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ABSTRACT 

Measuring molecular interaction with membrane proteins is critical for 

understanding cellular functions, validating biomarkers and screening drugs. Despite the 

importance, developing such a capability has been a difficult challenge, especially for small 

molecules binding to membrane proteins in their native cellular environment. The current 

mainstream practice is to isolate membrane proteins from the cell membranes, which is 

difficult and often lead to the loss of their native structures and functions. In this thesis, 

novel detection methods for in situ quantification of molecular interactions with membrane 

proteins are described. 

First, a label-free surface plasmon resonance imaging (SPRi) platform is developed 

for the in situ detection of the molecular interactions between membrane protein drug target 

and its specific antibody drug molecule on cell surface. With this method, the binding 

kinetics of the drug-target interaction is quantified for drug evaluation and the receptor 

density on the cell surface is also determined.  

Second, a label-free mechanically amplification detection method coupled with a 

microfluidic device is developed for the detection of both large and small molecules on 

single cells. Using this method, four major types of transmembrane proteins, including 

glycoproteins, ion channels, G-protein coupled receptors (GPCRs) and tyrosine kinase 

receptors on single whole cells are studied with their specific drug molecules. The basic 

principle of this method is established by developing a thermodynamic model to express 

the binding-induced nanometer-scale cellular deformation in terms of membrane protein 

density and cellular mechanical properties. Experiments are carried out to validate the 

model. 
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Last, by tracking the cell membrane edge deformation, molecular binding induced 

downstream event – granule exocytosis is measured with a dual-optical imaging system. 

Using this method, the single granule exocytosis events in single cells are monitored and 

the temporal-spatial distribution of the granule fusion-induced cell membrane deformation 

are mapped. Different patterns of granule release are resolved, including multiple release 

events occurring close in time and position. The label-free cell membrane deformation 

tracking method was validated with the simultaneous fluorescence recording. And the 

simultaneous cell membrane deformation detection and fluorescence recording allow the 

study of the propagation of the granule release-induced membrane deformation along cell 

surfaces.  
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CHAPTER 1 INTRODUCTION AND BACKGROUND 

1.1 Introduction 

Molecular interaction plays an important role in many fundamental biological 

processes, such as cell growth and metabolism, immune system responses, and disease 

development and treatment [1, 2]. When the ligand molecule binds to its target receptor, a 

specific receptor-ligand complex will form and evoke a cascade of downstream responses 

for biological signaling. Besides, molecular interaction is critical for detecting disease 

biomarkers, and for drug screening to evaluate the drug potency and efficacy. Therefore, it 

is of great value to develop a quantitative platform for the measurement of the molecular 

interaction. 

Membrane proteins are the most targeted receptors for molecular interaction, which 

is responsible for relaying signals between a cell and its external environment, moving ions 

and molecules across the membrane, and allows it to recognize other cells and attach to a 

surface, regulating almost all cellular functions [3-5]. Membrane proteins are also the most 

important drug targets, comprising more than 60% of the current therapeutic drug targets 

[6]. When small molecule drug or antibody drug bind to the membrane proteins, it normally 

initiates or inhibits the function of certain pathways for the disease treatment [7]. For both 

studying the cellular functions and discovering new drugs, it is necessary to measure the 

binding of membrane proteins with various ligands and drug candidate molecules, and 

quantify the binding kinetics in order to determine how strong and fast the binding is [5, 8] 

and evaluate drug potency and efficacy.[8-10] 
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Quantifying the binding affinity of a ligand molecule with its specific membrane 

protein provides valuable information for drug screening and optimization. The affinities 

of good drug candidates are often in the nM range, but weaker and stronger affinities are 

also observed [11, 12]. To screening the best drug for one targeted receptor, more binding 

constants need to be considered. Binding kinetics determine how fast a drug associates and 

dissociates with its receptor, providing excellent supplementary information for further 

drug potency evaluation [9, 13]. Thus, the detection of binding kinetics is also important 

in drug development, especially for small molecules, as more than 50% of the current drugs 

are small molecules.  

1.2 Membrane Protein 

Membrane proteins are the proteins that bound with the cell membrane, which 

constitutes one of the largest and most important classes of proteins, accounting for about 

30% of a cell’s typical proteins [14]. Some of them are bound only to the membrane surface, 

whereas others are transmembrane proteins and have domains on one or both sides. The 

extracellular domains of the proteins are generally involved in molecular recognition for 

cell – cell signaling and binding interactions, the transmembrane domain, particularly those 

that form channels or pores, can move different ions or molecules across the cell membrane 

for signaling transduction, while the intracellular domains often have a variety of functions, 

triggering different intracellular signaling pathways.  

Membrane proteins are the starting point for a huge variety of cellular signal 

transduction pathways, ranging from the basic molecular recognition function to various 

physiological and pathological functions. Many diseases are caused by the mutations of 
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membrane proteins, for example the neurological diseases, depression and schizophrenia 

are resulting from the mutation of ion channels, while cystic fibrosis is due to the mutation 

of an ATP-binding cassette transporter (ABC transporter) protein [15-17]. Mutations that 

cause a certain membrane protein overexpressing and constant activation often lead to 

uncontrolled diseases. Therefore, quantification of membrane protein expression density 

in cell membrane is important for disease diagnosis. Furthermore, more than 60% of the 

current drugs bind to targeted membrane proteins for disease treatment (Figure 1.1). The 

binding interaction with membrane protein is proposed to be the key process in drug 

screening and optimization.  

 

Figure 1.1 Drug classes of current drug therapies.[18] The transmembrane proteins are the 

most targeted membrane proteins in drug screening, which can be divided into three 

different groups according to their basic structure and function in ligand – protein 

interaction (Figure 1.2). The first group of these proteins are ligand - gated ion channels, 

which allow the influx and efflux of certain ions along the concentration gradient when 

activated. The second group of transmembrane proteins are membrane transporters, which 



4 

 

span the whole membrane and transport the specific bonded molecules across the 

membrane. The last group are called membrane receptors, which can be activated by the 

binding of specific ligands for cellular signal transduction.  

 

Figure 1.2 Three different types of transmembrane proteins. [From ChemgaPedia at 

http://www.chemgapedia.de/vsengine/en/index.html]  

Membrane ion channels are transmembrane proteins that form a hydrophilic pore 

with multiple subunits to allow certain ion flux passing through, which play an important 

role in maintaining the electrostatic equilibrium and cell function. According to the gating 

methods, membrane ion channels can be divided as voltage – gated ion channels and ligand 

– gated ion channels. Voltage – gated ion channels open or close in response to the changes 

of membrane potential, playing a key role in electrical signal generation and transduction. 

However, no ligand binding process involved in these proteins. The ligand – gated ion 

channels are more related with the binding process and posing great significance in drug 

discovery and development. When the molecule binds as a ligand to the ion channel 

receptor, the gate will open to allow specific ions, such as Na+ or Ca2+ to pass through. A 

http://www.chemgapedia.de/vsengine/en/index.html
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lot of ligand – gated ion channels have been identified as certain drug targets, and most of 

them are targets for neurotransmitter interaction and nervous signal transmission. 

Membrane transporters, transmembrane proteins involved in the movement of 

small molecules, or macromolecules, such as hormones, immunoglobulin and other 

proteins across the membrane, can play a vital role in determining drug pharmacokinetics, 

safety and efficacy as they are implicated in the process of drug absorption and elimination 

[19-21]. The drug targeted membrane transporters are mainly carrier mediated transporters, 

which interact with specific ligand for transportation activation. These carriers mediated 

transportation can be divided into facilitated diffusion and active transport according to 

ATP consumption during the transportation process.  The active transport occurs when the 

transported molecules are coupled to ATP hydrolysis, which provide the energy for 

molecular transportation regardless of the concentration gradient. One of the most famous 

active transport proteins are the ATP-Binding Cassette (ABC) transporters, which depend 

upon ATP binding for molecular transportation and the mutation of these transporters can 

lead to different diseases, such as cystic fibrosis, adrenoleukodystrophy, and drug-resistant 

tumors [22, 23]. The facilitated diffusion transporters are the proteins that have a specific 

binding site for the transported molecules, and the binding causes the conformation change 

of transporter for the binding molecules to be released through concentration gradient 

without consumption of any energy. These type of transporter possess significant potential 

in drug absorption and elimination for drug screening and optimization. One important 

example is the glucose transporters (GLUT), which are important for the understanding of 

type II diabetes. 
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The last but the most important group of transmembrane proteins in drug discovery 

are the membrane receptors, which serve as receptors for neurotransmitters, peptide 

hormones and growth factor and constitute more than half of the drug targets. Some 

neurotransmitter receptors have been mentioned in previous ligand – gated ion channel 

section. The other membrane receptors, instead of opening the channel, act by the 

regulation of intracellular proteins for different physiological and pathological functions. 

These membrane proteins normally consist of three major domains: an extracellular 

binding domain, a hydrophobic transmembrane domain, and an intracellular functional 

domain, either an enzyme or other proteins for various functions. Ligand binding to the 

extracellular domain of these membrane receptors will initiate a chain of conformation 

change and intracellular reactions, ultimately reaching the targeted cell nucleus and leading 

to certain changes in gene expression, which is also the typical therapeutic process for drug 

intervention. According to the structure and functions, membrane receptors can be divided 

into 3 classes: the ion channel – linked receptor (mentioned as ligand – gated ion channel), 

the enzyme – linked receptor and the G protein – coupled receptor (GPCR). GPCR is one 

of the largest, most versatile group of membrane receptors, and also the most 

pharmaceutically important ones, accounting for over 50% of all human drug targets and 

involving in a wide range of disease conditions including cancer, cardiovascular, metabolic, 

CNS and inflammatory diseases [24, 25]. The GPCR family receptors are all structurally 

and functionally related, characterized by seven transmembrane spanning α helices and the 

intermediary action of G proteins. The binding interactions between an agonist and GPCR 

will induce a conformation change that activate the bound G protein, which will dissociate 
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from the receptor and transduce the signal to intracellular targets for different 

functionalities [26]. 

In contrast to GPCR, other membrane receptors are directly linked to intracellular 

enzymes, termed as the enzyme – linked receptors, in which the largest family receptors 

are receptor tyrosine kinases (RTKs). RTKs receptors can phosphorylate their substrate 

proteins on tyrosine residues for signal transduction, serving as high affinity receptors for 

many peptide growth factor, cytokines, and hormones. These receptors all have the 

common structure, consisting of an N-terminal extracellular ligand-binding domain, a 

single transmembrane α helix, and a cytosolic C-terminal domain with protein-tyrosine 

kinase activity. Up to now, more than 50 RTKs have been identified, and the majority of 

these receptors are for growth factors and hormones like epidermal growth factor (EGF), 

platelet derived growth factor (PDGF), fibroblast growth factor (FGF), hepatocyte growth 

factor (HGF), insulin, and nerve growth factor (NGF), which are particularly involved in 

the control of cell growth and differentiation. Therefore, the upregulation of these receptors 

will lead to uncontrolled cell dividing, resulting in various carcinomas.  

After introduction of the different types of membrane proteins, it is evident that 

membrane proteins are critical for the understanding of cellular communication processes, 

validation of biomarkers, and screening of drugs. Despite their importance, membrane 

proteins are notoriously difficult to prepare in pure form and hard to get the correctly folded 

form in sufficient quantity for drug discovery purposes. The challenge of membrane 

proteins expression is that their expression can be toxic to cells or cause inclusion bodies, 

affecting the protein yield, purification and research period. Therefore, the quantification 
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of ligand – protein interaction in their natural lipid environment on cell surface is of great 

significance for drug discovery. 

1.3 Binding Kinetics  

As has been pointed out, the quantification of ligand – protein interaction is of great 

significance in drug screening and optimization, in which relevant binding parameters can 

well be used to characterize the drug efficacy and potency. In most cases, the ligand – 

protein binding in biological and pharmaceutical study is a highly selective and reversible 

process, which can be illustrated as the simplest 1:1 stoichiometry shown below: 

P + L
ka

⇄
kd

PL 

P represents the membrane protein, which could be a receptor, ion channel or transporter, 

while L represents the ligand molecule, which could be the neurotransmitter, hormone, 

antibody and other drug molecules. PL is the binding formed biomolecular complex. The 

association rate constant ka (in the unit of M-1s-1) and dissociation rate constant kd (in the 

unit of s-1) are the binding kinetic constants, which can be used to describe how fast a ligand 

binds to the membrane protein and how long it keeps bound with the receptor. These 

binding kinetic values can fully characterize the protein – ligand binding process, providing 

comprehensive information in drug evaluation.  

The binding affinity is the most used parameter for the quantification of the ligand 

– protein binding interaction, which is described by the equilibrium dissociation constant, 

KD (in the unit of M).  KD is defined as the ratio of molecules concentrations in equilibrium 

state: 



9 

 

KD =  
[P][L]

[PL]
 

And the value of KD is equal to the ligand concentration that binds to half of the 

membrane protein site. Therefore, KD can be directly derived by measuring the equilibrium 

concentration ratio between ligand, membrane protein and the formed complex under 

different ligand concentrations. The stronger the ligand is bound, the smaller KD will be 

obtained for drug potency evaluation, normally in the range of nM for good drug candidates. 

However, binding affinity cannot characterize the whole binding process. When in 

equilibrium state, the formation of the molecular complex and the dissociation of this 

complex reach the balance, which means: 

ka[P][L] = kd[PL]  

Thus, the equilibrium constant KD can also be calculated by the binding kinetics ka 

and kd: 

KD =  
kd

ka
 

As the ratio of dissociation rate to association rate, KD lost the exact rate 

information for ligand binding process, not being able to illustrate how fast the ligands bind 

to the protein and how long the ligands keep bound with the protein.  To fully characterize 

the molecular interaction with membrane protein, the binding kinetic constants need to be 

quantified. Therefore, the real time quantification of the whole binding process is important. 

Error! Reference source not found. is the reprehensive of the real time binding curve, in w

hich association process, equilibrium state and the dissociation process are illustrated.  
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Figure 1.3 A representative binding curve in real time measurements.  

1.3.1 Association Process 

The association process is the first phase in the molecular interaction measurements. 

When the ligand molecules diffuse to the binding proteins, the binding interaction will 

occur. The rate of association, number of binding events per unit of time, equals: 

[𝐿𝑖𝑔𝑎𝑛𝑑] ∙ [𝑃𝑟𝑜𝑡𝑒𝑖𝑛] ∙ 𝑘𝑎       (1.1) 

Once binding interaction occurs, the ligand and protein will form the protein-ligand 

complex for a random amount of time. The rate of dissociation, number of dissociation 

events per unit of time, equals: 

[𝑃𝑟𝑜𝑡𝑒𝑖𝑛 ∙ 𝐿𝑖𝑔𝑎𝑛𝑑] ∙ 𝑘𝑑       (1.2) 

The binding interaction between immobilized protein (P) and ligand (L) can be 

assumed to follow the first order kinetics [27]. Therefore, during the association process, 

the complex [PL] increases as: 

𝑑[𝑃𝐿]

𝑑𝑡
= 𝑘𝑎 ∙ [𝑃] ∙ [𝐿] − 𝑘𝑑 ∙ [𝑃𝐿]      (1.3) 

The association rate constant ka describes the rate of protein-ligand complex 

formation, indicating how fast the interaction occurs. The units of ka are M-1s-1 and are 
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typically between 103 and 107 for biological application. The dissociation rate constant kd 

describes the stability of protein-ligand complex, indicating how long the bond remains. 

The units of ka are s-1 and are typically between 10-1 and 10-6 for biological application.  

Assuming that the ligand concentration is constant and the maximum concentration 

of the protein is Rmax, the protein-ligand complex concentration at time t is Rt, the free 

protein concentration at time t can be described as (Rmax-Rt). Then, equation 1.3 can be 

rewrite as: 

𝑑𝑅𝑡

𝑑𝑡
= 𝑘𝑎 ∙ (𝑅𝑚𝑎𝑥 − 𝑅𝑡) ∙ [𝐿] − 𝑘𝑑 ∙ 𝑅𝑡     (1.4) 

By solving the differential equation 1.4, the association equation can be written by: 

𝑅𝑡 =
[𝐿]𝑅𝑚𝑎𝑥

𝑘𝐷+[𝐿]
[1 − 𝑒−(𝑘𝑎[𝐿]+𝑘𝑑)𝑡]      (1.5) 

By fitting the binding association data with the kinetic equation 1.5, the binding 

kinetic constants can be derived. 

1.3.2 Equilibrium State 

When the binding association process continues for long enough time, the 

interaction will reach the equilibrium state, in which the formation of the protein-ligand 

complex equals to the breaking of the protein-ligand complex. At this state, the equilibrium 

constant kD can be measured by: 

𝐾𝐷 =
[𝑃][𝐿]

[𝑃𝐿]
=

𝑘𝑑

𝑘𝑎
        (1.6) 

At equilibrium, the association equation can be written as: 

𝑑𝑅𝑡

𝑑𝑡
= 𝑘𝑎 ∙ (𝑅𝑚𝑎𝑥 − 𝑅𝑒𝑞) ∙ [𝐿] − 𝑘𝑑 ∙ 𝑅𝑒𝑞 = 0    (1.7) 
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Equilibrium constants are determined with high sensitivity when the ligand 

concentration is equal to the dissociation constant kD, which gives half of the maximum 

responses. Besides, equilibrium measurements are not affected by mass transport and 

ligand rebinding. So it is important to evaluate the data with equilibrium fitting.  

An important experimental consideration is the time taken to reach equilibrium. 

From the integrated equation, the time required (tr) to reach a fraction of equilibrium 

(r=R/Req) can be derived as: 

𝑅𝑒𝑞 =
𝑘𝑎[𝐿]𝑅𝑚𝑎𝑥

𝑘𝑑+𝑘𝑎[𝐿]
        (1.8) 

𝑡𝑟 =
−ln (1−𝑟)

𝑘𝑑+𝑘𝑎[𝐿]
         (1.9) 

When the ligand concentration is equal to the equilibrium constant KD, the time 

taken to reach 90% equilibrium is about 1/kd.  

1.3.3 Dissociation Process 

When the equilibrium is reached in the binding process, the ligand solution will be 

changed to buffer solution to start the dissociation process. At this point, the ligand 

concentration will drop to zero and the protein-ligand complex will dissociate, and the 

dissociation process can be described as: 

𝑑𝑅𝑡

𝑑𝑡
= −𝑘𝑑 ∙ 𝑅𝑡         (1.10) 

Similarly, by solving this differential equation, the dissociation equation can be 

written as: 

𝑅𝑡 = 𝑅0𝑒−𝑘𝑑(𝑡−𝑡0)         (1.11) 
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Normally, for the binding kinetic curve fitting, the dissociation rate constant will 

first be fitted with the dissociation equation. Then, with the fixed dissociation rate constant, 

the association rate constant and maximum responses will be fitted with association 

equation.  

1.4 Molecular Interaction Detection Assays 

Molecular binding to membrane proteins is critical for both cellular function study 

and drug development, which has motivated researchers to develop various detection 

technologies. A list of the binding detection assays and brief description of each method is 

presented in Table 1.1, from which it is easy to find out all the assays can be divided into 

two categories: labeled and label – free binding assays.  

Labeled assays, including enzyme linked immunosorbent assay (ELISA), 

radioactive and fluorescent labeling assays, require different labeling or enzyme linking to 

measure the protein – ligand binding, which can arise a lot of issues. First of all, the labeling 

step usually takes long time and tends to be expensive. Secondly, the labeling molecules 

may intervene with the interaction between ligand and protein, leading to the activity 

change of the target protein. Third, all these labeled assays are end – point detection, which 

can only quantify the binding affinity for equilibrium binding, no kinetic constant provided. 

However, the labeled detections, i.e. radioligand based detection or ELISA, are still the 

most used assay in the high throughput screening process for drug development. It is 

mainly because these methods have high sensitivity and can easily be compatible with 

automated plate system.  
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In contrast, the label – free detection assays directly measure the protein – ligand 

binding interaction without any tagging process, which can save a lot of effort for label 

development. Furthermore, these detection methods can measure not only the affinity 

information, but also the binding kinetics in real – time, providing more comprehensive 

information to fully understand the binding process. As listed in Table 3, many label – free 

approaches have been developed, including the most popular surface plasmon resonance 

(SPR) biosensors that translate molecular interaction into refractive index, quartz crystal 

microbalance (QCM) that measures biomolecular interactions by sensing the mass change, 

and back scattering interferometry that measure back scattering light interference.  

Table 1.1 Ligand binding assays 
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1.4.1 Enzyme Linked Immunosorbent Assay (ELISA) 

Enzyme – linked immunosorbent assay (ELISA) is a gold standard for protein study, 

which has been designed as a plate based assay for high throughput detection and 

quantification of different molecules, such as proteins, peptides, antibodies and small 

molecules. In ELISA measurement, the targeted proteins, termed as antigen, must be 

immobilized to a solid surface, and an antibody linked to an enzyme is introduced for 

specific binding interaction. The signal detection is accomplished by the assessment of 

enzyme activity via incubation with a substrate to produce measurable product, usually a 

color change.  

There are four different assay formats used in ELISA: direct, indirect, sandwich 

and competitive ELISA, as shown in Figure 1.4. In direct ELISA, the target antigen is 

immobilized directly to the surface and an enzyme labeled primary antibody is used to 

detect the binding of antigen. Although easy to operate, the direct ELISA is not widely 

used in binding detection, but quite common for immunohistochemically staining of tissues 

and cells. There are several reasons. First, immunoreactivity of the primary antibody may 

be adversely affected by the labeling with enzymes. Second, labeling primary antibody for 

each specific antigen is time - consuming and expensive. Last, direct ELISA shows 

minimal signal amplification. Indirect ELISA uses an enzyme - conjugated secondary 

antibody for signal generation while primary antibody for the binding interaction. In the 

indirect ELISA, the immunoreactivity of the primary antibody is fully retained as it is not 

labeled. And with a wide variety of labeled secondary antibodies available commercially, 

indirect ELISA is much more versatile because many primary antibodies can be made in 
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same species and the same labeled secondary antibody can be used for detection. 

Furthermore, the sensitivity of indirect ELISA is increased as the primary antibody can 

contain several epitopes to bind with the labeled secondary antibody, allowing for signal 

amplification. However, the cross – reactivity may occur with the secondary antibody, 

resulting in nonspecific binding, and an extra incubation and washing steps are required. 

In sandwich ELISA assays—the antigen to be detected is sandwiched between a layer of 

capture antibody and a layer of detection antibodies. This assay is mostly used in the protein 

detection, which provides high specificity in detection because the capture assay format 

excludes many nonspecific adsorbed proteins on the substrate, allowing for direct protein 

detection in physiological fluids, such as serum and blood. The sensitivity of this assay is 

also high as several second antibodies can be applied for signal amplification. One 

requirement for this assay is that the target antigen need to have at least two different 

antibody binding sites. The last assay is competitive ELISA, which is commonly used when 

the antigen is small and has only one epitope, or antibody binding site. One strategy for 

this assay is to use a labeled standard antigen (purified) instead of a labeled antibody. 

Unlabeled target antigen from the sample competes with the labeled standard antigen for 

binding to the same capture antibody. A decrease of signal from standard antigen is 

observed compared with the wells with standard antigen alone, indicating the inhibitory 

effect of the target antigen. This assay allows for the detection within the crude or impure 

samples and the result is highly reproducible. However, the overall sensitivity and 

specificity is low.  
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Figure 1.4 Four different ELISA formats. Direct, indirect, sandwich and competitive 

ELISA. [From Bosterbio at https://www.bosterbio.com/]  

However, there are several limitations for ELISA. First, the secondary antibody 

detection involved assays are time consuming, requiring hours for signal detection. The 

washing between every steps is laborious. Second, as a labeled method, ELISA is an end-

point detection assay which can only get binding affinity. And the enzyme tagging will 

intervene some of the binding interactions, leading to false results. Third, ELISA is mostly 

operated with purified proteins, which is sometimes expensive and laborious. More 

seriously, the purified proteins may lose their original structures and functions after being 

isolated from the native membrane environment.  

1.4.2 Fluorescence labeling Assay   

Fluorescence labeling binding assays are the promising alternatives to radioligand 

binding assay. Compared with radioligand detection, these labels are much safer with no 

health concerns or safety issues involved, and the detection methods can be more sensitive 

and versatile. However, when conjugate the fluorescent probe with the ligand, it adds steric 

hindrance as well as hydrophobicity modifications, which can significantly alter the 

https://www.bosterbio.com/
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pharmacological properties of the ligand, sometimes diminishing its affinity to such an 

extent that it can become useless in pharmacological studies. 

In fluorescence labeling binding assay, the fluorescence intensity is used to quantify 

the signal, which can be measure with different techniques. The currently effectively used 

techniques in protein-ligand binding include fluorescence anisotropy, fluorescence 

correlation spectroscopy, time-resolved fluorescence, fluorescence polarization, 

fluorescence and bioluminescence resonance energy transfer.  

The most preferred detection technique in fluorescence labeling binding interaction 

is fluorescence resonance energy transfer (FRET) based assay. FRET is a distance 

dependent interaction between the electronic excited states of two dye molecules, one 

donor and one acceptor. When the donor molecule is excited, the energy will transfer to 

the acceptor molecule through nonradiative dipole-dipole coupling. The efficiency of this 

transfer is dependent on the inverse sixth power of the distance between two dye molecules, 

making it extremely useful in biological molecules interaction that produce change in 

molecular proximity. The distance at which the energy transfer efficiency is 50% efficient 

is defined by the Forster radius (R0), which is typically in angstrom ranges.  

To implement FRET based assay, two fluorophores have to be energy compatible, 

that the absorption spectrum of the acceptor must overlap the fluorescence emission 

spectrum of the donor, and close enough, typically 10 -100 Å distance. Figure 1.5 shows 

one example of the direct detection of binding interaction with FRET. Two biomolecules 

are each attached with a fluorescent label, one as donor and the other one as acceptor. When 

the two molecules are free in the medium, no FRET signal will be detected. Otherwise, as 
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soon as the two molecules bind together, the two fluorophores will be close enough to 

generate the FRET signal. Emission light from the acceptor fluorophore will show up to 

quantify the binding interactions.  

 

Figure 1.5 Detection mechanism of FRET. [From Cisbio at https://www.cisbio.com/drug-

discovery/assay-kits-reagents]  

In the traditional FRET assays, one big problem is the noise in the background that 

derived from scattered excitation light and significantly interfered by fluorescence from 

coexisting material in the sample (fluorescent compounds and dust), making it very 

difficult to obtain a highly sensitive measurement. To solve this problem, the time resolve 

FRET is developed, which combines the time-resolved (TR) measurement with FRET, 

allowing the elimination of short-lived background fluorescence. In TR-FRET, the donor 

fluorophores used are mainly lanthanide, either Europium cryptate (Eu3+ cryptate) or 

Lumi4-Tb (Tb2+ cryptate) mostly, which are not subject to photo-bleaching and have much 

longer fluorescence lifetimes. Whereas classical fluorophores have fluorescence lifetimes 

in the range of a few nanoseconds, lanthanides are characterized by much longer 

https://www.cisbio.com/drug-discovery/assay-kits-reagents
https://www.cisbio.com/drug-discovery/assay-kits-reagents
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fluorescence lifetimes, between several hundred microseconds to a few milliseconds. Thus, 

when introducing a time delay (50-150 microseconds) between the initial light excitation 

and fluorescence measurement, all the non-specific short-lived fluorescence emissions will 

be minimized, providing much better signal to noise ratio.   

TR-FRET is a highly sensitive, flexible and robust assay for the detection of 

molecular interaction in vitro and has been frequently used in primary and secondary drug 

screening process. Being miniaturized into the 384 and 1536 well plate formats, TR-FRET 

is fully compatible with the automated liquid handling and robotic detection system, and 

has been applied to many antibody-based assays including GPCR signaling (cAMP and IP-

One), kinases, cytokines and biomarkers, bioprocess (antibody and protein production), as 

well as the assays for protein-protein, protein-peptide, and protein-DNA/RNA interactions. 

However, there still exists some intrinsic limitations for these assays, for example, 

quenching generated by external interactions with the intramolecular excitation process 

(electron transfer, FRET, and bleaching) and fluorescence of library compounds or 

biological proteins. Also, false positive and false negative situations, although highly 

improved, still exist in various experiments.  

1.4.3 Quartz Crystal Microbalance (QCM) 

Quartz crystal microbalance (QCM) is a simple, cost-effective, label-free mass 

sensing technique, which can be used for the determination of binding kinetics. During the 

past several years, QCM has been rapidly evolved in the measurement of various 

bioanalytes, which can used for different applications such as the study of the kinetics of 

protein adsorption and desorption in real time, the determination of the thickness and 
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hydration level of protein films, and the characterization of the affinity between surface-

bound receptors and soluble ligands [28-31].  

The signal transduction mechanism of QCM is based on the piezoelectric effect of 

a quartz crystal, which was first discovered in 1880 [28]. The typical structure of QCM 

consists of a megahertz piezoelectric quartz crystal sandwiched between two gold 

electrodes. By applying a proper electric field at the electrodes, the crystal sensor will 

oscillate with a characterized frequency, termed resonant frequency. Then, even a very 

small mass change on the surface of crystal sensor, as low as subnanogram per cm2, will 

alter the resonant frequency. As Sauerbrey demonstrated in 1959, the change in resonant 

frequency is linearly proportional to the change in mass coupled to the surface of the sensor 

crystal [28], 

∆m = −
C

n
∆f 

C =
tqρq

f0
 

where ∆f is the change in resonant frequency at the vibrational mode number n, ∆m is the 

mass change on the crystal surface, and C is the mass sensitivity constant of the instrument, 

which is related with the thickness of the quartz, tq, the density of the quartz, ρq, and the 

original resonant frequency for the quartz, f0. For example, this C constant for a 5-MHz 

crystal is 17.7 ng/Hz-cm2. For different applications, various categories of target absorbing 

layers should be coated on the crystal surface and the targets absorbing on the surface will 

change the mass of the crystal and hence the resonant frequency for signal transduction. 

This process is highly sensitive and can be detected in real-time. 
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However, in order to hold Sauerbrey relationship, there are several requirements 

that must be fulfilled. First, the adsorbed mass must be small relative to the mass of the 

quartz crystal; second, the mass adsorbed is rigidly adsorbed; and third, the mass adsorbed 

is evenly distributed over the active area of the crystal, which are not always true especially 

when using the QCM for liquid applications.  In the liquid applications of QCM, the mass 

change is often incorporated with the viscous and elastic changes, which violated the 

assumption of the Sauerbrey relation stating that the mass adsorbed must be rigidly 

adsorbed. To solve this problem, two main approaches are used, both of which monitor the 

decay of a crystal’s oscillation (frequency or impedance) after a rapid excitation, since the 

decay rate is proportional to the energy dissipation of the oscillator. Thus, QCM can then 

be cooperated with the energy dissipation monitoring, which can not only detect the subtle 

mass changes in sensor surface, but also the viscosity change in the solution-surface 

interface.  
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Figure 1.6 The QCM-D principle. [From Biolin Scientific at 

https://www.biolinscientific.com/ ]  

QCM has been widely used with different biological systems, such as lipid bilayers, 

cells and bacterial. There is one commercial instrument (Q-Sense Gothenburg, Sweden), 

celled quartz crystal microbalance with dissipation monitoring (QCM-D), which can 

simultaneously measure the changes in both frequency (Δf) and dissipation (ΔD) at various 

vibrational modes of the crystal, as shown in Figure 1.6. The energy dissipation 

measurement of QCM-D is particular advantageous for the sensing of changes in surface 

elastic properties which can be used to characterize conformational and structural changes 

in molecular layers or whole cells on the sensor surface. These capabilities have great 

potential in drug discovery, allowing both detection of potential new pharmaceutical 

candidates in drug target screening assays, and improved understanding of target 

interactions mechanisms. QCM-D provides a sensitive platform for cell-surface 

interactions which can be monitored in real-time. Figure 1.7 shows the human carcinoma 

cells attached to the sensor ex-situ and their interaction with the epidermal growth factor 

(EGF). The binding of EGF to the EGF receptor (EGFR) results in cytoskeleton 

rearrangements in the cells which are successfully probed by QCM-D as changes in the 

viscoelasticity of the cell layer [32]. 

https://www.biolinscientific.com/
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Figure 1.7 The EGF interaction with cells attached to QCM-D surface.[33]  

QCM has a lot advantages in not only protein-ligand binding detection, but also 

other biochemical and biological applications. However, there are still some limitations. 

First, the accuracy and precision of this method is affected by the temperature and humidity 

changes, which can also induce the volatilization and condensation problems. Second, it is 

difficult to obtain an even distribution of the particle on crystal surface, which is important 

for signal transduction. Last, system calibration and frequency cleaning of the sensor 

surface are both required in every measurement, which add to the complexity of the 

detection procedure. 

1.4.4 Bio-layer interferometry (BSI)  

Bio-layer interferometry is a label-free technology that enables the real-time 

measurements of molecular interaction. BSI is based on the optical interferometry, which 

analyze the interference pattern of white a light reflected from two surfaces. One surface 

is a layer of immobilized biomolecules on the biosensor tip, the other one is an internal 

reference layer. The binding between the biomolecules immobilized on the biosensor tip 

surface and the analytes in solution produces an increase in optical thickness at the 
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biosensor tip, which in turn generate a shift (∆λ) in the light interference pattern that can 

be measure by a spectrometer for real-time signal detection (Figure 1.8).  

 

Figure 1.8 The working principles of bio-layer interferometry sensor. [From ForteBio at 

https://www.fortebio.com/]  

BSI biosensor is a highly robust system in the measurement of biomolecular 

interaction. The typical configuration of this system is based on optical fibers, which allow 

the utilization of an innovative sample delivery system. Instead of using a fluidic system 

for sample delivery, the optical fiber based BSI sensors are moved and dipped into the 

sample wells, termed as ‘dip and read’ biosensors. A common binding measurement 

sequence is performed by dipping the sensors into different reagent solutions, such as the 

buffer and free ligands solution, which adds robustness to the systems and decreases 

maintenance and operating costs. BSI has been widely used in the kinetic applications 

targeting different biomolecules, including DNA, RNA, and proteins [34].  

One commercially available system based on BSI technology is released by 

FertoBio (Menlo Park, CA) in 2006, called Octet system, which uses disposable sensors 

with an optical coating layer at the tip of each sensor. This optical surface is coated with a 

proprietary biocompatible matrix that can interact only with the targets and minimize the 

non-specific binding to the surface. When the ligands bind with the immobilized matrix, 

https://www.fortebio.com/
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the optical interference pattern will change and the binding signal will be detected in real-

time.  The unbound ligands in solution and other changes to the matrix do not change the 

interference pattern, which enables the use of crude cell lysates or periplasmic samples, 

such as the common cell culture media, serum-containing media and DMSO-containing 

media, dramatically reducing the sample preparation. Octet biosensors are now configured 

a standard 96-well format for high throughput and automatic handling. Various surface 

chemistry coating layers are available for different applications. To date, over 2.5 million 

biosensor assays have been run on Octet systems, attesting to the high reproducibility, 

accuracy, precision and robustness of the platform. 

This approach has some disadvantages. First, for the biomolecule coating in 

multiple sensors, it is not possible to achieve identical coatings results. So it is not 

guaranteed that each sensor has an equal performance in later measurements. Second, this 

approach requires large sample volumes. A minimum sample volume of 180 μL is required 

in a standard 96-well microplate to make accurate measurements because smaller volumes 

than this can generate measurement artefacts due to internal reflections. Last, the limit of 

detection for BSI is around 0.1 ng/cm2, which makes it difficult to follow the adsorption of 

small molecules. 
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CHAPTER 2 QUANTIFICATION OF MOLECULAR INTERACTION WITH 

MEMBRANE PROTEIN BY SURFACE PLASMON RESONANCE IMAGING 

2.1 Introduction 

Molecular interactions with membrane proteins play critical role in both studying 

cellular functions and screening new drugs. The quantification of the membrane protein 

density and molecular interaction process provides valuable information for biomarker 

identification and drug discovery. To fully preserve the function of membrane protein, it is 

important to detect the membrane protein interaction in their original cell surface without 

external labeling. Therefore, a label-free method for in situ quantification of membrane 

protein interaction is needed.  

Various methods have been developed to measure the membrane protein interaction 

on the cell surface, most of which are using radioactive or fluorescent labeling. Surface 

plasmon resonance (SPR) is the typical label-free method that measure the kinetics of 

molecular interaction.[35] Surface plasmon resonance imaging (SPRi) extends the SPR 

measurement to microarray [36-41] and enable direct measurement of molecular binding 

kinetics on the surface of cells [42, 43] and bacteria.[44] 

In this chapter, we report the in situ quantification of the membrane protein drug 

target binding interaction with its antibody drug for the establishment of a cell based label-

free SPRi platform for drug evaluation [45]. The SPRi setup is built for both temporal and 

spatial detection of the binding interaction between membrane protein and the specific 

antibody. Epidermal growth factor receptor (EGFR, also known as ErbB-1 or HER-1) was 

used as an example of the membrane protein drug target, which has been associated with a 
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variety of solid tumors and the control of cell survival, proliferation and metabolism. 

Quantification of EGFR expression level in cells membrane and the interaction kinetics 

with drugs are thus important for drug screening and disease treatment. A monoclonal 

antibody, anti-EGFR, was used to study the binding kinetics and affinity in EGFR 

overexpressed cells with single cell resolution and the ability to map cell-to-cell 

heterogeneity. The binding of the anti-EGFR to EGFR overexpressed cells was monitored 

in real time, and the binding kinetics with association rate constant (ka) and dissociation 

rate constant (kd) were determined. Additional measurement with different EGFR positive 

cell lines (A431, Hela and A549) was performed to study the cell line-cell line variation in 

both receptor density and binding kinetics. Furthermore, the binding kinetics of cell lines 

with different EGFR-expressing levels were compared, which reveals microenvironment 

in the cell membranes affecting the drug-receptor interactions. 

2.1.1 EGFR Receptor 

Molecular targeting therapy is an advanced cancer therapy, which can improve 

tumor-targeting specificity compared with the traditional chemotherapy and radiotherapy. 

Among all the identified targets, one promising molecular target is the epidermal growth 

factor receptor (EGFR, also known as ErbB-1 or HER-1) in cell membrane. EGFR plays 

an essential role in regulating normal cell signaling, and the mutation of EGFR leads to 

cell proliferation, angiogenesis, invasion, metastasis and inhibition of apoptosis, 

accounting for the pathogenesis and progression of cancer cells (Figure 2.1).[46-50] 

Therefore, in situ quantification of EGFR expression level in cell membrane, and ligand 

binding kinetics and affinity are of great importance for cancer diagnosis and treatment.  
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Figure 2.1 The signal transduction of EGFR activation.[51]  

EGFR is a transmembrane protein, which consists of three major functional 

domains: an extracellular binding domain, a hydrophobic transmembrane domain and an 

intracellular tyrosine kinase domain.[52-55] When an epidermal growth factor (EGF) or 

transforming growth factor (TGF) ligands bind to the extracellular domain, EGFR 

undergoes a transition to form receptor homodimers or heterodimers with neighboring 

ErbB receptors, which activates the intrinsic receptor tyrosine kinase domain for signal 

transduction. Mutations that cause EGFR overexpression and constant activation often lead 

to uncontrolled cell dividing.[56-61] Therefore, quantification of EGFR expression density 

in cell membrane is a critical step for cancer diagnosis. Currently, the most used approach 

for receptor density measurement is radiolabeling assay [62, 63], which involves synthesis 

of radio-ligand and requires special training and safety protection. A label-free method is 

desired for rapid quantification of receptor density. 

In order to prevent the unwanted downstream effects of EGFR signaling, two kinds 

of inhibitors have been proposed for cancer treatment: tyrosine kinase inhibitors targeting 

the intracellular domain and monoclonal antibodies targeting the extracellular domain. The 
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binding of these inhibitors to EGFR slows down or stops tumor cell growth.[64-71] 

Monoclonal antibodies targeting the extracellular domain of EGFR have been in various 

stages of pre-clinical development, and have shown good therapeutic efficacy for treatment 

of a number of cancers that have up-regulated EGFR expression levels.[46, 47, 68, 72, 73] 

The kinetic constants of the binding of these antibody drugs to EGFR are the key 

parameters to characterize the efficacy of these drugs. 

2.1.2 Principle of Surface Plasmon Resonance 

Surface Plasmon Resonance (SPR) is the most popular label-free technique, which 

has been widely used in various applications, such as the kinetic detection of biomolecular 

interaction, DNA hybridizations, metal ion concentrations, et al. SPR is an optical approach 

that measures the local refractive index change within the vicinity (~200 nm) of a metal 

surface, which has many advantages: (1) high sensitivity, (2) label-free detection, (3) real-

time monitoring, (4) low volume sample consumption, (5) quantitative evaluation, and (6) 

determination of kinetic constants.  

Surface plasmon resonance (SPR), to be simple, is the resonant oscillation 

phenomenon of electrons on metal surface when excited by the light evanescent wave.  

To explicit explain the SPR theory, an electromagnetic plane wave that propagates 

in a medium with refractive index n can mathematically be described by an electric field 

E: 

E = E0 exp(jωt − jk ∙ r) = E0 exp(jωt − jkxx − jkyy − jkzz)  (2.1) 
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where E0 is the amplitude of the electric field, ω is the angular frequency, k is the wave 

vector, r=(x,y,z) is the position vector. For the wave vector k, its direction is parallel to that 

of wave propagation, and the amplitude is given by 

k = √kx
2 + ky

2 + kz
2 = n

2π

λ
= n

ω

c
      (2.2) 

where λ and c are the wavelength and propagation velocity in vacuum, respectively.   

When a light is directed at the interface of two media with refractive index n1 and 

n2, respectively, the optical refraction will happen and follow the Snell’s law. Assuming 

that kz is 0, Snell’s law is given by (Figure 2.2): 

n1sinα = n2sinβ         (2.3) 

or equivalently, 

kx1 = kx2 = kx         (2.4) 

And then, combing eqs. (2.2) and (2.4), the y-component of the refracted light in medium 

2 can be derived as 

ky
2 = n1

2 (
2π

λ
)

2

(
n2

2

n1
2 − sin2α)       (2.5) 

Now, if n1>n2, it is quite possible that sinα>n2/n1, which means the right part of equation 

(2.5) is negative, and consequently, ky is purely imaginary. In this case, the plane wave in 

medium 2 will only be parallel to the interface: 

E2 = E0 e−ky2yexp(jωt − jkxx)       (2.6) 

with the amplitude of the electric field exponentially delaying along the y-direction with a 

characteristic distance.  This electric field in medium 2 is termed as the evanescent field, 

which is generated in SPR for signal sensing and determines the properties that SPR is only 
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sensitive to change in the vicinity of the interface, and changing the refractive index will 

greatly influence the response [74]. 

 

Figure 2.2 Optical refraction at the interface of two media. 

Surface plasmon polaritons, shown in Figure 2.3, is non-radiative electromagnetic 

surface wave, expressed as 

E = E0 exp(jωt − jkxx − jkzz)       (2.7) 

where kx and kz are the wave numbers along x and z direction, respectively, and ω is the 

angular frequency. 
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Figure 2.3 Surface plasmon polariton waves. [From Wikipedia] At the interface of the two 

materials, by solving Maxwell equations and using the boundary conditions, two equations 

are derived: 

kz1

ε1
+

kz2

ε2
= 0          (2.8) 

kx
2 + kzi

2 = εi(
ω

c
)2         (2.9) 

where c is the speed of light, by combining these two equations, the dispersion relationship 

of surface plasmon polaritions is shown: 

kx =
ω

c
(

ε1ε2

ε2+ε1
)1/2         (2.10) 

As for metal, the dielectric function is  

ε(ω) = 1 −
ωp

2

ω2           (2.11) 

where P is the bulk plasmon frequency 

ωp = √
ne2

ε0m∗          (2.12) 

Thus, the dispersion relationship was shown in Figure 2.4. When the dispersion 

relationship of the evanescent wave has intersection with this one, the surface plasmon 

resonance (SPR) will be excited. 
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Figure 2.4 Dispersion relationship of SPPs. [From Wikipedia] 

In order to realize the excitation of SPR, two different configurations as shown in 

Figure 2.5, which are developed by Otto [75] and Kretchmann [76], respectively. In both 

setups, p-polarized light is used because this particular polarization has the electric field 

vector oscillating in the normal direction to the plane of meatal surface, and the angle of 

incident light to a prism is θ. Reflected light intensity is recorded by photodiode or CCD 

camera for signaling. The difference in this two configuration is that Otto put the sample 

with lower optical density between the prism and metal, while in Kretchmann configuration 

the metal is between the prism and sample. In most cases, Kretchmann configuration is 

used because it is easy to facilitate and operate.  
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Figure 2.5 Configurations to excite SPR. (a) Otto; (b) Kretchmann.[77] 

In Kretchmann configuration, the prism is used for the generation of surface 

plasmon resonance, in which dispersion relationship of light is given 

kx = k1sinθ = npksinθ       (2.13) 

ω =
ckx

npsinθ
          (2.14) 

where np is the refractive index of prism and the dispersion curve is determined by both kx 

and incident angle θ. As described in evanescent wave section, when the light transverses 

from dense medium (such as, prism) to light medium (such as, metal), the evanescent field 

can be generated, which is parallel to the media interface and decaying exponentially. The 

evanescent wave is able to couple with the surface plasmons in the metal film at a specific 

angle when the x-component wavevector of evanescent filed is consistent with that of SPPs.  

Thus, with the certain light source, the x-component wavevector can be adjusted 

with a simple change of incident light angle. As shown in Figure 2.6, with the changes of 

incident angles, the slope of dispersion curve will change and at some point, it will intersect 

with that of SPP for surface plasmon resonance generation.  
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Figure 2.6 Coupling light wave vector to SPPs by tuning incident angle. 

This excitation is known as wave vector matching. This causes energy from the 

incident light to be totally transferred to the metal film resulting in a reduction in the 

intensity of reflected light. As illustrated before, SPR cannot be achieved by direct 

illumination of metal surface with light. Wave vector matching does not occur in this 

situation because the light wave vector is always smaller than the wave vector that 

describes the surface plasmon polaritons. The prism is used to increase the light wave 

vector so that wave vector matching is possible. 

In biomolecular interaction measurement, as shown in Figure 2.7, a typical SPR 

configuration consists a glass prism for light coupling, and metal film (mostly, gold or 

silver) for surface plasmon polaritons and sample layer for binding process. Normally, the 

receptors are immobilized on the metal surface, and the solution with targeted ligands is 

introduced for binding interaction. When the binding process proceeds, the refractive index 

of at the metal/dielectric interface will change, which induced the angle shift for resonance 
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dip. By fixing the detector at a specific angle along the resonance dip’s linear regime, the 

reflected beam intensity is monitored as a linear function of refractive index change for 

real-time binding detection. The binding kinetics can then be derived from the typical 

binding curves. 

 

Figure 2.7 Schematic configuration of SPR in molecular binding interaction.[78] 

As previous mentioned, by fixing the detector at a specific angle along the 

resonance dip’s linear regime, the reflected beam intensity can be used as a linear function 

of refractive index change for signal transduction. When the detector used is a CCD camera, 

this detection system can be characterized as a SPR imaging system, which enables the 

visualization of the whole biochip. SPRi goes a step beyond the traditional setup, allowing 

high throughput screening of hundreds or thousands of samples [79, 80].  

In typical SPRi system, as shown in Figure 2.8, a coherent polarized light beam is 

used instead of polychromatic light, which helps expand the light cover on a larger area of 

the sensing surface. The reflected light is captured by a charge-coupled device (CCD) 

camera for further imaging analysis. The high resolution CCD camera provides images 

across the array format in real-time detection of up to hundreds of active spots. Captured 



38 

 

images that show local changes at the chip surface can provide detailed information on 

molecular binding, interactions or kinetic processes [80]. Unlike conventional SPR, the 

measurement conducted by SPRI is stringently performed at a constant wavelength and a 

constant angle. Thus, changes in reflected light intensity are proportional to any variation 

of the refractive index near the metal surface. 

 

Figure 2.8 Schematic configuration of SPRi system and molecule interaction measurement. 

[81] 

2.2 Materials and methods 

Materials. Anti-EGFR monoclonal antibody (cat. no. 05-101) was purchased from 

EMD Millipore, which was dissolved as a 1 mg/mL stock solution, and stored in frozen 

aliquots. Anti-EGFR solutions used in the experiments were prepared by diluting the stock 

solution with phosphate buffer solution (PBS). Alexa Fluor 488 Goat Anti-Mouse IgG1 

(γ1) Antibody (cat. no. A-21121) was obtained from Life Technologies. All reagents were 

analytical grade, purchased from Sigma-Aldrich, except those stated. Deionized water was 

used to prepare all the buffers. 

SPRi setup. The prism based SPR imaging setup is a typical Kretchmann 

configuration, in which a collimated p-polarized light from a 680 nm light-emitting diode 



39 

 

(LED) was directed through a triangular prism onto the gold-coated glass coverslip placed 

on the prism [43]. The reflected beam was captured by a CCD camera (AVT Pike F032B) 

at a frame rate of 11 frames per second (fps) through a 12x variable zoom lens (Navitar). 

A Flexi-Perm silicon chamber (SARSTEDT) was placed on top of the gold chip to serve 

as a cell-culture well. A schematic diagram of the set-up is shown in Figure 2.9.  

 

Figure 2.9 Schematic diagram of the SPRi setup.[45] 

A gravity-based multichannel drug perfusion system (SF-77B, Warner Instruments, 

Connecticut) was used to deliver solutions to the target cells. The typical transition time 

between different solutions was about 1−2 s.  

Cell Culture. A431, A549, HeLa, and HEK293 cell lines were obtained from the 

American Type Culture Collection (Rockville, MD). All the cells were cultured in a 

humidified incubator at 37 °C with 5% CO2 and 70% relative humidity. A431, HeLa, and 

HEK293 cells were grown in Dulbecco Modified Eagle Medium (DMEM; Lonza, 

Walkersville, MD) with 10% Fetal Bovine Serum (FBS) and 1% penicillin and 

streptomycin. A549 cells were cultured in Ham’s F-12K (Kaighn’s) Medium (Lonza, 

Walkersville, MD) with 10% FBS and 1% penicillin and streptomycin. Cells were 
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passaged with 0.25% trypsin and 0.02% ethylenediaminetetraacetic acid in a Hank’s 

balanced salt solution (Sigma-Aldrich, St Louis, Missouri) when they were approximately 

75% confluent. In order to promote cell adhesion, the gold surface of the chips was 

incubated with 10 μg/mL collagen for 2 h. The collagen-coated chips were rinsed with PBS 

buffer twice prior to seeding. Each chip was seeded with 5000 cells in 300 μL of 

growth medium and was incubated for 1 day to allow the cells to attach and grow. The 

growth medium was replaced with PBS buffer solution prior to the experiment. The 

viability of cells on the chips was visually inspected prior to the experiment using a 

tissue culture microscope. A total of more than 50 chips were tested, and all cells showed 

consistent high viability similar to cells in a tissue culture plate. Cells were fixed by 

incubating in 4% paraformaldehyde solution for 10 min at room temperature 

prior to measurement. 

Immunofluorescence. The immunofluorescence images were obtained with an 

inverted fluorescence microscope at 10× magnification (Olympus IX81). A 150 W mercury 

lamp was used as the light source. For EGFR staining, the fixed cells were 

incubated with 10 μg/mL anti-EGFR solution for 30 min, followed by 30 min incubation 

with Alexa Fluor 488 Goat AntiMouse IgG1 (γ1) after three rinses with PBS buffer. The 

fluorescence image was captured after rinsing the well twice with PBS buffer. The 

following optical filters were used to obtain the fluorescence image: excitation filter, 

420−480 nm, emission filter, 515 nm. 
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2.3 In Situ Quantification of anti-EGFR and EGFR Interaction Kinetics on the Surface of 

A431 Cell 

A431 cell is a model cell line (Epidermoid Carcinoma) that overexpresses EGFR 

in the cell membrane. To investigate the molecular interaction of EGFR in their native 

environment, we grew and fixed A431 cells on gold-coated glass coverslips and measured 

binding kinetics and affinity of anti-EGFR, the specific monoclonal antibody inhibitor 

targeted at the extracellular domain of EGFR, using a prism based SPRi setup. When anti-

EGFR antibody binds to EGFR on the cell membrane, the mass (180 kDa for anti-EGFR) 

induced refractive index change was recorded as SPR image intensity changes, and 

presented in the form of SPR sensorgram. Three gold chips with different batches of cells 

were measured to validate repeatability of the technique. Non-specific binding signals were 

detected in the cell-free gold area and were subtracted from the original signals of all 

regions for only specific binding signals. For each measurement, the specific signals of all 

cells in the SPR images were extracted, and plotted along with the mean value.  

Figure 2.10a shows a representative SPR image of A431 cells, in which the bright 

spots represent individual or clusters of cells. A431 cells tend to aggregate. The following 

steps were performed to measure the EGFR binding kinetics. First, PBS buffer was flowed 

over the cells for 300 seconds at a flow rate of 350 µL/min to record the baseline. Next, 2 

µg/mL anti-EGFR was introduced to the cells for 350 seconds to record the association 

process. Last, PBS buffer was reintroduced to the cells for 400 seconds to measure the 

dissociation of the antibody. During the association process, obvious increases in SPR 

intensity at all cell regions were observed, as shown in the differential image (Figure 2.10b). 
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The differential image maps the SPR intensity changes in each pixel by subtracting the 

original SPR image prior to adding the antibody (t = 300th second) from the SPR image at 

the end of association phase (t = 650th second). Apart from the obvious intensity increase 

in all cell regions compared to the gold area, the image intensity changes at different cell 

regions were different, which indicated the heterogeneity of EGFR express level among 

individual cells.  

 

Figure 2.10 SPR responses after antibody binding with the receptor on cell surface. (a) A 

typical SPR image of a few tens of A431 cells adhered on the gold-coated glass slide. (b) 

Differential SPR image shows the maximum SPR intensity increase due to anti-EGFR 

binding to the surface of A431 cells. (c) The average SPR sensorgrams of all cells in view 
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(black curves: average SPR sensorgram, red curve: curve fitting, gray background: cell-to-

cell variation) and the surrounding regions without cell coverage (blue curve). All the 

curves are abstained by subtracting the non-specific binding response from original signals. 

(d) The SPR sensorgrams of five individual cells of different regions (gray dotted curves: 

individual SPR sensorgram, colored curve: corresponding fitting curves). Scale bar, 50 µm. 

Quantitative binding kinetics can be extracted from the SPR image sequences and 

plotted as sensorgrams, with a representative result shown in Figure 2.10c. A maximum 

averaged increase of 168 RU was found in the SPR sensorgram shown in Figure 2.10c, 

where the black curve represents the averaged response of all the cells in Figure 2.10a and 

the gray background area shows the response from individual cells or clusters. The binding 

kinetics of anti-EGFR in A431 cells were determined by fitting the averaged response 

curve with a 1:1 Langmuir binding model (the red curve). From three independent 

measurements, the corresponding association rate constant (ka), dissociation rate constant 

(kd) and dissociation constant (KD) were calculated and showed in Table 2.1 as the mean 

value of three chips. These results validated the repeatability of the measurements, and 

indicated a fast and strong binding. The flat blue curve in Figure 2.10c shows that there is 

no response from the gold area without cells, and confirms the specificity of the antibody 

binding. 

2.3.1 Heterogeneous Binding Kinetics of Individual Cells 

An important capability of imaging based measurement is to quantify the 

heterogeneous responses of anti-EGFR interaction from individual cells, which is 

important for identifying tumor specificity therapy development, since tumor tissue sample 
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often mixed with normal cells. Figure 2.10d shows the association and dissociation 

processes of five individual cells selected from different regions of the chip, where the 

color curves are first order kinetic fitting to the data (gray dots). The corresponding cells 

are marked with corresponding colored circles in Figure 2.10a. From the sensorgrams, we 

can conclude that maximum association varies from cell to cell. Furthermore, the kinetic 

constants (Table 2.1) obtained from the fitting exhibit up to seven folds of variations, 

significantly larger than the measurement error. The measurement error (variation from 

different tests) was obtained by repeating the same tests for three times, and the standard 

deviation of kinetic constants was within 10%. These results reveal cell-to-cell 

heterogeneity in the binding of drugs to the cells, which underscores the importance of 

measuring binding kinetics at single cell level.  

Table 2.1 Measured EGFR binding kinetic constants 

 ka (M
-1s-1) kd (s

-1) KD (nM) 

Cell 1 (red curve) 6.0×105 2.6×10-4 0.43 

Cell 2 (blue curve) 6.4×105 1.5×10-4 0.23 

Cell 3 (green curve) 6.2×105 2.4×10-4 0.70 

Cell 4 (yellow curve) 5.5×105 2.7×10-4 0.49 

Cell 5 (purple curve) 5.3×105 5.5×10-5 0.10 

Mean value of 3 chips  6.7×105 3.3 × 10-4 0.41 

2.3.2 Dose Response, Global, and Equilibrium Fitting 

To measure the dose response of EGFR to the antibody drug, anti-EGFR solutions 

with concentration increasing from 0.5 to 10 µg/mL were sequentially introduced to A431 
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cells on a sensor chip to record the association and dissociation kinetics. For each new dose 

of anti-EGFR, the cell surface was regenerated with 100 mM NaOH for 30 seconds. SPR 

sensorgrams for different doses of anti-EGFR were plotted in Figure 2.11a (black curves). 

Both the association rate constant and maximum SPR response increase with anti-EGFR 

concentration, which are expected for first order kinetics. The red lines are the global fitting 

results of the sensorgrams based on 1:1 binding kinetics model. The kinetic constants 

obtained from the global fitting are ka = (2.7 ± 0.6) × 105 M-1s-1, kd = (1.4 ± 0.5) × 10-4 s-

1, and KD = 0.53 ± 0.26 nM, and are consistent with the individual fitting result.  

In addition to the kinetic analysis, equilibrium-fitting curve was plotted based on 

the equilibrium binding responses obtained at seven different concentrations (Figure 2.11b), 

and the obtained dissociation constant, KD, was determined to be 5.1 nM, in the range of 

reported value.[82] KD value obtained from the equilibrium-fitting curve is depending on 

the ligand (anti-EGFR) concentration. In general, KD value will increase as the 

concentration of the ligand increases,[83] which may account for the difference between 

the global fitting result and equilibrium fitting result. As the concentrations of anti-EGFR 

used in our experiments are all bigger than the dissociation constant calculated in global 

fitting, it is reasonable that the KD obtained from the equilibrium-fitting curve is larger than 

the KD obtained from kinetic response curves. 
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Figure 2.11 The SPR sensorgrams of different concentrations. (a) SPR sensorgrams of a 

cell at different concentrations of anti-EGFR and the corresponding global fitting (red 

curves). Anti-EGFR concentrations are 0.5, 1, 2, 5 and 10 µg/mL from bottom to top curve, 

respectively. (b) The equilibrium-fitting curve. The anti-EGFR concentration (plotted in 

log scale) was 0.2, 0.3, 0.5, 1, 2, 5 and 10 µg/mL, respectively. The equilibrium response 

values at different concentrations are obtained by fitting association section of sensorgrams 

with first order kinetics. At least 3 independent measurements were performed for each 

concentration. 

2.3.3 EGFR Binding Kinetics and Expression Levels in Different Cell Lines 

In addition to determination of binding kinetics, the SPR signal can also be used to 

quantify the expression level of EGFR in A431 cell membrane. In SPR sensorgram, the 

equilibrium response represented the saturated amount of anti-EGFR bound to A431 cells, 

from which we can estimate EGFR receptor density by assuming the 1:1 binding between 

anti-EGFR and EGFR on cell surface. With 10 μg/mL anti-EGFR stimulation, the 

equilibrium response was calculated to be 190 RU increase in SPR intensity, which can be 

used for receptor density calculation. Assume 1 RU SPR response corresponds to 1 pg/mm2 

mass application, the binding of anti-EGFR induced 190 pg/ mm2 in the cell surface, which 
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corresponds to ~636 receptors/μm2. Given the average diameter of 25 µm for suspended 

A431 cells, the average number of EGFR receptors is around 5×105 per cell. This number 

is consistent with the results measured by flow cytometry and fluorescent labeling.[84] 

This result shows that cell-based SPRi is able to quantify membrane receptor density 

without any labeling, and is a potentially a valuable tool for biomarker discovery and 

cancer diagnosis. 

To investigate how the native cellular microenvironment affects the drug-receptor 

interactions, binding kinetics of anti-EGFR to EGFR in four cell lines with different 

expression levels were studied. These cell lines include EGFR-positive A431, Hela and 

A549, and EGFR-negative HEK293 as a negative control. Figure 2.12a shows the SPR 

images of different cell lines before the antibody administration. Differential SPR images 

in Figure 2.12b shows the SPR intensity increase due to anti-EGFR binding. Obvious 

increase was observed in A431 cells, while Hela cell and A549 cells showed much smaller 

responses. Figure 2.12c shows the averaged responses curves of a few tens of cells (black 

lines) and the kinetic fitting curves (red lines). The gray area represents the distribution, 

which measures the heterogeneity for each cell line. Typical association and dissociation 

curves observed in Hela and A549 cell with reduced responses compare with A431. No 

response from EGFR-negative HEK293 cells was observed, confirming that the specific 

anti-EGFR and EGFR interactions were responsible for the SPR responses in cell regions. 

From the equilibrium binding responses, EGFR density in Hela and A549 were found to 

be 270 and 142 receptors/µm2, respectively, corresponding to 0.21 and 0.11 million per 

cell, much lower than A431.    
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For cross validation, the EGFR expression levels in different cell lines were 

confirmed by immunofluorescence imaging. Figure 2.12d shows the fluorescence image 

of the four cell lines stained with anti-EGFR antibody followed by a fluorescence-labeled 

secondary antibody. The intensity of fluorescent signal is proportional to the EGFR 

abundance. In consistence with SPRi results, A431 cell has the highest fluorescence 

intensity, while Hela and A549 cells exhibit lower emission, and HEK293, the negative 

control, shows no detectable fluorescent signal.  

 

Figure 2.12 Anti-EGFR interactions with EGFR-positive (A431, Hela and A549) and 

EGFR-negative (HEK 293) cell lines. (a) SPR images before anti-EGFR binding. (b) 

Differential SPR images after anti-EGFR binding. (c) The SPR sensorgrams of 2 µg/mL 



49 

 

anti-EGFR binding. All the curves are abstained by subtracting the non-specific binding 

response from original signals. (d) Immunofluorescence images by staining EGFR.  

The kinetic constants in the three EGFR-positive cell lines were determined from 

fitting the averaged cell responses with first order kinetics. Table  lists the EGFR density 

and binding kinetics of the three cell lines we measured. The table shows a trend of 

increased rate constants (ka and kd) and stronger affinity (lower KD) with lower receptor 

density, which could be caused by steric hindrance effect. This observation show that the 

membrane microenvironment of the EGFR receptors may plays an important role in 

drug/receptor interactions, and this information could not be obtained by traditional 

approaches that study proteins isolated from the cells.     

Table 2.2 EGFR densities and binding kinetic constants with anti-EGFR in different cell 

lines 

Cell line EGFR density 

(Molecules/µm2) 

ka  

(M-1s-1) 

kd  

(s-1) 

KD  

(nM) 

A431 636 2.7×105 1.4×10-4 0.53 

Hela 270 5.4×105 2.4×10-4 0.45 

A549 142 2.4×106 7.0×10-4 0.29 

2.4 Conclusions  

In this chapter, we have quantified the binding kinetics of the monoclonal anti-

EGFR antibody to its membrane bound target receptor EGFR in cultured cells with SPRi. 

The imaging capability of this label free method enables the mapping of individual cell 

responses. The real time detection capability provides quantitative information on the 



50 

 

membrane bound receptor density and ligand interaction kinetics. While the averaged 

kinetic constants are consistent with the literature data, we have observed several 

fold cell-to-cell variations in kinetic constants. Furthermore, we found a correlation 

between EGFR density and binding kinetics among different EGFR positive cell lines. Our 

results demonstrated that SPRi is able to directly quantify the membrane bound receptor 

expression level and ligand binding kinetics without the need of labeling. Our findings also 

underscore the importance of an in situ study of drug/receptor interaction in intact cells. 
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CHAPTER 3 QUANTIFICATION OF SMALL MOLECULE INTERACTION WITH 

MEMBRANE PROTEINS WITH MECHANICAL AMPLIFICATION METHOD 

3.1 Introduction 

We have demonstrated that SPRi technique can be used for the binding of antibody 

with membrane protein on cell surface, which greatly simplifies the sample preparation 

process for protein purification. However, the limitation of this SPRi is also obvious. As 

the SPR signal in molecular binding is mostly generated by the mass changes on the gold 

surface, only big molecules (>10 kDa) can be detected. Thus SPRi is not a suitable 

detection method for small molecules, which are the most popular drugs. Therefore, a new 

platform for small molecules binding detection on cell surface is of great importance.   

Despite the importance, quantifying the binding kinetics of small molecules with 

membrane proteins on whole cells has been a difficult task. A common approach to study 

molecular interactions is to use radioactive [85-88] or fluorescent labels.[89-93] The latter 

includes total internal reflection fluorescence (TIRF) microscopy [94, 95] and super-

resolution microscopy.[96, 97] TIRF is limited to imaging of the bottom of cells only 

because the evanescent wave penetration length is ~200 nm from the surface on which the 

cells are attached. Super-resolution microscopy takes several minutes to acquire one image 

frame, making it difficult to track binding kinetics in real time. To determine the kinetics, 

the current mainstream practice is to isolate membrane proteins from the cell membranes 

and measure the binding with a label-free detection technology, such as surface plasmon 

resonance (SPR), quartz crystal microbalance (QCM) and Bio-layer interferometry.[34, 
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98-102] The isolation procedure involves extraction of membrane proteins from cells, 

purification and immobilization of them on a sensing surface, which is laborious, and often 

difficult because of the low solubility and low expression levels of many membrane 

proteins. Furthermore, the isolated membrane proteins may lose their native structures and 

functions outside the lipid environment. Studying membrane proteins in the native cellular 

membranes is thus important.[42, 103, 104] A significant advance is the study of 

membrane proteins on the surfaces of unilamellar vesicles with a backscattering 

interferometry technology.[105] The technology is still an endpoint assay.  

All the above label-free technologies are mass based detection, and their signals 

diminish with the molecular weight, making them difficult to measure small molecule 

binding to proteins. Small molecules account for more than 90% FDA approved drugs, and 

play essential roles in various cellular functions.  We have recently shown that molecular 

binding to a cell adhered on a surface causes it to deform.[103] However, the molecular 

binding-induced cellular deformation is sensitive to the detail of the cell-surface adhesion, 

and varies from one region of the cell to another, which complicates the interpretation of 

the data.  

In this chapter, we report a method to trap single cells onto an array of micro-holes 

with a microfluidic device, and measure the molecular binding to membrane proteins by 

tracking the cellular mechanical deformation with sub-nm precision using an optical 

imaging system[106]. This label-free method offers a capability of measuring both large 

and small molecule binding to membrane proteins on single cells in real time. We 

demonstrate this capability by measuring the binding kinetics of major types of 
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transmembrane proteins, including glycoproteins, ion channels, G-protein coupled 

receptors (GPCRs) and tyrosine kinase receptors on single whole cells. We establish the 

basic principle of the method by developing a model to express the binding-induced 

nanometer-scale cellular deformation in terms of molecular interactions, and cellular 

mechanical properties, and carrying out experiments to validate the model. 

3.2 Materials and Methods 

Materials. Wheat germ agglutinin (WGA), acetylcholine chloride, AMD3100 

octahydrochloride hydrate, SDF-1 α and insulin molecules were purchased from Sigma-

Aldrich (St. Louis, MO). Anti-EGFR monoclonal antibody was purchased from EMD 

Millipore (Billerica, MA). Pertussis Toxin was purchased from List Biological Labs. All 

solutions used in the experiments were prepared with 1X PBS. All reagents were analytical 

grade from Sigma-Aldrich, except those stated.  

Cell Culture. SH-EP1, SH-EP1_ α4β2, A549, Hep G2, A431, HeLa and HEK293 

cell lines were obtained from the American Type Culture Collection (Rockville, MD). All 

the cells were cultured in a humidified incubator at 37°C with 5% CO2 and 70% relative 

humidity. SH-EP1, SH-EP1_ α4β2, Hep G2, A431, HeLa and HEK293 cells were grown 

in Dulbecco Modified Eagle Medium (DMEM) (Invitrogen, Carlsbad, California) with 10% 

Fetal Bovine Serum (FBS) and 1% penicillin and streptomycin. A549 cells were cultured 

in F-12K with 10% FBS and 1% penicillin and streptomycin. Cells were passaged with 

0.25% trypsin and 0.02% ethylenediaminetetraacetic acid in Hank’s balanced salt solution 

(Sigma-Aldrich, St Louis, Missouri) when they were approximately 75% confluent. 
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Before experiments, suspension cells in 1X PBS buffer solution were prepared. 

First, the cells were trypsinized from the flask to round up, and centrifuged for 5 mins to 

discard the old medium. Then, the centrifuged cell piles were suspended in 4% 

paraformaldehyde solution for 10 mins fixation. Finally, the fixed floating cells were 

centrifuged again to discard the fixatives and transferred to the 1X PBS. Overnight 

recovery was performed after cell fixation to improve cell elasticity and deformability. 

For living cell binding kinetic measurements, the cells were also trypsinized from 

the flask and centrifuged for 5 min to discard the old medium. Then, the centrifuged cells 

were suspended in live cell imaging solution (Life Technologies) and immediately used for 

kinetic measurements to maintain cell viability.  

Optical Imaging. An inverted microscope (Olympus IX-81) equipped with a top 

illuminating white light, a phase contrast condenser and 40x phase contrast objective was 

used as the imaging device. The trapped cells within the microfluidic plate were imaged 

from bottom with a CCD camera (AVT Pike F032B) at a frame rate of 7 frames per second 

(fps). The spatial resolution of the system was ∼0.5 μm.  

Microfluidic Device for Cell Trapping and Binding Kinetics Measurement. As 

shown in Figure 3.1, we used a homemade and modified commerical (AX150, AXIS™ 

Axon Isolation Device from Millipore) PDMS-microfluidic device to trap single cells. The 

fabrication used the standard soft lithography. The homemade microfluidic plate had two 

parallel channels (10.6 mm long, 1500 μm wide and 40 μm high), separated with a barrier. 

The barrier had 60 holes (each hole is 150 μm long, 10 μm wide, separation between two 

holes is 50 μm) to trap cells. Sample solution containing suspended cells was flowed in one 
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channel while keeping a lower pressure in the second channel. This allowed trapping of 

one cell in each hole for binding kinetics measurement (~5 mins). The optics allowed 

imaging of two cells simultaneously. When one measurement was completed, the cells 

were released from the trapping holes, and new cells were trapped for repeated 

measurement. The sample and buffer flows were controlled with a drug perfusion system 

(SF-77B, Warner Instruments, Connecticut). The typical transition time between different 

solutions was about 1-2 seconds. 

 

Figure 3.1 Microfluidic chip for single cell trapping. (a) Schematic illustration of the 

microfluidic chip showing two parallel fluidic channels (orange and blue). (b) Top and 

bottom layers of the microfluidic chip. (c) Side view of the microfluidic chip showing 

trapping of a cell via the micro-holes on the wall that separates the two parallel fluidic 

channels. (d) Photo of the microfluidic chip together with tubing connected to the inlets 

and outlets. 
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3.3 Detection Principle 

3.3.1 Thermodynamic model 

Thermodynamics predicts that molecular binding to a surface changes the surface 

tension. This phenomenon was manifested in microcantilever biosensors, where molecular 

binding to a microcantilever causes it to bend, and the amount of bending increases with 

decreasing thickness of the microcantilever.[107] Cell membranes are a few nanometers 

thick, much thinner than typical microcantilevers (a few microns), so we expect to observe 

cell membrane deformation upon molecular binding to the membrane proteins on a cell 

surface. By tracking the membrane deformation in real time, we can thus quantify the 

kinetics of molecular binding taking place on the surface of a trapped cell as shown in 

Figure 3.2. The free energy of the cell surface can be expressed as [108, 109] 

F =
1

2
κ(2H − C0)2A + γA + kBTf(ϕ)A − Λ1HϕA − Λ2H(1 − ϕ)A, (3.1) 

where the first term is bending energy (κ is the bending modulus, H is the mean membrane 

curvature, C0 is the spontaneous curvature), the second term is surface tension (γ), the third 

term is the entropic contribution from the membrane proteins ( kB  is the Boltzmann 

constant and T is temperature, and f(ϕ) is a dimensionless parameter that depends on 

concentrations of the membrane proteins with and without bound ligand molecules), the 

fourth and fifth terms describe the interactions of the membrane proteins (with and without 

bound ligand molecules) with the lipid bilayer (Λ1 and Λ2 are the interaction strengths 

between the lipids and the membrane proteins with and without bound ligand molecules, 

respectively, and ϕ is the fraction of the membrane proteins with bound ligand molecules). 

If assuming ideal mixing, f(ϕ) can be expressed as  
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f(ϕ) = ln[ϕ(1 − ϕ)].        (3.2) 

By minimizing the free energy given by Eq. 3.1, we have 

2κ(2H − C0)δHA +
1

2
κ(2H − C0)2δA + γδA + kBT ln[ϕ(1 − ϕ)] δA +

kBT
1−2ϕ

ϕ(1−ϕ)
δϕA − Λ1δHϕA − Λ1HδϕA − Λ1HϕδA − Λ2δH(1 − ϕ)A + Λ2HδϕA −

Λ2H(1 − ϕ)δA = 0,          (3.3) 

If we assume spherical cells, A=
4π

H2, and Eq.3.3 can be simplified as 

ΔD

D
= −

1

2

(Λ2−Λ1)H+kBT
1−2ϕ

ϕ(1−ϕ)
κ

2
(2H−C0)(−C0)+γ+kBT ln[ϕ(1−ϕ)]−

1

2
Λ1Hϕ−

1

2
Λ2H(1−ϕ)

Δϕ,  (3.4) 

If the interaction energy between the membrane proteins and lipids is much greater 

than the thermal energy, kBT, and the binding induced membrane deformation is relatively 

small, Eq. 3.4 can be simplified as, 

ΔD

D
=

(Λ2−Λ1)H

κ(2H−C0)C0−2γ
Δϕ.       (3.5) 

where Λ1  and Λ2  are the interaction strengths between the membrane lipids and the 

membrane proteins (receptors) with and without bound molecules (ligands), respectively, 

H is the mean curvature, κ is the bending modulus, C0 is the spontaneous curvature of the 

cell, γ is the surface tension, and ϕ is the fraction of the receptors with bound ligands. Eq. 

3.5 shows that the molecular binding induced membrane deformation is proportional to the 

number of ligands bound to the receptors.[110-112] According to this model, the 

membrane deformation depends on the nature of ligand-receptor interactions, but it is not 

directly related to the masses of the ligands. So the present method works for both large 

and small molecule ligands, as long as the binding changes the interactions of the receptors 

with the membrane.  
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Figure 3.2 Schematic of the principle for measuring binding kinetics from the cell 

deformation. Cell edge positions before binding (i), during binding (association) (ii), and 

during dissociation (iii), where the blue and red boxes indicate a region of interest (ROI) 

used in a differential optical tracking algorithm of the cell deformation. 

3.3.2 Microfluidic Device 

We used a microfluidic chip consisting of two parallel fluidic channels separated 

with a thin wall with micro-holes (diameter of 10 µm) to trap single cells for measurement. 

Channel 1 had an inlet and outlet to allow sample and buffer solutions to flow in and out, 

and channel 2 had a lower pressure than channel 1 (Figure 3.3a). We flew cells along 

channel 1 while maintaining a lower pressure in channel 2, which resulted in trapping of 

the cells onto the individual micro-holes (Figure 3.3b).[113] We then introduced ligands 

from channel 1, and studied binding of the ligands to the membrane protein receptors on 

each of the trapped cells by measuring the binding-induced mechanical deformation of the 

cell as stated in Eq. 3.5. 
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Figure 3.3 Setup for measuring binding of small and large molecules to membrane proteins 

on trapped cells. (a) Schematic illustration of the experimental setup consisting of a 

microfluidic system for trapping single cells onto micro-holes, and for introducing ligand 

molecules at different concentrations for binding kinetics measurement, and an optical 

imaging and signal processing system for tracking the cell deformation associated with the 

binding in real time. (b) Flow design of the cell trapping microfluidic chip and optical 

images of trapped cells with 40x phase contrast objectives. 

3.3.3 Differential Optical Tracking Method 

To measure the small molecule binding induced cell deformation, we used a 

differential optical tracking method (Figure 3.4). First, we imaged the trapped cells with 

phase contrast microscopy, which clearly revealed the edge of each cell. We then selected 

a rectangular region of interest (ROI) such that the cell edge passed through the center of 

the ROI, and then divided the ROI into two equal halves, one was inside the cell (red), and 

the other half fell outside of the cell (blue, Figure 3.5). When the cell deformed, the image 



60 

 

intensity in one half increased, and the other half decreased. The differential image 

intensity of the two halves was defined as, (I1-I2)/(I1+I2), where I1 and I2 are the intensities 

of the first and second halves, respectively, which was proportional to cell deformation. 

We calibrated this differential deformation-tracking algorithm by shifting the ROIs over 

different numbers of pixels in the direction normal to the cell edge (Figure 3.5d). The 

differential image intensity was linearly proportional to the cell deformation within a 

certain range (Figure 3.5e and f).  

 

Figure 3.4 Schematic illustration of the differential optical detection method. The 

membrane deformation is related with the differential intensity of ROI A and ROI B with 

a calibration factor of α. 

The detailed tracking procedure of the differential optical detection method is 

illustrated in Figure 3.5. First, the edge of the cell was manually chosen, and the center of 

the cell was determined (Figure 3.5a). Then, the calibration curve at each location along 

the cell edge was obtained by shifting the ROI (1.11 × 2.22 µm) from outside to inside of 

the cell, in the direction perpendicular to the cell edge (Figure 3.5d, e and f). Using the 

calibration curves, the cell deformation (edge movement) at each point along the cell edge 

was determined, and the cell deformation averaged over the entire cell was used to 
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determine the molecular binding kinetics. Depending on the cell lines, both contraction and 

expansion were observed, but the binding kinetics was determined from the absolute values 

of the cell deformation vs. time. 

 

Figure 3.5 Calibration of the optical tracking of cellular deformation. (a) The edge (green 

line) and the centroid (red dot) of the cell were determined with an imaging-processing 

algorithm. (b) and (c) A region of interest (ROI) (1.11 μm by 2.22 μm) was selected to 

include the edge, and the ROI was rotated at every 1 degree along the cell edge, where the 

angle was defined by a radial line (from the cell centroid to the cell edge). (d) The optical 

tracking method was calibrated by shifting the ROI by different numbers of pixels from 

outside to inside of the cell in the direction perpendicular to the tangential line at the cell 

edge. (e) Differential image intensity vs. cell edge position (d), where the two vertical 

dashed lines mark a linear region used in the differential optical tracking algorithm. (f) A 
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typical calibration curve to determine the cell deformation from the differential image 

intensity. Scale bar: 10 μm. 

The differential optical detection method subtracted the common noise (e.g., light 

intensity and mechanical perturbation) in the optical system, thus providing precise 

tracking of subtle cell deformation associated with the molecular binding. The standard 

deviation of the cell deformation averaged over a cell was as small as ~0.4 nm (Figure 

3.6b). To further analyze the noise source, we tracked the edge movement of a fixed object 

created with a marker (inset of Figure 3.6a) with the same optical system and differential 

tracking algorithm, where the noise was purely due to the optical system, including light 

source and camera. The noise level was ~0.1 nm, several times smaller than the noise 

observed for cells (Figure 3.6). This observation suggests that the cell edge detection limit 

of the present system was mainly determined by the intrinsic mechanical instability of the 

cells. 

 

Figure 3.6 Noise Analysis. (a) Noise in the position (edge movement) of a fixed object 

(marker dot). (b) Comparison of noises in the edge movements of a cell and the marker dot. 
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3.4 Label Free Detection of Small Molecules Interaction with Membrane Proteins 

3.4.1 Binding Kinetics of Four Major Types of Cell Surface Membrane Proteins 

To measure the molecular interaction with membrane protein, we transfected the 

targeted membrane proteins in cell lines, cultured and then harvested them as cell 

suspensions, followed by briefly fixing and re-suspending the cells in 1X PBS buffer. We 

injected the cell suspension of each membrane protein into channel 1 of the microfluidic 

chip, trapped the individual cells onto the micro-holes by applying a small negative 

pressure. For the binding process measurement, the PBS buffer was first injected to obtain 

baseline. Then the drug molecules were added to measure the association process, during 

which the cell deformed. Last, the solution was switch back to PBS buffer, and the 

dissociation process was measured, during which the cell recovered back. By tracking the 

edge movement averaged over the entire cell with the differential tracking algorithm, the 

binding kinetic curved was plotted as shown in Figure 3.7.  
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Figure 3.7 Cell membrane deformation during molecular interaction. The differential 

images is the cell membrane deformation during WGA binding with glycoprotein in SH-

EP1 cells. Cell shows very little change in baseline. Cell contracted during association 

process and recover back during dissociation process. The binding kinetic curve is 

extracted with the differential tracking algorithm. 

To demonstrate the capability of the method, we studied different transmembrane 

proteins, glycoproteins, ion channel proteins, G-protein coupled receptors (GPCRs) and 

tyrosine kinase receptors, each representing a major membrane protein type. These 

membrane proteins are involved in most of the cellular signaling pathways,[114, 115] and 

determining the binding kinetics of ligand molecules with them are important for cell 

biology research, biomarker discovery and drug development. 
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Glycoprotein: Glycoproteins are critical for cell recognition and communication,[4, 

116] and lectins are carbohydrate-binding proteins that recognize and bind to the specific 

sugar groups of glycoproteins on cell surfaces for regulation of cell adhesion and synthesis 

of glycoproteins. We studied wheat germ agglutinin (WGA; molecular weight, 35 kDa), a 

lectin that recognizes N-acetylglucosamine (GlcNAc) and sialic acid groups on the surface 

of brain neuroblastoma SH-EP1 cells. First, 1X PBS buffer was injected in channel to flow 

over the trapped cells (Figure 3.8a, inset) with a flow rate of 300 μL/min for 50 s to obtain 

a baseline. Then, WGA (in 1X PBS buffer) solution was introduced for 100 s to allow the 

binding (association) of WGA with the glycoproteins on the cells. After the association 

process, the flow was switched back to 1X PBS buffer for another 100 s to allow 

dissociation of WGA from the cells. The entire procedure was repeated for three times with 

different WGA concentrations, starting from low to high concentrations (70, 140 and 280 

nM). The cell contracted gradually during the association process, and expanded back 

during the dissociation process. By tracking cell deformation vs. time, we obtained binding 

curves, shown in Figure 3.8a (black curves), presenting up to 225 nm cellular deformation. 

Both the rate of association and the amount of cell deformation increased with WGA 

concentration, which is expected for first order kinetics. By globally fitting the binding 

curves obtained at different concentrations with a 1:1 binding kinetics model, the 

association rate constant (kon), dissociation rate constant (koff), and dissociation constant 

(KD) were found to be kon = 1.8 ± 0.02 × 105 M−1s−1, koff = 5.6 ± 0.01 × 10−3 s−1 and 

KD = 31 ± 0.5 nM. These results are consistent with those obtained with SPR imaging 

method.[42] 
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Ion channel protein: Ion channels are membrane proteins that establish electrical 

signals (action potentials) in cells, and mediate communication across the synapses in nerve 

systems. We studied here nicotinic acetylcholine receptor (nAChR), an ion channel protein 

that plays a critical role in neurotransmission and drug addiction, and measured its binding 

to acetylcholine, a neurotransmitter. The neurotransmitter has a small mass (182 Da), 

which is difficult to study with traditional label-free detection methods. We transfected 

brain neuroblastoma SH-EP1 cells with human α4β2 receptor (SH-EP1- α4β2) for binding 

kinetics measurement (Figure 3.8b). The estimated expression level of the receptor is ~110 

nAChRs/μm2 (~0.8 million per cell).[117] Following a similar procedure as described above 

for the glycoproteins, we measured the binding of acetylcholine at different concentrations 

to nAChR (Figure 3.8b) and obtained obvious membrane deformation signals and the 

maximum deformation was around 70 nm. The red lines are the global fitting to the binding 

curves (black) using the 1:1 binding kinetics model. The association (kon) and dissociation 

(koff) rate constants were found to be 2.9 ± 0.01 × 104 M−1s−1  and 2.0 ± 0.02 ×

10−3 s−1, respectively, from which the dissociation constant (KD) was determined to be 

69 ± 0.4 nM. Both the kinetic rate and equilibrium constants are consistent with those 

reported for adherent cells.[103]  

G-protein coupled receptor: GPCRs are a major type of drug targets,[118] 

accounting for 25% of all current drugs. We studied C-X-C chemokine receptor type 4 

(CXCR-4), a common GPCR broadly expressed in central nervous and immune cells. 

CXCR-4 is responsible for leukocyte trafficking, human immunodeficiency virus type 1 

(HIV-1) infection and the proliferation and metastasis of various carcinomas.[119] To 
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inhibit the activation of CXCR-4 in cancer treatment, various antagonists are used to block 

the binding pocket of the receptor, among which AMD3100 (Plerixafor, a small molecule 

drug, 794 Da) has been approved for clinic use.[120, 121] Quantification of binding 

kinetics between CXCR-4 and the antagonist is essential to evaluate the therapeutic effect. 

We measured the binding of AMD3100 to CXCR-4 on the surface of human lung 

carcinoma cells (A549). The A549 cells (Figure 3.8c, inset) are smaller and more rigid than 

the SH-EP1 cells (Figure 3.8b, inset), and the binding induced membrane deformation was 

smaller with a maximum value of 46 nm. We obtained the binding curves for CXCR-4 at 

different AMD3100 concentrations (black curves), and performed global fitting of the 

binding curves (red curves) with the first order binding kinetics model and obtained, kon = 

3.8 ± 0.05 × 103 M−1s−1, koff = 7.7 ± 0.07 × 10−4 s−1 and KD = 0.2 ± 0.003 μM. The 

affinity constant is in good consistence with the literature value (0.1 μM) measured by the 

radioligand assay.[122] 

Tyrosine kinases Receptor: Kinases are enzyme-linked receptors, which are 

responsible for the regulation of normal cells and also for the initiation and progression of 

various types of cancers.[123] An important example is insulin receptor that binds with 

insulin, which is a critical step in regulating glucose homeostasis, a functional process that 

is directly relevant to diabetes and cancer. Determining the binding between insulin and 

the receptor is thus needed for understanding type 2 diabetes, and discovering related drugs. 

Studying the binding interaction to the insulin receptor with the existing technologies has 

been a challenge because of its low expression levels and difficulty in purification. We 

measured the binding kinetics of insulin with insulin receptor on the surface of human liver 
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cancer cells (Hep G2) (black curves, Figure 3.8d) and performed global fitting of the data 

(red curves) with binding kinetic constants of kon = 7.5 ± 0.20 × 103 M−1s−1, koff = 2.5 ±

0.04 × 10−4 s−1 and KD = 33 ± 0.8 nM. The binding induced deformation is smaller but 

detectable, presenting about 17 nm signal for high concentration ligand interaction. The 

affinity constant is within the literature reported range,[99, 124] but the kinetic constants 

on intact cells have not been reported before due to the lack of a suitable technology.  

 

Figure 3.8 Representative binding kinetics curves of different molecular ligands to four 

major types of membrane proteins on cells. The cells contracted upon molecular binding, 

and the absolute edge movements were used to obtain binding kinetics. (a) WGA binding 

to glycoprotein on SH-EP1 cells (inset). (b) Acetylcholine binding to nicotinic 

acetylcholine receptors (ion channel) on SH-EP1- α4β2 cells (inset). (c) AMD3100 binding 

to CXCR-4 receptors (GPCR) on A549 cells (inset). (d) Insulin binding to insulin receptors 

(tyrosine kinase receptor) on Hep G2 cells (inset).  

3.4.2 Validation of the Binding Kinetic Measurements with Control Experiments 

To verify the cell deformation is originated from the binding of the ligands to the 

corresponding membrane protein receptors, we measured acetylcholine binding to wild 
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type SH-EP1 cells (had no nAChRs expressed on their surfaces), and did not observe cell 

deformation (Figure 3.9a). This control experiment shows that the deformation in the 

engineered SH-EP1- α4β2 cells was indeed due to the binding of acetylcholine to the 

nAChRs.  

 

Figure 3.9 Negative Control experiments. Cell deformation (cell edge displacement) of 

two wild-type SH-EP1 cells to high dose (500 nM) acetylcholine. Since the wild-type cells 

do not express nicotinic acetylcholine receptors, the lack of cell deformation indicates the 

observed cell deformation in cell lines with the receptors is due to the molecular binding. 

To examine if the cell deformation was resulted from a cell downstream effect 

triggered by the binding, we measured ligand binding to CXCR-4 receptors by blocking 

the downstream pathway with pertussis toxin (PTX). PTX is known to block the 

downstream events of many GPCRs, including CXCR4, by binding to the G protein, while 

leaving the GPCR outer membrane-binding sites available for the ligand to bind. We 

treated A549 cells with 100 ng/mL pertussis toxins in the cell culture medium for 2 hours 

to block CXCR-4 downstream events,[125, 126] and then measured binding of the ligands 

to the cells with and without PTX treatment. The binding curves are similar (Figure 3.10) 
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with kinetic constants of kon=4.5 ± 0.03 × 103 M−1s−1, koff=1.1 ± 0.01 × 10−3 s−1 and 

KD= 0.25 ± 0.002 μM  without PTX blocking and kon = 2.9 ± 0.02 × 103 M−1s−1 , 

koff= 0.7 ± 0.01 × 10−3 s−1  and KD = 0.24 ± 0.002 μM  after downstream blocking, 

showing little difference in the binding kinetics. This finding indicates that the cell 

membrane deformation is a direct response of the cell to ligand binding, rather than due to 

an indirect downstream event. 

 

Figure 3.10 Downstream block control experiments. (a) and (b) Binding kinetics curves of 

untreated (a) and pertussis toxin-treated (b) A549 cells to AMD3100 with concentrations 

of 100, 200, and 500 nM. Pertusis toxin binds to G proteins and blocks their downstream 

processes. The similarity in the binding kinetics of cells with and without blocking the 

downstream processes shows that the cell deformation signal is not from a downstream 

event. A549 cells contracted upon binding, and the absolute cell deformation values (edge 

movements) were used to extract binding kinetics. 

3.4.2 Binding of Ligands with Different Functions to Membrane Protein Receptors  

After establishing that our method can be applied to different types of membrane 

proteins, we examined the binding of ligands with different functions to a given membrane 
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protein receptor, such as CXCR-4 receptor. Stromal-derived-factor-1 (SDF-1) is a natural 

peptide agonist, which binds to CXCR-4 and activates it. In contrast, AMD3100 is a 

competitive antagonist, which inhibits the activation by blocking the binding site of the 

receptor. Although both SDF-1 and AMD3100 bind to the same pocket of the receptor, 

their functions are completely different.[122] We performed binding kinetics 

measurements of the two ligands to A549 cells. The results (Figure 3.11) show that both 

the agonist and antagonist bind to the CXCR-4 receptor on A540 cells, but the binding 

kinetics are significantly different with kon=1.2 ± 0.03 × 104 M−1s−1, koff=9.4 ± 0.1 ×

10−4 s−1 and KD=80 ± 2 nM for SDF-1, and kon=4.5 ± 0.03 × 103 M−1s−1, koff=1.1 ±

0.01 × 10−3 s−1 and KD=250 ± 2 nM for AMD3100. 

 

Figure 3.11 Variability of binding kinetics of different ligands to the same cell line. (a) 

Binding kinetic curves of antagonist AMD3100 (100, 200, and 500 nM) to CXCR-4. (b) 

Binding kinetic curves of agonist SDF-1 (5, 10, and 50 nM) to CXCR-4. The cells 

contracted upon binding, but the absolute cell deformation values (edge movements) were 

used to extract binding kinetics.  

https://en.wikipedia.org/wiki/Stromal_cell-derived_factor-1
https://en.wikipedia.org/wiki/Stromal_cell-derived_factor-1
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3.4.3 Effect of Cellular Microenvironment on Membrane Protein Binding Kinetics 

An advantage of the present single cell-based assay is its ability to evaluate the 

effect of the membrane protein microenvironment on the molecular binding kinetics. 

Because different cell lines provide different lipid microenvironments to membrane protein 

receptors, we studied anti-EGFR binding to EGFR receptor expressed on two different cell 

lines, A431 cells and HeLa (Figure 3.12), and determined binding kinetic constants of 

kon=8.2 ± 0.07 × 104 M−1s−1 , koff =3.0 ± 0.04 × 10−4 s−1  and KD=3.6 ± 0.03 nM for 

A431, and kon= 4.3 ± 0.04 × 104 M−1s−1 , koff= 2.0 ± 0.05 × 10−4 s−1  and KD= 4.6 ±

0.04 nM for HeLa. The differences in the kinetic constants are small but detectable for the 

two cell lines. This finding underscores the importance of studying membrane proteins in 

their native cellular environment in order to obtain accurate and physiologically relevant 

ligand-receptor binding kinetics.  

 

Figure 3.12 Variability of binding kinetics of same ligands to different cell lines. (a) 

Binding kinetic curves of anti-EGFR to EGFR on A431 cell surface. (b) Binding kinetic 

curves of anti-EGFR to EGFR on HeLa cell surface. The cells expanded upon binding, and 
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the absolute cell deformation values (edge movements) were used to extract binding 

kinetics.  

3.4.4 Heterogeneity of Different Cells, and Different Regions of a Cell 

The present method measures binding kinetics on single cells, which offers an 

opportunity to measure cell-to-cell variability in the binding kinetics. Before the analysis 

of cell-to-cell variability, we first tested the repeatability of our method to evaluate the 

measurement errors. The binding kinetic measurement on one cell was repeated for three 

times and the standard deviation of the kinetic constants were within 10% (Figure 3.13 and 

Table 3.1).  

 

Figure 3.13 Repeatability of binding kinetic measurements. Binding kinetic curves of three 

repeated runs of acetylcholine (5 nM) binding with nAChRs on one single SH-EP_α4β2 

cell. (a) Experimental data. (b) Fitted result. 

Table 3.1 Variability of repeated binding kinetic measurements. 
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Then, we measured the binding of WGA to the glycoprotein receptor on two SH-

EP1 cells trapped on the same microfluidic chip simultaneously for cell-cell variation study 

(Figure 3.14a and b). The results revealed ~2 fold difference in the dissociation rate 

constant for the two cells. To further validate the finding, additional cells were tested and 

statistical analysis of four different membrane proteins is presented in Table 3.2. The high 

spatial resolution of the method also allows analysis of region-to-region variability within 

a cell. We examined the local variability in the binding kinetics by tracking local cell 

deformation along the edge of the cell (Figure 3.14c) and determined binding kinetic curves 

(Figure 3.14d), and observed local variations in the binding kinetics. A possible reason for 

this local variability is the heterogeneous membrane protein distribution on the cell surface, 

which is known to play an important role in cell communication and recognition.[127] 
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Figure 3.14 Variability of different cells and different regions of the same cell. (a) Phase 

contrast images of two wild type SH-EP1 cells. (b) Binding curves (edge movement) of 

two individual cells. (c) Variability in the cell deformation (edge movement) along the 

edge of a cell. (d) Binding curves (edge movement) of different locations along the edge 

of a cell. 

Table 3.2 Statistical analysis of the association rate constants (kon), dissociation rate 

constants (koff), and equilibrium constants (KD) for different membrane proteins (n is cell 

number). 
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3.4.5 Membrane Deformation Dependence on Cell Stiffness 

The thermodynamic model (Eq. 3.5) predicts that ligand binding to membrane 

proteins causes the cell to deform, and the deformation magnitude decreases with the 

stiffness (bending modulus) of the cell. To examine the effect of cell mechanical stiffness 

on the binding-induced cell deformation, we first determined the cell stiffness by 

measuring cell edge movement associated with a change in the osmotic pressure created 

by decreasing 300 mOsm (1X PBS) to 270 mOsm (0.9X PBS). In isotonic buffer solution 

(300 mOsm), the cell preserves the normal shape, and it is expected to expand in the 

hypotonic solution (270 mOsm) as the water is transported into the cell to balance the 

osmotic pressure difference. We tracked the osmotic pressure-induced cell membrane 

expansion and used the average expansion to determine the membrane stiffness.  The cell 

used in this study was A431 cells expressed with EGFR. We then studied the binding of 

anti-EGFR to EGFR receptors on the cell surface, and determined the associated cell 

deformation (Figure 3.15). Our result indicates that the binding-induced cell deformation 

in soft cells is greater than that in the stiff cells, and the mean correlation ratio is 0.96 with 
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the standard deviation of 0.04 (n=3). Despite the dependence of the deformation magnitude 

on cell stiffness, the binding kinetic constants are not affected by the cell mechanical 

properties (Figure 3.15).  

 

Figure 3.15 Dependence of binding-induced cell deformation on cell stiffness. (a) Cell 

edge deformation associate with osmotic pressure introduced by switching the buffer from 

300 mOsm (1X) to 270 mOsm (0.9X) PBS. (b) Cell deformation and kinetic constants 

associated with the binding of anti-EGFR to EGFR.  

3.4.6 Membrane Deformation Dependence on Receptor Density 

The thermodynamic model also predicts that the binding-induced cell deformation 

is proportional to the density of the expressed membrane proteins on a cell surface. We 

examined this prediction by measuring the binding of anti-EGFR with EGFR on different 

cell lines, which are known to express EGFR with different densities.[104] These cell lines 

include A431 cell, HeLa cell, A549 cell and Hek 293 cell (Figure 3.16), and the EGFR 

densities are 1.2, 0.53, 0.28, and 0.02 million per cell, respectively.[92, 104] The binding 

curves for these cell lines were calibrated and normalized with the osmotic pressure-

induced cell deformation (using 0.9X PBS, 270 mOsm). The data shows that the cell 
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deformation increases with EGFR density, which is in agreement with the thermodynamic 

model (Eq. 3.5).  

 

Figure 3.16 Dependence of cell deformation on receptor density. Optical images of trapped 

cells (insets), and Anti-EGFR –EGFR binding curves for (a) A431, (b) HeLa, (c) A549, 

and (d) Hek 293 cell lines. The cells expanded upon anti-EGFR-EGFR binding, and the 

absolute edge movements were used to extract binding kinetics.  

We analyzed multiple cells and plotted the distribution vs. the receptor density 

(Figure 3.17), and observed a clear correlation between the binding-induced cell 

deformation and receptor density. 
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Figure 3.17 Cell deformation vs. Receptor density. Linear correlation between the 

magnitude of the cell deformation and receptor density on cell surface.  

We also examined possible dependence of the cell deformation on the binding 

kinetic constants (Figure 3.18) but found no obvious correlation between them. This 

observation is also consistent with the thermodynamic model.  

 

Figure 3.18 No correlation between the magnitude of the cell deformation and binding 

kinetic constants. Cell deformation and kinetic constants for (a) AMD3100-CXCR-4 

binding, (b) It1t-CXCR-4 binding, (c) CTCE-9908-CXCR-4 binding, and (d) SDF1-

CXCR-4 binding. 

3.4.7 Comparison of Fixed and Live Cells 

In this work, we mainly focused on the fixed cells for binding kinetic measurements, 

because it minimizes cell micro-motion (Figure 3.19).  
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Figure 3.19 Cell membrane fluctuation decreases after fixation. 

The fixation used 4% paraformaldehyde (PFA), the most common fixation that has 

been widely used for various immune-assays using fluorescence and other detection 

technologies. This procedure may crosslink proteins at certain epitopes, and could thus 

affect the binding kinetics. However, it has been shown that only several amino acids (e.g., 

lysine and tryptophan side chains) can be easily cross-linked by the fixation, and even for 

these amino acids, the crosslinking rate is between 3-22% [128-131] after 48 h fixation. In 

the present work our fixation time is brief (10 mins) at 4% PFA, which should significantly 

reduce the chance of crosslinking in the binding pockets of the target membrane proteins. 

Additionally, the formaldehyde cross-links are reversible in buffer solutions,[132] so a 

majority of the membrane proteins, especially their binding pockets, are expected to remain 

intact. To further examine the possible fixation effect, we carried out the binding kinetic 

measurements on living cells (Figure 3.20). Despite of the increased noise and difference 

in the absolute amount of cell deformation in the living cells, the binding kinetic constants 

are similar within the experimental uncertainty for fixed and living cells examined here. 
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Figure 3.20 Comparison of fixed and live cells. WGA- glycoprotein binding kinetic curves 

on (a) fixed and (b) live SH-EP1 cells (WGA concentration=200 nM). The SH-EP1 cells 

contracted upon WGA binding, and the absolute edge movements were used to extract 

binding kinetics.  

To further compare the binding kinetics of fixed and live cells, the statistical 

analysis of multiple cells were performed. Figure 3.21 shows the comparison of kon, koff 

and kD between fixed and live cells. No significant difference were observed between fixed 

and live cells. 

 

Figure 3.21 The statistical comparison of binding kinetics between fixed and live cells. (a) 

Association rate constant kon. (b) Dissociation rate constant koff. (c) Binding kinetic 

constant kD. (n=21) 

Molecular binding to membrane proteins is critical for both cellular function study 

and drug development, which has motivated researchers to develop various detection 
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technologies. The current detection technologies fall into two categories: labeled and label-

free methods. The former includes fluorescence methods (e.g., TIRF), which are typically 

end-point assays, and thus not for kinetics.  The latter includes SPR and other optical and 

mechanical methods. These methods allow real time tracking of binding kinetics, but often 

face challenges of detecting small molecules (low molecular mass ligands). The method 

presented here measures molecular binding by tracking binding-induced cell deformation 

at sub-nm with an optical tracking method. It is label-free, yet its detection sensitivity does 

not diminish with molecular mass, which is thus capable of studying both large and small 

molecules. Furthermore, by integrating the sensitive optical cell edge tracking method with 

a microfluidic device, single cells can be trapped and analyzed, which is particularly 

attractive for studying suspension cells. The basic principle of the present detection method, 

as described with a thermodynamic model, is universal. Predicting the actual amount of 

the molecular binding-induced cell deformation (contraction or expansion) with the model 

requires details of the ligand-membrane receptor interactions, and cell mechanical 

properties. However, the binding kinetics measures how fast a ligand binds to its receptor, 

which is determined by the time evolution of the cell deformation, rather than by the 

amount of cell deformation. 

3.5 Conclusion 

In this chapter, we described a label-free optical detection method coupled with a 

microfluidic device to measure the kinetics of both large and small ligands binding with 

membrane protein receptors on whole cells. The method uses a microfluidic chip to trap 

individual suspended cells onto microfabricated holes, and measure the molecular binding 
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induced-cell membrane deformation of the trapped cells with sub-nanometer precision. 

Using the method, we studied the molecular interactions of large and small molecule 

ligands, and agonists and antagonists with four major types of membrane proteins 

(glycoprotein, nAChR, CXCR-4 and insulin receptors), demonstrating the capability of 

measuring both large and small molecule binding kinetics with membrane proteins on 

whole cells. We developed a thermodynamic model to describe the basic mechanism of the 

method, and validated the model by changing the cell stiffness, receptor density and 

binding kinetics. The single-cell detection capability revealed variability in the binding 

kinetics of a membrane protein receptor expressed on different cell lines, demonstrating 

the importance of the cellular microenvironment in membrane protein functions. The 

method offers single cell detection capability, which enabled the study of heterogeneity in 

the membrane protein binding within the same cell line. The microfluidic design allowed 

trapping of the individual cells, measuring the binding kinetics, and then releasing the 

trapped cells, thus potentially compatible with high throughput need for studying multiple 

cells.  
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CHAPTER 4 MEASUREMENT OF MOLECULAR INTERACTION INDUCED 

DOWNSTREAM EFFECT WITH MECHANICAL TRACKING METHOD 

4.1 Introduction 

By tracking the cell membrane deformation, we have successfully measured the 

small molecules interaction with membrane proteins on cell surface. To further explore this 

mechanical tracking methods, we applied this platform on live cell function measurements. 

One example is the monitoring of granule exocytosis on single cells. 

Granule exocytosis is a basic cellular process that secrets intracellular substances, 

such as neurotransmitters, hormones and enzymes, for various functions, including cell-

cell communications, synaptic signal transmission and cellular metabolism.[133-135] 

Uncontrolled exocytosis results in cell proliferation, migration, invasion and tumor 

development.[136] Tracking of granule exocytosis in real time is critical for both 

understanding normal cellular functions and detecting cellular disorders. 

Current methods of monitoring granule exocytosis mainly rely on 

electrophysiological recording, electrochemical detection and fluorescence imaging.[137-

139] The electrophysiological recording method measures cellular membrane capacitance 

by the whole cell patch clamping technique.[140, 141] As the membrane capacitance is 

proportional to the membrane area, granule fusion during synaptic exocytosis and 

endocytosis is thus detected as it changes the membrane area.[142, 143] Although powerful, 

the membrane capacitance reflects an overall cellular surface area change, which does not 

provide the spatial information of an exocytosis event. Furthermore, the 

electrophysiological recording method has limited throughput because it measures one cell 
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at a time. The electrochemical method detects the oxidation current of molecules released 

from granules with a microelectrode,[144-150] which can quantify the amount of the 

secretory molecules with high sensitivity, but it is limited to granules containing 

electroactive species. The fluorescence imaging approach [151] can detect individual 

granule exocytosis events with high spatial resolution,[152-156] but its temporal resolution 

is limited by the number of photons emitted from the fluorophores. The fluorescence 

imaging requires the introduction of the fluorescent dye to the granule, and the signal does 

not provide direct information on the cell membrane changes during granule release.  

In this chapter, we report a label-free method to image single granule exocytosis 

events by tracking granule fusion-induced local mechanical deformation in cellular 

membrane with sub-nm precision and milliseconds temporal resolution. We achieve this 

capability with a phase contrast imaging method and a differential optical tracking 

algorithm. Using this capability, we monitor the granule release events in single cells and 

map the spatial distribution of the cell membrane deformation induced by the granule 

fusion and its evolution over time. From the temporal and spatial patterns, we identify 

different types of granule release. We also monitor the granule release processes by 

simultaneous fluorescence recording to validate the label-free cell membrane deformation 

tracking method. The simultaneous cell membrane deformation detection and fluorescence 

recording allow the study of the propagation of the granule release induced membrane 

deformation along cellular membrane surfaces. 
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4.2 Materials and Methods 

Materials. Monoclonal anti-Dinitrophenyl (anti-DNP) IgE, fluorescein 

isothiocyanate-dextran (FITC-dextran) and serotonin molecules were purchased from 

Sigma-Aldrich (St. Louis, MO). 2,4-dinitrophenylated albumin from bovine serum (DNP-

BSA) was purchased from Life Technologies (Carlsbad, CA). All solutions used in the 

experiments were prepared with home-made fresh extracellular buffer (135 mM NaCl, 5 

mM KCl, 20 mM HEPES, 1.8 mM CaCl2, 1 mM MgCl2, 5.6 mM glucose, pH = 7.4). All 

reagents were analytical grade from Sigma-Aldrich, except those stated.  

Cell culture. RBL-2H3 cells were purchased from American Type Culture 

Collection (ATCC, Rockville, MD). RBL-2H3 cells were cultured in a humidity incubator 

at 37˚C with 5% CO2 and 70% relative humidity. Eagle’s Minimum Essential Medium 

(EMEM, ATCC 30-2003) with 15% heat inactivated Fetal Bovine Serum (FBS, Life 

Technologies, Carlsbad, CA) and 1% penicillin-streptomycin (BioWhittaker, Basel, 

Switzerland) were used as culture medium for cell growing. RBL-2H3 cells were cultured 

in 25 cm2 flask and passaged when approximately 80% confluence was reached. 0.05% 

trypsin-EDTA (Life Technologies, Carlsbad, CA) was used for cell passage.  

Granule release initiation. For granule exocytosis experiment, the RBL-2H3 cells 

were transferred to 35 mm diameter tissue culture petri dish (Corning Inc., Corning, NY) 

for overnight culture. 200 μM serotonin, 0.5 μg/ml monoclonal anti-Dinitrophenyl (anti-

DNP) IgE and 1 mg/ml fluorescein isothiocyanate-dextran (FITC-dextran, molecular 

weight 150,000) were added to the culture medium for granule release preparation. 

Serotonin was used to increase the size of granule [157]. FITC-dextran was used to label 
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the cells for simultaneous tracking of granule release with fluorescence imaging and cell 

membrane deformation. Anti-DNP IgE was used to bind with the cell surface expressed 

high affinity IgE receptors (FcεRI). When the antigen, 2,4-dinitrophenylated albumin from 

bovine serum (DNP-BSA) was added, the binding of DNP-BSA to anti-DNP IgE will make 

the cross-linking of FcεRI which initiates a signaling cascade leading to degranulation of 

the cells and release of chemical mediators (Figure 4.1).  

Before measurement, the RBL-2H3 cells were rinsed with 0.1% BSA in 

extracellular buffer (135 mM NaCl, 5 mM KCl, 20 mM HEPES, 1.8 mM CaCl2, 1 mM 

MgCl2, 5.6 mM glucose, pH = 7.4) for three times to block the surface followed by another 

three times wash with extracellular buffer only to remove the extra BSA. The petri dish 

with cells in 1 ml extracellular buffer was moved on the microscope for imaging. Recording 

of both phase contrast and fluorescent images was right after addition of 1 ml 5 μg/ml 

DNP-BSA into the petri dish. 
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Figure 4.1 Granule exocytosis initiation. 

Optical setup. An inverted microscope (Olympus IX81) equipped with a phase 2 

condenser and phase 2 40X objective was used with illumination from the top of the sample 

cells (Figure 4.3a). Top illumination light pass through a long pass filter with 600 nm cut-

on wavelength before illuminating on cell sample. The phase contrast image was recorded 

by a Hamamatsu camera with frame rate of up to 400 fps after another long pass filter with 

600 nm cut-on wavelength. A set of optical filters (Ex420-480/Em515) was used for the 

fluorescence imaging and another Hamamatsu camera was used for recording with frame 

rate of 8 fps. With a beam splitter, both of the phase contrast image and fluorescence image 

were able to be obtained simultaneously through the microscope side port. To synchronize 

the recording time of the phase contrast and the fluorescent image sequences, a shutter was 
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used to cut off the light path to black out both images as a time mark. By carefully aligning 

the intensity versus time plots of fluorescent and phase contrast images (Figure 4.2), the 

two recordings are synchronized. 

 

Figure 4.2 Recording synchronization.  

Fluorescence imaging. The fluorescence signal of granule release was obtained 

with fluorescein isothiocyanate–dextran (FITC-dextran), which was added to the cell 

before overnight culture. FITC-dextran was sensitive to the pH of the medium. Before 

granule release, the fluorescence signal of FITC-dextran was quenched by the low-pH of 

granule medium, and during granule release, the fluorescence signal was activated by 

neutral pH extracellular medium, giving a bright spot as fluorescence signal. The 

fluorescence image was captured simultaneously with the phase contrast images for 

granule release validation. The following optical filters were used to obtain the 

fluorescence image: excitation filter 420-480 nm, emission filter 515 nm.  
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Signal Analysis. The cell membrane deformation in color scale was obtained by 

tracking the whole cell edge with the differential edge tracking method (Figure 4.4) and 

plot the maximum membrane deformation magnitude at the time period that the granule 

release happened. To get the localized distribution of the membrane deformation upon 

granule release, the membrane deformation along an 8 µm-long edge that is close to the 

granule release position was tracked. The temporal profile of membrane deformation at 

different locations along the localized edge was extracted and plotted. By averaging these 

membrane deformation of different locations, the temporal profile of the granule release 

was obtained. The spatial profile was plotted by extracting the membrane deformation 

magnitude of different positions near the time point where the deformation is maximum. 

By fitting of the spatial distribution profile with Gaussian distribution, the peaks of each 

granule releases were resolved and the full width at half maximum (FWHM) was calculated 

as the effective expansion area. The 2D temporal-spatial correlation was the mapping of 

the membrane deformation value along this 8 µm long cell edge over the granule release 

time period. 

4.3 Detection principle  

We studied granule release in RBL-2H3, a rat basophilic leukemia cell line The 

RBL-2H3 cell surface were expressed with immunoglobulin E (IgE) receptors 

(FcεRI),[152] which were activated by IgE antibody binding. Degranulation in the cells 

were  initiated by specific binding of an antigen to the IgE antibody on the cell surface,[158] 

during which the granule docks and interacts with the plasma membrane of the cells (Figure 

4.1). To investigate the plasma membrane responses during the granules release, as well as 
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to validate the granule release by fluorescence, a dual-optical system was developed with 

both phase contrast imaging and fluorescence imaging. As shown in Figure 4.3a, the phase 

contrast imaging is obtained with a top illumination for cell morphology recording, and the 

fluorescence imaging is recorded with a bottom excitation for granule release validation.  

In the phase contrast-imaging pathway, two 600 nm long pass filters (f1 and f4) were used 

to avoid the interference from fluorescence signal. In the fluorescence imaging pathway, a 

filter set (f2: Ex = 420-480 nm, f3: Em = 515 nm) was used to selectively detect the 

fluorescence signal from granule release. FITC-dextran was used as the fluorescence 

reporter to validate the granule release, which was sensitive to the pH of the medium. 

Before granule release, the fluorescence signal was quenched by the low-pH of granule 

medium, and during granule release, the fluorescence signal was activated by the neutral 

pH of extracellular medium. With a beam splitter, both of the phase contrast image and 

fluorescence image were able to be obtained simultaneously through the microscope side 

port. Figure 4.3b show the phase contrast image and the corresponding fluorescence image 

from the same sample location, respectively.  
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Figure 4.3 Schematic illumination of the dual-optical system. (a) Schematic illumination 

of the imaging setup based on an inverted phase contrast microscope with 40x phase 2 

objective. A top mounted white light source passes through a 600 nm long pass filter (f1) 

and illuminates on sample cells. Phase contrast images are recorded by a camera after 

another 600 nm long pass filter (f4) to separate from the fluorescence imaging signal. A 

bottom mounted mercury lamp and a set of fluorescence image filters (excitation 

wavelength 420 nm – 480 nm (f2), emission wavelength at 500-550 nm (f3)) are used for 

fluorescence imaging. A shutter is used to block both phase contrast and fluorescence light 

for time synchronization of the two imaging modes. (b) Phase contrast image and the 

Fluorescence image of RBL-2H3 cells. The white arrows mark the position where there is 

a granule release. The bright spot in fluorescence image pointed by the white arrow is due 

to the fluorescence from granule release.  
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To sensitively measure the exocytosis induced membrane deformation, we used a 

differential optical method for edge tracking (Figure 4.4). From the phase contrast imaging, 

the edge of the cells can be clearly resolved (Figure 4.3b). To track the edge deformation, 

a rectangular region of interest (ROI) is defined such that the edge of a cell passes through 

the center of the rectangle. The rectangular ROI is divided into two equal halves, with one 

half inside of the cell (red) and the other half outside of the cell (blue, Figure 4.4a). When 

the cell plasma membrane deforms, the image intensity of one half increases, and the other 

half decreases. The differential image intensity of the two halves is defined as, (I1-I2)/(I1+I2), 

where I1 and I2 are the intensities of the first and second halves, respectively, and used to 

determine the cell edge movement at each location. The calibration between the differential 

image intensity and the cell edge movement is determined experimentally (Figure 4.4b, c 

and d). This differential optical detection subtracts the common noise in optical system, 

thus providing high detection limit.  
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Figure 4.4 Edge deformation tracking with differential detection method. (a) Illustration 

of cell edge changes during the granule release, measured by differential detection method. 

Red and blue rectangles are the region of interest (ROI) for differential detection. (b) The 

optical tracking method was calibrated by shifting the ROI by different numbers of pixels 

from inside to outside of the cell in the direction perpendicular to the tangential line at the 

cell edge. (c) The differential intensity change during the ROI shifting, in which a linear 

region (dotted line marked) is used for membrane deformation calibration. (d) A typical 

calibration curve to determine the cell deformation from the differential image intensity.  
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4.4 Granule Release Measured by Tracking Cell Edge Deformation 

4.4.1 Temporal Evolution of Granule Release induced Cell Membrane Response 

To demonstrate the capability of measuring granule exocytosis with cell plasma 

membrane responses, the RBL-2H3 cells were labeled by FITC-dextran and the granule 

release was triggered by DNP binding to anti-DNP IgE on cell surface. The granule release 

induced cell edge membrane deformation was observed. One example is shown in Figure 

4.5a, a rapid expansion is detected from the edge where granule release occurred. The 

simultaneous recording of the fluorescence signal was used to validate the granule release 

process. As is shown in Figure 4.5b, an obvious fluorescence peak signal was detected at 

the same time period and location. Therefore, by tracking the cell edge deformation, we 

were able to monitor single granule release event in single cells. 

 

Figure 4.5 One example of granule release induced cell edge deformation and fluorescence 

signal. (a) Cell edge deformation over time at the location marked with the red and blue 

ROIs. (b) Fluorescence intensity change during the granule release event in (a) at the 

location marked with yellow dashed circle. 
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To further confirm that the observed membrane expansion was related to granule 

release, we examined membrane deformation at other locations along the cell edge during 

the granule release and found that the stepwise cell deformation occurred only near the 

location of the fluorescence emission (Figure 4.6). 

 

Figure 4.6 Cell edge deformation at different locations along the cell edge. (a) Phase 

contrast image of a RBL-2H3 cell. The blue and red rectangles are regions of interest (ROI) 

that mark the locations labeled by letter b, c, and d. (b-d) Cell edge movement at the 

locations marked by b, c and d, respectively. 

After the study of granule release events in different cells, two representative types 

of membrane deformation were observed. The first type exhibits a rapid expansion of the 

cell edge upon granule release followed by slow or little recovery. We refer this type of 

granule release to as Type 1. One such example shown in Figure 4.7a is a cell that expands 
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by ~18 nm over 0.125 s followed by small recovery at the location marked by a red arrow 

in the phase contrast images (Figure 4.7a1-a4). Figures a1-a4 are snapshots of the phase 

contrast images at time points marked by I, II, III and IV on the temporal profile of the cell 

deformation in Figure 4.7a. The cell deformation is too small to be visible in the phase 

contrast images, so the magnitude of the cell deformation determined by the differential 

tracking method is represented with a color scale overlaid on the phase contrast images 

(Figure 4.7a1-a4). The insets in Figure 4.7a1-a4 are zoom-in images of the cell deformation. 

To validate that the cell expansion in Type 1 is due to a granule release event, we 

compared the cell deformation images with the simultaneously recorded fluorescence 

images (Figure 4.7a and Figure 4.7b). The fluorescence images (after background 

subtraction) show a bright spot due to fluorescence emission at the location marked by a 

dashed circle (Figure 4.7b1-b4). The location of the observed fluorescence emission 

coincides with that of cell expansion, which confirms that the cell edge expansion is due 

to granule release. Unlike the stepwise cell expansion detected by the differential tracking 

method, the fluorescent emission shows a rapid increase followed by a rapid decrease 

during the granule release event, which are due to plasma membrane fusion (I), during 

fusion (II), and diffusion of fluorescein isothiocyanate–dextran (FITC-dextran) (III and IV, 

Figure 4.7b). 
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Figure 4.7 . Type 1 cell edge deformation. Granule releases measured by cell edge tracking 

and validated by fluorescence imaging, showing two representative types of cell edge 

deformation (a) Type 1 cell edge deformation over time at the location marked with the red 

arrows in the snapshots of phase contrast images at the time points marked by I, II, III and 

IV. Insets: zoom-in images of the cell edge deformation location. (b) Fluorescence intensity 

change during the granule release event in (a) at the location marked with yellow dashed 

circle and the fluorescent images at the time points marked by I, II, III, and IV (first frame 

subtracted out). Inset: fluorescence image of the cell, where the red dashed line marks the 

cell edge. The red arrows in a and the white arrows in b point to the location of granule 

release. 

The second type of cell deformation observed during granule release is pulse-like, 

a rapid expansion followed by a complete recovery. Figure 4.8 is the temporal profile of 

cell deformation of a such case, where I, II, III and IV mark different stages of the cell 
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expansion. The time duration is 0.020 s, much faster than the stepwise expansion in Type 

1. We refer this type of membrane deformation to Type 2. The location of the cell 

deformation is marked by a red arrow in the snapshots of the phase contrast images at the 

time points of I, II, III and IV. The simultaneously recorded fluorescence images during 

this granule release event shows an obvious bright spot near the cell deformation position 

(Figure 4.8b1-b4). The temporal profile of the fluorescence emission displays a sharp 

increase followed by a decrease, which is similar to that in Type 1. However, the 

fluorescence peak intensity is significantly lower than that in Type 1. We also tracked cell 

deformation along the entire cell edge and detect significant edge deformation near the 

fluorescence emission spot only. 

 

Figure 4.8 Type 2 cell edge deformation. Granule releases measured by cell edge tracking 

and validated by fluorescence imaging. (a) Type 2 cell edge deformation over time at the 

location marked by the red arrows in the snapshots of phase contrast images at the time 
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points marked by I, II, III and IV. Insets: zoom-in images of the cell edge deformation 

location. (b) Fluorescence intensity change during the granule release event in (a) at the 

location marked with yellow dashed circle and the fluorescent images at the time points 

marked by I, II, III, and IV (first frame subtracted out). Inset: fluorescence image of the 

cell and the cell edge is depicted by red dashed line. The red arrows in a and the white 

arrows in b point to the location of granule release. Scale bar: 10 µm. 

We analyzed 130 individual granule release events from the fluorescent signals in 

52 cells and found that 110 granule release events showed detectable edge deformation. 

The histogram distribution of the granule release induced membrane deformation is present 

in Figure 4.9. For the cells that show deformation during granule release, ~90% of them 

display Type 1 deformation and ~10% show Type 2 deformation. Type 1 cell deformation 

indicates an increase in the cell area that sustains after granule release, which is consistent 

with the typical stepwise capacitance responses.[159] We thus attribute Type 1 to a full 

fusion process, where a granule fuses into the cell membrane after releasing its chemical 

content. In contrast, Type 2 cell deformation shows only transient increase in the cell area 

and cell edge returns to the pre-granule release position quickly, similar as the capacitance 

flickers observed with patch-clamp techniques.[159] This type of membrane response to 

granule release is consistent with ‘kiss-and-run’ process, where the granule interacts with 

the cell membrane and release its content to the outside of the cell via a transient fusion 

pore while preserving granule integrity and then detach from the cell membrane. The 

fluorescent signal of Type 2 deformation is much smaller than Type 1 deformation, which 

is likely due to the partial release of granule in ‘kiss-and-run’ process.[160, 161] 
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Figure 4.9 The distribution of the membrane deformation magnitude induced by different 

granule release events (n=95). 

4.4.2 Localized Cell Membrane Deformation Due to Granule Release 

The cell edge tracking method provides spatial and temporal resolutions, which 

allowed us to reveal complex membrane responses and resolve multiple granule releases 

that took place close in time and location. We determined cell membrane deformation 

along the entire edge of a cell during a granule event (Figure 4.10a) and obtained both 

temporal (Figure 4.10b) and spatial (Figure 4.10c) profiles of the membrane response to a 

granule release event. To examine the correlation between the temporal and spatial 

evolution of the granule release event, we extracted a 2D temporal-spatial correlation map 

(Figure 4.10d).  

The cell shown in Figure 4.10 corresponds to the Type 1 cell deformation, where 

the color scale represents cell deformation magnitude. To examine the localized 
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distribution of the cell edge deformation upon granule release, the membrane deformation 

was extracted over time along an 8 µm-long cell edge (marked by arrows in Figure 4.10a). 

Figure 4.10b shows the cell edge membrane deformation at different locations along the 

localized edge. By plot cell deformation magnitude near the time point where the 

deformation is maximum, the spatial distribution of the granule release-induced membrane 

response is obtained (Figure 4.10c). Fitting the spatial distribution with a Gaussian function 

leads to a full width at half maximum (FWHM) of ~2 µm, which measures the spread of 

the cell deformation from the point of granule release. 2D temporal-spatial correlation of 

this granule release event reveals more complete information on the spatial distribution and 

temporal evolution of the cell deformation (Figure 4.10d). For example, it shows that 

maximum deformation shifts in location over time, indicating that the granule fusion 

induced membrane deformation propagates along the cell edge. From the slope of the line 

marked on Figure 4.10d, the membrane deformation propagation speed is about 5 µm/s. 

The propagation along the cell edge lasted for more than 0.5 s.   
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Figure 4.10 Temporal-spatial correlation between membrane edge deformation and 

granule of a cell with Type 1 release. (a) Phase contrast images of RBL-2H3 cell 

overlapped with corresponded edge movement. The color represents the amount of cell 

membrane deformation in nm. Red and blue arrows marked the localized edge area being 

analyzed. (b) The plasma membrane responses of different locations along the localized 

edge area marked red and blue arrows. (c) The cell membrane edge deformation amount 

along the localized edge area between the red and blue arrows. (d) 2D plot of cell edge 

movement with x axis in time, y axis in position. The region are between the cell edges 

indicated by the red and blue arrows. The color represents the cell edge change in nm. 

Figure 4.11 show the Type 2 cell deformation, where the color represents the local 

magnitude of the deformation. The cell deformation in this case appears to be more 

localized and decay rapidly over time. 2D temporal-spatial correlation (Figure 4.11d) of 
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this granule release shows a well-defined spot, indicating that the edge expansion is 

confined in both time and location. Also, there is little evidence of shift in the spot location, 

which means the cell deformation is localized at the place of granule release without 

propagating along the cell edge. 

 

Figure 4.11 Temporal-spatial correlation between membrane edge deformation and 

granule release of a cell with Type 2 release. (a) Phase contrast images of RBL-2H3 cell 

overlapped with corresponded edge movement. The color represents the amount of cell 

membrane deformation in nm. Red and blue arrows marked the localized edge area being 

analyzed. (b) The plasma membrane responses of different locations along the localized 

edge area marked red and blue arrows. (c) The cell membrane edge deformation amount 

along the localized edge area between the red and blue arrows. (d) 2D plot of cell edge 



105 

 

movement with x axis in time, y axis in position. The region are between the cell edges 

indicated by the red and blue arrows. The color represents the cell edge change in nm. 

Figure 4.12 show a complex situation, where two granule release events occur 

closely in both time and location, and thus may interact with each other. The color 

representation of the cell edge deformation (Figure 4.12a) reveals two bright (red) spots 

(inset is the zoom-in of these two spots), each corresponding to one release event. The 

spatial distribution of the membrane deformation along the cell edge reveals two peaks, 

each corresponds to one granule release (Figure 4.12c). The two-granule release events 

decay over time slowly without propagation along the cell edge as shown in the 2D 

temporal-spatial correlation (Figure 4.12d). The 2D temporal-spatial correlation also 

shows that one granule release event (marked by a black arrow) occurs ~0.1 s earlier than 

the second one (marked by a white arrow), and the two release event induced membrane 

deformation interact with each other. 
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Figure 4.12 Temporal-spatial correlation between membrane edge deformation and 

granule release of a cell with complex release. (a) Phase contrast images of RBL-2H3 cell 

overlapped with corresponded edge movement. The color represents the amount of cell 

membrane deformation in nm. Red and blue arrows marked the localized edge area being 

analyzed. (b) The plasma membrane responses of different locations along the localized 

edge area marked red and blue arrows. (c) The cell membrane edge deformation amount 

along the localized edge area between the red and blue arrows. (d) 2D plot of cell edge 

movement with x axis in time, y axis in position. The region are between the cell edges 

indicated by the red and blue arrows. The color represents the cell edge change in nm. 

Other examples of complex granule releases are given in Figure 4.13. These 

complex granule releases are resolved because of the spatial and temporal resolutions of 

the present label-free optical detection method.  
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Figure 4.13 Cell edge responses upon complex granule release. (a) Temporal-spatial 

correlation mapping of two stepwise granule releases happened close in time at the same 

location. (b) Temporal-spatial correlation mapping of two pulse-like granule releases 

happened in series at the same location. (c) Temporal-spatial correlation mapping of four 

granule releases happened close in both time and location. 

The observed cell expansion during granule release is consistent with the 

capacitance measurement, which detects cell surface area increases associated with the 

fusion of granules with the cell membrane[162]. The cell expansion is expected for a full 

fusion process of granules (Type 1)[163, 164], where a secretory granule docks onto the 

plasma membrane of the cell, forms a fusion pore and becomes fully incorporated with the 

cell membrane after releasing chemical contents in the granule to the extracellular medium. 

The incorporation of the granule into the cell membrane increase the area and detected as 

an expansion of cell edge. Type 2 cell deformation is a ‘kiss-and-run’ process, it is 

reasonable to expect a temporary cell expansion followed by recovery of the cell edge. 

4.4.3 The Propagation of Granule Release induced Membrane Deformation 

The simultaneous recording of phase contrast and fluorescent images allows us to 

examine the temporal relation between the cell membrane deformation and fluorescence 
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signals. Figure 4.14 shows cell membrane deformations and the corresponding 

fluorescence signal of four representative cells. All the cells belong to Type 1, stepwise 

deformation (Figure 4.14a-d). The location of fluorescence emission in each case is in close 

proximity with the location of cell edge deformation (Figure 4.14e), however, there is a 

time delay between the cell deformation and fluorescence emission. As shown in Figure 

4.14a to Figure 4.14d, the fluorescence peaks are always ahead of the membrane expansion 

by an amount of time. And this temporal delay is proportional to the distance between the 

fluorescence emission spot and the deformed cell edge, which indicates the propagation of 

the membrane deformation from the location of granule release to the cell edge (Figure 

4.16b).  
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Figure 4.14 Cell edge deformation and corresponded fluorescence signal on different cells. 

(a-d) The cell edge movements and corresponded fluorescence signals caused by granule 

release from different RBL-2H3 cells. The corresponded phase contrast and fluorescence 

images are shown in e/i, f/j, g/k, and h/l, respectively. The red arrows in e-h indicate the 

locations of the edge movement plotted in a-d respectively. (e-h) Phase contrast images of 

RBL-2H3 cells overlap with corresponded local edge movement. The color represents the 



110 

 

amount of cell membrane edge deformation at different locations in nm. (i-l) Fluorescence 

images of RBL-2H3 cells overlap with corresponded local edge movement. The color 

represents the amount of cell membrane edge deformation in nm. The granule release 

location is pointed out by black arrows in i-l. 

To further validate the propagation of the granule release induced membrane 

deformation, we analyzed the membrane responses upon single granule release along the 

whole cell surface. With the 2.5 ms temporal resolution, we were able to capture the fast 

response of the cell membrane to each granule exocytosis. Figure 4.15 shows the 

membrane responses of whole cell surface to four granule release events. When granule 

exocytosis happens, the cell membrane deformed quickly, showing pore-like spots on cell 

surface, and propagates away from the releasing point (Figure 4.15a). By coloring the 

deformation magnitude of the cell surface during granule release event (Figure 4.15b), we 

could clearly see the spatial propagation of membrane deformation induced by each 

granule release. By plotting the deformation along the propagation path (Figure 4.15 c-f), 

we see the wave-like deformation within about 3 µm along the cell surface. Most of the 

membrane deformation propagates mainly in one direction to the cell edge. 
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Figure 4.15 Spatial propagation of the granule release induced membrane deformation. (a) 

The cell membrane response caused by four granule release events in RBL-2H3 cells. The 

black spots correspond to the granule release positions. (b) The colormap of the cell 

membrane deformation upon four granule release. The white arrows marked the 

propagation path of each granule release. (c-f) The propagation plots of the membrane 

deformation along the propagation path marked in b. 

By correlating the propagation distance and the time delay, we were able to 

calculate the propagation speed of the membrane deformation along the cell surface in each 

cell. The propagation distance of each granule release is measured between the center of 

the fluorescence emission spot and the maximum cell edge expansion, and the calculated 

propagation speed distribution is shown in Figure 4.16a, which shows that the speed varies 

from cell to cell. The average speed is about 5.2 ± 1.8 µm/s (n=24), which is consistent 

with membrane shape mediated wave propagation speed [167, 168].  
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Figure 4.16 Propagation of granule release-induced membrane deformation on cell surface. 

(a) The histogram distribution of the propagation speed of granule-release induced 

membrane deformation of different cells. The average speed is 5.2 µm/s, and the standard 

deviation is 1.8 µm/s (n=24). (b) Schematic illustration of the membrane deformation 

propagation from the place where the granule release occurs to the cell edge. 

4.5 Conclusion 

In this chapter, we demonstrated here a label-free optical method to detect single 

granule release events in single cells by tracking the cell edge deformation. With the 

combination of phase contrast imaging and the differential optical tracking method, we 

have tracked the plasma membrane response to single granule exocytosis in real time with 

sub-nm precision and ms temporal resolution. Using this method, we have detected the 

sharp membrane expansion upon each granule releases in single cells and revealed two 

types of membrane deformation, corresponding to full fusion and ‘kiss-and-run’ exocytosis 

processes. The high spatial and temporal resolution of the method allows to resolve 

complex granule release patterns, including multiple granules release events that occur 

closely in both time and position. A time delay between fluorescence emission and cell 

edge deformation is detected and found to be proportional to the distance between granule 
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release location and the cell edge, indicating propagation of the membrane deformation 

along cell surface with an average speed of 5.2 µm/s. This work presents a simple and 

label-free method to monitor single granule release events in single cells. The method 

tracks cell membrane deformation, which is not directly accessible by the traditional 

fluorescence and electrochemical measurements, and its high spatial and temporal 

resolutions offer new insights into the important processes of exocytosis. This method is 

not limited to the cell types and is promising for label free study of synaptic granule release. 
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CHAPTER 5 CONCLUSION AND PERSPECTIVE 

In this dissertation, we have developed three label-free platforms for the detection 

of molecular interaction of membrane protein on cell surface. The imaging capability of 

these optical imaging based platforms enable the mapping of individual cell responses for 

the study of cell-cell heterogeneity. The real time detection capability provides quantitative 

information on the both large and small molecular interaction kinetics and granule-

membrane interaction kinetics.   

In chapter two, we introduced a SPRi based method for the detection of the binding 

interactions between membrane protein and their specific antibody on cell surface. Using 

this method, EGFR receptor and the anti-EGFR binding process was monitored and the 

binding kinetics were derived. Both cell-cell variation and cell line-cell line variation were 

evaluated. SPRi platform is a simple way to quantify the molecular interaction on different 

samples. It has potential to be used for the detection of molecular interaction in thin tissue 

slice, which can map the receptor distribution on tissue level to distinguish the healthy cells 

from disease cells, and has the potential to evaluate the pharmacokinetics for drug 

discovery. 

The third chapter described a label-free optical detection method coupled with a 

microfluidic device to measure the kinetics of both large and small ligands binding with 

membrane protein receptors on whole cells. Using this method, we are able to detect the 

molecular binding interaction of both large and small molecules with different types of 

membrane proteins. A thermodynamic model was developed to describe this method and 

various validations were performed to correlate the signal responses with different 
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parameters, including cell membrane mechanics, membrane protein density and molecular 

interaction kinetics. With this method, we can monitor various cellular responses related 

with membrane deformation, including cell adhesion, cell apoptosis and cell toxicity. 

In chapter four, we have demonstrated that by tracking the cell edge membrane 

deformation, single granule release in single cells can be monitored. Using this method, we 

can measure the localized membrane deformation distribution along the cell edge and the 

temporal-spatial distribution of the membrane responses during granule release. By 

correlate the granule release induced fluorescence signal and the cell edge deformation, we 

were able to quantify the speed of granule release induced membrane deformation on cell 

surface. This method provides a simple, label free way to monitor the exocytosis process, 

and has great potential for the detection of neuron transmitter release in neuron network. 
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