the tightly integrated components. While dynamic thermal management for CPU is

only concerned with keeping the maximum temperature below a TDP, we pay close

attention to temperature patterns, as the transient temperature affects image fidelity.

Conduction is the dominant heat transfer mechanism in integrated circuits. To model

12



temperature dynamics, we use thermal resistance-capacitance (RC) modeling Skadron

et al. (2002) techniques to determine the thermal characteristics of the stacked sensor.

Deriving the component values in RC model

Fig. 3.1 shows a typical structure of a 3D stacked sensor package and its equivalent

RC model. Inside the package, the sensor, DRAM, and VPU layers are stacked on top

of each other. The layers can be connected to each other using through-silicon-vias

(TSVs). The top of the stack opens to the surroundings through microlenses, while

the bottom of the stack sits on a substrate that opens to the printed circuit board

(PCB). Mobile-class image sensors omit heat sinks or cooling fans, due to their size,

weight, and placement challenges. The layers consume power when active, which

dissipates as heat. We primarily consider vertical heat transfer; vertical resistances

are several orders of magnitude smaller than the lateral resistances of convective heat

transfer. We obtain component values of the layers through a mixture of analytical

and empirical approaches.

Table 3.2 shows different RC component values derived for our model. Previous

works report layer dimension values of typical 3D stacked image sensors Amir et al.

(2018). Table 3.2 shows different RC component values derived for our model. In these

works, the layer thickness ranges in the order of a few microns to 10s of microns, while

the layer’s area ranges from 10s of mm2 to 100s of mm2. The ITRS roadmap provides

layer dimensions and material property constants ρ and c to define the guidelines for

semiconductor fabrication. From these, we derive the thermal resistance R = ρt/A

and thermal capacitance as C = ctA where A is the layer’s cross sectional area and t

the thickness.

Package capacitance can be deduced empirically by observing the temperature

trace of an image sensor chip while subjecting the sensor to thermal stress. We con-
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Table 3.2: Thermal Resistance and Capacitance Values of Different Components in

RC Model of Stack.

Component R (K/W) Layer C (J/K)

Rca: Case-to-Ambient 56 Cp: Package 1

Rjc: Junction-to-Case 6 Cs: Sensor 0.65m

Rsd: Sensor-to-DRAM 0.6 Cd: DRAM 0.65m

Rdv: DRAM-to-VPU 0.6 Cv: VPU 0.65m

Rjb: Junction-to-Board 40

Rba: Board-to-Ambient 14

struct regression models from the temperature trace of an OnSemi AR0330 smartphone-

class image sensor to derive package capacitance. Finally, termination thermal resis-

tance depends on the type of casing and board properties. Sensor companies make

these values available through datasheets. We use such provided values for typical

packages directly in our model.

Sidenote: Off-sensor power does not affect sensor temperature. While pro-

cessing far from the sensor, the off-sensor VPU and SoC components do not influence

the sensor temperature. Even in tightly integrated mobile systems, e.g., smartphones,

the sensor and SoC reside on two different boards and communicate over a ribbon

cable. As a result, the sensor and SoC are nearly in thermal isolation. That is, any

increase in temperature of one component will not cause appreciable change in tem-

perature of the other. We verify this effect by running a CPU-bound workload on

SoC on a Google Nexus smartphone while keeping the camera idle. Our instruments

do not report any rise in camera temperature with rise in SoC temperature. Thus, in
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(a) Junction temperature trace with
downward vertical lines indicating
the immediate jump.

(b) Zoomed-in version of the jump:
the junction temperature drops by
13°C within 20 ms

Figure 3.2: When Disabling Nsp, a Jump in Junction Temperature Occurs Within

20 Ms, Due to Ms-scale Junction Time Constants.

our study, we do not consider thermal coupling effects from off-sensor components.

Simulation-based thermal analysis

Through LTSpice simulation on our RC models, we estimate the thermal behavior of

near-sensor processing architectures. We evaluate temperature profiles as the sensor

operates in two different modes: NSP mode, in which power consumptions are repre-

sentative of capturing image frames and processing vision workloads near the sensor,

and CAP mode, in which power consumptions are representative of capturing image

frames and transmitting frames to the SoC. With various execution patterns, we can

simulate the thermal behavior of the sensor as the system operates among different

sensor modes.

Previous analysis has reported that we can safely ignore spatial variations in

temperature if the chip power density is within 20 W/cm2 Yu and Wu (2018), as is

the case in NSP mode. Power density, which is the power dissipated over the chip
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area, measures the degree of spatial non-uniformities in temperature. The physical

dimensions of our 3D stacked image sensor combined with the power profile of our

case study results in a power density of 16 W/cm2. Therefore, we do not consider

the spatial variations of temperature inside the stack for our modeling near-sensor

processing architectures.

Steady-state temperature: Inter-layer resistances are at least two orders of

magnitude smaller than termination resistances. This results in negligible drop across

the resistor, leading to minuscule temperature gradients among a layer. For example,

for 1 W of VPU power, the sensor, DRAM, and VPU will be at 60.7◦C, 60.9◦C, and

61.0◦C, respectively. Thus, we can combine the layers and treat the sensor’s temper-

ature as a single junction. Consequently, termination resistance largely influences the

sensor junction’s steady-state temperature.

In addition to resistances, power consumption plays a crucial role in deciding

steady-state. High power dissipates more heat in the physical structures resulting in

a hotter junction. Conversely, low power consumptions relieves the heat generation,

allowing for a drop in steady-state temperature. We find that reducing near-sensor

power consumption from 1 W to 100 mW results in a temperature drop of 5◦C.

Finally, a higher ambient temperature leads to raised steady state temperatures.

Transient temperature: Thermal dynamic time constants govern the transient

temperature of the stacked image sensor. As chip package capacitance is several

orders of magnitude greater than die capacitance, the chip package time constant

dominates the time constant of the overall approach to steady-state temperature,

taking 10s of seconds to reach a steady state temperature. This allows dynamic

temperature management policies ample time to form decisions, e.g., altering steady

state temperature by changing near-sensor power draw.
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Notably, near-sensor power consumption raises the transient temperature of the

sensor die above the package temperature. This is because the heat source is on the

sensor die itself, dissipating heat through the package into the ambient environment.

Consequently, reducing power consumption rapidly reduces the gap between sensor

die transient temperature and package temperature, as shown in Fig. 3.2. The speed

of this drop is governed by the sensor junction die time constant, which is on the

order of milliseconds. Because transient temperature affects image fidelity, these

rapid temperature drops – such as the charted 13◦C drop in 20 ms – provide unique

opportunities for dynamic thermal management for on-demand image sensor fidelity.

We discuss this in more detail in §4.

3.0.3 Image fidelity implications of sensor temperature

While raised temperatures cause reliability and packaging issues for integrated

circuits, they introduce another problem for image sensors: noise. The influence

of noise on vision tasks has been widely reported. Recent work Dodge and Karam

(2016) find that neural networks have difficulty predicting semantics of an image

when challenged by different types of image noise. Similar findings from another

work Amir et al. (2018): image classification accuracy generally degrades with increase

in temperature/noise. Thus, reliable vision demands images of reasonable fidelity.

Images for human consumption further raise the fidelity bar for imaging needs;

high fidelity is often needed in many real-life scenarios. For example, if a set of

dashcam images is to be used in an auto insurance claim, the images need to have

superior quality to obtain maximal information to make decisions on benefits. While

denoising can help mitigate fidelity issues, denoising algorithms often create imaging

artifacts which can also impair perceived image quality. Thus, as images are required
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Figure 3.3: Variance of Image Noise, Expressed in Pixel Intensities, Showing Sensi-

tivity to Temperature, Exposure, and ISO.

to fiducially represent the real physical world, imaging fidelity needs are even more

stringent than vision-based needs.

The sources of image noise are theoretically well-understood (§2). However, to un-

derstand the practical relationship between temperature and image quality on com-

mercial sensors, we perform thermal characterization on a 3 Mp OnSemi AR0330

sensor OnSemi (2016) connected to a Microsemi SmartFusion2 FPGA Microsemi

(2016). The AR0330 sensor includes noise correction stages inside the sensor, as is

common in commercial sensors. We use a heat gun to raise the sensor temperature

and capture raw images in a dark room setting while monitoring sensor temperature

with a FLIR One thermal camera.
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(a) Image at 44◦C (b) Image at 92◦C
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Figure 3.4: Two Images Captured at Different Temperatures and Their Histograms.

Hotter Image Is Brighter and Grainier, Due to Influence of Thermal Noise. This Is

Also Reflected in the Shift in Mean and Variance Width in the Histogram.

Noise is more prevalent at high temperatures

Fig. 3.3 charts a trend : sensors are particularly susceptible to noise above a particular

temperature value. This is despite the presence of noise correction stages inside the

sensor. The correction blocks could bring the noise under control but only for lower

temperature settings. For high temperatures, the denoising appears to fail to exercise

control on noise minimization. Notably, this knee shifts with exposure and analog gain

settings, presumably due to noise amplification. For instance, at high exposure and

high analog gain, which correspond to low light situations, sensors start to become

thermally sensitive even at low temperatures, e.g., 52◦C. To adapt to all experienced

conditions, the sensor’s thermal management should be adaptive to the varying needs

of different lighting conditions.

Noise visibly and substantially impairs quality

Thermal noise is visibly apparent on images, whether in low light or bright light con-

ditions. For example, Fig. 3.4 shows the images captured under daylight conditions

at different sensor temperatures. We can observe the graininess in the hotter image

19



due to the strong influence of noise. Paired with the noisy images, the histograms

represent the pixel intensity distribution of an image.The wider peaks in the distri-

bution signify the variance of pixel intensity, while the mean of the peaks represent

average pixel intensity. We can observe that the histogram of the hotter image shifts

to the right, increasing pixel intensity due to dark current. We also observe that the

variance of the pixel intensity increases, due to increased thermal noise.

3.0.4 Motivational observations

To summarize, we have the following insights for NSP.

• Near-sensor processing architectures promote system energy-efficiency, but also

increase sensor temperature

• Raised sensor temperatures aggravate thermal noise

• Transient junction temperatures crucially determine fidelity

• Smaller (ms) junction time constants facilitate immediate drop in temperature

allowing on-demand high fidelity

• Fidelity needs are highly dynamic, depending on environmental factors such as

lighting and ambient temperature

• Imaging demands more fidelity than vision

These observations motivate the need for novel dynamic thermal management strate-

gies for near-sensor processing at sufficient vision and imaging fidelity.
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Chapter 4

THERMAL MANAGEMENT MECHANISMS

Our characterization shows that near-sensor processing increases system energy effi-

ciency, but sacrifices image fidelity due to raised sensor temperatures. This raises a

natural question: Can we leverage near-sensor processing to create efficiency benefits

while maintaining sufficient image fidelity for our vision and imaging tasks? Driven

by this, we develop novel mechanisms that can efficiently regulate sensor temperature

for continuous and on-demand image fidelity needs. In our design, these mechanisms

are governed by a runtime controller, which we call Stagioni.

Dynamic temperature management for microprocessors is a mature research area,

as we summarize in §2. However, traditional processor DTM mechanisms are not

designed to suit imaging needs. Rather than simply being limited by TDP, sensor

fidelity is impaired by the immediate transient sensor temperature while capturing.

Furthermore, thermal management for near-sensor processing should adapt to the

situational needs of the vision/imaging application, e.g., allowing higher temperatures

when in brighter environments and rapidly dropping temperature when high fidelity

is required.

To account for near-sensor processing temperature management, we modify tra-

ditional DTM techniques to introduce two potential mechanisms that quell image

quality concerns, while striving to optimize for system power and performance. (1)

Stop-capture-go: Temporarily halt near-sensor processing for temperature regulation

and on-demand high fidelity capture. (2) Seasonal migration: Occasionally migrate

the processing to a thermally isolated far-sensor VPU for temperature regulation and

on-demand high fidelity captures.
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4.0.1 Principles for managing sensor temperature

To design thermal management mechanisms that are effective for near-sensor pro-

cessing, we introduce three core principles: (1) Situational temperature regulation:

The mechanism should confine sensor temperature within a threshold that suffices for

imaging fidelity needs. (2) On-demand temperature drop: Upon application request,

the mechanism should quickly drop the temperatures to desired capture temperature

for high fidelity imaging. (3) Duty cycle governs system efficiency. Here, we discuss

these in more detail.

Situational temperature regulation

As we discuss in §3, vision tasks have varying fidelity needs, which are sensitive to

camera settings, e.g., ISO and exposure, and lighting situation, e.g., bright conditions.

This translates directly to temperature requirements, resulting in a simple upper

bound:

Tsensor < Tvision (4.1)

Thus, temperature management must be cognizant and respectful of immediate vision

task requirements in situational conditions to provision for effective vision accuracy.

On-demand fidelity

While vision processing can operate on low fidelity images, certain applications may

require high fidelity images on demand, e.g., life logging capture after object detection.

Such capture must be immediate, before the object leaves the view of the camera.

Fortunately, as we characterized, sensor temperature rapidly drops with the removal

of near-sensor power, i.e., by entering CAP mode. For example, when the sensor

drops its near-sensor power consumption from 2.5 W to 100 mW, the sensor drops
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in temperature by 13.2◦C. We define the time it takes the temperature to reduce by

98% of the drop as timejump = 4×RCdie. In our simulation, this amounts to 20 ms.

Temperature management can leverage this drop to provision for on-demand high

fidelity.

The temperature drop is directly proportional to the disparity between the near-

sensor power before and after power reduction: Tjump = α(PNSP − PCAP ). We ex-

perimentally find that for our modeled sensor, every 1 W causes a 5.5◦C temperature

jump, i.e., α = 5.5
◦C
W

. When constrained by a latency deadline, e.g., to immedi-

ately capture a moving object or to meet a synchronization deadline, the achiev-

able jump within the latency deadline is a fraction of the time it takes to drop:

T latency
jump = Tjump × (e−tlatency/RCdie) Thus, to provision for predicted fidelity needs and

latency needs of an application, the temperature management mechanism can set

reduced bounds :

Tsensor < Timaging + T latency
jump (4.2)

System Power Minimization through Duty Cycle

While removal of processing power from sensor can effectively regulate temperature

and provide on-demand high fidelity captures, the scheduling of operation should also

strive to optimize for average system power. We can characterize this through the

duty cycle and frequency of switches between the NSP and CAP modes. For duty

cycle d, switching frequency fswitch and energy per switch Eswitch, average system

power can be modeled as:

Pavg = d× P system
NSP + (1− d)× P system

CAP + fswitch × Eswitch (4.3)

In minimizing average power, there is a notable tradeoff between the duty cycle

and the frequency of switches. Spending more time in CAP mode allows the sensor
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Figure 4.1: Larger Duty Cycles Maximize NSP Mode Operation, Thereby Optimizing

System Power.

to cool down, increasing the length of time spent in NSP mode as well. This reduces

the number of switches. On the other hand, spending less time in CAP mode allows

the sensor to spend a greater proportion of time in NSP mode, promoting energy

savings through the duty cycle, at the expense of number of switches. Notably, the

time spent in each mode must be a multiple of time spent capturing an image. It is not

possible to switch to CAP mode for a partial frame duration while an image is being

captured. As shown in Fig. 4.1, for our implementation, which has minimal switching

overhead, higher duty-cycles tend to provide favorable average system power profiles.

4.0.2 Stop-capture-go for near-sensor processing

The traditional stop-go DTM technique regulates processor temperature by halt-

ing execution through clock gating. For near-sensor processing, we can similarly put

the sensor in CAP mode, gating near-sensor units for some time before resuming NSP
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mode. The resulting ”temporal slack” allows the sensor to regulate capture fidelity

at the expense of task performance. Stop-go techniques are architecturally simple,

requiring only the ability to gate the clock or power of various components.

Unlike traditional stop-go, our proposed stop-capture-go requires unique modifi-

cations to be sensitive to near-sensor processing tasks. First, frequently clock gating

the entire sensor is not advisable; interruptions to the camera pipeline create sub-

stantial capture delays on the order of multiples of frames. Instead, the system will

clock gate the near-sensor VPU and DRAM, putting the sensor into CAP mode. Sec-

ond, rather than being governed by TDP, the temperature regulation will trigger as

the sensor reaches a situational upper bound specified by the principles, such that

Tsensor < Tvision and Tsensor < Timaging + T latency
jump . Third, the execution halt can be

triggered by the controller to achieve on-demand fidelity upon application request.

For this, the sensor simply enters CAP mode to retrieve the requested frame.

Parameterization of stop time

The amount of ”stop” time – the amount of time the processor is halted – is an

important policy parameter. During the stop time, the system will ”drop” frames,

failing to process them. Elongated stop times allow a sensor to cool down further,

which reduces the number of switches. For vision tasks, stop times can be detrimental,

as contiguously dropped frames may contain important ephemeral visual information.

Thus, if a system wishes to prioritize a continuity of visual information, stop time

should be reduced. In our simulated study, we find that the minimal stop time of 33

ms (one frame time) is sufficient to cool down the sensor from 87 to 74◦C, enabling

sufficient continuous temperature regulation and on-demand fidelity.
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Usability of stop-capture-go

Due to the architectural simplicity of stop-capture-go, the system overhead is mini-

mal, promoting continuously low system power. However, frequent frame drops will

impair the visual task performance. Thus, stop-capture-go is suitable for systems

that demand low power but are not performance-critical and/or systems that require

minimal architecture modifications.

4.0.3 Seasonal migration

While stop-capture-go is a simple policy for temperature regulation and high-

fidelity captures, it degrades application performance by halting execution. Towards

minimizing performance loss, we investigate seasonal migration for near-sensor pro-

cessing. Seasonal migration shifts the processing to a thermally isolated compu-

tational unit, allowing continuous computing. As we model in §3, spatial thermal

isolation between the sensor and SoC allows thermal relief. Enabling seasonal migra-

tion comes at the expense of duplicated computational units near to and far from the

sensor, but effectively regulates sensor temperature without sacrificing task perfor-

mance.

As illustrated in Fig. 4.2, the process for seasonal migration is governed by two

temperature limits: Thigh and Tlow. In efficiency phase, triggered when the sensor

reaches a temperature below Tlow, it will enter NSP mode, performing near-sensor

processing for system efficiency. In cooling phase, triggered when the sensor reaches

a temperature above Thigh, it will enter CAP mode, performing off-sensor processing

on the SoC, allowing the sensor to cool down. The alternation between these phases

allows the system to balance efficiency with sensor temperature. For on-demand
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fidelity, the system simply enters the cooling phase regardless of current sensor tem-

perature.

Parameterization of temp. bounds

Thigh and Tlow are important policy parameters, controlling the balance of efficiency

and temperature. Thigh forces the sensor temperature regulation, and thus should be

set to shift to situational needs:

Thigh = min(Tvision, Timaging + T latency
jump )

Meanwhile, the gap between Thigh and Tlow controls the system efficiency implications

of the policy. Because it takes more time for the sensor temperature to bridge a

larger gap, larger gaps decrease the frequency of switches, while smaller gaps increase

the frequency of switches. The Thigh − Tlow gap also controls the duty cycle of the

system. When the desired sensor temperature range is closer to steady-state NSP

temperature than steady-state CAP temperature, smaller gaps produce favorable

duty cycles, spending more time in NSP mode. As shown in Eqn. 4.3, the average

system power is a function of this duty cycle, balanced against the energy overhead

and frequency of switches. Thus, Tlow should be chosen to create a gap that optimizes

average system power.

As we defined earlier, the duty cycle is the proportion of time spent in NSP

mode. For seasonal migration, the relationships can be derived from standard charg-

ing models. After the rapid drop or rise in temperature Tjump, which takes approx-

imately timejump amount of time, the sensor follows an RC charging curve towards

the steady state temperature of the NSP or CAP mode. Altogether, this can be

used to analytically model duty cycle d and frequency of migration fmigration.
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Figure 4.2: Transient Response of Seasonal Migration Mechanism with 77% Duty

Cycle to Confine Sensor Temperature Within Thermal Boundaries (Thigh And Tlow).

timewarming = RC × ln

(
TNSP
steady − (Tlow + Tjump)

TNSP
steady − Thigh

)
+ timejump

timecooling = RC × ln

(
(Thigh − Tjump)− TCAP

steady

Tlow − TCAP
steady − Tjump

)
+ timejump

d = timewarming/(timewarming + timecooling)

fmigration = 2/(timewarming + timecooling)

Usability of seasonal migration

Depending on implementation, seasonal migration could suffer from the switching

latency and energy overhead resulting from state transfer and synchronization in

shifting processing from one computational unit to another. However, reducing this

migration overhead is a well-studied problem in distributed systems Milojičić et al.

(2000). Several reported techniques mitigate migration latency, e.g., pre-copy-based
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migration Richmond and Hitchens (1997), which promote smooth execution perfor-

mance while incurring energy overhead by keeping both computational units on while

preparing for migration. Similarly, in our implementation, prior to migration, we

prepare the system by pre-emptively starting up the target computational unit and

initiating its context so it is prepared for execution.

4.0.4 Stagioni Runtime Controller

We propose the Stagioni Runtime Controller to execute the mechanisms at run-

time. Stagioni’s responsibility is to guarantee the fidelity demands of the application,

coordinating state transfer between the operating modes to ensure smooth transition.

Stagioni could be designed in a multitude of ways, e.g., a dynamically linked library,

a runtime OS service, or dedicated hardware. In our implementation and evalua-

tion, Stagioni is a runtime OS service that sits on the near-sensor processor, allowing

the SoC to sleep. (In our implementation, the near-sensor processor also hosts the

application context.) Many existing migration controller designs would sufficiently

and equivalently serve the purposes of decision-making. Here we describe one set of

modules that would achieve the goals. We discuss different aspects, including how

Stagioni receives application inputs to meet fidelity demands.

API for application-specific fidelity needs: A vision application only needs

to provide three pieces of information to the controller: (1) continuous image fidelity

requirement for vision (2) on-demand image fidelity requirement for Imaging (3) when

to trigger on-demand fidelity. A simple API can enable developers to specify require-

ments from their applications. A class with the following methods would suffice:

• setVisionSNR(float): specify continuous fidelity

• setImagingSNR(float): specify on-demand fidelity
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• triggerOnDemandFidelity(): request high fidelity

Stagioni translates expectations into effective thermal management, sidestepping

any form of developer burden. To do this, the controller applies application-specific

requirements into appropriate policy parameters through characterized device models.

Stagioni also continuously adapts the policy parameters to situational settings, i.e.,

ambient temperature and ambient lighting, to meet ongoing quality requirements.

Stagioni orchestrates the execution pattern in runtime, which consists of several

system-level events. For stop-capture-go, Stagioni would use simple power gating

mechanisms such as clock gating. For seasonal migration, Stagioni would handle the

communication between two chips.

To this end, Stagioni can use simple message passing schemes to synchronize states

between the sensor and the host. One such scheme, implemented in our evaluation,

could operate as follows: (i) The sensor temperature monitor detects a thermal trigger

and raises an interrupt. (ii) Stagioni sends a signal to the SoC controller to prepare

for migration. (iii) In return, the SoC controller starts the application and sends an

acknowledgement to the source conveying that it is ready to accept the tasks. (iv)

Stagioni then transfers application context data transfer from source’s memory to the

host’s memory. (v) Once the data transfer is done, both migration handlers notify

their corresponding applications. The offloaded tasks can now run in the new context

loading the state from the memory. This sequence of steps can be scheduled prior to

the migration event, such that immediate migration is possible.
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Chapter 5

IMPLEMENTATION

Since there are no readily available off-the-shelf readily programmable 3D stacked

image sensors, we use a combination of simulation and emulation techniques to im-

plement and study Stagioni’s mechanisms. We build our simulation framework around

our characterized energy, noise, and thermal models. The simulation tool operates

on these models and reports system metrics such as average system power, perfor-

mance for different policy schedules. To practically realize the policies, we build an

emulation platform around FPGA. We design and implement Stagioni as a runtime

controller and integrate it into the system to study execution patterns of different

policies.

5.0.1 Simulation framework

We build our simulation framework as a tool. Our tool can be used to evaluate the

thermal, energy, and noise of a given 3D stacked sensor-based systems on our proposed

policies across a range of workloads. The tool takes device models and policy details

as inputs and provides different system metrics as outputs while running sensor-driven

applications. The users may wish to override default characterization models to suit

their needs. In this case, users can provide vision task, camera settings, thermal

policies to apply, and the desired capture temperature for images. The tool solves for

the policy parameters such as rise and fall times that govern the mechanisms. Finally,

the tool generates the temperature and fidelity traces and also reports the power and

performance of the system. We plan to make the tool open-source at publication

time.
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5.0.2 Emulation framework

In addition to the simulation tool, we build an FPGA-based emulation platform

on two ZCU102 boards. One of them emulates the sensor, while the other emulates

the SoC. We use 1 Gbps Ethernet for communication, simulating a standard CSI

interface that has similar bandwidth characteristics.

We design Stagioni around the CHaiDNN library Xilinx (2018a). The Stagioni

controller takes the type of policy and its associated parameters as inputs. The

parameters then generate a mode schedule that governs the task execution in runtime.

The controller also handles high fidelity capture requests and services them to deliver

high quality images through appropriate mechanisms. For stop-capture-go, we gate

the execution of the neural network invocation. For seasonal migration, we perform

message passing over Ethernet for state transfer and implement producer-consumer

queues for synchronization.
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Chapter 6

EVALUATION

We investigate the effectiveness of our proposed policies in meeting the fidelity de-

mands, while performing vision tasks of our case study. We find that our policies can

deliver up to 36% savings in average system power compared to traditional far-sensor

processing, for our case study. The savings primarily stem from maximizing near-

sensor task operation. Furthermore, we find that the savings varies with the fidelity

requirements of the application. The policies achieve the savings by incurring an

latency overhead of only 100 µs, which is negligible in comparison to ms-scale image

capture times.

6.0.1 Evaluation workloads

To evaluate different system metrics, we use the simulation and emulation frame-

works introduced in §5.

Vision tasks: For our vision task, we study image classification, identifying

objects in a scene. We evaluate our policies on the GoogLeNet ConvNet Szegedy

et al. (2015), modified to use 16-bit quantized weights for efficiency. We also evaluate

our policies on other vision tasks, such as YOLO-based object detection Redmon and

Farhadi (2017) with identical findings, omitted for brevity.

Metrics and policies: The major objective for evaluating a policy is: effective-

ness in regulating sensor temperature for capture fidelity, while optimizing system’s

power with minimal performance overhead. We use SNR to gauge image quality and

frame drops for performance overhead. In addition to stop-capture-go and seasonal
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migration, we consider full-far sensor processing (the status quo) for policy compari-

son.

Environment conditions: We evaluate for a wide range of lighting conditions

from bright outdoor to dark indoor environments. Such lighting translates into differ-

ent camera settings, i.e., exposure and ISO. We use the flexible CapraRawCamera Su

(2018) camera app to automatically determine appropriate camera settings based on

the scene lighting. We notice and use the following camera settings for three sensor

illuminations.

• Outdoor daylight (32000 lux): Exp. = 16 ms, ISO = 100

• Indoor office light (320 lux): Exp. = 32 ms, ISO = 400

• Dimly lit office light (3.2 lux): Exp. = 64 ms, ISO = 800

For evaluating ambient temperature effects, we use a 20 ◦C to 40 ◦C range, represent-

ing cool indoor to hot outdoor situations.

6.0.2 Power

We find that stop-capture-go and seasonal migration substantially reduce system

power compared to status quo. Average system power largely depends on duty cycle.

Naturally, we can get maximal power savings by operating at a maximum duty cycle.

However, the achievable duty cycle is limited by the placement of thermal boundaries.

The thermal boundary placement determines the steepness or gradualness of warming

and cooling phases. Thermal boundaries closer to the steady-state temperature of the

warming phase results in higher duty cycles. The fidelity requirements, dictated by

application and ambient situation, decide the placement of thermal boundaries. High

fidelity expectations result in lower thermal boundaries, and therefore, lower duty
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Figure 6.1: Average System Power Varies with Fidelity Needs. For Stop-capture-go,

Lower Duty Cycle Decreases the System Power Due to More Vpu Sleep Time. In

Contrast, for Seasonal Migration, Lower Duty Cycle Increases System Power Due to

More Far-sensor Operation. For Full-far Policy, There Is No Change in Power as It

Does Not Create Any Fidelity Issues.

cycles. Here we evaluate the implication of different fidelity requirements on system

power.

Variation with app fidelity needs: Fig. 6.1a shows the system power for

different policies for different application fidelity needs. We see that stop-capture-go

consumes the lowest amount of power among all the policies. This is because stop-

capture-go operates entirely on near-sensor VPU for whole program execution in both

NSP and CAP modes. In contrast, seasonal migration operates on far-sensor VPU

during CAP mode and on near-sensor VPU during NSP mode. So, it consumes more

power than stop-capture-go but less than full-far policy, which always operates on

far-sensor VPU.

System power changes with fidelity demands, due to change in duty cycle; high

fidelity pulls down the duty cycle, reducing efficiency. This is evident in our seasonal
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Figure 6.2: Increasing Ambient Temperature (Left) And/Or Decreasing Ambient Il-

lumination (Right) Pulls TNSP
steady Away From Tlow And Pushes TCAP

steady Close To Thigh.

Stagioni Shifts Thermal Boundaries to Smoothly Adapt to Different Ambient Condi-

tions.

migration simulations; we see higher power for high app fidelity in comparison to

the power with low app fidelity. Meanwhile, for stop-capture-go, a lower duty cycle

increases VPU sleep time. Therefore, we see power decrease as we go from low to

high app fidelity. Finally, for full-far policy, there is no change in system power as it

doesn’t create fidelity issues.

Variation with situational fidelity needs: We see similar trends for various

policies with fidelity changes forced by lighting, as illustrated in Fig. 6.1b. Here

outdoor daylight behaves similarly to a low fidelity case, while indoor dimly lit office

light behave similar to a high fidelity case.

6.0.3 Overhead

We discuss the policy execution overhead for seasonal migration and stop-capture-

go policies. While the system executes seasonal migration, it switches between near-
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Table 6.1: This Table Shows the Rough Estimates of Near-sensor System Power

Profiles of Different VPUs and Savings Compared to Status Quo. For Power Profiles

Without Temperature Issues, We Can Perform Near-sensor Processing for Entire

Program Execution, I.E., 100% Duty Cycle, to Achieve Maximum System Savings.

For the Rest, Stagioni Optimizes Duty Cycle Based on Fidelity Needs.

Architecture Vision Frame Comp. Trad. Sys. NSP Sys. Duty Avg. Sys. Savings (%)

ConvNet Rate(fps) Power (W) Power (W) Power (W) Cycle (%) Power (W)

Eyeriss + EIE Chen et al. (2016) AlexNet 35 0.9 2.71 1.0 100 1 63

Myriad 2 Pena et al. (2017) GoogLeNet 3 1.3 1.45 1.31 77 1.34 8

Neurostream Azarkhish et al. (2018) ResNet50 34 2.5 4.25 2.59 66 3.16 26

NeuFlow Pham et al. (2012) N/A 30 6 7.55 6.08 55 6.74 11

TK1 Cavigelli et al. (2015) N/A 10 6.6 7.12 6.63 80 6.72 5

sensor and far-sensor VPUs, incurring an overhead. Switching overhead strongly

relates to the number of frame drops. From our emulation setup, we find that the

switching overhead is 100 µs, which is much less than frame capture/inference times

(33 ms). Therefore, seasonal migration has negligible overhead, therefore, no impact

on application performance.

For stop-capture-go, stop time determines the number of frame drops. At the

same time, lower stop times also promote higher efficiency through higher duty cy-

cles.Furthermore, the sufficient temperature drop can be achieved in less than a frame

period. Therefore, we can operate at the minimum stop time (one frame time) for

efficiency reasons.

6.0.4 Situational awareness

One feature of Stagioni that differs from traditional DTM techniques is situational

awareness to dynamic ambient settings. We find that Stagioni smoothly adapts ther-

mal boundaries to match ambient temperature and lighting situations.
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Ambient temp. awareness: Ambient temperature determines steady-state tem-

peratures, which determine the warming and cooling times. Higher ambient tem-

peratures push TNSP
steady far from Tlow and push TCAP

steady close to Thigh. This forces the

warming phase to take a steeper rise and the cooling phase to take a gradual fall in the

exponential curve. Thus, increasing ambient temperature decreases duty cycle and

vice-versa. We simulate the change in ambient temperature in our emulation plat-

form, shown in Fig. 6.2a. Decreasing ambient temperature increases rise times and

reduces fall times in the simulated temperature trace. We also notice that Stagioni

smoothly adjusts to the changes in ambient temperature.

Ambient light awareness: Lighting dictates fidelity requirements, changing Thigh

and Tlow. Again, Stagioni adapts to these changes with light variation. We simulate

change in illumination to generate a trace with random juggling between lighting

scenarios. We provide this trace as input to our runtime and collect the temperature

trace. Fig. 6.2b shows the temperature trace overlaid with Thigh and Tlow. We can

clearly see the smooth variation of temperature with light intensity.

6.0.5 Choice of VPU

Table 6.1 lists the power profile of several VPU choices. VPU power profile de-

termines the extent to which the system can leverage near-sensor processing. For

the low power profiles that do not degrade fidelity, e.g., Eyeriss + EIE, we can fully

execute tasks on near-sensor, i.e., at 100% duty cycle. For VPUs that cause fidelity

issues, e.g., Neurostream, Stagioni enables near-sensor processing to leverage energy-

efficiency benefits, determining duty cycles to maximize power savings.
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Chapter 7

FUTURE WORK

Stagioni is an early exploration of thermal management for near-sensor processing.

We envision a collection of significant extensions to unlock the benefits of 3D stacked

integration.

Fine-grained temperature management: Our seasonal migration policy exe-

cutes at coarse granularity, migrating the entire workload between near- and far-sensor

VPUs. Migration at a fine granularity, e.g., OpenVX task graph nodes Itseez (2017),

can help achieve fine-grained task migration towards precise temperature manage-

ment and associated optimization.

Enhancing near-sensor burst performance: Temperature management for near

sensor processing unlocks the ability to leverage near-sensor VPUs for efficiency, but

could also provide burst performance benefits under a temperature “budget”. Adapt-

ing temperature management for burst performance would need a deeper semantic

awareness of application workload requirements. For non-trivial workloads, this may

require reactive programming or other sophisticated techniques to, for example, re-

configure on-demand sensor operations and expectations when the visual task requires

it.

Stacked sensor architecture design/validation: While we model and simulate

implications of stacked sensor architectures, our future efforts will design stacked

hardware to validate our claims. We plan to implement tunable components and

interfaces and evaluate with different scenarios.
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Chapter 8

CONCLUSION

Near-sensor processing has a great potential towards energy-efficient imaging and

vision, as demonstrated by recent academic and industrial efforts on stacked image

sensors. However, we show that by doing so hampers sensor fidelity due to thermal

noise, thereby limiting the adoption of near-sensor processing. Our characterization

reveals that immediate drop in temperatures can be realized within short duration.

We use this observation to design principles for managing sensor temperature for

efficient temperature regulation and high fidelity temperatures, while optimizing for

system power. To implement the policies, we design and implement the Stagioni

runtime to manage sensor temperature, while fulfilling imaging needs. Our work is

the first runtime solution for stacked sensor thermal management. We foresee our

work forming the foundation for future imaging-aware DTM techniques.
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