
Memory Subsystem Optimization Techniques for Modern High-Performance
General-Purpose Processors

by

Akhil Arunkumar

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved September 2018 by the
Graduate Supervisory Committee:

Carole-Jean Wu, Chair
Aviral Shrivastava
Yann-Hang Lee
Evgeny Bolotin

ARIZONA STATE UNIVERSITY

December 2018

©2018 Akhil Arunkumar

All Rights Reserved

ABSTRACT

General-purpose processors propel the advances and innovations that are the sub-

ject of humanity’s many endeavors. Catering to this demand, chip-multiprocessors

(CMPs) and general-purpose graphics processing units (GPGPUs) have seen many

high-performance innovations in their architectures. With these advances, the mem-

ory subsystem has become the performance- and energy-limiting aspect of CMPs and

GPGPUs alike. This dissertation identifies and mitigates the key performance and

energy-efficiency bottlenecks in the memory subsystem of general-purpose processors

via novel, practical, microarchitecture and system-architecture solutions.

Addressing the important Last Level Cache (LLC) management problem in CMPs,

I observe that LLC management decisions made in isolation, as in prior proposals,

often lead to sub-optimal system performance. I demonstrate that in order to max-

imize system performance, it is essential to manage the LLCs while being cognizant

of its interaction with the system main memory. I propose ReMAP, which reduces

the net memory access cost by evicting cache lines that either have no reuse, or have

low memory access cost. ReMAP improves the performance of the CMP system by

as much as 13%, and by an average of 6.5%.

Rather than the LLC, the L1 data cache has a pronounced impact on GPGPU

performance by acting as the bandwidth filter for the rest of the memory subsystem.

Prior work has shown that the severely constrained data cache capacity in GPGPUs

leads to sub-optimal performance. In this thesis, I propose two novel techniques

that address the GPGPU data cache capacity problem. I propose ID-Cache that

performs effective cache bypassing and cache line size selection to improve cache

capacity utilization. Next, I propose LATTE-CC that considers the GPU’s latency

tolerance feature and adaptively compresses the data stored in the data cache, thereby

i

increasing its effective capacity. ID-Cache and LATTE-CC are shown to achieve 71%

and 19.2% speedup, respectively, over a wide variety of GPGPU applications.

Complementing the aforementioned microarchitecture techniques, I identify the

need for system architecture innovations to sustain performance scalability of GPG-

PUs in the face of slowing Moore’s Law. I propose a novel GPU architecture called

the Multi-Chip-Module GPU (MCM-GPU) that integrates multiple GPU modules to

form a single logical GPU. With intelligent memory subsystem optimizations tailored

for MCM-GPUs, it can achieve within 7% of the performance of a similar but hypo-

thetical monolithic die GPU. Taking a step further, I present an in-depth study of the

energy-efficiency characteristics of future MCM-GPUs. I demonstrate that the inher-

ent non-uniform memory access side-effects form the key energy-efficiency bottleneck

in the future.

In summary, this thesis offers key insights into the performance and energy-

efficiency bottlenecks in CMPs and GPGPUs, which can guide future architects to-

wards developing high-performance and energy-efficient general-purpose processors.

ii

To Amma, Appa and Nanditha

iii

ACKNOWLEDGMENTS

First, and foremost, I would like to thank God for blessing me with the inspiration,

courage, and strength to embark on this life-changing journey of a Ph.D.

I would like to express my deep gratitude to my advisor, Prof. Carole-Jean Wu.

At every step, Prof. Wu has provided me with opportunities, and also enabled me to

develop the necessary skills to be an independent and successful researcher. She has

helped me cement the attitude of always aiming for the best. I am very thankful for

her continuous guidance and support throughout my Ph.D. journey. No matter how

busy she was, she has always made time to help me. I have always found inspiration

in our numerous technical discussions together. I consider myself fortunate for having

an encouraging, and supportive advisor like her.

I am very thankful to Prof. Aviral Shrivastava, Prof. Yann-Hang Lee, and Dr.

Evgeny Bolotin for taking time to serve on my thesis committee and offering valu-

able feedback on my work. My interactions with Prof. Shrivastava early on in the

program helped me become secure in the self-confidence that if at all anyone could

do something, I could do it. I am also thankful to other faculty and staff members at

ASU for their support. I would like to thank Christina Sebring for helping me ensure

that I follow all the requirements of my degree correctly at all times. I would also

like to thank Pamela Dunn, Monica Dugan, and Theresa Chai for helping me with

the funding, scheduling, and travel needs during my stay at ASU.

During the course of my Ph.D. I have had the good fortune of gaining invaluable

industry experience through multiple internships. I would like to thank Prof. Wu

for encouraging me to take up these internships periodically. These internships have

allowed me to expand my professional horizons and have resulted in fruitful research

collaborations. My internships have been great learning experiences thanks to the

mentors I have had. Through my internship at Nvidia Research, I have had the

iv

opportunity to meet and work with Evgeny and for an extended period of time.

I am very thankful for Evgeny’s technical guidance during my internship and for

his continued interest in my research work. In addition, I am deeply indebted to

his constant support and encouragement during the final years of my Ph.D. I am

also thankful for the support I received from Dr. David Nellans and Dr. Aamer

Jaleel during my internship. I am grateful for the technical and career advice I have

received from Aamer. I would also like to thank Dr. Tarun Nakra for mentoring me

during one of my first industry research internships at Samsung SARC. Through our

discussions, Tarun helped me broaden my research vision. Moreover, he also helped

me understand and appreciate the process of exploring a research idea, and eventually

seeing it to fruition as a product feature that impacts millions of users.

My Ph.D. experience was made a pleasant one by my colleagues and friends. Shin-

Ying, Jhe-Yu, Davesh, Vignesh, Hsing-Min, and Ben thank you for your support and

the opportunity to have great collaborative works together. Davesh, Amrit, Ujjwal,

DK, Moslem, Niranjan and Sudhi, thank you for your support.

This journey of mine would not have been possible without the support of my

family. I thank my parents for their unwavering love and support. They have always

believed in me and encouraged me to go after my dreams with the confidence that

they are always there, rooting for me. It is because of them, I am what I am today.

I want to thank my entire family for cheering and praying for me. Special thanks to

Vinay and Pooja for being there for me at all times. Finally, I want to thank my

dear wife Nanditha for her unconditional love and support during this journey. Her

appreciative and encouraging words helped me keep my head down and focus on the

goal, even during otherwise difficult times. I dedicate this thesis to my family.

v

LIST OF PUBLICATIONS BY THE AUTHOR

1. A. Arunkumar, E. Bolotin, D. Nellans, and C.-J. Wu, “Understanding the Future

of Energy Efficiency in Multi-Module GPUs”, to appear in “Proceedings of the IEEE

International Symposium on High Performance Computer Architecture (HPCA)”,

2019.

2. A. Arunkumar, S.-Y. Lee, V. Soundararajan, and C.-J. Wu, “LATTE-CC: Latency

Tolerance Aware Adaptive Cache Compression Management for Energy-Efficient GPUs”,

in “Proceedings of the IEEE International Symposium on High Performance Com-

puter Architecture (HPCA)”, 2018.

3. A. Arunkumar, E. Bolotin, B. Cho, U. Milic, E. Ebrahimi, O. Villa, A. Jaleel, C.-J.

Wu, and D. Nellans, “MCM-GPU: Multi-Chip-Module GPUs for Continued Perfor-

mance Scalability”, in “Proceedings of the International Symposium on Computer

Architecture (ISCA)”, 2017.

4. A. Arunkumar, S.-Y. Lee, and C.-J. Wu, “ID-Cache: Instruction and Memory

Divergence Based Cache Management for GPUs”, in “Proceedings of the IEEE In-

ternational Symposium on Workload Characterization (IISWC)”, 2016.

5. A. Arunkumar and C.-J. Wu, “ReMAP: Reuse and Memory Access Cost Aware

Eviction Policy for Last Level Cache Management”, in “Proceedings of the IEEE

International Conference on Computer Design (ICCD)”, 2014.

Publications not part of this dissertation:

6. D. Shingari*, A. Arunkumar*, B. Gaudette, S. Vrudhula, and C.-J. Wu, “DORA:

Optimizing Smartphone Energy Efficiency and Web Browser Performance under In-

terference”, in “Proceedings of the International Symposium on Performance Analysis

of Systems and Software (ISPASS)”, 2018. (*equal contribution)

vi

7. U.Milic, O. Villa, E. Bolotin, A. Arunkumar, E. Ebrahimi, A. Jaleel, A. Ramirez,

and D. Nellans, “Beyond the Socket: NUMA-Aware GPUs”, in “Proceedings of the

IEEE/ACM International Symposium on Microarchitecture (MICRO)”, 2017.

8. H.-M. Chen, S. Jeloka, A. Arunkumar, D. Blaauw, C.-J. Wu, T. Mudge, and C.

Chakrabarti, “Using Low Cost Erasure and Error Correction Schemes to Improve

Reliability of Commodity DRAM Systems”, in “IEEE Transactions on Computers

(TC)”, April 2016.

9. S.-Y. Lee, A. Arunkumar, and C.-J. Wu, “CAWA: Coordinated Warp Scheduling

and Cache Prioritization for Critical Warp Acceleration of GPGPU Workloads”, in

“Proceedings of the International Symposium on Computer Architecture (ISCA)”,

2015.

10. D. Shingari, A. Arunkumar, and C.-J. Wu, “Characterization and Throttling-based

Mitigation of Memory Interference for Heterogeneous Smartphones”, in “Proceedings

of the IEEE International Symposium on Workload Characterization (IISWC)”, 2015.

11. H.-M. Chen, A. Arunkumar, C.-J. Wu, T. Mudge, and C. Chakrabarti, “E-ECC:

Low Power Erasure and Error Correction Schemes for Increasing Reliability of Com-

modity DRAM Systems”, in “Proceedings of the International Symposium on Memory

Systems (MEMSYS)”, 2015.

12. A. Arunkumar, A. Panday, B. Joshi, A. Ravindran, and H. P. Zaveri, “Estimating

Correlation for a Real-Time Measure of Connectivity”, in “Proceedings of the Interna-

tional Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)”,

2012.

vii

TABLE OF CONTENTS

Page

LIST OF TABLES . xiv

LIST OF FIGURES . xv

CHAPTER

1 Introduction. 1

1.1 Background: Memory Subsystem Inefficiencies in General Purpose

Processors . 2

1.1.1 Chip-Multiprocessors and the Last Level Cache 2

1.1.2 The GPGPU Execution Model and Constrained Data Cache

Capacity . 3

1.2 Research Overview . 5

1.2.1 Main Memory Aware Last Level Cache Management for CMPs 6

1.2.2 Divergence Aware Data Cache Management for GPGPUs . . . 7

1.2.3 Adaptive Cache Compression Management for GPGPUData

Caches . 8

1.2.4 GPGPUs and the Memory Subsystem Design for the Post-

Moore’s Law Era . 9

1.2.5 Energy Efficiency Scaling for Future Multi-Module GPGPUs 10

1.3 Contributions . 11

1.3.1 Thesis Outline . 12

2 Reuse and Memory Access Cost Aware Cache Management for CMP

Systems . 14

2.1 Background and Motivation . 14

2.2 ReMAP Design and Implementation . 18

2.2.1 Recency Estimation . 19

viii

CHAPTER Page

2.2.2 Post Eviction Reuse Distance Estimation 20

2.2.3 Memory Access Cost Determination . 22

2.2.4 α, β, and γ Parameters in EffectiveCost Computation 23

2.2.5 Implementation and Hardware Overhead 23

2.3 Evaluation and Analysis . 25

2.3.1 Simulation Infrastructure . 25

2.3.2 Workload Construction . 25

2.3.3 Sequential Workloads Results . 28

2.3.4 Benefit of Using PERD and MAC Information in Isolation . . 31

2.3.5 Sensitivity to Victim Buffer Storage . 32

2.3.6 Sensitivity to System Parameters . 32

2.3.7 Multiprogrammed Workloads Results . 33

2.4 Related Work . 34

2.4.1 Reuse Distance Prediction . 34

2.4.2 Dead Block Prediction . 35

2.4.3 Coordinating LLC Management with DRAM 36

2.5 Chapter Summary . 36

3 Instruction and Memory Divergence Based Cache Management for GPGPU

Systems . 38

3.1 Background and Motivation . 38

3.1.1 Application Sensitivity to Cache Capacity and Interconnect

Bandwidth . 40

3.1.2 Inefficient Cache Utilization in GPGPUs 42

ix

CHAPTER Page

3.1.3 Inefficient Cache and Bandwidth Utilization due to Default

Fixed Cache Line Size Configuration . 43

3.2 ID-Cache Design and Implementation . 46

3.2.1 Towards Effective Cache Bypassing . 46

3.2.2 PC and Memory Divergence Pattern Guided Bypassing 50

3.2.3 Towards Efficient Cache Line Size Selection 51

3.2.4 Divergence Guided Adaptive Line Size Insertion (ALSI) 55

3.2.5 ID-Cache: Instruction and Divergence Based Cache Man-

agement . 56

3.3 Evaluation and Analysis . 58

3.3.1 Simulation Infrastructure . 58

3.3.2 Workload Construction . 59

3.3.3 PC and Memory Divergence Pattern Guided Bypassing 61

3.3.4 Divergence Based Adaptive Line Size Insertion (ALSI) 63

3.3.5 ID-Cache - Instruction and Divergence Based Cache Man-

agement . 64

3.4 Related Work . 66

3.5 Chapter Summary . 67

4 Latency Tolerance Aware Cache Compression Management for GPGPUs 68

4.1 Background and Motivation . 68

4.1.1 GPGPU Workload Data Compressibility 69

4.1.2 Latency Tolerance of GPGPUs . 72

4.1.3 Adaptive Compression in GPGPUs . 73

4.2 LATTE-CC Design and Implementation . 76

x

CHAPTER Page

4.2.1 Minimizing AMATGP U for Optimal Compression Mode Se-

lection . 77

4.2.2 Dynamic Estimation of AMATGP U . 78

4.2.3 Putting it all Together . 81

4.3 Evaluation and Analysis . 82

4.3.1 Simulation Infrastructure . 82

4.3.2 Workload Construction . 83

4.3.3 Component Compression Policy Implementation Details 85

4.3.4 Overall Performance and Energy Impact 87

4.3.5 Comparing LATTE-CC with an Offline Optimal Policy 90

4.3.6 An Illustrating Application Example: Similarity Score (SS) . 92

4.3.7 Benefits of Latency Tolerance Awareness 94

4.3.8 Flexibility of LATTE-CC Design . 95

4.4 Related Work . 97

4.4.1 Data Compression in CMPs . 97

4.4.2 Data Compression for GPU Memory . 98

4.5 Chapter Summary . 99

5 Multi-Chip-Module GPGPUs and the Memory Subsystem Design for the

Post Moore’s Law Era . 100

5.1 Background and Motivation . 100

5.1.1 GPU Application Scalability . 101

5.1.2 Multi-GPU Alternative . 103

5.1.3 Package-Level Integration . 103

5.2 Multi-Chip-Module GPU Design . 104

xi

CHAPTER Page

5.2.1 MCM-GPU Organization . 105

5.2.2 MCM-GPU and GPM Architecture . 106

5.2.3 On-Package Bandwidth Considerations . 108

5.3 Evaluation and Analysis . 110

5.3.1 Simulation Infrastructure . 111

5.3.2 Workload Construction . 111

5.3.3 Revisiting MCM-GPU Cache Architecture 112

5.3.4 CTA Scheduling for GPM Locality . 117

5.3.5 Data Partitioning for GPM Locality . 120

5.3.6 Optimized MCM-GPU Performance Summary 125

5.3.7 MCM-GPU Performance vs Multi-GPU 127

5.4 Related Work . 129

5.5 Chapter Summary . 130

6 Understanding the Energy Efficiency of Multi-Chip-Module GPGPUs

and the Dependence on the Memory Subsystem . 132

6.1 Background and Motivation . 132

6.2 EDPSE: Quantifying GPU Energy Efficiency at Scale 136

6.3 GPUJoule: A GPU Energy Estimation Framework 138

6.3.1 Micro-Benchmark Construction . 141

6.3.2 Generating Energy Estimates . 144

6.4 Energy Efficiency and the Future of Multi-Module GPUs 146

6.4.1 Experimental Methodology . 146

6.4.2 Understanding Energy Efficiency . 150

6.4.3 Optimizing for Energy Efficiency . 153

xii

CHAPTER Page

6.4.4 Decomposing EDSPE Improvements. 156

6.4.5 Discussion . 158

6.5 Related Work . 159

6.6 Chapter Summary . 160

7 Conclusion . 162

REFERENCES . 167

xiii

LIST OF TABLES

Table Page

2.1 Post Eviction Reuse Distance Encoding. 21

2.2 Memory Access Cost Classification and Encoding. 22

2.3 Simulated System Architectural Details. 26

2.4 Sequential Workloads. 26

2.5 Multiprogrammed Workload Mixes. 27

3.1 ID-Cache: GPGPU-sim simulation configurations. 58

3.2 ID-Cache: GPGPU Benchmarks. 59

4.1 Comparison between the state-of-the-art cache compression algorithms. 69

4.2 LATTE-CC: Baseline system configurations. 83

4.3 LATTE-CC: GPGPU benchmarks and input sets. 84

5.1 Key characteristics of recent NVIDIA GPUs. 101

5.2 Approximate bandwidth and energy parameters for different integra-

tion domains. 104

5.3 Baseline MCM-GPU simulation configuration. 112

5.4 The high parallelism, memory intensive workloads for MCM-GPU eval-

uation. 113

6.1 The NVIDIA Tesla K40 experimental platform. 143

6.2 GPU applications and their input sets. C: Compute intensive bench-

marks and M: Memory bandwidth intensive benchmarks. 147

6.3 Simulated multi-module GPU configurations. 149

6.4 Simulated per-GPM I/O bandwidth. 150

xiv

LIST OF FIGURES

Figure Page

1.1 An abstract view of the chip-multiprocessor architecture and its mem-

ory subsystem. 3

1.2 An abstract view of the general purpose GPU architecture showing the

streaming multiprocessors (SM), execution lanes (L), and the memory

subsystem. 4

2.1 Memory access cost and oracle reuse information of evicted lines at

LLC for SPEC2006 benchmarks. 16

2.2 Cascading bloom filter as victim buffer for PERD estimation. 21

2.3 ReMAP cache organization. 25

2.4 ReMAP: Reduction in LLC Misses over LRU. 29

2.5 ReMAP: Improvement in IPC over LRU. 29

2.6 ReMAP: performance using PERD and MAC information in isolation. . 31

2.7 ReMAP:sensitivity to victim buffer storage. 32

2.8 ReMAP: Performance for multiprogrammed workloads 34

3.1 GPGPU application performance sensitivity to data cache capacity

and interconnect bandwidth . 40

3.2 Fraction of zero reuse cache lines in GPGPU applications 42

3.3 The distribution of spatial utilization of cache lines in GPGPU appli-

cations . 44

3.4 The performance of GPGPU applications with different L1 cache line

sizes and turning off L1 data caches. 45

3.5 Cache line spatial utilization over time . 45

3.6 The distribution of L1 data cache reuse distances seen in GPGPU

benchmarks . 46

xv

Figure Page

3.7 The distribution of L1 data cache reuse distance with different load

instructions . 48

3.8 The distribution of L1 data cache reuse distance with degree of memory

divergence of a load instruction . 48

3.9 The distribution of cache hits and misses in GPGPU applications. 53

3.10 The distribution of L1 data cache utilization vs degree of memory

divergence . 54

3.11 Performance of GPGPU applications with offline trained PC-Based

and PC+Div-Based bypassing methods. 61

3.12 Performance of GPGPU applications with online PC-Based and PC+Div-

Based bypassing designs. 62

3.13 The performance improvement under Adaptive Line Size Insertion. 63

3.14 Performance improvement with ID-Cache. 64

3.15 L1 data cache hit rate improvement and interconnect busy stall reduc-

tion provided by ID-Cache. 65

4.1 Compression ratio achieved by the state-of-the-art compression algo-

rithms . 70

4.2 Performance impact of the effective cache capacity increase provided

by data compression. 72

4.3 Performance degradation with increase in cache hit latency due to de-

compression. 73

4.4 GPU latency tolerance characterization for SS GPGPU benchmark. 74

4.5 Potential performance and energy impact of adaptive compression 75

4.6 A conceptual overview of LATTE-CC. 76

xvi

Figure Page

4.7 Block diagram of the modern GPU architecture with the LATTE-CC

components. 77

4.8 Modified set sampling in the LATTE-CC data caches. 80

4.9 A temporal representation of LATTE-CC. 82

4.10 Performance improvement with LATTE-CC. 88

4.11 L1 cache miss reduction with LATTE-CC. 88

4.12 GPU energy consumption comparison. 89

4.13 Breakdown of GPU Energy Reduction achieved by LATTE-CC. 90

4.14 Comparison of LATTE-CC’s compression mode decision with decision

given by Kernel-OPT. 91

4.15 Effective cache capacity variation over time for Similarity Score (SS)

application. 93

4.16 Performance comparison of LATTE-CC, Adaptive-Hit-Count, and Adaptive-

CMP[20] policies for C-Sens workloads. 94

4.17 LATTE-CC performance with an alternative underlying compression

algorithm. 96

5.1 Hypothetical GPU performance scaling with growing number of SMs

and memory system. 102

5.2 Basic MCM-GPU architecture comprising four GPU modules (GPMs). 106

5.3 Relative performance sensitivity to inter-GPM link bandwidth for a

4-GPM, 256SM MCM-GPU system. 109

5.4 MCM-GPU architecture equipped with L1.5 GPM-side cache 114

xvii

Figure Page

5.5 Performance of 256 SM, 768 GB/s inter-GPM BW MCM-GPU with

8MB (iso-transistor), 16 MB (iso-transistor), and 32 MB (non-iso-

transistor) L1.5 caches. 116

5.6 Total inter-GPM bandwidth in baseline MCM-GPU architecture and

with a 16MB remote-only L1.5 cache. 117

5.7 An example of exploiting inter-CTA data locality with CTA scheduling

in MCM-GPU.. 118

5.8 Performance of MCM-GPU system with a distributed scheduler. 120

5.9 Reduction in inter-GPM bandwidth with a distributed scheduler 120

5.10 First Touch page mapping policy: (a) Access order. (b) Proposed page

mapping policy. 121

5.11 Exploiting cross-kernel CTA locality with First Touch page placement

and distributed CTA scheduling. 123

5.12 Performance of MCM-GPU with First Touch page placement. 123

5.13 Reduction in inter-GPM bandwidth with First Touch page placement. . 124

5.14 S-curve summarizing the optimized MCM-GPU performance speedups

for all workloads. 124

5.15 Breakdown of the sources of performance improvements of optimized

MCM-GPU when applied alone and together . 126

5.16 Performance comparison of MCM-GPU and Multi-GPU. 127

6.1 Scaling of future GPU designs via multi-module GPU architecture. 133

6.2 The average energy cost of strong scaling, when growing the number

of GPMs using on-board integration. 135

6.3 GPUJoule top-down instruction-based energy modeling methodology. . . 139

xviii

Figure Page

6.4 GPUJoule energy estimation accuracy. Comparison of energy estima-

tions with hardware measurements on the Tesla K40 GPU. 145

6.5 EDPSE for across compute intensive, memory intensive, and all work-

loads, for baseline on-package configuration (2x-BW). 151

6.6 Performance speedup (left axis) and energy increase (right axis) com-

pared to each preceding multi-GPM configuration. Energy consump-

tion is broken down by component. 152

6.7 EDPSE as a function of interconnect bandwidth settings. 154

6.8 EDPSE for on-board ring and switched interconnection networks 156

6.9 Speedup and energy consumption when varying interconnect band-

width, and applying on-package energy optimization at the 2x-BW

and 4x-BW points . 157

xix

Chapter 1

INTRODUCTION

Today’s high-performance general-purpose processors propel the advances and in-

novations that are the subject of humanity’s many endeavors. In turn, the associated

demands placed on these processors have also led to a plethora of innovations in the

processors themselves. Modern Chip-Multiprocessors (CMPs) are equipped with ad-

vanced speculation support [60, 64, 77, 78, 121, 160, 178], large Last Level Caches

(LLCs), and sophisticated LLC management techniques [74, 142, 143, 172, 173]. As

a result, they are able to provide high performance for a wide variety of applications.

Furthermore, to continue the performance scaling trend and exploit available par-

allelism, computer architects have transformed Graphics Processing Units (GPUs)

into accelerators that are specialized for general purpose parallel applications, i.e.,

General Purpose Graphics Processing Units (GPGPUs). GPGPUs utilize a com-

bination of thousands of simple processor cores, massive multi-threading, and fast

context-switching to deliver upto 110 Tera-Flops of performance [130].

Powered by the Moore’s Law [120], the compute capability of CMPs and GPGPUs

has grown consistently over the years. On the flip side, this growth has closely been

followed by a massive increase in the complexity and the amount of data that is

processed by these processors as well. This trend has made the memory subsystem a

significant performance and energy bottleneck in these processors. Therefore, today’s

computer architects face the crucial challenge of delivering data to these general-

purpose processors in an efficient manner. To this end, the overarching research goal

of this thesis is to identify and mitigate the major performance and energy efficiency

1

bottlenecks in the memory subsystem of current and future general purpose processors

via novel, practical, microarchitecture and system architecture solutions.

1.1 Background: Memory Subsystem Inefficiencies in General Purpose Processors

1.1.1 Chip-Multiprocessors and the Last Level Cache

For a broad set of important general-purpose memory-intensive applications, the

performance of a CMP is effectively dictated by the performance of the memory

subsystem. Figure 1.1 shows an abstract view of the CMP architecture and memory

subsystem. The CMP memory subsystem is typically comprised of multi-level cache

hierarchies with smaller lower level caches (L1/L2 cache) and a large Last Level Cache

(LLC). Figure 1.1 also shows the typical latency cost incurred while accessing each

level of the memory hierarchy. While accessing the L1 cache takes only 2ns, delivering

data from the DRAM to the processor could take multiple orders of magnitude longer

at 100ns - 200ns per access. Therefore, the LLC plays a crucial role in the performance

of the memory subsystem as it avoids the significant penalty of long latency main

memory accesses by keeping frequently used data closer to the processor.

While it is desirable to continually increase the LLC capacity available on the

system to capture more of the application’s data within the LLC, it is not a practical

option as it can lead to prohibitively high silicon costs. This has led to numerous

research efforts being directed towards effectively managing the contents of the LLC.

Prior work has shown that by intelligently retaining only the data that’s most likely

to be reused in the future, the LLC can improve the memory subsystem and the

overall system performance significantly [33, 45, 53, 72, 74, 86, 142, 143, 164, 172].

Furthermore, the LLC management decisions can influence the performance of the

other memory subsystem components it closely interacts with — the L1/L2 caches

and the DRAM. Depending on the inclusion policy employed within the L1 and L2

2

Core Core Core

L1 Cache L1 Cache L1 Cache

L2 Cache

Last Level Cache (LLC)

DRAM

Core

L1 Cache

L2 Cache L2 Cache L2 Cache

In
cr

ea
sin

g
La

te
nc

y~2 ns

~10 ns

~20 ns

~100s of ns

Figure 1.1: An abstract view of the chip-multiprocessor architecture and its memory

subsystem.

caches, an LLC eviction could trigger an eviction from the L1 and L2 caches as

well. When it comes to the DRAM, an LLC miss could result in data being flushed

from the row-buffers of the DRAM, making subsequent accesses to such data more

expensive. Furthermore, certain LLC misses could experience bank conflicts that

lead to exacerbated memory access latency costs. As I demonstrate later in this

thesis, being oblivious to the interaction of the LLC with other memory subsystem

components can result in sub-optimal performance. While a few prior works address

the interaction of the LLC with the L1/L2 caches [45, 72], a key challenge remains in

how to best design a practical LLC management method that not only retains valuable

data within the LLC, but is also cognizant of the impact of such management decisions

on the performance of the DRAM.

1.1.2 The GPGPU Execution Model and Constrained Data Cache Capacity

GPGPUs deliver their superior performance acceleration by exploiting high degree

of parallelism that is available in many general-purpose applications. They concur-

3

L1 Cache L1 Cache

Interconnect

L2 Cache

DRAM

L1 Cache

LLLLLLLL SM
SM SM

De
cr

ea
sin

g
Ba

nd
w

id
th

~2 TB/s

900 GB/s

LLLLLLLLLLLLLLLLLLLLLLLL

Figure 1.2: An abstract view of the general purpose GPU architecture showing the

streaming multiprocessors (SM), execution lanes (L), and the memory subsystem.

rently execute thousands of parallel threads on each streaming multiprocessor (SM) in

a batched fashion, in order to hide long latency memory accesses. A batch of parallel

threads called a warp or a wavefront executes simultaneously on simple processing

cores (lanes) that are present within the SMs. Whenever a warp encounters a long

latency memory access, it is switched out of execution and is replaced by another

ready warp. Due to this execution model, the GPU pipeline is kept busy, hiding the

long latency memory access and thus delivering superior performance acceleration.

This massive parallelism execution paradigm places significant stresses on the

memory subsystem of GPGPUs. Due to the large number of threads that are con-

currently executing on the GPU, the amount of data that is requested from the

memory subsystem, or in other words the memory bandwidth demand, is increased

significantly. Adapting to this new execution model, the memory hierarchy of GPG-

PUs has also evolved accordingly — incorporating high bandwidth memories and

network-on-chips, and multi-level cache hierarchies as shown in Figure 1.2. In fact,

as we proceed lower down the memory hierarchy of GPGPUs, the available memory

4

bandwidth capacity reduces. As a result, differing from CMPs, the multi-level cache

hierarchy of GPGPUs is meant to act as a bandwidth filter to alleviate the high

bandwidth demand. However, relative to the thousands of threads that are executing

concurrently on the GPU, the available cache capacity is significantly constrained -

only on the order of a few bytes per thread. This constrained cache capacity coupled

with the high bandwidth demand leads to severe cache thrashing, especially in the

data caches of GPGPUs. This in turn increases the bandwidth demand from the lower

levels of the memory hierarchy. Therefore, it is imperative to find effective solutions

to the constrained data cache capacity problem in GPGPUs.

1.2 Research Overview

The focus of my dissertation is to address the key performance and energy in-

efficiencies in the memory subsystem of general-purpose processors through novel

and practical designs. This thesis offers detailed characterization of data reuse, data

compressibility, performance scalability, and energy efficiency characteristics of gen-

eral purpose workloads. These workloads span a variety of important application

domains including machine learning, scientific simulations, audio coding, voice recog-

nition etc. Beyond the inefficiencies highlighted in Section 1.1, this thesis illuminates

an impending performance scalability problem in GPGPUs. Addressing these, I de-

velop and evaluate three novel microarchitecture proposals for the CMP and GPGPU

memory subsystems. Additionally, to ensure continued performance acceleration, I

propose a novel GPU system architecture for future GPGPUs. Taking a step fur-

ther, I present a detailed analysis of the energy consumption and energy-efficiency

trends as applicable to future GPGPUs. Together, these evaluations and proposals

advance the state-of-the-art architecture design, and improve the performance and

energy efficiency of general-purpose processors significantly.

5

1.2.1 Main Memory Aware Last Level Cache Management for CMPs

The performance critical role of the LLC in CMP systems has motivated a wide

body of research work that offer techniques for sophisticated LLC management [32,

33, 34, 44, 45, 53, 58, 72, 82, 87, 110, 117, 142, 144, 164, 177]. However, most of these

techniques were developed by considering the LLC performance in isolation. In this

thesis, I observe that since the LLC interacts closely with the main memory, the prior

approaches to LLC management lead to performance sub-optimality. It is imperative

that an effective LLC management scheme be cognizant of the interaction between

LLC management decisions and the system main memory.

It is important to note that not all cache misses or memory accesses are the

same. Due to the hierarchical structure of DRAMs, different memory accesses can

incur diverse memory access costs. Depending on whether an access experiences a

row-buffer hit/miss or bank conflict at the DRAM, it can incur varied access latencies

ranging from as low as 45ns to as high as 180ns. In Chapter 2 of this thesis, I propose a

novel LLC management policy, Reuse and Memory Access cost aware eviction Policy

(ReMAP) [29] that takes this interaction between LLC management decisions and

main memory access costs into account. ReMAP estimates the eviction priority of

different cache lines by considering multiple factors such as the recency, the post-

eviction reuse distance, and the memory access cost of cache lines. Upon cache line

eviction, ReMAP aims to evict a cache line that is 1) expected to not receive any reuse

in the near future and 2) expected to incur lower memory access cost than the other

lines present in the cache. My detailed evaluation with SPEC2006 applications shows

that ReMAP reduces the effective memory access cost experienced by the system and

improves system performance by an average of 6.5% and by as much as 13% over the

baseline.

6

1.2.2 Divergence Aware Data Cache Management for GPGPUs

While the performance of CMPs is significantly influenced by the LLC, this role is

played by the L1 data cache on GPGPUs. Prior work has shown that the constrained

L1 data cache capacity problem described in Section 1.1, leads to performance sub-

optimality for many GPGPU applications [76, 101, 103, 104, 108, 132, 147, 165,

175, 176]. These applications suffer from two important caching inefficiencies. First,

GPGPU applications suffer from a high degree of cache thrashing. Due to the thou-

sands of threads that are concurrently executed on the GPUs, most of the cache lines

brought into the cache end up being evicted before they receive any reuse. Second,

the spatial locality observed in cache lines varies significantly, and can be extremely

low in many GPGPU applications. The aforementioned issues lead to inefficient uti-

lization of an already constrained cache space. In Chapter 3 of this thesis, I propose

Instruction and memory Divergence based Cache management (ID-Cache) [28], a

novel cache management technique that addresses both these problems.

Chapter 3 identifies that both the cache line reuse behavior and the extent of spa-

tial locality can be predicted by augmenting commonly-used instruction or program

counter information, with GPU specific characteristics such as the degree of memory

divergence. ID-Cache leverages this insight to first make fine-grained and accurate

cache bypassing decisions such that only the cache lines predicted to have reuse are

inserted and retained in the cache. Second, ID-Cache predicts the degree of spacial

locality and appropriately fetches cache lines of variable sizes into the cache. By em-

ploying fine-grained cache bypassing and adaptive cache line size selection together,

ID-Cache not only improves the cache capacity utilization, but also reduces the band-

width demand on the interconnect — thus achieving an average of 71% performance

improvement across a wide range of cache-sensitive GPGPU applications.

7

1.2.3 Adaptive Cache Compression Management for GPGPU Data Caches

An orthogonal approach to alleviate the cache capacity problem is to adopt cache

compression. Cache compression is a technique used to increase the effective capacity

of on-chip caches by compressing the cache lines prior to their insertion. Although,

cache compression comes with a decompression latency overhead, it can be particu-

larly well-suited for GPGPU systems due to their inherent latency tolerance feature.

However, I observe that cache compression techniques, typically designed for CMPs,

cannot be directly applied to GPGPUs data caches. This is because 1) the data

compressibility and the compression ratio achieved by different compression algo-

rithms vary significantly across GPGPU applications, and 2) compression algorithms

come with varying decompression latencies and many a times the associated latency

overhead might not be hidden in GPGPUs [40, 132].

In this thesis, I take the first steps to quantify the limits of the “latency toler-

ance” that is available in GPGPUs, and present a detailed characterization of the data

compressibility of GPGPU applications. Furthermore, I observe that unique to GPG-

PUs, there exists a three-way trade-off between compression ratio of different com-

pression algorithms, their associated decompression penalty, and the available GPU

latency tolerance. With these insights, I design a LATency Tolerence awarE Cache

Compression management technique (LATTE-CC) [27] that is presented in Chap-

ter 4 of this thesis. LATTE-CC is able to effectively navigate the three-way trade-off

described above by adaptively choosing one of the three compression modes — no-

compression mode, low-latency mode, or high-capacity mode. In doing so, LATTE-

CC intelligently leverages the time-varying latency tolerance feature of GPGPUs to

choose the compression mode that gives the highest effective cache capacity increase,

and whose decompression penalty can be well hidden. Outperforming state-of-the-art

8

cache compression techniques, LATTE-CC is able to improve GPGPU performance

by 19.2% on average across a wide range of cache-sensitive applications. Additionally,

LATTE-CC reduces the overall GPGPU energy consumption by 10%, twice as much

as what the state-of-the-art cache compression technique achieves [138].

1.2.4 GPGPUs and the Memory Subsystem Design for the Post-Moore’s Law Era

In addition to the microarchitectural innovations similar to the ones presented

above, the performance scaling of GPGPUs over the past decade has been supported

by scaling the number of transistors and by increasing the die sizes. However, tran-

sistor scaling (Moore’s Law [120]) is slowing down and is expected to soon come to

an end. Thus, designing future GPU dies with transistor counts significantly larger

than today’s is going to be difficult, if not impossible. Additionally, due to the op-

tical limitations of lithography, GPU die sizes can no longer be increased. In the

face of these two challenges, the performance scaling trend of GPGPUs could soon

plateau. To address this problem, Chapter 5 of this thesis proposes a novel GPU

system architecture called the Multi-Chip-Module GPU (MCM-GPU) [25].

MCM-GPU moves away from the current monolithic die architecture of GPGPUs

and proposes to integrate multiple GPU modules (GPMs) within the same package.

With such a multi-chip-module design, future GPGPUs are expected to be in-package

Non-Uniform Memory Access (NUMA) systems. Thus, the performance of such in-

package NUMA MCM-GPU depends significantly on the memory subsystem, espe-

cially the available on-package bandwidth between the GPMs. I demonstrate that

with a holistic memory subsystem design tailored for such architectures, the sensitiv-

ity to the inter-GPM bandwidth can almost be completely eliminated. Specifically, I

propose a coordinated design, consisting of a new cache hierarchy design, a thread-

block scheduling technique, and a memory page placement technique, to reduce the

9

demand placed on the inter-GPM links. Simulation-based evaluation results show

that these optimizations bring the MCM-GPU within 8% of the performance of a

hypothetical monolithic die GPU of similar capabilities, which cannot be built due

to the technology limitations discussed above.

1.2.5 Energy Efficiency Scaling for Future Multi-Module GPGPUs

The MCM-GPU architecture proposed in Chapter 5 offers a promising path for-

ward for future GPGPU performance scalability via multi-module integration. To

cater to the energy efficiency expectation of the future, it is necessary to consider

the energy cost of performance scaling for the new multi-module GPGPUs. To en-

able us to reason about the performance and energy overhead together, I develop a

novel efficiency scaling metric called EDP Scaling Efficiency (EDPSE), in Chapter 6.

EDPSE allows us to understand energy efficient scalability by considering perfor-

mance, energy costs, and the amount of scaled resources together. In addition, to

enable accurate estimation of energy consumption in modular GPUs, in Chapter 6,

I propose an instruction based GPU energy estimation framework called GPUJoule.

GPUJoule has been thoroughly validated against real hardware and found to achieve

90% energy estimation accuracy on average. Utilizing EDPSE and GPUJoule in con-

junction with a GPU performance simulator, Chapter 6 presents an in-depth study

that uncovers multiple new energy efficiency trends that are likely to impact future

multi-module GPU designs.

I observe that future GPU energy efficiency is less likely to depend on the GPM

microarchitecture energy efficiency nor the intrinsic energy costs of data movement,

including off-die, inter-module data movement. This finding is particularly mean-

ingful because the common belief places significant value on both these factors as

the key drivers of energy efficiency for the future GPUs. In contrast, the inherent

10

NUMA side-effects of the multi-module GPU architecture are going to be the key

energy efficiency bottleneck. A congested inter-module interconnect would not only

degrade performance in these multi-module GPUs but would also increase the energy

consumption significantly. These findings further underscore the significance of data

locality optimizations within the memory subsystem of GPUs described in this thesis.

Furthermore, these results highlight a pressing need for future research to focus on

alleviating the NUMA side-effects in multi-module GPUs by enhancing the locality

captured within the GPMs.

1.3 Contributions

This thesis highlights two key challenges faced within the memory subsystems of

today’s high-performance general-purpose processors and offers novel microarchitec-

tural solutions for the same. Beyond the microarchitecture level, this thesis identifies

the need for a novel GPU system architecture to ensure performance scalability in

the future. With the help of advanced CMP last level cache management, GPGPU

data cache management, a novel future GPGPU architecture, and finally a thor-

ough energy efficiency analysis for future GPGPUs, this thesis pushes the horizons

of general-purpose processor designs a step forward. Overall, this work advances the

state-of-the-art by:

1. Offering detailed characterizations of the data reuse, data compressibility, per-

formance scalability, and energy efficiency characteristics of a wide variety of

general purpose applications executed on high performance CMPs and GPG-

PUs. The insights thus derived, lead to opportunities for memory subsystem

optimization in CMPs and GPGPUs.

11

2. Highlighting the need for cache management techniques to consider the impact

of seemingly independent aspects of the system architecture, such as (a) the

LLC and main memory interaction in CMPs, and (b) memory divergence and

its relation to data reuse and spatial locality in GPGPUs. These are shown to

have a pronounced impact on the performance of memory subsystem as well as

the overall system performance.

3. Offering an in-depth study and quantification of the impact of latency tolerance

in GPGPUs. Furthermore, by intelligently leveraging the latency tolerating

ability, I propose an efficient adaptive cache compression management method

for GPGPUs.

4. Illustrating the impending performance scaling problem in GPGPU systems

and proposing the novel MCM-GPU architecture along with its NUMA-aware

memory subsystem design. Taking a step further, I present an in-depth study

showing the main energy efficiency bottlenecks in future MCM-GPU like archi-

tectures.

5. Developing a new efficiency scaling metric and a new GPU energy estimation

framework. These tools are particularly apt for future exploratory studies by

the research community at a time when energy efficiency is a first order design

concern.

1.3.1 Thesis Outline

The following chapters of this thesis present my research accomplishments in de-

tail. Chapter 2 proposes ReMAP, a novel LLC management technique for CMP

systems [29]. Next, Chapters 3 and 4 present two novel techniques, ID-Cache [28]

and LATTE-CC [27], that alleviate the data cache capacity problem in GPGPUs.

12

Following that, Chapter 5 proposes a novel GPU architecture for performance scal-

ing in the post Moore’s law era and describes a holistic memory subsystem design

for future GPGPUs [25]. Taking a step further, Chapter 6 offers an in-depth study

for the energy consumption and energy efficiency characteristics of the new GPU

architecture [26]. Finally, Chapter 7 summarizes and concludes my thesis work.

13

Chapter 2

REUSE AND MEMORY ACCESS COST AWARE CACHE MANAGEMENT FOR

CMP SYSTEMS

Modern general-purpose chip-multiprocessors (CMPs) consist of significantly large

last level caches (LLCs) that bridge the long latency gap between the processor and

the main memory. By storing frequently used data closer to the processor, the LLC

plays a crucial role in the performance of a CMP system. Prior work has shown

that intelligent management of LLC contents is key to deliver high performance with

CMPs. In this chapter, I demonstrate that prior techniques which approach LLC

management, while being oblivious of its impact on the rest of the memory subsystem

lead to sub-optimal performance. With this insight, this chapter proposes a novel

cache line reuse and memory access cost aware eviction policy for LLC management.

2.1 Background and Motivation

There has been a wide body of research literature that is directed towards im-

proving cache management. This has led to many innovations in insertion, promo-

tion and replacement policies, and dead block prediction [32, 34, 44, 45, 72, 82, 87,

110, 143, 172, 177]. Most of the aforementioned studies focus on optimizing the LLC

performance in isolation. Though the improvement in LLC performance leads to a

significant reduction in the gap between memory and processor speeds, LLC is going

to be most effective when its working is well coordinated with the levels of memory

above and below it, i.e., the L1 and L2 private caches and the DRAM.

In the widely prevalent open page DRAM designs, not all LLC misses experience a

fixed memory access cost. The memory access cost can vary from approximately 15ns

14

to 150ns (for a 2GHz processor, this corresponds to 30 cycles to 300 cycles). This is

owing to the fact that LLC misses could result in row buffer hits, row buffer misses, or

map to conflicting banks in the memory. To address this, Qureshi et al. [143] made a

compelling case for taking memory level parallelism into consideration while making

the LLC eviction decision. The memory access cost is lower for parallel LLC misses

because the cost is amortized over multiple misses.

LLC misses that incur the least memory access cost are the ones that 1) do not

cause bank conflict and 2) hit in the row buffer. The memory access cost incurred

by such a reference is proportional to the time taken to place the data on the data

lines from the sense amplifiers. This is called Column Address Strobe (CAS) latency

(CL). Typically CL is about 15ns for a DDR3 SDRAM [55]. Therefore, for a 2GHz

processor, the overall memory cost to fetch data from the memory is,

MemoryCostrow_buffer_hit ∝ CL ≈ 15ns = 30 cycles (2.1)

However, when the row buffer of the bank does not contain the row of data for the

referenced address, a row buffer miss is incurred. In this case, when the data request

is presented to the memory, the row that is open in the row buffer is closed (row is

precharged) and the row corresponding to the new reference is brought to the row

buffer. Finally, the data is placed on the data lines. The time taken to bring data

into the row buffer is referred to as Row Address Strobe (RAS) to Column Address

Strobe (CAS) delay. In this case, the overall memory access cost becomes the sum of

the time taken for row precharge (tRP), time to bring data into row buffer (RAS to

CAS delay or tRCD), and CAS latency. Typically for a DDR3 SDRAM, tRCD and

tRP are about 15ns [55]. Therefore for a 2GHz processor, the overall cost to fetch

15

data from the memory is,

MemoryCostrow_buffer_miss ∝ tRP + tRCD + CL

≈ 15ns+ 15ns+ 15ns = 45ns = 90 cycles (2.2)

When an LLC miss is mapped to a conflicting bank, the memory access cost

experienced varies (depending on the memory access costs of earlier misses that are

waiting to be serviced by this particular bank), and a cascading effect influences the

memory access cost. If two requests map to a bank when another bank is idle, the

second request experiences a memory access cost that is the sum of the memory access

cost experienced by the first access and the second request’s own memory access cost.

If both the first and second requests experience a row buffer miss, this could be as

high as 180 cycles (90 cycles for the first request and 90 cycles for this request).

Next, I present detailed characterization results to highlight that we can choose

the eviction candidates in the LLC more intelligently, if the knowledge of the memory

access cost and reuse pattern is available at the time of cache line replacement. For

various SPEC2006 benchmarks, Figure 2.1 shows the memory access cost breakdown

of the lines that are evicted from a typical LLC performing least recently used (LRU)

replacement. With such oracular information, we can see that the fraction of evicted

0

20

40

60

80

100

b
w

av
e

s

b
zi

p
2

ca
ct

u
sA

D
M

h
2

6
4

re
f

h
m

m
e

r

lb
m

lib
q

u
an

tu
m

m
cf

o
m

n
e

tp
p

sj
e

n
g

so
p

le
x

sp
h

in
x3

xa
la

n
cb

m
k

ze
u

sm
p

A
ve

ra
ge%

 o
f

A
ll

Ev
ic

ti
o

n
s

Dead Line Availability at
Eviction
Highest Cost Live Lines

Higher Cost Live Lines

Lower Cost Live Lines

Lowest Cost Live Lines

Dead Lines

Figure 2.1: Memory access cost and oracle reuse information of evicted lines at LLC

for SPEC2006 benchmarks.

16

lines that would have been reused in the future is typically high. I notice that live

cache lines are being evicted from the LLC while there are one or more

other cache lines in the same set, that are dead. Among all evicted cache lines,

the fraction of cache lines that are indeed dead (with no future or distant reuse) is

represented by the black bars labeled “Dead Lines” in Figure 2.1. The adjacent grey

bars show the fraction of evictions when there is at least one cache line in the same

set, that is dead. The difference between these two bars gives the fraction of times

where a live line was evicted even though a dead line was available in the cache. We

can see that this difference is significant for many benchmarks – 15% on an average

and as much as 50%, of all evictions. This is because using only recency information,

as done by LRU and other replacement policies, is ineffective in identifying the best

cache eviction candidates.

While rescuing cache lines that are still useful in the near future can improve

the LLC performance, the memory access penalties for these cache lines can vary

significantly. For example, some cache lines that could be reused in the near future

have longer memory access cost than others. This leads to the second important

observation: cache lines being evicted from the LLC are not always the ones

that have the least memory access cost. Often there are one or more cache

lines in the same set whose memory access cost is lower than the memory access

cost of the chosen eviction candidate. The darker bars in Figure 2.1 represent the

fraction of evictions where live lines with higher memory access cost were evicted.

This undesirable behavior occurs to 10% of the evictions on average (and can happen

to as much as 60% of the evictions). For most of these occasions, there is opportunity

to convert higher memory access cost evictions to dead line evictions or lower memory

access cost evictions. Therefore, we need a cache replacement policy that prioritizes

17

cache lines with longer memory access cost and farther or no reuse over other lines

in the set at the eviction time.

From the above insights, we can see that standard recency-based cache replace-

ment policies leave sufficient room for improvement. Leveraging on post eviction reuse

distance (PERD) and memory access cost (MAC) information along with recency in-

formation can provide additional performance benefits. In this chapter, I propose

ReMAP, Reuse and Memory Access cost aware eviction Policy [29], that takes cache

line reuse characteristics and memory access behavior into consideration when mak-

ing cache line eviction decision. This allows ReMAP to mitigate the two undesirable

effects described above and achieve higher performance compared to other recency

based policies.

2.2 ReMAP Design and Implementation

Conceptually in an LRU-based cache replacement policy, each cache line in a cache

set is given a reuse counter that records how long ago the particular cache line was

last reused. For example in a 16-way cache, each cache line in a set is assigned a

number between 0 and 15. Every time a cache line is accessed, its counter is reset to

zero while all other cache lines’ counters increase by 1. When a cache line needs to

be replaced, the eviction candidate is selected by choosing the cache line that has the

largest counter value. Instead of assigning a predetermined counter value as in LRU,

ReMAP assigns a cost to each cache line, indicating the cost of evicting a particular

cache line versus keeping it in the cache. For example, the cost is higher if a cache

line to be evicted will experience a longer memory access latency when it is accessed

next time. Therefore when selecting an eviction candidate, ReMAP looks at the cost

for each cache line in the set and picks the line that has the least cost, contrary to an

LRU-based system.

18

ReMAP determines the cost of the eviction candidate by considering a cache line’s

recency (R), predicted post eviction reuse distance (PERD), and memory access cost

(MAC). While the recency information gives us an insight into the line’s liveliness

when the line is still in the cache, PERD provides us with additional information about

how soon a line would be recalled into the cache after it has been evicted. Finally,

MAC provides additional information on the associated latency for main memory

access when the line gets recalled. These three vital pieces of information help in

assessing the worthiness of a cache line. At the time of eviction, an effective cost of

each cache line is determined using a linear relationship between the aforementioned

parameters.

Effectivecost = α ∗R + β ∗ PERD + γ ∗MAC (2.3)

Intuitively, the cache line with the least Effectivecost is less important. Therefore,

ReMAP always selects the cache line with the least Effectivecost for eviction. The

pseudo code for cache line eviction selection is illustrated in Algorithm 1.

2.2.1 Recency Estimation

Recency (R) is typically available from the underlying cache replacement policy.

For example, the recency counter in a LRU based cache indicates how recently a

cache line was used. Similarly, in another state-of-the-art cache replacement policy,

RRIP [74], the re-reference interval predicted value (RRPV) provides a measure of

the recency of a cache line. ReMAP uses RRPV in estimating a cache line’s recency

(R) component of the effective cost calculation.

19

Input: EvictionSet

//make eviction decision

for all lines in EvictionSet do
cache.line.EffectiveCost =

α ∗ cache.line.R + β ∗ cache.line.PERD + γ ∗ cache.line.MAC;

if cache.line.EffectiveCost < cache.MinCost then

cache.MinCost = cache.line.EffectiveCost;

cache.EvictionCandidate = cache.line;

end

end

//insert to victim buffer insert_to_vb(cache.EvictionCandidate);
Algorithm 1: ReMAP eviction decision algorithm.

2.2.2 Post Eviction Reuse Distance Estimation

To learn a cache line’s reuse behavior and predict the post eviction reuse distance,

ReMAP uses a bloom filter [38] based victim buffer that records the address of every

cache line that is evicted from the cache. Upon every cache miss, the victim buffer

is looked up for the missing line address. The victim buffer is empirically designed

to hold cache_entries entries. In order to facilitate the PERD estimation with a

practical hardware overhead, the victim buffer is designed by cascading three bloom

filters in a hierarchical fashion as shown in Figure 2.2. Upon eviction, a cache line is

inserted into the first stage of the victim buffer. When the number of entries in the

victim buffer is equal to one-third the number of entries in the cache, the entries in

each stage is flushed down to the stage below it.

To classify the PERD for the entries in the victim buffer, ReMAP uses the fol-

lowing heuristics. If the missing address is found within the first 1/3∗ cache_entries

20

Figure 2.2: Cascading bloom filter as victim buffer for PERD estimation.

(Stage 1 BF in Figure 2.2) in the victim buffer, the line’s PERD is predicted to be

“near”. If the missing address is found within 2/3∗cache_entries (Stage 2 BF in Fig-

ure 2.2), the line’s PERD is predicted to be “intermediate”. If the missing address is

found within cache_entries (Stage 3 BF in Figure 2.2), the line’s PERD is predicted

to be “far”. If the missing address is not found within cache_entries entries, the line

is predicted to have no reuse, or “dead”. This predicted PERD is recorded with each

cache line using two additional bits. The PERD encoding is described in Table 2.1.

The hardware overhead of the victim buffer is described in the Section 2.2.5.

Table 2.1: Post Eviction Reuse Distance Encoding.

Reuse Dist. PERD Encoding

near 0 < PERD <= 4 3

intermediate 5 < PERD <= 9 2

far 10 < PERD <= 15 1

distant PERD > 15 0

21

2.2.3 Memory Access Cost Determination

In addition to obtaining the recency and PERD information, it is necessary to

obtain the associated memory access cost. To obtain the MAC, ReMAP uses a small

auxiliary structure called MAC estimation table. The MAC estimation table holds a

small memory access trace of current reference and previous references by storing the

row addresses of two references preceding the current reference for each bank, and

the number of references waiting to be serviced by each bank.

At the time of insertion, based on whether the bank has requests waiting and if the

current row address matches the previous two row addresses, the MAC is determined

as described in Table 2.2. The predicted MAC of the new inserted cache line is then

recorded and used to calculate the overall effective cost at the time of eviction.

It is important to note that this mechanism for estimating the MAC of an incom-

ing cache line relies on the similarity of row access behavior of the current and the

Table 2.2: Memory Access Cost Classification and Encoding.

Access Type MAC Encoding

No bank conflict;

row buffer hit Lowest 0

Bank conflict;

row buffer hit; Lower 1

No bank conflict;

row buffer miss Higher 2

Bank conflict;

at least one row buffer miss from earlier misses Highest 3

22

previous reference. As a previous study [143] showed, the row buffer access patterns

of the current and the previous references in the LLC are highly correlated. ReMAP

estimates MAC based on this insight – row access behavior of current and its previous

references are similar. Table 2.2 shows the different memory access cost classification

used in this study for different bank and row access scenarios. ReMAP stores the

predicted MAC per cache line, as a 2-bit value.

2.2.4 α, β, and γ Parameters in EffectiveCost Computation

The parameters α, β, and γ in the Effectivecost calculation (Equation 2.3) repre-

sent the importance of each of the three pieces of knowledge, i.e recency, post eviction

reuse distance, and memory access cost, for estimating the cost of LLC misses. I qual-

itatively explore different combinations of values for these parameters exhaustively.

I evaluated ReMAP for setups that give equal importance to R, PERD, and MAC,

higher importance to one of the three, and lastly, giving higher importance to two of

the three, pieces of knowledge.

The results show that while some applications benefit from α = 1, β = 1, γ = 4

and some other applications benefit from α = 1, β = 4, γ = 1. Therefore, ReMAP

implements a set dueling mechanism that dynamically selects the eviction policy

that minimizes the total memory access cost (as compared to number of misses in

traditional set dueling schemes).

2.2.5 Implementation and Hardware Overhead

Algorithm 2 shows the ReMAP algorithm and Figure 2.3 shows the hardware

structures used in ReMAP. ReMAP uses the PERD estimation victim buffer which

is a multilevel bloom filter. Each cache line has two 2-bit fields to record PERD and

MAC estimations.

23

Input: cache_access

//Upon cache miss

1. Issue request to DRAM

2. Compute Effective Cost for all cache lines (Off critical path)

3. Find eviction candidate with minimum effective cost (Off critical path)

4. Perform PERD estimation victim buffer access for missing address (Off

critical path)

5. Perform MAC estimation for missing address (Off critical path)

//Upon cache insertion

1. Attach PERD value to new cache line

2. Attach MAC value to new cache line

3. Complete cache insertion

Algorithm 2: ReMAP algorithm.

The PERD estimation victim buffer is implemented as a set of three bit arrays

as shown in Figure 2.2. These bit arrays are of size 5 ∗ c bits, where c is 10. Each

cache line inserted into the victim buffer is represented by “k” bits. These “k” bits

are identified by a set of “k” hash functions. The victim buffer hardware overhead

for the above setup is 18.75 KB. This additional hardware requirement is reasonable

given the significant performance gain and is comparable to the hardware overhead

of recently proposed state-of-the-art replacement policies [45, 153, 172].

Apart from the PERD estimation victim buffer, ReMAP consists of negligible

logic overhead from the effective cost calculation and 4 bits per cache line to store

the line’s MAC and PERD values.

24

.	
 .	
 .	

recency_cnt;	

PERD;	

MAC;	

Last-­‐level	
 cache	

se
tIn

de
x	

ta
g	

da
ta

	

MAC	
 Es'ma'on	
 Table	

Bank	

ID	

Row	
 #	
 of	
 the	

(N-­‐1)th	
 ref.	

Row	
 #	
 of	
 the	

(N-­‐2)th	
 ref.	

outstding	

misses	

1	

2	

MAC	

Est.	

Table	

MAC	

PE
RD

	
 E
sJ
m
aJ

on
	

Vi
cJ
m
	
 B
uff

er
	
 Evicted	
 Cache	
 Line	

PERD	

Figure 2.3: ReMAP cache organization.

2.3 Evaluation and Analysis

2.3.1 Simulation Infrastructure

I evaluate ReMAP using an open source full system simulator, gem5 [36]. I model

a 4-way out-of-order processor with a 128-entry reorder buffer, a three-level non-

inclusive cache hierarchy, and a multi-channel, multi-bank DRAM. The memory hi-

erarchy is based on an Intel Core i7 system [69]. The L1 and L2 caches are private

to each core and implement the LRU replacement policy. The configurations of my

setup is summarized in Table 2.3. This setup is similar to the setup used in other

recent studies [32, 44, 45, 72, 82, 87, 110, 143, 177].

I build ReMAP on top of a recently proposed cache replacement policy, Static

Re-Reference Interval Prediction (SRRIP)[74] because SRRIP requires less hardware

overhead than LRU and outperforms LRU [74].

2.3.2 Workload Construction

I evaluate ReMAP for both sequential and multiprogrammed workloads.

25

Table 2.3: Simulated System Architectural Details.

Processor 1 GHz, 4-way out of order, 128 entry reorder buffer

L1-I Cache 32KB, 4-way associative, 1 cycle latency, 64B block size

L1-D Cache 32KB, 8-way associative, 1 cycle latency, 64KB block size

Unified L2 Cache 256KB, 8-way associative, 10 cycle latency, 64B block size

Shared L3 Cache
1MB per core, 16-way associative, 30 cycle latency, 64B

block size

Main Memory

DDR3, FCFS scheduling, open page policy, 13.75ns

precharge time, 13.75ns CAS latency, 13.75ns RAS to CAS

latency, 1 Channel, 8 Banks, 8 KB row buffers

Table 2.4: Sequential Workloads.

Category Benchmarks

Memory Sensitive h264ref, lbm, mcf, omnetpp, soplex, sphinx3

Streaming or Large Working Set cactusADM, libquantum

Sequential Workloads: For my study with sequential workloads, I use 8 mem-

ory sensitive (MS), and streaming or large working set (Str) benchmarks from the

SPEC2006 benchmark suite. I use Simpoints [139] methodology to identify single

250 million instruction representative region for each benchmark and use this for my

study. Table 2.4 shows the benchmarks used in my study.

Multiprogrammed Workloads: For my study with multiprogrammed workloads,

I add one memory sensitive (MS), two streaming (str), and three compute intensive

(CI) benchmarks to model realistic multiprogrammed application execution scenarios.

26

Table 2.5: Multiprogrammed Workload Mixes.

WL# Benchmarks Category

1 bzip2, mcf, omnetpp, soplex MS, MS, MS, MS

2 bzip2, mcf, lbm, sphinx3 MS, MS, MS, MS

3 bzip2, mcf, omnetpp, sphinx3 MS, MS, MS, MS

4 bzip2, soplex, omnetpp, sphinx3 MS, MS, MS, MS

5 bzip2, mcf, sphinx3, bwaves MS, MS, MS, Str

6 bzip2, mcf, omnetpp, libquantum MS, MS, MS, Str

7 omnetpp, soplex, zeusmp, bwaves MS, MS, Str, Str

8 sphinx3, mcf, libquantum, bwaves MS, MS, Str, Str

9 mcf, sphinx3, cactusADM, zeusmp MS, MS, Str, Str

10 zeusmp, libquantum, cactusADM, bwaves Str, Str, Str, Str

11 bzip2, mcf, sphinx3, hmmer MS, MS, MS, CI

12 omnetpp, mcf, sphinx3, h264ref MS, MS, MS, MS

13 bzip, soplex, h264ref, hmmer MS, MS, MS, CI

14 bzip2, mcf, sjeng, hmmer MS, MS, CI, CI

15 sphinx3, sjeng, h264ref, hmmer MS, CI, MS, CI

16 sjeng, xalancbmk, h264ref, hmmer CI, CI, MS, CI

17 xalancbmk, bwaves, h264ref, hmmer CI, Str, MS, CI

18 libquantum, bwaves, cactusADM, hmmer Str, Str, Str, CI

27

I choose 4-core combinations of the workload types and create 18 workload mixes

such that all combinations of the different types are covered. The workload mixes are

shown in Table 2.5.

For the multiprogrammed simulations, I fast-forward two billion instructions from

the program start and simulate in detail until all the benchmarks have simulated for

at least 250 million instructions. The benchmarks continue to run after they have

finished executing 250 million instructions until all other benchmarks within that

set have completed simulating 250 million instructions. This is done so that the

faster benchmark continues to offer cache contention while the slower benchmark is

running. However, in such a case, the statistics are collected only for the first 250

million instructions.

2.3.3 Sequential Workloads Results

I evaluate ReMAP by comparing its performance with LRU, DRRIP [74] and the

MLP-aware replacement policy (MLP-aware) [143] as these policies are most closely

related to ReMAP. I perform sensitivity studies to determine the weights given to

R, MAC, and PERD in the effective cost computations. I observe that the optimal

configuration varies from application to application. Therefore, I use set dueling

[143] to determine the weights for MAC, R, and PERD dynamically at runtime.

Specifically, for the effective cost computation, I employ set dueling between “α = 1,

β = 1, γ = 4” and “α = 1, β = 4, γ = 1” for the performance studies. Having values

which are powers of two for β and γ makes the hardware implementation simpler.

Unlike in Qureshi et al. [143], the policy selector counter is updated based on the

total MAC incurred by the component policies instead of the total number of misses

incurred.

28

-10

-5

0

5

10

15

ca
ct

u
sA

D
M

h
2

6
4

re
f

lb
m

lib
q

u
an

tu
m

m
cf

o
m

n
e

tp
p

so
p

le
x

sp
h

in
x3

A
ve

ra
ge

M
P

K
I R

e
d

u
ct

io
n

C

o
m

p
ar

e
d

 t
o

 L
R

U
 (

%
)

DRRIP MLP Aware ReMAP-16 ReMAP-best-VB

Figure 2.4: ReMAP: Reduction in LLC Misses over LRU.

0.96

1

1.04

1.08

1.12

ca
ct

u
sA

D
M

h
2

6
4

re
f

lb
m

lib
q

u
an

tu
m

m
cf

o
m

n
e

tp
p

so
p

le
x

sp
h

in
x3

A
ve

ra
ge

IP
C

 Im
p

ro
ve

m
e

n
t

C
o

m
p

ar
e

d
 t

o
 L

R
U

DRRIP MLP Aware ReMAP-16 ReMAP-best-VB

Figure 2.5: ReMAP: Improvement in IPC over LRU.

Figures 2.4 and 2.5 compare the cache miss reduction and IPC improvement expe-

rienced by the sequential workloads under the different policies: DRRIP, MLP-aware,

ReMAP-16, ReMAP-best-VB. ReMAP-16 represents the performance of ReMAP

with 16 entry per set victim buffer and ReMAP-best-VB represents the performance

of ReMAP when victim buffer size is fine tuned for each benchmark. To identify the

best victim buffer setup for each benchmark, ReMAP searches through victim buffers

having 8 through 64 entries per cache set. Though most applications are found to

perform best when the victim buffer sizes are less than 24 entries, applications such

29

as cactusADM, mcf, and soplex perform best with victim buffers containing upto 48

entries per cache set.

While all three policies reduce application LLC misses, the miss reduction does

not always translate to IPC performance improvement. For example, for sphinx3,

DRRIP reduces the number of misses the most, but because of the memory access cost

disparity among the misses, the benefit of miss reduction is not reflected in application

IPC performance improvement. Overall, ReMAP reduces the number of misses of

SPEC2006 applications by as much as 13% over the baseline LRU replacement and by

an average of 6.5% while MLP-aware replacement and DRRIP reduce the miss counts

by -0.7% and 5% respectively. More importantly, when looking at application IPC

performance improvement, ReMAP-best-VB achieves an average of 4.6% performance

gain across the SPEC2006 applications while MLP-aware replacement and DRRIP

see only 1.7% and 2.3% respectively. Here onward, to maintain generality I only

discuss the results of ReMAP-16.

To illustrate the importance of considering the post eviction reuse distance and

memory access cost in LLC management, I take a closer look at cactusADM. Fig-

ure 2.4 shows that all three replacement policies reduce the LLC miss count for

cactusADM by 3-5%. However, because not all cache lines are equally important,

the LLC miss count reduction does not translate to IPC performance improvement

linearly. Figure 2.5 shows that ReMAP improves the performance of cactusADM by

2% while DRRIP and MLP-aware improve its performance by 0.1% and 0.5% respec-

tively. The reason for the IPC performance gap can be explained by Figure 2.1. The

figure shows that, for 40% of cache line evictions, a live line with higher memory

access cost is chosen as the eviction candidate under LRU. In contrast, ReMAP is

able to identify and prioritize cache lines with higher memory access cost over those

with lower memory access cost.

30

0.96

1

1.04

1.08

1.12

ca
ct

u
sA

D
M

h
2

6
4

re
f

lib
q

u
an

tu
m

sp
h

in
x3

A
ve

ra
geIP

C
 N

o
rm

al
iz

e
d

 t
o

 L
R

U
 SRRIP SRRIP - MAC SRRIP - PERD ReMAP

Figure 2.6: ReMAP: performance using PERD and MAC information in isolation.

ReMAP adopts a holistic approach towards LLC management and this is high-

lighted in the cases of libquantum and soplex. For both these applications all three

policies achieve similar MPKI reduction. However, ReMAP achieved superior IPC

improvement compared to DRRIP and MLP-Aware policies.

2.3.4 Benefit of Using PERD and MAC Information in Isolation

In order to understand the contributions of each of the individual components of

ReMAP, i.e. the post eviction reuse distance and memory access cost, I study the

performance benefit achieved by each component in isolation for a few interesting

applications. Figure 2.6 shows the performance results of using PERD and MAC

information in isolation, on top of SRRIP. SRRIP-PERD represents the setup where

only PERD information is used to make eviction decisions along with the recency

information. Similarly SRRIP-MAC represents the setup where in addition to the

recency information, only MAC information is used to make eviction decisions. Fig-

ure 2.6 highlights the importance of the considering all three parameters, recency,

PERD, and MAC, together while making the eviction decision.

31

1.01

1.02

1.03

1.04

1.05

8 16 48 64 BestA
ve

ra
ge

 IP
C

 Im
p

ro
ve

m
e

n
t

C

o
m

p
ar

e
d

 t
o

 L
R

U

Number of VB Entries Per Cache Set (16-way LLC)

Figure 2.7: ReMAP:sensitivity to victim buffer storage.

2.3.5 Sensitivity to Victim Buffer Storage

The multi-level bloom filter based victim buffer consists of three stages of bloom

filters cascaded together. It can be seen that the hardware overhead depends largely

on the number of bit array size of the bloom filter. As the bit array size increases, the

bloom filter false positive rate decreases. I observe that we can achieve a reasonable

accuracy (false positive rate ≈ 1%) when the bit array size is 10× the number of

entries in the victim buffer. Furthermore, as the number of entries in the victim buffer

increase, we will be able to capture the reuse behavior more accurately. However if

the number of entries is very large, the reuse behavior can be misguided and in turn

hurt performance. I observe a similar trend as can be seen in Figure 2.7.

2.3.6 Sensitivity to System Parameters

ReMAP performance can be influenced by system parameters such as the baseline

replacement policy and memory scheduling policy. In addition to RRIP, I conducted

experiments with ReMAP built on top of the LRU policy. I observe that ReMAP

shows similar performance improvement when the recency information is provided by

LRU.

32

I also conducted studies to understand the sensitivity of ReMAP to architectural

parameters such as cache sizes and cache set associativities. I conduct sensitivity

studies with cache sizes from 1MB through 32MB, and associativities from 16-way,

through 64-way configurations. I observe that ReMAP continues to provide significant

performance benefit ranging from 2% to 7% on average and as high as 25% in case of

benchmarks such as libquantum and mcf.

The performance of ReMAP can be sensitive to the underlying memory scheduling

policy. Different memory scheduling policies can alter the MAC of the cache lines

differently. Furthermore, estimating MAC under more sophisticated policies can be

non trivial. In such cases, MAC value can be communicated from the main memory to

the last level cache with negligible overhead on the bandwidth demand. I expect that

the MAC information and PERD information will continue to be important pieces of

information that can assist LLC management even under more sophisticated memory

scheduling policies as well.

2.3.7 Multiprogrammed Workloads Results

I evaluate the heterogeneous multiprogrammed workloads for overall system through-

put and fairness. I measure overall system throughput using the normalized average

throughput and normalized average weighted speedup metrics. The normalized aver-

age throughput is given by GM(IP Ci_policy)
GM(IP Ci_LRU) , for (i = 0, 1, 2, 3). This metric indicates

the overall throughput improvement of the system. I use the minimum normalized

throughput achieved across all threads as a fairness metric. This metric gives a con-

servative measure of fairness of the new policy relative to the fairness of the baseline.

This is given by Mini((IP Ci_policy)
(IP Ci_LRU)).

Figure 2.8 summarizes the normalized average throughput achieved by ReMAP,

MLP-Aware [143], and TA-DRRIP [73] policies for different workload mixes. Across

33

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

m
ix

1

m
ix

2

m
ix

3

m
ix

4

m
ix

5

m
ix

6

m
ix

7

m
ix

8

m
ix

9

m
ix

1
0

m
ix

1
1

m
ix

1
2

m
ix

1
3

m
ix

1
4

m
ix

1
5

m
ix

1
6

m
ix

1
7

m
ix

1
8

A
ve

ra
ge

A
ve

ra
ge

 T
h

ro
u

gh
p

u
t

N

o
rm

al
iz

e
d

 t
o

 L
R

U

TA-DRRIP MLP Aware ReMAP
1.5

Figure 2.8: ReMAP: Performance for multiprogrammed workloads

all workload mixes, ReMAP improves average throughput by 2.5% compared to LRU.

TA-DRRIP and MLP-Aware policies improve throughput by 1.8% and -14% respec-

tively, compared to LRU.

Overall ReMAP performs better than both TA-DRRIP and MLP-aware policies

on the fairness metric as well. ReMAP gives a normalized minimum throughput of

0.9 compared to LRU while TA-DRRIP and MLP-aware policies give 0.8 and 0.7

respectively.

2.4 Related Work

There has been a significant research effort directed towards the innovations in

cache management research [32, 34, 44, 45, 58, 72, 82, 87, 110, 117, 142, 144, 177], I

discuss prior works that closely resemble ReMAP in this section.

2.4.1 Reuse Distance Prediction

Jaleel et al. [74] proposed SRRIP and DRRIP to learn reuse behavior of applica-

tions and manage the last level cache accordingly. DRRIP provides both scan and

thrashing resistance by performing set-dueling [142] between its two component poli-

34

cies, SRRIP and BRRIP. SRRIP provides scan resistance by inserting cache lines

with “long” reference interval prediction. BRRIP on the other hand, provides both

thrashing resistance by predicting “distant” re-reference interval most of the times

and “long” re-reference interval infrequently. The recently proposed EAF-cache [153]

predicts whether a cache line will receive reuse or not at the time of insertion, based

on it’s own past behavior. Though RRIP and EAF-cache predict the reuse behav-

ior of cache lines, their predictions are limited to insertion time. On the contrary,

ReMAP uses post eviction reuse distance prediction. This helps ReMAP to predict

if a cache line will be recalled to the cache or not, and also how soon would a line be

recalled once it is evicted from the cache.

Rajan et al. proposed shepherd cache [145] to emulate optimal replacement in the

cache. They use four shepherd ways in a 16-way cache that will keep track of partial

reuse distances and allowing to evict the the lines that are reused farther into the

future. Their proposal allows for limited look ahead and ReMAP on the other hand

is able to predict reuse distances much which are much farther, upto three times the

associativity of the cache.

2.4.2 Dead Block Prediction

Many works have also used a variation of recency, instruction traces, or address

traces to predict blocks that are dead [67, 85, 93]. Sampling Dead Block Predic-

tion [86] proposed by Khan et al. predicts cache blocks that are dead in the cache

based on the last touched instructions. They replace these predicted dead blocks prior

to the LRU replacement candidate. Chaudhuri et al. proposed cache hierarchy-aware

replacement (CHAR) [45] policy where they mined the private L2 cache eviction

stream for information that identifies certain blocks to be dead and passed the hint

to the LLC.

35

While ReMAP’s PERD estimation is similar to dead block prediction, it is im-

portant to note that ReMAP predicts the reuse distance in a finer grainularity, and

this chapter shows that the finer-grained PERD prediction contributes to further

performance improvement.

2.4.3 Coordinating LLC Management with DRAM

Qureshi et al. first identified the potential in considering DRAM access costs in

managing the LLC in [143]. They assign cost to each cache line based on the amount

of memory level parallelism the cache line would present when it misses in the cache.

They adopt a linear relationship between recency and the MLP cost of cache lines to

determine the total cost. I present a more fine-grained memory access cost analysis

and combine that with post eviction reuse distance along with recency information

to assign effective costs to cache lines. This coordinated approach enables ReMAP

to provide higher performance improvement than MLP-aware replacement.

2.5 Chapter Summary

The miss rate reduction achieved by most state-of-the-art cache management poli-

cies does not translate to corresponding IPC improvement at all times. This is because

of the wide disparity in memory access costs experienced by different LLC misses.

Hence, it is vital to manage the last level cache while considering memory access

behavior of cache lines. Furthermore, the system performance is understandably

affected by the current and future reuse of cache lines. With this insight, in this

chapter, I proposed ReMAP, a reuse and memory access cost aware eviction policy

that takes recency, post eviction reuse distance, and memory access costs to make

better-informed eviction decisions at LLC. ReMAP is able to preserve most valuable

cache lines, i.e lines that have near reuse and high memory access cost, in the LLC

36

and thereby providing superior performance. I demonstrate with extensive perfor-

mance evaluation using wide variety of workloads that ReMAP performs consistently

better than related state-of-the-art policies such as MLP-aware replacement, DRRIP

and TA-DRRIP. ReMAP improves performance by as much as 13% and on average

by 6.5% over the baseline.

37

Chapter 3

INSTRUCTION AND MEMORY DIVERGENCE BASED CACHE

MANAGEMENT FOR GPGPU SYSTEMS

In Chapter 2, I described ReMAP, a novel cache management technique for last

level caches (LLCs). ReMAP combines recency, future reuse and memory access cost

information together to perform intelligent eviction decisions. By doing so, ReMAP is

able to take into account the interaction between LLC and the next level of memory,

the DRAM, and achieve high system performance. However, as accelerated computing

becomes prevalent, the memory subsystem of general purpose graphics processing

units (GPGPUs) also becomes a key factor affecting system performance. ReMAP

and other techniques developed for CMPs, although applicable, might lead to sub-

optimal performance in case of GPGPUs. Due to the GPGPU execution model,

its performance bottlenecks differ significantly from that of the CMPs. Prior work

has shown that the constrained data cache capacity is a key problem leading to sub-

optimal performance in GPGPUs. In this chapter, I demonstrate that the constrained

cache capacity problem can be effectively alleviated by using GPU specific information

such as degree of memory divergence to predict both temporal and spacial locality

behaviors.

3.1 Background and Motivation

GPGPUs execute instructions in the single instruction multiple thread (SIMT)

manner. That is, multiple threads execute the same instruction on different data

concurrently. For example, in recent NVIDIA GPUs, 32 threads are grouped into a

single “warp” (wavefront in AMD terminology) for execution concurrently. In case

38

of memory load / store instructions, every single thread in a warp requests for its

own piece of data from the memory subsystem. This places immense pressure on

the memory subsystem of the GPGPUs. To mitigate this pressure, GPGPUs employ

coalescers that try to merge multiple requests from a single warp into as few memory

requests as possible. In the optimal case, all 32 requests originating from a warp,

coalesce to present a single request to the memory system. However, as GPGPU

applications get more and more general-purpose, the coalescer is often unable to

coalesce all the requests originating from a warp to a single memory access. This

situation is referred to as memory divergence. In the worst case, memory divergence

could result in up to 32 individual cache lines being demanded and brought into the

cache.

Furthermore, GPGPUs employ massive multithreading and fast context-switching

to hide long memory access latencies. That is, whenever a warp experiences a long

latency memory access, it is switched out of execution and another ready warp is

switched into execution. This allows GPGPUs to achieve high pipeline utilization

and consequently, high throughput. On the flip-side, if multiple warps place their

memory requests concurrently, this results in a high bandwidth demand from the

GPGPU memory subsystem. Thus, the massive multithreading execution model and

the presence of memory divergence result in a few key challenges in the memory

subsystem design of GPGPUs.

On the one hand, due to the large number of memory requests that are presented

to the GPGPU memory systems, the level one (L1) data caches in GPGPUs tend

to get thrashed often. On the other hand, GPGPU applications experience minimal

spatial locality and spatial utilization of cache lines. These factors make the data

caches and the interconnect significant performance bottlenecks in GPGPUs. In this

chapter, I propose Instruction and memory Divergence based Cache, ID-Cache [28]

39

0.5

1.0

1.5

2.0

2.5

3.0

3.5

C/I-L C/I-H

Sp
e

e
d

u
p

 o
ve

r
B

as
e

lin
e

Baseline 2x L1D$ 2x BW 2x L1D + 2x BW

C/I-L C/I-H

Figure 3.1: GPGPU application performance sensitivity to data cache capacity and

interconnect bandwidth. The applications are categorized into two groups based on

whether they are sensitive to data cache capacity and interconnect bandwidth or not1.

that alleviates both the data cache capacity problem and interconnect bandwidth

problem faced by today’s GPGPUs.

3.1.1 Application Sensitivity to Cache Capacity and Interconnect Bandwidth

As mentioned above, GPGPUs adopt the massive multithreading execution model.

For example, on the Kepler and Maxwell architectures released in 2012 and 2014 [125,

127], more than 2000 concurrent threads are supported on a streaming multiprocessor.

These threads share a 16KB L1 data cache resulting in as few as 8B data capacity per

thread. Similarly, the massive multithreading operation also puts immense pressure

on other parts of the memory system, such as the on-chip and off-chip interconnect

bandwidth. This makes data cache capacity and the on-chip interconnect, critical

resources for GPGPUs.

To understand the impact of cache capacity and interconnect bandwidth on GPGPU

applications, I conduct a sensitivity study. Figure 3.1 shows the performance sensitiv-

ity of GPGPU workloads when L1 data cache capacity and interconnect bandwidth

40

are increased. The x-axis represents the wide variety of GPGPU applications studied

in this chapter and the y-axis represents the execution time speedup normalized to

the baseline configuration (16KB L1 data cache with 32B Flits interconnect config-

uration). The first bar represents the baseline configuration (always 1). The second

and third bars represent settings where the data cache capacity and interconnect

bandwidth are doubled separately, 2x L1D$ and 2x BW (with 64B Flits interconnect

configuration) respectively. Finally, the last bar represents a configuration where both

the data cache capacity and interconnect bandwidth are doubled together (2x L1D$

+ 2x BW).

The applications classified under the label C/I-L are insensitive to data cache

capacity and interconnect bandwidth and experience negligible performance impact

with the increase in cache capacity or bandwidth. The C/I-H applications on the other

hand are highly sensitive to data cache capacity and interconnection bandwidth. For

these applications, 89% performance improvement is obtained when both the cache

and interconnection bandwidth capacities are doubled.

Data streaming applications are more sensitive to the bandwidth than cache ca-

pacity. Streaming applications such as SC, SR2, and PVR receive negligible performance

improvement with the 2x L1D$ configuration while receiving significant speedup with

the 2x BW configuration shown in Figure 3.1. On the other hand, applications that

possess cache friendly access patterns benefit significantly from the increased cache

capacity. Applications such as BC and STR in Figure 3.1 exemplify this scenario.

Nonetheless, most applications in the C/I-H category are sensitive to both data cache

capacity and interconnect bandwidth resources. Since simply increasing cache and
1 The details of simulation infrastructure, workload selection and classification are described in

Section 3.3

41

0	

0.5	

1	

Fr
ac
%o

n	
of
	Z
er
o	
Re

us
e	

Ca
ch
e	
Li
ne

s	

16KB	L1	Data	Cache	 64KB	L1	Data	Cache	

Figure 3.2: The fraction of zero reuse cache lines in the baseline 16KB and 4x larger

64KB data cache configurations. Zero reuse cache lines are cache lines that are

brought to the cache but never reused.

bandwidth capacities is not always a viable option, there is a need for simple designs

to optimize the utilization of these two critical resources.

3.1.2 Inefficient Cache Utilization in GPGPUs

To understand the utilization of the data caches in GPGPUs, I study the presence

of “zero reuse” lines in the cache. Zero reuse lines are cache lines that are allocated

in the cache but do not receive reuse before they are evicted. My study shows that in

the baseline data cache, more than 70% of the lines allocated in the data cache turn

out to be zero reuse lines. Motivated by similar observations, recent prior works such

as [75, 76, 175], have pointed out that employing cache memories in GPGPUs may

rather degrade performance significantly for some GPGPU workloads due to pipeline

stalls incurred by resource contention (e.g., MSHR entries) and additional queuing

latencies introduced by unnecessary data traffic.

Although the above observation might seem to indicate that the GPGPU applica-

tions do not possess data locality that can be exploited by the caches, closer analysis

suggests otherwise. Figure 3.2 shows the comparison of the fraction of zero reuse

cache lines in the default 16KB L1 data cache (black bars) and that in a 4x larger

42

64KB cache (orange diagonal bars). On average, the fraction of zero reuse lines re-

duces from 75% to 40% for the C/I-H benchmarks. The large disparity between the

number of zero reuse cache lines in the two configurations illustrates that data locality

exists in GPGPU workloads but the baseline architecture is unable to effectively cap-

ture it. The main reason is the commonly-observed mixed reuse patterns in GPGPU

applications. That is, due to massive multithreading execution, lines that possess

excellent reuse behavior are often interleaved with lines that do not. This results in

lines being evicted before they can be reused, wasting precious cache capacity and

interconnect bandwidth. Therefore, we need a way to accurately separate the cache

lines that possess reuse from the ones that do not. By accurately predicting and by-

passing the cache lines that do not possess any reuse, GPGPU performance can be

significantly improved.

3.1.3 Inefficient Cache and Bandwidth Utilization due to Default Fixed Cache Line

Size Configuration

Having highlighted the problem of zero reuse cache lines in Section 3.1.2, I now

focus this section on another key contributor to sub-optimal memory system perfor-

mance in GPGPUs. I observe that a large part of the bytes in the default 128B cache

line remain unused. I refer to this problem as the low spatial utilization problem.

Low spatial utilization results in wastage in precious cache capacity and bandwidth

resources.

To understand the spatial utilization of cache lines, I analyze the fraction of bytes

utilized in each cache line throughout the execution period of GPGPU applications.

Figure 3.3 shows the utilization distribution of data in the cache line granularity for

the C/I-H GPGPU applications. From Figure 3.3, we can observe that while the cache

line spatial utilization is fairly high for C/I-L applications, for C/I-H applications,

43

0%	

20%	

40%	

60%	

80%	

100%	

%
	o
f	C

ac
he

	L
in
es
	 75-100%	Used	

50-75%	Used	

25-50%	Used	

0-25%	Used	

Figure 3.3: The distribution of spatial utilization of cache lines. The stacks represent

different spatial utilization categories measured at the granularity of 32B and the

y-axis represents the percentage of cache lines that belong to a particular utilization

category, e.g., “0-25% Used” represents the fraction of cache lines with 0-25% spatial

utilization.

an opposite behavior is observed—more than 70% of cache lines have less than 25%

spatial utilization. For an overwhelming majority of the cache lines, at least 75% of

the data is brought to the cache and is stored unnecessarily. This inefficient use of

cache and bandwidth capacities presents an opportunity for performance optimization

for GPGPUs.

One way to minimize cache capacity and bandwidth wastage due to low spatial

utilization is to reduce the cache line size. For the same purpose, the L1 data cache

can even be turned off.Figure 3.4 shows the performance of GPGPU applications

with different cache line sizes and with the L1 data caches turned off. Each of the

configuration shows bipolar behavior across the different kinds of workloads. For

example, the 32B line size configuration provides performance speedup that varies

from -50% (FWT) to as much as 3.7X (KMN). Similar behavior can be observed for the

64B cache line size configuration as well as when L1 data cache is turned off. This

performance variability is undesirable.

44

0	
0.5	
1	

1.5	
2	

2.5	
3	

3.5	
4	

C/I-I	 C/I-H	

Sp
ee
du

p	
ov
er
	B
as
el
in
e	 L1D$	Turned	Off	 32B	 64B	 128B	(baseline)	

C/I-L	

Figure 3.4: The performance of GPGPU applications with different L1 cache line

sizes and turning off L1 data caches.

0%	

20%	

40%	

60%	

80%	

100%	

%
	o
f	C

ac
he

	L
in
es
	

Time	(every	10,000	misses)	

0	-	25%	 25	-	50%	 50	-	75%	 75	-	100%	

Figure 3.5: Cache line spatial utilization over time (an example from PVR).

The performance variability arises from the fact that the spatial utilization of

cache lines varies significantly from one application to another, as seen in Figure 3.3.

Furthermore, as Figure 3.5 shows, the spatial utilization of cache lines can vary sig-

nificantly within an application over its execution as well. Therefore, there is not a

simple way to select a cache line size that minimizes cache capacity wastage and band-

width usage while ensuring there is no performance degradation. Therefore, there is

a need for a dynamic method that predicts and inserts cache lines with an optimal

line size configuration.

45

1	

4	

16	

64	

256	

1024	

4096	

Re
us
e	
Di
st
an

ce
	

Figure 3.6: The distribution of L1 data cache reuse distances seen in GPGPU bench-

marks. The grey diamonds represent the median reuse distances. The high-low bars

represent 75th and 25th percentile reuse distances.

3.2 ID-Cache Design and Implementation

I focus this section on designing a dynamic method, ID-Cache that addresses the

cache thrashing and low spatial utilization problems highlighted in Sections 3.1.2

and 3.1.3.

3.2.1 Towards Effective Cache Bypassing

To further investigate the memory reuse patterns, I analyze the reuse distances

seen in GPGPU applications. Figure 3.6 shows the distribution of reuse distances for

all memory requests in the C/I-H category. The median reuse distance is depicted

by the diamonds whereas the 75th and 25th percentile reuse distances are shown by

the high and low markers respectively. We can observe that across the wide variety

of applications, the reuse distance of data is extremely diverse. Due to the long reuse

distances, some GPGPU applications might appear as streaming applications under

the default cache configuration e.g., PVR and CSR. Furthermore, Figure 3.6 demon-

strates the mixed reuse behavior discussed above. That is, for many applications,

some of the requests have reuse distances less than four which is the associativity

46

of the baseline data cache, while other requests do not. Under such a scenario, the

requests that have low reuse distance could experience interference from other re-

quests that have long reuse distances, resulting in a loss of locality and higher cache

misses. Therefore, it is important to protect these low reuse distance requests from

the interference originating from other long reuse distance requests. This turns out

to be a non-trivial task in the massive multithreading operating paradigm.

Using Instruction Program Counter to Classify Requests

The problem of identifying, separating, and protecting memory references that

have excellent locality from other references that do not, has been investigated in the

context of CMP caches. A common piece of information that has been well explored

for this purpose is the instruction program counter (PC) [85, 86, 93, 113, 166, 172] All

of the above works exploit the property that the reuse behavior, or the lack thereof,

of cache lines brought by a particular load is typically homogeneous. This property

is a result of the typical features of structured programming. For example, during

each iteration of a loop, a load instruction will access data that is indexed by some

function of the iteration number in a strided fashion. If this access stride is smaller

than the cache line size, all the cache lines brought by this load will receive a reuse hit

due to spatial locality. Similarly, if we consider any producer-consumer relationship,

an instruction that is part of the producer would typically bring a cache line into

the cache and update it before the data is used by the consumer. This process could

result in cache hits due to temporal locality. On the other hand, if the access stride

is too long, or if there is a large number of conflicting accesses between when a piece

of data is produced and consumed, the data that is brought to the cache will not be

reused.

47

1	
4	
16	
64	

256	
1024	
4096	

16384	
65536	

Di
st
rib

u(
on

	o
f	R

eu
se
	

Di
st
an

ce
	

Load	Instruc(ons	

Figure 3.7: The distribution of L1 data cache reuse distance with different load

instructions in ELL. The grey diamonds represent the median reuse distances. The

high-low bars represent 75th and 25th percentile reuse distances.

0	
2	
4	
6	
8	
10	
12	
14	

Di
st
rib

u(
on

	o
f	R

eu
se
	

Di
st
an

ce
	

Degree	of	Memory	Divergence	

Figure 3.8: The distribution of L1 data cache reuse distance with degree of memory

divergence of a load instruction, i.e., ELL’s PC_3. The grey diamonds represent the

median reuse distances. The high-low bars represent 75th and 25th percentile reuse

distances.

Following the same insight, a few recent works in GPGPU cache designs have

also proposed to use instruction specific information to identify the reuse behavior

of different load instructions. Many of these works use compiler analysis to learn

the reuse behavior of specific load instructions [75, 108, 175]. These works either

require significant support from the compiler or offline profiling to work well. The

adaptive bypassing method proposed by Tian et al. [165] utilized the last touched PC

48

information to predict zero reuse cache lines and bypass them from the cache. Their

design achieves a modest 3% performance improvement.

To understand how PC information can potentially be used to segregate memory

references in C/I-H kind of GPGPU applications, I analyze the reuse distance dis-

tribution of memory references from the different PCs. Figure 3.7 shows the reuse

distance distribution of memory references from the different PCs in an example ap-

plication, ELL. From the figure, we can make a couple of important observations. The

reuse distances of PCs in an application vary widely. A significant part of memory

references brought in by a small set of PCs have long reuse distances, e.g., PC_4,

PC_5, and PC_6. Such reuses cannot be captured by caches of realistic sizes and

hence should be bypassed from the cache. On the other hand, the applications also

possess certain PCs whose memory requests have short reuse distances which could

potentially result in cache hits. Memory references from such PCs should be preserved

in the cache.

Furthermore, while memory references associated with a particular PC exhibit

“similar” reuse distance for a majority of PCs in an application, there are other PCs

that do not follow this pattern, e.g., PC_1 and PC_2 in ELL. For these instructions,

some references exhibit short reuse distances that could result in cache hits, while

others, although in the same PC bucket, exhibit long reuse distances. Therefore,

we need additional information to achieve a finer resolution in segregating memory

references, such that, references that can potentially receive reuse hits are protected

in the cache while others are bypassed more intelligently.

Using Memory Divergence Behavior to Classify Requests

Memory divergence is a property unique to GPGPU applications, that could have

a pronounced impact on the reuse behavior of an application. As the degree of

49

memory divergence increases, the number of memory requests sent to the cache also

increase. Consequently, the reuse distances of lines inserted by divergent instructions

are typically longer. I use this insight to segregate memory references that exhibit

short reuse distances from others that do not. Specifically I analyze the relationship

between reuse distance and degree of memory divergence of load instructions. Figure

3.8 shows the reuse distance distribution for memory references from a specific PC

in ELL. We can see that with the help of the memory divergence information, we can

further separate memory references in a finer granularity such that we can identify

specific memory references that have similar reuse distances. That is, in the example

of ELL’s PC_3 (Figure 3.8), we observe that a memory load instruction with a high

degree of memory divergence, e.g., PC_3 that generates more than 15 requests in

the case of ELL, typically all have reuse distances greater than four, i.e., the set

associativity of the baseline cache. Such requests are unlikely to receive reuse hits in

the cache and therefore are candidates for bypassing.

3.2.2 PC and Memory Divergence Pattern Guided Bypassing

The observations made in the previous sections motivate the exploration of using

PC and the memory divergence patterns to manage cache bypassing in order to

improve cache utilization in GPGPUs. I design and evaluate two simple bypassing

techniques — a PC (PC-only) based method and a combined PC and degree of

divergence (PC+Div) based method.

Offline-Trained Bypassing: To quantify the performance potential enabled by

the consideration of the PC and memory divergence information, I obtain the reuse

distance distribution for PC-only and PC+Div offline. Then, in the second pass, I use

the reuse distance information obtained to guide the cache line bypassing decision. To

50

compensate the effect of bypassing on the reuse distance distribution obtained offline,

the bypassing decision is made when the reuse distance of a PC is larger than 8 for the

4-way set associative L1 data caches. Then, for the PC+Div bypassing technique, a

second filter is applied by using the instruction’s degree of memory divergence. That

is, for each PC, if the reuse distance for memory references with a particular degree

of memory divergence d, is higher than 6, then the future memory references from

that PC, having degree of memory divergence greater than d are bypassed from the

cache.

Dynamic Bypassing: For the PC-only and PC+Div based bypassing techniques to

be practical, the reuse distance information must be learned dynamically at runtime.

To do so, I design a 128-entry reuse distance prediction table of saturating counters

for the PC-only scheme. In case of the PC+Div scheme, for each PC, I use four

bins to learn the reuse behavior of instructions with different divergence degrees.

Therefore, I use a 512-entry reuse distance prediction table of saturating counters for

the PC+Div scheme. The table learns and predicts a PC’s reuse characteristics in a

similar manner as a recent prior work [172]. The prediction table is indexed by the

lower 7 bits of an instruction PC and the entry value indicates the predicted reuse

behavior of the instruction. Algorithm 3 describes the learning and prediction steps

of the design.

Having addressed the cache thrashing problem with PC+Div based bypassing, I

focus the next section to address the low spatial utilization problem in GPGPUs.

3.2.3 Towards Efficient Cache Line Size Selection

I first analyze the sources of cache line spatial utilization. In a GPGPU system, the

data within a cache line could be consumed in two ways: 1) Future reuses to the cache

51

Input: request,access.status

if PC − only then

index = hash(request.Inst.PC);

end

else

index = hash(request.Inst.PC, request.Inst.deg_divergence);

end

if access.status = MISS then

if table[index] > 0 then

BypassDecision = INSERT ;

end

else

BypassDecision = BY PASS;

end

end

else if access.status = HIT then

table[index] = table[index] + 1;

end

else if access.status = EV ICT then

if Evicted_line.Reused = False then

table[index] = table[index]− 1;

end

end
Algorithm 3: The reuse prediction algorithm for PC-only and PC+Div based

bypassing.

52

0%	

20%	

40%	

60%	

80%	

100%	

	
 %
	
 o
f	
 A

ll	

Ac

ce
ss
es
	

Miss	
 Temporal	
 Hit	
 Spa7al	
 Hit	
 Mixed	
 Hit	

Figure 3.9: The distribution of cache hits and misses in GPGPU applications.

line consume data that was not consumed upon the line’s insertion (traditionally,

spatial locality) 2) Requests from multiple threads in a warp are coalesced together

to consume adjacent data upon a line’s insertion. To delve deeper, I look at the

significance of each of these in GPGPU applications.

In Figure 3.9 I show a breakdown for all cache accesses by separating them into

misses, temporal hits, spatial hits and mixed hits. Temporal hits signify the situation

where all data that is reused on a particular access have been touched before. Spatial

hits on the other hand represent the hits where all data that is being touched for the

first time. Similarly, mixed hits refer to the case where a part of the data that is

being reused has been touched before and the rest has not. From Figure 3.9, we can

observe that the fraction of accesses that result in hits due to spatial locality (spatial

hits and mixed hits) are a mere 7% on average for both C/I-L and C/I-H workloads,

respectively. That is, the amount of spatial locality that is exploited in a GPGPU

system is minimal.

53

0%	

25%	

50%	

75%	

100%	

1	 3	 5	 7	 9	 11	 13	 15	 17	 19	 21	 23	 25	 27	 29	 31	

%
	o
f	A

ll	
Ca
ch
e	
Li
ne

s	

Degree	of	Memory	Divergence	

0-25%	Used	 25-50%	Used	 50-75%	Used	 75-100%	Used	

Figure 3.10: The distribution of L1 data cache utilization vs degree of memory diver-

gence (x-axis) for PVR application. The stacks represent different spatial utilization

categories measured at the granularity of 32B and the y-axis represents the percentage

of cache lines that belong to a category.

High Correlation between Cache Line Spatial Utilization and Memory Divergence

Patterns

Although the coalescer attempts to combine requests from multiple threads that

access adjacent data together, it might not always be successful in doing so. This

results in memory divergence. The degree of memory divergence is a property of

GPGPU applications that affects the spatial utilization of cache lines significantly. For

example, when the degree of memory divergence is one (i.e., a convergent instruction)

and each thread accesses 4B data, all 128 bytes of the cache line are utilized, leading to

100% spatial utilization. However, on the other extreme, when the degree of memory

divergence is 32, 1 to 8 bytes (depending on the access data type) of the cache line

would be used, leading to low spatial utilization.

I investigate the relationship between cache line spatial utilization and the memory

divergence patterns by analyzing the variation of spatial utilization for cache lines that

are inserted by instructions of different degrees of divergence. Figure 3.10 shows the

54

variation of spatial utilization of cache lines with varying degree of memory divergence

for one example application — PVR. We notice that most of the cache lines brought

to the cache by instructions having lower degrees of divergence (e.g. 1-8) have higher

spatial utilization. On the other hand, most of the cache lines that are brought

in by instructions with high degrees of divergence have much lower utilization. It is

apparent that the spatial utilization has a fairly predictable behavior with respect to the

degree of divergence 2 . Therefore, I leverage this piece of information to dynamically

optimize both cache capacity utilization and bandwidth consumption.

3.2.4 Divergence Guided Adaptive Line Size Insertion (ALSI)

Based on the observations made in the previous sections, I arrive at the intuition

that both cache capacity and interconnect bandwidth utilization can be optimized

together by inserting cache lines of different sizes based on their spatial utilization. A

similar intuition was used by Rhu et al. to optimize for bandwidth consumption [146].

I will highlight the differences between their work and ours in detail in Section 3.4.

In order to store data of variable size granularities, e.g., 32B, 64B, or 128B, I modify

the L1 data cache architecture. I use a previously-proposed cache architecture, called

Amoeba cache [91]. Amoeba cache is a cache architecture proposed for CMP LLCs

that treats each cache set as an array of small blocks (8B size each) that can be used

to hold either tag or data information. Therefore, a cache line of any size can be held

in the cache using a set of contiguous blocks.

I design a simple divergence based approach for Adaptive Line Size Insertion

(ALSI). I modify the cache line size dynamically at runtime based on the degree of

memory divergence. Specifically, I assume that as the degree of memory divergence
2I also evaluate the correlation between PC and spatial utilization and find the degree of low

spatial utilization to be more closely related to the degree of memory divergence.

55

Input: request

if request.Inst.divergence_deg = 1 then

LineSizeDecision = 128B;

end

if request.Inst.divergence_deg < 4 then

LineSizeDecision = 64B;

end

else

LineSizeDecision = 32B;

end
Algorithm 4:Algorithm for Divergence Based Adaptive Line Size Selection (ALSI).

increases, the spatial utilization of cache lines reduces and therefore cache lines are

inserted using a smaller line size configuration, e.g., 32B. On the other hand, when

the load instruction is convergent, the spatial utilization of cache lines is likely to be

100% and therefore cache lines are inserted using the 128B line size configuration.

The algorithm for ALSI is described in Algorithm 4.

3.2.5 ID-Cache: Instruction and Divergence Based Cache Management

Thus far, I describe two designs—PC+Div-based bypassing and adaptive line size

insertion (ALSI)—that improve the efficiency of the memory subsystem by minimiz-

ing zero reuse lines (Section 3.2.2) and increasing spatial utilization (Section 3.2.4),

respectively. Since cache bypassing and variable line size insertion are closely related

to each other, I integrate the two designs together to jointly optimize the perfor-

mance of the memory subsystem. I propose ID-Cache to improve the performance

of the L1 data caches and the interconnect bandwidth utilization. ID-Cache is a

simple design that optimizes the GPGPU performance by using instruction-related

56

Input: request, access

Bypass = BypassDecision;

//Predict whether to bypass or not based on Algorithm 3

if Bypass = TRUE then
//Take bypass path for this access

access.bypass = TRUE;

end

else
//Insert line to cache

//Predict Line Size according to ALSI Algorithm 4

LineSize = LineSizeDecision;

//Complete cache line insertion with predicted line size

access.line_size = LineSize;

end
Algorithm 5: Algorithm for ID-Cache Bypass and ALSI selection logic.

information, i.e., the reuse distance characteristics and memory divergence behav-

ior of instructions. ID-Cache improves the cache capacity utilization by bypassing

memory requests from instructions that generate long reuse requests and have high

degree of memory divergence. This component is the PC+Div based bypassing design

described in Section 3.2.2 and is called ID-Cache Bypass. Furthermore, for lines to

be inserted into the cache, ID-Cache uses the degree of memory divergence to de-

termine the size configuration and thereby improves the utilization of precious cache

capacity and the interconnect bandwidth. This component is the ALSI design de-

scribed in Section 3.2.4. The pseudo-code implementation of ID-Cache is described

in Algorithm 5.

57

Table 3.1: ID-Cache: GPGPU-sim simulation configurations.

Architecture NVIDIA Fermi GTX480

Num. of SMs 15

Max. # of Warps per SM 48

Max. # of Blocks per SM 8

of Schedulers per SM 2

of Registers per SM 32768

Shared Memory 48KB

L1 Data Cache 16KB per SM (32-sets/4-ways), LRU

L1 Inst Cache 2KB per SM (4-sets/4-ways), LRU

L2 Cache
768KB unified cache

(64-sets/16-ways/6-banks), LRU

Min. L2 Access Latency 120 cycles

Min. DRAM Access Latency 220 cycles

Warp Size (SIMD Width) 32 threads

Warp Scheduler GTO [147]

3.3 Evaluation and Analysis

3.3.1 Simulation Infrastructure

I use GPGPU-sim simulator (version 3.2.2) [31] to characterize the behavior of

the GPGPU memory subsystems. GPGPU-sim is a cycle-level performance simulator

that models a general-purpose GPGPU architecture. I utilize GPGPU-sim’s default

configuration representing the NVIDIA Fermi GTX480 architecture [123]. Table 3.1

shows the detailed configuration of my experimental setup.

58

3.3.2 Workload Construction

I select a broad set of GPGPU applications from the Mars [65], NVIDIA SDK [124],

Pannotia [46], and Rodinia [47, 48] benchmark suites to represent the diverse behavior

present in GPGPU workloads. I utilize these GPGPU applications to quantify and

evaluate the efficiency of memory subsystem designs. I classify the applications into

two categories based on the speedup achieved when both the L1 data cache capacity

and interconnect bandwidth are doubled — cache/interconnect insensitive (C/I-L)

(speedup < 1.2x), and highly cache/interconnect sensitive (C/I-H) (speedup > 1.2x).

Table 4.3 lists the details of these benchmarks and their input data sets. I simulate all

benchmarks except three, to completion 3 . I present detailed characterization and

analysis for the C/I-H benchmarks throughout this chapter, while only presenting

results for C/I-L benchmarks when necessary for completion.

Table 3.2: ID-Cache: GPGPU Benchmarks.

Abbr Application Input Cat.

BO Binomial Options [124] 512 Options

C/I-L

PTH Path Finder [47] 100k nodes

HOT Hotspot [47] 512x512 nodes

FWT Fast Walsh Trans. [124] 32k samples

DCT Discreet Cosine Trans. [124] 10 blocks

BP Back Propagation [47] 65536 nodes

NW Needleman-Wunsh [47] 1024x1024 nodes

SR1 SRAD1 [47] 502x458 nodes

HTW Heartwall [48] 656x744 AVI

3To keep the simulation times manageable, I restrict CSR, ELL and KMN to one billion instructions.

59

SC Streamcluster [47] 32x4096 nodes

BT B+Tree [47] 1M nodes

SR2 SRAD2 [47] 2048x2048 nodes

WC Word Count [65] 86kB text file

PF Particle Filter [47] 28x128x10 nodes

BC Betweenness Centrality [46] 1K (V), 128K (E)

MIS Maximal Ind. Set [46] ecology

PVR Page View Rank [65] 1M data entries

BFS Breadth First Search [47] 65536 nodes

SS Similarity Score [65] 1024x256 points C/I-H

CLR Graph Coloring [46] ecology

CSR Dijkstra-CSR [46] USA road NY

STR String Match [65] 165k words

FLD Floyd Warshall [46] 256(V), 16K (E)

MM Matrix Multiplication [65] 1024x1024

ELL Dijkstra-ELL [46] USA road NY

PRK Pagerank (SPMV) [46] Co-Author DBLP

KMN K-Means [47] 494020 objects

Next, I present detailed simulation results evaluating ID-Cache and its component

policies, PC+DIV-based bypassing, and Adaptive Line Size Insertion.

60

0.5

1

1.5

2

2.5

Sp
e

e
d

u
p

 o
ve

r
B

as
e

lin
e

16KB L1D $ (baseline) PC-Based PC+Div-Based 32KB L1D $

Figure 3.11: Performance of GPGPU applications with offline trained PC-Based

and PC+Div-Based bypassing designs.

3.3.3 PC and Memory Divergence Pattern Guided Bypassing

Offline-Trained Bypassing: Figure 3.11 shows the performance of the PC-only

and PC+Div based bypassing methods. The PC-only and PC+Div methods result

in an average speedup of 14% and 17%, respectively, for C/I-H workloads. As can

be expected, both techniques have negligible impact on the C/I-L workloads. When

compared to a 32KB cache, the PC-only and PC+Div based methods can bridge the

performance gap between 16KB and 32KB caches by 29% and 35%, respectively.

Adding an additional layer of information, namely, the memory divergence pat-

terns, can help prune the incoming memory requests in a finer granularity. The

benefit of doing so can be witnessed in workloads such as STR, ELL and PRK. For these

workloads, PC+Div based method improves the performance by a significant extent

than the PC-only method. In the case of STR, while the PC-only approach does not

bypass any requests and performs exactly the same as the baseline, the PC+Div based

approach bypasses 10% of the requests, translating to a significant 19% performance

gain.

61

0.0	

0.5	

1.0	

1.5	

2.0	

2.5	

Sp
ee
du

p	

ov
er
	
 B
as
el
in
e	

16KB	
 L1D	
 $	
 (baseline)	
 PC-­‐Based	
 PC+Div-­‐Based	
 32KB	
 L1D	
 $	

Figure 3.12: Performance of GPGPU applications with online PC-Based and

PC+Div-Based bypassing designs. These designs require no offline training.

The performance of the PC-only and PC+Div based approaches also depends on

the aggressiveness of bypassing that is carried out. This aggressiveness is dictated

by the reuse distance thresholds used in the bypassing decision. If the aggressiveness

is too low, then not many requests are bypassed from the cache and this results in

applications performing exactly the same as the baseline, e.g., MIS, FLD, and KMN in

Figure 3.11. On the other hand, if the aggressiveness is too high, it could result

in useful requests being bypassed from the cache. Due to this reason, applications

such as PF experience an 11% performance degradation with both the PC-only and

PC+Div based methods.

Dynamic Bypassing: Figure 3.12 shows the performance improvement achieved

by the online PC-only and PC+Div based bypassing designs described above. On av-

erage, the online PC-only and PC+Div-based designs improve performance by 29%

and 22%, respectively for C/I-H workloads and have negligible impact on the C/I-

L workloads. Since the online PC-only and PC+Div based designs can adapt to

the runtime changes in reuse behavior of different load instructions, the online ap-

proaches perform better than the offline trained ones in Figure 3.11 for a number of

62

0	

0.5	

1	

1.5	

2	

2.5	

3	

Sp
ee
du

p	

ov
er
	
 B
as
el
in
e	

Baseline	
 ALSI	
 Sta4c	
 Best	
 Line	
 Size	

4.48x	
 3.76x	

Figure 3.13: The performance improvement under Adaptive Line Size Insertion.

applications, such as PF, SS, CSR, and KMN. Furthermore, both the online PC-only and

PC+Div based designs achieve more than 50% of the performance benefit brought by

a 32KB cache for the C/I-H workloads.

The benefit from the degree of divergence information is more modest in the

case of the online PC+Div based design. The workloads that received the highest

benefits from the degree of divergence information in the offline trained approach

(STR, ELL, and PRK) fail to benefit from the same information in the simple online

design described here. A more advanced design that accurately captures the reuse

distance behavior across the different divergence degrees is necessary.

3.3.4 Divergence Based Adaptive Line Size Insertion (ALSI)

In this section, I present evaluation results for ALSI described in Section 3.2.4.

Figure 3.13 shows the performance improvement achieved by ALSI. On average,

ALSI improves the performance of the C/I-H applications by 64% and does not af-

fect/degrade the performance of the C/I-I applications. Furthermore, I compare the

performance of ALSI to a static, best line size configuration i.e., a per-application

line size configuration (32B, 64B, or 128B) which gives the best per-application per-

63

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

Sp
e

e
d

u
p

 o
ve

r
B

as
e

lin
e

ID-Cache Bypass ALSI ID-Cache 2x L1D + 2x BW

2.7x 4.48x
3.4x

4.48x

Figure 3.14: Performance improvement with ID-Cache.

formance. ALSI performs almost as well as the static best line size configuration

and achieves 96% of the performance gain given by the optimal setting. This shows

that degree of divergence information can be used effectively to predict the spatial

utilization and hence the insertion cache line size. Furthermore, a runtime adaptive

system such as ALSI would be able to capture the change in spatial utilization over

different application phases. This results in ALSI outperforming the static best line

size configuration for a number of workloads such as PVR, SS, and KMN.

3.3.5 ID-Cache - Instruction and Divergence Based Cache Management

ID-Cache is composed of its component policies PC+DIV based bypassing and

adaptive line size insertion as described in Section 3.2.5. Overall, when compared

with the baseline architecture, ID-Cache achieves an average of 71% performance im-

provement for the cache and bandwidth capacity sensitive workloads, as Figure 3.14

shows. The significant performance gain from ID-Cache matches 90% of that from a

GPU with doubled cache and bandwidth capacities (2x L1D$ + 2x BW). Figure 3.14

64

0	

0.2	

0.4	

0.6	

0.8	

1	

0	

20	

40	

60	

80	

100	

In
te
rc
on

ne
ct
	
 B
us
y	

St
al
l	
 	

N
or
m
al
iz
ed

	
 to
	
 B
as
el
in
e	

Hi
t	
 R

at
e	

(%

)	

Baseline	
 ID-­‐Cache	
 Interconnect	
 Busy	
 Stall	

Figure 3.15: L1 data cache hit rate improvement and interconnect busy stall reduction

provided by ID-Cache.

also shows the performance of ID-Cache’s component policies—ID-Cache Bypass and

ALSI—individually. Generally, ID-Cache performs better than its component poli-

cies. Combining a more intelligent bypassing scheme and adaptive cache line size

insertion results in added performance gain for most of the workloads. For a few

workloads, i.e., SS, CSR and MM, while ID-Cache improves the performance, the per-

formance gain is lower than that of its component policy, ALSI. This is because the

reuse behavior changes with the varying cache line sizes and a simple bypass predic-

tor (ID-Cache Bypass) is unable to learn the changing reuse behavior introduced by

the varying cache line sizes inserted by ALSI, leading to bypassing cache lines too

aggressively.

To understand the source of the large performance gain brought by ID-Cache,

I take a closer look at the cache and interconnect performance. Figure 3.15 shows

that L1 data cache hit rate improvement and the reduction in interconnect busy

stalls, that is achieved by ID-Cache. The hit rate improvement signifies the improved

utilization of cache capacity under ID-Cache. On the other hand, the reduction in

interconnect busy stalls demonstrates ID-Cache’s improved bandwidth utilization.

65

ID-Cache increases L1D cache hit rate by 10% and reduces interconnect busy stalls

by 60% for C/I-H workloads. This shows that, by utilizing program level information

such as instruction PC and runtime information such as memory divergence patterns

intelligently, the performance of GPGPU applications can be significantly enhanced.

3.4 Related Work

In order to alleviate cache thrashing and resource contention, many prior works

focused on designing cache bypassing algorithms tailed-made for GPGPUs. Jia et

al. [75], Xie et al. [175], and Xie et al. [176] proposed using compilers to perform

offline analysis and identify memory regions which have long reuse distances. These

memory regions are then bypassed from the cache. Jia et al. [76], Chen et al. [51], and

Khairy et al. [84] demonstrated that bypassing memory accesses whenever resource

contention is detected could effectively improve the performance of GPGPUs. Tian

et al. [165] built additional hardware in L2 caches to collect and predict the reuse

pattern of L1 cache, whereas Li et al. [104] proposed using decoupled tag arrays to

calculate the reuse distance. Lee et al. [100] proposed CAWA which uses instruction

level information to predict reuse distance. The goal of CAWA is to accelerate the

performance of the critical, i.e., the slowest running, warp within a thread block. In

contrast, all these cache bypassing and modified insertion/replacement schemes only

take temporal locality into account. This work characterizes the efficacy of utilizing

program level information such as insertion PCs and runtime information such as

memory divergence to predict reuse behavior and the spatial utilization patterns of

cache lines.

Rhu et al. [146] observed that data caches in GPGPUs usually have low cache

line utilization, i.e., only a small portion of data within a cache line are referenced

during the line’s lifetime. As a result, a large amount of data traffic across the

66

interconnection is redundant. Thus, the authors proposed LAMAR, a low overhead

bloom filter and sectored cache based design to (1) reduce data traffic by bringing and

storing segments of cache lines into the cache and (2) improve the energy efficiency

by turning off the unused portion of the caches. This proposal, on the other hand,

demonstrates that there is minimal amount of spatial locality that can be exploited

in a wide variety of GPGPU applications and the spatial utilization of cache lines is

highly correlated with the degree of divergence. Thus, instead of bringing a smaller

amount of data based on first touched patterns, ID-Cache determines the amount of

data to bring and store in the L1 caches based on memory divergence patterns.

3.5 Chapter Summary

In this chapter I identified key sources of inefficiencies in the memory subsystem

of GPGPUs. My analysis indicated that there is an ample room for performance

improvement which can be achieved by effective management of GPGPU L1 data

caches and the interconnect bandwidth. I showed that the reuse behavior of cache

lines is well correlated with program level information such as memory load/store

instructions and runtime information such as memory divergence patterns. Based

on the insights from the characterization results, I design ID-Cache, a simple, yet

effective, cache management mechanism. ID-Cache identifies and bypasses zero reuse

cache lines intelligently (PC+DIV Bypass) while inserting useful data into caches

with appropriate size granularities (ALSI). ID-Cache achieves a significant 71% per-

formance improvement by alleviating the severe data cache capacity problem faced

by GPGPUs.

67

Chapter 4

LATENCY TOLERANCE AWARE CACHE COMPRESSION MANAGEMENT

FOR GPGPUS

Chapter 3 of my thesis highlights an important cause of performance sub-optimality

in GPGPUs — constrained data capacity. I proposed ID-Cache, a cache bypassing

and adaptive line size insertion technique that alleviates the constrained data cache

capacity problem. Orthogonally, cache compression is a common way to increase the

effective capacity of caches with low overheads. This chapter focuses on the feasibility

and applicability of cache compression as a solution to the constrained data capacity

problem faced by GPGPUs.

To evaluate the applicability of cache compression, I first carry out a thorough

characterization study to understand the data compressibility and the impact of de-

compression latency on GPGPU applications. I then propose LATency Tolerance

awarE Cache Compression (LATTE-CC) [27] which intelligently leverages the GPGPU’s

latency tolerating ability to adaptively choose the best compression technique whose

decompression latency can be hidden.

4.1 Background and Motivation

Cache data compression is a natural approach to increase the effective cache ca-

pacity in an energy efficient way. For data compression to be beneficial 1) the data

used by the applications must be compressible, and 2) the performance benefit given

by the effective capacity increase must be greater than the penalty incurred by the in-

crease in cache hit time. In other words, the decompression latency must be partially

or entirely hidden from the performance critical path of an application execution.

68

Table 4.1: Comparison between the state-of-the-art cache compression algorithms.

Algorithm
Decomp.

Lat.

Value

Locality

Compress-

ibility
Complex.

Base Delta Immediate (BDI) [138] 2 Spatial Higher Low

Frequent Pattern Compression

(FPC) [21]
5 Spatial Low High

Cache Packer + Zero Value

Compression (CPACK + Z) [52, 57]
8 Both Low High

Bit Plane Compression (BPC) [90] 11 Spatial High Moderate

Statistical Compression (SC) [24] 14 Temporal Highest High

Section 4.1.1 first shows a detailed characterization study for data compressibility of

GPGPU workloads and evaluates the performance benefit brought by the effective ca-

pacity increase. Section 4.1.2 assesses the degree of the decompression latency penalty

that can be hidden in these workloads and by the architecture. Lastly, Section 4.1.3

motivates the need for adaptive compression designs in GPGPUs.

4.1.1 GPGPU Workload Data Compressibility

The effective capacity increase provided by data compression is a direct func-

tion of the data compressibility of applications. This data compressibility is dictated

by the data values used and the algorithm itself. Prior work has observed value

locality—data accessed by applications often has same or similar values during pro-

gram execution [23]. Additionally, value locality can be extended to temporal value

locality and spatial value locality [149]. Temporal value locality is the phenomenon

where a particular data value is accessed repeatedly and spatial value locality is the

phenomenon where the data values in adjacent memory locations are similar to each

69

0

1

2

3

4

5

B
FS K
M P
F SS

M
M B
C

M
IS

C
LR FW P
R

K

D
JK

A
vg

C
o

m
p

re
ss

io
n

 R
at

io

(t
im

e
s)

BDI FPC CPACK + Z BPC SC
13x

6x 9.4x

Figure 4.1: Compression ratio achieved by the state-of-the-art compression algo-

rithms, i.e., BDI [138], FPC [21], CPACK-Z [52], BPC [90], and SC [24].

other. Data compression algorithms are designed to exploit the two distinct value

locality properties.

The efficiency of a compression algorithm is measured as the achieved compres-

sion ratio — the ratio of the original data size and the resulting compressed size.

To quantify the data compressibility of the workloads, I evaluate the compression

ratio of all cache lines inserted in the L1 data caches with five state-of-the-art cache

compression algorithms summarized in Table 4.1: base delta immediate compression

(BDI) [138], frequent pattern compression (FPC) [21], dictionary-based compression

with zero-block detection (CPACK-Z) [52, 57], bit plane compression (BPC) [90],

and huffman-coding based statistical compression (SC) [24]. Algorithms such as BDI,

FPC, and BPC perform value compression by compacting identical or similar values

within cache lines, exploiting spatial value locality. On the other hand, CPACK-Z

and SC exploit temporal value locality by replacing identical values across multiple

memory locations with shorter codes.

Figure 4.1 shows the varying degree of the data compression ratios achieved for a

wide range of GPGPU workloads 1 . We observe that almost all applications exhibit
1Workload selection is described in detail in Section 4.3 and Table 4.3.

70

a high degree of data compressibility. Applications, such as BFS, BC, FW, and DJK,

achieve significant cache line size reduction with multiple compression algorithms and

show both spatial and temporal localities in their data values. On the other hand,

applications, such as KM, SS, MM, and PRK, show a significant affinity to the compression

algorithms that exploit temporal value locality, whereas PF achieves more significant

compression ratio with BDI and BPC, compression algorithms that exploits spatial

value locality. This is due to the fact that the presence of spatial or temporal value

locality in applications depends on the data types that are used in the applications

[22]. Applications that operate on pointer and integer data typically contain low

variance in data bits, thus exhibiting high degree of spatial value locality. On the

other hand, high precision floating point data inherently contains high variance in

the data bits. Thus, applications that operate on floating point data often have

poor spatial value locality but exhibit high temporal value locality. This indicates a

need for an adaptive algorithm that can exploit both the spatial and temporal value

localities that exists but varies across workloads.

From Figure 4.1, we can also observe that commonly-used cache compression al-

gorithms for CMP caches, i.e., FPC and CPACK+Z, do not achieve high compression

ratios compared to BDI, BPC, and SC. Note that SC and BDI compression exploit

complementary kinds of value locality and also represent two compression schemes

with diverse decompression latencies. Thus, I focus the design and analysis with the

combination of BDI and SC for the purpose of GPGPU’s memory hierarchy optimiza-

tion. Since there are a few workloads that prefer BPC compression in particular, I

will study the inclusion of BPC compression in LATTE-CC later in Section 4.3.8

Next, I characterize the expected performance gain that can be attained due to

the increase in L1 data cache capacity. To isolate the performance improvement

potential from the decompression latency penalty, I increase the cache capacity by

71

1

1.5

2

2.5

B
FS K
M P
F SS

M
M B
C

M
IS

C
LR FW P
R
K

D
JK

A
vg

Sp
e

e
d

u
p

 o
ve

r
B

as
e

lin
e

BDI SC
3x

Figure 4.2: Performance impact of the effective cache capacity increase provided by

data compression. The decompression latency is not taken into consideration here.

Thus, the performance speedup shown here is the performance upper bound for static

application of BDI and SC.

employing static compression while assuming a zero decompression latency. Figure 4.2

shows that significant performance improvement can be achieved for a majority of the

workloads. This serves as the performance upper bound for the workloads under the

static applications of BDI and SC, respectively.

4.1.2 Latency Tolerance of GPGPUs

GPGPUs group a number of parallel threads and execute them simultaneously

in single instruction multiple thread (SIMT) fashion. This group of threads that

execute simultaneously is called a warp. GPGPUs are able to hide the stall latency

from a warp with useful instruction execution from another warp through fast context-

switching. By taking advantage of this latency hiding feature, I expect to see a part

of or all of the decompression latency to be overlapped with the execution of other

available warps in the GPGPU pipeline.

The availability of this latency hiding feature depends mostly on two factors.

Firstly, the regularity in an application’s memory access behavior influences the avail-

able latency tolerance. For instance, depending on the underlying warp scheduling

72

0

10

20

30

40

50

B
FS K
M P
F SS

M
M B
C

M
IS

C
LR FW P
R
K

D
JK

A
vg
.

%
 D

e
gr

ad
at

io
n

 in

P
e

rf
o

rm
an

ce

(L
o

w
e

r
is

 B
et

te
r)

BDI SC

Figure 4.3: Performance degradation with increase in cache hit latency due to de-

compression. The cache capacity increase is not taken into consideration here.

policy, all warps in a GPU application could experience long latency memory access

stalls at the same time. This results in low latency tolerance. Second, the GPGPU

application might be characterized by varying amount of warp-level parallelism, pos-

sibly due to branch divergence.

To quantify the available latency tolerance in GPGPU workloads I measure the

performance degradation caused by the decompression latencies of BDI and SC com-

pression algorithms 2 . From Figure 4.3, we can see that some applications are highly

sensitive to the decompression latency, while others are not. Applications, such as FW

and BC, undergo significant performance degradation (47% and 22%, respectively),

whereas PRK is able to tolerate the 14-cycle decompression latency of SC without

experiencing any performance degradation.

4.1.3 Adaptive Compression in GPGPUs

Besides the varying degree and different forms of data value locality, and the

varying degree of latency tolerance across different workloads, I also observe that the

latency hiding ability of GPGPUs varies over time. Motivated by this, I delve deeper
2The decompression latencies are detailed in Section 5.3.1

73

0

5

10

15

20

25

La
te

n
cy

 T
o

le
ra

n
ce

(C

yc
le

s)

Time

Moderate Latency Tolerance Phase
Low Latency

Tolerance Phase

High Latency
Tolerance Phase

Figure 4.4: GPU latency tolerance characterization for SS GPGPU benchmark.

into investigating the temporal characteristics of GPU latency tolerance. I use the

number of available warps in a GPU Streaming Multiprocessor (SM) as a proxy for

the degree of latency tolerance and examine the time-varying latency tolerance for

SS in Figure 4.4 as an example. The x-axis represents the application execution over

time while the y-axis plots the latency tolerance. The latency tolerance represents

the number of latency cycles that can be hidden by the GPGPU, described in detail

in Section 4.2.2. We can see that SS goes through phases of varying degrees of

latency tolerance, which dictates whether the decompression latency can be hidden

or not. Therefore, exploiting the temporal variation in latency tolerance is critical to

maximizing performance.

I characterize the performance improvement and energy reduction when BDI and

SC are directly applied to the L1 data caches, taking into account both the capacity

benefit and latency increase. Figure 4.5(a) shows the performance speedup for the

GPGPU workloads under BDI (the first bars) and SC (the second bars). There

is a significant variation from +48% to -52% in performance when a static cache

compression method is applied. Similarly, a significant variation can be seen in the

energy consumption (1.36x to 0.76x) when a static compression method is applied

(Figure 4.5(b)). This is a compound effect of the performance gain from the increased

74

0.6

0.8

1

1.2

1.4

1.6

B
FS K
M P
F SS

M
M B
C

M
IS

C
LR FW P
R
K

D
JK

A
vg
.

Sp
e

e
d

u
p

 o
ve

r
B

as
e

lin
e

BDI SC Proposed

0.6

0.8

1

1.2

1.4

1.6

B
FS K
M P
F SS

M
M B
C

M
IS

C
LR FW P
R
K

D
JK

A
vg
.En

e
rg

y
N

o
rm

al
iz

e
d

to

 B
as

e
lin

e

BDI SC Proposed

0.48

(a)

(b)

Figure 4.5: (a) Potential performance impact and (b) potential energy impact when

BDI and SC are directly applied, and when an adaptive technique like LATTE-CC

is applied.

cache capacity, the latency penalty from decompression and the temporal variations

of latency tolerance. With a design that is able to exploit the variations of latency

tolerance (the third bars) by switching between the available compression modes,

additional performance and energy savings can be achieved. This is particularly

significant for KM, SS, and MM.

Therefore, to achieve consistent high performance speedup and energy reduction,

it is necessary to adopt a compression algorithm that achieves a higher compression

ratio at the cost of longer decompression latency, during the execution phases of

high latency tolerance. Similarly, it is also important to revert to a compression

algorithm that incurs lower decompression latency at the cost of achieving potentially

lower compression ratio during the execution phases of low latency tolerance. Finally,

75

Estimate Cache
Capacity
Benefit of

Compression

Estimate GPU
Latency

Tolerance

Choose
Optimal

Compression
Mode

Figure 4.6: A conceptual overview of LATTE-CC.

when compression brings no added benefit, it might even be necessary to switch

off the compression feature. With this insight, I design LATTE-CC, an adaptive

technique that learns the runtime latency tolerance of GPGPU workloads, estimates

the performance benefit of different compression methods, and determines the best

cache compression operation mode to maximize performance.

4.2 LATTE-CC Design and Implementation

I propose an adaptive compression management approach, LATency Tolerance

AwarE Cache Compression or LATTE-CC for the L1 data caches of GPUs. The key

component of LATTE-CC is the design of an adaptive algorithm that dynamically

predicts the best compression operating mode among the three choices: no compres-

sion (baseline), low-latency, and high-capacity modes, at runtime. The low-latency

mode implements the BDI compression algorithm that exploits spatial value locality

while the high-performance mode implements the SC compression algorithm which

exploits temporal value locality available in applications. LATTE-CC is agnostic to

the underlying compression algorithms and can be implemented with different com-

pression hardware as well.

The dynamic compression mode selection is designed based on the performance

trade-off of three important factors: cache capacity benefit brought by compression,

decompression latency overhead, and the extent of GPU latency tolerance. Depending

76

SM-3
SM-2

Streaming Multiprocessor (SM-1)

To L2 Cache
W

ar
p

0
W

ar
p

1
W

ar
p

2

W
ar

p
(N

-1
)

Warp
Pool

.
decompressed

data

.. .SIMD Lanes

compressed
data

LATTE-CC

Warp Scheduler

[Sec. 4.2.2]

compressed
data

[Sec. 4.2.2]

Tag;
Compression_policy;
Compression_Encoding;

Compression
mode

. . .

L1 Data Cache

Fig. 4.8

Latency Tolerance Estimator

BD
I &

 S
C

co

m
pr

es
so

rs

[Sec. 4.3.3]

BD
I &

 S
C

de

co
m

pr
es

so
rs

[Sec. 4.3.3]

C
om

pr
es

si
on

 M
od

e
P

re
di

ct
io

n
D

ef
au

lt/
BD

I/S
C

[Sec. 4.2.1]
Capacity Benefit Estimator

Figure 4.7: Block diagram of the modern GPU architecture with the LATTE-CC

components.

on the application locality and data value characteristics, the different compression

modes result in different degrees of performance improvement. On the other hand,

depending on the dynamically varying latency hiding ability of the pipeline, a varying

degree of the decompression latency can be hidden. Thus, LATTE-CC is designed

to adopt the compression decision to maximize the net performance improvement

(Section 4.2.1) by estimating both the benefit of cache capacity increase offered by

the different compression modes (Section 4.2.2) and the dynamically varying latency

tolerance of the GPU (Section 4.2.2). Figure 4.6 shows a conceptual overview of

LATTE-CC’s design and Figure 4.7 illustrates the LATTE-CC architecture and its

three major components: the adaptive compression mode prediction algorithm, the

cache capacity benefit estimator, and the latency tolerance estimator, in the context

of a GPU.

4.2.1 Minimizing AMATGP U for Optimal Compression Mode Selection

I use the average memory access time (AMAT) as a metric to combine the perfor-

mance effects of cache capacity increase and decompression latency in the presence of

a GPU’s latency tolerance. An application receives more performance gain from using

77

one compression algorithm (Compr1) than using a different compression algorithm

(Compr2) if AMATCompr1 is less than AMATCompr2.

Conventionally, AMAT is given by

AMAT = total_hit_latency + total_miss_latency
Nhits +Nmisses

(4.1)

where,

total_hit_latency = (Nhits ∗ hit_latency)

total_miss_latency = (Nmisses ∗miss_latency)

However, in the context of GPUs, the average memory access time that is expe-

rienced by the pipeline also depends on the GPU pipeline’s latency hiding ability or

latency tolerance. Therefore, AMATGP U for a GPU should be expressed as

AMATGP U = total_hit_latencyGP U + total_miss_latency
Nhits +Nmisses

(4.2)

where,

total_hit_latencyGP U = Nhits∗

min[(hit_latency − latency_tolerance), 0]

latency_tolerance = latency tolerance of GPU

total_miss_latency = Nmisses ∗miss_latency

I utilize this notion of AMATGP U to dynamically determine the better operating

compression mode. In other words, LATTE-CC estimates the AMATGP U for the

different compression modes periodically and chooses the compression mode that

minimizes the average memory access time experienced by the application.

4.2.2 Dynamic Estimation of AMATGP U

LATTE-CC is designed with the goal of capturing the dynamic application phase

behavior. To accomplish this, LATTE-CC uses a dynamic profiling technique to

78

estimate AMATGP U for the different compression modes periodically. LATTE-CC

breaks down the application execution into multiple smaller periods that consists of

learning and adaptive phases, each comprised of one or more Experimental Phases

(EPs).

Estimating Performance Improvement From Increased Effective Capacity

LATTE-CC uses the learning phase of each period to estimate the cache capacity

benefit brought by different compression modes. This is done using a modified set

sampling-based dynamic profiling method [143] as shown in Figure 4.8. During the

learning phase EPs, LATTE-CC operates a small number of cache sets of the L1 data

cache as the dedicated sets for the Default, BDI, and SC compression modes. Then,

in the following EPs in the adaptive phase, the dedicated sets are operated as the

follower sets (to minimize set sampling overhead) which always apply the winning

compression mode.

In order to estimate the performance of the different compression modes, I im-

plement two counters for each mode—one counts the number of cache line insertions

of a compression mode (Nmiss,modei
) and the other counts the number of cache hits

(Nhit,modei
). These counters are incremented only on accesses to the corresponding

dedicated sets. That is, during the learning phase EPs, Nmiss,modedefault/BDI/SC
and

Nhit,modedefault/BDI/SC
are incremented. Note that the benefit of compression might

manifest later in time relative to the insertion time. Therefore, I allow the counters,

Nhit,modedefault/BDI/SC
to continue their update on hits in the dedicated sets during

one subsequent EP following the learning phase EPs. Since cache line reuses exhibit

generational behavior, I do not expect to see many more cache hits beyond the EP

following the learning phase. Thus, if the learning phase spans one EP, then Nhit,modei

is designed to count the number of hits during the first and second EPs of each period.

79

Adap%ve	Phase	
Time	EP-1	 EP-m	 EP-m+1			 	 	EP-(N)	

Learning	Phase	

LATTE-CC	Mode	
	

.	

Default	Mode	Dedicated	Set	 Adap2ve	Phase	Decision	Sets	
(No	Set	Sampling)	BDI	Mode	Dedicated	Set	

SC	Mode	Dedicated	Set	
Learning	Phase	Follower		
Set	(BDI)	

Figure 4.8: Modified set sampling in the LATTE-CC data caches.

Following the end of the learning phase, LATTE-CC is able to estimate the cache

performance under the three operating compression modes using the dynamically

measured hit and insertion counts from the dedicated sets.

Estimating Performance Penalty From Increased Hit Latency

In addition to the key element of exploiting data compressibility in GPU work-

loads, another important design question to address is whether and how the increase

in cache hit latency can be overlapped with useful instruction execution in the GPU

pipeline. An effective cache compression design has to take into account the time-

varying degree of latency tolerance in GPU SMs such that the hit latency due to

decompression can be hidden as much as possible.

I estimate the effective hit latency experienced by a compressed cache line as the

sum of the decompression latency and the amount of time the line waits for service

from the decompression unit (in a decompression queue). Therefore, the effective hit

latency is

effective_hit_latency = decompression_latency∗

(queue_insertion_pos+ 1)
(4.3)

80

where,

queue_insertion_pos = the insertion position of the

line in the decompression queue

To determine whether or not the effective_hit_latency can be hidden, LATTE-

CC uses the number of available warps as a proxy for the degree of pipeline latency

tolerance. For example, when a compressed cache line receives a hit, the additional

decompression latency is incurred for the de-compressor to provide the data to the

requesting warp. If there are other ready warps available for execution, the decom-

pression latency becomes hidden and is overlapped with the execution of other warps.

In a round-robin warp scheduler, the degree of latency tolerance can be simply

estimated as the number of available warps in the warp scheduler as the scheduler

executes one instruction from each available warp before switching to the next. I

utilize a more advanced Greedy-Then-Oldest (GTO) scheduler [147] in LATTE-CC.

In schedulers similar to the state-of-the-art GTO scheduler, the scheduler tries to

execute as many instructions as possible from each available warp before switching

to the next. In such a scenario, the degree of latency tolerance can be estimated as

follows:

latency_tolerance = average_warp_available∗

average_execution_cycles_per_schedule
(4.4)

4.2.3 Putting it all Together

Figure 4.9 shows the LATTE-CC execution over time. LATTE-CC goes through a

number of learning and adaptive phases to adapt to the run-time phase behavior in an

application. LATTE-CC learns and predicts the operating mode that results in better

cache hit performance in the learning phase. Furthermore, LATTE-CC continuously

81

Adaptive Phase

Time EP-1 EP-2 EP-3 EP-4 EP-(N-3)

Learning Phase

O
p

er
a

ti
n

g
 M

o
d

e

D
ef

a
u

lt
 /

 B
D

I /
 S

C

 (
d

ed
. s

et
s)

B

D
I

B
D

I

LATTE-CC Mode
mode = MODE such that,

AMATGPU = min(AMATGPU,Default,

 AMATGPU,BDI,

 AMATGPU,SC)

AMATGPU,mode = f(Nhit,mode,
 Nmiss,mode,

 Latency_Tolerance)

EP-2
if(hit)

 if(ded. set)

 Nhit,mode++;

EP-1
if (hit)

 if(ded. set)

 Nhit,mode++;

else

 if(ded. set)

 Nmiss,mode++;

Figure 4.9: A temporal representation of LATTE-CC.

estimates the latency tolerance of the GPU pipeline in each EP of the adaptive phase.

Finally, LATTE-CC chooses the optimal compression mode that maximizes the cache

hit performance subject to the current degree of latency tolerance in each EP. By doing

so, LATTE-CC always chooses the operating mode for each EP that results in the

lowest AMATGP U .

4.3 Evaluation and Analysis

4.3.1 Simulation Infrastructure

I model LATTE-CC with GPGPU-Sim (version 3.2.2), a cycle-level GPU simu-

lator [31]. The details of the simulated baseline system are given in Table 4.2. This

setup is similar to the baseline configurations used in other recent works [100, 105,

137, 147]. I implement BDI and SC compressors/decompressors, and a compressed

data cache in GPGPU-Sim. The compressed cache is provisioned with four times the

tag blocks and allows data to be stored in 32B sub blocks. This compressed cache

82

Table 4.2: LATTE-CC: Baseline system configurations.

Parameter Value(s)

Num. of SMs 15

Max. # of Warps per SM 48

Max. # of Blocks per SM 8

of Schedulers per SM 2

of Registers per SM 32768

Shared Memory 48KB

L1 Data Cache 16KB per SM (128B lines/4-ways)

L1 Inst Cache 2KB per SM (128B lines/4-ways)

L2 Cache
768KB unified cache (128B

lines/8-ways/12-banks)

Min. L2 Access Latency 120 cycles

Min. DRAM access Latency 220 cycles

Warp Size (SIMD Width) 32 threads

Warp Scheduler GTO [147]

organization is a simple modification to the existing data cache and similar cache

organizations have been used in prior works [20, 22, 63].

To analyze the energy consumption of LATTE-CC and other compression meth-

ods, I use a modified version of GPUWattch [102] that is augmented with the BDI

and SC compressor and decompressor power models.

4.3.2 Workload Construction

I use a wide variety of GPU workloads taken from Pannotia [46], Rodinia [47],

Mars [65], and NVIDIA SDK [124] benchmark suites to evaluate LATTE-CC and

83

Table 4.3: LATTE-CC: GPGPU benchmarks and input sets.

Abbr Application Input Cat.

BO Binomial Options [124] 512 Options

C-InSens

PTH Path Finder [47] 100k nodes

HOT Hotspot [47] 512x512 nodes

FWT Fast Walsh Trans. [124] 32k samples

BP Back Propagation [47] 65536 nodes

NW Needleman-Wunsh [47] 1024x1024 nodes

SR1 SRAD1 [47] 502x458 nodes

HTW Heartwall [48] 656x744 AVI

SC Streamcluster [47] 32x4096 nodes

BT B+Tree [47] 1M nodes

WC Word Count [65] 86kB text file

BFS Breadth First Search [47] 65536 nodes

C-Sens

KM K-Means [47] 494020 objects

PF Particle Filter [47] 28x128x10 nodes

SS Similarity Score [65] 1024x256 points

MM Matrix Multiplication [65] 1024x1024

BC Betweenness Centrality [46] 1K (V), 128K (E)

MIS Maximal Ind. Set [46] ecology

CLR Graph Coloring [46] ecology

FW Floyd Warshall [46] 256(V), 16K (E)

PRK Pagerank (SPMV) [46] Co-Author DBLP

DJK Dijkstra-ELL [46] USA road NY

84

compare its performance with other designs. These workloads represent important

computing domains such as web document clustering, web search, medical imaging,

data mining, social network and graph analysis, financial modeling, and scientific

simulations. I classify the applications into two categories based on their sensitivity

to data cache capacity. I classify a workload as cache insensitive (C-InSens) if it

experiences less than 20% performance speedup in the presence of a 4x larger data

cache and as cache sensitive (C-Sens) if it experiences more than 20% performance

speedup. The workloads and their input sets are summarized in Table 4.3. I simulate

each benchmark for 1 billion instructions or to completion, whichever is earlier. Sim-

ilar methodology for workload selection is used in recent GPGPU works [28, 43, 105]

4.3.3 Component Compression Policy Implementation Details

BDI Compressor/Decompressor Details

I model a 2/2-cycle compression/decompression latency, and 0.192/0.056 nJ com-

pression/decompression access energy for BDI [22]. The BDI compression algorithm

chooses a 2, 4, or 8B base, divides the cache line into blocks of size equal to base, and

represents each block as a delta which is the difference of the value of the block from

the base. This results in 10 possible encoding combinations of different base and delta

as follows: (1) All zero; (2) base = 8B, delta = 0 (all blocks are same); (3) base = 8B,

delta = 1, 2, or 4B; (4) base = 4B, delta = 0 (all blocks are same); base = 4B, delta

= 1 or 2B; (5) base = 2B, delta = 0; (6) base = 2B, delta = 1B. These encodings

are stored as part of the metadata in the 4 bit compression_enc field within each tag

block.

85

SC Compressor/Decompressor Details

I model a 6/14-cycle compression/decompression latency and 0.42/0.336 nJ com-

pression/decompression access energy for SC [22]. The SC compression algorithm

uses a Huffman coding based compression technique [68] to compress the cache lines.

Huffman coding based compression assigns variable length codes to data values based

on the probability of their occurrence. A shorter code is applied to a value which has

a higher probability of occurrence. In order to generate Huffman codes for compres-

sion, a value-frequency table (VFT), that holds the data value and the frequency of

it’s use needs to be built.

To exploit the generational behavior of cache accesses in GPU applications, I revise

the SC compression algorithm such that, a 1024-entry VFT with 12-bit counters, is

built during the first EP of the first period, and is re-built during the final EP of each

period. Therefore, during each period of EPs, SC (and LATTE-CC) uses a newly

generated set of codes to perform SC compression. SC (and LATTE-CC) invalidates

older cache lines when a new period starts.

SC utilizes a table of code-words in the compressor, and a lookup table for decom-

pression (DeLUT). The hardware overhead is 5.5KB for VFT, 7KB for the compressor,

and 3KB for the DeLUT. This translates to a total of 6.45% of the total data cache

capacity (15.5KB/(16KB/SM*15 SMs)) for the GPU. Note, the bandwidth require-

ment of the SC decompressor is determined largely by the L1 data cache hit rate,

which is typically in the range of 40% - 50% for GPGPUs. This places a relatively

low bandwidth demand on the decompressor as compared to CMPs, whose L1 data

cache hit rates are typically greater than 90%.

86

LATTE-CC Parameters

I empirically set the period size of LATTE-CC to be 10 EPs and the length of

the learning phase is set to be one EP. Finally, I set each EP to be 256 accesses long.

During the learning phase, I use four dedicated sets per compression mode. I utilize

two additional bits per tag blocks to store the compression_policy information for

each cache line.

Based on performance characterization, I observe that the write policy employed

for GPU L1 caches has negligible impact on performance. Therefore, I model L1

caches as write-evict caches. This allows LATTE-CC the choice of not having to

potentially evict other cache lines on write hits.

4.3.4 Overall Performance and Energy Impact

Overall, LATTE-CC improves GPU performance by an average of 19.2% (by as

much as 48.4%) and reduces L1 data cache misses by 24.6% compared to the baseline

uncompressed cache for the C-Sens category workloads. While Static-BDI achieves

13.6% speedup and 19.2% reduction in L1 data cache misses, Static-SC incurs a

performance degradation of 8.2% despite achieving an impressive 28.7% reduction

in cache misses for these workloads. For C-InSens category workloads, LATTE-CC

and Static-BDI result in negligible performance change as these workloads are not

sensitive to the additional cache capacity brought by compression. On the other

hand, the decompression latency penalty incurred by Static-SC results in a significant

performance degradation for many applications (e.g. HTW, SC, BT), leading to 13.4%

performance degradation on average for C-InSens workloads. Figures 4.10 and 4.11

show the application performance speedup and the L1 miss reduction comparison for

Static-BDI, Static-SC, and LATTE-CC compression designs.

87

0.6

0.8

1

1.2

1.4

B
O

P
TH

H
O

T

FW
T

B
P

N
W

SR
1

H
TW SC B

T

W
C

A
vg

 C
-I

n
Se

n
s

B
FS K
M P
F SS

M
M B
C

M
IS

C
LR FW P
R

K

D
JK

A
vg

 C
-S

en
s

C-InSens C-Sens

Sp
e

e
d

u
p

 o
ve

r
B

as
e

lin
e

BDI SC Latte-CC Kernel-OPT

0.28 0.48

1.48x

Figure 4.10: Performance improvement with LATTE-CC.

0

20

40

60

80

B
FS K
M P
F SS

M
M B
C

M
IS

C
LR FW P
R
K

D
JK

C
-S
en

s

C
-I
n
Se
n
s

C-Sens Avg.

%
 R

e
d

u
ct

io
n

 in
 M

is
se

s
co

m
p

ar
e

d
 t

o
 B

as
e

lin
e

BDI SC LATTE-CC Kernel-OPT

Figure 4.11: L1 cache miss reduction with LATTE-CC.

Furthermore, as we see from Figure 4.1, some C-Sens workloads favor BDI com-

pression (e.g. BC, FW, DJK), while others favor SC (e.g. PRK, KM). Additionally, although

applications such as KM, SS, and MM achieve higher compression ratio and lower cache

miss rate (Figure 4.11) with SC, Static-SC is unable to translate this into performance

improvement due to the high degree of unhidden decompression cost.

One of LATTE-CC’s key design feature is to predict and adopt the best performing

cache compression mode while taking into account the degree of GPU’s latency toler-

ance, dynamically. By doing so, it captures the diverse and time-varying behavior of

the workloads. That is, for workloads such as BC, FW, DJK and others, LATTE-CC is

able to get the performance benefits of BDI compression while realizing the increased

capacity benefits of the SC compression for workloads such as KM, MM and others. This

88

0.6

0.8

1

1.2

1.4

B
FS K
M P
F SS

M
M B
C

M
IS

C
LR FW P
R
K

D
JK

C
-S
en

s

C
-I
n
Se
n
s

C-Sens Avg.

En
e

rg
y

N
o

rm
al

iz
e

d
 t

o

B
as

e
lin

e

BDI SC LATTE-CC

Figure 4.12: GPU energy consumption comparison.

results in LATTE-CC achieving superior performance across diverse application be-

haviors with a robust 19% average speedup and 24.6% reduction in misses compared

to the baseline.

Energy Saving: I observe that LATTE-CC is able to achieve significant energy

savings compared to the baseline. LATTE-CC’s energy impact comes from the fol-

lowing sources: reduction in application execution time, reduction in data movement

in the cache hierarchy, overhead associated with compression and decompression op-

erations, and reduction in the L2 cache energy due to reduced accesses. I take all

these factors into consideration.

Figure 4.12 shows the energy consumption of the GPU, for the different compres-

sion schemes. For C-Sens workloads, LATTE-CC reduces the energy consumption by

10% while Static-BDI does so by 5%. Static-SC on the other hand does not provide

any energy savings on average. Among the C-InSens workloads, while LATTE-CC

and Static-BDI do not alter the energy consumption considerably, Static-SC increases

the energy consumption by 8.7% on average and by much as 53% for HTW workload.

Next, I take a closer look to understand the sources of energy reduction achieved

by LATTE-CC. Figure 4.13 shows the breakdown of the energy reduction achieved

89

-5

0

5

10

15

20

B
FS K
M P
F SS

M
M B
C

M
IS

C
LR FW P
R

K

D
JK

C
-S

en
s

C-Sens Avg

LA
T

TE
-C

C
 E

n
e

rg
y

R
e

d
u

ct
io

n

C
o

m
p

ar
e

d
 t

o
 B

as
e

lin
e

 (
%

)

Data Movement Energy Static Energy
L2 Cache Energy DRAM Energy
Other Energy Compr Energy

Figure 4.13: Breakdown of GPU Energy Reduction achieved by LATTE-CC.

by LATTE-CC for C-Sens workloads. I find that the reduction in data movement

and static energy make up the bulk of the energy savings, providing 4.2% and 3.7%

GPU energy reduction on average. Finally, I observe that the cost of compression

and decompression energies is < 0.25% of the total GPU energy on average. The

energy analysis highlights the effectiveness of data compression in reducing the energy

consumption in addition to GPU performance improvement.

4.3.5 Comparing LATTE-CC with an Offline Optimal Policy

I also compare LATTE-CC to an oracular compression policy, Kernel-OPT. Kernel-

OPT uses oracle knowledge from the end of each kernel of the application 3 to choose

the compression mode that gives the lowest execution time for that kernel 4 . That is,

while Kernel-OPT performs adaptive compression at a coarse kernel boundary gran-

ularity, LATTE-CC performs adaptive compression at a finer granularity within each

kernel. As seen in Figure 4.10, LATTE-CC is able to perform slightly better than
3Note that a kernel is the block of parallel execution running on the GPU which consists of

multiple LATTE-CC learning and adaptive phases.
4Though such a policy cannot be implemented in hardware, it serves as a reference point for my

study.

90

-25

0

25

50

75

100

-25

0

25

50

75

100

`

BFS KM PF SS MM BC MIS CLR FW PRK DJK

C-Sens

%
 D

if
fe

re
n

ce
 in

 E
xe

cu
ti

o
n

Ti

m
e

Ex
e

cu
ti

o
n

 T
im

e
 B

re
ak

d
o

w
n

(%

)

Agree Disagree Perf Δ (secondary axis)

-42%

Figure 4.14: Comparison of LATTE-CC’s compression mode decision with decision

given by Kernel-OPT. (Perf ∆: Execution time difference between LATTE-CC and

Kernel-OPT. Negative value means LATTE-CC performs better than Kernel-OPT.)

Kernel-OPT, achieving 3% higher speedup on average and 4% greater miss reduction

for the C-Sens workloads.

To compare LATTE-CC’s compression mode decisions with those suggested by

Kernel-OPT, I measure the fraction of execution time where LATTE-CC’s predic-

tion agrees with Kernel-OPT’s, shown in Figure 4.14. The x-axis shows the different

benchmarks and the primary y-axis shows the fraction of the total application exe-

cution time where LATTE-CC’s decision agrees/disagrees with the decision given by

Kernel-OPT. This execution breakdown is shown in the first column for each appli-

cation. The secondary y-axis represents the performance gap between Kernel-OPT

and LATTE-CC for the different benchmarks. This is shown in the second column

for each application.

For applications such as BC and DJK, the compression mode decision of LATTE-

CC is highly correlated with the decision given by Kernel-OPT. However, for others,

the compression mode selected by LATTE-CC is different from the decision given by

Kernel-OPT. This results in some lost opportunity for performance improvement in

applications such as PF, CLR and PRK. This lost opportunity is shown by the Perf ∆ bar

91

in Figure 4.14. It is important to note that LATTE-CC is not designed to necessarily

agree with Kernel-OPT as it operates at a much finer granularity than Kernel-OPT.

This fine-grained runtime adaptation is particularly important for applications whose

best compression operating mode changes over time. For such applications, LATTE-

CC is able to achieve performance improvement that is significantly greater than what

is suggested by Kernel-OPT (by as much as an additional 42%). KM, SS, and MM are

applications that particularly benefit from the fine-grained adaptation as seen from

the corresponding Perf ∆ bars of Figure 4.14. Next, I examine the performance of

SS in more detail.

4.3.6 An Illustrating Application Example: Similarity Score (SS)

SS presents an interesting case. SS is a memory-intensive application whose per-

formance is mainly restricted by the efficiency of the data cache. SS achieves a

modest 0.3% performance improvement with Static-BDI, -15.3% with Static-SC and

20% with LATTE-CC. To investigate the performance of SS further, I measure the

effective cache capacity relative to the baseline cache in Figure 4.15. The effective

cache capacity is calculated as the integral sum of the uncompressed size of all valid

compressed cache lines. Over time, Static-BDI consistently offers very small capacity

benefit to SS. This is because BDI is unable to compress the data values used by SS

significantly (Figure 4.1). On the other hand, SC achieves an impressive compression

ratio of 3.2x. Although Static-SC results in the highest effective cache capacity in-

crease for SS (Figure 4.15), its application performance is significantly degraded. This

is due to the performance penalty from the high hit latency which cannot be easily

hidden. This cost outweighs the benefit brought by the capacity improvement.

To address the aforementioned shortcoming in the static schemes and to fully

exploit the potential benefit brought by SC’s high compression ratio, LATTE-CC dy-

92

0.5

1.5

2.5

3.5

 E
ff

e
ct

iv
e

 C
ac

h
e

 C
ap

ac
it

y
N

o
rm

al
iz

e
d

 t
o

 B
as

e
lin

e

(t
im

e
s)

Time

BDI SC Latte-CC

SC

LATTE-CC

BDI

Figure 4.15: Effective cache capacity variation over time for Similarity Score (SS)

application.

namically assesses the degree of latency tolerance in the GPU pipeline and switches

among the three compression modes, depending on the degree of latency tolerance,

respectively. Over its execution period, SS goes through phases of high, moderate,

and low latency tolerance (Figure 4.4). Furthermore, my analysis shows that SS, like

many other applications, possesses ample data locality. LATTE-CC is able to take

advantage of the high and medium latency tolerance phases to choose SC compression

during the periods of high data locality. This enables LATTE-CC to opportunisti-

cally achieve higher cache capacity when it is most beneficial. As can be seen in

Figure 4.15, LATTE-CC’s effective cache capacity hovers between 1-2X, resulting

in significant net performance gain. This is possible only due to LATTE-CC’s fea-

ture of fine-grained adaptive compression mode selection. Therefore, LATTE-CC is

able to achieve 20% performance improvement, significantly higher than Static-BDI

and Static-SC compression. LATTE-CC also results in 26.6% decrease in L1 cache

misses whereas Static-BDI, and Static-SC achieve 1.4%, and 59.6% miss reduction,

respectively.

LATTE-CC’s performance is also much higher than that of Kernel-OPT. By oper-

ating at a much coarser, kernel boundary granularity, Kernel-OPT loses the opportu-

93

1

1.1

1.2

LA
TT

E-
C

C

A
d

ap
ti

ve
-H

it
-

C
o

u
n

t

A
d

ap
ti

ve
-C

M
P

Speedup

0
10
20
30
40

LA
TT

E-
C

C

A
d

ap
ti

ve
-H

it
-

C
o

u
n

t

A
d

ap
ti

ve
-C

M
P

Reduction in Misses
(%)

Ex
ec

u
ti

o
n

 T
im

e
o

ve
r

B
as

e
lin

e

M
P

K
I R

ed
u

ct
io

n
 o

ve
r

B

as
el

in
e

(%
)

Figure 4.16: Performance comparison of LATTE-CC, Adaptive-Hit-Count, and

Adaptive-CMP[20] policies for C-Sens workloads.

nity to take advantage of the runtime changes in latency tolerance within the kernel

execution. This results in Kernel-OPT achieving only 0.3% performance improvement

over the baseline. I observe a similar behavior with KM and MM workloads which ex-

perience a speedup of 26.9%, and 21.2% under LATTE-CC; significantly larger than

that with Static-BDI, Static-SC, and Kernel-OPT for these workloads. These ap-

plications highlight the advantage of LATTE-CC’s fine-grained adaptive compression

mode selection feature for GPUs.

4.3.7 Benefits of Latency Tolerance Awareness

Next, I show that the optimization goal conventionally used for CMP caches— the

higher the cache hit rate, the better the performance is—does not hold true for GPU

compressed data caches. By accounting for the runtime latency tolerance of GPUs,

LATTE-CC is able to achieve higher performance by sacrificing some cache hits in

the process.

To illustrate the benefit of the latency tolerance awareness feature of LATTE-CC,

I compare LATTE-CC to two other adaptive policies. First, I implement an adaptive

policy that is purely based on the hit counts of the different compression modes—

94

Adaptive-Hit-Count. The Adaptive-Hit-Count policy is based on the modified set

sampling policy described in Section 4.2.2 without taking into account the decom-

pression latency or runtime latency tolerance variation in the GPU pipeline. Second,

I compare LATTE-CC to an adaptive compression management method proposed for

CMPs [20] that takes into account the effect of decompression latency but not the

latency tolerance of GPUs. I refer to this policy as Adaptive-CMP.

Figure 4.16 shows the performance comparison of LATTE-CC in comparison with

Adaptive-Hit-Count, and Adaptive-CMP policies. We can observe that although

Adaptive-Hit-Count reduces misses by an average of 24.3% which is similar to that of

LATTE-CC’s miss reduction, this reduction in misses is not translated to performance

improvement entirely. The Adaptive-Hit-Count policy experiences lower performance

improvement compared to LATTE-CC, improving performance by only 15% over

baseline. Similarly, Adaptive-CMP policy that is not aware of the GPU latency

tolerance and hence performs sub-optimally compared to LATTE-CC. It achieves

only 13% speedup over the baseline.

The performance of Adaptive-Hit-Count and Adaptive-CMP policies highlights

two important aspects of GPU data cache designs—(1) Designs aimed to minimize

miss counts, typically targeting CMP systems, are not always the best choice for

GPUs. (2) The knowledge of GPU’s time-varying latency tolerance is crucial and can

be leveraged to achieve additional performance improvements.

4.3.8 Flexibility of LATTE-CC Design

Thus far, I have focused LATTE-CC’s design and evaluation, having BDI, and SC

as component compression algorithms. This combination of algorithms offers quali-

tative diversity in terms of the kind of value locality exploited and the decompression

95

0.8
1

1.2
1.4
1.6

B
FS K
M P
F SS

M
M B
C

M
IS

C
LR FW P
R
K

D
JK

C
-S
en

s

C
-I
n
Se
n
s

C-Sens Avg.

Sp
e

e
d

u
p

 o
ve

r
B

as
e

lin
e

LATTE-CC LATTE-CC-BDI-BPC

Figure 4.17: LATTE-CC performance with an alternative underlying compression

algorithm.

latency incurred. However, it is important to note that LATTE-CC’s adaptive algo-

rithm design is agnostic to the underlying compression algorithms.

From Figure 4.1, we can observe that there are a few workloads such as PF, MIS,

CLR, and FW, that show affinity to BPC. In fact, we see that on average, BPC achieves

a similar compression ratio as SC. Therefore, BPC can be a plausible alternative to

SC compression. Figure 4.17 shows the performance of LATTE-CC when it adap-

tively chooses between no-compression, BDI, and BPC compression modes (LATTE-

CC-BDI-BPC). On average, I see that LATTE-CC-BDI-BPC performs similarly as

LATTE-CC. This is reasonable considering that on average, BPC achieves a simi-

lar compression ratio (3.5x) as SC (3.6x), and its decompression latency (11 cycles)

is also comparable to that of SC (14 cycles). Furthermore, I see that LATTE-CC-

BDI-BPC performs better than LATTE-CC for workloads that show affinity to BPC

compression i.e. PF, MIS, CLR and FW. LATTE-CC is a flexible compression manage-

ment design that can adapt to and maximize the performance advantages from the

different underlying compression algorithms.

96

4.4 Related Work

Compressed cache designs have been studied extensively for CMPs. Owing to the

increase in hit latencies, they are typically not employed on the upper level of caches.

This is the first work that carefully exploits the latency tolerating ability of GPGPUs

to adaptively compress GPGPU L1 caches.

4.4.1 Data Compression in CMPs

Data compression for CMPs can be broadly categorized as compressed cache archi-

tectures [24, 63, 150, 151], compression algorithms [21, 52, 57, 138], cache replacement

for compressed caches [30, 137], and main memory compression [59]. While these prior

works all address the various design aspects of compressed caches for CMPs, the two

closest related works that focus on adaptive compression techniques are [20, 22].

Alameldeen et al. [20] proposed a method to adaptively compress or not compress

individual cache lines in a cache set. They consider the effect of decompression latency

by noting that cache compression will be beneficial only if the performance benefit

gained by compression offsets the decompression penalty that is incurred. However

since their technique was proposed for CMP caches, it doesn’t consider the impact of

GPU latency tolerance.

More recently, Arelakis et al. [22] proposed a method to adaptively use one of sev-

eral compression methods tailored to the data types of data being compressed. They

develop heuristics to predict and identify different data types in hardware and choose

a compression method that is known to yield the maximum compression ratio for a

given data type. While their work estimates the benefit of cache compression that can

be attributed to the increased cache capacity, they do not take into account the effect

of increased hit latency or the latency tolerance that is available in GPUs. A direct

97

application of such techniques would lead to sub-optimal performance improvement

for reasons similar to those detailed in Section 4.1.2.

4.4.2 Data Compression for GPU Memory

While this is the first work that explores the possibility of compressing L1 data

caches in GPUs, data compression has been employed in GPU register files and off

chip interconnect in GPUs. With the goal of reducing GPU register file power con-

sumption, Lee et al. [99] proposed a method to compress the GPU register file. They

observe that data held in registers exhibit low dynamic range for GPGPU applica-

tions. With this insight they use BDI [138] compression algorithm to compress the

GPU register file and design the supporting compressed register file microarchitecture.

Pekhimenko et al. [136] proposed a toggle aware compression technique to reduce

energy consumption while transferring compressed data, across the GPU intercon-

nect. They noted that compression typically reduces the redundancy in bits and

thereby increasing the amount of randomness that is seen per bit and thus leading to

significant additional energy consumption due to bit-toggles. Vijaykumar et al. [169]

propose to utilize idle cycles to compress the interconnect traffic with the help of

assist warps. Another recent work by Sathish et al. [152] proposed a lossy technique

to compress the traffic on the off-chip interconnect of GPGPU systems.

Kim et al. [90] propose bit plane compression, a compression algorithm tailored

for GPUs achieves high compression ratio by employing data transformation tech-

niques to enhance and exploit spatial value locality in cache lines. They utilize BPC

to compress the interconnect traffic on GPUs. Similarly, Lal et al. [94] propose to

compress the interconnect traffic on GPUs using huffman compression, similar to SC

compression [24] employed in this work. Compressing the interconnect traffic reduces

bandwidth consumption significantly, and could result in significant performance im-

98

provement and energy reduction due to reduced congestion on the interconnect. The

benefit provided by such designs is orthogonal to the benefit provided by LATTE-CC.

4.5 Chapter Summary

This chapter performs a detailed performance characterization quantifying the im-

pact of the GPGPU latency tolerance feature, and data value compressibility on sys-

tem performance. By leveraging the latency tolerance of GPGPUs, I design LATTE-

CC, a new adaptive latency tolerance aware cache compression management technique

for GPGPU L1 data caches. LATTE-CC assesses the trade-off between the capacity

benefit given by multiple compression schemes that exploit different kinds of value

locality and the performance penalty introduced by the corresponding decompression

latencies. It then adaptively applies the best-performing compression mode whose

decompression penalty can be hidden by the runtime latency tolerance of the GPU.

LATTE-CC can accurately predict the latency tolerance variation over application

phases and from applications to applications. By operating at a finer-grainularity

in time, LATTE-CC is demonstrated to perform better than an oracular scheme

(Kernel-OPT) which applies the static oracle compression decision at the application

kernel boundary. Overall, LATTE-CC improves GPGPU performance by an average

of 19.2% and reduces L1 misses by an average of 24.6% for a wide range of cache-

sensitive GPGPU applications, resulting in a 10% reduction in overall GPU energy

consumption.

99

Chapter 5

MULTI-CHIP-MODULE GPGPUS AND THE MEMORY SUBSYSTEM DESIGN

FOR THE POST MOORE’S LAW ERA

Chapters 3 and 4 identifies a crucial constrained data cache capacity problem

within the modern GPGPU microarchitecture. With accurate cache bypassing, adap-

tive line size insertion, and latency tolerance aware cache compression, this thesis pro-

poses effective solutions that address the data cache capacity problem and provide

significant performance improvements.

However, in order to sustain GPGPU performance scaling, further to the microar-

chitecture optimizations described thus far, this thesis recognizes that GPU system-

architecture innovations are necessary. As we look at the future GPGPU designs, we

see that GPGPUs are faced with a crucial performance scalibility problem. The per-

formance scaling of GPGPUs over the past decade has been significantly supported by

transistor scaling and increasing GPGPU die sizes. However, due to technology limita-

tions including the slowdown of transistor scaling (slowdown of Moore’s Law [71, 120])

and die photoreticle size limitations, the path to future GPGPU performance scaling

is unclear. This chapter focuses on describing a novel GPU architecture called the

Multi-Chip-Module GPU (MCM-GPU) [25]. The MCM-GPU architecture offers a

promising path forward for continued performance scaling of GPGPUs in the face of

slowing Moore’s law.

5.1 Background and Motivation

Modern GPUs accelerate a wide spectrum of parallel applications in the fields

of scientific computing, data analytics, and machine learning. The abundant par-

100

Table 5.1: Key characteristics of recent NVIDIA GPUs.

Fermi Kepler Maxwell Pascal

SMs 16 15 24 56

BW (GB/s) 177 288 288 720

L2 (KB) 768 1536 3072 4096

Transistors (B) 3.0 7.1 8.0 15.3

Tech. node (nm) 40 28 28 16

Chip size (mm2) 529 551 601 610

allelism available in these applications continually increases the demands for higher

performing GPUs. Table 5.1 lists different generations of NVIDIA GPUs released in

the past decade. The table shows an increasing trend for the number of streaming

multiprocessors (SMs), memory bandwidth, and number of transistors with each new

GPU generation [10].

5.1.1 GPU Application Scalability

To understand the benefits of increasing the number of GPU SMs, Figure 5.1

shows performance as a function of the number of SMs on a GPU. The L2 cache and

DRAM bandwidth capacities are scaled up proportionally with the SM count, i.e.,

384 GB/s for a 32-SM GPU and 3 TB/s for a 256-SM GPU 1 . The figure shows

two different performance behaviors with increasing SM counts. First is the trend

of applications with limited parallelism whose performance plateaus with increasing

SM count (Limited Parallelism Apps). These applications exhibit poor performance

scalability (15 of the total 48 applications evaluated) due to the lack of available
1See Section 5.3.1 for details on the experimental methodology

101

0

2

4

6

8

0 32 64 96 128 160 192 224 256 288

Sp
e

e
d

u
p

 O
ve

r
3

2
 S

M
s

SM Count

Linear Scaling High Parallelism Apps Limited Parallelism Apps

Figure 5.1: Hypothetical GPU performance scaling with growing number of SMs and

memory system. 48 applications are grouped into 33 that have enough parallelism to

fill a 256 SMs GPU, and 15 that do not.

parallelism (i.e. number of threads) to fully utilize larger number of SMs. On the

other hand, I find that 33 of the 48 applications exhibit a high degree of parallelism

and fully utilize a 256-SM GPU. Note that such a GPU is substantially larger (4.5×)

than GPUs available today. For these High-Parallelism Apps, 87.8% of the linearly-

scaled theoretical performance improvement can potentially be achieved if such a

large GPU could be manufactured.

Unfortunately, despite the application performance scalability with the increas-

ing number of SMs, the observed performance gains are unrealizable with a mono-

lithic single-die GPU design. This is because the slowdown in transistor scaling [71]

eventually limits the number of SMs that can be integrated onto a given die area.

Additionally, conventional photolithography technology limits the maximum possible

reticle size and hence the maximum possible die size. For example, ≈ 800mm2 is

expected to be the maximum possible die size that can be manufactured [12, 158].

For the purpose of this work I assume that GPUs with greater than 128 SMs are

102

not manufacturable on a monolithic die. I illustrate the performance of such an

unmanufacturable GPU with dotted lines in Figure 5.1.

5.1.2 Multi-GPU Alternative

An alternative approach is to stop scaling single GPU performance, and increase

application performance via board- and system-level integration, by connecting mul-

tiple maximally sized monolithic GPUs into a multi-GPU system. While concep-

tually simple, multi-GPU systems present a set of critical challenges. For instance,

work distribution across GPUs cannot be done easily and transparently; necessitating

significant programmer expertise [35, 49, 50, 88, 119, 162]. Automated multi-GPU

runtime and system-software approaches also face challenges with respect to work

partitioning, load balancing, and synchronization [41, 161].

Moreover, a multi-GPU approach heavily relies on multiple levels of system in-

terconnections. It is important to note that the data movement and synchronization

energy dissipated along these interconnects significantly affects the overall perfor-

mance and energy efficiency of such multi-GPU systems. Unfortunately, the quality

of interconnect technology in terms of available bandwidth and energy per bit becomes

progressively worse as communication moves off-package, off-board, and eventually

off-node, as shown in Table 5.2 [8, 9, 11, 81, 157]. While the above integration tiers

are an essential part of large systems (e.g. [13]), it is more desirable to reduce the

off-board and off-node communication by building more capable GPUs.

5.1.3 Package-Level Integration

Recent advances in organic package technology are expected to address today’s

challenges and enable on-package integration of active components. For example,

next generation packages are expected to support a 77mm substrate dimension [70],

103

Table 5.2: Approximate bandwidth and energy parameters for different integration

domains.

Chip Package Board System

BW 10s TB/s 1.5 TB/s 256 GB/s 12.5 GB/s

Energy 80 fJ/bit 0.5 pJ/bit 10 pJ/bit 250 pJ/bit

Overhead Low Medium High Very High

providing enough room to integrate the MCM-GPU architecture described in this the-

sis. Furthermore, advances in package level signaling technologies such as NVIDIA’s

Ground-Referenced Signaling (GRS), offer the necessary high-speed, high-bandwidth

signaling for organic package substrates. GRS signaling can operate at 20 Gb/s while

consuming just 0.54 pJ/bit in a standard 28nm process [141]. As this technology

evolves, we can expect it to support up to multiple TB/s of on-package bandwidth.

This makes the on-package signaling bandwidth eight times larger than that of on-

board signaling.

The aforementioned factors make package level integration a promising integration

tier, that qualitatively falls in between chip- and board-level integration tiers (See

Table 5.2). In this thesis, I aim to take advantage of this integration tier and set the

ambitious goal of exploring how to manufacture a 2× more capable GPU, comprising

256 or more SMs within a single GPU package.

5.2 Multi-Chip-Module GPU Design

The proposed Multi-Chip Module GPU (MCM-GPU) architecture is based on

aggregating multiple GPU modules (GPMs) within a single package, as opposed to

today’s GPU architecture based on a single monolithic die. This enables scaling

single GPU performance by increasing the number of transistors, DRAM, and I/O

104

bandwidth per GPU. Figure 5.2 shows an example of an MCM-GPU architecture

with four GPMs on a single package that potentially enables up to 4× the number of

SMs (chip area) and 2× the memory bandwidth (edge size) compared to the largest

GPU in production today.

5.2.1 MCM-GPU Organization

In this chapter I propose the MCM-GPU as a collection of GPMs that share re-

sources and are presented to software and programmers as a single monolithic GPU.

Pooled hardware resources, and shared I/O are concentrated in a shared on-package

module. The goal for this MCM-GPU is to provide the same performance charac-

teristics as a single (unmanufacturable) monolithic die. By doing so, the operating

system and programmers are isolated from the fact that a single logical GPU may

now be several GPMs working in conjunction. There are two key advantages to this

organization. First, it enables resource sharing of underutilized structures within a

single GPU and eliminates hardware replication among GPMs. Second, applications

will be able to transparently leverage bigger and more capable GPUs, without any

additional programming effort.

Alternatively, on-package GPMs could be organized as multiple fully functional

and autonomous GPUs with very high speed interconnects. However, I do not pro-

pose this approach due to its drawbacks and inefficient use of resources. For example,

if implemented as multiple GPUs, splitting the off-package I/O bandwidth across

GPMs may hurt overall bandwidth utilization. Other common architectural com-

ponents such as virtual memory management, DMA engines, and hardware context

management would also be private rather than pooled resources. Moreover, operating

systems and programmers would have to be aware of potential load imbalance and

105

P
ac

ka
ge

D

R
A

M

D
R

A
M

D
R

A
M

D

R
A

M

GPM 0

GPM 3

GPM 1

GPM 2

L2
$

L2

$

L2
$

L2

$

XBAR

XBAR

XBAR

XBAR

SMs + L1$ SMs + L1$

SMs + L1$ SMs + L1$

Figure 5.2: Basic MCM-GPU architecture comprising four GPU modules (GPMs).

data partitioning between tasks running on such an MCM-GPU that is organized as

multiple independent GPUs in a single package.

5.2.2 MCM-GPU and GPM Architecture

As discussed in Section 5.1, moving forward beyond 128 SM counts will almost

certainly require at least two GPMs in a GPU. Since smaller GPMs are significantly

more cost-effective [79], in this chapter I evaluate building a 256 SM GPU out of four

GPMs of 64 SMs each. This way each GPM is configured very similarly to today’s

biggest GPUs. Area-wise each GPM is expected to be 40% - 60% smaller than today’s

biggest GPU assuming the process node shrinks to 10nm or 7nm. Each GPM consists

of multiple SMs along with their private L1 caches. SMs are connected through the

GPM-Xbar to a GPM memory subsystem comprising a local memory-side L2 cache

and DRAM partition. The GPM-Xbar also provides connectivity to adjacent GPMs

via on-package GRS [141] inter-GPM links.

106

Figure 5.2 shows the high-level diagram of this 4-GPM MCM-GPU. Such an

MCM-GPU is expected to be equipped with 3TB/s of total DRAM bandwidth and

16MB of total L2 cache. All DRAM partitions provide a globally shared memory ad-

dress space across all GPMs. Addresses are fine-grain interleaved across all physical

DRAM partitions for maximum resource utilization. GPM-Xbars route memory ac-

cesses to the proper location (either the local or a remote L2 cache bank) based on the

physical address. They also collectively provide a modular on-package ring or mesh

interconnect network. Such organization provides spatial traffic locality among local

SMs and memory partitions, and reduces on-package bandwidth requirements. Other

network topologies are also possible especially with growing number of GPMs, but a

full exploration of inter-GPM network topologies is outside the scope of this thesis.

The L2 cache is a memory-side cache, caching data only from its local DRAM parti-

tion. As such, there is only one location for each cache line, and no cache coherency is

required across the L2 cache banks. In the baseline MCM-GPU architecture I employ

a centralized CTA scheduler that schedules CTAs to MCM-GPU SMs globally in a

round-robin manner as SMs become available for execution, as in the case of a typical

monolithic GPU.

The MCM-GPU memory system is a Non Uniform Memory Access (NUMA) ar-

chitecture, as its inter-GPM links are not expected to provide full aggregated DRAM

bandwidth to each GPM. Moreover, an additional latency penalty is expected when

accessing memory on remote GPMs. This latency includes data movement time

within the local GPM to the edge of the die, serialization and deserialization latency

over the inter-GPM link, and the wire latency to the next GPM. I estimate each

additional inter-GPM hop latency, for a potentially multi-hop path in the on-package

interconnect as 32 cycles. Each additional hop also adds an energy cost compared to a

local DRAM access. Even though I expect the MCM-GPU architecture to incur these

107

bandwidth, latency, and energy penalties, I expect them to be much lower compared

to off-package interconnects in a multi-GPU system (see Table 5.2).

5.2.3 On-Package Bandwidth Considerations

Estimation of On-package Bandwidth Requirements

I calculate the required inter-GPM bandwidth in a generic MCM-GPU. The basic

principle for this analysis is that on-package links need to be sufficiently sized to allow

full utilization of expensive DRAM bandwidth resources. Let us consider a 4-GPM

system with an aggregate DRAM bandwidth of 4b units (3TB/s in this example),

such that b units of bandwidth (768 GB/s in this example) are delivered by the local

memory partition directly attached to each GPM. Assuming an L2 cache hit-rate

of ∼ 50% for the average case, 2b units of bandwidth would be supplied from each

L2 cache partition. In a statistically uniform address distribution scenario, 2b units

of bandwidth out of each memory partition would be equally consumed by all four

GPMs. Extending this exercise to capture inter-GPM communication to and from

all memory partitions results in the total inter-GPM bandwidth requirement of the

MCM-GPU. A link bandwidth of 4b would be necessary to provide 4b total DRAM

bandwidth. In the 4-GPM MCM-GPU example with 3TB/s of DRAM bandwidth

(4b), link bandwidth settings of less than 3TB/s are expected to result in performance

degradation due to NUMA effects. Alternatively, inter-GPM bandwidth settings

greater than 3TB/s are not expected to yield any additional performance.

Performance Sensitivity to On-Package Bandwidth

Figure 5.3 shows performance sensitivity of a 256 SM MCM-GPU system as the

inter-GPM bandwidth is decreased from an abundant 6TB/s per link all the way to

108

0

0.2

0.4

0.6

0.8

1

M-Intensive C-Intensive

High Parallelism Limited Parallelism

Sl
o

w
d

o
w

n
 c

o
m

p
ar

e
d

 t
o

6

TB
/s

 in
te

r-
G

P
M

 B
W

6 TB/s 3 TB/s 1.5 TB/s 768 GB/s 384 GB/s

Figure 5.3: Relative performance sensitivity to inter-GPM link bandwidth for a 4-

GPM, 256SM MCM-GPU system.

384GB/s. The applications are grouped into two major categories of high- and low-

parallelism, similar to Figure 5.1. The scalable high-parallelism category is further

subdivided into memory-intensive and compute-intensive applications (For further

details about application categories and simulation methodology see Section 5.3.1).

The simulation results support the analytical estimations above. Increasing link

bandwidth to 6TB/s yields diminishing or even no return for an entire suite of appli-

cations. As expected, MCM-GPU performance is significantly affected by the inter-

GPM link bandwidth settings lower than 3TB/s. For example, applications in the

memory-intensive category are the most sensitive to link bandwidth, with 12%, 40%,

and 57% performance degradation for 1.5TB/s, 768GB/s, and 384GB/s settings re-

spectively. Compute-intensive applications are also sensitive to lower link bandwidth

settings, however with lower performance degradation. Surprisingly, even the non-

scalable applications with limited parallelism and low memory intensity show perfor-

mance sensitivity to the inter-GPM link bandwidth due to increased queuing delays

and growing communication latencies in the low bandwidth scenarios.

109

On-Package Link Bandwidth Configuration

NVIDIA’s GRS technology can provide signaling rates up to 20 Gbps per wire.

The actual on-package link bandwidth settings for the 256 SM MCM-GPU can vary

based on the amount of design effort and cost associated with the actual link design

complexity, the choice of packaging technology, and the number of package routing

layers. I assume, an inter-GPM GRS link bandwidth of 768 GB/s (equal to the local

DRAM partition bandwidth) is realizable. Larger bandwidth settings such as 1.5

TB/s might be possible, albeit harder to achieve, and a 3TB/s link would require

further investment and innovations in signaling and packaging technology. Moreover,

higher than necessary link bandwidth settings would result in additional silicon cost

and power overheads. Even though on-package interconnect is more efficient than its

on-board counterpart, it is still substantially less efficient than on-chip wires and thus

we must minimize inter-GPM link bandwidth consumption as much as possible.

In this thesis I assume a low-effort, low-cost, and low-energy link design point of

768GB/s and make an attempt to bridge the performance gap due to relatively lower

bandwidth settings via architectural innovations that improve communication locality

and essentially eliminate the need for more costly and less energy efficient links. The

rest of the chapter evaluates architectural mechanisms to capture data-locality within

GPM modules, which eliminate the need for costly inter-GPM bandwidth solutions.

5.3 Evaluation and Analysis

In this section, I first describe the simulation methodology and then progressively

evaluate multiple locality-aware designs for the MCM-GPU. In the process I pro-

pose three mechanisms to minimize inter-GPM bandwidth by capturing data locality

within a GPM. First, I revisit the MCM-GPU cache hierarchy and propose a GPM-

110

side hardware cache. Second, I augment the MCM-GPU architecture with distributed

CTA scheduling to exploit inter-CTA data locality within the GPM-side cache and

in memory. Finally, I propose data partitioning and locality-aware page placement to

further reduce on-package bandwidth requirements. The three mechanisms combined

significantly improve MCM-GPU performance.

5.3.1 Simulation Infrastructure

I use an NVIDIA in-house simulator to conduct the performance studies. I model

the GPU to be similar to, but extrapolated in size compared to the recently released

NVIDIA Pascal GPU [128]. The SMs are modeled as in-order execution processors

that accurately model warp-level parallelism. I model a multi-level cache hierarchy

with a private L1 cache per SM and a shared L2 cache. Caches are banked such that

they can provide the necessary parallelism to saturate DRAM bandwidth. I model

software based cache coherence in the private caches, similar to state-of-the-art GPUs.

Table 5.3 summarizes baseline simulation parameters.

5.3.2 Workload Construction

I study a diverse set of 48 benchmarks that are taken from four benchmark suites.

My evaluation includes a set of production class HPC benchmarks from the CORAL

benchmarks [6], graph applications from Lonestar suite [133], compute applications

from Rodinia [47], and a set of NVIDIA in-house CUDA benchmarks. The applica-

tion set covers a wide range of GPU application domains including machine learning,

deep neural networks, fluid dynamics, medical imaging, graph search, etc. I classify

the applications into two categories based on the available parallelism — high par-

allelism applications (parallel efficiency ≥ 25%) and limited parallelism applications
2Other evaluated compute intensive and limited parallelism workloads are not shown in Table 5.4.

111

Table 5.3: Baseline MCM-GPU simulation configuration.

Number of GPMs 4

Total number of SMs. 256

GPU frequency 1GHz

Max number of warps 64 per SM

Warp scheduler Greedy then Round Robin

L1 data cache 128 KB per SM, 128B lines, 4 ways

Total L2 cache 16MB, 128B lines, 16 ways

Inter-GPM interconnect 768GB/s per link, Ring, 32 cycles/hop

Total DRAM bandwidth 3 TB/s

DRAM latency 100ns

(parallel efficiency < 25%). I further categorize the high parallelism applications

based on whether they are memory-intensive (M-Intensive) or compute-intensive (C-

Intensive). I classify an application as memory-intensive if it suffers from more than

20% performance degradation if the system memory bandwidth is halved. In the

interest of space, I present the detailed per-application results for the M-Intensive

category workloads and present only the average numbers for the C-Intensive and

limited-parallelism workloads. The set of M-Intensive benchmarks, and their mem-

ory footprints are detailed in Table 5.4. I simulate all the benchmarks for one billion

warp instructions, or to completion, whichever occurs first.

5.3.3 Revisiting MCM-GPU Cache Architecture

Introducing L1.5 Cache

The first mechanism I propose to reduce on-package link bandwidth is to enhance

the MCM-GPU cache hierarchy. I propose to augment the baseline GPM architecture

112

Table 5.4: The high parallelism, memory intensive workloads for MCM-GPU evalu-

ation and their memory footprints2.

Benchmark Abbr. Memory Footprint (MB)

Algebraic multigrid solver AMG 5430

Neural Network Convolution NN-Conv 496

Breadth First Search BFS 37

CFD Euler3D CFD 25

Classic Molecular Dynamics CoMD 385

Kmeans clustering Kmeans 216

Lulesh (size 150) Lulesh1 1891

Lulesh (size 190) Lulesh2 4309

Lulesh unstructured Lulesh3 203

Adaptive Mesh Refinement MiniAMR 5407

Mini Contact Solid Mechanics MnCtct 251

Minimum Spanning Tree MST 73

Nekbone solver (size 18) Nekbone1 1746

Nekbone solver (size 12) Nekbone2 287

SRAD (v2) Srad-v2 96

Shortest path SSSP 37

Stream Triad Stream 3072

in Figure 5.2 with a GPM-side cache that resides between the L1 and L2 caches. I

call this new cache level the L1.5 cache as shown in Figure 5.4. Architecturally, the

L1.5 cache can be viewed as an extension of the L1 cache and is shared by all SMs

inside a GPM. I propose that the L1.5 cache stores remote data accesses made by a

GPM partition. In other words, all local memory accesses will bypass the L1.5 cache.

113

D
R

A
M

D

R
A

M

D
R

A
M

D

R
A

M

GPM 0

GPM 3

GPM 1

GPM 2

L2
$

L2

$

L2
$

L2

$

XBAR

XBAR

XBAR

XBAR

SMs + L1$ SMs + L1$

SMs + L1$ SMs + L1$

L1.5$ L1.5$

P
ac

ka
ge

L1.5$ L1.5$

Figure 5.4: MCM-GPU architecture equipped with L1.5 GPM-side cache to capture

remote data and effectively reduce inter-GPM bandwidth and data access latency.

Doing so reduces both remote data access latency and inter-GPM bandwidth. Both

these properties improve performance and reduce energy consumption by avoiding

inter-GPM communication.

To avoid increasing on-die transistor overhead for the L1.5 cache, I add it by

rebalancing the cache capacity between the L2 and L1.5 caches in an iso-transistor

manner. I extend the GPU L1 cache coherence mechanism to the GPM-side L1.5

caches as well. This way, whenever an L1 cache is flushed on a synchronization event

such as reaching a kernel execution boundary, the L1.5 cache is flushed as well. Since

the L1.5 cache can receive multiple invalidation commands from GPM SMs, I make

sure that the L1.5 cache is invalidated only once for each synchronization event.

Design Space Exploration for the L1.5 Cache

I evaluate MCM-GPU performance for three different L1.5 cache capacities: an

8MB L1.5 cache where half of the memory-side L2 cache capacity is moved to the L1.5

114

caches, a 16MB L1.5 cache where almost all of the memory-side L2 cache is moved

to the L1.5 caches 3 , and finally a 32MB L1.5 cache, a non iso-transistor scenario

where in addition to moving the entire L2 cache capacity to the L1.5 caches I add an

additional 16MB of cache capacity. As the primary objective of the L1.5 cache is to

reduce the inter-GPM bandwidth consumption, I evaluate different cache allocation

policies based on whether accesses are to the local or remote DRAM partitions.

Figure 5.5 summarizes the MCM-GPU performance for different L1.5 cache sizes. I

report the average performance speedups for each category, and focus on the memory-

intensive category by showing its individual application speedups. I observe that

performance for the memory-intensive applications is sensitive to the L1.5 cache ca-

pacity, while applications in the compute-intensive and limited-parallelism categories

show very little sensitivity to various cache configurations. When focusing on the

memory-intensive applications, an 8MB iso-transistor L1.5 cache achieves 4% aver-

age performance improvement compared to the baseline MCM-GPU. A 16MB iso-

transistor L1.5 cache achieves 8% performance improvement, and a 32MB L1.5 cache

that doubles the transistor budget achieves an 18.3% performance improvement. I

choose the 16MB cache capacity for the L1.5 and keep the total cache area constant.

The simulation results confirm the intuition that the best allocation policy for the

L1.5 cache is to only cache remote accesses, and therefore I employ a remote-only

allocation policy in this cache. From Figure 5.5 we can see that such a configura-

tion achieves the highest average performance speedup among the two iso-transistor

configurations. It achieves an 11.4% speedup over the baseline for the memory-

intensive GPU applications. While the GPM-side L1.5 cache has minimal impact

on the compute-intensive GPU applications, it is able to capture the relatively small
3A small cache capacity of 32KB is maintained in the memory-side L2 cache to accelerate atomic

operations.

115

Increasing Sensitivity to Inter-GPM Bandwidth

0.5
1

1.5
2

2.5
3

N
N

-C
o

n
v

St
re

am

Sr
ad

-v
2

Lu
le

sh
1

SS
SP

Lu
le

sh
2

M
in

iA
M

R

K
m

ea
n

s

N
ek

b
o

n
e1

Lu
le

sh
3

B
FS

M
n

C
tc

t

N
ek

b
o

n
e2

A
M

G

M
ST

C
FD

C
o

M
D

M
-I

n
te

n
si

ve

C
-I

n
te

n
si

ve

Li
m

. P
ar

al
le

l

M-Intensive GeoMean

Sp
e

e
d

u
p

 O
ve

r
B

as
e

lin
e

M

C
M

-G
P

U

8 MB L1.5 8 MB Remote Only L1.5 16 MB L1.5 16 MB Remote Only L1.5 32 MB L1.5 32 MB Remote Only L1.5

Figure 5.5: Performance of 256 SM, 768 GB/s inter-GPM BW MCM-GPU with 8MB

(iso-transistor), 16 MB (iso-transistor), and 32 MB (non-iso-transistor) L1.5 caches.

The M-Intensive applications are sorted by their sensitivity to inter-GPM bandwidth.

working sets of the limited-parallelism GPU applications and provide a performance

speedup of 3.5% over the baseline. Finally, Figure 5.5 shows that the L1.5 cache gen-

erally helps applications that incur significant performance loss when moving from

a 6TB/s inter-GPM bandwidth setting to 768GB/s. This trend can be seen in the

figure as the memory-intensive applications are sorted by their inter-GPM bandwidth

sensitivity from left to right.

In addition to improving MCM-GPU performance, the GPM-side L1.5 cache helps

to significantly reduce the inter-GPM communication energy associated with on-

package data movements. This is illustrated by Figure 5.6 which summarizes the

total inter-GPM bandwidth with and without the L1.5 cache. Among the memory-

intensive workloads, inter-GPM bandwidth is reduced by as much as 39.9% for the

SSSP application and by an average of 16.9%, 36.4%, and 32.9% for memory-intensive,

compute-intensive, and limited-parallelism workloads respectively. On average across

all evaluated workloads, I observe that inter-GPM bandwidth utilization is reduced

by 28% due to the introduction of the GPM-side L1.5 cache.

116

0
0.5

1
1.5

2
2.5

3
3.5

N
N

-C
o

n
v

St
re

am

Sr
ad

-v
2

Lu
le

sh
1

SS
SP

Lu
le

sh
2

M
in

iA
M

R

K
m

ea
n

s

N
ek

b
o

n
e1

Lu
le

sh
3

B
FS

M
n

C
tc

t

N
ek

b
o

n
e2

A
M

G

M
ST

C
FD

C
o

M
D

M
-I

n
te

n
si

ve

C
-I

n
te

n
si

ve

Li
m

. P
ar

al
le

l

M-Intensive Average

In
te

r-
G

P
M

 B
W

 (
TB

/s
)

Baseline MCM-GPU 16 MB Remote Only L1.5

Figure 5.6: Total inter-GPM bandwidth in baseline MCM-GPU architecture and with

a 16MB remote-only L1.5 cache.

5.3.4 CTA Scheduling for GPM Locality

In a baseline MCM-GPU similar to monolithic GPU, at kernel launch, a first

batch of CTAs are scheduled to the SMs by a centralized scheduler in-order. However

during kernel execution, CTAs are allocated to SMs in a round-robin order based

on the availability of resources in the SMs to execute a given CTA. In steady state

application execution, this could result in consecutive CTAs being scheduled on SMs

in different GPMs as shown in Figure 5.7(a). The colors in this figure represent four

groups of contiguous CTAs that could potentially enjoy data locality if they were

scheduled in close proximity and share memory system resources. While prior work

has attempted to exploit such inter-CTA locality in the private L1 cache [98], here

I propose a CTA scheduling policy to exploit this locality across all memory system

components associated with GPMs due to the NUMA nature of the MCM-GPU

design.

To this end, I propose using a distributed CTA scheduler for the MCM-GPU.

With the distributed CTA scheduler, a group of contiguous CTAs are sent to the

same GPM as shown in Figure 5.7(b). Here we can see that all four contiguous CTAs

117

CTA	A	

CTA	B	

CTA	B+2	

CTA	D	

CTA	A+1	

CTA	B+1	

CTA	B+3	

CTA	D+1	

GPM0	 GPM1	

CTA	A+2	

CTA	C	

CTA	C+1	

CTA	D+2	

CTA	A+3	

CTA	C+2	

CTA	C+3	

CTA	D+3	

GPM2	 GPM3	

(a) Centralized CTA Scheduling in an MCM-GPU.

CTA	A	

CTA	A+1	

CTA	A+2	

CTA	A+3	

CTA	B	

CTA	B+1	

CTA	B+2	

CTA	B+3	

GPM0	 GPM1	

CTA	C	

CTA	C+1	

CTA	C+2	

CTA	C+3	

CTA	D	

CTA	D+1	

CTA	D+2	

CTA	D+3	

GPM2	 GPM3	

(b) Distributed CTA Scheduling in an MCM-GPU.

Figure 5.7: An example of exploiting inter-CTA data locality with CTA scheduling

in MCM-GPU.

of a particular group are assigned to the same GPM. In the context of the MCM-

GPU, doing so enables better cache hit rates in the L1.5 caches and also reduces

inter-GPM communication. The reduced inter-GPM communication occurs due to

contiguous CTAs sharing data in the L1.5 cache and avoiding data movement over the

inter-GPM links. In the example shown in Figure 5.7, the four groups of contiguous

118

CTAs are scheduled to run on one GPM each, to potentially exploit inter-CTA spatial

data locality.

I choose to divide the total number of CTAs in a kernel equally among the number

of GPMs, and assign a group of contiguous CTAs to a GPM. Figures 5.8 and 5.9 show

the performance improvement and bandwidth reduction provided by this proposal

when combined with the L1.5 cache described in the previous section. On average,

the combination of these proposals improves performance by 23.4% / 1.9% / 5.2% on

memory-intensive, compute-intensive, and limited-parallelism workloads respectively.

In addition, inter-GPM bandwidth is reduced further by the combination of these

proposals. On average across all evaluated workloads, I observe that inter-GPM

bandwidth utilization is reduced by 33%.

For workloads such as Srad-v2, and Kmeans, the combination of distributed

scheduling and remote-only caching provides significant performance improvement

while remote-only caching does not improve performance in isolation (Figure 5.5).

This is due to the improved inter-CTA data reuse in the L1.5 cache when distributed

scheduling is applied. Although distributed scheduling provides significant additional

performance benefit for a number of evaluated workloads, I observe that it causes

some applications to experience degradation in performance. Such workloads tend

to suffer from the coarse granularity of CTA division and may perform better with

a smaller number of contiguous CTAs assigned to each GPM. A case for a dynamic

mechanism for choosing the group size could be made. While I do not explore such

a design in this chapter, I expect a dynamic CTA scheduler to obtain further perfor-

mance gain.

119

0

1

2

3

4

N
N

-C
o

n
v

St
re

am

Sr
ad

-v
2

Lu
le

sh
1

SS
SP

Lu
le

sh
2

M
in

iA
M

R

K
m

ea
n

s

N
ek

b
o

n
e

1

Lu
le

sh
3

B
FS

M
n

C
tc

t

N
ek

b
o

n
e

2

A
M

G

M
ST

C
FD

C
o

M
D

M
-I

n
te

n
si

ve

C
-I

n
te

n
si

ve

Li
m

. P
ar

al
le

l

M-Intensive GeoMean

Sp
e

e
d

u
p

 o
ve

r
B

as
e

lin
e

M

C
M

-G
P

U

Figure 5.8: Performance of MCM-GPU system with a distributed scheduler.

0
0.5

1
1.5

2
2.5

3

N
N

-C
o

n
v

St
re

am

Sr
ad

-v
2

Lu
le

sh
1

SS
SP

Lu
le

sh
2

M
in

iA
M

R

K
m

ea
n

s

N
ek

b
o

n
e1

Lu
le

sh
3

B
FS

M
n

C
tc

t

N
ek

b
o

n
e2

A
M

G

M
ST

C
FD

C
o

M
D

M
-I

n
te

n
si

ve

C
-I

n
te

n
si

ve

Li
m

. P
ar

al
le

l

M-Intensive Average

In
te

r-
G

P
M

 B
W

 (
TB

/s
)

Baseline MCM-GPU 16MB Remote-Only L1.5 and DS

Figure 5.9: Reduction in inter-GPM bandwidth with a distributed scheduler com-

pared to baseline MCM-GPU architecture.

5.3.5 Data Partitioning for GPM Locality

Prior work on NUMA systems focuses on co-locating code and data by scheduling

threads and placing pages accessed by those threads in close proximity [54, 111,

171]. Doing so limits the negative performance impact of high-latency low-bandwidth

inter-node links by reducing remote accesses. In an MCM-GPU system, while the

properties of inter-GPM links are superior to traditional inter-package links assumed

in prior work (i.e., the ratio of local memory bandwidth compared to remote memory

120

DRAM DRAM

GPM 0

CTA X CTA Y

MP 0

GPM 1

MP 1 time
P3

P2

P0

P1

CTA X

CTA Y

P3 P0 P2 P1

(a) (b)

Figure 5.10: First Touch page mapping policy: (a) Access order. (b) Proposed page

mapping policy.

bandwidth is much greater and latency much lower for inter-package links), I revisit

page placement policies to reduce inter-GPM bandwidth.

To improve MCM-GPU performance, special care is needed for page placement

to reduce inter-GPM traffic when possible. Ideally, it is beneficial to map memory

pages to physical DRAM partitions such that they would incur as many local memory

accesses as possible. In order to maximize DRAM bandwidth utilization and prevent

camping on memory channels within the memory partitions, I continue to interleave

addresses at a fine granularity across the memory channels of each memory partition

(analogous to the baseline described in Section 5.2.2).

Figure 5.10 shows a schematic representation of the first touch (FT) page mapping

policy I employ in the MCM-GPU. When a page is referenced for the first time in the

FT policy, the page mapping mechanism checks which GPM the reference is from and

maps the page to the local memory partition (MP) of that GPM. For example, in the

figure, page P0 is first accessed by CTA-X which is executing on GPM0. This results

in P0 being allocated in MP0. Subsequently, pages P1 and P2 are first accessed by

CTA-Y executing on GPM1, which maps those pages to MP1. Following this, page

P3 is first accessed by CTA-X, which maps the page to MP0. This policy results in

121

keeping DRAM accesses mostly local. Regardless of the referencing order, if a page

is first referenced from CTA-X in GPM0, then the page will be mapped to the MP0,

which would keep accesses to that page local and avoid inter-GPM communication.

This page placement mechanism is implemented in the software layer by extending

current GPU driver functionality. Such driver modification is transparent to the OS,

and does not require any special handling from the programmer.

An important benefit that comes from the first touch mapping policy is its synergy

with the CTA scheduling policy described in Section 5.3.4. I observe that inter-CTA

locality exists across multiple kernels and within each kernel at a page granularity.

For example, the same kernel is launched iteratively within a loop in applications that

contain convergence loops and CTAs with the same indices are likely to access the

same pages. Figure 5.11 shows an example of this. As a result of the distributed CTA

scheduling policy and the first touch page mapping policy described above, MCM-

GPU is able to exploit inter-CTA locality across the kernel execution boundary as

well. This is enabled due to the fact that CTAs with the same indices are bound

to the same GPM on multiple iterative launches of the kernel, therefore allowing the

memory pages brought to a GPM’s memory partition to continue to be local across

subsequent kernel launches. Note that this locality does not show itself without the

first touch page mapping policy as it does not increase L1.5 cache hit rates since the

caches are flushed at kernel boundaries. However, MCM-GPU benefits significantly

from more local accesses when distributed scheduling is combined with first touch

mapping.

FT also allows for much more efficient use of the cache hierarchy. Since FT page

placement keeps many accesses local to the memory partition of a CTA’s GPM, it

reduces pressure on the need for an L1.5 cache to keep requests from going to remote

memory partitions. In fact using the first touch policy shifts the performance bot-

122

CTA 0

CTA 1

CTA 8

CTA 9

CTA 2

CTA 3

CTA 10

CTA 11

CTA 4

CTA 5

CTA 12

CTA 13

CTA 6

CTA 7

CTA 14

CTA 15

CTA 0

CTA 1

CTA 3

CTA 4

CTA 5

CTA 6

CTA 7

CTA 8

CTA 9

CTA 10

CTA 11

CTA 12

CTA 13

CTA 14

CTA 15

CTA 16

GPM 0 GPM 1 GPM 2 GPM 3

i = 0, 1, … , n-1
CTAs from consecutive kernel

invocations

Figure 5.11: Exploiting cross-kernel CTA locality with First Touch page placement

and distributed CTA scheduling.

0	
1	
2	
3	
4	

N
N
-C
on

v	
St
re
am

	
Sr
ad
-v
2	

Lu
le
sh
1	

SS
SP
	

Lu
le
sh
2	

M
in
iA
M
R	

Km
ea
ns
	

N
ek
bo

ne
1	

Lu
le
sh
3	

BF
S	

M
nC

tc
t	

N
ek
bo

ne
2	

AM
G	

M
ST
	

CF
D	

Co
M
D	

M
-In

te
ns
iv
e	

C-
In
te
ns
iv
e	

Li
m
.	P
ar
al
le
l	

M-Intensive	 GeoMean	

Sp
ee
du

p	
ov
er
	B
as
el
in
e	

M
CM

-G
PU

	

MCM-GPU	with	16MB	Remote	Only	L1.5,	DS,	and	FT	
MCM-GPU	with	8MB	Remote	Only	L1.5,	DS,	and	FT	

Figure 5.12: Performance of MCM-GPU with First Touch page placement.

tleneck from inter-GPM bandwidth to local memory bandwidth. Figure 5.12 shows

this effect. In this figure, I show two bars for each benchmark — FT with DS and

16MB remote-only L1.5 cache, and FT with DS and 8MB remote-only L1.5 cache.

The 16MB L1.5 cache leaves room for only 32KB worth of L2 cache in each GPM.

This results in sub-optimal performance as there is insufficient cache capacity that is

allocated to local memory traffic. I observe that in the presence of FT, an 8MB L1.5

cache along with a larger 8MB L2 achieves better performance. The results show that

with this configuration the optimized MCM-GPU can obtain 51% /11.3% / 7.9% per-

123

0	
1	
2	
3	

N
N
-C
on

v	
St
re
am

	
Sr
ad
-v
2	

Lu
le
sh
1	

SS
SP
	

Lu
le
sh
2	

M
in
iA
M
R	

Km
ea
ns
	

N
ek
bo

ne
1	

Lu
le
sh
3	

BF
S	

M
nC

tc
t	

N
ek
bo

ne
2	

AM
G	

M
ST
	

CF
D	

Co
M
D	

M
-In

te
ns
iv
e	

C-
In
te
ns
iv
e	

Li
m
.	P
ar
al
le
l	

M-Intensive	 Average	

In
te
r-
G
PM

	B
W
	(T

B/
s)
	

Baseline	MCM	GPU	
MCM-GPU	with	16MB	Remote	Only	L1.5,	DS,	and	FT	
MCM-GPU	with	8MB	Remote	Only	L1.5,	DS,	and	FT	

Figure 5.13: Reduction in inter-GPM bandwidth with First Touch page placement.

0	

1	

2	

3	

4	

5	

0	 10	 20	 30	 40	 50	

Sp
ee
du

p	
ov
er
	B
as
el
in
e	

M
CM

-G
PU

	

Workloads	

Figure 5.14: S-curve summarizing the optimized MCM-GPU performance speedups

for all workloads.

formance improvements compared to the baseline MCM-GPU in memory-intensive,

compute-intensive, and limited parallelism applications respectively. Finally, Fig-

ure 5.13 shows that with FT page placement a multitude of workloads experience a

drastic reduction in their inter-GPM traffic, sometimes almost eliminating it com-

pletely. On average the proposed MCM-GPU achieves a 5× reduction in inter-GPM

bandwidth compared to the baseline MCM-GPU.

124

5.3.6 Optimized MCM-GPU Performance Summary

Figure 5.14 shows the s-curve depicting the performance improvement of MCM-

GPU for all workloads in this study. Of the evaluated 48 workloads, 31 workloads

experience performance improvement while 9 workloads suffer some performance loss.

M-Intensive workloads such as CFD, CoMD and others experience drastic reduction in

inter-GPM traffic due to the optimizations and thus experience significant perfor-

mance gains of up to 3.2× and 3.5× respectively. Workloads in the C-Intensive and

limited parallelism categories that show high sensitivity to inter-GPM bandwidth also

experience significant performance gains (e.g. 4.4× for SP and 3.1× for XSBench). On

the flip side, I observe two side-effects of the proposed optimizations. For example,

for workloads such as DWT and NN that have limited parallelism and are inherently

insensitive to inter-GPM bandwidth, the additional latency introduced by the pres-

ence of the L1.5 cache can lead to performance degradation by up to 14.6%. Another

reason for potential performance loss as observed in Streamcluster is due to the

reduced capacity of on-chip writeback L2 caches 4 which leads to increased write

traffic to DRAM. This results in performance loss of up to 25.3% in this application.

Finally, I observe that there are workloads (two in the evaluation set) where different

CTAs perform unequal amount of work. This leads to workload imbalance due to

the coarse-grained distributed scheduling. The MCM-GPU architecture can be fur-

ther optimized by taking advantage of this potential opportunity resulting in better

performance.

In summary, I have proposed three important mircroarchitectural enhancements to

the baseline MCM-GPU architecture: (i) a remote-only L1.5 cache, (ii) a distributed

CTA scheduler, and (iii) a first touch data page placement policy. It is important
4L1.5 caches are set up as write-through to support software based GPU coherence implementa-

tion

125

-10

0

10

20

30

40

Remote-Only
L1.5

DS FT MCM-GPU
(768 GB/s)

MCM-GPU
(6TB/s)

Monolithic

Applied Alone Proposed Unbuildable

Sp
e

e
d

u
p

 o
ve

r
B

as
e

lin
e

M

C
M

-G
P

U
 (

%
)

Remote Only L1.5 Cache Distributed Scheduling
First Touch Page Placement

Distributed
Scheduling

First
Touch

Figure 5.15: Breakdown of the sources of performance improvements of optimized

MCM-GPU when applied alone and together. Three proposed architectural improve-

ments for MCM-GPU almost close the gap with unbuildable monolithic GPU.

to note that these independent optimizations, work best when they are combined

together. Figure 5.15 shows the performance benefit of employing the three mecha-

nisms individually. The introduction of the L1.5 cache provides a 5.2% performance.

Distributed scheduling and first touch page placement on the other hand, do not

improve performance at all when applied individually. In fact they can even lead to

performance degradation, e.g., -4.7% for the first touch page placement policy.

However, when all three mechanisms are applied together, I observe that the op-

timized MCM-GPU, achieves a speedup of 22.8% as shown in Figure 5.15. I observe

that combining distributed scheduling with the remote-only cache improves cache

performance and reduces the inter-GPM bandwidth further. This results in an ad-

ditional 4.9% performance benefit compared to having just the remote-only cache

while also reducing inter-GPM bandwidth by an additional 5%. Similarly, when

first touch page placement is employed in conjunction with the remote-only cache

and distributed scheduling, it provides an additional speedup of 12.7% and reduces

inter-GPM bandwidth by an additional 47.2%. These results demonstrate that the

proposed enhancements not only exploit the currently available data locality within

126

1.0

1.2

1.4

1.6

1.8

Optimized
Multi-GPU

MCM-GPU
(768 GB/s)

MCM-GPU
(6 TB/s)

Monolithic
GPU

Buildable Unbuildable

Sp
e

e
d

u
p

 o
ve

r
B

as
e

lin
e

M

u
lt

i-
G

P
U

Figure 5.16: Performance comparison of MCM-GPU and Multi-GPU.

a program but also improve it. Collectively, all three locality-enhancement mecha-

nisms achieve a 5× reduction in inter-GPM bandwidth. These optimizations enable

the proposed MCM-GPU to achieve a 45.5% speedup compared to the largest imple-

mentable monolithic GPU and be within 8% of an equally equipped albeit unbuildable

monolithic GPU.

5.3.7 MCM-GPU Performance vs Multi-GPU

A system with 256 SMs can also be built by interconnecting two maximally sized

discrete GPUs of 128 SMs each. Similar to the MCM-GPU proposal, each GPU

has a private 128KB L1 cache per SM, an 8MB memory-side cache, and 1.5 TB/s

of DRAM bandwidth. I assume such a configuration as a maximally sized future

monolithic GPU design. I assume that the two GPUs are interconnected via the next

generation of on-board level links with 256 GB/s of aggregate bandwidth, improving

upon the 160 GB/s commercially available today [128]. I assume the multi-GPU to be

fully transparent to the programmer. This is accomplished by assuming the following

two features: (i) a unified memory architecture between two peer GPUs, where both

GPUs can access local and remote DRAM resources with load/store semantics, (ii) a

127

combination of system software and hardware which automatically distributes CTAs

of the same kernel across GPUs.

In such a multi-GPU system the challenges of load imbalance, data placement,

workload distribution and interconnection bandwidth discussed in Sections 5.2, are

amplified due to severe NUMA effects from the lower inter-GPU bandwidth. Dis-

tributed CTA scheduling together with the first-touch page allocation mechanism

(described respectively in Sections 5.3.4 and 5.3.5) are also applied to the multi-

GPU. I refer to this design as a baseline multi-GPU system. Although a full study

of various multi-GPU design options was not performed, alternative options for CTA

scheduling and page allocation were investigated. For instance, a fine grain CTA

assignment across GPUs was explored but it performed very poorly due to the high

interconnect latency across GPUs. Similarly, round-robin page allocation results in

very low and inconsistent performance across the benchmarks.

Remote memory accesses are even more expensive in a multi-GPU when compared

to MCM-GPU due to the relative lower quality of on-board interconnect. I optimize

the multi-GPU baseline by adding GPU-side hardware caching of remote GPU mem-

ory, similar to the L1.5 cache proposed for MCM-GPU. I have explored various L1.5

cache allocation configurations, and observed the best average performance with a

half of the L2 cache capacity moved to the L1.5 caches that are dedicated to caching

remote DRAM accesses, and another half retained as the L2 cache for caching local

DRAM accesses. I refer to this as the optimized multi-GPU.

Figure 5.16 summarizes the performance results for different buildable GPU orga-

nizations and unrealizable hypothetical designs, all normalized to the baseline multi-

GPU configuration. The optimized multi-GPU which has GPU-side caches outper-

forms the baseline multi-GPU by an average of 25.1%. The proposed MCM-GPU on

128

the other hand, outperforms the baseline multi-GPU by an average of 51.9% mainly

due to higher quality on-package interconnect.

5.4 Related Work

Multi-Chip-Modules are an attractive design point that have been extensively

used in the industry to integrate multiple heterogeneous or homogeneous chips in the

same package. On the homogeneous front, IBM Power 7 [5] integrates 4 modules of

8 cores each, and AMD Opteron 6300 [4] integrates 2 modules of 8 cores each. On

the heterogeneous front, the IBM z196 [3] integrates 6 processors with 4 cores each

and 2 storage controller units in the same package. The Xenos processor used in

the Microsoft Xbox360 [1] integrates a GPU and an EDRAM memory module with

its memory controller. Similarly, Intel offers heterogeneous and homogeneous MCM

designs such as the Iris Pro [7] and the Xeon X5365 [2] processors respectively. While

MCMs are popular in various domains, I am unaware of any attempt to integrate

homogeneous high performance GPU modules on the same package in an OS and

programmer transparent fashion. To the best of my knowledge, this is the first effort

to utilize MCM technology to scale GPU performance.

MCM package level integration requires efficient signaling technologies. Recently,

Kannan et al. [79] explored various packaging and architectural options for disinte-

grating multi-core CPU chips and studied its suitability to provide cache-coherent

traffic in an efficient manner. Most recent work in the area of low-power links has

focused on differential signaling because of its better noise immunity and lower noise

generation [114, 140]. Some contemporary MCMs, like those used in the Power 6

processors, have over 800 single-ended links, operating at speeds of up to 3.2 Gbps,

from a single processor [56]. NVIDIA’s Ground-Referenced Signaling (GRS) technol-

129

ogy for organic package substrates has been demonstrated to work at 20 Gbps while

consuming just 0.54pJ/bit in a standard 28nm process [141].

The MCM-GPU design exposes a NUMA architecture. One of the main mecha-

nisms to improve the performance of NUMA systems is to preserve locality by assign-

ing threads in close proximity to the data. In a multi-core domain, existing work tries

to minimize the memory access latency by thread-to-core mapping [37, 106, 163], or

memory allocation policy [39, 54, 95]. Similar problems exist in MCM-GPU systems

where the primary bottleneck is the inter-GPM interconnection bandwidth. More-

over, improved CTA scheduling has been proposed to exploit the inter-CTA locality,

higher cache hit ratios, and memory bank-level parallelism [98, 115, 170] for mono-

lithic GPUs. In case of MCM-GPU, distributed CTA scheduling along with the

first-touch memory mapping policy exploits inter-CTA localities both within a ker-

nel and across multiple kernels, and improves the efficiency of the newly introduced

GPM-side L1.5 cache.

Finally, I propose to expose the MCM-GPU as a single logical GPU via hardware

innovations and extensions to the driver software to provide programmer- and OS-

transparent execution. While there have been studies that propose techniques to

efficiently utilize multi-GPU systems [35, 41, 88, 96], none of the proposals provide a

fully transparent approach suitable for MCM- GPUs.

5.5 Chapter Summary

Many of today’s important GPGPU applications scale well with GPU compute

capabilities, and future progress in many fields such as exascale computing and arti-

ficial intelligence will depend on continued GPU performance growth. The greatest

challenge towards building more powerful GPUs comes from reaching the end of tran-

sistor density scaling, combined with the inability to further grow the area of a single

130

monolithic GPU die. In this chapter I proposed MCM-GPU, a novel GPU archi-

tecture that extends GPU performance scaling at a package level, beyond what is

possible today. I do this by partitioning the GPU into easily manufacturable basic

building blocks (GPMs), and by taking advantage of the advances in signaling tech-

nologies developed by the circuits community to connect GPMs on-package in an

energy efficient manner.

I discuss the details of the MCM-GPU architecture and design locality aware

optimizations for the MCM-GPU. I explore the interplay of hardware caches, CTA

scheduling, and data placement in MCM-GPUs to optimize this architecture. I show

that with these optimizations, a 256 SMs MCM-GPU achieves 45.5% speedup over

the largest possible monolithic GPU with 128 SMs. Furthermore, it performs 26.8%

better than an equally equipped discrete multi-GPU, and its performance is within

8% of that of a hypothetical monolithic GPU that cannot be built based on today’s

technology roadmap.

131

Chapter 6

UNDERSTANDING THE ENERGY EFFICIENCY OF MULTI-CHIP-MODULE

GPGPUS AND THE DEPENDENCE ON THE MEMORY SUBSYSTEM

The previous chapter proposed the Multi-Chip-Module GPU (MCM-GPU) as a

solution to address the impending GPGPU performance scalability problem. With

the slowdown of transistor scaling and the hard optical limitations of lithography,

GPGPUs are necessitated to embrace modular scaling as shown in Figure 6.1. Chap-

ter 5 and other prior works [35, 49, 50, 118, 119, 162] have addressed the scalability

of multi-chip-module GPGPUs from a performance standpoint for the on-package

and off-package integration scenarios. However, considering the growing energy con-

straints of today’s data centers, it is essential to understand the energy consumption

and energy efficiency characteristics of this new GPU architecture.

This chapter perform an in-depth study of the scalability challenges of multi-chip-

module GPGPUs that are exposed when energy efficiency expectations are taken

into account. I develop a new GPGPU efficiency metric and propose a top-down

instruction based GPGPU energy estimation framework, that together allow us to

simultaneously reason about GPGPU performance scalability and energy costs of

achieving the same [26].

6.1 Background and Motivation

Scaling GPU performance through the integration of multiple GPU-modules (GPMs)

along with their local and remote memories similar to MCM-GPU (Chapter 5) results

in a NUMA GPU architecture as shown in Figure 6.1. NUMA-based multi-module

GPUs are expected to have unique characteristics affecting their performance and

132

Package / On-Board / System-Level

GPU
Module

Stacked
DRAM

Package

GPU
Module

Stacked
DRAM

GPU
Module

Stacked
DRAM

Package / On-Board / System-Level

GPU
Module

Stacked
DRAM

GPU
Module

Stacked
DRAM

GPU
Module

Stacked
DRAM

GPU
Module

Stacked
DRAM

Figure 6.1: Scaling of future GPU designs via multi-module GPU architecture.

energy efficiency. For example, work partitioning and data locality nuances will dic-

tate the inter-module communication requirements. Additionally, the GPMs could

be integrated leveraging diverse integration domains and the available inter-module

bandwidth may vary significantly based on the integration domain and signaling tech-

nology employed. While state-of-the-art on-board interconnects can easily provide

300 GB/s of interconnect bandwidth per GPU [11, 17], this is still 3× lower than

the 900 GB/s of DRAM bandwidth available to GPUs today. Future on-package

integration technologies utilizing high density interconnect along with high speed sig-

naling [25, 167] are expected to provide substantially higher bandwidth that may

match or exceed today’s DRAM bandwidth but undoubtedly, DRAM bandwidth will

continue to grow in the future as well.

Depending on the integration domain, inter-module communication costs may

vary substantially. On-package communication has an energy overhead of 0.54 pJ/bit [141]

133

that is an order of magnitude lower than the energy overhead of on-board integration

(10 pJ/bit) [25]. So while it is advantageous to integrate in the most efficient do-

main possible, on-package integration is not expected to scale to a very large number

of modules due to package size limitations. On-board integration can also lever-

age efficient interconnect topologies such as high-radix switch chips [17], whereas

on-package environments will likely utilize multi-hop technologies without having

dedicated switches, as these are the most suitable for their planar nature and limited

resources.

Although it is evident that multi-module GPUs can provide significant strong scal-

ing performance improvements, this is likely to be coupled with high energy overheads

when compared to traditional monolithic GPU scaling. As a result, it is important

to take into consideration not only performance, but also energy efficiency, when de-

signing and evaluating multi-module GPU architectures. Prior work has shown that

it may be possible to build 4, 8, or even 16× larger GPUs than what exists today

by integrating them either on-package or on a single PCB. Using the tools developed

in this chapter, Figure 6.2 shows the relative increase in energy required to compute

the solution for fixed problem sizes (average across 18 workloads) for a GPU built

out of multiple GPMs with on-board integration. While this hypothetical 32× larger

GPU may be able to ideally compute the solution to a problem 32× faster (if it could

achieve ideal strong scaling), it is going to consume 2× more energy to do-so. Thus,

for a fixed problem size, this hypothetical MCM-GPU is only half as energy efficient

as the baseline GPU.

For many GPU users, this energy differential may not be consequential as they are

solely focused on time to solution or their private datacenter has additional energy

headroom to spare. However, professional datacenters and cloud service providers

often operate at near peak energy threshold in order to achieve cost efficiency. There-

134

0.8

1

1.2

1.4

1.6

1.8

2

2x 4x 8x 16x 32x

En
er

gy
 C

on
su

m
pt

io
n

No
rm

al
ize

d
to

 S
in

gl
e

GP
U

GPU Capability

Ideal

Figure 6.2: The average energy cost of strong scaling, when growing the number of

GPMs using on-board integration.

fore, upgrading components to less energy efficient versions (despite them being higher

performance) will likely lead to issues in power delivery, cooling, and provisioning.

This trend towards energy inefficiency is what motivates me to quantify and analyze

what minimum amount of energy growth GPUs must endure in the pursuit of strong

scaling. By quantifying these effects one can then understand what the main archi-

tectural bottlenecks are that affect such energy-performance trade-offs and thus, how

to optimize them.

To be able to effectively model energy efficiency, accurate performance and energy

estimation models and simulators are needed. Commonly used GPU energy estima-

tion frameworks adopt a bottom-up modeling approach [66, 102], where the energy

cost of each key microarchitectural component is combined with the corresponding

switching activities to determine the overall GPU energy consumption. While this

potentially results in very accurate analysis, it also comes with some significant draw-

backs. First, since most of the microarchitectural details of modern GPUs are con-

fidential, researchers are forced to guess and assume particular organizations. This

leads a lack of accuracy in energy projections, and necessitate the need for statistical

(or hand-tuned) error correction methods (fudge factors) to be applied. Adopting

135

these error correction methods reduces the flexibility of the model [122]. In addition,

a relatively complex retraining process needs to be carried out for every new GPU

generation in order to achieve acceptable levels of fidelity. For example, my analysis

showed that adopting a commonly used bottom-up energy model that was tuned for

NVIDIA’s Fermi architecture without retraining it to NVIDIA’s Kepler generation

architecture, led to an average error of over 100% when trying to project the energy

consumption of an NVIDIA Kepler GPU.

This retraining process requires maintaining a set of complicated microbenchmarks

that are designed to reverse engineer and isolate various microarchitectural details

of any given design. With the rate of GPU microarchitectural innovation, reverse

engineering the details of every new GPU generation is a very challenging task and

models that rely on this process unsurprisingly lag behind hardware and become

irrelevant. Therefore, to understand and project GPU energy into the future, GPU

researchers need a different modeling approach that is more sustainable. Prior work

by Shao et al. [156] has shown that top down models can in fact be both accurate and

flexible in the CPU domain and I believe that a top-down energy modeling approach

should be able to provide these qualities in the GPU domain as well.

6.2 EDPSE: Quantifying GPU Energy Efficiency at Scale

Comparing two individual hardware designs can easily be done using point met-

rics like performance, power or energy (e.g. Design A achieves performance X, while

design B achieves performance Y). For systems with a (mostly) fixed set of hardware

resources, this lets us focus on performance improvement as the figure of merit, be-

cause other metrics like energy consumption are unlikely to vary substantially without

large changes in hardware. There are even metrics like energy delay product (EDP),

136

or ED2, that explicitly combine energy and performance to allow comparisons between

two substantially different designs on equal footing.

While very useful for comparing point-wise designs, these metrics are not suitable

for exploring the efficiency of scalable GPU designs because they give us no notion of

the scaling efficiency (or lack thereof) of an architecture as it evolves from 1–N GPU

modules within a design. One prior approach that attempts to capture this effect,

is Parallel Efficiency, a commonly used metric to quantify the efficiency of strong

performance scaling on parallel systems [92]. Parallel efficiency is a measure of the

fraction of ideal speedup that is realized with scaling. If the execution time with 1

processor is t1 and the execution time with N processors is tN , then:

Parallel Efficiency = t1 × 100
N × tN

(6.1)

However, we can see from equation 6.1, parallel efficiency does not take into account

the energy cost of the system needed to achieve that parallel performance. Therefore,

in order to make comparative decisions about energy efficiency scaling across a variety

of design points, a metric that considers performance, energy, and the number of

replicated resources that is needed. Thus I propose EDP Scaling Efficiency (EDPSE)

to be able quantify these factors. EDPSE is defined as:

EDP Scaling Efficiency = EDP1 × 100
N × EDPN

(6.2)

EDP1 is the EDP with one processor, N is the number of processors in the scaled

configuration and EDPN is the EDP with N processors. Extending the rationale

of parallel efficiency (Equation 6.1), EDPSE is designed to measure the fraction of

linear EDP scaling that is realized in a particular design. In a design that achieves

linear performance speedup, strong scaling with N processors would reduce execution

time (or delay) by a factor of N , while keeping the energy consumption constant; this

137

would lead to an EDPSE of 100%. If performance achieves sub-linear scaling or

energy consumption increases as the GPU design grows, both factors will reduce the

design’s EDPSE 1 .

EDPSE can also be extended to provide different relative weights to performance

and energy factors, reflecting different design priorities for a given architecture. In

general, if an energy delay combination that takes the ith power of delay i.e. EDiP is

deemed to be the metric of interest, then EDiPSE can be defined as:

EDiPSE = EDiP1 × 100
N i × EDiPN

(6.3)

EDiP1 is the EDiP metric with one processor and EDiPN is the EDiP metric with

N processors.

For GPU architects, evaluating designs based on EDPSE provides a relatively

simple metric to understand the scaling efficiency achieved by future designs on an

iso-energy efficiency basis. Simply put, the higher the EDPSE metric, the better the

design. Considering the growing significance of energy efficiency in today’s datacen-

ters and personal computers (where GPUs may be the dominant energy cost), I believe

that GPU architects of the future will have to satisfy EDPSE designs thresholds (e.g.

50%) to justify architectural improvements.

6.3 GPUJoule: A GPU Energy Estimation Framework

Having defined an appropriate metric to reason about the scaling efficiency of

future multi-module GPUs, I now present the instruction based energy estimation

framework for GPUs, called GPUJoule, that feeds into the EDPSE analyses later in

this work. GPUJoule is based on publicly available information about GPU architec-

tures to provide an accurate and reproducible estimation of GPU energy consumption.
1It is possible to achieve an EDPSE that is greater than 100% in cases of super-linear speedup

or a decrease in energy consumption

138

EPIs
EPTs

Validation Microbenchmarks
Stress different

instruction
combinations

Initial Validation
Error =

Measured Energy -
Modeled Energy

Accuracy
Achieved?

Identify sources of
error.

Improve coverage

Refinement:

No

Microbenchmarks
Stress Compute

and Memory
Insts

Real Application
Validation:

Error =
Measured Energy –

Modeled Energy

Yes

Accuracy
Achieved ?

No
StopStart

Yes

GPUJoule Energy Model
Energy = Σ(Ni*EPIi) +

Σ(Txni*EPTi) +
Σ(Sti*EPSti)

321
4

Figure 6.3: GPUJoule top-down instruction-based energy modeling methodology.

Its design leverages the insight that the total energy consumption of a GPU is the

sum of the energy consumption of each instruction executed on the GPU, plus any

constant overheads present within the GPU.

For example, a GPU is capable of executing compute instructions of type 1, 2, ...Nc

and generates memory transactions of type 1, 2, ...Nm across the various levels of the

memory hierarchy. To predict the total energy consumption of the GPU, I can thus

estimate the Energy-Per-Instruction (EPI) and Energy-Per-Transaction (EPT) for

both GPU pipeline instructions and memory system operations, while knowing very

little about the specific microarchitectural implementation of the GPU itself. Utilizing

the EPI and EPT information, the energy consumption of the GPU is then predicted

as follows:

EGP U =
c=Nc∑
c=1

(EPIc × ICc) +

d=Nm∑
m=1

(EPTm × TCm) +

(EPStall × stalls) +

(Const_Power × Execution_Time) (6.4)

EPIc and ICc represent the energy-per-instruction and instruction count of com-

pute instruction of type ‘c’, respectively. EPTm and TCm represent the energy-per-

139

transaction and transaction count of memory transaction of type ’m’, respectively.

EPStall and stalls represent the energy-per-stall of a compute lane stall and number

of lane stalls, respectively which together account for the varying degree of parallelism

in the GPU applications. Const_Power is the baseline idle power consumption of

the GPU which accounts for the power consumed by voltage regulators, the power

delivery network, I/O to the host, and the static power dissipation of the GPU.

Figure 6.3 shows the modeling framework of GPUJoule that generates the data

which feeds into this energy estimate. Before diving into the specifics of each step I

provide a high level overview of the broad GPUJoule workflow. At a high level, GPU-

Joule uses exhaustive set of microbenchmarks to stress the execution of different GPU

instructions in isolation 1 , while also utilizing the GPU’s parallelism to average the

behavior of each instruction across thousands of iterations and all compute units (also

known as SMs) in the system. Similarly, the memory microbenchmarks carefully de-

signed to isolate accesses and cause memory movement between different levels of

the GPU memory hierarchy. These microbenchmarks allow me to derive EPIc and

EPTm values for individual native ISA (PTX) instructions. The EPI and EPT es-

timates then combine with the compute instruction and memory transaction event

counts to feed into the constitute the initial GPUJoule energy model 2 . GPUJoule

then iteratively improves upon the initial microbenchmark suite using two valida-

tion steps. First I design a set of synthetic microbenchmarks that combine different

instruction types and correlate the modeled and measured energy values from real

hardware to expose any coverage or instruction interaction issues overlooked in the

initial microbenchmark design process 3 . Finally, I validate the energy model by

correlating the modeled and measured energy for real GPU applications 4 . Over-

all, GPUJoule’s estimation and validation process is fairly comparable to prior works

that focus on instruction-based energy estimation in the server [83], mobile [134], and

140

1: procedure FMA-Kernel(res,N)

. Location for result and number of iterations

2:

. Declare and initialize registers

__asm volatile(

“ .reg .f32 %r1;′′

“ mov.f32 %r1, k1;′′

...);

3: for i = 0 To i < num_iterations do
. Benchmark ROI operation

__asm volatile(

“fma.rn.f32 %r3, %r1, %r3, %r2;′′

...

);

end

4: end procedure

Algorithm 6: Compute instruction microbenchmark example - FMA instruction

many-core architecture [156] domains but adjusted for the unique properties of GPU

architectures.

6.3.1 Micro-Benchmark Construction

Modern GPUs support many native general purpose computation and data move-

ment instructions such as ADD, MUL, SQRT, AND [129]. Depending on the instruction

141

and data type, each instruction will utilize a variety of functional units. To extract the

energy expenditure across all instructions, I develop two classes of microbenchmarks;

compute microbenchmarks that work at the PTX ISA level, and data movement mi-

crobenchmarks that move data between different levels of the GPU memory hierarchy.

The compute microbenchmarks are designed to execute a particular instruction

repeatedly so that the steady state power and energy consumption of the instruction

execution can be determined. When designing these benchmarks I intentionally dis-

able compiler optimizations and use in-lined assembly to ensure that the benchmarks

are faithfully executed on hardware. Algorithm 6 shows an example microbenchmark

designed to stress an FMA instruction. In each benchmark, I first declare and initialize

the registers (line 2) used by the microbenchmark before the region-of-interest (ROI)

of the microbenchmark is reached. In the ROI of the microbenchmark (lines 3 and 4)

the instruction of interest is executed on the GPU iteratively and the corresponding

power and energy consumption are measured using NVIDIA provided power mea-

surement tools. Microbenchmarks similar to Algorithm 6 have been developed for all

compute instructions in the PTX ISA.

To stress the data movement operations that fetch data from different levels of

the GPU memory hierarchy such as shared memory, L1 cache, L2 cache, and the

DRAM a different type of benchmark is needed. These microbenchmarks are designed

to first initialize a data set that completely fits within the particular level of the

memory hierarchy (for which specifications are typically publicly available), and then

consistently access the data set within that level of the hierarchy In order to isolate the

data movement operations, I employ pointer-chasing microbenchmarks using known

methodology defined previously [83, 134]. To account for the nuances of the GPU

execution model, I ensure that memory accesses originating from a single warp can

be coalesced to a single cacheline. I also ensure accesses stress the right level of the

142

Table 6.1: The NVIDIA Tesla K40 experimental platform.

(a) Important specifications of the GPU.

NVIDIA Tesla K40

Architecture Kepler

Process node 28nm

SM count 15

Shared memory/L1 cache 16KB/48KB, 32KB/32KB, 48KB/16KB

L2 cache 1.5MB

DRAM 12GB, 280 GB/s

(b) Energy of operations as measured on real hardware.

EPI/EPT [nJ] Energy per bit [pJ/bit]

PTX Instructions

32b float ADD, MUL, FMA 0.06, 0.05, 0.05 N/A

32b int ADD, SUB 0.07, 0.07 N/A

32b bitwise AND, OR, XOR 0.06, 0.06, 0.06 N/A

32b float SINE, COS 0.10, 0.10 N/A

32b int MUL, MAD 0.13, 0.15 N/A

64b float ADD, MUL, FMA 0.15, 0.13, 0.16 N/A

32b float SQRT, LOG2, EXP2, RCP 0.02, 0.03, 0.08, 0.31 N/A

Data Movement Transactions

Shared Memory to Register File 5.45 5.32

L1 Cache to Register File 5.99 5.85

L2 Cache to L1 Cache 3.96 15.48

DRAM to L2 Cache 7.82 30.55

143

memory hierarchy by managing warp-level and thread-block level data locality as

needed. For example, when stressing the L2 cache, I ensure there are no hits due to

inter-warp or intra-warp locality in the L1 caches.

6.3.2 Generating Energy Estimates

In this work I choose to validate GPUJoule using a NVIDIA Tesla K40 GPU [125]

for which specifications are provided in Table 6.1a. I use the NVIDIA management

library (NVML) [126] to query the on-board power sensor and look at the steady

state power consumption incurred by different microbenchmarks to discern the EPI

and EPT values for this GPU. The EPI for an instruction is computed as following:

EPI = (Poweractive − Poweridle)× Exec. T ime
Num. of Instructions

(6.5)

Poweridle is the idle power consumption of the GPU. The EPT for data transfer

operations is similarly determined.

Energy Per Instruction Estimates

Table 6.1b shows the EPI values for respective GPU compute instructions and

the EPT values for GPU memory system operations. I observe that the energy

consumption of GPU pipeline instructions have some variability depending on the

instruction type and that both data type and width, perhaps unsurprisingly, affect

the energy expended per operation. We can see that the energy cost of moving data

from the shared memory or L1 cache to the registers is much lower than among other

component of the memory hierarchy. Also, per bit energy expenditure increases as

the data is brought from farther levels of the memory hierarchy. Moving data from

the DRAM to the register file costs nearly 10 times the energy of moving data from

L1 cache/shared memory to the register file, and delivering data to a floating point

144

-10

-5

0

5

10

FADD64 +
Shared

Memory

FADD64 +
L1D Cache

FADD64 +
L2 Cache

FADD64 +
DRAM

FADD64 +
L2 Cache +

DRAM

En
e

rg
y

Es
ti

m
at

io
n

 E
rr

o
r

(%
)

(a) Energy estimation errors for microbenchmarks using combi-

nation of different types of instructions.

-60
-40
-20

0
20
40
60

R
SB

en
ch

B
FS

C
o

M
D

M
in

iA
M

R

B
TR

EE

Sr
ad

-v
1

Lu
le

sh
-1

9
0

Lu
le

sh
-1

5
0

Sr
ad

-v
2

N
ek

b
o

n
e-

1
8

N
ek

b
o

n
e-

1
2

Lu
le

sh
U

n
s

K
m

ea
n

s

H
o

ts
p

o
t

B
P

R
O

P

St
re

am

M
n

C
tc

t

P
at

h
F

G
eo

M
ea

n
 E

rr
o

r

En
e

rg
y

Es
ti

m
at

io
n

 E
rr

o
r

(%
)

(b) Energy estimation errors for real GPU Applications.

Figure 6.4: GPUJoule energy estimation accuracy. Comparison of energy estimations

with hardware measurements on the Tesla K40 GPU.

unit from the DRAM expends 80× the energy of performing the a computation on

that data.

GPUJoule Validation to Silicon

To validate the energy estimates against silicon, I leverage the validation mi-

crobenchmarks as shown in Figure 6.3. Furthermore, I use an additional set of 18 GPU

applications from Rodinia [48], Stream [116] and the CORAL benchmark suites [6],

145

summarized later in Table 6.2. Figure 6.4a shows the accuracy observed for the differ-

ent microbenchmarks with mixed instruction types. I see that the energy estimation

error is within +2.5% and -6% indicating GPUJoule has good fidelity compared to

real hardware on a per instruction basis. Figure 6.4b shows the end-to-end relative

error in energy estimation for the entire workload suite. While the correlation is

very good for most benchmarks, with a 9.4% mean error across all benchmarks, I see

that four applications experience an absolute error >30%. For applications such as

RSBench and CoMD, I find the utilization of the memory subsystem is very low and

the GPUJoule energy model may underestimate memory consumption. While I could

have introduced fudge factors to try and improve the correlation of all outliers, that

would reduce the generality of the model and its appropriateness for GPU scalability

studies.

6.4 Energy Efficiency and the Future of Multi-Module GPUs

In this section I lay out the final details of the simulation methodology and sim-

ulated multi-GPM architecture. Then using GPUJoule and EDPSE, I perform a

detailed analysis of the energy efficiency and performance scalability of several multi-

module GPU configurations. I identify the key limitations affecting both energy and

performance scaling and explore the solution space on the road to efficient scaling

using multi-module GPUs.

6.4.1 Experimental Methodology

In this work, I integrate the GPUJoule energy model with a system level per-

formance simulator used in prior works [25, 118]. I utilize a subset of 14 workloads

selected from Table 6.2 that have enough inherent parallelism to fill a GPU with 32×

the capability of the basic GPU module building block.

146

Table 6.2: GPU applications and their input sets. C: Compute intensive benchmarks

and M: Memory bandwidth intensive benchmarks.

Benchmark Input Abbr. Cat.

Back Propagation [48] 65536 BPROP C

B+Tree [48] 1 Million BTREE C

Classic Molecular Dynamics [6] 49 bodies CoMD C

Hotspot [48] 1024x1024 Hotspot C

Lulesh [6] Unstrc Mesh LuleshUns C

Path Finder [48] 1 Million PathF C

RSBench [6] 1 Million RSBench C

SRAD (v1) [48] 100, 0.5, 502, 458 Srad-v1 C

Adaptive Mesh Refinement [6] 15,000 MiniAMR M

Breadth First Search [48] Graph1MW BFS M

Kmeans clustering [48] 819200 Kmeans M

Lulesh [6] size 150 Lulesh-150 M

Lulesh [6] size 190 Lulesh-190 M

Nekbone solver [6] size 12 Nekbone-12 M

Nekbone solver [6] size 18 Nekbone-18 M

Mini Contact [6] Mas1_2 MnCtct M

SRAD (v2) [48] 2048x2048 Srad-v2 M

Stream Triad [116] 226 elements Stream M

147

Simulated Architecture

The simulations configure a basic GPM to be similar to an NVIDIA Tesla K40

GPU. It comprises 16 SMs, equipped with a 32 KB L1 cache each, a shared L2 cache

of 2 MB, and one HBM [89] memory stack with the DRAM bandwidth of 256 GB/s

(see the 1-GPM configuration in Table 6.3). GPMs are expected to be individually

smaller than the largest GPUs available today [14] because smaller die sizes yield sig-

nificant cost and yield advantages for manufacturers [79, 167]. The GPUJoule energy

model has been purposely trained on this GPU generation to increase the confidence

of its projections and I note that because the compute to memory bandwidth ratio

has remained relatively similar across GPU generations [14, 125, 130]; the conclu-

sions drawn with these configurations should be applicable to multi-module GPUs

with larger and more capable GPMs, as long as the baseline ratios between compute

throughput, DRAM bandwidth, and I/O bandwidth do not change dramatically for

a given GPM.

As shown in Table 6.3, I scale the number of GPU modules in the system from 1–

32 and employ compute scheduling and DRAM page placement locality optimizations

proposed in Chapter 5 and other prior works [25, 118]. In-line with these prior multi-

module works, in 2-GPM configurations and beyond, I shift the L2 cache from being

a dedicated memory-side cache to become a module-side cache, and the GPMs are

interconnected in a ring topology. I evaluate three different per-GPM I/O bandwidth

settings, shown in Table 6.4, representing bandwidth that is 2× lower, equal, and 2×

larger than local GPM DRAM bandwidth. For example, current NVIDIA Volta GPUs

support a inter-GPU to DRAM bandwidth ratio of 1:3. In this analysis I assume a

slightly improved I/O to DRAM bandwidth ratio of 1:2 (called 1x-BW), to reflect

future on-board integration capabilities. Similarly, a bandwidth ratio of 1:1 (called

148

2x-BW) reflects current projections for on-package I/O bandwidth used in Chapter 5

and the 2:1 ratio (called 4x-BW) corresponds to higher on-package BW settings that

may become available through use of next generation signaling technologies [141].

Table 6.3: Simulated multi-module GPU configurations.

Config. 1-GPM 2-GPM 4-GPM 8-GPM 16-GPM 32-GPM

Number

of Mod-

ules

1 2 4 8 16 32

Total SM

count

16 32 64 128 256 512

L1 cache

per SM

32 KB 32 KB 32 KB 32 KB 32 KB 32 KB

Total L2

cache

2 MB 4 MB 8 MB 16 MB 32 MB 64 MB

Total

DRAM

Band-

width

256 GB/s 512 GB/s 1024 GB/s 2048 GB/s 4096 GB/s 8192 GB/s

Energy Model Considerations

The vast majority of the GPM energy model parameters come directly from GPU-

Joule, as described in Section 6.3. To accurately reflect future scaling parameters I

augment the energy model to reflect the use of HBM (vs GDDR5 memory) and the

inclusion of signaling overheads for on and off package links. Specifically I use the

published energy costs of GDDR5 and HBM technologies [131] to approximate the

149

Table 6.4: Simulated per-GPM I/O bandwidth.

Config. Inter-GPM BW Inter-GPM to DRAM BW Integration Domain

1x-BW 128 GB/s 1:2 on-board

2x-BW 256 GB/s 1:1 on-package

4x-BW 512 GB/s 2:1 on-package

DRAM to L2 cache energy cost of 21.1 pJ/bit for the GPU system with HBM and

I use the published [141] energy costs of on-package integration as 0.54 pJ/bit, and

estimate 10 pJ/bit for on-board links though I later discuss the implications of this

link potentially having up to 4× this energy overhead.

On-board integration of discrete GPM components comes with many per-GPM

static energy overheads including voltage regulators, fans, system I/O, etc. To model

on-board integration, I scale the static energy component linearly with the number

of GPMs. However, as I will show later in this section, we can assume that certain

on-platform components can be shared across multiple GPMs on package. Therefore,

I scale only part of the measured static energy per GPM with the number of GPMs,

I term this Constant Energy Amortization. To account for constant energy amortiza-

tion under on-package integration, I assume that only 50% of the original per-GPM

constant energy grows linearly with the number of GPMs. I also study the sensitivity

to this parameter later in Section 6.4.3.

6.4.2 Understanding Energy Efficiency

Figure 6.5 shows the EDPSE of future GPU designs as they scale the number of

on-package GPMs, using an on-package integration domain. I observe that compute

intensive workloads achieve significantly higher EDPSE than their memory intensive

150

0

20

40

60

80

100

120

2-GPM 4-GPM 8-GPM 16-GPM 32-GPM

ED
P

SE
 (

%
)

Compute Intensive Workloads Memory Intensive Workloads All

50%

Figure 6.5: EDPSE for across compute intensive, memory intensive, and all work-

loads, for baseline on-package configuration (2x-BW).

counterparts. In fact, compute intensive workloads achieve an EDPSE that is higher

than 100% for small GPM counts, as these workloads are able to leverage the increased

caching resources and reduce their dependence on memory bandwidth, while incurring

negligible or low energy costs.

A second trend is that EDPSE starts to decrease dramatically at high GPM

counts. Maximum EDPSE achieved (when averaged across all workloads) is 94%

under the 2-GPM configuration, and decreases to 36% when scaled to 32 GPMs. I

find this is primarily due to the NUMA bandwidth limitations that are amplified

when growing the number of GPMs in a ring topology. Based on the commonly used

parallel efficiency threshold of 50%, I observe that on-package multi-module GPUs

may start running into limitations when scaled beyond 16 GPMs.

To understand the decreasing EDPSE values I analyzed the speedup and energy

consumption at each scaling step. Figure 6.6 shows the incremental speedup and

energy increase compared to the preceding point, as the number of GPMs is scaled. I

observe that the incremental speedup achieved at each scaling step decreases, some-

times dramatically. For example, scaling from the the 1-GPM to 2-GPM configuration

151

-10

0

10

20

0.5

1

1.5

2

2-GPM 4-GPM 8-GPM 16-GPM 32-GPM

En
e

rg
y

In
cr

e
as

e
 c

o
m

p
ar

e
d

to

 P
re

ce
d

in
g

Sc
al

in
g

C
o

n
fi

gu
ra

ti
o

n
 (

%
)

Sp
e

e
d

u
p

 o
ve

r
P

re
ce

d
in

g
Sc

al
in

g
C

o
n

fi
gu

ra
ti

o
n

Speedup SM Pipeline (Busy)
SM Pipeline (Idle) Constant Energy Overhead
L1 -> Reg L2 -> L1
Inter-Module DRAM - > L2

Figure 6.6: Performance speedup (left axis) and energy increase (right axis) compared

to each preceding multi-GPM configuration. Energy consumption is broken down by

component.

achieves 86.8% speedup, whereas scaling from the 16-GPM to the 32-GPM achieves

only 47% speedup. I note, that experiments on the same set of applications on

similarly equipped hypothetical monolithic GPU with unlimited on-chip bandwidth

resources, achieves 80.8% speedup when scaling from the 16-GPM to 32-GPM point.

I conclude that the observed performance penalty can primarily be attributed to the

NUMA-related bottlenecks of multi-module GPUs.

Figure 6.6 also demonstrates the growing relative energy cost at each scaling

step across a range of metrics available in the GPUJoule energy model. Scaling

from the 16-GPM to 32-GPM configuration results in a 15.7% increase in energy

consumption. Further analyzing the sources of energy growth at each step, I observe

that when I first scale from the 1-GPM to 2-GPM configuration, the energy cost

associated with new NUMA architecture becomes immediately visible in the form

of increased DRAM to L2 cache energy consumption. However, due a slight super-

linear performance speedup in some benchmarks and a reduction in constant energy

overhead (as redundant components can be eliminated via on-package integration)

152

this additional data movement energy overhead is mostly offset. As a result, the

2-GPM configuration experiences only a minor decrease in EDPSE overall.

Unfortunately, as as the number of GPMs grows the energy consumption due to

constant energy overhead also grows substantially. Analysis shows that this unfor-

tunate effect is associated with an increasing number of GPM pipeline stalls (GPMs

being idle and waiting on remote memory access) due to increased inter-module band-

width pressure at large GPM counts. This, in turn, increases the relative contribution

of static energy in high GPM-count designs and also contributes to the sharp decline

in EDPSE. I conclude that as module based GPU designs become commonplace,

NUMA effects and specifically inter-GPM bandwidth will be the primary challenge

in achieving future GPU energy efficiency.

6.4.3 Optimizing for Energy Efficiency

Interconnect Bandwidth

Thus far, I have evaluated multi-module GPUs using the on-package integration do-

main. However the integration domain alone does not determine the intra-GPM

bandwidth that is available in a system and architect’s implementation choices, may

also change the available bandwidth by 2×, either lower or higher. Figure 6.7 shows

the impact of using different interconnect bandwidths across both on-package and

on-board integration domains as described in Table 6.4. Inter-module bandwidth has

pronounced effects on EDP scaling efficiency, and at high GPM counts, EDPSE im-

proves by a factor of 3 when inter-module bandwidth increases by a factor of 4. This

supports the conclusion that providing adequate levels of inter-module bandwidth is

going to be the most important factor in maintaining high levels of energy efficiency

in future multi-module GPUs.

153

0

20

40

60

80

100

120

1x-BW 2x-BW 4x-BW

ED
P

SE
 (

%
)

2-GPM 4-GPM 8-GPM 16-GPM 32-GPM

50%

Figure 6.7: EDPSE as a function of interconnect bandwidth settings.

Interconnect Energy

As the number of GPMs in future GPUs grow the amount of data that is transferred

on the inter-module links will increase. Common architectural practice place signif-

icant importance on reducing the intrinsic energy cost of interconnect technologies.

Yet Figure 6.6 indicates that the overall GPU energy growth in high module-count

systems that can be attributed to this increased data movement is relatively low (the

“inter-module” stack in Figure 6.6). To understand this issue better, I performed a

point study on the GPU’s overall energy sensitivity when varying the inter-module

interconnect energy consumption, but leaving bandwidth unchanged.

Using the 32-GPM design in an on-board integration domain (described as 1x-

BW), I increased the per/bit interconnect energy cost by a factor of 2 and 4× over

the baseline (10 pJ/bit). I observe that even with a 4× increase in the interconnect

energy cost, the net impact on the EDPSE is below 1%. This is a significant result,

when we consider that there is nearly a 2× improvement in EDPSE when doubling

the inter-GPM bandwidth from the 1x-BW to 2x-BW configurations I conclude that,

counter to design trends in monolithic GPUs, multi-module GPU architects should

154

not focus on driving down the intrinsic energy cost of interconnect technologies, but

instead work towards maximizing bandwidth density, even at the expense of per bit

transfer energy. The right architectural trade off may in fact be to prefer the highest

bandwidth interconnect available, regardless of energy cost, because it leads to the

highest possible global EDPSE. For example, my analysis shows that if the 4× higher

interconnect energy cost could be used to achieve 2× higher interconnect bandwidth,

it would cause 8.8% increase in EDPSE for a 32-GPM design.

Impact of Integration Domain

On-package integration comes not only with improved interconnect technologies that

enable significant bandwidth advantages, but also the opportunities to reduce con-

stant energy overheads. Tighter on-package integration of GPMs provides an op-

portunity to share the previously per-GPM energy burden of various on-platform

components such as cooling, power delivery, etc. Because at high GPM counts, SM

idle time, and thus constant energy overheads is a significant factor in overall en-

ergy efficiency, the effect of overhead amortization among on-package GPMs can be

significant. I analyze a hypothetical 32-GPM system using on-package integration

(with a 2x-BW configuration) where fixed energy overheads can not be amortized or

amortized at a 50% rate, as described in Section 6.4.1. When compared to having no

amortization, on-package integration achieves an impressive 22.3% decrease in abso-

lute energy consumption and 8.1% increase in EDPSE. If the assumed amortization

rate is reduced to 25% for example, then the energy saving would reach 10.4% on

average compared to having no amortization at all, with a 3.5% increase in EDPSE.

Impact of an On-Board High-Radix Switch

To alleviate the impact of low inter-module bandwidth in on-board integration sce-

155

0

20

40

60

80

100

2-GPM 4-GPM 8-GPM 16-GPM 32-GPM

ED
P

SE
 (

%
)

On-Board Integration

Ring (1x-BW) Switch (1x-BW) Switch (2x-BW)

50%

Figure 6.8: EDPSE for on-board ring and switched interconnection networks

narios, GPU manufacturers have recently introduced high-bandwidth and high-radix

switch chips for these systems [15, 16, 17]. Compared to ring topologies, switched

networks reduces the number of hops between source and destination, improving

inter-module bandwidth congestion, despite absolute inter-GPU bandwidth remain-

ing unchanged. Figure 6.8 shows the EDPSE achieved for on-board multi-module

GPUs in the presence of a switched network. 2 I see that the introduction of a

switch over a basic ring topology can improve EDPSE by nearly 2× in the 32-GPM

case, despite no absolute change in interconnect-bandwidth. This further underscores

the importance of reducing NUMA-related inter-module bandwidth bottlenecks at all

cost, not just via increased link bandwidth, but also via network topology innovations.

6.4.4 Decomposing EDSPE Improvements

In this work I have argued EDSPE is the appropriate metric for analyzing the

efficiency of multi-module GPU designs. However, there is a risk in using metrics

such as EDSPE because individual constraints on either energy or performance can
2I assume an additional 10 pJ/bit data movement energy cost through the switch.

156

0
2
4
6
8
10
12
14
16
18
20

0

0.5

1

1.5

2

2.5

1
x-

B
W

2
x-

B
W

4
x-

B
W

1
x-

B
W

2
x-

B
W

4
x-

B
W

1
x-

B
W

2
x-

B
W

4
x-

B
W

1
x-

B
W

2
x-

B
W

4
x-

B
W

1
x-

B
W

2
x-

B
W

4
x-

B
W

2-GPM 4-GPM 8-GPM 16-GPM 32-GPM

Sp
e

e
d

u
p

 o
ve

r
Si

n
gl

e
 G

P
U

En
e

rg
y

N
o

rm
al

iz
e

d
 t

o
 S

in
gl

e
 G

P
U

Speedup (Secondary axis) Energy

Figure 6.9: Speedup and energy consumption when varying interconnect bandwidth,

and applying on-package energy optimization at the 2x-BW and 4x-BW points

be overlooked by designers. While variations of EDPSE can be constructed (as shown

in Section 6.2) to try and capture these requirements, understanding the relative

contributions of energy and performance into these synthetic metrics is still important.

Figure 6.9 summarizes the absolute speedup and energy expenditure across all

GPM counts, and at all three bandwidth configurations. This data takes into account

the aforementioned optimization allowing amortization of constant energy across all

GPMs when moving from on-board (1x-BW) to on-package domains (2x-BW and

4x-BW), but still assumes a ring topology in all integration domains. As the number

of GPMs are scaled , we can see that at a higher number of modules (GPM-8, 16,

and 32), the achieved speedup is primarily associated with improvements in inter-

GPM bandwidth. So significant is this effect, that a 16-GPM design with 2x-BW

will outperform a 32-GPM design with only half the inter-module bandwidth, while

expending just half the energy. In fact, a 32-GPM system configured with just 1x-

BW (in an on-board domain) can reduce the energy required to compute a fixed size

problem by doing nothing other than increasing the inter-GPM bandwidth by a factor

157

of four, by 27.4% on average. Furthermore, if the integration is subsequently moved

to the on-package domain, and the effect of constant energy amortization is taken

into account, this energy reduction increases to 45% on average.

I conclude that improving inter-GPM interconnect technologies and topologies,

along with less traditional architecture measures, such as sharing the per-GPM plat-

form related constant energy overheads across multiple GPMs will play a crucial role

in making strong scaling with multi-module GPUs worthwhile from an energy effi-

ciency point of view. My findings indicate that GPU architects will have to start

making new design trade offs between interconnect topologies, link bandwidth, link

energy, integration domains and to create opportunities to holistically share the over-

all energy burden of the GPU most efficiently. At extreme scales, architects may be

forced to turn to extreme measures such as reallocation of costly on-chip pin-outs to

re-balance local DRAM bandwidth versus inter-GPM bandwidth if the ratio of local

to remote memory access continues to skew towards the latter.

6.4.5 Discussion

This work illuminates multiple key energy efficiency trends in future multi-module

GPUs. I identify that without architecture and system level innovations, multi-

module GPUs will quickly run into energy efficiency concerns when trying to scale

performance at all costs. In light of these observations, traditional approaches to

energy efficiency improvement within the GPU modules themselves will only mani-

fest as second order effects in the future. The results highlight the pressing need for

future research to focus on reducing the impact of the NUMA effects on multi-module

GPUs. While prior works have attempted to address similar aspects in NUMA CPU

systems [42, 54, 111, 171], techniques appropriate for multi-module GPUs deserve a

close attention. Furthermore, techniques such as locality aware thread-block (CTA)

158

scheduling and data placement [25, 168], sophisticated cache management strate-

gies [28, 51, 101, 118, 146, 147, 165], and data compression techniques [27, 90, 99, 169],

need to be re-applied not just within today’s GPU, but now among GPU modules.

In addition, system-level techniques that reduce the impact of constant power in the

presence of large number of GPU modules, either via integration technology inno-

vations or through aggressive and intelligent clock-gating, can measurably improve

energy efficiency of multi-module GPUs.

6.5 Related Work

GPU energy efficiency has been addressed in many prior works [19, 61, 80, 97, 99,

102, 112, 135, 136, 146, 148, 154, 155]. However this work was all done in context

of monolithic die GPUs, and focused on minimizing energy consumption through

microarchitectural innovation. More recently, Milic et al. [118] found that inter-

module bandwidth plays a key role in the performance scalability of multi-modules

GPUs (similar to my finding in Chapter 5) but did not address the concern of energy

efficiency in these proposals. Vijayaraghavan et al. [167], perform a first order char-

acterization of performance, power, and temperature using a specific multi-module

GPU within an exascale node architecture (ENA). However, they do not address the

scalability issues inherent in multi-module GPU designs.

Inspiring the design of GPUJoule, Wu et al. [174] design a machine learning based

power model that estimates the power consumption of future chips. However, such ap-

proaches do not provide insights into the energy consumption trends or understanding

of specific bottlenecks. To achieve this kind of detail, most prior work takes a bottom-

up approach to power modeling; such as Leng et al. [102] who design a widely used

cycle-level architecture-level power model based on McPat [107]. Guerreiro et al. [62]

have also proposed a DVFS-aware power model for GPUs. Bottom up approaches

159

have key advantages by offering cycle-level power estimations and an understanding

of the power consumption of fine-grained microarchitectural structures. However, as

described in Section 6.1, these and other bottom-up power models [18, 66, 109, 159]

are very difficult to maintain and keep current.

Most similar to GPUJoule, Kestor et al. [83], Pandiyan et al. [134] and Shao et

al. [156] take top down approaches to characterize the energy consumption of server,

mobile and the XeonPhi many-core processors respectively. Since these models were

developed for CPU-like processors, they do not handle the subtleties of GPUs and

can not be easily re-applied but reinforce the value of the GPUJoule approach.

6.6 Chapter Summary

The future of GPU computing relies on achieving strong performance scaling using

modular designs, in an energy efficient manner. While prior works including the work

proposed in Chapter 5 had addressed the performance scalability of multi-chip-module

GPGPUs, the aspect of energy efficiency has been largely unexplored. In this chapter,

I propose a new GPU efficiency scaling metric and a novel energy projection tool, that

collectively let us reason about both the performance and energy efficiency of future

multi-module GPGPUs. The in-depth scalability analysis reveals two key findings.

First, I demonstrate that the dominant factor affecting the energy efficiency is the

NUMA nature of these multi-chip-module GPGPUs. Consequently, congested inter-

GPM interconnect in future designs increases GPM idle time, hampering performance

scalability while simultaneously exposing the (relatively) increasing overhead of con-

stant energy components in the system. Second, I demonstrate how an analysis-driven

choice of interconnect technology, can provide counter-intuitive results and encourage

architects to make energy-inefficient choices locally (in the inter-GPM interconnect)

to help maximize energy efficiency globally. Using this analysis, I show it is possible

160

to reduce future multi-chip-module GPGPU energy consumption growth from over

100% to just 10% (compared to a single GPU) while improving strong scaling per-

formance by a factor of 18×, paving the way to further architectural enhancements

that will enable aggressive strong scaling performance that are not at odds with GPU

energy efficiency. Furthermore, the findings presented in this chapter underscores

the importance of data locality in future multi-chip-module GPGPUs and motivates

further research focus to address the NUMA-effects within these multi-chip-module

GPUs via architectural or system-level GPM locality management.

161

Chapter 7

CONCLUSION

The efficiency of the memory subsystem and the data delivery mechanisms have

become first order design concerns as general purpose computing advances towards

the era of exascale computing. The memory subsystem not only has a significant im-

pact on the overall performance of the CMPs and GPGPUs, but also on their energy

efficiency. As presented in the prior chapters, my thesis characterizes the performance

and energy bottlenecks in modern CMPs and GPGPUs, and proposes practical mi-

croarchitecture and system architecture solutions to address the same. Specifically,

my thesis proposes three novel microarchitectural techniques, a novel GPGPU sys-

tem architecture, a new scaling efficiency metric, and an energy estimation framework

that together advance the state-of-the-art general-purpose processor design, while en-

hancing the performance, scalability, and energy efficiency significantly.

In Chapter 2, I demonstrate that the impact of the performance critical CMP

on-chip resource, the last-level-cache (LLC), can be significantly improved if the LLC

is managed while considering its interaction with other memory system components,

especially the main memory. With insights garnered via a detailed characterization of

the reuse behavior of cache lines and their memory access costs, this thesis proposes

a novel, low-overhead LLC management technique, ReMAP. ReMAP considers the

current and predicted future reuse in conjunction with the diverse memory access costs

in order to preserve highly valuable cache lines in the LLC. In doing so, ReMAP is able

to achieve efficient cache management and superior performance in CMP systems.

While sophisticated LLCs have a pronounced influence on the performance of

state-of-the-art CMPs, this responsibility is shouldered by the on-chip data cache in

162

modern GPGPU architectures. Relative to the massive number of concurrent threads

executing on the GPU, the available on-chip data cache capacity happens to be ex-

tremely constrained. As a result, many prior works have directed their focus towards

alleviating the constrained cache capacity problem in GPUs. Rather than taking ap-

proaches that reduce the TLP, this thesis explores and identifies GPU specific charac-

teristics that can be leveraged to significantly improve the effective cache utilization,

while keeping the TLP intact. Chapter 3 proposes a simple cache bypassing and cache

line size selection method, ID-Cache, that leverages memory divergence information

to retain only the most valuable data in the cache. Orthogonally, Chapter 4 proposes

LATTE-CC, which leverages the GPU’s inherent latency tolerance feature to adap-

tively compress the data cache. Such an adaptive technique allows us to navigate a

three-way trade-off between the data value compressibility and compression latency

of different compression algorithms, and the GPU latency tolerance to enhance the

effective data cache capacity on GPU systems. These methods provide significant

performance improvements while also providing considerable energy savings.

Complementing the aforementioned microarchitectural techniques, my thesis rec-

ognizes the need for system architecture innovations to ensure continued performance

scalability of GPGPUs in the face of slowing Moore’s law. Due to the impending

end of transistor scaling and the optical limitations of lithography, it might no longer

be possible to scale GPU performance in the traditional manner i.e., by increasing

the number or transistors on a single die or by increasing the die sizes of GPUs.

In this thesis, I propose a novel GPU architecture called MCM-GPU, that attains

performance scaling by integrating multiple GPU-modules (GPMs) within a package

(Chapter 5). Taking a step further, Chapter 5 also proposes architectural techniques

spanning the GPM/GPU system architecture, which work together to alleviate the

inherent NUMA side-effects of the MCM-GPU architecture. Thus, the MCM-GPU

163

architecture provides a promising path forward to ensure GPU performance scaling

well into the future with modular scaling of GPMs.

Beyond ensuring performance scalability, it is equally important to consider the

energy cost of scaling as we cater to the energy efficiency expectations of the future.

Chapter 6 presents an in-depth study of the energy consumption and energy effi-

ciency characteristics of modular scaling of GPMs in MCM-GPU like architectures.

To allow us to understand and reason about the performance and energy costs of

such scalable GPUs, I develop a novel efficiency scaling metric, EDP Scaling Effi-

ciency (EDPSE), and an instruction-based GPU energy estimation tool, GPUJoule.

Together, EDPSE and GPUJoule enable quantification of energy efficient scalability

in such multi-modular GPU systems. Through the detailed analysis presented in

Chapter 6, I find multiple key trends that are likely to impact future GPU energy

efficiency. Contrary to common knowledge, I find that neither the energy efficiency

of the GPM microarchitecture, nor the intrinsic energy cost of data movement would

play a primary role in the overall energy efficiency of these GPUs. In fact, the inherent

NUMA-effects would form the key energy efficiency bottleneck in the future. These

findings further underscore the significance of data locality optimizations within the

memory subsystem of GPUs described in this thesis.

Overall, my thesis advances the state-of-the-art general purpose processor design

as follows:

• This thesis offers a detailed characterization of the reuse behavior, memory

access costs, and data value compressibility of cache lines in CMP and GPGPU

systems across a broad set of applications. These applications span a variety

of domains including machine learning, audio processing, HPC, and scientific

simulations. The characterizations presented offer key insights towards holistic

management of the memory subsystem resources on CMPs and GPUs.

164

• This thesis illuminates the benefits of managing the LLC in CMPs and the L1

data cache in GPUs while considering their interaction with the other seemingly

independent aspects of the system architecture, which eventually allow for the

most valuable cache lines to be retained in these caches. Building on this insight,

this thesis proposes targeted microarchitecture level solutions that help manage

the crucial cache resources within the memory subsystem of general purpose

processors. In addition to ReMAP that improves CMP performance by as

much as 13%, this thesis proposes ID-Cache and LATTE-CC that improve

GPGPU performance by an average of 71% and 19.2%, respectively. The high

performance of the proposed schemes is enabled only due to the identification

of precise set of information from across the system architecture such as main

memory access cost (ReMAP), degree of memory divergence (ID-Cache), and

system latency tolerance (LATTE-CC), which can enhance the effectiveness of

CMP LLCs and GPU L1 data caches.

• At the broader system architecture level, this thesis proposes the novel MCM-

GPU architecture and thus presents a promising path forward for continued

performance scalability of GPUs in the face of slowing Moore’s law. The MCM-

GPU architecture achieves performance scaling via multi-modular integration

of GPU Modules (GPMs); thereby decoupling the advancement of GPU archi-

tectures from the transistor scaling that is expected to come to a halt. Taking a

step further, this thesis carries out an in-depth analysis of the energy consump-

tion and energy efficiency trends of scaling GPU performance with multi-module

integration. The detailed study presented here illuminates surprising trends in

future multi-module GPUs, including the fact that neither the GPM microar-

chitecture energy efficiency, nor the intrinsic energy costs of data movement

165

are going to be first order concerns in these GPUs. These results are all the

more meaningful considering that common knowledge places significant stress

on both those factors as the key drivers of energy efficiency in the future. My

work on the MCM-GPU architecture forms the first step in the design of scal-

able GPGPU architectures in the future and more importantly, calls for future

research focus to be directed towards managing the NUMA-side effects in these

systems, at scale.

• Finally, this thesis presents a new efficiency scaling metric, EDPSE, that con-

siders both performance scalability of systems, as well as the energy overhead

of achieving the performance scaling. In addition, to help analyze the energy

consumption of current and future GPUs with relative ease, this thesis presents

a new GPU energy estimation framework, GPUJoule. EDPSE and GPUJoule

together are particularly well suited for exploratory studies for future GPUs.

In summary, my thesis offers novel insights pertaining to data reuse, data com-

pressbility, performance scalability, and energy efficiency in modern computing sys-

tems, that are backed by detailed characterizations and evaluations of hardware pro-

posals. Building on these insights will enable future CMP and GPGPU architects to

design high-performance and energy efficient general purpose processors.

166

REFERENCES

[1] “Xenos: XBOX360 GPU”, URL http://fileadmin.cs.lth.se/cs/
Personal/Michael_Doggett/talks/eg05-xenos-doggett.pdf, accessed:
2016-08-19 (2005).

[2] “The Xeon X5365”, URL http://ark.intel.com/products/30702/
Intel-Xeon-Processor-X5365-8M-Cache-3_00-GHz-1333-MHz-FSB, ac-
cessed: 2016-08-19 (2007).

[3] “IBM zEnterprise 196 technical guide”, URL http://www.redbooks.ibm.com/
redbooks/pdfs/sg247833.pdf, accessed: 2016-08-19 (2011).

[4] “AMD server solutions playbook”, URL http://www.amd.com/Documents/
AMD_Opteron_ServerPlaybook.pdf, accessed: 2016-08-19 (2012).

[5] “IBM power systems deep dive”, URL http://www-05.ibm.com/cz/events/
febannouncement2012/pdf/power_architecture.pdf, accessed: 2016-08-19
(2012).

[6] “Coral benchmarks”, URL https://asc.llnl.gov/CORAL-benchmarks/
(2014).

[7] “The compute architecture of Intel Processor Graphics Gen8”, URL https:
//software.intel.com, accessed: 2016-08-19 (2015).

[8] “Switch-IB 2 EDR switch silicon - world’s first smart switch”, URL
http://www.mellanox.com/related-docs/prod_silicon/PB_SwitchIB2_
EDR_Switch_Silicon.pdf, accessed: 2016-06-20 (2015).

[9] “ConnectX-4 VPI single and dual port QSFP28 adapter card user man-
ual”, URL http://www.mellanox.com/related-docs/user_manuals/
ConnectX-4_VPI_Single_and_Dual_QSFP28_Port_Adapter_Card_User_
Manual.pdf, accessed: 2016-06-20 (2016).

[10] “Inside pascal: Nvidia’s newest computing platform”, URL https://
devblogs.nvidia.com/parallelforall/inside-pascal, accessed: 2016-06-
20 (2016).

[11] “NVIDIA NVLink high-speed interconnect”, URL http://www.nvidia.com/
object/nvlink.html, accessed: 2016-06-20 (2016).

[12] “The TWINSCAN NXT:1950i dual-stage immersion lithography sys-
tem”, URL https://www.asml.com/products/systems/twinscan-nxt/
twinscan-nxt1950i/en/s46772?dfp_product_id=822, accessed: 2016-11-18
(2016).

[13] “Titan : The world’s #1 open science super computer”, URL https://www.
olcf.ornl.gov/titan/ (2016).

167

http://fileadmin.cs.lth.se/cs/Personal/Michael_Doggett/talks/eg05-xenos-doggett.pdf
http://fileadmin.cs.lth.se/cs/Personal/Michael_Doggett/talks/eg05-xenos-doggett.pdf
http://ark.intel.com/products/30702/Intel-Xeon-Processor-X5365-8M-Cache-3_00-GHz-1333-MHz-FSB
http://ark.intel.com/products/30702/Intel-Xeon-Processor-X5365-8M-Cache-3_00-GHz-1333-MHz-FSB
http://www.redbooks.ibm.com/redbooks/pdfs/sg247833.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg247833.pdf
http://www.amd.com/Documents/AMD_Opteron_ServerPlaybook.pdf
http://www.amd.com/Documents/AMD_Opteron_ServerPlaybook.pdf
http://www-05.ibm.com/cz/events/febannouncement2012/pdf/power_architecture.pdf
http://www-05.ibm.com/cz/events/febannouncement2012/pdf/power_architecture.pdf
https://asc.llnl.gov/CORAL-benchmarks/
https://software.intel.com
https://software.intel.com
http://www.mellanox.com/related-docs/prod_silicon/PB_SwitchIB2_EDR_Switch_Silicon.pdf
http://www.mellanox.com/related-docs/prod_silicon/PB_SwitchIB2_EDR_Switch_Silicon.pdf
http://www.mellanox.com/related-docs/user_manuals/ConnectX-4_VPI_Single_and_Dual_QSFP28_Port_Adapter_Card_User_Manual.pdf
http://www.mellanox.com/related-docs/user_manuals/ConnectX-4_VPI_Single_and_Dual_QSFP28_Port_Adapter_Card_User_Manual.pdf
http://www.mellanox.com/related-docs/user_manuals/ConnectX-4_VPI_Single_and_Dual_QSFP28_Port_Adapter_Card_User_Manual.pdf
https://devblogs.nvidia.com/parallelforall/inside-pascal
https://devblogs.nvidia.com/parallelforall/inside-pascal
http://www.nvidia.com/object/nvlink.html
http://www.nvidia.com/object/nvlink.html
https://www.asml.com/products/systems/twinscan-nxt/twinscan-nxt1950i/en/s46772?dfp_product_id=822
https://www.asml.com/products/systems/twinscan-nxt/twinscan-nxt1950i/en/s46772?dfp_product_id=822
https://www.olcf.ornl.gov/titan/
https://www.olcf.ornl.gov/titan/

[14] “NVIDIA Volta unvieled”, URL https://www.anandtech.com/show/11367/
nvidia-volta-unveiled-gv100-gpu-and-tesla-v100-accelerator-announced
(2017).

[15] “NVIDIA DGX-1”, URL https://www.nvidia.com/en-us/data-center/
dgx-1/ (2018).

[16] “NVIDIA HGX-2”, URL https://www.nvidia.com/en-us/data-center/
hgx/ (2018).

[17] “NVIDIA NVSWITCH”, URL http://images.nvidia.com/content/pdf/
nvswitch-technical-overview.pdf (2018).

[18] Abe, Y., H. Sasaki, S. Kato, K. Inoue, M. Edahiro and M. Peres, “Power and
performance characterization and modeling of GPU-accelerated systems”, in
“Proceedings of the IEEE 28th International Parallel and Distributed Process-
ing Symposium”, (2014).

[19] Adhinarayanan, V., I. Paul, J. L. Greathouse, W. Huang, A. Pattnaik and
W. c. Feng, “Measuring and modeling on-chip interconnect power on real hard-
ware”, in “Proceedings of the IEEE International Symposium on Workload
Characterization”, (2016).

[20] Alameldeen, A. R. and D. A. Wood, “Adaptive cache compression for high-
performance processors”, in “Proceedings of the 31st Annual International Sym-
posium on Computer Architecture”, (2004).

[21] Alameldeen, A. R. and D. A. Wood, “Frequent pattern compression: A
significance-based compression scheme for L2 caches”, (2004).

[22] Arelakis, A., F. Dahlgren and P. Stenstrom, “HyComp: a hybrid cache com-
pression method for selection of data-type-specific compression methods”, in
“Proceedings of the 48th Annual IEEE/ACM International Symposium on Mi-
croarchitecture”, (2015).

[23] Arelakis, A. and P. Stenstrom, “A case for a value-aware cache”, IEEE Com-
puter Architecture Letters 13, 1, 1–4 (2014).

[24] Arelakis, A. and P. Stenstrom, “SC2: A statistical compression cache scheme”,
in “Proceedings of the 41st Annual International Symposium on Computer Ar-
chitecuture”, (2014).

[25] Arunkumar, A., E. Bolotin, B. Cho, U. Milic, E. Ebrahimi, O. Villa, A. Jaleel,
C.-J. Wu and D. Nellans, “MCM-GPU: Multi-Chip-Module GPUs for contin-
ued performance scalability”, in “Proceedings of the 44th Annual International
Symposium on Computer Architecture”, (2017).

[26] Arunkumar, A., E. Bolotin, D. Nellans and C.-J. Wu, “Understanding the future
of energy efficiency in multi-module GPUs”, in “(to appear) Proceedings of the
IEEE International Symposium on High Performance Computer Architecture”,
(2019).

168

https://www.anandtech.com/show/11367/nvidia-volta-unveiled-gv100-gpu-and-tesla-v100-accelerator-announced
https://www.anandtech.com/show/11367/nvidia-volta-unveiled-gv100-gpu-and-tesla-v100-accelerator-announced
https://www.nvidia.com/en-us/data-center/dgx-1/
https://www.nvidia.com/en-us/data-center/dgx-1/
https://www.nvidia.com/en-us/data-center/hgx/
https://www.nvidia.com/en-us/data-center/hgx/
http://images.nvidia.com/content/pdf/nvswitch-technical-overview.pdf
http://images.nvidia.com/content/pdf/nvswitch-technical-overview.pdf

[27] Arunkumar, A., S.-Y. Lee, V. Soundararajan and C.-J. Wu, “LATTE-CC: La-
tency tolerance aware adaptive cache compression management for energy effi-
cient GPUs”, in “Proceedings of the IEEE International Symposium on High
Performance Computer Architecture”, (2018).

[28] Arunkumar, A., S.-Y. Lee and C.-J. Wu, “ID-Cache: Instruction and memory
divergence based cache management for GPUs”, in “Proceedings of the IEEE
International Symposium on Workload Characterization”, (2016).

[29] Arunkumar, A. and C.-J. Wu, “ReMAP: Reuse and memory access cost aware
eviction policy for last level cache management”, in “Proceedings of the 32nd
IEEE International Conference on Computer Design”, (2014).

[30] Baek, S., H. G. Lee, C. Nicopoulos, J. Lee and J. Kim, “ECM: Effective ca-
pacity maximizer for high-performance compressed caching”, in “Proceedings
of the IEEE 19th International Symposium on High Performance Computer
Architecture,”, (2013).

[31] Bakhoda, A., G. Yuan, W. W. L. Fung, H. Wong and T. M. Aamodt, “Analyz-
ing CUDA workloads using a detailed GPU simulator”, in “Proceedings of the
International Symposium on Analysis of Systems and Software”, (2009).

[32] Basu, A., N. Kirman, M. Kirman and M. Chaudhuri, “Scavenger: A new last
level cache architecture with global block priority”, in “Proceedings of the 40th
International Symposium on Microarchitecture”, (2007).

[33] Beckmann, N. and D. Sanchez, “Talus: A simple way to remove cliffs in cache
performance”, in “Proceedings of the IEEE 21st International Symposium on
High Performance Computer Architecture”, (2015).

[34] Belady, L. A., “A study of replacement algorithms for a virtual storage com-
puter”, in “IBM Syst. J.”, vol. 5 (1966).

[35] Ben-Nun, T., E. Levy, A. Barak and E. Rubin, “Memory access patterns: the
missing piece of the multi-GPU puzzle”, in “Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analy-
sis”, (2015).

[36] Binkert, N., B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hes-
tness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib,
N. Vaish, M. D. Hill and D. A. Wood, “The gem5 simulator”, SIGARCH Com-
puter Architecture News 39, 2, 1–7 (2011).

[37] Blagodurov, S., A. Fedorova, S. Zhuravlev and A. Kamali, “A case for NUMA-
aware contention management on multicore systems”, in “Proceedings of the
19th International Conference on Parallel Architectures and Compilation Tech-
niques”, (2010).

[38] Bloom, B. H., “Space/time trade-offs in hash coding with allowable errors”,
Commun. ACM 13, 7, 422–426 (1970).

169

[39] Bolosky, W. L., R. P. Fitzgerald and M. L. Scott, “Simple but effective tech-
niques for numa memory management”, in “Proceedings of the Twelfth ACM
Symposium on Operating Systems Principles”, (1989).

[40] Burtscher, M., R. Nasre and K. Pingali, “A quantitative study of irregular
programs on GPUs”, in “Proceedings of the IEEE International Symposium on
Workload Characterization”, (2012).

[41] Cabezas, J., L. Vilanova, I. Gelado, T. B. Jablin, N. Navarro and W.-m. W.
Hwu, “Automatic parallelization of kernels in shared-memory multi-gpu nodes”,
in “Proceedings of the 29th ACM on International Conference on Supercom-
puting”, (2015).

[42] Chandra, R., S. Devine, B. Verghese, A. Gupta and M. Rosenblum, “Scheduling
and page migration for multiprocessor compute servers”, in “Proceedings of
the Sixth International Conference on Architectural Support for Programming
Languages and Operating Systems”, (1994).

[43] Chatterjee, N., M. O’Connor, G. H. Loh, N. Jayasena and R. Balasubramonia,
“Managing DRAM latency divergence in irregular GPGPU applications”, in
“Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis”, (2014).

[44] Chaudhuri, M., “Pseudo-LIFO: the foundation of a new family of replacement
policies for LLCs”, in “Proceedings of the 42nd International Symposium on
Microarchitecture”, (2009).

[45] Chaudhuri, M., J. Gaur, N. Bashyam, S. Subramoney and J. Nuzman, “Intro-
ducing hierarchy-awareness in replacement and bypass algorithms for last-level
caches”, in “Proceedings of the 21st International Conference on Parallel Ar-
chitectures and Compilation Techniques”, (2012).

[46] Che, S., B. M. Beckmann, S. K. Reinhardt and K. Skadron, “Pannotia: Under-
stading irregular GPGPU graph applications”, in “Proceedings of the Interna-
tional Symposium on Workload Characterization”, (2013).

[47] Che, S., M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee and K. Skadron,
“Rodinia: A benchmark suite for heterogeneous computing”, in “Proceedings
of the International Symposium on Workload Characterization”, (2009).

[48] Che, S., J. W. Sheaffer, M. Boyer, L. G. Szafaryn, L. Wang and K. Skadron,
“A characterization of the Rodinia benchmark suite with comparison to con-
temporary CMP workloads”, in “Proceedings of the International Symposium
on Workload Characterization”, (2010).

[49] Chen, L., O. Villa and G. R. Gao, “Exploring fine-grained task-based execution
on multi-GPU systems”, in “Proceedings of the IEEE International Conference
on Cluster Computing”, (2011).

170

[50] Chen, L., O. Villa, S. Krishnamoorthy and G. R. Gao, “Dynamic load balancing
on single- and multi-GPU systems”, in “Proceedings of the IEEE International
Symposium on Parallel Distributed Processing”, (2010).

[51] Chen, X., L.-W. Chang, C. I. Rodrigues, J. Lv, Z. Wang and W.-M. Hwu,
“Adaptive cache management for energy-efficient GPU computing”, in “Pro-
ceedings of the International Symposium on Microarchitecture”, (2014).

[52] Chen, X., L. Yang, R. Dick, L. Shang and H. Lekatsas, “C-Pack: a high-
performance microprocessor cache compression algorithm”, IEEE Transactions
on Very Large Scale Integration (VLSI) Systems 18, 8, 1196–1208 (2010).

[53] Das, S., T. M. Aamodt and W. J. Dally, “Reuse distance-based probabilistic
cache replacement”, ACM Transactions on Architecture Code Optimization 12,
4, 33:1–33:22 (2015).

[54] Dashti, M., A. Fedorova, J. Funston, F. Gaud, R. Lachaize, B. Lepers,
V. Quema and M. Roth, “Traffic management: A holistic approach to memory
placement on NUMA systems”, in “Proceedings of the Eighteenth International
Conference on Architectural Support for Programming Languages and Operat-
ing Systems”, (2013).

[55] DDR3, “Micron DDR3 SDRAM http://www.micron.com/products/
dram/ddr3-sdram”, (2007).

[56] Dreps, D., “The 3rd generation of ibm’s elastic interface on power6”, in “Pro-
ceedings of the IEEE Hot Chips 19 Symposium”, HCS ’19 (2007).

[57] Dusser, J., T. Piquet and A. Seznec, “Zero-content augmented caches”, in “Pro-
ceedings of the 23rd international conference on Supercomputing”, (2009).

[58] Dybdahl, H. and P. Stenstrom, “An adaptive shared/private NUCA cache par-
titioning scheme for chip multiprocessors”, in “Proceedings of the IEEE 13th
International Symposium onHigh Performance Computer Architecture”, (2007).

[59] Ekman, M. and P. Stenstrom, “A robust main-memory compression scheme”,
in “Proceedings of the 32nd Annual International Symposium on Computer
Architecture”, (2005).

[60] Farooq, M. U., Khubaib and L. K. John, “Store-load-branch (SLB) predic-
tor: A compiler assisted branch prediction for data dependent branches”, in
“Proceedings of the IEEE 19th International Symposium on High Performance
Computer Architecture”, (2013).

[61] Gebhart, M., D. R. Johnson, D. Tarjan, S. W. Keckler, W. J. Dally, E. Lindholm
and K. Skadron, “Energy-efficient mechanisms for managing thread context
in throughput processors”, in “Proceedings of the 38th Annual International
Symposium on Computer Architecture”, (2011).

171

[62] Guerreiro, J., A. Ilic, N. Roma and P. Tomas, “GPGPU power modeling for
multi-domain voltage-frequency scaling”, in “Proceedings of the IEEE Interna-
tional Symposium on High Performance Computer Architecture”, (2018).

[63] Hallnor, E. and S. Reinhardt, “A unified compressed memory hierarchy”, in
“Proceedings of the 11th International Symposium on High-Performance Com-
puter Architecture”, (2005).

[64] Hashemi, M. and Y. N. Patt, “Filtered runahead execution with a runahead
buffer”, in “Proceedings of the 48th International Symposium on Microarchi-
tecture”, (2015).

[65] He, B., W. Fang, N. K. Govindaraju, Q. Luo and T. Wang, “Mars: A mapre-
duce framework on graphics processors”, in “Proceedings of the International
Conference on Parallel Architectures and Compilation Techniques”, (2008).

[66] Hong, S. and H. Kim, “An integrated GPU power and performance model”,
in “Proceedings of the 37th Annual International Symposium on Computer
Architecture”, (2010).

[67] Hu, Z., S. Kaxiras and M. Martonosi, “Timekeeping in the memory system:
Predicting and optimizing memory behavior”, in “Proceedings of the 29th An-
nual International Symposium on Computer Architecture”, ISCA (2002).

[68] Huffman, D., “A method for the construction of minimum-redundancy codes”,
Proc. of the IRE (1952).

[69] Intel, “Intel Core i7 Processors http://www.intel.com/products/proc-
essor/corei7/”, (2008).

[70] Ishida, M., “Kyocera APX - An Advanced Organic Technology for 2.5D Inter-
posers”, URL https://www.ectc.net, accessed: 2016-06-20 (2014).

[71] ITRS, “International technology roadmap for semiconductors 2.0”, URL http:
//www.itrs2.net/itrs-reports.html (2015).

[72] Jaleel, A., E. Borch, M. Bhandaru, S. Steely and J. Emer, “Achieving
non-inclusive cache performance with inclusive caches: Temporal locality
aware (TLA) cache management policies”, in “Proceedings of 43rd Annual
IEEE/ACM International Symposium on Microarchitecture”, (2010).

[73] Jaleel, A., W. Hasenplaugh, M. Qureshi, J. Sebot, S. Steely, Jr. and J. Emer,
“Adaptive insertion policies for managing shared caches”, in “Proceedings of
the 17th International Conference on Parallel Architectures and Compilation
Techniques”, (2008).

[74] Jaleel, A., K. B. Theobald, S. C. Steely, Jr. and J. Emer, “High performance
cache replacement using re-reference interval prediction (RRIP)”, in “Proceed-
ings of the 37th Annual International Symposium on Computer Architecture”,
(2010).

172

https://www.ectc.net
http://www.itrs2.net/itrs-reports.html
http://www.itrs2.net/itrs-reports.html

[75] Jia, W., K. A. Shaw and M. Martonosi, “Characterizing and improving the
use of demand-fetched caches in GPUs”, in “Proceedings of the 26th ACM
International Conference on Supercomputing”, (2012).

[76] Jia, W., K. A. Shaw and M. Martonosi, “MRPB: Memory request prioritization
for massively parallel processors”, in “Proceedings of the IEEE 20th Interna-
tional Symposium on High Performance Computer Architecture”, (2014).

[77] Jimenez, D. A. and C. Lin, “Dynamic branch prediction with perceptrons”,
in “Proceedings of the Seventh International Symposium on High-Performance
Computer Architecture”, (2001).

[78] Kadjo, D., J. Kim, P. Sharma, R. Panda, P. Gratz and D. Jimenez, “B-Fetch:
Branch prediction directed prefetching for chip-multiprocessors”, in “Proceed-
ings of the 47th Annual IEEE/ACM International Symposium on Microarchi-
tecture”, (2014).

[79] Kannan, A., N. D. E. Jerger and G. H. Loh, “Enabling interposer-based dis-
integration of multi-core processors”, in “Proceedings of the 48th International
Symposium on Microarchitecture”, (2015).

[80] Kayiran, O., A. Jog, A. Pattnaik, R. Ausavarungnirun, X. Tang, M. T. Kan-
demir, G. H. Loh, O. Mutlu and C. R. Das, “uC-States: Fine-grained GPU
datapath power management”, in “Proceedings of the International Conference
on Parallel Architectures and Compilation”, (2016).

[81] Keckler, S. W., W. J. Dally, B. Khailany, M. Garland and D. Glasco, “GPUs
and the future of parallel computing”, IEEE Micro 31, 5, 7–17 (2011).

[82] Keramidas, G., P. Petoumenos and S. Kaxiras, “Cache replacement based on
reuse-distance prediction”, in “Proceedings of the 25th International Conference
on Computer Design”, (2007).

[83] Kestor, G., R. Gioiosa, D. J. Kerbyson and A. Hoisie, “Quantifying the energy
cost of data movement in scientific applications”, in “Proceedings of the IEEE
International Symposium on Workload Characterization”, (2013).

[84] Khairy, M., M. Zahran and A. G. Wassal, “Efficient utilization of GPGPU cache
hierarchy”, in “Proceedings of the Workshop on General Purpose Processing
Using GPUs”, (2015).

[85] Khan, S. M., D. A. Jiménez, D. Burger and B. Falsafi, “Using dead blocks as a
virtual victim cache”, in “Proceedings of the 19th International Conference on
Parallel Architectures and Compilation Techniques”, (2010).

[86] Khan, S. M., Y. Tian and D. A. Jimenez, “Sampling dead block prediction for
last-level caches”, in “Proceedings of the 43rd Annual IEEE/ACM International
Symposium on Microarchitecture”, (2010).

[87] Kharbutli, M. and Y. Solihin, “Counter-based cache replacement and bypassing
algorithms”, in “IEEE Transactions on Computing”, vol. 57 (2008).

173

[88] Kim, J., H. Kim, J. H. Lee and J. Lee, “Achieving a single compute device image
in opencl for multiple GPUs”, in “Proceedings of the 16th ACM Symposium on
Principles and Practice of Parallel Programming”, (2011).

[89] Kim, J. and Y. Kim, “HBM: Memory solution for bandwidth-hungry proces-
sors”, in “Proceedings of the IEEE Hot Chips 26 Symposium”, (2014).

[90] Kim, J., M. Sullivan, E. Choukse and M. Erez, “Bit-plane compression: Trans-
forming data for better compression in many-core architectures”, in “Proceed-
ings of the 43rd International Symposium on Computer Architecture”, (2016).

[91] Kumar, S., H. Zhao, A. Shriraman, E. Matthews, S. Dwarkadas and L. Shannon,
“Amoeba-cache: Adaptive blocks for eliminating waste in the memory hierar-
chy”, in “Proceedings of the International Symposium on Microarchitecture”,
(2012).

[92] Kumar, V., A. Grama, A. Gupta and G. Karypis, Introduction to Parallel Com-
puting: Design and Analysis of Algorithms (Benjamin-Cummings Publishing
Co., Inc., Redwood City, CA, USA, 1994).

[93] Lai, A.-C., C. Fide and B. Falsafi, “Dead-block prediction & dead-block correlat-
ing prefetchers”, in “proceedings of the International Symposium on Computer
Architecture”, (2001).

[94] Lal, S., J. Lucas and B. Juurlink, “E2MC: Entropy encoding based memory
compression for GPUs”, in “Proceedings of the IEEE International Parallel and
Distributed Processing Symposium”, (2017).

[95] LaRowe Jr., R. P., J. T. Wilkes and C. S. Ellis, “Exploiting operating system
support for dynamic page placement on a NUMA shared memory multiproces-
sor”, in “Proceedings of the Third ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming”, (1991).

[96] Lee, J., M. Samadi, Y. Park and S. Mahlke, “Transparent CPU-GPU collabo-
ration for data-parallel kernels on heterogeneous systems”, in “Proceedings of
the 22Nd International Conference on Parallel Architectures and Compilation
Techniques”, (2013).

[97] Lee, J., V. Sathisha, M. Schulte, K. Compton and N. S. Kim, “Improving
throughput of power-constrained GPUs using dynamic voltage/frequency and
core scaling”, in “Proceedings of the International Conference on Parallel Ar-
chitectures and Compilation Techniques”, (2011).

[98] Lee, M., S. Song, J. Moon, J. Kim, W. Seo, Y. Cho and S. Ryu, “Improving
GPGPU resource utilization through alternative thread block scheduling”, in
“Proceedings of the IEEE 20th International Symposium on High Performance
Computer Architecture”, (2014).

174

[99] Lee, S., K. Kim, G. Koo, H. Jeon, W. W. Ro and M. Annavaram, “Warped-
compression: Enabling power efficient GPUs through register compression”,
in “Proceedings of the 42nd Annual International Symposium on Computer
Architecture”, (2015).

[100] Lee, S.-Y., A. Arunkumar and C.-J. Wu, “CAWA: Coordinated warp scheduling
and cache prioritization for critical warp acceleration of GPGPU workloads”,
in “Proceedings of the 42nd Annual International Symposium on Computer
Architecture”, (2015).

[101] Lee, S.-Y. and C.-J. Wu, “Ctrl-C: Instruction-aware control loop based adaptive
cache bypassing for GPUss”, in “Proceedings of the IEEE 34th International
Conference on Computer Design”, (2016).

[102] Leng, J., T. Hetherington, A. ElTantawy, S. Gilani, N. S. Kim, T. M. Aamodt
and V. J. Reddi, “GPUWattch: Enabling energy optimizations in GPGPUs”,
in “Proceedings of the 40th Annual International Symposium on Computer
Architecture”, (2013).

[103] Li, A., G. J. van den Braak, A. Kumar and H. Corporaal, “Adaptive and trans-
parent cache bypassing for GPUs”, in “Proceedings of the International Con-
ference for High Performance Computing, Networking, Storage and Analysis”,
(2015).

[104] Li, C., S. L. Song, H. Dai, A. Sidelnik, S. K. S. Hari and H. Zhou, “Locality-
driven dynamic GPU cache bypassing”, in “Proceedings of the International
Conference on Supercomputing”, (2015).

[105] Li, D., M. Rhu, D. R. Johnson, M. O’Connor, M. Erez, D. Burger, D. S. Fussell
and S. W. Keckler, “Priority-based cache allocation in throughput processors”,
in “Proceedings of the 21st IEEE International Symposium on High Perfor-
mance Computer Architecture”, (2015).

[106] Li, H., S. Tandri, M. Stumm and K. C. Sevcik, “Locality and loop scheduling
on NUMA multiprocessors”, in “Proceedings of the International Conference
on Parallel Processing - Volume 02”, (1993).

[107] Li, S., J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen and N. P.
Jouppi, “McPAT: An integrated power, area, and timing modeling framework
for multicore and manycore architectures”, in “Proceedings of the 42nd Annual
IEEE/ACM International Symposium on Microarchitecture”, (2009).

[108] Liang, Y., Y. Wang and G. Sun, “Coordinated static and dynamic cache by-
passing for GPUs”, in “Proceedings of the Symposium on High Performance
Computer Architecture”, (2015).

[109] Lim, J., N. B. Lakshminarayana, H. Kim, W. J. Song, S. Yalamanchili and
W. Sung, “Power modeling for GPU architectures using McPAT”, ACM Trans-
actions on Design Automation of Electronic Systems 19, 3, 26:1–26:24 (2014).

175

[110] Liu, H., M. Ferdman, J. Huh and D. Burger, “Cache bursts: A new approach
for eliminating dead blocks and increasing cache efficiency”, in “Proceedings of
the 41st International Symposium on Microarchitecture”, (2008).

[111] Majo, Z. and T. R. Gross, “Matching memory access patterns and data place-
ment for NUMA systems”, in “Proceedings of the Tenth International Sympo-
sium on Code Generation and Optimization”, (2012).

[112] Majumdar, A., L. Piga, I. Paul, J. L. Greathouse, W. Huang and D. H. Al-
bonesi, “Dynamic GPGPU power management using adaptive model predic-
tive control”, in “Proceedings of the IEEE International Symposium on High
Performance Computer Architecture”, (2017).

[113] Manikantan, R., K. Rajan and R. Govindarajan, “NUcache: an efficient mul-
ticore cache organization based on next-use distance”, in “proceedings of the
International Symposium on High Performance Architecture”, (2011).

[114] Mansuri, M., J. E. Jaussi, J. T. Kennedy, T.-C. Hsueh, S. Shekhar, G. Bal-
amurugan, F. O’Mahony, C. Roberts, R. Mooney and B. Casper, “A scalable
0.128-to-1tb/s 0.8-to-2.6pj/b 64-lane parallel i/o in 32nm cmos”, in “IEEE In-
ternational Solid-State Circuits Conference Digest of Technical Papers”, (2013).

[115] Mao, M., W. Wen, X. Liu, J. Hu, D. Wang, Y. Chen and H. Li, “Temp: Thread
batch enabled memory partitioning for gpu”, in “Proceedings of the 53rd Annual
Design Automation Conference”, (2016).

[116] McCalpin, J. D., “Memory bandwidth and machine balance in current high per-
formance computers”, IEEE Computer Society Technical Committee on Com-
puter Architecture (TCCA) Newsletter pp. 19–25 (1995).

[117] Meng, J. and K. Skadron, “Avoiding cache thrashing due to private data place-
ment in last-level cache for manycore scaling”, in “Proceedings of the IEEE
International Conference on Computer Design.”, (2009).

[118] Milic, U., O. Villa, E. Bolotin, A. Arunkumar, E. Ebrahimi, A. Jaleel,
A. Ramirez and D. Nellans, “Beyond the socket: NUMA-aware GPUs”, in
“Proceedings of the 50th Annual IEEE/ACM International Symposium on Mi-
croarchitecture”, (2017).

[119] Mitsuishi, T., J. Suzuki, Y. Hayashi, M. Kan and H. Amano, “Breadth first
search on cost-efficient multi-gpu systems”, SIGARCH Comput. Archit. News
43, 4, 58–63 (2016).

[120] Moore, G. E., “Cramming more components onto integrated circuits”, Elec-
tronics 38, 8 (1965).

[121] Mutlu, O., H. Kim and Y. N. Patt, “Techniques for efficient processing in runa-
head execution engines”, in “Proceedings of the 32nd International Symposium
on Computer Architecture”, (2005).

176

[122] Nowatzki, T., J. Menon, C. han Ho and K. Sankaralingam, “gem5, GPG-
PUSim, McPAT, GPUWattch, "your favorite simulator here" considered harm-
ful”, (2014).

[123] NVIDIA, “NVIDIA GeForce GTX 480/470/465 GPU datasheet”, URL http://
www.nvidia.co.uk/docs/IO/90201/GTX-480-470-Web-Datasheet-Final4.
pdf (2010).

[124] NVIDIA, “CUDA C/C++ SDK code samples v4.0”, URL http://docs.
nvidia.com/cuda/cuda-samples (2011).

[125] NVIDIA, “NVIDIA kepler GK110 architecture”,
URL https://www.nvidia.com/content/PDF/kepler/
NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf (2012).

[126] NVIDIA, “NVML api reference manual”, URL http://developer.download.
nvidia.com/assets/cuda/files/CUDADownloads/NVML/nvml.pdf (2012).

[127] NVIDIA, “NVIDIA GeForce GTX 750 Ti”, URL http://
international.download.nvidia.com/geforce-com/international/
pdfs/GeForce-GTX-750-Ti-Whitepaper.pdf (2014).

[128] NVIDIA, “NVIDIA tesla P100 architecture”, URL https://images.nvidia.
com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.
pdff (2016).

[129] NVIDIA, “CUDA C Programming Guide”, URL http://docs.nvidia.com/
cuda/cuda-c-programming-guide/index.html (2017).

[130] NVIDIA, “NVIDIA tesla V100 architecture”, URL http://images.nvidia.
com/content/volta-architecture/pdf/volta-architecture-whitepaper.
pdf (2017).

[131] O’Connor, M., N. Chatterjee, D. Lee, J. Wilson, A. Agrawal, S. W. Keckler and
W. J. Dally, “Fine-grained DRAM: Energy-efficient DRAM for extreme band-
width systems”, in “Proceedings of the 50th Annual IEEE/ACM International
Symposium on Microarchitecture”, (2017).

[132] O’Neil, M. A. and M. Burtscher, “Microarchitectural performance character-
ization of irregular GPU kernels”, in “Proceedings of the IEEE International
Symposium on Workload Characterization”, (2014).

[133] O’Neil, M. A. and M. Burtscher, “Microarchitectural performance character-
ization of irregular gpu kernels”, in “Proceedings of the IEEE International
Symposium on Workload Characterization”, (2014).

[134] Pandiyan, D. and C.-J. Wu, “Quantifying the energy cost of data movement for
emerging smart phone workloads on mobile platforms”, in “Proceedings of the
IEEE International Symposium on Workload Characterization”, (2014).

177

http://www.nvidia.co.uk/docs/IO/90201/GTX-480-470-Web-Datasheet-Final4.pdf
http://www.nvidia.co.uk/docs/IO/90201/GTX-480-470-Web-Datasheet-Final4.pdf
http://www.nvidia.co.uk/docs/IO/90201/GTX-480-470-Web-Datasheet-Final4.pdf
http://docs.nvidia.com/cuda/cuda-samples
http://docs.nvidia.com/cuda/cuda-samples
https://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://developer.download.nvidia.com/assets/cuda/files/CUDADownloads/NVML/nvml.pdf
http://developer.download.nvidia.com/assets/cuda/files/CUDADownloads/NVML/nvml.pdf
http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce-GTX-750-Ti-Whitepaper.pdf
http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce-GTX-750-Ti-Whitepaper.pdf
http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce-GTX-750-Ti-Whitepaper.pdf
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdff
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdff
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdff
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf

[135] Paul, I., V. Ravi, S. Manne, M. Arora and S. Yalamanchili, “Coordinated energy
management in heterogeneous processors”, in “Proceedings of theInternational
Conference for High Performance Computing, Networking, Storage and Analy-
sis”, (2013).

[136] Pekhimenko, G., E. Bolotin, N. Vijaykumar, O. Mutlu, T. C. Mowry and S. W.
Keckler, “A case for toggle-aware compression for GPU systems”, in “Proceed-
ings of the IEEE International Symposium on High Performance Computer
Architecture”, (2016).

[137] Pekhimenko, G., T. Huberty, R. Cai, O. Mutlu, P. B. Gibbons, M. A. Kozuch
and T. C. Mowry, “Exploiting compressed block size as an indicator of future
reuse”, in “Proceedings of the IEEE 19th International Symposium on High
Performance Computer Architecture”, (2015).

[138] Pekhimenko, G., V. Seshadri, O. Mutlu, P. B. Gibbons, M. A. Kozuch and
T. C. Mowry, “Base-delta-immediate compression: Practical data compression
for on-chip caches”, in “Proceedings of the 21st International Conference on
Parallel Architectures and Compilation Techniques”, (2012).

[139] Perelman, E., G. Hamerly, M. Van Biesbrouck, T. Sherwood and B. Calder,
“Using simpoint for accurate and efficient simulation”, in “Proceedings of the
ACM SIGMETRICS International Conference on Measurement and Modeling
of Computer Systems”, (2003).

[140] Poulton, J., R. Palmer, A. M. Fuller, T. Greer, J. Eyles, W. J. Dally and
M. Horowitz, “A 14-mw 6.25-gb/s transceiver in 90-nm cmos”, IEEE Journal
of Solid-State Circuits 42, 12, 2745–2757 (2007).

[141] Poulton, J. W., W. J. Dally, X. Chen, J. G. Eyles, T. H. Greer, S. G. Tell, J. M.
Wilson and C. T. Gray, “A 0.54 pJ/b 20 Gb/s ground-referenced single-ended
short-reach serial link in 28 nm CMOS for advanced packaging applications”,
IEEE Journal of Solid-State Circuits 48, 12, 3206–3218 (2013).

[142] Qureshi, M. K., A. Jaleel, Y. N. Patt, S. C. Steely and J. Emer, “Adaptive
insertion policies for high performance caching”, in “Proceedings of the 34th
Annual International Symposium on Computer Architecture”, (2007).

[143] Qureshi, M. K., D. N. Lynch, O. Mutlu and Y. N. Patt, “A case for MLP-
aware cache replacement”, in “Proceedings of the 33rd Annual International
Symposium on Computer Architecture”, (2006).

[144] Qureshi, M. K., D. Thompson and Y. N. Patt, “The V-Way Cache: Demand
based associativity via global replacement”, in “Proceedings of the 32nd Annual
International Symposium on Computer Architecture”, (2005).

[145] Rajan, K. and R. Govindarajan, “Emulating optimal replacement with a shep-
herd cache”, in “Proceedings of the 40th Annual IEEE/ACM International
Symposium on Microarchitecture”, (2007).

178

[146] Rhu, M., M. Sullivan, J. Leng and M. Erez, “A locality-aware memory hierarchy
for energy-efficient GPU architectures”, in “Proceedings of the 46th Annual
IEEE/ACM International Symposium on Microarchitecture”, (2013).

[147] Rogers, T. G., M. O’Connor and T. M. Aamodt, “Cache-conscious wavefront
scheduling”, in “Proceedings of the 45th Annual IEEE/ACM International Sym-
posium on Microarchitecture”, (2012).

[148] Santriaji, M. H. and H. Hoffmann, “GRAPE: Minimizing energy for GPU ap-
plications with performance requirements”, in “Proceedings of the 49th Annual
IEEE/ACM International Symposium on Microarchitecture”, (2016).

[149] Sardashti, S., A. Arelakis, P. Stenström and D. A. Wood, A Primer on Compres-
sion in the Memory Hierarchy, Synthesis Lectures on Computer Architecture
(Morgan & Claypool Publishers, 2015).

[150] Sardashti, S., A. Seznec and D. A. Wood, “Skewed compressed caches”, in
“Proceedings of the 47th Annual IEEE/ACM International Symposium on Mi-
croarchitecture”, (2014).

[151] Sardashti, S. and D. A. Wood, “Decoupled compressed cache: Exploiting spatial
locality for energy-optimized compressed caching”, in “Proceedings of the 46th
Annual IEEE/ACM International Symposium on Microarchitecture”, (2013).

[152] Sathish, V., M. J. Schulte and N. S. Kim, “Lossless and lossy memory I/O link
compression for improving performance of GPGPU workloads”, in “Proceedings
of the 21st International Conference on Parallel Architectures and Compilation
Techniques”, (2012).

[153] Seshadri, V., O. Mutlu, M. A. Kozuch and T. C. Mowry, “The evicted-address
filter: A unified mechanism to address both cache pollution and thrashing”, in
“Proceedings of the 21st International Conference on Parallel Architectures and
Compilation Techniques”, (2012).

[154] Sethia, A., G. Dasika, M. Samadi and S. Mahlke, “APOGEE: Adaptive
prefetching on GPUs for energy efficiency”, in “Proceedings of the 22nd In-
ternational Conference on Parallel Architectures and Compilation Techniques”,
(2013).

[155] Sethia, A. and S. Mahlke, “Equalizer: Dynamic tuning of GPU resources for
efficient execution”, in “Proceedings of the 47th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture”, (2014).

[156] Shao, Y. S. and D. Brooks, “Energy characterization and instruction-level en-
ergy model of Intel’s Xeon Phi processor”, in “Proceedings of the International
Symposium on Low Power Electronics and Design”, (2013).

[157] Sharma, D. D., “PCI Express 3.0 Features and Requirements Gathering for
beyond”, URL https://www.openfabrics.org/downloads/Media/Monterey_
2011/Apr5_pcie%20gen3.pdf, accessed: 2016-06-20 (2014).

179

https://www.openfabrics.org/downloads/Media/Monterey_2011/Apr5_pcie%20gen3.pdf
https://www.openfabrics.org/downloads/Media/Monterey_2011/Apr5_pcie%20gen3.pdf

[158] Smith, B. W. and K. Suzuki, Microlithography: Science and Technology, Second
Edition, Optical science and engineering (2007), URL https://books.google.
com/books?id=_hTLDCeIYxoC.

[159] Song, S., C. Su, B. Rountree and K. W. Cameron, “A simplified and accu-
rate model of power-performance efficiency on emergent GPU architectures”,
in “Proceedings of the IEEE 27th International Symposium on Parallel and
Distributed Processing”, (2013).

[160] Srinath, S., O. Mutlu, H. Kim and Y. N. Patt, “Feedback directed prefetching:
Improving the performance and bandwidth-efficiency of hardware prefetchers”,
in “Proceedings of the IEEE 13th International Symposium on High Perfor-
mance Computer Architecture”, (2007).

[161] Stuart, J. A. and J. D. Owens, “Message passing on data-parallel architectures”,
in “Proceedings of the IEEE International Symposium on Parallel & Distributed
Processing”, (2009).

[162] Stuart, J. A. and J. D. Owens, “Multi-GPU mapreduce on GPU clusters”, in
“Proceedings of the IEEE International Parallel Distributed Processing Sym-
posium”, (2011).

[163] Tam, D., R. Azimi and M. Stumm, “Thread clustering: Sharing-aware schedul-
ing on smp-cmp-smt multiprocessors”, in “Proceedings of the 2nd ACM
SIGOPS/EuroSys European Conference on Computer Systems”, (2007).

[164] Teran, E., Z. Wang and D. A. Jiménez, “Perceptron learning for reuse predic-
tion”, in “Proceedings of the 49th Annual IEEE/ACM International Symposium
on Microarchitecture”, (2016).

[165] Tian, Y., S. Puthoor, J. L. Greathouse, B. M. Beckmann and D. A. Jiménez,
“Adaptive GPU cache bypassing”, in “Proceedings of the 8th Workshop on
General Purpose Processing Using GPUs”, (2015).

[166] Tyson, G., M. Farrens, J. Matthews and A. R. Pleszkun, “A modified approach
to data cache management”, in “proceedings of the International Symposium
on Microarchitecture”, (1995).

[167] Vijayaraghavan, T., Y. Eckert, G. H. Loh, M. J. Schulte, M. Ignatowski, B. M.
Beckmann, W. C. Brantley, J. L. Greathouse, W. Huang, A. Karunanithi,
O. Kayiran, M. Meswani, I. Paul, M. Poremba, S. Raasch, S. K. Reinhardt,
G. Sadowski and V. Sridharan, “Design and analysis of an APU for exascale
computing”, in “Proceedings of the IEEE International Symposium on High
Performance Computer Architecture”, (2017).

[168] Vijaykumar, N., E. Ebrahimi, K. Hsieh, P. B. Gibbons and O. Mutlu, “The
locality descriptor: A holistic cross-layer abstraction to express data locality
in GPUs”, in “Proceedings of the 45th Annual International Symposium on
Computer Architecture”, (2018).

180

https://books.google.com/books?id=_hTLDCeIYxoC
https://books.google.com/books?id=_hTLDCeIYxoC

[169] Vijaykumar, N., G. Pekhimenko, A. Jog, A. Bhowmick, R. Ausavarungnirun,
C. Das, M. Kandemir, T. C. Mowry and O. Mutlu, “A case for core-assisted
bottleneck acceleration in GPUs: Enabling flexible data compression with as-
sist warps”, in “Proceedings of the 42nd Annual International Symposium on
Computer Architecture”, (2015).

[170] Wang, J., N. Rubin, A. Sidelnik and S. Yalamanchili, “Laperm: Locality aware
scheduler for dynamic parallelism on gpus”, in “Proceedings of the 43rd Inter-
national Symposium on Computer Architecture”, (2016).

[171] Wilson, K. M. and B. B. Aglietti, “Dynamic page placement to improve locality
in CC-NUMA multiprocessors for TPC-C”, in “Proceedings of the ACM/IEEE
Conference on Supercomputing”, (2001).

[172] Wu, C.-J., A. Jaleel, W. Hasenplaugh, M. Martonosi, S. C. Steely and J. Emer,
“SHiP: Signature-based hit predictor for high performance caching”, in “Pro-
ceedings of the 44th Annual IEEE/ACM International Symposium on Microar-
chitecture”, (2011).

[173] Wu, C.-J., A. Jaleel, M. Martonosi, S. C. Steely, Jr. and J. Emer, “PACMan:
Prefetch-aware cache management for high performance caching”, in “Proceed-
ings of the 44th Annual IEEE/ACM International Symposium on Microarchi-
tecture”, (2011).

[174] Wu, G., J. L. Greathouse, A. Lyashevsky, N. Jayasena and D. Chiou, “GPGPU
performance and power estimation using machine learning”, in “Proceedings
of the IEEE 21st International Symposium on High Performance Computer
Architecture”, (2015).

[175] Xie, X., Y. Liang, G. Sun and D. Chen, “An efficient compiler framework for
cache bypassing on GPUs”, in “Proceedings of the IEEE/ACM International
Conference on Computer-Aided Design”, (2013).

[176] Xie, X., Y. Liang, Y. Wang, G. Sun and T. Wang, “Coordinated static and
dynamic cache bypassing for GPUs”, in “Proceedings of the IEEE 21st Inter-
national Symposium on High Performance Computer Architecture”, (2015).

[177] Xie, Y. and G. Loh, “PIPP: Promotion/insertion pseudo-partitioning of multi-
core shared caches”, in “Proceedings of the 37th International Symposium on
Computer Architecture”, (2009).

[178] Yeh, T.-Y., D. T. Marr and Y. N. Patt, “Increasing the instruction fetch rate via
multiple branch prediction and a branch address cache”, in “Proceedings of the
ACM International Conference on Supercomputing 25th Anniversary Volume”,
(2014).

181

	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Background: Memory Subsystem Inefficiencies in General Purpose Processors
	Chip-Multiprocessors and the Last Level Cache
	The GPGPU Execution Model and Constrained Data Cache Capacity

	Research Overview
	Main Memory Aware Last Level Cache Management for CMPs
	Divergence Aware Data Cache Management for GPGPUs
	Adaptive Cache Compression Management for GPGPU Data Caches
	GPGPUs and the Memory Subsystem Design for the Post-Moore's Law Era
	Energy Efficiency Scaling for Future Multi-Module GPGPUs

	Contributions
	Thesis Outline

	Reuse and Memory Access Cost Aware Cache Management for CMP Systems
	Background and Motivation
	ReMAP Design and Implementation
	Recency Estimation
	Post Eviction Reuse Distance Estimation
	Memory Access Cost Determination
	, , and Parameters in EffectiveCost Computation
	Implementation and Hardware Overhead

	Evaluation and Analysis
	Simulation Infrastructure
	Workload Construction
	Sequential Workloads Results
	Benefit of Using PERD and MAC Information in Isolation
	Sensitivity to Victim Buffer Storage
	Sensitivity to System Parameters
	Multiprogrammed Workloads Results

	Related Work
	Reuse Distance Prediction
	Dead Block Prediction
	Coordinating LLC Management with DRAM

	Chapter Summary

	Instruction and Memory Divergence Based Cache Management for GPGPU Systems
	Background and Motivation
	Application Sensitivity to Cache Capacity and Interconnect Bandwidth
	Inefficient Cache Utilization in GPGPUs
	Inefficient Cache and Bandwidth Utilization due to Default Fixed Cache Line Size Configuration

	ID-Cache Design and Implementation
	Towards Effective Cache Bypassing
	PC and Memory Divergence Pattern Guided Bypassing
	Towards Efficient Cache Line Size Selection
	Divergence Guided Adaptive Line Size Insertion (ALSI)
	ID-Cache: Instruction and Divergence Based Cache Management

	Evaluation and Analysis
	Simulation Infrastructure
	Workload Construction
	PC and Memory Divergence Pattern Guided Bypassing
	Divergence Based Adaptive Line Size Insertion (ALSI)
	ID-Cache - Instruction and Divergence Based Cache Management

	Related Work
	Chapter Summary

	Latency Tolerance Aware Cache Compression Management for GPGPUs
	Background and Motivation
	GPGPU Workload Data Compressibility
	Latency Tolerance of GPGPUs
	Adaptive Compression in GPGPUs

	LATTE-CC Design and Implementation
	Minimizing AMATGPU for Optimal Compression Mode Selection
	Dynamic Estimation of AMATGPU
	Putting it all Together

	Evaluation and Analysis
	Simulation Infrastructure
	Workload Construction
	Component Compression Policy Implementation Details
	Overall Performance and Energy Impact
	Comparing LATTE-CC with an Offline Optimal Policy
	An Illustrating Application Example: Similarity Score (SS)
	Benefits of Latency Tolerance Awareness
	Flexibility of LATTE-CC Design

	Related Work
	Data Compression in CMPs
	Data Compression for GPU Memory

	Chapter Summary

	Multi-Chip-Module GPGPUs and the Memory Subsystem Design for the Post Moore's Law Era
	Background and Motivation
	GPU Application Scalability
	Multi-GPU Alternative
	Package-Level Integration

	Multi-Chip-Module GPU Design
	MCM-GPU Organization
	MCM-GPU and GPM Architecture
	On-Package Bandwidth Considerations

	Evaluation and Analysis
	Simulation Infrastructure
	Workload Construction
	Revisiting MCM-GPU Cache Architecture
	CTA Scheduling for GPM Locality
	Data Partitioning for GPM Locality
	Optimized MCM-GPU Performance Summary
	MCM-GPU Performance vs Multi-GPU

	Related Work
	Chapter Summary

	Understanding the Energy Efficiency of Multi-Chip-Module GPGPUs and the Dependence on the Memory Subsystem
	Background and Motivation
	EDPSE: Quantifying GPU Energy Efficiency at Scale
	GPUJoule: A GPU Energy Estimation Framework
	Micro-Benchmark Construction
	Generating Energy Estimates

	Energy Efficiency and the Future of Multi-Module GPUs
	Experimental Methodology
	Understanding Energy Efficiency
	Optimizing for Energy Efficiency
	Decomposing EDSPE Improvements
	Discussion

	Related Work
	Chapter Summary

	Conclusion
	REFERENCES

