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ABSTRACT

Vision processing on traditional architectures is inefficient due to energy-expensive
off-chip data movements. Many researchers advocate pushing processing close to
the sensor to substantially reduce data movements. However, continuous near-sensor
processing raises the sensor temperature, impairing the fidelity of imaging/vision
tasks.

The work characterizes the thermal implications of using 3D stacked image sen-
sors with near-sensor vision processing units. The characterization reveals that near-
sensor processing reduces system power but degrades image quality. For reasonable
image fidelity, the sensor temperature needs to stay below a threshold, situationally
determined by application needs. Fortunately, the characterization also identifies op-
portunities — unique to the needs of near-sensor processing — to regulate temperature
based on dynamic visual task requirements and rapidly increase capture quality on
demand.

Based on the characterization, the work proposes and investigate two thermal
management strategies — stop-capture-go and seasonal migration — for imaging-aware
thermal management. The work present parameters that govern the policy decisions
and explore the trade-offs between system power and policy overhead. The work’s
evaluation shows that the novel dynamic thermal management strategies can unlock
the energy-efficiency potential of near-sensor processing with minimal performance

impact, without compromising image fidelity.
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Chapter 1

INTRODUCTION

Imaging and vision systems allow computing systems to sense and react to real-world
situations and to capture images for human consumption. This affords a range of
utilities on many devices spanning a wide variety of power profiles, including smart-
phones and tablets, wearable headsets, personal computers, security cameras, drones,
automobiles, and security and monitoring systems. Unfortunately, imaging requires
high data rates to transfer pixel data from the image sensor to computational units.
In traditional systems (Fig. 1.1a), where the computational units are separated from
the sensor via long interconnects, e.g., ribbon cables, data rates create bottlenecks
to energy efficiency and processing. Thus, current vision systems result in power
profiles on the order of multiple watts; it has been shown that state-of-the-art con-
volutional neural network efficiency need at least 1 W of processing power to process
low resolution QVGA frames at 30 fps Azarkhish et al. (2018); Pena et al. (2017). For
high performance processing at high resolutions and framerates, the power require-
ments rapidly rise, easily going up to over 10 W of processing power on mobile-based
implementations Cavigelli et al. (2015).

This has motivated a trend towards three-dimensional ”stacked” integrated cir-
cuit architectures (Fig. 1.1b) for sensor capture and processing, i.e., near sensor
processing. A 3D stacked sensor stacks the sensor, vision processor unit (VPU), and
memory on top of each other in the same package. By processing data near the
sensor, various proposed and implemented systems can achieve energy-efficient vision
processing LiKamWa et al. (2016); Du et al. (2015), and bursts of high-speed cap-

ture Nose et al. (2018). With advances in fabrication, stacked image sensors have
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Figure 1.1: Due to Energy-expensive Interface Data Movements, Traditional Pipelines
Are Inefficient. Near-sensor Processing Helps Greatly Reduce Data Traffic Promoting

Energy-efficiency.

been commercially released since 2012 3D-IC-blog (2016), and are still under active
development for high performance Lee et al. (2012) and efficiency Amir et al. (2018).

Unfortunately, sensor sensitivity to temperature prevents a full adoption of near-
sensor processing, creating noise in captured images. Furthermore, low light envi-
ronments force the sensor to operate at high exposure and ISO ! to capture the
scene, which increases a sensor’s vulnerability to noise. Despite a plethora of CPU
dynamic thermal management (DTM) mechanisms, current techniques do not suffice
imaging requirements; traditional DTM reduces package cooling costs and maintains
maximum temperature limits, i.e., TDP, turning a blind eye to the transient imag-
ing needs of near-sensor processing. Thus, despite performance and energy benefits
of near-sensor processing, the temperature profile of visual computing limits stacked

architectures in many situations.

'ISO controls the sensitivity of an image sensor to light



To assess thermal issues, in §3 we characterize the temperature implications of
stacked near-sensor processing for visual workloads. In addition to confirming and
modeling relationships between near-sensor processing power and sensor temperature,
our characterization reveals a consequential insight: despite the long time constants
for the sensor to settle to steady-state temperatures, removing near-sensor power
results in an tmmediate and dramatic reduction in transient junction temperature of
the sensor. For example, for a 2.5 W system, the sensor temperature drops by 13° C' in
20 ms, when we turn off the processing. This stems from the high thermal capacitance
of chip packaging and low thermal capacitance of the die. This immediate temperature
drop is neglected by existing dynamic thermal management works, whose primary
aim is to confine chip temperature below an emergency limit. However, as reducing
transient temperature raises sensing fidelity, this observation allows on-demand high-
fidelity capture.

In §4, we build on characterized challenges and opportunities to provision for
imaging-specific temperature management. We design two mechanisms — stop-capture-
go and seasonal migration — for effective near-sensor vision processing that minimizes
system energy consumption and affords performance computation and high fidelity
capture. Stop-capture-go suspends the processing briefly to allow for a high fidelity
capture and resumes the processing after the capture. On the other hand, seasonal
migration occasionally shifts processing to a thermally isolated far-sensor processing
unit for high fidelity capture. We design Stagioni, a runtime that orchestrates the
temperature management for near-sensor processing.

In §6, we evaluate the effectiveness of our mechanisms in managing sensor temper-
ature to suit imaging needs. We also demonstrate Stagioni’s robustness in smoothly

handling the dynamic fidelity needs. In §7, we contextualize our work by discussing



future avenues of research towards temperature-aware stacked sensor architectures
for near-sensor processing.

Vision case study - Continuous life-logger: Enabling high performance
and high efficiency near-sensor processing would unlock the potential for several vi-
sion/imaging applications, including sophisticated dashboard cameras, continuous
augmented reality tracking, and other futuristic use cases. Throughout this work,
we study the implications of near-sensor processing and evaluate the policies around
a life-logger case study. A wearable life-logger device chronicles important events and
objects in a person’s life. The device runs object detection and tracking algorithms
to continuously figure out the objects in the scene and track them. Meanwhile, the
device performs occasional captures upon detecting any important event, e.g., a per-
son entering the scene. This can form the basis for personalized real-world search

engines, and assist those with memory impairments or visual impairments.



Chapter 2

BACKGROUND AND RELATED WORK

Near-sensor processing paradigm: The paradigm of near-sensor processing
emerged in the early 1990s to reduce the communication and storage overhead of off-
sensor processing. Early works Forchheimer and Astrom (1994) leveraged the physical
properties of the sensor to perform low-level image processing tasks, e.g., median
filtering. Later, researchers integrated image processing units Shi and Lichman (2005)
after the read-out circuits in the imaging plane, outputting extracted image feature.
With advancement in 3D circuit integration technology, recent works Amir et al.
(2018) design 3D stacked image sensors, which include a system on a chip (SoC).
Inside the SoC, sensor, processor, and memory are stacked into the same package.
This architecture performs high-level image processing tasks, such as ConvNet-based
classification.

3D stacked architectures have also seen commercial advances. For slow-motion
capture, Sony Haruta et al. (2017) stacked a DRAM beneath the sensor layers. With
local memory, the sensor captures and buffers frames at 1000 fps, later sending them
across the slower camera interface to the host. Samsung Techlnsights (2018) uses a
similar sensor for their recent Galaxy smartphone. For surveillance, Sony Kumagai
et al. (2018) integrated a motion estimation block, microcontroller, and DRAM in
the 3D stacked sensor.

VPU architectures and power profiles: Though vision can be done through
handcrafted feature analysis Lowe (1999), the current trend uses Convolutional Neu-

ral Networks (ConvNets) for visual tasks on a wide range of architectures. High



programmability, performance, and energy-efficiency are desired to meet the rapid
pace at which ConvNets are evolving.

General-purpose platforms built around GPUs provide highly programmable and
high performance software libraries Jia et al. (2014); Abadi et al. (2016) to implement
ConvNets at the expense of more power, e.g., 60 fps at 10s to 100s of watts BVLC
(2018); Pham et al. (2012); Cavigelli et al. (2015). FPGAs also provide high perfor-
mance and scalability, but at reduced power. The state-of-the-art FPGA implemen-
tations Zhang et al. (2015); Pham et al. (2012); Zhang et al. (2016) typically consume
several watts of power. In recent years, we see the rise of domain specific processors
such as Myriad2 Pena et al. (2017) that provide programmable SIMD capabilities on
a RISC processor. This brings down the power to a few watts Pena et al. (2017),
but at the cost of performance, e.g., 3 fps. Meanwhile, academic ASICs Chen et al.
(2016); Han et al. (2016); Du et al. (2015) provide energy-efficiency and performance
for ConvNets. However, the benefits are heavily bottlenecked by DRAM accesses.
For example, Eyeriss Chen et al. (2016) achieves 278 mW @ 35 fps for AlexNet. But
when scaled for VGG16 Simonyan and Zisserman (2014), performance drops to about
10 fps within the same power budget.

For reasonable performance, scalability, and mobility, the system power profile
ranges from 1 - 15 W. Placing these VPUs near the sensor and solving tempera-
ture challenges would unlock substantial improvements in performance and energy-
efficiency through near-sensor processing.

Thermal noise in image sensors: Image sensors are susceptible to different types
of noise due to imperfections in lighting, sensing elements, and the underlying imaging
circuitry. Sources of noise can be grouped into fixed-pattern noise and temporal noise.
Fixed-pattern noise arises due to non-uniform sensitivities of photodiodes to light. As

it remains constant over time, conventional strategies read it once and subtract it later



to eliminate its effect. In contrast to fixed-pattern noise, temporal noise sources vary
with every capture.

Temporal noise sources include read noise and dark current shot noise, which ex-
hibit strong dependence on temperature. All electronic noise sources, e.g., readout
elements, amplifiers, are grouped together as read noise, which has a variance of kT /C.
This noise is due to random thermal activity of the electronic charge carriers. Dark
current shot noise also stems from similar phenomenon happening in photodiodes;
high temperatures trigger randomness in the photodiode charge carriers, thereby in-
ducing more noise in images. Unfortunately, thermal noise cannot be fully corrected
using signal processing techniques without generating imaging artifacts Levoy (2014).
The only solution is to manage the sensor temperature.

Dynamic thermal management in microprocessors: For efficient thermal
management, different techniques have been explored for multi-core processors. Stop-
and-go Brooks and Martonosi (2001) suspends the execution of a thread, for a while,
when a core on which it is running gets overheated and resumes its operation once the
core cools down. Heat-and-run Gomaa et al. (2004) technique migrates the thread
from a hotter core to a cooler one to allow the hotter core to cool down. Traditional
DTM techniques are designed to keep the processor power within a thermal design
power (TDP). We are inspired by the same core mechanisms — stop-go and seasonal
migration — for power and temperature reduction. In contrast to the existing works,
we redesign these mechanisms to fulfill the dynamic imaging needs.

Thermal problems in 3D stacked image sensor: Recent works report tem-
perature issues in 3D stacked image sensors. One of them Amir et al. (2018) stack a
DRAM and a deep neural network (DNN) processor beneath the sensor layer. They
report that sensor temperature can increase due to DNN computation, resulting in

higher noise and lower ConvNet accuracy. Another work Lie et al. (2014) report



similar issues for their 3-layer stack architecture with a image compression unit in-
tegrated inside the stack. Similar to earlier works, we report similar issues for our
characterized 3D stacked image sensor. However, previous works provide design time
solutions. e.g., statically partitioning computation to execute partial ConvNets on
the sensor and the rest on the host. Our work is complementary to theirs by providing

runtime solutions for thermal management.



Chapter 3

MODELING THE ENERGY, TEMPERATURE, AND FIDELITY
IMPLICATIONS OF NEAR SENSOR PROCESSING

In this section, we examine the implications of using 3D stacked integration to place
a VPU layered underneath an image sensor for near-sensor processing. In particu-
lar, we study the relationship of near-sensor processing with system energy, sensor
temperature, and image noise. Our studies confirm that near-sensor processing min-
imizes the off-chip data movements, thereby substantially reducing system power.
With near-sensor processing in our case study, we can reduce the system power of
ResNet-based classification by 36%.

We also relate near-sensor processing power to image fidelity through tempera-
ture simulation, confirming that image fidelity degrades over time with additional
near-sensor processing power. However, we also observe that removal of near-sensor
processing power favorably leads to rapid drops in sensor temperature, reducing sen-
sor temperature by 13° C in 20ms. We can exploit this observation to allow the sen-
sor to operate at higher temperatures and lower image fidelities for energy-efficient
vision, e.g., continuous object detection, while immediately switching to low tempera-
ture operation for high-fidelity image capture when an application needs high quality

imaging, e.g., photographing a particular object.

3.0.1 Energy-efficiency of near-sensor processing

Near-sensor processing reduces energy-expensive data movement across the lengthy
interconnects between different chips. Here, we examine energy profiles of vision

pipelines, comparing traditional and near-sensor processing pipelines.



Table 3.1: Energy-per-pixel of Various Components in the Traditional Vision Pipeline.

Communication Cost Is Atleast an Order of Magnitude More than Other Costs.

Component Energy (pJ/pixel)

Sensing 595

Communication (Sensor - SoC) 900

Communication (SoC - DRAM) 2800

Storage (Read) 283

Storage (Write) 394

Energy analysis of vision pipeline components

Traditional pipelines operate across chips to connect a variety of subsystems: camera,
processing unit, memory, as shown in Fig. 1.1a. The camera chip connects to process-
ing units on the System-on-Chip (SoC) through a standard camera serial interface
(CSI) for data transfer and an I*C interface for control and configuration. Meanwhile,
the SoC uses DRAM through an external DDR interface to buffer image frames for
processing.

Using regression models on measurements and reported values, we construct a
coarse energy profile model to motivate the need for near-sensor processing. As
shown in Table 3.1, we find that sensing, processing, and storage consume energy on
the order of 100s of pJ per pixel. On the other hand, communication interfaces draw
more than 3 nJ per pixel.

Sensing requires an energy of 595 pJ/pixel LiKamWa et al. (2013); Choi et al.
(2015), mostly drawn from three components: pixel array, read-out circuits, and
analog signal chain, which consume 25 pJ/pixel, 43 pJ/pixel, and 527 pJ/pixel, re-

spectively. DRAM storage on standard mobile-class memory chips (8 Gb, 32-bit
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LPDDR4) draws 677 pJ/pixel for writing and reading a pixel value technologies
(2018). This roughly divides into 283 pJ/pixel for reading and 394 pJ/pixel for
writing. Communication over CSI and DDR interfaces incur 3.7 nJ/pixel, mostly
due to operational amplifiers on both transmitter and receiver. We measure the
interface power consumption Xilinx (2018b) on 4-lane CSI interfaces and LPDDR4
interfaces by inputting several data rates. From this information, we construct a
linear-regression model to estimate the energy per pixel to be 0.9 nJ/pixel over CSI
and 2.8 nJ/pixel over DDR. For computation, we gather reported power consumptions

of various ConvNet architectures from the literature.

Energy of trad. sensor processing architecture

To present different architectures, Table 6.1 lists estimated system power numbers
alongside the type of ConvNet and the performance of the processing. We combine
reported computation values with modeled sensing, storage, and communication costs
to estimate system power. When operating at FullHD (1920 X 1080) @ 30 fps, and
using ResNet for inference on the SoC VPU at 30 fps, the modeled system power uses
4 W. On the other hand, increasing the framerate to 60 fps demands 10 W of power on
an FPGA. Our energy models provide coarse estimation; actual numbers will depend

on architectural decisions, patterns of execution, and several other factors.

Energy of near-sensor processing architecture

On-chip data movement is known to be significantly more efficient than off-chip data
movement by six orders of magnitude Borkar (1999). Advances in near-sensor process-
ing leverage this insight for energy-efficiency gains, as shown in Fig. 1.1b. Near-sensor
processing moves the DRAM into the sensor to eliminate off-chip DDR movement,

and moves the VPU into the sensor to reduce the CSI interface data rate. Thus, the
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Figure 3.1: Using the Well-known Duality Between Thermal and Electrical Phe-
nomena, Thermal Modeling of Stacked Sensors Can Be Performed by Analyzing an

Equivalent RC Circuit.

output of the sensor can be reduced from a few MB to a few bytes. This information
can be sent across efficient low data rate interfaces, e.g., I?C. Altogether, when ap-
plying our energy profile models to the near sensor processing pipeline, we find that
the FullHD VPU near sensor system consumes 2.5 W, thereby yielding 36% savings

over traditional architectures.
3.0.2 Thermal implications of near-sensor processing

Though tight integration yields energy-efficiency and performance benefits, near-
sensor processing generates heat at the sensor through thermal coupling between
the tightly integrated components. While dynamic thermal management for CPU is
only concerned with keeping the maximum temperature below a TDP, we pay close
attention to temperature patterns, as the transient temperature affects image fidelity.

Conduction is the dominant heat transfer mechanism in integrated circuits. To model
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temperature dynamics, we use thermal resistance-capacitance (RC) modeling Skadron

et al. (2002) techniques to determine the thermal characteristics of the stacked sensor.

Deriving the component values in RC model

Fig. 3.1 shows a typical structure of a 3D stacked sensor package and its equivalent
RC model. Inside the package, the sensor, DRAM, and VPU layers are stacked on top
of each other. The layers can be connected to each other using through-silicon-vias
(TSVs). The top of the stack opens to the surroundings through microlenses, while
the bottom of the stack sits on a substrate that opens to the printed circuit board
(PCB). Mobile-class image sensors omit heat sinks or cooling fans, due to their size,
weight, and placement challenges. The layers consume power when active, which
dissipates as heat. We primarily consider vertical heat transfer; vertical resistances
are several orders of magnitude smaller than the lateral resistances of convective heat
transfer. We obtain component values of the layers through a mixture of analytical
and empirical approaches.

Table 3.2 shows different RC component values derived for our model. Previous
works report layer dimension values of typical 3D stacked image sensors Amir et al.
(2018). Table 3.2 shows different RC component values derived for our model. In these
works, the layer thickness ranges in the order of a few microns to 10s of microns, while
the layer’s area ranges from 10s of mm? to 100s of mm?. The ITRS roadmap provides
layer dimensions and material property constants p and ¢ to define the guidelines for
semiconductor fabrication. From these, we derive the thermal resistance R = pt/A
and thermal capacitance as C' = ctA where A is the layer’s cross sectional area and t
the thickness.

Package capacitance can be deduced empirically by observing the temperature

trace of an image sensor chip while subjecting the sensor to thermal stress. We con-
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Table 3.2: Thermal Resistance and Capacitance Values of Different Components in

RC Model of Stack.

Component R (K/W) Layer C (J/K)
Rey: Case-to-Ambient 56 Cp: Package 1

Rjc: Junction-to-Case 6 Cs: Sensor 0.65m
Rsq: Sensor-to-DRAM 0.6 Cq: DRAM  0.65m
Rgy: DRAM-to-VPU 0.6 C,: VPU 0.65m

Rjp: Junction-to-Board 40

Ry,: Board-to-Ambient 14

struct regression models from the temperature trace of an OnSemi AR0330 smartphone-
class image sensor to derive package capacitance. Finally, termination thermal resis-
tance depends on the type of casing and board properties. Sensor companies make
these values available through datasheets. We use such provided values for typical

packages directly in our model.

Sidenote: Off-sensor power does not affect sensor temperature. While pro-
cessing far from the sensor, the off-sensor VPU and SoC components do not influence
the sensor temperature. Even in tightly integrated mobile systems, e.g., smartphones,
the sensor and SoC reside on two different boards and communicate over a ribbon
cable. As a result, the sensor and SoC are nearly in thermal isolation. That is, any
increase in temperature of one component will not cause appreciable change in tem-
perature of the other. We verify this effect by running a CPU-bound workload on
SoC on a Google Nexus smartphone while keeping the camera idle. Our instruments

do not report any rise in camera temperature with rise in SoC temperature. Thus, in
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Figure 3.2: When Disabling Nsp, a Jump in Junction Temperature Occurs Within

20 Ms, Due to Ms-scale Junction Time Constants.

our study, we do not consider thermal coupling effects from off-sensor components.

Simulation-based thermal analysis

Through LTSpice simulation on our RC models, we estimate the thermal behavior of
near-sensor processing architectures. We evaluate temperature profiles as the sensor
operates in two different modes: NSP mode, in which power consumptions are repre-
sentative of capturing image frames and processing vision workloads near the sensor,
and CAP mode, in which power consumptions are representative of capturing image
frames and transmitting frames to the SoC. With various execution patterns, we can
simulate the thermal behavior of the sensor as the system operates among different
sensor modes.

Previous analysis has reported that we can safely ignore spatial variations in
temperature if the chip power density is within 20 W/em? Yu and Wu (2018), as is

the case in NSP mode. Power density, which is the power dissipated over the chip
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area, measures the degree of spatial non-uniformities in temperature. The physical
dimensions of our 3D stacked image sensor combined with the power profile of our

2. Therefore, we do not consider

case study results in a power density of 16 W/cm
the spatial variations of temperature inside the stack for our modeling near-sensor
processing architectures.

Steady-state temperature: Inter-layer resistances are at least two orders of
magnitude smaller than termination resistances. This results in negligible drop across
the resistor, leading to minuscule temperature gradients among a layer. For example,
for 1 W of VPU power, the sensor, DRAM, and VPU will be at 60.7°C, 60.9°C, and
61.0°C, respectively. Thus, we can combine the layers and treat the sensor’s temper-
ature as a single junction. Consequently, termination resistance largely influences the
sensor junction’s steady-state temperature.

In addition to resistances, power consumption plays a crucial role in deciding
steady-state. High power dissipates more heat in the physical structures resulting in
a hotter junction. Conversely, low power consumptions relieves the heat generation,
allowing for a drop in steady-state temperature. We find that reducing near-sensor
power consumption from 1 W to 100 mW results in a temperature drop of 5°C.
Finally, a higher ambient temperature leads to raised steady state temperatures.

Transient temperature: Thermal dynamic time constants govern the transient
temperature of the stacked image sensor. As chip package capacitance is several
orders of magnitude greater than die capacitance, the chip package time constant
dominates the time constant of the overall approach to steady-state temperature,
taking 10s of seconds to reach a steady state temperature. This allows dynamic
temperature management policies ample time to form decisions, e.g., altering steady

state temperature by changing near-sensor power draw.
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Notably, near-sensor power consumption raises the transient temperature of the
sensor die above the package temperature. This is because the heat source is on the
sensor die itself, dissipating heat through the package into the ambient environment.
Consequently, reducing power consumption rapidly reduces the gap between sensor
die transient temperature and package temperature, as shown in Fig. 3.2. The speed
of this drop is governed by the sensor junction die time constant, which is on the
order of milliseconds. Because transient temperature affects image fidelity, these
rapid temperature drops — such as the charted 13°C drop in 20 ms — provide unique
opportunities for dynamic thermal management for on-demand image sensor fidelity.

We discuss this in more detail in §4.
3.0.3 Image fidelity implications of sensor temperature

While raised temperatures cause reliability and packaging issues for integrated
circuits, they introduce another problem for image sensors: noise. The influence
of noise on vision tasks has been widely reported. Recent work Dodge and Karam
(2016) find that neural networks have difficulty predicting semantics of an image
when challenged by different types of image noise. Similar findings from another
work Amir et al. (2018): image classification accuracy generally degrades with increase
in temperature/noise. Thus, reliable vision demands images of reasonable fidelity.

Images for human consumption further raise the fidelity bar for imaging needs;
high fidelity is often needed in many real-life scenarios. For example, if a set of
dashcam images is to be used in an auto insurance claim, the images need to have
superior quality to obtain maximal information to make decisions on benefits. While
denoising can help mitigate fidelity issues, denoising algorithms often create imaging

artifacts which can also impair perceived image quality. Thus, as images are required
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Figure 3.3: Variance of Image Noise, Expressed in Pixel Intensities, Showing Sensi-

tivity to Temperature, Exposure, and ISO.

to fiducially represent the real physical world, imaging fidelity needs are even more
stringent than vision-based needs.

The sources of image noise are theoretically well-understood (§2). However, to un-
derstand the practical relationship between temperature and image quality on com-
mercial sensors, we perform thermal characterization on a 3 Mp OnSemi AR0330
sensor OnSemi (2016) connected to a Microsemi SmartFusion2 FPGA Microsemi
(2016). The ARO0330 sensor includes noise correction stages inside the sensor, as is
common in commercial sensors. We use a heat gun to raise the sensor temperature
and capture raw images in a dark room setting while monitoring sensor temperature

with a FLIR One thermal camera.
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Figure 3.4: Two Images Captured at Different Temperatures and Their Histograms.
Hotter Image Is Brighter and Grainier, Due to Influence of Thermal Noise. This Is

Also Reflected in the Shift in Mean and Variance Width in the Histogram.

Noise is more prevalent at high temperatures

Fig. 3.3 charts a trend : sensors are particularly susceptible to noise above a particular
temperature value. This is despite the presence of noise correction stages inside the
sensor. The correction blocks could bring the noise under control but only for lower
temperature settings. For high temperatures, the denoising appears to fail to exercise
control on noise minimization. Notably, this knee shifts with exposure and analog gain
settings, presumably due to noise amplification. For instance, at high exposure and
high analog gain, which correspond to low light situations, sensors start to become
thermally sensitive even at low temperatures, e.g., 52°C. To adapt to all experienced
conditions, the sensor’s thermal management should be adaptive to the varying needs

of different lighting conditions.

Noise visibly and substantially impairs quality

Thermal noise is visibly apparent on images, whether in low light or bright light con-
ditions. For example, Fig. 3.4 shows the images captured under daylight conditions

at different sensor temperatures. We can observe the graininess in the hotter image
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due to the strong influence of noise. Paired with the noisy images, the histograms
represent the pixel intensity distribution of an image.The wider peaks in the distri-
bution signify the variance of pixel intensity, while the mean of the peaks represent
average pixel intensity. We can observe that the histogram of the hotter image shifts
to the right, increasing pixel intensity due to dark current. We also observe that the

variance of the pixel intensity increases, due to increased thermal noise.
3.0.4 Motivational observations

To summarize, we have the following insights for NSP.

e Near-sensor processing architectures promote system energy-efficiency, but also

increase sensor temperature
e Raised sensor temperatures aggravate thermal noise
e Transient junction temperatures crucially determine fidelity

e Smaller (ms) junction time constants facilitate immediate drop in temperature

allowing on-demand high fidelity

e Fidelity needs are highly dynamic, depending on environmental factors such as

lighting and ambient temperature
e Imaging demands more fidelity than vision

These observations motivate the need for novel dynamic thermal management strate-

gies for near-sensor processing at sufficient vision and imaging fidelity.
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Chapter 4

THERMAL MANAGEMENT MECHANISMS

Our characterization shows that near-sensor processing increases system energy effi-
ciency, but sacrifices image fidelity due to raised sensor temperatures. This raises a
natural question: Can we leverage near-sensor processing to create efficiency benefits
while maintaining sufficient image fidelity for our vision and imaging tasks? Driven
by this, we develop novel mechanisms that can efficiently regulate sensor temperature
for continuous and on-demand image fidelity needs. In our design, these mechanisms
are governed by a runtime controller, which we call Stagion:.

Dynamic temperature management for microprocessors is a mature research area,
as we summarize in §2. However, traditional processor DTM mechanisms are not
designed to suit imaging needs. Rather than simply being limited by TDP, sensor
fidelity is impaired by the immediate transient sensor temperature while capturing.
Furthermore, thermal management for near-sensor processing should adapt to the
situational needs of the vision/imaging application, e.g., allowing higher temperatures
when in brighter environments and rapidly dropping temperature when high fidelity
is required.

To account for near-sensor processing temperature management, we modify tra-
ditional DTM techniques to introduce two potential mechanisms that quell image
quality concerns, while striving to optimize for system power and performance. (1)
Stop-capture-go: Temporarily halt near-sensor processing for temperature regulation
and on-demand high fidelity capture. (2) Seasonal migration: Occasionally migrate
the processing to a thermally isolated far-sensor VPU for temperature regulation and

on-demand high fidelity captures.
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4.0.1 Principles for managing sensor temperature

To design thermal management mechanisms that are effective for near-sensor pro-
cessing, we introduce three core principles: (1) Situational temperature regulation:
The mechanism should confine sensor temperature within a threshold that suffices for
imaging fidelity needs. (2) On-demand temperature drop: Upon application request,
the mechanism should quickly drop the temperatures to desired capture temperature
for high fidelity imaging. (3) Duty cycle governs system efficiency. Here, we discuss

these in more detail.

Situational temperature regulation

As we discuss in §3, vision tasks have varying fidelity needs, which are sensitive to
camera settings, e.g., ISO and exposure, and lighting situation, e.g., bright conditions.
This translates directly to temperature requirements, resulting in a simple upper
bound:

Tsensor < Tvision (41)

Thus, temperature management must be cognizant and respectful of immediate vision

task requirements in situational conditions to provision for effective vision accuracy.

On-demand fidelity

While vision processing can operate on low fidelity images, certain applications may
require high fidelity images on demand, e.g., life logging capture after object detection.
Such capture must be immediate, before the object leaves the view of the camera.
Fortunately, as we characterized, sensor temperature rapidly drops with the removal
of near-sensor power, i.e., by entering CAP mode. For example, when the sensor

drops its near-sensor power consumption from 2.5 W to 100 mW, the sensor drops
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in temperature by 13.2°C. We define the time it takes the temperature to reduce by
98% of the drop as timejymp = 4 X RCye. In our simulation, this amounts to 20 ms.
Temperature management can leverage this drop to provision for on-demand high
fidelity.

The temperature drop is directly proportional to the disparity between the near-
sensor power before and after power reduction: Tjymp = a(Pysp — Poap). We ex-
perimentally find that for our modeled sensor, every 1 W causes a 5.5°C temperature
jump, i.e., a = 5.5%. When constrained by a latency deadline, e.g., to immedi-
ately capture a moving object or to meet a synchronization deadline, the achiev-
able jump within the latency deadline is a fraction of the time it takes to drop:
T;fo;zcy = Tjump % (e tatency/RCuic) Thus, to provision for predicted fidelity needs and
latency needs of an application, the temperature management mechanism can set

reduced bounds :

Tsensar < 711'7’ru1gi7’bg + Tlatency (42)

Jump

System Power Minimization through Duty Cycle

While removal of processing power from sensor can effectively regulate temperature
and provide on-demand high fidelity captures, the scheduling of operation should also
strive to optimize for average system power. We can characterize this through the
duty cycle and frequency of switches between the NSP and CAP modes. For duty
cycle d, switching frequency fouiten and energy per switch Fg,icn, average system

power can be modeled as:

P