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ABSTRACT

This thesis consists of three projects employing complexity economics methods to

explore firm dynamics. The first is the Firm Ecosystem Model, which addresses the

institutional conditions of capital access and entrenched competitive advantage. Larger

firms will be more competitive than smaller firms due to e�ciencies of scale, but the

persistence of larger firms is also supported institutionally through mechanisms such

as tax policy, capital access mechanisms and industry-favorable legislation. At the

same time, evidence suggests that small firms innovate more than larger firms, and

an aggressive firm-as-value perspective incentivizes early investment in new firms in an

attempt to capture that value. The Ecological Firm Model explores the e↵ects of the

di↵erences in innovation and investment patterns and persistence rates between large

and small firms.

The second project is the Structural Inertia Model, which is intended to build theory

around why larger firms may be less successful in capturing new marketshare than

smaller firms, as well as to advance fitness landscape methods. The model explores the

possibility that firms with larger scopes may be less e↵ective in mitigating the costs

of cooperation because conditions may arise that cause intrafirm conflicts. The model

is implemented on structured fitness landscapes derived using the maximal order of

interaction (NM) formulation and described using local optima networks (LONs), thus

integrating these novel techniques.

Finally, firm dynamics can serve as a proxy for the ease at which people can vol-

untarily enter into the legal cooperative agreements that constitute firms. The third

project, the Emergent Firm model, is an exploration of how this dynamic of voluntary

association may be a↵ected by di↵ering capital institutions, and explores the macroe-

conomic implications of the economies that emerge out of the various resulting firm

populations.
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Chapter 1

INTRODUCTION

The very nature of the economy is to some extent defined in terms of the kind

of firms that compose it, their size, the way in which they are established and

grow, their methods of doing business, and the relationships between them.

– Edith Penrose, The Theory of the Growth of the Firm, 1959

1.1 Contemporary Firm Dynamics

Recent work has highlighted some curious and concerning trends in US firm behavior for

both small and large firms. On the small side, evidence shows declining business dynamism

and a decrease in the formation and persistence of new firms (Hathaway and Litan 2014b;

Alon et al. 2018). New firms are entering the economy at a lower rate than they are exiting

the economy, while those firms that do enter do not typically persist beyond a handful of

years. Fewer firms are scaling up, and this trend is evident across industries as well as

across geographic regions (Hathaway and Litan 2014a).

Another multidecade trend is a↵ecting the other end of the firm spectrum. We see large

increases in profits for large firms that are not accompanied by the expected benefits rolling

across the entire economy, such as higher wages and lower prices (Economist 2016a). This

lack of dispersion of benefits doesn’t appear to be a matter of temporary periods of imperfect

competition, but rather a shift in entrepreneurial e↵orts from productive activity such as

innovation, toward unproductive activity such as rent-seeking (Baumol 1996; Furman and

Orszag 2015; Barkai 2016; Bessen 2016; Litan and Hathaway 2017). Incumbent firms are

using their market power to entrench competitive advantage and monopolistic positions

rather than to improve existing products and services and o↵er them at competitive prices.

In general, we see larger, established firms controlling more of the economic activity, at

the same time as there is a shift toward unproductive activity on the part of those same
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firms. This is troubling for a myriad of reasons, and I’ll briefly describe three. The first

is that econometric evidence suggests net gains in employment are to be found in medium

size firms (Haltiwanger, Jarmin, and Miranda 2013). Small, young firms tend to shed jobs

at roughly the same rate as they create them, and larger, established firms ultimately shed

jobs as they continue to cut productive activity. If small firms are not growing into medium

sized firms, the US economy may not be making employment gains.1 Second, econometric

evidence also suggests that younger, smaller firms serve as innovation engines (Acs and

Audretsch 1987; Hathaway and Litan 2014b). The degree of innovation determines cultural

progress in technology and practice, as well as in the variety of goods and services available.

If small firms are not entering the economy and larger firms are choosing not to step in and

perform innovation services, we could be running an innovation deficit. Which brings us to

the third issue, which is that there is an overall reduction in firm diversity whether measured

by structure, size, age or activity. Diversity within an ecosystem, provided it produces a

diversity in responses, promotes both stability and resilience (Peterson, Allen, and Holling

1998; Elmqvist et al. 2003; Gunderson 2008). A lack of appropriate response diversity

within a complex system such as an economy implies a brittle and fragile economy, one less

able to sustain shocks whether they arise from economic crashes, sociopolitical unrest or

climate change (Beinhocker 2006).

Why is the path to long-term viability obstructed such that smaller firms are not scaling

up as expected? What is causing incumbent firms to shift their focus away from producing

value and toward building monopolies? Are these issues a matter of institutional incentives,

or do they reflect some fundamental failing in our practice of capitalism?2 Are these trends

the cause or consequence of the larger problematic trend of increasing wealth inequality?

Significant e↵orts have been made toward unraveling this tangled skein. With regard to

the decline in firms scaling-up, Israel is experiencing a similar dynamic where there is a flurry

of startup activity but nearly all new firms are purchased by a handful of large, incumbent

1The quantity of jobs is not the only issue. Increased firm consolidation limits the variety of available
work, making the economy less able to meet the needs of a diverse and multi-interest workforce.

2Here and throughout this thesis we apply Douglass North’s (1991) definition of institution, meaning the
constraints that structure political, economic and social interaction, both formal and informal.
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firms rather than scaling up (Economist 2014). One simply needs to pay attention to

business news in the United States to recognize a similar story where successful tech startups

are purchased by Amazon, Microsoft or Google. In the case of Israel, the government is

attempting to solve the problem by limiting the extent to which an incumbent firm can

diversify. Another possible policy lever is to address the exploitative nature of venture

capital funding that claims a controlling ownership position and demands a five to ten-year

exit strategy, thus making such purchases attractive (Cumming 2008).

Capital behavior and the resulting incentives may be driving the disinterest in com-

petition as well. Recent studies draw a link between large institutional investors such as

BlackRock and Vanguard who hold ownership in multiple companies within the same indus-

try and decreased competition in those industries (Azar, Schmalz, and Tecu 2018). These

institutional investors use subtle, quasilegal methods to incentivize companies toward ca-

balistic behavior such as price setting (Posner and Weyl 2018). Will institutional reforms

address these issues (Baumol and Strom 2007; Litan and Hathaway 2017) or do we need to

reform capitalism itself (Economist 2018)? Perhaps we should first better understand how

capitalist firms operate and respond to institutional conditions.

1.2 Why Complexity Studies of Firms?

Conventional economic theory has little to say about the actual workings of firms and

their relationships to each other and the institutional environment, a lack which has been

recognized even by economists. Oliver Hart in 1989 wrote an essay attempting to explain

this fact to contract lawyers:

Firms are the engines of growth of modern capitalistic economies, and so economists

must surely have fairly sophisticated views of how they behave. In fact, little

could be further from the truth. Most formal models of the firm are extremely

rudimentary, capable only of portraying hypothetical firms that bear little rela-

tion to the complex organizations we see in the world. (Hart 1989)
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The need for a more informative economic treatment of firms is again described almost ten

years later by Harold Demsetz:

Within the [neoclassical] model there is a hypothetical construct called the firm.

This construct consists of a single decision criterion and an ability to get in-

formation from an external world called the market. The market information

determines the behavior of the so called firm. None of the problems of real firms

can find a home within this special construct. (Demsetz 1997)

Economic historian Alfred Chandler came to the conclusion that meaningful economic the-

ories about firms must be ecological in nature (Chandler 1992). In Scope and Scale, he

provides an illustrative example of how this ecological perspective can be meaningfully ap-

plied to understanding firm dynamics and the resultant economy. Chandler describes the

emergence of the management-oriented organizational structure (known as M-form) as a

result of the confluence of technological advances in communication and transportation and

existing cultural institutions. Advances in communication and technology provided the

opportunity for economies of scale in production provided the inputs and outputs could

be adequately coordinated. In the United States, with its cultural aversion to cartels and

focus on competition, this resulted in the M-form corporation funded by publicly traded

stock, and these corporations were incentivized to consolidate with competitors. Germany,

on the other hand, created credit banks instead of a stock exchange, and allowed for coop-

eration between firms such that there was no incentive for mergers. The same technological

advances manifested di↵erent organizational structures in Germany and the United States

based on the institutional conditions in both countries (Chandler 1990). More importantly,

the United States chose to fund large enterprises such as railroad construction through a

stock market, while Germany opted for the formation of capital banks, which did not con-

fer ownership rights to the firm. The stock market creates incentives to ensure that firms

persist because the American firm came to be considered a store of value. This persistence

architecture comes at the expense of creative destruction and innovation and is a significant

factor in how people managing firms decide to form, grow, consolidate and abandon these
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structures. This narrative could provide insights into why noncompetitive behavior is cur-

rently tolerated, perhaps by considering the de facto power institutional investors exercise

over regulatory bodies (Acemoglu and Robinson 2006).

Ecological perspectives on firm dynamics are not new, having been advocated by Thorstein

Veblen as early as 1898 (Veblen 1898), and applied to institutional and organizational re-

lationships (Hannan and Freeman 1993), descriptions of industry dynamics (Moore 1993),

finance (May, Levin, and Sugihara 2008), innovation (Durst and Poutanen 2013; Auerswald

and Dani 2017) and the economy as a whole (Beinhocker 2006). An ecosystem is an in-

stance of a complex adaptive system involving the interdependence between many actors

and a contextual environment, where the actors and environment co-evolve. Applied to an

economy, the actors are firms, governments and consumers, and the environment includes

both the institutional context and the physical environment in which the actors perform

their activity. Therefore moving from an ecosystem understanding of firm dynamics to a

complex systems understanding is merely a shift in label (Ritala and Almpanopoulou 2017).

Complex adaptive systems science implies a set of quantitative methods such as agent-

based modeling, dynamical modeling, network analytics and machine learning, which adds

rigor and clarity to qualitative descriptions. The nascent field of computational economics

supports interdisciplinary e↵orts to address complex economic questions via complexity sci-

ence methods. In response to the continued calls for reimagining the “compendium of dead

ideas” (Economist 2016b) that broadly describe the canonical theories of firm dynamics,

this thesis continues to extend the application of complexity science methods to treat firm

dynamics and the resulting economy “not as a system in equilibrium, but as one in motion,

perpetually constructing itself anew” (Arthur 1999). The intent is to contribute to a more

complete understanding of how firms respond to aspects of the institutional environment in

order to better inform e↵orts toward evolving an economy that is progressive, creative and

just.
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1.3 The Projects

This thesis consists of three projects employing complexity economics methods to explore

firm dynamics. The first is the Firm Ecosystem Model, which addresses the institutional

conditions of capital access and entrenched competitive advantage. Larger firms will be

more competitive than smaller firms because of the fact of e�ciencies of scale, but the

persistence of larger firms is supported institutionally through mechanisms such as tax

policy, capital access mechanisms and industry-favorable legislation. At the same time,

evidence suggests that small firms innovate more than larger firms, and an aggressive firm-

as-value perspective incentivizes early investment in new firms in an attempt to capture

that value. The Ecological Firm Model explores the e↵ects of the di↵erences in innovation

and investment patterns and persistence rates between large and small firms.

The second project is the Structural Inertia Model, which is intended to build theory

around why larger firms may be less successful in capturing new marketshare than smaller

firms, as well as to advance fitness landscape methods. The model explores the possibility

that firms with larger scopes may be less e↵ective is mitigating the costs of cooperation

because conditions may arise that cause intrafirm conflicts. The model is implemented

on structured fitness landscapes derived using the maximal order of interaction (NM)

formulation and described using local optima networks (LONs), thus integrating these novel

techniques.

Finally, firm dynamics can serve as a proxy for the ease at which people can voluntarily

enter into the legal cooperative agreements that constitute firms. The third project, the

Emergent Firm Model, is an exploration of how this dynamic of voluntary association may

be a↵ected by di↵ering capital institutions, and explores the macroeconomic implications

of the economies that emerge out of the various resulting firm populations.

1.3.1 The Firm Ecosystem Model

The Firm Ecosystem Model is a dynamical model based on the empirical finding that

firm characteristics, such as the tendency to innovate and competitive advantages, vary
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according to firm size. Firm dynamics leading to various population distributions are con-

sidered as a competition-colonization scenario in a spatially defined market, where firms of

di↵ering sizes are treated as separate species with di↵erent competition and colonization

characteristics. Smaller firms, given adequate investment funds, are able to colonize avail-

able space more quickly than larger firms, and larger firms are assumed to have stronger

competition characteristics and are able to outcompete smaller firms for occupied space.

With startup and mortality parameters determined empirically, firm populations reach equi-

libriums dependent on the values of the capital investment parameters. The model predic-

tions provide a good qualitative fit to empirical data from the Business Dynamics Statistics

database. Finally, we explore how alternative mortality or investment conditions a↵ect the

firm size distributions.

1.3.2 The Structural Inertia Model

The Structural Inertial Model (SIM) is a demonstration model that showcases the power

of combining two recent developments in fitness landscapes. We first introduce the two

innovations: the NM parametric formulation of fitness landscapes, and the LON mapping

of landscapes. The maximal order of interaction specification of a landscape (known as

NM) greatly simplifies the landscape computational requirements as well as provides a

straightforward and transparent method of defining structure within a landscape. The local

optima network (LON) mapping of a landscape provides insights into landscape structure as

well as actual searchability metrics that allow for relevant comparisons between landscapes.

By combining these two innovations, we can easily structure landscapes and then describe

how this structure a↵ects such a landscape’s searchability characteristics. We demonstrate

that these searchability characteristics are di↵erent for structured and random landscapes,

and furthermore that these characteristics actually represent di↵erences in ease of search

with a simple iterated search algorithm. Finally, we motivate and develop the SIM model

describing a possible driver for the dynamics behind structural inertia, which is the internal

and external constraints on an organization adopting change. We compare the improvement
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over a short time period between those firms with larger and smaller scopes, postulating

that firms with larger scope will be more inertial. The SIM model is build on a variety

of NM structured landscapes, and we employ LON measures to describe the comparative

landscape searchability. Thus the SIM combines both the NM and LON methods into a

theoretically meaningful demonstration model.

1.3.3 The Emergent Firm Model

The Emergent Firm (EF) model is an agent-based model that evolves firms through an

endogenous dynamic engine and captures the complexities of firm formation under capital

constraints. The EF model is a scaled extension of Axtell’s Endogenous Dynamics of Multi-

Agent Firms model (Axtell 1999; Axtell 2015; Axtell 2018). Firm formation and dissolution

are driven by agent preferences for income and variances in production characteristics.

Agents decide whether to stay with current employers, join another firm employing an

agent in their social network, or start their own firms based on a maximization of utility.

The EF model assumes employment changes incur costs for agents, and imposes a cash-

in-advance constraint on agents who wish to make a firm change. A universal credit-

creating lender supplies loans to agents who wish to make a change but lack the funds to

do so. The EF model therefore generates three scenarios for exploration: costless changes,

costly changes that must be paid in advance, and costly changes that can be paid via

borrowing. Firms are characterized as star subgraphs with owners as the central node

and employees as neighbors. The collection of these star graphs comprise the economy,

and the macroeconomic manifestations of microeconomic parameters can be explored by

a variety of metrics, including firm sizes distributions, mobility, wages, debt, wealth and

productivity. Simulations with the parameters described in this paper demonstrate that

with a cash-in-advance constraint and a universal credit-creating lender, mobility, wages and

productivity are all lower than without costs or lending. In addition, with a positive lending

rate, aggregate loan values are super-linear in time, net wealth is increasingly negative and

wealth inequality manifests.
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Chapter 2

THE FIRM ECOSYSTEM MODEL1

2.1 Introduction

Firms are the medium through which individuals participate in the productive aspect of

an economy, and in aggregate compose the domain of business that is one of the three pillars

of macroeconomic theory. Despite the central role in a myriad of economic questions, an

individual firm is classically modeled as a black box that essentially serves as a vehicle for a

production function. This formulation is unsatisfying to anyone interested in understanding

the macroeconomic implications of firm dynamics where heterogeneity in firm characteristics

is important, firms interact with each other and dynamics are endogenous.

Firm dynamics determine the relative proportions of di↵erent size firm populations,

and these proportions are linked to macroeconomic questions, such as what types of firms

provide the most employment (Birch 1981; Haltiwanger, Jarmin, and Miranda 2013), which

types innovate (Acs and Audretsch 1987; Hathaway and Litan 2014b) and whether a large

variety of firm types promotes social well-being (Hannan and Freeman 1993). Understanding

the drivers of firm dynamics is therefore of importance not only to academics but also to

management professionals and policy makers.

Early models exploring firm dynamics focused on empirical firm size distributions and

the equations that described them. In 1931, Robert Gibrat examined firm plant sizes across

France and derived a logarithmic relationship between firm population and size where firm

growth was in proportion to its size. This became popularly known as Gibrat’s Law of

Proportional E↵ect. Later work built on this law and produced variants that modified

birth, growth and mortality parameters (Kalecki 1945; Simon and Bonini 1958; Mansfield

1962). The Gibrat distribution and its variants fit the larger end of the firm size spectrum

well but failed to adequately predict the distribution of small firm sizes, as demonstrated

1Many thanks to Adam Lampert for guidance with model development.
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in Figure 2.1 where the Gibrat distribution is mapped against empirical firm size data

from the Business Dynamics Statistics (BDS) database. The BDS dataset is an aggregated

longitudinal dataset with complete representation across all firm size categories.2 Firm sizes

are organized into 12 categories based on numbers of employees: 1 to 4, 5 to 9, 10 to 19,

20 to 49, 50 to 99, 100 to 249, 250 to 499, 500 to 999, 1000 to 2499, 2500 to 4999, 5000 to

9999 and 10000+.

BDS
Zipf
Gibrat

Figure 2.1: BDS Statistics for Average Size

Business Dynamics Database (BDS) statistics for average size distribution averaged over all indus-
tries and all years from 1977 to 2014 is described by the solid line. The dashed line describes the
classic Gibrat distribution, and the dotted line the Zipf distribution.

Econometric work attempting to clarify these breakdowns in the Gibrat assumption

(Hall 1986; Dunne, Roberts, and Samuelson 1988) found statistical regularities in the em-

pirical data, namely that survival increases with size and growth decreases with increasing

size. Smaller firms fail more often and grow faster than larger firms. These results appear

to hold regardless of how size is defined, whether by output, plant size or employees (Sutton

1997; deWit 2005).

2The BDS database is explained in Appendix A and discussed extensively in Section 2.3.
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More recent size distribution work proposes alternative distributions such as the Zipf

(Axtell 2001; Bottazzi, Pirino, and Tamagni 2015), Rank (Podobnik et al. 2010), log-log

OLS (Di Giovanni, Levchenko, and Ranciere 2011) and Hill (Gabaix 2009). These distri-

butions are considered valid only above a minimum firm and don’t attempt to explain the

distributions at the smaller end of the size spectrum, in part due to data collection methods

that focus on larger firms. Our use of the BDS dataset with representation across all firm

sizes should mitigate this issue, as well as the fact that our main goal is not to seek a

statistical fit to the empirical data.

A more descriptive exploration of firm dynamics arises out of the management literature,

where populations of firms are considered in the context of industries and firm dynamics

considered as industry life cycles. This industry life cycle work identified regularities in

behavior within populations of various sized firms such as shakeouts, where a large number

of entrants falls to a small number of persistent firms, explained as the process of winnowing

excess capacity and settling on a minimum e�cient scale, as well as a positive correlation

between firm entry and exit rates within an industry, known as turbulence3 (Klepper and

Miller 1995; Klepper 1996; Klepper 1997; Haltiwanger, Jarmin, and Miranda 2013). This

industrial dynamics theory considers competition as monopolistic, an imperfect form of

competition as understood classically, whereby firm o↵erings are di↵erentiated and surviving

firms’ products and services address the needs of a particular niche. But there also exists

a heterogenous institutional4 competitive advantage enjoyed by established firms by way of

supply chain relationships, established brands and legal protections, which is not explicitly

addressed in these studies. These institutional advantages create barriers to entry for new

firms (Bain 1954; Stigler 1964; Caves and Porter 1977; Demsetz 1982).

Meanwhile, organizational ecologists viewed firm dynamics as determined by processes

of competition (Sleuwaegen and Goedhuys 1998). Hannan and Freeman (1977), in par-

ticular, considered questions of firm dynamics to be “fundamentally ecological in nature”.

3This turbulence was previously described by Joseph Schumpeter in 1942 as creative destruction.
4Here we employ Douglass North’s (1991) definition of an institution as any form of constraint that shapes

interactions, which include formal institutions such as laws and policies as well as informal institutions such
as cultural norms.
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Organizational ecologists paid considerable attention to the institutional setting in which

firms complete (Nugent and Nabli 1992; Hannan and Carroll 1992; Hannan and Freeman

1993). Firm growth and survival depend on the competitive characteristics of other firms

as well as the institutional settings that determine such factors as access to capital and

the nature of competitive advantage. Generally speaking, “if processes generating variation

and retention are present in a system and that system is subject to selection processes,

evolution will occur” (Aldrich 1999). In this view, firms are adaptive entities that respond,

according to their unique characteristics, to the environments in which they operate (Nelson

and Winter 1982; Beinhocker 2006; Ebeling and Feistel 2011). Firms that don’t adapt will

fail due to institutional and competitive selection pressures.5 Hannan and Freeman theo-

rized that firms don’t necessarily adapt to changing conditions due to the di�culties for

large established organizations to change quickly, a quality described as structural inertia

(Hannan and Freeman 1984).

Larger firms may enjoy institutional competitive advantage, but smaller firms are more

agile when it comes to adapting to new market opportunities because they are less inertial.

Small firms also tend to have less available capital than larger firms to pursue innovations,

but they also enjoy more attention from external investors, and the degree to which small

firms can take advantage of their agility depends on the availability of this external invest-

ment. Venture capital typically funds startup firms for five years, at which point investment

falls o↵ dramatically as investors turn their attention toward exit strategies and realizing

returns on that investment (Hall and Lerner 2010; Feld and Mendelson 2013; Gompers

and Lerner 2001).6 Venture capital chases startups because they have potential for higher

growth through innovation and market capture than incumbent firms.7

5A unique twist to modeling economic considerations through population ecology is that we have a great
deal of agency in determining the evolutionary selection pressures and responses in an economic ecosystem
(Jones and Breslin 2012).

6By investment we refer to money a firm attracts from outside sources for the development of new
products and services, and not exchanges of existing shares or money used as leverage to obtain operating
e�ciencies.

7Alternatively, venture capitalists can obtain a much larger ownership stake in startups than incumbent
firms for relatively little investment.
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Putting this ecological picture together with the observed size-specific characteristics

previously described, we could consider firms of various sizes as unique species with size-

specific behaviors and characteristics, all competing within an institutional context. The

outcome of these competitive dynamics produces a particular firm population distribution.

Specifically, larger firms have a stronger competitive advantage, both through economies of

scale and institutional barriers to entry, but are less able to adapt to changing environments

due to structural inertia. They have lower mortality and growth rates than smaller firms.

Smaller firms are better at adapting to change because they are less inertial, but the degree

to which they can innovate is dependent on external investment. In summary, a brief

inventory of the empirical regularities described gives us a list of seven stylized facts:

1. Firm survival increases with size (Dunne, Roberts, and Samuelson 1988)

2. Firm growth decreases with size (Hall 1986)

3. A new market will initially generate a large numbers of small firms that fail (shakeout)

(Klepper and Miller 1995)

4. When mortality increases, more firms enter the market (turbulence) (Klepper 1997)

5. Larger firms enjoy a competitive advantage over smaller firms (Demsetz 1982)

6. Smaller firms attract more outside investment than larger firms (Feld and Mendelson

2013)

7. Smaller firms are more agile than larger firms because they have less structural inertia

(Hannan and Freeman 1984)

The last two items are of particular interest, because taken together they suggest multiple

flavors of competition at play in firm dynamics: institutional competitive advantage in

established markets and agility in capturing new markets.

We postulate that smaller firms are particularly susceptible to institutional e↵ects, such

as barriers to entry and investment incentives, and a model that directly addresses these
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realities will provide useful insights into firm dynamics, better explain how those dynamics

a↵ect the distribution of firms at the small end of the spectrum, and serve as a policy

experiment tool to explore how modifications to the institutional context that modulate the

selection pressures may a↵ect firm size distributions. Given the emphasis on competition in

the standard narratives of firm dynamics, we believe ecological modeling of firm dynamics is

underutilized. Is there an ecological analogy that would apply to the multilevel competition

description of firm population dynamics described above?

We believe we have found such an analogy in David Tilman’s (1994) spatially structured

competition-colonization dynamics. Tilman describes a Wisconsin prairie populated by

di↵erent species of grass. One particular species has superior nitrogen-fixing ability, so

tends to overrun areas populated by species with lesser ability. But all grass organisms

have a mortality rate so regions of empty patches are continuously emerging, which can

be populated by lesser grass species. The population dynamics on the prairie therefore

consist of empty patches colonized by lesser fixating species that were eventually overrun

by superior fixating species, while new space regularly becomes available for colonization

through the death of individual plants.

In the context of firm dynamics, a market could be analogous to a prairie, and larger

firms with superior competitive advantage will take over the marketshare populated by

smaller firms. Meanwhile, smaller firms will populate new marketshare (empty prairie in

our analogy) before larger species because they are more agile. The degree to which they

can populate empty space is governed by investment. Large firms excel at competition,

while small firms excel at colonization, and we make use of the distinction between the

types of competitive dynamics identified previously.

The remainder of this paper will further develop the competition-colonization firm dy-

namics model with appropriate modifications. We will then propose a parameterization

scheme based on empirical US firm size data and demonstrate that our model fit is superior

in the small firm region than other distribution fits. We will then explore how understand-
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ing the endogenous firm dynamics allows us to conduct meaningful policy experiments by

altering the institutional parameters.

2.2 The Model

In building the model, we assume that firms of di↵ering sizes have di↵erent competi-

tion, mortality and investment profiles. Firms of various sizes compete over marketshare,

conceived as a spatial entity and henceforth referred to as marketspace, and are considered

analogous to di↵erent species competing over any bounded resource, such as prairie grasses

competing for space in a field (Tilman 1994).8 Competition describes firms vying for space

in populated marketspace, and di↵erences in competitive ability are decided by disparities

in economies of scale and barriers to entry. Colonization, on the other hand, describes firms

vying for empty marketspace by innovating to develop new o↵erings. Each size category of

firms is considered a species with di↵erent e↵ective competition and colonization charac-

teristics, where size is defined by number of employees. However, firms are not completely

analogous to species of grass because a firm of a given size can either grow or contract

into a firm of another size. We account for this additional dynamic by allowing for a given

size-species to mutate into an adjacent size-species.

8There are myriad reasons for firms to fail, and in this analogy we consider failures as resulting from
changing market conditions, therefore colonization implies innovation to address these new conditions.
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3) Gains or losses in market 
share prompt increases or 

decreases in firm size.

5) As firms grow larger, more 
market share is required to 

prompt size increase.

2) Firms’ market share 
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4) As firms grow larger, more 
market share comes from existing 

markets than new markets.
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6) Firms fail and release market 
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Figure 2.2: Schematic of the Model Dynamics

Firm populations for each size-species i are specified by µi. Larger firms will outper-

form smaller firms in acquiring occupied marketspace because of e�ciencies of scale and

institutional competitive advantage. Smaller firms will outperform larger firms in populat-

ing empty marketspace because they are more agile since they have less structural inertia;

however, the degree to which a small firm can take advantage of this agility is mitigated by

its available capital. All firms face a mortality rate, which decreases with size, so at every

time step a portion of firms will fail and their marketspace will become empty and available

for colonization.

The rate of change of marketspace that firms occupy in each size-species is the sum of the

marketspace change acquired through colonization and that acquired through competition,

minus the proportion of firms that fail due to mortality processes.

Empty marketspace is all the space not currently filled by firms, modeled as 1�
P

n

1 µj

where j indexes all the size species categories. Species colonize this empty space at a rate

proportional to their current population, µi, and an investment parameter ⌫i, and the
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colonized marketspace is represented as

µi⌫i

 
1�

nX

1

µj

!
. (2.1)

Larger firms win populated marketspace from smaller firms due to economies of scale,

so species will win marketspace from smaller species and lose marketspace to larger species.

This process is modeled as

µi

0

@
X

j<i

µj �
X

j>i

µj

1

A . (2.2)

The change in marketspace, si, for a given size-species i is therefore

si = µi⌫i
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nX

1

µj

!
+ µi
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X
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A�miµi. (2.3)

We can compare this competition-colonization firm dynamics model with the original

Tilman model, which was9

dpi

dt
= cipi

0

@1�
iX

j=1

pj

1

A�mipi �

0

@
i�1X

j=1

cjpjpi

1

A (2.4)

Aside from notational di↵erences (pi in the Tilman model is the population of species i

and ci is that species competitive value) we see that Equations 2.3 and 2.4 are structurally

similar, both consisting of a colonization term, a competition term and a mortality term.

The mortality terms are identical, and di↵erences in the remaining terms are due to the

specifics of modeling firm dynamics where competition and colonization are governed by

di↵erent parameters and firms grow or shrink into neighboring size-species.

In our model, mortality is modeled linearly and described by

mi = i
a + e

b (2.5)

9Equation 6 (Tilman 1994).

17



where a is the slope and b is the intercept. Investment is modeled as a logistic function with

three parameters, K, p and q, which respectively control the height, position and steepness

of the curve. This innovation investment curve describes the tendency of smaller firms to

innovate more than larger firms due to structural inertia, and the parameterization of the

curve describes the availability and conditions on external investment which makes small

firm innovation activity possible.

⌫i =
K

1 + e
i�p
q

. (2.6)

A detailed discussion of the parameterizations for m and ⌫ can be found in Appendices B.1

and B.2.

Growth and decline are considered to be instantaneous so any change in quantity of

marketspace for a size species will result in that quantity moving to an adjacent species

category, either a smaller or larger category depending on the sign of the change. Thus

any net change in the marketspace of a given size-species will come from firms of the

smaller category growing and firms from the larger category declining. In other words,

since firms of a given size-species can grow or decline into another size-species according

to changes in marketspace, any if the marketspace for a size-species increases or decreases,

that marketspace should be attributed to either the larger or smaller size-species.

According to our definition of size, as a firm grows it obtains more employees. Ultimately,

the model will need to describe a population distribution of size-species in order to compare

with empirical distributions, so we need to transform marketshare into a number of firms.

For example, consider x dollars of marketspace populated by small firms. If that same

x dollars were populated by larger firms, the number of larger firms would necessarily

be less than the number of smaller firms populating that marketspace. To resolve this

logical inconsistency, we assume a fixed proportional relationship between an employee

and marketshare, and then scale the marketshare transferred from growing or declining

size-species such that marketshare e↵ectively contracts as it moves up to larger firms and

expands as it moves down to smaller firms by a growth scaling factor, �. This growth scaling

allows us to speak of marketspace and number of firms synonymously.
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The growth scaling factor gamma is modeled as

� = g
� 1

N (2.7)

where N is the number of size-species categories. A discussion of the derivation and pa-

rameterization of � can be found in Appendix B.3, and is essentially describing a power law

between the number of employees and marketshare.

The total change in size-species population over time will involve competition-colonization

dynamics along with growth and decline dynamics. Therefore

dµi

dt
= �si�1✓(si�1)�

1

�
si+1✓(�si+1)� |si| (2.8)

where si is given by Equation 2.3 and ✓ is the step function defined by

✓(x) =

8
>><

>>:

1 for x > 0

0 for x  0.

. (2.9)

The boundary conditions for the largest and smallest firms size-species, i = [1, n], are

handled as exceptions. For i = 1, new firms occupy empty marketspace at a startup rate �

and this smallest species population also grows through declines in i = 2 species.

dµ1

dt
= �

 
1�

nX

1

µj

!
� 1

�
s2✓(�s2)� |s1|. (2.10)

The largest size category retains the species that otherwise would have grown into larger

species, as well as through growth in the n� 1 size species.

dµn

dt
= �sn�1✓(sn�1) + �sn✓(sn)� |sn|. (2.11)
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2.3 Results

The model in its full representation is analytically intractable,10 yet analysis is straight-

forward computationally using an Euler method. The model dynamics produce distributions

of either one, two or three peaks in the equilibrium population distribution, depending on

parameter value combinations for K, p, q, a, b, g, � and mi. Of particular importance is

the ratio between maximum investment K and startup rate �. Both ⌫ and � produce gains

related to empty space. Too high a value of � leaves too little space for other firms to obtain

investment gains. Too low a value of � with respect to mortality, mi, and investment, ⌫,

produces too few startups to allow for sustained growth, and the equilibrium state has all

firms in the smallest size category, a zero populations in larger categories.

The single peak occurs at either the first size category or in the size category just above

the inflection point of the investment curve, specified by p. Two peaks will occur at the

smallest size and the inflection size (p+1) for certain ratios of K and �, and the dynamics

are very sensitive to this ratio. In these scenarios, startup dynamics continually populate

the smallest size and investment encourages growth up to the inflection category p. The

growth dynamics slow down for larger firm sizes so the larger categories have small but

non-zero populations. Three peaks, in the first, last and inflection categories, manifest in

cases where the growth parameter � is greater than 1. This three peak parameterization

allows for a significant number of firms to grow through to the largest size category, but is

not consistent with the firms and marketspace paradigm described in Section 2.2.

We began our exploration with the model by recreating the observed distribution of US

firms. We modeled mortality, mi, as a negatively sloped line, with values parameterized

from the Business Dynamics Statistics (BDS) database. We also modeled investment, ⌫i, as

a logistic function with inflection point, p, and gradient, q, set to represent a steep drop at

the second size-species to mimic observed venture investment behavior, where small firms

10With a grossly simplified two-dimensional version of the model, neglecting growth dynamics, fixing four
out of six parameters and using only two firm sizes (the smaller being x, the larger y), we could demonstrate
1) a stable node at (0, 0) when mortality rate exceeded investment rate for both sizes, 2) a stable x-axis
with mx < ⌫x and my > ⌫y, 3) a stable y-axis if mx > ⌫xand my < ⌫y and 4) nonzero populations for x and
y which under some parameter conditions was a stable spiral, under others a linear center.
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are funded for short time periods. These parameterizations account for observations 1, 6 and

7 of our inventory, namely that survival increases with size and that the will to innovate is

higher for smaller firms. The growth scaling, �, is also parameterized from the BDS data.11

The BDS data gives a mean entry rate over the last thirty years as 10% of the existing

population each year. This metric is not directly applicable to the model since � multiplies

the empty space in order to determine the entry into the first size category. Therefore

using a � value of .1 would significantly underestimate the startup rate. Our intent is

to derive a baseline distribution that recreates the observed US firm size distributions in

order to explore how changes in competition and investment conditions may a↵ect that

distribution. We thus chose the reasonable value of .4 to represent 40% of empty space each

year populated by startups. As previously demonstrated, the ratio of � to K is critical to

model dynamics, and while model results are robust to changes in the absolute values of �

and K, they are less robust to changes in their ratio. We therefore chose a corresponding

value of K = 2.5 to represent the maximum investment over all small firms to be 2.5 times

the empty marketshare, thus suggesting anything greater than a 250% growth in firms

would provide a return on that investment, roughly corresponding to a firm of 7 employees

growing to a firm of 1750 employees, again a reasonable assumption. Similar K and � ratio

combinations yield similar results.

Figure 2.3 shows the resulting population distribution as a histogram for investment

parameterized by K = 2.5, p = 2 and q = .1, mortality parameterized by a = �1.8 and

b = �1.8, and with growth scaling factor � = .5 and the startup rate � = .4. Competitive

advantage due to economies of scale is built into the model dynamics as described by

Equation 2.2, accounting for observation 5, that larger firms enjoy a competitive advantage

over smaller firms.
11Details about this database and our use of it for the parameterization of m, ⌫ and � are explained in

Appendix B.
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Figure 2.3: Histogram of Equilibrium Firm Sizes

Investment is parameterized by K = 2.5, p = 2 and q = .1. Mortality is parameterized by a = �1.8
and b = �1.8. The growth scaling factor � = .5 and the startup rate � = .4.

Regardless of parameterization, the model’s equilibrium values are independent of start-

ing conditions so the same equilibrium distribution emerges regardless of the initial condi-

tions. Figure 2.4 demonstrates this by comparing the results of a simulation starting from

empty marketspace with a simulation starting with equal populations across all size-species.

We also see in the left hand plot Figure 2.4 the di↵erences in growth rates between firm

sizes, with smaller firms having steeper slopes than larger firms, thus accounting for obser-

vation 2 in our inventory, that of smaller firms having faster growth rates than larger firms.

We also see in the right hand plot the expected shakeout in small firm populations where

initially the population grows then falls, thus accounting for observation 3, shakeout.
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Figure 2.4: Evolution of Equilibrium State from Di↵erent Initial Conditions

The figure on the left shows the model results starting with all populations equal to zero, and the
figure on the right shows the results starting with equal populations. Investment is parameterized
by K = 2.5, p = 2 and q = .1. Mortality is parameterized by a = �1.8 and b = �1.8. The growth
scaling factor � = .5 and the startup rate � = .4.

Also of note is that the model populations do not add to one, suggesting that there is

always empty marketspace and opportunity for expansion and growth within the economic

ecosystem.

In Figure 2.5 we show the model results plotted against empirical data from the BDS

dataset. We also include the classic Gibrat and Zipf distributions for comparison. We see

that the model prediction qualitatively follows the shape of the empirical curve for smaller

firm sizes compared to the Gibrat or Zipf curves. Table 2.1 shows the results for Kolmogorov-

Smirnov tests comparing each theoretical distribution with the empirical distribution, and

though the Zipf distribution is a better fit than the Gibrat distribution, we see our model

fit is superior to that of the Zipf. Therefore, as postulated, competition and investment

dynamics could indeed be important drivers of firm size distributions at the lower end of

the spectrum.
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Table 2.1: Kolmogorov-Smirnov Test Results for Theoretical Fits to the Empirical Distribution.

Distribution D statistic p-value

model 0.25 0.869

Gibrat 0.667 0.008

Zipf 0.417 0.256

Model
BDS
Zipf
Gibrat

Figure 2.5: BDS Statistics for Average Size with Model Results

Business Dynamics Database (BDS) statistics for average size distribution averaged over all in-
dustries and all years from 1977 to 2014 is described by the blue line. The model-predicted size
distribution for the described parameter set is shown by the red line. The dashed line describes the
classic Gibrat distribution and the dotted line the Zipf distribution.

Despite the greatly improved fit in small firm sizes, the model predicts significantly

lower populations of the smallest size category than indicated by the data. A possible

explanation could be that an idiosyncrasy of American firm size distributions is the large

number of single-proprietorship firms. The average firm size in Germany is 700, while that

in the US is 12 (Hart 2008). These singleton firms form in response to institutional facts

such as tax benefits that accrue to firms as well as the legal protections such a designation

provides, and are not founded with an intent to grow, therefore do not fully participate in
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the described dynamics. The model results show that indeed both the predicted population

of smallest size firms is smaller than actually found in data, though the strength of this

finding is somewhat dependent on the choice of �.

Next we conduct some experiments with the model whereby we modify the selection

pressures by changing the mortality and investment parameters, singly and in combination

in order to explore how modifications in the institutional conditions controlling competi-

tive advantage and innovation investment a↵ect the distributions of smaller firms. We first

modified the mortality parameter to represent a reduction in the institutional competitive

advantage enjoyed by larger firms, meaning that more larger firms will fail. We then mod-

ified the external investment parameter such that investment is available to firms in small

to medium size categories, which represents a lengthening in the investment timelines for

venture capital. Next we combined both these modifications, and finally we combined both

modifications with a smoothing of the investment curve, which represents larger firms in-

novating more. Table 2.2 summarizes the population for each size category for the di↵erent

experimental parameter configurations.

To see how the dynamics change with an increase in mortality for larger firms, corre-

sponding to a lessening of competitive advantage, we increased the mortality rate across

larger size-species by flattening the slope of the mortality line, setting a = �.01, and pro-

duced the distribution described in Figure 2.6. This figure demonstrates that, compared

to the BDS parameterized fit, an increase in mortality rates does indeed result in an in-

crease in the population of the smallest size category, thus accounting for observation 4,

that turbulence increases firm entry. (Thus we have now accounted for all seven of the

size-specific firm observations in our inventory.) There is also a slight increase in the second

size category and decreases in the populations for the remaining size categories.
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Figure 2.6: Model Results for the Long-Run Equilibrium Size Distribution with Increased Mortality

Investment is parameterized by K = 2.5, p = 2 and q = .1. Mortality is parameterized by a = �.01
and b = �1.8. The growth scaling factor � = .5 and the startup rate � = .4.

If we increase the length of time a venture capital investment is made, then investment

would be available to intermediate firms sizes. If we e↵ect this change by moving the

inflection point of our investment logistic to p = 4 we obtain the equilibrium shown in

Figure 2.7. Notice the emergence of a second peak in the fifth size category. Compared to

the BDS parameterized fit, the populations decrease for the first four size categories and

increase for the remaining categories.
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Figure 2.7: Model Results for the Long-Run Equilibrium Size Distribution with Longer Term In-
vestment

Investment is parameterized by K = 2.5, p = 4 and q = .1. Mortality is parameterized by a = �1.8
and b = �1.8. The growth scaling factor � = .5 and the startup rate � = .4.

Modifying both mortality and investment results by a = �.01 and p = 4, we arrive at

the equilibrium shown in Figure 2.8. Now there is less of a decrease in the first four size

categories than with just an investment change.
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Figure 2.8: Model Results for the Long-Run Equilibrium Size Distribution with Both Increased
Mortality and Longer Term Investment

Investment is parameterized by K = 2.5, p = 4 and q = .1. Mortality is parameterized by a = �.01
and b = �1.8. The growth scaling factor � = .5 and the startup rate � = .4.

In Figure 2.8 we moved the inflection point of the investment curve, but left the invest-

ment curve steep, which means larger firms spend little investment funds on innovation.

We can smooth the investment curve so that the drop o↵ is more gradual, which represents

larger firms being more willing and able to innovate. Combining all three modification,

mortality slope and investment inflection and steepness changes, we obtain the equilibrium

given in Figure 2.9. With the smoothed curve, the middle peak is not as prominent and

size categories two, three, and eight through ten see slight population increases.
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Figure 2.9: Model Results for the Long-Run Equilibrium Size Distribution with Increased Mortality
and Longer-Term Investment with a Smooth Investment Curve

Investment is parameterized by K = 2.5, p = 4 and q = .5. Mortality is parameterized by a = �.01
and b = �1.8. The growth scaling factor � = .5 and the startup rate � = .4.
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Table 2.2: Population Values for Selected Model Configurations.

Size Category BDS fit Investment Mortality Both Smooth

1 0.3183 0.4002 0.2206 0.2425 0.2415

2 0.1324 0.1329 0.0783 0.0864 0.0934

3 0.1046 0.0982 0.0357 0.0389 0.0490

4 0.0369 0.0343 0.0297 0.0341 0.0320

5 0.0166 0.0154 0.0435 0.0611 0.0240

6 0.0079 0.0074 0.0181 0.0217 0.0168

7 0.0039 0.0036 0.0084 0.0098 0.0098

8 0.0019 0.0018 0.0041 0.0047 0.0051

9 0.0009 0.0009 0.0020 0.0023 0.0026

10 0.0005 0.0004 0.0010 0.0011 0.0013

11 0.0002 0.0002 0.0005 0.0006 0.0006

12 0.0002 0.0002 0.0005 0.0006 0.0006

In summary, Figure 2.10 shows all five model configurations together: the BDS parame-

terization with investment only in small firms with a sharp investment drop o↵, an increased

mortality rate for larger firms, increased investment for middle-size firms, both increased

mortality for larger firms and increased investment for smaller firms, and increased mortal-

ity and smoothed increase in investment. Note that the smoothest increase in middle-sized

firms emerges from the combination of parameter modifications for m, p and q. This sug-

gests that increasing available marketspace by decreasing the competitive advantage is not

enough on its own, and innovation investment by both small and large firms is also required

for a vibrant middle-size firm population.
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Figure 2.10: Comparison of Distributions for Selected Model Configurations.

Model predictions of firm-size population distributions for five di↵erent parameter scenarios: BDS
parameterization with small firm investment and sharp drop o↵, same investment with increased
mortality, same mortality with increased investment, with both increased mortality and investment,
and both increased investment and mortality with smoothed investment curve.

2.4 Discussion

Several model assumptions warrant specific consideration. We have modeled all startup

firms as populating the smallest size category, which is mostly accurate but not always true,

notably in the case of spin-o↵s. Also, real firms grow or contract in a sticky manner. Thus

the instantaneous growth assumption would not necessarily hold in the short term but are

reasonable over the long term. Finally, we have been using interchangeably size-specific and

age-specific characteristics, which are correlated but don’t always hold in specific instances
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(Haltiwanger, Jarmin, and Miranda 2013). For example, we have used investment cuto↵s

according to size, when actually the investment cuto↵ is determined by time, therefore a

function of age rather than size. Further model exploration could examine if and where

these size/age equivalency assumptions break down.

Because this model is dynamic and explanatory, it o↵ers an opportunity to explore

policy implications on firm-size distributions. For example, there is a noted decline in the

scale-up of young American firms (Hathaway and Litan 2014b). Yet the intermediate-aged

firms are also the biggest contributors to net employment growth, and it is suggested that

firms under ten years of age may require institutional support in order to persist into the

middle age ranges (Haltiwanger, Jarmin, and Miranda 2013). Given that this middle phase

of a firm life-cycle is vital to employment, how could this support be best implemented?

This model proposes three possible levers: longer-term venture investment, reducing

the e↵ects of institutional competitive advantage, and encouraging larger firms to innovate.

Venture capital exits could be curtailed such that investments extend over longer periods

of time than the typical five to ten year window. This doesn’t directly mitigate structural

inertia for older, larger firms, but it does supply investment for R&D and innovation to a

broader swath of more agile firms. This continued investment allows intermediate size firms

to participate more aggressively in colonization activity.

Creative destruction theoretically should ensure a failure rate for older, larger firms, but

there is evidence that mortality for larger firms is mitigated through institutional mecha-

nisms such as non-competitive consolidation and legislated industry protections, all of which

encourage the persistence of larger firms and construct barriers to entry for smaller firms.

If larger firms were to fail more often, more marketspace would become available for smaller

and even intermediate firms to populate.

Increasing turbulence could also incentivize larger firms to participate in colonization

activity. If the reward for seeking institutional competitive advantage were to diminish, and

firms were required to actively compete in order to survive, larger firms may be willing to

overcome structural inertia issues and innovate (Baumol 1996).
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In conclusion, we have shown that modeling heterogenous competition as an endogenous

driver of firm dynamics not only o↵ers a viable theoretical explanation for those dynamics,

but also provides an improved fit to empirical observations for US firm data. The model also

is demonstrably useful as a policy exploration tool to explore modifications to institutional

investment and competition conditions, suggesting that working the levers of competition

and investment could indeed alter distributions of firm sizes, but that they need to work in

conjunction with each other.
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Chapter 3

STRUCTURED FITNESS LANDSCAPES

3.1 A Brief History of Fitness Landscapes and the Firm

Evolutionary fitness landscapes were first proposed by Sewell Wright in 1932 as a topo-

logical map analogy to fitness values mapped to various combinations of genes. Organisms

were imagined to traverse this landscape through evolutionary processes that modified their

genetic strings, ending up on di↵erent peaks in the fitness terrain. Sixty-five years later,

Levinthal (1997) introduced a class of fitness landscapes, known as NK landscapes, into

the strategy domain to describe how di↵erent organizations adapt to selection pressures in

changing environments. The binary string now represents a firm’s strategy instead of a

genome with each bit a single decision component of that strategy. This strategy is mapped

to a performance payo↵ and the fitness landscape is imagined as the collection of all pos-

sible strategy strings, points on a multidimensional map, with values equal to the payo↵s

associated with those points.

Firms roam the landscape by modifying their strategy strings via di↵erent algorithms

such as random bit-flips, hill-climbing, imitation and numerous combinations thereof.
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Figure 3.1: Sewell Wright’s Evolutionary Fitness Landscape Diagram

Sewell Wright’s topological map depiction of an evolutionary fitness landscape from his 1932 paper,
“The roles of mutation, inbreeding, crossbreeding, and selection in evolution.”

The varying levels of decision interdependence is denoted by K, which denotes the

number of other decisions to which any given decision is connected. As K increases, so

does the landscape complexity, meaning that the global optimum is harder to find and

there are more local optima on which fitness-seeking firms could become stuck. Levinthal

demonstrated that organizations with a higher degree of complexity experienced higher

failure rates in changing environments.

Since Levinthal’s innovation, NK models have been used in a variety of strategy applica-

tions, notably by Rivkin (2000) to explore imitative search algorithms, Rivkin and Siggelkow

(2002) to explore organizations and decision making, Ethiraj and Levinthal (2004) exploring

modularity and innovation, Siggelkow and Rivkin (2005) again exploring optimal organiza-

tional designs for turbulent environments, Ethiraj (2008) again continuing with modularity

and innovation, and Marengo (2012) exploring agency and incentives.

Fitness landscapes provide a comprehensive exogenous fitness function that that allows

the researcher to focus on the results of various search algorithms and strategy structures,

as illustrated by this varied list of applications.1 However, fitness landscapes have fallen

1It is possible for fitness landscapes to be modified by the agents searching the landscape through niche
construction, in which case the landscape would become an endogenous model element. The landscapes we
describe in this paper are static and exogenous.
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out of favor as a tool to study firm and strategy questions. We think there are two primary

reasons for this loss of interest and one secondary reason.

First, NK landscapes as N -dimensional hypercubes are impossible to visualize and have

a level of complexity somewhat mysteriously defined as ruggedness, which is a description of

the qualitative degree of spikiness in a random walk, demonstrated in Figure 3.2. Rugged-

ness as a descriptor yields no information about the structure of the landscape, such as

how many optima there are or if some regions of a landscape are more rugged than others.

Yet fully understanding the results of search algorithms requires understanding something

about the structure of fitness landscapes (Van Cleve and Weissman 2015).

The second primary issue is that while search algorithms are innovative and plentiful,

the structure of NK landscapes remains limited, coarse and highly randomized. However,

most of the issues researchers care about, such as interactions across an organization, or

interactions between technologies in an industry, are not at all random and unstructured.

For example, some decisions (bit-flips) could have more impact than others for all firms,

or some set of decisions could be more tightly interconnected than others. Rivkin and

Siggelkow (2007) explore the consequences of a variety of patterns and find that a given K

could represent di↵erent levels of complexity if patterning is taken into account, and there-

fore something beyond the NK specification is required to address the need for structured

landscapes.2

Finally, the lesser issue is that constructing and searching NK landscapes are computa-

tionally expensive. For N = 20, not unusual for divided string algorithms, a 20 bit strategy

string yields 220 = 1, 048, 576 potential strategies, which certainly exceeds the requirements

for any imaginable theory of the firm question. One has the impression of wasted resources

and information. Furthermore, it is computationally di�cult to identify the maximum value

in the landscape, a useful metric for understanding the range of values as well as for any

normalization procedures (Ganco and Hoetker 2009).

2Rivkin and Sigglekow (2007) expand their use of K beyond its original definition, and match various
patterned landscapes through the metric N(K + 1) in order to include a variety of decision patterns found
in industry.
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Figure 3.2: Random Walks on N = 5 Landscapes with Increasing K

Fitness values for a random walk of a single firm along landscapes with di↵ering K values, demon-
strating increasing landscape complexity, evidenced by an increase in size and frequency of spikes,
or ruggedness, as the value of K increases.

Recent developments in fitness landscape methods o↵er solutions to these issues, de-

scribed in the following section. We will then combine these solutions and demonstrate how

the resulting method expands the frontier of possibilities for fitness landscapes and studies

of firms.

3.2 Recent Developments in Fitness Landscapes

3.2.1 Local Optima Networks

If we imagine a fitness landscape as a series of peaks and valleys, then each point on

the landscape is either a peak or in a basin of attraction for a peak. Every point on a

fitness landscape can be mapped to a local optima’s basin of attraction and the landscape

can therefore be considered the collection of these optima and their associated basins of

attraction. A firm that only accepts improved positions through single bit flips, known

as a simple hill-climbing or greedy acceptance search algorithm, will eventually land on

the local optima associated with its original position. Ochoa (2014) exploits this feature

to describe a fitness landscape as a network of connected basins of attraction, known as

a Local Optima Network (LON), where the nodes represent the optima and their basins,

the size of the nodes represent the number of strategies in that basin, and the node color
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represents the fitness value of the basin peaks. The edges in a LON are directed links with

weights describing the transition probability of moving from one basin to another via a

single random bit-flip.3

LONs distill the essential structure of a fitness landscape into a compact form. For

example, an N = 20 landscape with over a million location points may have only a few

hundred local optima, and the 20-dimensional hypercubic landscape can be visualized as a

meaningful 2D representation. The LON maps for the NK combinations in Figure 3.2 are

shown in Figure 3.3. Comparing the two representations, we see the degree to which ran-

dom walks fail to communicate landscape structure and the additional information readily

available in the network representation. Each landscape will be di↵erent due to the ran-

dom selection of coe�cients and interactions, but for these three specific landscapes we see

immediately that for N = 5,K = 0 there is a single optimum and all strategies fall in the

same basin of attraction. For N = 5,K = 2 we see that the 32 possible strategies are

arranged into five basins, the smallest basin corresponds to the highest fitness peak, and

the lower fitness peaks have the largest basins of attraction. For N = 5,K = 4 we see

seven basins of attraction, the optimum value has the second largest basin of attraction,

and lower fitness values have smaller basins. We also see that the probability of moving

into the global optima basin from the penultimate (and largest) basin with a random bit

flip is lower than that of moving to the 3rd or 4th ranked optimum.

3A class of fitness landscapes known as neutral landscapes consist of flat regions, or plateaus, such that
a bit-flip would change the location of the firm but not its fitness value. In the case of landscapes with
plateaus there may not be a clear basin of attraction. Verel et al. (2011) describe how neutral landscapes
can also be represented as a LON by modifying the definition of a basin of attraction.
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Figure 3.3: LON Maps Compared with Random Walks

Local optima network graphs for N = 5 and K = 0 (left), K = 2 (middle) and K = 4 (right).
In accordance with Ochoa (2014) the size of the nodes represents the size of the basins, and the
intensity of the blue color represents the relative value of that basin’s optimum. Red nodes represent
the global optima. Links between basins are weighted on the probability of a random bit flip moving
a searching agent from one basin to another. The insets show the random walk representations for
each of the landscapes.

More importantly, Ochoa (2014) identifies network measures that describe normally hid-

den characteristics of fitness landscapes, such as number and size of nodes, node strength,

path lengths, transitivity, disparity and community a�liation. This important paper con-

cludes the LON analysis of NK landscapes with a demonstration that the time for an agent

to find the global maximum on an NK landscape is indeed positively correlated with an

example measure, in this case the average shortest path length to the global optima on the

LON (Ochoa et al. 2014; Daolio et al. 2012).4 Not only do LONs allow us to visualize a

landscape, but their network measures also tell us something qualitative about the metrics

of a landscape’s searchability.

Thus LONs solve our first problem regarding the opacity of NK landscapes and allow

for a more complete understanding and description of these landscapes. We’ll come back

to them after we explore a solution to our second problem: the coarse and undi↵erentiated

nature of NK landscapes.

4The agent used an iterated local search algorithm where it first finds the local optima through single-bit
flips, then performs a two-bit flip perturbation and the process starts again until the agent reaches the global
optima. These search experiments were conducted on N = 18 and a range of K landscapes.
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3.2.2 NM Landscapes

Buzas and Dinitz (2013) reconceptualizedNK landscapes as parametric equations which

they originally termed generalized NK landscapes, and in subsequent work (Manukyan,

Eppstein, and Buzas 2014) renamed NM landscapes where M stands for maximum order

of interaction. The NM landscape formulation essentially allows the straightforward imple-

mentation of variable K values (Santana, Mendiburu, and Lozano 2015). An example will

clarify the distinction and demonstrate the possibilities opened up by the NM formulation.

With N = 5 and K = 1 and a “next plus one” neighbor linkage algorithm,5 the bits in

the strategy string could be linked as follows:


x1 x2 x3 x4 x5

�
(3.1)

The first order terms are called the main e↵ects and there are five of those, as well as

five second degree terms out of a maximum possible number of 10 combinations (5 choose

2). The maximum order of specification, M , is a vector describing the ordered list of the

numbers of terms for each degree, and in this case M =


5, 5

�
. To specify particular

interactions rather than five random second degree terms, we need additional information,

and we can specify this information by translating Equation 3.1 into the following parametric

equation that defines the strategy payo↵ ⇧, for the point on the landscape specified by the

coordinates (x1, x2, x3, x4, x5):

⇧ = ↵1x1+↵2x2+↵3x3+↵4x4+↵5x5+�1,3x1x3+�2,4x2x4+�3,5x3x5+�1,4x1x4+�2,5x2x5.

(3.2)

5Interaction terms for NK landscapes could be algorithmically specified, such as “link to next neighbor”
for K = 1, or randomly specified. Algorithmic and random specifications have been found to manifest similar
landscapes (Weinberger 1991). Algorithmic landscapes usually yield N distinct (K + 1)th order interaction
terms, one for each bit, but randomly generated interactions, “link to any other bit,” landscapes may involve
fewer distinct terms if duplicated terms are allowed.
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We still have five first degree terms and five second degree terms, but unlike the M vec-

tor specification we’ve now indicated the specific second degree interactions we want the

landscape to model.

The landscape described by the set of payo↵s determined by Equation 3.2 could also

be generated via a classic NK formulation by manually specifying an appropriate interac-

tion matrix. But the following linkage with three second degree and a single third degree

interaction, 
x1 x2 x3 x4 x5

�
(3.3)

represented generally by the maximal order vector as M =


5, 3, 1

�
, and specifically by

⇧ = ↵1x1+↵2x2+↵3x3+↵4x4+↵5x5+�1,2x1x2+�2,3x2x3+�1,2,3x1x2x3+�4,5x4x5, (3.4)

does not have a simple NK analog. While it is possible to pick and choose the specific

(K + 1)th order terms in an NK formulation by manually defining the interaction matrix,

the lower order interactions are only the subsets of the highest order interaction terms. In

Equation 3.4 the highest order interaction term is x1x2x3, so the only other allowed terms

would be x1x2, x1x3, x2x3 along with the first order terms x1, x2, x3. The NM formulation,

on the other hand, allows for the independent selection of the terms of each order.6

Manukyan et al. (2016) explicitly describe the gradual increase in ruggedness as the

number of parametric terms increases, thus allowing for finer graduations of complexity than

classicNK representations. Since anyNK landscape can be represented by a maximal order

of interaction vector, with structure in the interactions made explicit through the selection

of terms, the NM landscape algorithm encompasses all NK landscapes. Therefore, going

forward we will consider fitness landscapes in the NM formulation.

6While it is theoretically possible to construct any NM landscape through an NK formulation by gen-
erating a fully connected NK landscape with the highest possible value of K, and then zeroing out the
coe�cients for those terms one by one until you obtained the NM specification, one would be torturing
the original definition of K. Once the meaning of K is altered it ceases to become a relevant description of
complexity (Rivkin and Siggelkow 2007).
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Figure 3.4: NK Landscapes Are an Algorithmic Subset NM Landscapes

3.3 Structured Landscapes

The NM formulation provides a clear mechanism for structuring the relationships be-

tween bits with variable levels of interaction. Suppose a research question based on a six-bit

strategy string requires a strong linkage between the first three and the last three strategy

bits. 
x1 x2 x3 x4 x5 x6

�
(3.5)

This landscape is represented generally by the interaction vector M = [6, 6, 2] and specifi-

cally by the parametric payo↵

⇧ = ↵1x1 + ↵2x2 + ↵3x3 + ↵4x4 + ↵5x5 + ↵6x6 + �1,2x1x2 + �2,3x2x3 + �1,3x1x3+

�1,2,3x1x2x3 + �4,5x4x5 + �5,6x5x6 + �4,6x4x6 + �4,5,6x4x5x6. (3.6)

An unstructured version of the same degree of interaction would consist of six random

second degree combinations of the six bits and two random third degree combinations.7 The

following sections explore whether or not landscape structure makes a material di↵erence

to search results.
7There are

�
6
2

�
= 15 possible second degree interactions

�
6
3

�
= 20 and

�
6
3

�
= 20 possible third degree

interactions.
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3.3.1 Landscape Searchability Measures

To demonstrate that structuring a landscape produces meaningful e↵ects on search re-

sults, we constructed 20 pairs of structured and random landscapes for M = [6, 6, 2]. The

structured landscapes are specified by Equation 3.6 with specific combinations of bits and

20 di↵erent sets of random values for the ↵,� and � coe�cients. The unstructured coun-

terparts have the same 20 sets of coe�cient values, but random interaction terms. The

unstructured landscapes will have all six first order terms just as the structured landscapes,

but six randomly selected second order interaction terms and two randomly selected third

order interaction terms. Therefore, for each pair, the values of ↵,� and � are the same,

but the second and third order terms should be di↵erent. Thus we can generate 20 com-

parisons between a structured landscape and its degree equivalent random landscape, and

any di↵erences between the landscapes will be a consequence of the structuring.

But how are we going to tell whether landscapes are di↵erent or not? Here’s where

the network measures for LONs are indispensable. We identified network measures directly

related to the searchability of a landscape; number and size of basins, number of edges, and

the shortest paths to the optimum (Ochoa et al. 2014; Daolio et al. 2012). The number of

basins is the number of landscape optima and their size is the number of strategies that

fall within each optima’s basin of attraction. If a basin is large, it is di�cult to leave, and

numerous basins make the optimum harder to locate. The number of edges represent the

number of basins that are connected by a single bit-flip.8 The more edges, the easier it is

to move from one basin to another. The shortest path to optima is the least number of

bit-flips possible to move from the current position to the global optima, so a shorter path

describes an easier search.
8A single-bit flip is a hamming distance of 1.
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Figure 3.5: LON Maps for Pairs of Structured and Random N = 6,M = [6, 6, 2] with Identical
Coe�cients
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Figure 3.5 shows the LON graphs for all 20 pairs of landscapes. There is variation in

the structured landscapes because the coe�cients of the terms are random draws.9 The

unstructured landscapes have the same coe�cients as their structured counterparts, but

random terms of the given degrees. Table 3.1 shows the results of paired t-tests across the

20 landscape pairs for each of the network measures.

Table 3.1: Statistical Test Results for Comparisons of LON Network Statistics Between Random
and Structured Landscapes

measure means (S, R) statistic p-value test

number of basins 4.30, 2.85 2.5701 0.0187* Paired t-test

number of edges 14.4, 7.4 2.699 0.0142* Paired t-test

mean basin size 32, 32 -0.6352 0.5329 Paired t-test

variance in basin size .4, 1.6 16 1.218e-07**** F test

shortest path to optimum 0.1639, 0.1153 2.1586 0.0439* Paired t-test

Statistical test results for comparisons on LON network statistics between random and structured
N = 6,M = [6, 6, 2]. An S indicates a structured landscape and an R indicates a random landscape.
We used the paired T-test for most measures and an F-test for the variance measure.

We see that indeed, there are statistical di↵erences in the searchability measures be-

tween structured and unstructured landscapes, except for mean basin size. Figure 3.6

demonstrates that though the mean sizes are identical, the sizes are not distributed equally,

and Table 3.1 shows that the within-pair size variance for random landscapes is four times

that of structured landscapes. As mentioned in Section 3.2.1 di↵erences in these network

measures translate into meaningful di↵erences in search results, which we will demonstrate

next.
9The coe�cients in the NM formulation we adopted from Manyukan (2014) are randomly drawn from

e�|N (0,�)| with � = 10.
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Figure 3.6: Basin Sizes for Landscape Pairs

Jittered scatterplots of basin size values by landscape pair. Random landscapes are blue and struc-
tured landscapes are red.

3.3.2 Iterated Search Results on Random and Structured Landscapes

To verify that the di↵erences in searchability measures identified in Section 3.3.1 actually

describe di↵erences in search results, we placed a firm on each of the possible strategies in

the landscape and tracked the number of strategy changes it took for those firms to reach

the global optimum for each of the 20 structured-random landscape pairs described in

Section 3.3. We used the iterated search algorithm illustrated in Figure 3.7, a variant of the

algorithm employed by Daolio (2012). The algorithm consists of two parts, a greedy hill

climbing phase followed by a random multi-bit flip phase. These phases are repeated until

the firm has found the global optimum. Essentially, the first phase finds the local optimum

attached to the basin of attraction associated with the firm’s current position, and the next

phase is a jump from one basin to another with a higher optimum value.
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Figure 3.7: Iterated Search Algorithm

A firm on the structured landscape requires an average of 3.17 steps to find the global op-

timum, while a firm on the random variant will only require on average 2.59 steps. A paired

t-test reveals a statistically significant di↵erence in these means, with a p-value of 0.0359*.

As anticipated, the structured landscapes requires more search steps, corresponding to the

longer path length identified by the LON network statistics.

In Appendix 3.5 we demonstrate an application of the combined NM and LON method

by modeling structural inertia on a set of N = 20 structured and unstructured landscapes.

We again find that the search results on the structured landscape di↵er statistically and

materially from those on a random landscape.

3.4 Computational Issues

The computational gains from using a parametric (NM) landscape formulation are sig-

nificant. A non-parametric construction of an N = 20,K = 9 landscape requires storing and

manipulating a matrix consisting of 21,474,836,480 elements ((210)(20)⇥ 220)). This same

landscape formulated parametrically as an NM landscape requires two one-dimensional ar-
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rays of 5,451 elements each to identify the terms and coe�cients, and the 1,048,576 strategies

are binary representations of numeric values so don’t need to be stored.

More computational gains are obtained by structuring the landscapes. When using

randomly generated landscapes, a researcher will tend to ramp up the K value in order

to become comfortable that the landscape contains an appropriate number and degree

of interactions. Structured landscapes allow a researcher to specify where exactly those

interactions occur, therefore creating similarly interesting models with e↵ectively smaller

K values.10 In Appendix 3.5 we demonstrate a K-means clustering analysis to match

searchability measures across random and structured landscapes, and demonstrate that

a structured landscape with N = 20 and strategically placed fifth order interactions is

searchably more similar to a N = 20,K = 2 landscape than an N = 20,K = 5 landscape.

Lastly, if the value of the global optimum is required for landscape normalization, this

is trivially found in the NM formulation as the sum of all the coe�cients, as opposed to

finding the maximum of 2N strategy values, which is computationally intensive for large

values of N .

3.5 An Example: The Structural Inertia Model

The Structural Inertia Model (SIM) was created to test the theoretical concept of struc-

tural inertia by exploring tradeo↵s between the scope of a firm and its ability adopt new

strategies. The basic tension in evolutionary theory is adaption versus selection. To what

degree do species genetically adapt to an environment, and to what degree are poorly

adapted species removed through natural selection before they can adapt? Applying evolu-

tionary concepts to firm dynamics, in Evolutionary Theory of Economic Change, Nelson and

Winter suggest that firms evolve in order to adapt to changing environmental conditions,

and that adaptation is the key evolutionary consideration in firm dynamics (Nelson and

Winter 1982). Hannan and Freeman instead argue that firms don’t change rapidly enough

to adapt to changing environments, and that certain organizational forms are selected over

10Structured landscapes produce even more interesting models since they better represent the question
under consideration. See Appendix 3.5 for an example of this structuring.
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other forms, and thus selection pressures are the key consideration (Hannan and Freeman

1977). They define structural inertia as the “hierarchical layers that vary in their ability to

respond to change” and older firms are generally found to have more inertia than younger

firms. A firm with a large degree of structural inertia will be resistant to change and, there-

fore, less likely to adapt and more likely to fail due to selection pressures. The evidence is

less clear as to whether small firms are conversely more flexible than larger firms (Hannan

and Freeman 1984). The SIM explores this adaptation-selection dynamic by modeling firms

of varying degrees of scope, which directly represent varying degrees of structural inertia.

The SIM describes a firm as a collection of decisions that compose a strategy that is

organized into divisions, some of which are under the control of the firm, the remainder

of which are determined by the environment. Using N = 20 we specify a division as four

consecutive bits, thus each strategy is a collection of five four-bit divisions. Firms can

control one to five divisions and the number of divisions under a firm’s control is the firm’s

scope. If a firm has scope = 1, it controls only one division and the remaining bits are pulled

from an ambient string. These ambient bits could represent components not produced in

house that the firm purchases or activity it outsources. The firm’s fitness is determined by

its location on the landscape, described by all 20 bits. The SIM explores how a firm’s scope

a↵ects its overall improvement within a window of time.

3.5.1 The SIM Landscape

The SIM is built on an NM landscape structured such that each decision within a

division is fully connected to all the other decisions and groups of decisions within that

division, and only partially connected to decisions in other divisions. This structuring

describes the e↵ect of division scope more meaningfully than purely random bit connections.

As an illustration, the simplified case of N = 6 with fully connected 3-bit divisions and two

random second order linkages across divisions could look like


x1 x2 x3 x4 x5 x6.

�
(3.7)

49



We generated 10 instances each of a series of N = 20 random and structured landscapes

described in Table 3.2.

Table 3.2: Structural Inertia Model Landscape Descriptions

Name Class Description

N20M1p5 random all first order interaction terms and half of all second order terms, M = [20, 95]

N20M2 random all first and all second order terms, M = [20, 190]

N20M2p5 random all first order, second order and half of all third order terms, M = [20, 190, 570]

N20M3 random all first, second and third order terms, M = [20, 190, 1140]

N20D5inter2h structured fully connected divisions and half of all second order intradivision terms

N20D5inter2f structured fully connected divisions and all second order intradivision terms

N20D5inter2h3h structured fully connected divisions and half of all second and third order intradivision terms

N20D5inter2f3f structured fully connected divisions and all second and third order intradivision terms.

Names and descriptions for the four cases of each landscape class, random and structured. For
random landscapes, there are 20 possible first order terms, 190 possible second order terms and
1140 possible third order terms. For structured landscapes, there are 160 possible second order
intradivision terms and 640 possible third order intradivision terms.

3.5.2 Search Results

The SIM allows various search and evaluation algorithms, but for this study we used the

by firm search and the veto evaluation algorithm.11 Firms produce a single test strategy

each time step and all owned divisions must benefit in order for the firm to implement the

new strategy. If any in-scope division would experience a decrease in fitness value, the test

strategy will not be accepted. We ran 100 searches on each of 10 versions of the random

and structured landscapes described above for 28 steps. We assume firms have limited time

to make changes before they fail, and the 28 time steps correspond roughly to quarterly

changes over seven years.

11The full SIM functionality is described in Appendix E.
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Figure 3.8: Changes over Time by Scope and Landscape

Changes over time by scope over 28 time steps fitted over 100 runs on 10 di↵erent versions of
the landscape for by firm exploration with veto evaluation scenario. The top row are random
landscapes and the bottom row are structured landscapes.

In Figure 4.6 we see the number of changes, or accepted strategies, by scope over the

28 steps. Structural inertia would dictate that firms with smaller scope would make more

changes than firms with larger scope, which is the result we see over all landscapes in the

early stages. But the narrower the scope, the smaller the search space, so narrowly scoped

firms exhaust their search space sooner than more broadly scoped firms. Comparing the

top and bottom rows, we notice that random landscapes produce more overall strategy

changes than structured landscapes. There are fewer terms in the calculations for division
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performance for random landscapes than for structured landscapes, so it is more di�cult

to find a structured improvement than a random improvement.12
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Figure 3.9: Performance Improvement over Time by Scope and Landscape

Performance improvement over time by scope over 28 time steps fitted over 100 runs on 10 di↵erent
versions of the landscape for by firm exploration with veto evaluation scenario. The top row are
random landscapes and the bottom row are structured landscapes.

In Figure 3.9 we see the share of total industry improvement for firms of each scope over

the course of 28 steps. Again comparing the top and bottom rows, we see that structured

landscapes produce more variation in improvement between firms of di↵erent scope than

12For a random landscape with specification M = [20, 190] a single division’s performance consists of
ten intradivision terms (four first order and six second order) and 64 second order interdivision terms. A
similar structured landscape with fully connected divisions and all second order interdivision connections
(N20D5inter2f) involves the same second order interdivision terms but has a total of 15 interdivision terms
(one first order, six second order, four third order and one fourth order).
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random landscapes. As the number of parametric terms increase, we expect the performance

value to decrease because the random nature of the coe�cients approximates a simple

random walk.13

3.5.3 Landscape Metrics and Comparisons

In order to make a meaningful comparison between random and structured landscapes,

we need to be able to compare landscapes with similar searchability characteristics in order

to rule out di↵erences in search results being a consequence of one landscape being much

more complex than another. Ochoa (2014) defines numerous network measures of interest

to characterize fitness landscapes, and for this search we choose three; number of optima,

size of basin and shortest path to maximum value. We used a K-means cluster analysis

to reveal similarities in metrics describing searchability between landscapes, and identified

five clusters. We identified cluster five as containing the best mix of random and structured

landscapes, as demonstrated in Figure 3.10
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Figure 3.10: Cluster Locations for Random and Structured Landscapes

Count of random and custom landscapes found within each of the five identified clusters. We see
that cluster 5 contains the most mixed landscapes. The landscapes in cluster 5 are: N20M1p5,
N20M2, N20D5inter2h and N20D5inter2f.

13Assuming the interaction terms have equal probability of 1 or �1.

53



The intradivision structure gets lost as the degree interdivision interactions increase.

We therefore identified M1.5, M2, 2h and 2f as searchably similar, yet having enough of a

di↵erence between interdivision and intradivision structure such that we would expect the

structure to a↵ect the search results.

3.5.4 Structure Matters!

In Figure 3.11 we see the share of total industry improvement for firms of each scope at

the final time step presented as a bar chart.
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Figure 3.11: Final Performance Improvement for Similar Landscapes

Histograms of mean performance improvement at time step 28 by scope for cluster 5 landscapes and
for by firm exploration with veto evaluation scenario.

Table 3.3 provides the results of ANOVA test comparing the improvement results shown

in Figure 3.11 for random versus structured results, as well as the results within each

landscape class. The first comparison tests for three-way interactions between class, scope
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and landscape. We see that improvement di↵ers across scope as expected, and that the

pattern of deviations from the mean across scopes di↵ers by class. Thus random landscapes

produce statistically di↵erent improvement by scope results than structured landscapes.

We also see that once class is accounted for, there is no meaningful variation between

landscapes.
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Table 3.3: ANOVA Results for Performance Improvement Across Landscapes

Df Sum Sq Mean Sq F value Pr(>F)

Random vs Structured Landscapes

class 1 10584.28 10584.28 175.44 0.0000

scope 4 6006.25 1501.56 24.89 0.0000

landscape 2 12668.81 6334.41 105.00 0.0000

class:scope 4 1601.66 400.41 6.64 0.0001

scope:landscape 8 633.75 79.22 1.31 0.2395

Residuals 180 10859.30 60.33

Random Landscapes

scope 4 5744.80 1436.20 16.45 0.0000

landscape 1 10631.05 10631.05 121.77 0.0000

scope:landscape 4 371.09 92.77 1.06 0.3797

Residuals 90 7857.07 87.30

Structured Landscapes

scope 4 1863.11 465.78 13.96 0.0000

landscape 1 2037.76 2037.76 61.09 0.0000

scope:landscape 4 262.65 65.66 1.97 0.1061

Residuals 90 3002.22 33.36

ANOVA results for three di↵erent comparisons: cross class data with improve scope + class +
landscapes + scope * class * landscape, random landscape data with improve scope + landscapes
+ scope * landscape, and structured landscape data with improve scope + landscapes + scope *
landscape.

When comparing improvement values within landscape classes, we looked for interac-

tions between scope and landscape, and found that the distribution of improvement across

scopes doesn’t di↵er significantly across landscapes of the same class. Thus we find evi-
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dence that the structure we build into a search landscape via the NM formulation has a

meaningful e↵ect on the search results.

3.5.5 Results for Voting Evaluation

The results for the SIM presented in Section 3.5.2 were based on the conservative veto

algorithm, where if any proposed strategy change caused an in-scope division to lose per-

formance value the change was rejected. In these scenarios, firms with broader scopes

experienced less improvement than firms with narrower scope due to structural inertia.

One could imagine a broadly scoped firm with a less conservative evaluation algorithm,

such as voting, where each in-scope division has a single vote and the majority prevails. In

the case of a three-division firm considering a strategy change, if a single division were to

experience a loss in performance while the other two experienced gains, the veto evalua-

tion algorithm would reject the change while the vote algorithm would accept the change.

Figure 3.12 demonstrates that with the voting evaluation algorithm, broadly scoped firms

experience more improvement than narrowly scoped firms and the e↵ects of structural in-

ertia are mitigated through the decision process.
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Figure 3.12: Performance Improvement over Time by Scope and Landscape

Performance improvement over time by scope over 28 time steps fitted over 100 runs on 10 di↵erent
versions of the N20D5inter2f landscape for by firm exploration with vote evaluation scenario. The
top row are random landscapes and the bottom row are structured landscapes. Compare with the
lower right plot in Figure 3.11.
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3.6 Summary

In this chapter, we first introduced LON maps to the management literature. LONs

allow us to both visualize and measure searchability of a given landscape. Our second con-

tribution is the introduction of the NM method for generating landscapes, by which we

are able to greatly reduce the burden of using fitness landscapes in management research.

Our most meaningful contribution, however, is demonstrating how these two methods can

be combined to produce and describe structured fitness landscapes that are understand-

able and produce meaningful search outcomes, and the development of a relevant model

demonstrating these advantages.

We then applied this hybrid method to model structural inertia in firms with variable

scope. The structured landscape enabled decisions within divisions to be more tightly

connected than decisions between divisions. We demonstrated that broadly scoped firms

under a conservative evaluation algorithm experience less improvement within a period of

time than firms with narrower scope.
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Chapter 4

THE EMERGENT FIRM MODEL

4.1 Background

Academia has produced many sophisticated definitions of a firm, such as a collection

of resources (Wernerfelt 1984), dynamic capacities (Teece, Pisano, and Shuen 1997), rou-

tines (Nelson and Winter 1982) or bundles of contractual obligations (Coase 2012; O. E.

Williamson 1985), and we can easily forget that a firm is fundamentally a collection of

individuals voluntarily engaging in some form of team production (Gavetti and Levinthal

2000; Blair and Stout 1998; Ray 2007). The Emergent Firm Model (henceforth referred to

as the EF model) is based on the premise that firms arise out of individuals choosing to

work together to advantage themselves of the benefits of returns-to-scale and coordination.

The EF model is a new implementation and extension of Axtell’s Endogenous Dynamics

of Multi-Agent Firms Model (henceforth referred to as the Axtell model), where individual

agents chose to work with a given firm, move to another firm, or start their own firms based

on their opportunities and preferences for work (Axtell 1999; Axtell 2015; Axtell 2018).

The EF model provides three levels of analyses: 1) agents with varying preferences for

work and leisure and with varying innate capabilities, 2) the firms they create by joining

together into teams, and 3) the overall economy, which is the emergent collection of firms

that results through the individual agent decisions.
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agents firm economy

Figure 4.1: Three Levels of Model Entitites

Hierarchical depiction of the three levels of model entities: individuals, firms and an economy.
Individuals compose firms, and firms compose the economy.

The EF model extends the Axtell model to address macroeconomic questions pertain-

ing to job mobility, debt and wealth, and explores how institutional conditions a↵ecting

microeconomic behavior modify emergent macroeconomic outcomes. Conventional theory

regarding lending and borrowing behavior (Bewley 1986; Huggett 1993; Aiyagari 1994) sug-

gest poorer agents save more than wealthier agents, likely due to lack of access to credit.

However Getter (1996) describes how the consumer credit market has loosened restrictions

and made credit more widely available to poorer agents, resulting in more debt and less

savings. Likewise, Pollin describes a sharp increase in the use of consumer credit applied

to necessitous spending, where agents borrow to make regular purchases, which in turn

may lead to liquidity-traps that make future saving di�cult (Pollin 1988; T. A. Sullivan,

Warren, and Westbrook 2001; Eggertsson and Krugman 2012). Alternatively, Steindl ex-

plicitly modeled household saving and debt, and proposed that consumer credit could act

as an economic stimulus (Steindl 1990), whereas Dutt, on the other hand, finds evidence

that consumer debt results in economic contraction (Dutt 2006). Clearly there are open

questions regarding how credit a↵ects an economy, and an endogenously-driven agent-based

model may be helpful in understanding these dynamics.

I make the assumption that changing jobs and creating new firms incur costs above

those that could be regarded as general household expenditures, and that these expenses

are not smoothed over a period of time and are funded via savings or borrowing (J. X.
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Sullivan 2008; Clark and Davies Withers 1999). The ability to make a change will therefore

be dependent on an individual’s savings and access to credit, and I have thus added a

constraint to the free movement of individuals in the Axtell model. In addition, I have

borrowed and implemented two models from monetary policy and finance literature. The

first is a cash-in-advance model, where an agent must have available funds to make an

employment change (Lucas and Stokey 1985). Agents save a portion of their wage each

time step, the quantity dependent on their individual saving rate, and savings accrue until

agents spend all or a portion on making an employment change. I have also implemented a

basic credit-creation model (Werner 2014; Jakab and Kumhof 2015) by adding a universal

lender who makes funds available to agents without current loans upon demand.1

4.1.1 Axtell’s Endogenous Dynamics of Multi-Agent Firms Model

The US economy involves a great deal of frictional employment activity (Davis, Faber-

man, and Haltiwanger 2006; Davis, Faberman, and Haltiwanger 2012). People at various

times move from one job to another, and as a result firms are established, grow, shrink

and dissolve. Any general equilibrium model of firm dynamics requires, by definition, ex-

ogenous shocks in order to perturb the stable system, with the assumption that firms are

di↵erentially a↵ected by these exogenous shocks (Hopenhayn 1992a; Hopenhayn 1992b).

However, the persistent and continual nature of firm dynamics contradicts the description

of these dynamics as driven by exogenous shocks. Axtell (2015; 2018) has developed an

alternative to the general equilibrium model of firm dynamics, in which firm dynamics are

driven by a microeconomic level perpetual adaptation on the part of agents who “regularly

adjust their work e↵ort, and periodically seek better jobs or start new teams when it is in

their self-interest.” Firm dynamics are therefore entirely endogenous, driven by the engine

of individuals continuously adjusting their work e↵ort and firm a�liation in the quest for

1Two of principles behind “New Monetarist Economics” are that theories should be based in microe-
conomic foundations and that money should be explicitly handled rather than implicitly handled through
utility functions (S. Williamson and R. Wright 2010). Both these principles lend themselves well to agent-
based modeling.
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utility improvement. The modeled economy, as a result, is perpetually in flux, rather than

in stasis until perturbed by an external force.

Agents in the Axtell model explore options for changing firms, forming a startup, or

remaining in their current position based on maximizing a Cobb-Douglas utility function

with their individual preference set for income and leisure,

U =

✓
O

n

◆✓

(! � e)1�✓
, (4.1)

where O is total firm output, n the number of persons in the firm, such that O

n
is the

individual’s income in the current firm configuration. The individual’s preference for income

is given by ✓, therefore preference for leisure is 1�✓. The individual’s total time endowment

is ! and e is the individual’s work e↵ort, thus the individual’s leisure is ! � e.

Each firm has unique parameters a, b and � that characterize the returns to scale in its

production function

O = aE + bE
�
, (4.2)

where E is the sum of all the firm members’ e↵orts.

Agents are connected via an underlying social network, modeled as an Erdös-Renyi

network, and can chose to join a firm that employs a neighbor in this social network (Mont-

gomery 1991).

These basic microeconomic principles embodied by a group of utility-seeking agents

create macroeconomic conditions of “fluctuating e↵ort and sustainable cooperation” (Hu-

berman and Glance 1996). Individuals choose to remain with their current firm, change

firms, or create a new firm based on these utility and output functions under dynamic

conditions, and drive the evolution of an economy composed of various sized firms.

For large numbers of agents approximating the working population of the United States,

the Axtell model realizes an economy that matches key macroeconomic statistics for the

US economy such as firm size, job tenure, employment, wage distribution and productivity

distributions.
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4.2 Emergent Firms Model: The Axtell Model Reimagined and Extended

The Emergent Firms (EF) model uses the same individual utility-seeking engine as the

Axtell model to drive firm formation, growth and dissolution. I’ve used the Axtell values

for parameters governing the utility maximization and output calculations, as well as for

the structure and degree distribution of the social network. I’ve also adopted the Axtell

starting condition where all agents are in their own firms, designated singleton firms, as

well as the equal compensation rule for distribution of outcome. These Axtell parameter

values are given in Table 4.1.

Table 4.1: Axtell Model Parameter Values Retained in the EF Model

Attribute Description Value

a e↵ort multiplier in output formula U(0, .5)

b exponential e↵ort multiplier U(.75, 1.25)

� returns to scale exponent U(1.5, 2)

✓ preference for income U(0, 1)

! time endowment 1

⌫ number of social network links U(2, 6)

compensation rule equal shares

initial condition all singleton firms

I’ve modified the original Axtell implementation such that each firm has an owner, and

if that owner decides to pursue another opportunity and has employees, a random employee

assumes firm ownership. Agents are characterized by both preferences for income and

savings rates, as well as by the production function parameters that determine firm output

levels. The owner of a firm determines the production function parameter values for that

firm.

In addition, firms are implemented as individual star subgraphs within the full collection

of graphs that describe the entire economy of firms (see Figure 4.1), thus the new implemen-
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tation of the Axtell model contains two networks: the static information exchange social

network and dynamic network describing the firm structure. I’ve retained the Erdös-Renyi

structure for the social network to maintain consistency with the original model, though

social networks could also be described by small world or preferential attachment structures

(Watts and Strogatz 1998; Barabási and Albert 1999). The firm structure network emerges

out of the model dynamics and is a collection of star graph components and single nodes.

The EF model not only replicates the Axtell model functionality, but also extends the

original model with the addition of two major functional elements. The first addition is costs

to changing jobs or forming a startup, with a cash-in-advance constraint to movement. Each

time step, all agents save a portion of their income dependent on their individual savings

rate. I assume living costs are covered by wage and any residual goes into savings, so the

varied savings rates are a proxy for varied levels of consumption. This savings is used to pay

the costs of accepting a better employment opportunity, where better is defined as providing

a higher utility value, or for starting a new firm if that option provides the highest utility.

The second addition is a credit-creating universal lender providing loans to agents who

wish to make an employment change but have insu�cient savings. If the agent has an

opportunity for increasing her utility and does not have the savings to pay the costs of the

change, she can take out a loan with interest compounded each time step at a constant

rate. Loans are paid with a borrowing agent’s full savings each step until repaid. An agent

cannot take out a loan if she already has as unpaid loan.

The EF model is significantly scaled down from the Axtell model, and rather than

attempting to replicate quantitative macroeconomic statistics I am looking for qualitative

changes in firm size population distributions under di↵erent cost and lending conditions, as

well as emergent patterns in macroeconomic characteristics such as per capita wealth, wages,

productivity and debt. Experiments with the EF model were made over 20 runs for 600

agents over 500 steps with an activation rate, or churn, of 10%. Therefore an average of 60

agents explore alternative employment options each step, for a total of 30,000 explorations
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for each of the 20 simulation runs.2 Table 4.2 describes the additional parameters in the

EF model and their values.

Table 4.2: Parameters Specific to the EF Model

Attribute Description Value

N number of agents 600

churn agent activation rate .1

tmax number of steps 500

move job change cost, multiplies last wage 1

startup startup cost, multiplies last wage 2

rate multiplies wage each time step N (.03, .01), truncated at 0

lendingrate cost of loan each time step .03

The full EF model functionality is illustrated as a flowchart in Figure E.3. Cost and

lending functionality can be toggled independently so I can explore three distinct scenarios:

Scenario 1: free movement, the original Axtell model which serves as a baseline

Scenario 2: cash-in-advance constraint to movement, or costs

Scenario 3: cash-in-advance constraint to movement with credit-creating uni-

versal lender, or costs with credit.

2The Axtell model was run with 120 million agents, activated at a rate of 4% per turn, running for 300
steps. This means 4.8 million firms explored alternatives each step, for a total of 1.44 million explorations.
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Figure 4.2: Algorithmic Flow for the Emergent Firm Model
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4.3 Results

For the three scenarios described in Section 4.2, I explore the number of firms and their

size distributions, mean and maximum firm size, numbers of changes and lost opportunities

for change (described as thwarts), per capita wealth, wages, productivity, as well as loans

and debt. I will demonstrate that, across the board, the institutional conditions repre-

sented by the cash-in-advance constraint and the credit-creation lender implemented at the

microeconomic level have statistically significant e↵ects on these macroeconomic measures

in the various emergent economies. Unless otherwise indicated, all simulations were run 20

times with the parameters and settings described in Tables 4.1 and 4.2.

Despite the statistical di↵erences in measures across the scenarios, the EF model exhibits

the same overall behavior as the original Axtell model. Regions of steady-state population

stability emerge at the macroeconomic level even though the composition and size of any

given firm is in flux. For all scenarios, an equilibrium region emerges after roughly 300 time

steps and the number of firms oscillate within this region, as demonstrated in the 20-run

spaghetti time series plots for each scenario in Figure 4.3.
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Figure 4.3: Macroeconomic Convergence of Total Number of Firms

Spaghetti plot of number of firms over time showing firm population results for 20 distinct runs for
all three scenarios, demonstrating the macroeconomic convergence into a steady-state equilibrium
band.
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4.3.1 Number and Sizes of Firms

The first measures we’ll explore are the total number of firms in the macroeconomic

steady-state and the sizes of those firms as described by the number of agents within the

firm. The mean number of firms for the three scenarios at the final time step are 122, 85

and 171 respectively. The mean sizes for the three scenarios are 17, 20 and 10 respectively,

and maximum sizes are 78, 123 and 31. More firms implies smaller firms as measured by

number of employees. It follows that the maximum number of firms in an economy with

600 agents is 600 firms, which occurs when each agent is in a singleton (this is the initial

condition). Scenario 3, the cost and credit scenario, produces the most firms, therefore the

smallest firms. Scenario 2, the cost scenario, produces the fewest, conversely the largest,

firms. The number of firms in scenario 1, the baseline scenario, falls between those produced

by scenarios 2 and 3.

Evidence of the di↵erences in number of firms and mean and maximum sizes across the

scenarios is presented visually by the violin plots in Figure 4.4 and statistically in Table 4.3.

All di↵erences between scenario results for numbers of firms have four-star significance. All

comparison di↵erences for both mean size and maximum size are statistically significant,

most pronounced for comparisons between scenarios 1 or 2 with scenario 3. We also see

from the Figure 4.4 that scenario 2 produces the most variation in firm size, with the

largest maximum size, and scenario 3 produces the least variation in size and the smallest

maximum.
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Figure 4.4: Violin Plots for Number of Firms, Mean and Maximum Firm Size and Mean Wage

Violin plots showing the data distribution over 20 runs of the total number of firms in the final time
step for number of firms, mean and maximum firm size, and mean wage.
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Table 4.3: Statistical Test Results for Macroeconomic Measures

Scenarios 1 & 2: Baseline vs. Costs

Measure Means (1, 2) SDs (1, 2) Statistic df p-value

number of firms 122, 85.1 12.8, 11.0 9.7 37.2 1.13e-11****

firm size 17.0, 20.2 3.8, 4.6 -2.4 36.8 .0225*

maximum firm size 78.7, 123 47.2, 56.5 -2.7 36.8 .0116*

changes 44.3, 24.3 7.0, 4.6 10.6 33.0 3.21e-12****

thwarts 0 , 17.9 0, 4.0 -20.2 38 2.2e-16****

wage 0.56, 0.59 0.06, 0.09 -1.2 33.9 .2364

wealth 5206, 667 304, 102 63.3 23.2 2.2e-16****

productivity 2.78, 4.24 0.41, 1.08 -5.66 24.3 7.6e-6****

Scenarios 1 & 3: Baseline vs. Costs with Credit

comparison means (1, 3) SDs (1, 3) statistic df p-value

number of firms 122, 171 12.8, 9.7 -13.8 35.5 7.8e-16****

firm size 17.0, 10.3 3.8, 1.4 7.4 24.3 1.0e-07****

maximum firm size 78.7, 30.7 47.2, 11.2 4.4 21.1 0.0002***

changes 44.3, 3.45 7.0, 1.2 25.7 20.2 2.2e-16****

thwarts 0, 38.1 0, 6.1 -27.8 38 2.2e-16****

wage 0.56, 0.53 0.06, 0.02 1.9 24.1 0.066

wealth 5206, 793 304, 117 .6 24.5 2.2e-16****

productivity 2.78, 1.87 0.41, 0.15 9.44 23.9 1.6e-9****

Scenarios 2 & 3: Costs vs. Costs with Credit

comparison means (2, 3) SDs (2, 3) statistic df p-value

number of firms 85.1, 171 11.0, 9.7 -26.2 37.4 2.2e-16****

firm size 20.2, 10.3 4.6, 1.4 9.3 22.7 3.5e-09****

maximum firm size 123, 30.7 56.5, 11.2 7.1 20.5 5.9e-07****

changes 24.3, 3.45 4.6, 1.2 19.4 21.7 3.4e-15****

thwarts 17.9, 38.1 4.0, 6.1 -12.4 38 7.0e-15****

wage 0.59, 0.53 0.09, 0.02 2.8 21.5 0.0103*

wealth 667, 793 102, 117 -3.6 37.3 0.00088***

productivity 4.24, 1.88 1.08, 0.15 9.75 19.7 5.6e-9****

Statistical test results for scenario measures at the final time step (time = 500). Equality of means
tests for each combination were conducted via the Welch Two Sample t-test.
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4.3.2 Size Distributions and Power Law Functions

We’ve established that the numbers and sizes of firms are di↵erent from one scenario to

another, but what about the distributions of those sizes in the macroeconomic steady-state?

Numerous works dealing with firm size distributions claim that such distributions are power

law functions with a shape parameter, ↵, close to 1 (Axtell 2001; Rossi-Hansberg and M. L.

Wright 2007; Stanley et al. 1996).

If the firm size distributions follow a power law function, p(x) = Cx
�↵, then the log-

arithmic plots of size vs population density will yield a straight line. The leftmost plot in

Figure 4.5 is the logarithmic plot of firm size distributions for all three scenarios. Note the

spreading in the region of the largest firms, suggesting the sample size of 600 agents is too

small to generate a full representation of consecutive firm sizes because some larger sizes

are missing completely, and the data contains many zero values. A rudimentary power law

function analysis could be obtained through a linear fit to this data, but the results will

su↵er from this spread in larger firm sizes.

A cumulative density function mitigates this incompleteness problem because every size

value in the cumulative distribution will have a non-zero value. If the probability density

function is a power law function, the cumulative density function is also a power law.

This CDF is shown in the model plot in Figure 4.5 and doesn’t appear to fit a power law

function across the whole distribution, but does suggest a power law function could apply

to the region of the distribution with a complete set of consecutive size values, roughly up

to firms with 30 employees. Figure 4.5 shows a CDF of firm size distributions for all three

scenarios truncated at a size of 30 employees and Table 4.4 shows the results of fitting linear

models to this truncated data.3

3Following the formal power law validation protocol described in Chauset et al. (2009), I obtained results
that the EF firm size distributions with 600 agents could indeed be represented by power law functions for
the range up to 30 employees.
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Figure 4.5: Firm Population Distributions for the Three Scenarios

Linear regression fits to the logarithmic probability density function (left) and cumulative density
function (middle) using the population values for each size aggregated over all 20 runs. On the right
is are linear regression fits to the cumulative density function from firms up to 30 employees using
the population values for each size aggregated over all 20 runs.

Axtell found a power law function fitting the CDF with a shape parameter ↵ = -1.06.

Notice the near exact agreement with our baseline scenario 1 result for alpha in Table 4.4.4

Table 4.4: Results of Linear Fit for the CDF for Firm Size Distributions for Firms with 30 Employees
or Fewer

↵ SE R-squared 95% CI

Scenario 1: Baseline -1.055 0 .026 0.983 [-1.109, -1.001]

Scenario 2: Costs -1.008 0.036 0.964 [-1.082, -0.934]

Scenario 3: Costs with Credit -1.740 0.086 0.936 [-1.916, -1.563]

4.3.3 Mobility: Changes and Thwarts

In the EF model, an agent’s mobility describes its ability to make a desired change.

Agents with lower mobility are thwarted more often than agents with higher mobility.

Figure 4.6 shows a generalized additive model fit of the total number of employment changes

and missed opportunities (thwarts) across 20 runs for each scenario. Mean numbers of

4This agreement is likely determined since we’ve used the Axtell model parameters for the utility and
production parameters. I’ll demonstrate later in Section 4.5 that seemingly slight modifications to either
the preferences for income, ✓, or the returns to scale exponent, �, change the ↵ values. These parameters
could be adjusted such that alternative scenarios also provide the expected value for the power law function
shape factor.
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changes and thwarts for the three scenarios in the steady state are 44 changes and 0 thwarts,

24 changes and 18 thwarts, and 18 changes and 38 thwarts, respectively. There are no

restrictions on making changes in scenario 1 so any utility improving opportunity can be

acted upon, thus the number of thwarts is 0 and scenario 1 produces the highest number of

changes.

The number of changes decreases across the scenarios and conversely the number of

thwarts increases. Since scenario 2 contains more changes than scenario 3, we find the

interesting result that borrowing to make a move results in fewer moves than overcoming

the cash-in-advance constraint via savings alone, likely due to agents with loans waiting

longer to acquire savings or paying o↵ loans rather than simply saving without loans.
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Figure 4.6: Mobility Measures over Time for Three Scenarios

Generalized additive model fits for the two mobility descriptors: changes and thwarts, with total
changes (solid lines) and thwarts (dashed lines) over time at every 10th step for the three scenarios,
indicated by color.

Statistical evidence of di↵erences in changes and thwarts across the scenarios are given

as Welch t-test results in Table 4.3.
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4.3.4 Wages and Productivity

Wages in the EF model are an employees share of firm output, as defined in Equation 4.2,

distributed each time step, and a firm’s productivity is synonymous with the firm’s output.

Mean wages for the three scenarios are on average .56, .59 and .53, respectively. Per capita

wage di↵erences between scenarios are only significant when comparing scenarios 2 and 3,

as demonstrated by the Welch t-test results in Table 4.3. As can be observed in the violin

plots in Figure 4.4, scenario 2 demonstrates the greatest variation in mean wages, while

scenario 3 demonstrates the least variation.

Empirical evidence suggests that wages are exponentially distributed (Yakovenko and

Rosser 2009), and Axtell found a linear relationship in a semi-log plot of the wage distri-

bution for larger firms, which characterizes an exponential relationship. The left hand plot

in Figure 4.7 shows the results for a similar analysis with scenario 1 simulation results,

which also demonstrates a linear relationship for larger firms, suggesting the baseline EF

also produces exponentially distributed wages.

The mean productivity values for the three scenarios are 2.78, 4.24 and 1.88. Statistical

evidence of di↵erences in productivity across the scenarios are given as Welch t-test results

in Table 4.3. Just as with wages, scenario 2 not only yields the greatest productivity

values but also the greatest variance in productivity. Labor productivity is the relationship

between the increase in firm productivity by adding an employee, and previous empirical

work suggests that macroeconomic labor productivity can be described as constant returns

to scale (Basu and Fernald 1997). Axtell demonstrated constant returns to scale for labor

productivity at the macro-level despite increasing returns to scale at the agent level. I

conducted a similar analysis with scenario 1 results, and produce constant returns to scale

for labor productivity in agreement with Axtell’s results (Figure 4.7 right).
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Figure 4.7: Wage and Productivity vs. Size

A linear semi-log wage distribution indicating an exponential wage distribution (left), and a constant
return to scale for labor productivity in a logarithmic plot of size vs productivity (right).

Larger firms produce higher output, but larger firms do not necessarily produce higher

wages, as demonstrated by the correlation plots in Figure 4.8 and Table 4.5. In fact, there

is a slight but significant negative correlation between wage and firm size for scenarios 1

and 3. 5

5An interesting microeconomic observation is the correlation between an individual’s wage and ✓ value,
which is preference for income. Individuals with the highest wages also have the highest values for ✓. In
addition, individuals who are firm owners have, on average, higher ✓ values as well (at t = 500 in scenario 1,
✓̄ = .67). Entrepreneurs have a predisposition toward starting firms that other individuals may not share,
represented in the model as a high ✓ value.
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Figure 4.8: Wage and Productivity Correlated with Size

Correlation plot for size and wage (top) and size and productivity (bottom).

Table 4.5: Correlation Values Between Wage, Productivity and Size

Scenario 1 Scenario 2 Scenario 3

Baseline Costs Costs with Credit

Size and Productivity 0.809 0.871 0.973

Size and Wage -0.031 0.031 -0.044

Pearson correlation values between size and productivity and between size and wage for the three
scenarios at time = 500, all values are statistically significant.
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Figure 4.9 shows the macroeconomic measures presented thus far as a parallel plot with

each line representing an individual run and each color representing a scenario. We see from

this plot many of the relationships discussed, such as population inversely related to size,

the variation in maximum size, the inverse relationship between changes and thwarts, and

the similarity in wages.

population size maxsize changes thwarts wage productivity wealth
measure

scenario 1 2 3

Figure 4.9: Parallel Plot of Mean Values for Selected Macroeconomic Measures

Parallel plot showing mean values for the measures discussed above. Lines are shown for each of 20
runs of the three di↵erent scenarios. Units are arbitrary.
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4.3.5 Loans

Scenario 3 allows agents with insu�cient savings to pursue utility improving opportu-

nities by taking out a loan. The total amount of loans in the simulated economies increases

superlinearly in the equilibrium regions for lending rates greater than 0. Figure 4.10 demon-

strates model results over 20 individual runs for total loan amounts, wages and wealth (the

sum of agent savings) for lending rates of 0% and 1% and 3% with every agent having the

exact saving rate of 3%. Cost multipliers are homogenous as well and equal to the current

agent’s wage. We see that with a lending rate of 0% there is no superlinearity in aggregate

loan value, and the higher the lending rate the sooner the superlinearity appears. The

colored regions indicate whether or not the di↵erence between wealth and loans is positive

(blue) or negative (red). Superlinear behavior in loans results in an economy with negative

net wealth.
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Figure 4.10: Loans, Wages and Wealth over Time for Di↵erent Savings Rates

Plots of loans, wages and wealth for values of lending rate 0%, 1% and 3%. Savings rates and cost
multipliers are homogenous for all agents and types of moves. Net wealth, or savings minus loans,
is indicated by the colored regions between the wealth and loan lines. Blue indicates positive net
wealth and red is negative net wealth.

To explore the dynamics underlying this superlinearity in aggregate loan value, I consider

�1 and �2 to be the quantity of loans at two consecutive time steps and if l is the lending

rate, then �2 = �1 + l�1 � loan payments + new loans.

Loan payments are a function of the wages and savings rates of borrowers. If s is an

agent’s savings rate and w his wage, and b the set of agents with outstanding loans, then
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loan payments are
X

b

sb!b. (4.3)

New loans are a function of the number of start-up loans, company change loans, the costs

for these two activities and the wages of the borrowers. If cs and cm are the wage multipliers

to determine the costs for starting one’s own company and changing company respectively,

and ⌫s and ⌫m the instances of new loans made to facilitate start-ups and moves respectively,

then the principle quantity of new loans are

X

⌫s

cs!⌫s +
X

⌫m

cm!⌫m . (4.4)

Assuming mean wage ! represents any given borrower’s wage, mean savings rate s any given

borrower’s rate, and mean costs c represents both startup and move costs, the simplified

total loan equation is

�2 = �1 + l�1 � sb! + c⌫!. (4.5)

The superlinear behavior is described by an increasing di↵erence in consecutive � values.

In the unusual case of interest-free loans, l = 0 and if �2 � �1 > 0 then

c⌫! > svb! (4.6)

which reduces to

(⌫)(c) > (b)(s)

⌫

b
>

s

c
. (4.7)

Equation 4.7 suggests that for homogenous costs and c = 1 loans will increase only if the

ratio of new loans to existing borrowers exceeds the mean savings rate. Borrowers in this

case will decrease over time because all borrowers will eventually pay back loans, loans

will be repaid more quickly, and savings will be higher with a corresponding reduction in
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the need for loans. While loans may increase initially, macro-equilibrium will not exhibit

superlinearity.

The superlinearity has two causes in a reasonably parameterized model. Savings rates

are heterogenous in the EF model so there will be agents who make a loan and will not

be able to repay that loan because their repayment rate is lower than the lending rate.

In addition, a perpetually indebted agent may also have a saving rate equivalent to or

higher than the lending rate, but may have chosen an opportunity that increased utility

but decreased wage, again resulting in insu�cient payments. Either way, the amount that

borrowers owe will continue to grow over time.

Figure 4.11 shows the simulation values for the elements in Equation 4.7, costs, bor-

rowers, wages and loans, with the lending rate 3% and homogenous savings and costs, the

same values that produced the right most plot in Figure 4.10.
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Figure 4.11: Loan Parameters Analysis

Simulation values averaged over 20 runs for the determinants of loan quantity with simulation
parameters (left) and average discrete second derivatives of wages and loans (right). The cost
multiplier for both startup and employer changes is 1, savings rate is homogenous at 3%.
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The discrete second derivative of total loan and wage values for the two simulation are

shown in the right hand plot in Figure 4.11, and notice the matching inflection points in

both the loan and wage curves.

4.3.6 Wealth and Debt

Wealth in the EF model is modeled as the sum of all agents savings. Figure 4.12 shows

the wealth values over time for each of the scenarios, and at macroeconomic equilibrium

the mean values for the three scenarios are 8.68, 1.11 and 1.32, respectively. As expected,

in scenario 1 agents incur no costs when making an employment change or starting a firm

and their savings continually accrue, thus we see the highest and increasing wealth values.

Wealth in scenario 2 is lower than scenario 1, again as expected, since there are costs to

taking advantage of an opportunity for utility improvement and those costs deplete savings,

thus lowering wealth. This scenario 2 wealth levels o↵ over time, while scenario 3 wealth

increases gradually, though at a lower rate than in scenario 1.
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Figure 4.12: Per Capita Wealth for the Three Scenarios

But we noted in Section 4.3.5 that positive lending rates lead to super-linear loan be-

havior which results in rapidly expanding debt values. We’ll therefore consider a variant of
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the wealth metric, net wealth, which is the di↵erence between the sum of all agent savings

and all agent loans. For scenario 3 the cumulative agent debt drives the net wealth into

sub-linearity with respect to time. The shaded regions in Figure 4.10 indicate positive or

negative net wealth.

We also find wealth inequality in scenario 3. Not only does scenario 3 have extreme

negative net wealth values, but those agents who do have savings have higher individual

savings values than those in scenarios 1 or 2. The maximum value for savings in scenario 1

is 28.1, for scenario 2 it is 17.1, but for scenario 3 the maximum amount of savings is 42.7.

In scenarios 1 and 2 all 600 agents have some amount of savings, while in scenario 3 only

158 agents on average have savings greater than 0. The remaining 442 agents have debts.

Thus we have produced a wealth inequality roughly characterized by agents with debt and

agents without debt.

4.4 Network Graphs

In the EF model, I define an economy as a collection of firms, implemented as a collection

of star graphs. The center node of each subgraph represents the agent owning the firm and

the neighboring nodes are agents employed by the firm. These graphs provide an accessible

visualization of qualitative characteristics of the various economies resulting from di↵erent

cost and lending scenarios. Figure 4.13 shows the di↵erences in equilibrium economies

between the three scenarios, with node color indicating the agent’s wage, the darker the

blue the higher the wage, for a single simulation run at t = 500. We immediately notice our

findings described in Section 4.3.1 that scenario 2 yields the largest firm and scenario 3 the

smallest firms.
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scenario 3

Figure 4.13: Network Graphs of Simulated Economies

Representative network graph for each of the scenarios for the final time step for a single run. Nodes
are colored on wages with darker nodes representing higher wages.

The graphs can also be presented as an evolutionary time series. Figure 4.14 shows a

scenario 3 economy in five snapshots in time, time = 100, 200, 300, 400 and 500 with color

representing the value of an agent’s wage.
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Figure 4.14: Network Graph Time Series of an Emerging Economy

Representative network graph for scenario 3 over time for a single run. Nodes are colored on wages
with darker nodes representing higher wages.

By modeling the economy as a composite graph consisting of individual star graphs I

can animate those graphs to demonstrate the evolution of the economy over time. Most

macroeconomic measures described in the Section 4.3 could be described in terms of net-

work measures, for example, firm size distributions can be described as component size

distributions. Agent-level values such as wages and loans can be stored as node character-

istics. The network graphs therefore provide a compact and comprehensive representation

of model results, as well as compelling visualizations. While these characteristics are ben-
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eficial, I haven’t found the network presentation to provide insights not available through

traditional analysis of the model results.

4.5 Sensitivity Analysis

I conducted sensitivity analyses for number of agents, activation rate, cost ratios, savings

and lending rates, initial conditions and utility and output parameters. The following

sections are a sampling of the sensitivity finding that provide further evidence of model

validity or explain model variations.

4.5.1 Numbers of Agents

The location and width of equilibrium regions similar to those that manifested in Fig-

ure 4.3 will depend of the number of agents. Table 4.6 shows how the number of firms and

the maximum firm size, as well as their respective standard deviations, increase with the

number of agents, N . The variability in the location and width of the bands suggests that

the existence of the equilibrium region is a consequence of a fixed population.

Table 4.6: Mean Numbers of Firms and Sizes for Varying Numbers of Agents.

Agents Number of Firms Number SD Maximum Firm Size Maximum Size SD

200.00 3.68 4.32 36.77 20.80

300.00 4.60 5.97 41.97 21.08

400.00 5.38 7.82 55.08 27.73

500.00 6.17 9.48 64.63 36.46

600.00 6.65 10.86 69.68 39.66

700.00 7.17 12.14 77.82 43.31

800.00 7.74 13.56 84.43 42.32

1200.00 10.05 19.43 101.89 64.33

Mean numbers of firms and sizes of firms with standard deviations over the last 300 time steps for
20 runs in scenario 1 for increasing numbers of agents.

84



4.5.2 Initial Conditions

The EF model was run with the same starting condition as the Axtell model, where all

agents are in singleton firms. I also ran the scenarios starting with all the agents in a single

firm and starting with a typical 100 step firm configuration. We see in Figure 4.15 that the

three starting conditions result in the same number of firms in the steady-state.

1 2 3

0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
0

200

400

600

time

nu
m

be
r o

f f
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s

start condition
century

onefirm

singletons

Figure 4.15: Firm Counts for Simulations with Di↵erent Initial Conditions

Fit of the total number of firms across 20 runs with the starting conditions of all singleton firms, a
single firm and a mix of sizes (century start).

4.5.3 Saving and Lending Rates

Rates values for both savings and lending a↵ect model mobility outcomes in predictable

ways. As the savings rate increases, agents have more funds available to make desired moves

so changes increase and thwarts decrease as the mean savings rate increases. Figure 4.16

shows a parallel plot with change and thwart values over rising mean savings rate values.

Total possible changes are bounded by the churn value, so the number of changes levels o↵

as the rate continues to increase, and the number of thwarts falls close to 0.

85



0.01 0.03 0.05 0.07 0.09 0.11 0.13 0.15
saving rate

scenario 1 2 3 measure changes thwarts

Figure 4.16: Mobility Measures for Di↵erent Savings Rates

Parallel plot of number of changes (solid line) and thwarts (dashed line) for increasing values of the
mean savings rate.

Mean values for number of firms with lending rate zero is 148 and with positive lending

rate of 3% was 171, and the mean number of firms for scenario 2 is 85. Scenario 3 with

a lending rate of zero produces a final population of firms slightly lower than that with

non-zero lending rates, and closer yet still significantly di↵erent from scenario 2 results.

4.5.4 Utility and Production Parameters: ✓ & �

I mentioned in Section 4.3.2 that the power law function shape parameter ↵ is sensitive

to the utility and output parameters. Table 4.7 shows three examples of parameter modifi-

cations and their e↵ects on ↵ values. Notice that something as seemingly trivial as choosing
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✓ from a normal as opposed to uniform distribution essentially doubles the value of ↵ for

scenario 1. We also see that higher values of the returns to scale exponent, �, increases

the benefits of team production, thus resulting in a flattening of the power law function fit,

meaning the emergent economy consists of larger firms, or a lower value of ↵.

Table 4.7: Power Law Function Fit Statistics for Representative ✓ and � Parameter Changes

parameter change ↵ SE R-squared

✓ = N (.5, .2) -2.000 0.1360 0.8889

� = U(1, 2) -1.286 0.0259 0.9891

� = U(1.75, 2.25) -0.727 0.0182 0.9888

Results of linear fit for the CDF for firm size distributions with firms up to 30 employees. As a
reminder, Axtell parameter values were ✓ = U [0, 1] and � = U [1.5, 2], which yielded a power law
function shape parameter ↵ = 1.055.

4.6 Discussion

4.6.1 Overall Patterns

The EF model results suggest that constraints and lending essentially produce impedance

e↵ects in the Axtell model. Scenario 1 does not have costs and nothing impedes an agent

from making a change to obtain a higher utility. In scenario 2 an agent must accrue enough

savings to a↵ord the costs of making a change, which adds a time delay in agent moves.

Individuals who want to make a change need to wait for a period of time, roughly 30 time

steps with a savings rate of 3%. By the time an agent can a↵ord to move, their best utility

options may have changed due to the movement of other agents and the constant reconfig-

uration of individual firms. This includes individuals who may want to leave a firm, thus

firms in scenario 2 grow larger because agents are unable to leave. This impedance causes

statistically significant changes in the resulting macroeconomic characteristics in the steady

state from the free-movement scenario, as well as greater variances in firm sizes, output and

wages.
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In scenario 3 a subset of agents are further impeded in making changes because they

have outstanding loans they must pay o↵ before they could either begin saving for a future

move or borrow again. Some of these agents pay o↵ their loans quickly if their wages

increase from the wage the loan is based on, and others never pay o↵ loans because their

wages decrease from the wage the loan was based on. Agents could also simply have a

lower savings rate than the lending rate. Any unencumbered agent with insu�cient savings

will accept a loan to make an advantageous move so there are three groups of agents with

di↵erent time impedances: 1) agents with su�cient savings who move at will, 2) agents

with loans who will pay o↵ that loan and either borrow again to make a move or accrue

savings before an opportunity arises, and 3) agents who are hopelessly indebted and will

never make a move.

Business dynamism is the degree of entry, growth and exit activity within a firm pop-

ulation. Scenario 1 has the most agents making changes, but scenario 2 with fewer total

changes than scenario 1 results in larger variations in firm populations across time, and

larger firms in general. Scenario 3 has the least changes and the smallest firms. This

suggests the two di↵erent impedance dynamics, saving time and repayment time, result in

di↵erent e↵ects.

4.6.2 The Future of the EF Model

Two salient criticisms of conventional economic theory are that macro phenomena are

assumed to correspond to micro phenomena and that models describe general equilibrium

results. Kirman (2011) defines economic complexity as agent interactions generating phe-

nomena at the microeconomic level that do not coincide with the microeconomic level, and

Arthur (1999) argues that an economy is most appropriately considered “not as a system

in equilibrium, but as one in motion, perpetually constructing itself anew.” The Axtell

model, and consequently the EF model, are attempts to address both criticisms by seeking

emergent e↵ects from micro foundations, as well as employing endogenous dynamics.
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The EF model demonstrates that the dynamics in the Axtell model can be modified by

institutional assumptions regarding cost constraints and borrowing opportunities, yet are

robust enough to maintain the steady state macroeconomic result and observed patterns and

relationships. The EF model’s extensions with cash-in-advance and credit-creation lending

models provide further insights into how capital constraints, in the form of available funds,

a↵ect agent mobility and therefore modify the emergent macro economy. The following are

some possible further extensions of the EF model to explore questions of wages, productivity,

loans and motivation.

Firm dynamism from a microeconomic perspective is theoretically supposed to shift

employees to more productive positions and thus increase overall production (Caves 1998),

thus optimizing production in equilibrium. The EF simulations suggest that productivity

fluctuates within an equilibrium band, along with firm sizes and wages. Agents will move

into positions that lower productivity because an increase in utility does not necessarily

correspond to an increase in wage. Further exploration of this dynamic could improve our

understanding of the relationship between micro and macro returns to scale. This dynamic

could be augmented by the addition of merger and acquisition functionality, where firm

owners would have the option to combine with another firm.

Another take on productivity is described by Solow growth models, which require either

a population increase or a technology improvement in order to raise the level of macroeco-

nomic productivity, and which in the context of the EF model would mean an increase in

N or in the values of the output parameters in Equation 4.2 (Solow 1956). A future model

extension could explore what happens to the emergent steady state productivity with such

increases.

The superlinear behavior in aggregate loan values is an intriguing result as the total

amount of loans in the model will exceed the total wealth in the model in the situations

where individuals are able to repay loans. Future model versions could further explore

this loan behavior. Pikkety (2014) provides evidence that in capitalist economic systems

returns to capital will have a tendency to exceed economic growth. If the source of these
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inflated returns to capital are unbounded debt, the EF model provides an opportunity to

understand the demand-driven endogenous system dynamics that might necessitate such

an inflation. Future extensions would need to address the need for bounding conditions on

lending dynamics, such as more restrictive lending and bankruptcy algorithms. Another

example of a possible model extension would explore another of Pikkety’s (1997) theories,

whereby higher interest rates lead to lower median wealth, and lower interest rates lead to

higher productivity.

Evidence suggests that an individual’s social network has an important influence on

any job search behaviour and results (Mouw 2003; Lin 2008; Smith and Rand 2017). The

current implementation of the social network is a static Erdös-Renyi, and this or other

network structures, such as preferential attachment, could be implemented as a dynamic

network where an agent adds new neighbors when joining a firm, and gradually drops

neighbors over time.

The EF model, like the Axtell model before it, assumes agents are motivated solely

by maximizing their utility with a preference for income, a formulation well in line with

classic microeconomic theory. We’ve seen that high ✓ values correspond to firm ownership.

Future versions of the model could explore other motivations to determine if they signifi-

cantly modulate model outcomes. Science fiction writer and medieval historian Ada Palmer

describes vocateurs in Too Like the Lightening (2016), individuals who work well beyond a

required 20 hours a week for the sheer joy they take in practicing their professions. Such

an agent would not exhibit shirking, and a possible model extension could explore whether

such an agent would behave analogously to an EF agent with a high ✓ value, or if the actual

decision rules for selecting employment opportunities would need modification. Another

approach would be to assume such agents prefer to work with agents motivated by similar

values, so one could imagine an Objectivist scenario where agents are heterogeneously typed

and have preferences not only for income but also for collaborating with similarly typed

agents, possibly modeled by an alternative social network structure such as preferential

attachment.
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Chapter 5

CONCLUSION

The three projects presented are intended to provide insights into complex economic dy-

namics with firms as the unit of analysis.

In the Firm Ecosystem Model a firm was defined as size-species with size-specific char-

acteristics such as competition and innovation capabilities. Competition and colonization

dynamics played out with various equilibrium population distributions resulting from dif-

fering institutional competition and investment conditions. We saw that the degree and

conditions of investment in small firms have significant e↵ects on the resultant population

distributions. Large firms don’t typically invest in innovation, even though they typically

have cash reserves, and if this capital could be invested in innovation by large firms, we

saw a rise in the middle range of firm sizes. Decreasing the returns to rent-seeking and

increasing large firm failure rates could encourage such investment.

The Structural Inertia Model considered the inner dynamics of firms consisting of a

variety of subdivisions and explored the assumption that structural inertia will reduce the

performance improvement of large firms, suggesting that investment in innovation for large

firms is not as e�cient as that in small firms. But we also saw that with less conservative

evaluation strategies, the e↵ects of inertia can be overcome, which suggests that large firms

can innovate successfully if incentivized to do so. Do large US firms choose not to innovate

due to inertia or because they are incentivized to pursue rent-seeking rather than innovation

activity?

The Emergent Firm Model modeled firms as structures emerging out of decisions on

the part of individuals to engage in joint production. Model results demonstrated that

capital constraints on firm formation imposed at the micro level have significant impacts on

the resulting economy and macroeconomic measures such as wages and productivity. We
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also saw that the introduction of lending schemes to provide capital produced yet another

variant of an economy and macroeconomic facts.

As described in Section 1, capital dynamics have been identified as significant con-

tributors to economic issues. Results from these three models support this conclusion.

Theoretically, capital is supposed to flow to its most productive use, practically considered

to be where it obtains the highest rate of return. It is clear that that highest rate of return

is not matching up to the most productive purpose, but less clear are the actual workings of

contemporary finance, which remains largely opaque even to its practitioners. Therefore it

is imperative to better understand how capital flows through an economic ecosystem, and

how that flow can be directed toward achieving a just end.
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We use the Business Dynamics Statistics (BDS) database produced by the US Cen-
sus Bureau to explore firm size distribution empirically. The BDS is public database of
anonymized and aggregated data from the Longitudinal Business Database (LBD), a re-
search database developed by the Center for Economic Studies, which contains data from
1975 to present.

The LBD contains information on all U.S. business establishments that have paid em-
ployees and who are listed in the Census Bureaus business register. Data for the LBD is
collected through the Standard Statistical Establishment List (SSEL) and is completed on a
voluntary basis by firms. The SSEL collects information such as establishment size, payroll,
age, industry, location, ownership, and legal form of organization as well as characteristics
of the firms they belong to including firm age and firm size.

Despite numerous shortcomings and challenges arising from its aggregated nature, the
BDS database is the most comprehensive and complete longitudinal picture of US firm
dynamics publicly available.

This model uses BDS firm size data from the bds f szsic release.csv dataset avail-
able at https:www.census.govcesdataproductsbdsdata firm.html. Firm sizes are orga-
nized into 12 categories based on numbers of employees: 1 to 4, 5 to 9, 10 to 19, 20 to 49,
50 to 99, 100 to 249, 250 to 499, 500 to 999, 1000 to 2499, 2500 to 4999, 5000 to 9999 and
10000+. Firm size distributions described by this dataset are shown for all industries in
Figure A.1 and for representative years in Figure A.2.
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Figure A.1: BDS Firm Size Distributions by Industry

BDS firm size distributions broken out by industry averaged over all years from 1977 to 2014. The
black line representing average size distribution across industries.
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Figure A.2: BDS Average Size Distributions Across Industries for Representative Years

BDS firm size distributions for selected year averaged over all industries, showing the persistence of
the general distribution trend over time.
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B.1 Parameterization of Mortality

The parameterization of mortality was obtained by fitting a straight line with slope a

and intercept b to the logarithmic plot for average exit rates per year for each firm size over
industries and years from the BDS data, shown in the left hand plot in Figure B.1. The
right hand plot uses the same a and b parameters to predict the fit of the actual BDS exit
data values with x

a
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b
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Figure B.1: Parameterized Fits of BDS Exit Data, both Logarithmic and Standard

On the left the circles are the BDS data graphed logarithmically, the line is the generalized linear
model fit with slope a = �1.7823 and intercept b = �1.8265. The plot on the right shows the actual
BDS data fitted to x

a
e
b.

B.2 Parameterization of ⌫

Investment is modeling as a logistic curve with maximum investment K, inflection point
p and steepness q. The model results are based on the three investment curves shown in
Figure B.2.
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Figure B.2: Investment Curves Used in the Model

The plot on the left shows ⌫ values with p = 2, q = .1 and K = 2.5, and is intended to mimic current
investment behavior. The figure in the middle modifies this behavior by changing the inflection point
parameter p = 4, thus extending the length of an investment. The right hand plot is a smoothed
version of the middle plot, with p = 4 and q = .5.

B.3 Parameterization of �

We assume a constant relationship p between marketshare si and a single employee such
that s1p / x1 and s2p / x2. We then need to find � such that x1 = �x2 and less than 1 in
order for marketspace to shrink as it moves to larger firms. Substituting for x1 and x2 we
have

s1p = �s2p (B.1)

s1 = �s2 (B.2)

) � =
s1

s2
(B.3)

Since the ratios of consecutive sizes are constant, we infer sn = Aa
n

N
where aN is a function

of N and

� =
Aa

n

N

Aa
n+1
N

(B.4)

� =
1

aN
. (B.5)

The exponent needs to be normalized for any value of N so that the model will behave as
intended for any number of size divisions. Therefore

aN = g
1
N

and
� = g

� 1
N .

Figure B.3 shows a plot of the integer size categories against the geometric mean of each
size category, and the fit of sn = Aa

n

N
where aN ⇡ 2 therefore g ⇡ 4096 and � ⇡ .5. The

largest size category was omitted since the geometric mean of the size category 10,000+ is
unknown.
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Figure B.3: Gamma Parameterization from BDS Data

Fit of the geometric mean by integer size category, sn = (2.2)(2)n, described by the blue line with
the BDS data for categories 1 through 11 described by the red circles.
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C.1 Classic NK

Classic NK formulation consists of three components that come together to generate a
series of values for strategies on a landscape: a performance function, a payo↵ matrix and
an interaction matrix.

C.1.1 The Performance Function ⇧

Following Levinthal (1997) we define a firm’s strategy s as a string of N decisions, d,
which can be expressed as s = (d1, . . . , dN ), with d taking on a binary value, such that
d 2 {0, 1}. K of those decisions interact with each decision di. Each decision, di and
its related decisions, dk1...d

k

k
, together make a contribution to the overall performance of

strategy si. We can construct a normalized performance function ⇧(si) equal to the sum of
the contributions of each di and K > 0 additional related d values. Formally,

⇧(si) =
1

N

NX

j=1

⇡(s) =
1

N

NX

j=1

⇡(di; d
k

1, . . . , d
k

k). (C.1)

Let’s consider an example with N = 4 decisions d and K = 1 interactions between the
decisions. Considering just the N decisions d that compose each strategy string s, there will
be 2N = 16 unique binary strings, each representing a strategy si :

s1 = (0, 0, 0, 0)

s2 = (0, 0, 0, 1)

s3 = (0, 0, 1, 0)

s4 = (0, 0, 1, 1)

s5 = (0, 1, 0, 0)

s6 = (0, 1, 0, 1)

s7 = (0, 1, 1, 0)

s8 = (0, 1, 1, 1)

s9 = (1, 0, 0, 0)

s10 = (1, 0, 0, 1)

s11 = (1, 0, 1, 0)

s12 = (1, 0, 1, 1)

s13 = (1, 1, 0, 0)

s14 = (1, 1, 0, 1)

s15 = (1, 1, 1, 0)

s16 = (1, 1, 1, 1) (C.2)

Now we’ll consider K, the amount of interaction amongst the various decisions, and define
K = 1 as representing an interaction between a decision bit di and its next neighbor di+1.

Now, for each string s we can construct a ⇧ function that is a sum of four ⇡i functions, each
depending on the interaction for each di, described formally as di and d

k
i+1. We consider the
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string as cyclic such that if i = 4 then i+ 1 = 1. For example, strategy s4 is the bit string
(0, 0, 1, 1), so d1 = 0 and its next neighbor d

k
1 = 0, d2 = 0 and its next neighbor d

k
2 = 2,

d3 = 1 and its next neighbor d
k
3 = 1, and d4 = 1 and its next neighbor d

k
4 = 0. Following

this algorithm for all strategies, the following ⇧(si) functions describe the fitness values for
all the strategies with N = 4 decisions d interacting with K = 1 next neighbor elements
within the string.

⇧(s1) =
1

4
(⇡1(0, 0) + ⇡2(0, 0) + ⇡3(0, 0) + ⇡4(0, 0))

⇧(s2) =
1

4
(⇡1(0, 0) + ⇡2(0, 0) + ⇡3(0, 1) + ⇡4(1, 0))

⇧(s3) =
1

4
(⇡1(0, 0) + ⇡2(0, 1) + ⇡3(1, 0) + ⇡4(0, 0))

⇧(s4) =
1

4
(⇡1(0, 0) + ⇡2(0, 1) + ⇡3(1, 1) + ⇡4(1, 0))

⇧(s5) =
1

4
(⇡1(0, 1) + ⇡2(1, 0) + ⇡3(0, 0) + ⇡4(0, 0))

⇧(s6) =
1

4
(⇡1(0, 1) + ⇡2(1, 0) + ⇡3(0, 1) + ⇡4(1, 0))

⇧(s7) =
1

4
(⇡1(0, 1) + ⇡2(1, 1) + ⇡3(1, 0) + ⇡4(0, 0))

⇧(s8) =
1

4
(⇡1(0, 1) + ⇡2(1, 1) + ⇡3(1, 1) + ⇡4(1, 0))

⇧(s9) =
1

4
(⇡1(1, 0) + ⇡2(0, 0) + ⇡3(0, 0) + ⇡4(0, 1))

⇧(s10) =
1

4
(⇡1(1, 0) + ⇡2(0, 0) + ⇡3(0, 1) + ⇡4(1, 1))

⇧(s11) =
1

4
(⇡1(1, 0) + ⇡2(0, 1) + ⇡3(1, 0) + ⇡4(0, 0))

⇧(s12) =
1

4
(⇡1(1, 0) + ⇡2(0, 1) + ⇡3(1, 1) + ⇡4(1, 1))

⇧(s13) =
1

4
(⇡1(1, 1) + ⇡2(1, 0) + ⇡3(0, 0) + ⇡4(0, 1))

⇧(s14) =
1

4
(⇡1(1, 1) + ⇡2(1, 0) + ⇡3(0, 1) + ⇡4(1, 1))

⇧(s15) =
1

4
(⇡1(1, 1) + ⇡2(1, 1) + ⇡3(1, 0) + ⇡4(0, 1))

⇧(s16) =
1

4
(⇡1(1, 1) + ⇡2(1, 1) + ⇡3(1, 1) + ⇡4(1, 1)) (C.3)

Generally, each ⇡j function will depend upon a string of length K + 1 and will have 2K+1

possible values. In our case, each ⇡j will have 2(1+1) = 4 possible values and the possible
⇡j functions are given in Table C.1.
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Table C.1: Possible ⇧j Configurations for N = 4, K = 1

1 : ⇡j(0, 0)
2 : ⇡j(0, 1)
3 : ⇡j(1, 0)
4 : ⇡j(1, 1).

C.1.2 The Payo↵ Matrix

If each ⇡j function is represented by a random uniform value [0, 1) we can construct a
payo↵ matrix of size 2K+1⇥N , here 4⇥4, with values for each of the possible ⇡j functions.

0

BB@

⇡1(0, 0) ⇡2(0, 0) ⇡3(0, 0) ⇡4(0, 0)
⇡1(0, 1) ⇡2(0, 1) ⇡3(0, 1) ⇡4(0, 1)
⇡1(1, 0) ⇡2(1, 0) ⇡3(1, 0) ⇡4(1, 0)
⇡1(1, 1) ⇡2(1, 1) ⇡3(1, 1) ⇡4(1, 1)

1

CCA (C.4)

Using these values for ⇡j in the ⇧(si) functions above will yield fitness values for all possible
strategies. For example, if ⇡1(0, 0) = .2, ⇡2(0, 0) = .3, ⇡3(0, 0) = .4 and ⇡4(0, 0) = .5 then
the fitness value for strategy s1 is

⇧(s1) =
1

5
(⇡1(0, 0) + ⇡2(0, 0) + ⇡3(0, 0) + ⇡4(0, 0))

=
1

4
(.2 + .3 + .4 + .5)

=
1.4

5
= 0.28 (C.5)

The ⇡j values in the payo↵ matrix are usually obtained with a random uniform distribution
[0, 1). The payo↵ matrix, once generated, remains constant and all strategy values are
solved using the values in this matrix. All strategies in the model are defined by this NK

formulation and will have a fixed fitness value derived as above.

C.1.3 The Interaction Matrix

1 In our demonstration example we are considering N = 4 decisions d, each of which are
a↵ected by K = 1 other decisions, defined as next neighbor (understood cyclically). This
set of relationships can be described by an interaction matrix, an N ⇥ N matrix with 1s
in the positions representing two decisions that are linked. The interaction matrix in this
case will have two ones in each row and column, arranged symmetrically, as follows.

0

BB@

1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1

1

CCA (C.6)

1Also known as the influence matrix.
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Alternatively, each decision di could interact with one other randomly selected decision,
and in this case the interaction matrix would have two ones in each row and column in
random locations. Randomly assigning interactions does not turn out to be di↵erent from
intentionally assigning interactions (Weinberger 1991) so interactions are usually randomly
assigned such that the algorithm for determining the two d

k decisions don’t end up referring
to the original decision di. Formally stated, if i is the original decision index, and j is the
index for the d

k decisions, then i 6= j. Each row and column will have two distinct ones,
one of which will always be on the diagonal.

When K = 0 no decisions are linked and the interaction matrix is simply an N ⇥ N

identity matrix. When K = N � 1 every decision a↵ects every other decision and the
interaction matrix is an N ⇥N matrix of ones.

C.2 NK in Single Matrix Formulation

Buzas and Dinitz were the first to describe a matrix multiplication formulation of the
classic NK landscape (2013) which is more e�cient computationally. In their matrix mul-
tiplication formulation the interaction matrix is now construed as ordered interaction sets
such that there are N interaction sets each of size K + 1. In our previous example where
N = 4,K = 1 and each N is related to its next neighbor, the ordered interaction sets are:

{1, 2}, {2, 3}, {3, 4}, {1, 4}. (C.7)

It should be clear that these sets provide identical information as the combinations of deci-
sions represented by the rows in the nearest neighbor interaction matrix given in Equation
C.6. For constant K each of the interaction sets Vj where j = (1, ..., N) will have 2K+1

values based the various bit combinations in each strategy, analogous to Table C.1.
The interaction set construct allows us to represent the NK landscape configuration in

terms of a single matrix F. Each interaction set, Vj , is considered a functional contribution
to the overall strategic performance value. A row in the model matrix consists of all the
2K+1 possible bitwise values, referred to as the functional contribution for that interaction
set, for each of the N interaction sets for a given strategy. Each row will therefore be of
length 2K+1 ⇥N. Expressed more formally, each row will consist of

f(si) = f1(si) | f2(si) | . . . | fN(si) (C.8)

where each fj represents one of the N interaction sets and | represents column concatenation.
This interaction model matrix, F, consists of 2N rows, one per strategy, and 2K+1 ⇥ N

columns, where every group of N columns represents an interaction set.
The f(si) functions are maps from the given strategy to the correct bit representation

of the interaction sets. Each function fj(si) is a bit string of length 2K+1 with a 1 in the
position indicating which of the 2K+1 possible representations is appropriate to a particular
strategy.2

Concretely, in our N = 4, K = 1 example each interaction set has one of four possible
bitwise representations:

2In order to ensure the mapping is consistent across the landscape each interaction set must be ordered.
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Table C.2: Possible Interaction Set Representations for K = 1

1 : (0, 0)
2 : (0, 1)
3 : (1, 0)
4 : (1, 1).

Compare with the configuration for the ⇡ constructs in Table C.1.

Taking for example again s4 = (0, 0, 1, 1), the interaction sets from Equation C.7 trans-
late to:

Vj(s4) =

8
>>>><

>>>>:

( 0 0 ) for V1 = {1, 2}, j = 1

( 0 1 ) for V2 = {2, 3}, j = 2

( 1 1 ) for V3 = {3, 4}, j = 3

( 0 1 ) for V4 = {1, 4}, j = 4.

(C.9)

From Table C.2 we see that (0, 0) is the first representation in Table C.2 so we place a 1 in
the first position of the four-bit string for f1(s4). Likewise, (0, 1) is the second representation
so we place a 1 in the second position in the bit string for f1(s4), and so on for the remaining
two interaction sets.

fj(s4) =

8
>>>><

>>>>:

( 1 0 0 0 ) for j = 1

( 0 1 0 0 ) for j = 2

( 0 0 0 1 ) for j = 3

( 0 1 0 0 ) for j = 4.

(C.10)

Therefore the fourth row of the model matrix F is

1 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0. (C.11)

The entire F interaction model matrix for our N = 4,K = 1 next neighbor scenario is

F =

0

BBBBBBBBBBBBBBBBBBBBBBBBBBB@

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0
1 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0
1 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0
0 1 0 0 0 0 1 0 1 0 0 0 1 0 0 0
0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0
0 1 0 0 0 0 0 1 0 0 1 0 1 0 0 0
0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 0
0 0 1 0 1 0 0 0 1 0 0 0 0 0 1 0
0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 1
0 0 1 0 0 1 0 0 0 0 1 0 0 0 1 0
0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 1
0 0 0 1 0 0 1 0 1 0 0 0 0 0 1 0
0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 1
0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCA

(C.12)
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This F matrix can then be multiplied by a 2K+1 ⇥ N array of uniform random [0, 1),
the weights array, to generate the 2N ⇥ 1 array of performance values ⇧(si). Note that
the number of uniform random values in the weights array are the same as in the classic
2K+1 ⇥N payo↵ matrix in Equation C.4.

C.3 Fitness Landscapes as Parametric Equation

Even though this vectorized formulation is more computationally e�cient than the clas-
sic NK formulation, the F matrix in Equation C.12 is a large matrix for higher values of
N and K. For N = 20,K = 19 the matrix contains nearly 420 million elements. Buzas
and Dinitz (2013) describe how the F matrix is over-specified, and how the column space of
this matrix is the same as the column space of a parametric equation specification.3 This
parametric specification consists of the power sets for each interaction term Vj . Decision
values are adjusted in order for terms to not be zeroed out, 0 decision bit values are changed
to -1. For our working example with N = 4,K = 1

⇧i = �0 + �1d1 + �2d2 + �3d3 + �4d4 + �1,2d1d2 + �2,3d2d3 + �3,4d3d4 + �1,4d1d4. (C.13)

The matrix F̃ representing this parametric formulation is constructed by considering the
strategies as rows, and the transformed binary values for the decisions in each of the terms
the columns. The intercept coe�cient �0 is represented by a column of ones, the single
decision bits by the transformed binary value in a particular strategy, and the interactions
by columns containing the results of multiplying the relevant decision bits. Thus we have
a matrix that is the 2N⇥ the number of parametric terms, smaller than the F matrix.
Equation C.13 is represented by the matrix

F̃ =

0

BBBBBBBBBBBBBBBBBBBBBBBBBBB@

1 �1 �1 �1 �1 1 1 1 1
1 �1 �1 �1 1 1 1 �1 �1
1 �1 �1 1 �1 1 �1 �1 1
1 �1 �1 1 1 1 �1 1 �1
1 �1 1 �1 �1 �1 �1 1 1
1 �1 1 �1 1 �1 �1 �1 �1
1 �1 1 1 �1 �1 1 �1 1
1 �1 1 1 1 �1 1 1 �1
1 1 �1 �1 �1 �1 1 1 �1
1 1 �1 �1 1 �1 1 �1 1
1 1 �1 1 �1 �1 �1 �1 �1
1 1 �1 1 1 �1 �1 1 1
1 1 1 �1 �1 1 �1 1 �1
1 1 1 �1 1 1 �1 �1 1
1 1 1 1 �1 1 1 �1 �1
1 1 1 1 1 1 1 1 1

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCA

(C.14)

3This is a critical discovery, and can be understood in a linear algebra context as the di↵erent matrix
formulations representing sets of equations and unknowns, with the classic NK representation specifying
many extraneous equations.
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which has 16 rows but nine columns instead of the 16 in Equation C.12, and Buzas and
Dinitz provide a proof that the column spaces for F and F̃ are equivalent. This F̃ can then
be multiplied with a number of term ⇥1 weights array to again obtain a 2N ⇥ 1 array of
fitness values corresponding to all the strategies on the landscape.

The parametric formulation is known as the NM representation, and not only does
it simplify the computation by using a smaller matrix construct, but it also gives us the
flexibility to essentially vary K since we there no limitations on how we explicitly specify
the interaction terms, and we can therefore specify terms of varying order. For example,
with N = 5 we could specify a d1d2d3 term as well as a d4d5 term without regard for the fact
that the former is third order (K = 2) and the latter is second order (K = 1). Varying K

allows for heterogeneity in the degree of impact each decision would have on other decisions.
The weights array would be random uniform (0, 1) of length equal to the total number of
terms.
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Chapter D

LOCAL OPTIMA NETWORK COMPUTATIONAL ALGORITHM
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The algorithm used to construct the Local Optima Network maps is described in Fig-
ure D.1.

perform aggressive 
hill-climbing search 

until no further 
improvement is 

possible 

final search result 
describes local 

optimum for that 
strategy

load strategies and 
values from NM 

landscape 
generation 
algorithm

construct edgelist 
of all pairs of basins

all local optima are 
saved as basins count all strategies 

hamming distance 1 
between basins

divide hamming 
distance 1 count by 
total strategies in 

basin

assign appropriate 
directional weights 

to edge

graph network with 
basins as nodes 
with weighted 
directed edges

Figure D.1: LON Generation Algorithm

Algorithm to generate a LON map of the NM landscape with weighted edges based on probability
of a bit flip moving an agent from one basin of attraction to another.

The NM landscape we selected as the basis for the Structural Inertia model is presented
as an LON in Figure D.2.
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Figure D.2: LON of Sample Structured Landscape Used in the SIM

Local optima network graph representation of an NM landscape with N = 20 and M as fully
connected divisions with partial second-order connection between divisions. Darker blue circles
represent basins of attraction for higher-valued optima, and the size of the circle represents the size
of the basin. The red circle is the global optimum. The lines connecting the basins represent the
transition probabilities between basins for single bit-flips, with the weights of the lines representing
the magnitude of the transition probabilities.
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Chapter E

STRUCTURAL INERTIA ODD
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The Structural Inertia Model describes the conflict between scope of control and the
need for organizational agreement in an attempt to develop theory explaining structural
inertia (Hannan and Freeman 1984). Firm strategies are described by 20-bit strings, and
firms have control of from one to five divisions consisting of four bits each. The number of
owned divisions is the scope, s. Under single bit-flip exploration, controlling a single division
provides access to the search space consisting of 16 possible strategies, while controlling all
five divisions provides access to a search space consisting of 1,048,576 possible strategies.
Yet each division computes a division-specific value for each search string and have varying
degrees of power to ensure that value doesn’t decrease, so potential solutions that could
improve the overall firm performance may be rejected.

Firms search across an NM landscape (Manukyan, Eppstein, and Buzas 2014) with
N = 20 and designed such that each bit in a division is fully connected to all the other
bits and groups of bits in that division, and partially connected by second-order and higher
interactions to other divisions, yielding a search environment consisting of around basins of
attraction on average.

Both the landscape generation and search algorithms are coded in Python3.

E.1 Entities, State Variables and Scale

The model entities are firms characterized by di↵ering values of s which takes values
from 1 to 5 and describes the number of 4-bit divisions that the firm controls. Each firm is
randomly assigned an initial strategy with a value determined by the NM landscape.

The fitness landscape is constructed using N = 20 with fully connected bits within
divisions and partial second-order or higher connections across divisions. The landscape is
parameterized terms, weights and values. Each strategy, or location on the landscape,
has a value derived from a linear combination of its terms and weights.

Each time step all firms search and evaluate trial strategies in search of fitness improve-
ment.

E.2 Process Overview & Scheduling

E.2.1 NM Landscape Generation

To generate the customized NM landscape, all the intra-division interactions of four
bits for each division are determined, and then all the second-order or higher interactions
between divisions are identified. Some quantity of the possible inter-division interactions
are randomly selected and the list of all terms for the landscape is now complete. A random
coe�cient value is found for each of the terms, and values for each of the possible strategies
are obtained by summing over all the relevant terms for each bit-string.

The landscape generation functionality is summarized as a flowchart in Figure E.1.
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coefficents

calculate coeffiencts for each 

term via e-|x| for
 x 22 norm(0, ��)

randomly select half of the 
interdivision interactions

find all intradivision 
interactions of first through 

fourth order

find all second-order 
interdivision interactions

terms

Calculate values for each of 220 modified 
strings by value = ⌃⌃ all terms (coefficient x 

product(each bit value in term))

values

Modify 220 strategy strings such that 0 
becomes -1

Figure E.1: Functional Flow for the Model Landscape Generation

E.2.2 Search Algorithms

The number of firms specified by num firms is instantiated with a value for s and an
initial strategy.

During each time step, each firm unpacks its strategy values into contributions from
each of its owned divisions. Then based on the exploration option a trial strategy will be
derived through a bit-flip of a single bit within the owned divisions, or by a bit-flip within
each owned division. Then based on the co-specialisation algorithm, the firms will explore
either each single division flip separately, s trials, or any combination of those flips, 2s trials.

If the evaluation algorithm is decider, the trial strategy with the highest improved
value is chosed. If the evaluation algorithm is either veto or vote then if the trial improves
the overall strategy value for the firm, each owned division compares its current value with
the new division components of the trial value. In the case of veto any decrease in value
of an owned division will lead to a rejection of that trial, while in the case of vote if a
minority of divisions experience a loss in value the trial strategy may still be selected if it
yields the highest improved overall value. In the case of ties, the trial is rejected or accepted
randomly. Firm’s strategy and value are updated if trial strategy is selected. Figure E.2
graphically demonstrates the possible search and decision routes.
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Exploration

Co-specialisation

Evaluation

one per division

one per firm

s trials

2s trials

Decision

veto vote
decider

Figure E.2: Nine Decision Routes in the SIM

The model allows for the exploration of nine di↵erent decision routes: either firm-wide exploration
resulting in a single trial strategy or per division exploration which could be result in either s or 2s

di↵erent trial strategies depending on whether or not there is co-specialisation. Trials are evaluated
by either veto, vote or a decider.

The model continues to run for the specified number of steps. At the end of a step
firms’ strategies and values are recorded. The model search functionality is summarized as
a flowchart in Figure E.3.
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each firm

calculate contribution of each 
owned division

flip either single owned bit or 
one bit per owned division

evaluate either 1, s, 

or 2s trials

compare old and new division 
values, recording division 

performance losses

compare full strategy values

instantiate #firms with 
random divisions 22 [1, 5] and 

initial strategies

import NM landscape terms, 
weights and values

separate out terms and 
weights by divisions

Divisions either veto or vote 
on trial strategies, or if 

decider then chose best valued 
trial strategy

Firm adopts new strategy or 
keeps current strategy

setup

if improvement

for #steps

record values for step

Figure E.3: Functional Flow for the Model Search Algorithm

E.3 Details

E.3.1 Initialisation & Inputs

The NM Landscape generation algorithm does not require any external input files. The
Search Algorithms require the terms, coe�cients and values from the landscape generation
routines, which could be imported as files or run continuously as a single program.
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Table E.1: Model Parameters with Initial Values

Parameter Inputs

N, number of bits in each strategy 20

d, maximum number of possible firm divisions 5

�, the mean of the normal distribution used to find coe�cients 10

num firms, number of firms exploring landscape each run 100

steps, the number of time steps, or search iterations 30

exploration, specifies exploration algorithm by firm or
by division

co-specialization, specifies whether to use s or 2s trials yes or no

evaluation, specifies evaluation algorithm decider, veto or vote

E.3.2 Landscape Generation Submodels

Terms With d representing number of divisions, division bits identifying the sets of
bits in each division and division size the size of each division,

intradivision_terms = [combinations(i, j) for i in division_bits

for k in range(0, division_size)]

and all second-order interdiversion terms are given by

for combinations for i, j in combinations(range(0, d), 2):

a = product(divisions[i], divisions[j])

interdivision_terms += a.

Half of the second-order interorder terms are selected randomly to produce the landscape.
Coe�cients With sumM representing the total number of terms,

coefficients = [exp(-abs(i)) for i in normal(0, sigma, sumM)].

Values For each strategy convert number to N digit string of binary values and convert
0s to -1s. For each strategy,

value = sum over all terms of (coefficient x product of all modified bits in term).

E.3.3 Search Algorithm Submodels

Assign terms & weights to divisions Identify and collect all terms containing bits in each
division.
Instantiate firms Instantiate num firms firms with number of owned divisions between 1
and d and with an initial strategy.
Calculate contribution of each owned division For each owned division

division_value = sum over all division terms (division_coefficient x

product of all modified bits in term).

Explore If the exploration algorithm is by firm, select single owned bit n and
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trial_strategy = strategy ^ (1 << n).

If the exploration algorithm is by division select bit n per owned division and generate
list of s trial strategies by flipping each value for n as above if co-specialisation is
no. *If co-specialisation is yes then find all combinations of any number of n values
and flip each combination of bits as above to generate list of 2s trial strategies.
Evaluate If evaluation algorithm is decider select best value among trial strategies

greater than strategy. If evaluation algorithm is veto calculate each owned division value

as above for each trial in trial strategies where trial> strategy. If any division value

for a trial is less than division value for strategy, that trial is rejected. Rejected
trials are noted in a list construct called losses. Of the trials in accepted strategies, the
best value is selected. If there are no accepted trials the firm retains its current strategy.
*If evaluation algorithm is vote then losses is evaluated to determine those trials with
a minority of rejections, and those trials remain in accepted strategies. Again, of the
trials in accepted strategies, the best value is selected.

E.4 Experiments

The SIM allows for multiple configurations of algorithms allowing for multiple experi-
ments, examples of which are shown in Table E.2.

Table E.2: Possible Combinations of Search Paths

exporation co-specialisation evaluation
by firm no decider

by firm no veto

by firm no vote

by division no decider

by division no veto

by division no vote

by division yes decider

by division yes veto

by division no vote
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EMERGENT FIRMS ODD
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F.1 Purpose

The Emergent Firm (EF) model is based on the premise that firms arise out of individ-
uals choosing to work together to advantage themselves of the benefits of returns-to-scale
and coordination. The Emergent Firm (EF) model is a new implementation and extension
of Rob Axtell’s Endogenous Dynamics of Multi-Agent Firms model (Axtell 2018). Like the
Axtell model, the EF model describes how economies, composed of firms, form and evolve
out of the utility maximizing activity on the part of individual agents. The EF model in-
cludes a cash-in-advance constraint on agents changing employment, as well as a universal
credit-creating lender to explore how costs and access to capital a↵ect the emergent econ-
omy and its macroeconomic characteristics such as firm size distributions, wealth, debt,
wages and productivity.

F.2 Entities, State Variables and Scale

Agents are individuals with preferences for income, ✓, production characteristics, a, b
and �, a savings rate, s and a position in a social network. During the course of the
simulation, agents will make utility calculations and chose to change employment, either
by starting a new firm or joining another firm, in order to maximize their utility. The
model captures at each time step whether or not an agent recalculated its utility values,
whether those calculations resulted in a particular change of employment, if the agent was
thwarted in making a change, the agent’s current e↵ort, wage, loans and savings and its
firm a�liation.

agents firm economy

Figure F.1: Hierarchical Depiction of Model Entities: Individuals Compose Firms, Firms Compose
the Economy

This agent-level information can be aggregated to describe firm level information such as
size, wage and productivity, and firm level information in turn can be aggregated to describe
macroeconomic characteristics of the economy as whole, such as the size distributions of
firm populations, mean wage, per capita wealth and debt.

Firms are modeled as star graphs connecting all employees to the firm owner The econ-
omy is modeled as a collection of all the star subgraphs and singleton agents, illustrated
in Figure F.2. Thus each agent has two types of neighbors: those in the social network
which define an agent’s alternative employment opportunities, and those in the star graph
networks which represent an agent’s employees or employer.
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Figure F.2: Network Graph of an Emergent Economy

Network graph of an emergent economy consisting of a collection of firms modeled as star sub-graphs
connecting individuals. Nodes are colored on employee savings; the more intense the color the higher
the savings. Neighbors in this network are either employees or employers.

F.3 Process Overview & Scheduling

Each time step agents explore options for utility improvement. Agents decide whether
to stay in their current situation, join another firm in their social network, or start their own
firms based on which of the options maximizes their utility. The ability to make a desired
change requires either su�cient savings or the ability to obtain a loan. After all agents have
made changes, firm outputs are calculated and distributed, and loans are repaid. The EF
model process is summarized as a flowchart in Figure F.3.
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Figure F.3: Functional Flow for the Emergent Firm Model

To start, the number of agents specified by N are instantiated with individual values for
parameters ✓, a, b, � and s. A random graph is generated to organize the agents as nodes
in a social network with a specified range of edges per node. The model then calculates
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the utility and e↵ort values for each agent as a singleton firm and stores these values, and
model setup is complete.

The model activates individual agents with a probability given by churn. For each
activated agent, the model calculates a Cobb-Douglas utility value for that agent’s current
position, as well as the expected utility if it were employed by each of the firms employing
its neighbors in the social network. These values are compared with the agent’s singleton
utility calculated during setup, which is the utility for forming a startup. The scenario
yielding the highest utility value is the agent’s choice: either remain, form a startup or
change firms. If the choice requires a change, the model computes the cost of the change,
and if the agent has enough savings to cover the costs of the move, or if it can take out a
loan to cover any residual costs, the agent’s firm a�liation and firm links are changed. An
agent cannot take out a loan if he already has an outstanding loan balance. If the agent
making a change is the owner of a firm with employees, that firm’s ownership is reassigned
to another random employee. Wage, e↵ort, savings and loan values are updated accordingly.
An agent is considered to be ’thwarted’ if it cannot make a desired move.

After all agents have had the opportunity to be activated, the model calculates the
output for each firm and distributes a share of that output to all employees and owners,
and wage and savings values are updated accordingly. Finally, any agent with a loan will
apply their savings toward repaying the loan, loan values are compounded, and savings and
loan values are updated.

F.3.1 Initialization & Inputs

The initial values for the model parameters are described in Table F.1.

Table F.1: Agent and Global Parameters with Starting Values

Attribute Description Value

Agent Variables

a e↵ort multiplier in output formula U(0, .5)
b exponential e↵ort multiplier U(.75, 1.25)
� e↵ort exponent U(1.5, 2)
✓ preference for income U(0, 1)
! time endowment 1
rate savings rate, multiplies wage each time step N (.03, .01), truncated at 0

Global Variables

N number of agents 600
⌫ number of social network links U(2, 6)
churn agent activation rate .1
tmax number of steps 500
move job change cost, multiplies last wage 1
startup startup cost, multiplies last wage 2
lendingrate cost of loan each time step .03

compensation rule equal shares
initial condition all singleton firms
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F.3.2 Input & Outputs

The EF model does not require any external input files.
The model produces two files, a csv and a network graph, gml. Each row in the csv file

contains an agent’s parameters for a given time step. For tmax= 500 and N = 600 the file
will contain 300,000 rows. The agent parameters compose the columns and are described
in Table F.2.

Table F.2: Agent Parameters Captured in the EF Model CSV Output File

Parameter Description

id id number
! time endowment
✓ preference for income
links number of neighbors
component component membership in the social network graph
a e↵ort multiplier
b exponential e↵ort multiplier
� e↵ort exponent
rate savings rate
U self singleton utility
e self singleton e↵ort
e star current profit maximizing e↵ort
firm firm a�liation
wage current wage
savings current savings
loan current loan balance
borrow binary flag indicating agent borrowed current time step
startup binary flag indicating agent formed startup current time step
move binary flag indicating agent changed firms current time step
thwart binary flag indicating agent was thwarted current time step
go binary flag indicating agent was activated current step

The gml graph file contains the network graph describing all the star subgraph firms
and singleton firms at the end of the simulation.

F.3.3 Submodels

The EF model is coded in Python 3 with agents implemented as dictionary objects and
firms implemented as a network graph. The nine submodels pseudo-coded and described
below provide further implementation and functional details.

1. instantiate agents

for i to 1 to N:

id = i,

omega = 1.0,

theta = random value in uniform(0, 1),

a = random value in uniform(0, .5),

b = random value in uniform(.75, 1.25),
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beta = random value in uniform(1.5, 2),

rate = savingrate if sigma = 0,

else random value in truncated normal(savingrate, sigma),

firm = i

F = network with N unconnected nodes

2. create social network

degree_list = N random values in uniform(mindegree, maxdegree)

G = graph with N nodes and degree_list

find components of G

for i in agents:

links = degree for node i

component = component membership for node i

3. calculate singleton utility and e*

optimize e for maximum utility for singleton firm

for i in agents:

wage = output

e_star = e_single

4. compute e⇤ and U(e*) for opportunities

go = 1

An agent’s utility is calculated via a Cobb-Douglas function with his individual pref-
erence set for income and leisure

U =

✓
O

n

◆✓

(! � e
⇤)1�✓

, (F.1)

where O is total firm output, n the number of persons in the firm, such that O

n
is the

individual’s wage in the current firm configuration. The individual’s preference for
income is given by ✓, therefore preference for leisure is 1 � ✓. The individual’s total
time endowment is ! and e

⇤ is the individual’s utility-maximizing work e↵ort, thus
the individual’s leisure is ! � e

⇤.

Each firm has an owner with unique parameters a, b and �, returns to scale, that
characterize the firm’s production function

O =
aE + bE

�

n
, (F.2)

where E is the sum of all the firm members’ e↵orts, e.

To find utility for current position:

E = sum off e for all agents in firm

optimize e for maximized utility function

To find utility for changing firms:
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for each neighbor identify firm

find all unique connected firms

for each connected firm:

E = sum of e for all agents in firm

optimize e for maximized utility function

choose maximum utility and associated firm

Startup utility was already calculated during setup and is stored in the agent dictio-
nary.

5. start own firm If starting a new firm provides the maximum utility then the firm
a�liation for the agent needs to change its own id, and that node needs to remove its
links in the F graph.

cost = startup * wage

if savings >= cost:

change firm affiliation and remove firm network links

savings = savings - cost

update wage and e* values

startup = 1

else if loans < 0:

loans = costs - savings

update wage and e* values

startup, borrow = 1

else thwart = 1

6. join new firm If joining a new firm provides the maximum utility then the firm
a�liation for the agent needs to change, as well as the linkages in the F graph.

cost = move * wage

if savings >= cost:

change firm affiliation and firm network links

savings = savings - cost

update wage and e* values

move = 1

else if loans < 0:

loans = costs - savings

update wage and e* values

move, borrow = 1

else thwart = 1

If the agent is a firm owner, then the change ownership routine will run before changing
a�liation.

7. pass ownership

new_owner = random neighbor

firm affiliation for new owner changes to id

firm affiliation for remaining employees changes to new owner

remaining employees link to new owner

8. distribute output
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E = sum of the effort for all members of a star subgraph

O_total = (a * E + b * E **beta)

share = O_total / n

for all agents in star subgraph:

wage = share

savings = savings + share * rate

9. pay loans

for all agents with loans:

loan = loan * (1 + lendingrate) - savings

if loan < 0:

savings = abs(loan)

loan = 0

else:

savings = 0

loan = loan
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