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Abstract  47 

Vast quantities of plastic and demolition wastes are generated annually by municipal and 48 

commercial industries in all developed and developing countries. The sustainable usage of 49 

recycled plastic and demolition wastes as alternative construction materials has numerous 50 

environmental and economic advantages. New opportunities to recycle plastic and demolition 51 

wastes into alternative resource materials for construction industries, would mitigate landfill 52 

issues and significantly reduce global carbon emissions. Infrastructure projects typically 53 

consume significant quantities of virgin quarry materials, hence the usage of plastic and 54 

demolition wastes as alternative construction materials will divert significant quantities of 55 

these wastes from landfills. In this research, three types of recycled plastic waste granules: 56 

Linear Low Density Polyethylene filled with Calcium Carbonate (LDCAL), High Density 57 

Polyethylene (HDPE) and Low Density Polyethylene (LDPE) were evaluated in blends with 58 

Crushed Brick (CB) and Reclaimed Asphalt Pavement (RAP). The blends prepared were 59 

evaluated in terms of strength, stiffness and resilient moduli. Resilient moduli prediction 60 

models were proposed using Repeated Load Triaxial (RLT) tests to characterize the stiffness 61 

properties of the plastic/demolition waste blends. Polyethylene plastic granules with up to 5% 62 

content were found to be suitable as a road construction material, when blended in 63 

supplementary amounts with demolition wastes. This research is significant, as the usage of 64 

plastics as a construction material, in combination with demolition wastes will expedite the 65 

adoption of recycled by-products by construction industries.  66 
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Introduction 71 

The production and landfilling of solid wastes has exacerbated carbon emissions and 72 

increased pollution in metropolitan cities worldwide. Management of wastes remains a global 73 

challenge for developed and developing countries alike [1]. The traditional approach of 74 

landfilling solid wastes is unsustainable and has become increasingly uneconomical, given 75 

the scarcity of land in urban precincts. Opportunities to recycle solid wastes into alternative 76 

resource materials are increasingly being sought by construction industries. The successful 77 

use of recycled wastes as a valuable resource material would significantly reduce the carbon 78 

footprint of road construction industries and furthermore reduce the demand for virgin quarry 79 

materials.  80 

Plastic wastes comprise 8 to 12% of the municipal waste stream with approximately 190 81 

million tonnes generated annually [2]. In Australia alone, 2.24 million tonnes of plastic waste 82 

were generated in 2008, which comprised 16% of the municipal waste stream [3]. Factors 83 

such as population growth, low production cost, and the wide variety of applications has led 84 

to an increasing production of plastics [4], with polyethylene products primarily contributing 85 

to the large volumes of plastic wastes [2].  86 

Three types of polyethylene granules generated by the plastic recycling industries are Linear 87 

Low Density Polyethylene filled with Calcium Carbonate (LDCAL), High Density 88 

Polyethylene (HDPE) and Low Density Polyethylene (LDPE). Mineral fillers, such as 89 

calcium carbonate are added to polymers to enhance properties, as well as to reduce 90 

production costs. The mechanical properties of LDCAL, HDPE and LDPE such as density, 91 

maximum using temperature and tensile strength have been reported previously by several 92 

researchers [4-6]. Research on application of HDPE as a construction material has been 93 

limited to the usage of this material as a reinforcement in the form of fibers or strips. Benson 94 
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and Khire [7] researched on the usage of HDPE as a reinforcement material for sand and 95 

reported that improvement in terms of bearing capacity, stiffness, resilient and shear 96 

properties of the sand through geotechnical tests. Choudhari et al. [8] and Choudhari et al. [9] 97 

reported that improvement in geotechnical properties of pavement base, subbase and 98 

subgrade layers could be attained by using HDPE in the form of strips. Improvement of 99 

flexible pavement material in terms of bearing capacity by introducing HDPE strips was also 100 

reported by Jha et al. [10].  101 

LDPE has been used in hot mix asphalt [11] and concrete [12, 13]. HDPE and LDPE granules 102 

have been researched in combination with recycled concrete aggregates in pavement bases by 103 

Yaghoubi et al. [14], who reported that despite slightly degradation in properties, the blends 104 

were comparable to conventional quarry materials. Application of LDCAL as a civil 105 

engineering construction material has been limited to reinforcing purposes, commonly in 106 

form of geosynthetics [15, 16]. Lack of understanding of the properties of recycled plastic 107 

wastes continues to limit their usage as a civil engineering construction material. 108 

Crushed Brick (CB) and Reclaimed Asphalt Pavement (RCA) are generated by recycling the 109 

waste solids after demolition activities. CB is obtained from demolition of masonry buildings, 110 

while RAP is produced from the stockpiles of spent asphalt that has been removed from aged 111 

roads [17]. The mechanical properties of CB and RAP have been found to be comparable to 112 

conventional quarry materials in various civil engineering construction applications  [18-24]. 113 

The aim of this research was to evaluate the viability of using waste plastic granules in 114 

combination with demolition wastes as a road construction material. The plastic granules and 115 

demolition wastes used in this research are by-products of recycling industries. The stiffness 116 

and strength of the blends of plastic granules/demolition wastes were evaluated in this 117 

research and resilient moduli models proposed to characterize the recycled blends. The 118 
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evaluation of plastic granules (LDCAL, HDPE or LDPE) in blends with demolition wastes 119 

(CB, RAP) will enable further understanding of the strength, stiffness and performance of 120 

these recycled by-products as a construction material. The optimum limits of the 121 

supplementary plastics content that can be used in combination with demolition wastes would 122 

bring new knowledge to civil engineering construction industries and expedite the adoption 123 

of recycled by-products. 124 

Materials and Methods 125 

The materials used in this research were comprised of LDCAL, HDPE and LDPE plastic 126 

granules together with CB and RAP demolition wastes from the state of Victoria, Australia. 127 

The blends of plastics and demolition wastes used in this research are presented in Table 1. 128 

Plastic contents of 3% and 5% were selected based on past work on plastics with recycled 129 

concrete aggregates [14].  130 

Gradation of the blends was investigated using Talbot and Richart [25] equation (aka Fuller’s 131 

equation) as presented in Equation 1, whereby PSD curves of the blends were fitted into the 132 

equation to obtain the n exponent of each blend.  133 

       
  

    
       Equation 1 134 

 135 

where di is the size of the sieve in question, P is the total percent finer than the sieve in 136 

question, Dmax is the maximum particle size, and n is the exponent of the Fuller’s Equation.  137 

For a determined Dmax, and diameters of di, the n exponent is the only variable parameter that 138 

changes the gradation curve. Originally, Fuller and Thompson [26] reported a value of 0.5 for 139 

the n exponent in order to achieve the highest density. However, later research works showed 140 

that the n exponent of 0.5 might not be a fixed value for a gradation with the least voids. For 141 
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instance, in the 1960s Federal Highway Administration (FHWA), introduced an n exponent 142 

of 0.45 for a PSD leading to the highest density [27]. 143 

Optimum Moisture Content (OMC) and Maximum Dry Density (MDD) of blends were 144 

determined using modified Proctor method according to ASTM-D1557 [28]. A 152.4 mm 145 

diameter mold with a height of 116.43 mm was used and samples were compacted in five 146 

layers with 56 blows of the hammer on each layer. OMC and MDD were then obtained using 147 

the compaction curves plotted based on the test results. For a uniform distribution of plastic 148 

particles, the blends were mixed for several minutes. Also, for ensuring uniformity, a random 149 

sample consisting of 95% CB and 5% plastic was divided into four quarters using a riffle and 150 

the plastic content of each quarter was visually estimated. Segregation of aggregates was 151 

avoided, by keeping the scoop as close as possible to the bottom of the mold when placing 152 

the material. 153 

California Bearing Ratio (CBR) was undertaken following ASTM-D1883 [29]. Samples were 154 

compacted in five layers, each under modified Proctor compaction effort using 56 blows in a 155 

152.4 mm diameter mold. Care was taken to control the uniform distribution of plastics in the 156 

blends, as well as avoiding segregation while preparing and compacting the CBR samples. 157 

Resilient properties of the blends due to the addition of supplementary amounts of LDCAL, 158 

HDPE and LDPE plastic granules were evaluated using specialized Repeated Load Triaxial 159 

(RLT) tests, and compared with typical values of resilient modulus for control (0% plastics) 160 

CB and RAP. RLT tests simulate the repeated loads on civil engineering infrastructures when 161 

subjected to traffic loads [30]. A triaxial cell was used with the universal testing machine to 162 

carry out the RLT tests. RLT samples were prepared using a split compaction mold, 100 mm 163 

in diameter and 202 mm in height. Samples were prepared in 8 layers, each layer under 164 

modified Proctor compaction energy as described in ASTM-D1557 [28]. In the RLT testing, 165 
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a loading regime comprising of a haversine-shaped loading pulse with 0.1 s loading period 166 

and 0.9 s resting period was used in accordance with AASHTO-T307-99 [30].  167 

In RLT testing, changes of both confining stress and axial stress influence the resilient 168 

modulus of the sample. As a result, in each RLT test, 15 different loading scenarios were 169 

applied to cover different loading conditions. In this research, 180 data sets were obtained 170 

from RLT testing on the 12 blends.  The data sets were divided into 4 categories, as below, in 171 

order to investigate the effect of type of plastic and plastic content on the model parameters. 172 

 CB blends with 3% plastic content (45 data sets) 173 

 CB blends with 5% plastic content (45 data sets) 174 

 RAP blends with 3% plastic content (45 data sets) 175 

 RAP blends with 5% plastic content (45 data sets) 176 

The data sets were then evaluated using two three-parameter resilient modulus prediction 177 

models, being Pappala et al. model [31] (aka octahedral stress state model) presented in 178 

Equation 2 and AASHTO [32] model (aka modified universal model) presented in Equation 179 

3. These models were developed for prediction and evaluation of the Mr values of granular 180 

material applications:   181 

          
  

  
    

  

  
   ]     Equation 2 182 

        
  

  
 
  

 
    

  
         Equation 3 183 

In these equations, σ3, σd and σb are confining, deviator and bulk stresses, respectively, pa is 184 

atmospheric pressure, τoct is octahedral shear stress. k1, k2 and k3 are model parameters. 185 

Stiffness characteristics of the blends, including UCS peak value, Young’s modulus (E) and 186 

secant modulus (E50) were obtained by conducting Unconfined Compressive Strength (UCS). 187 
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In the plot obtained from the UCS test results, E is the slope of the stress versus strain curve 188 

where the strains are recoverable. On this curve, E50 is the slope of the line connecting the 189 

origin to the stress equal to the half of the UCS peak value. UCS tests were undertaken 190 

following the completion of the non-destructive RLT tests on the same samples.  191 

Results and Discussion 192 

Figure 1 presents the particle size distribution of the plastic and demolition wastes and also 193 

shows images of the three plastic granules. The properties of the plastic wastes and 194 

demolition wastes, including specific gravity (Gs), maximum particle size (Dmax), mean 195 

particle size (D50), coefficient of uniformity (Cu) and coefficient of curvature (Cc) are 196 

presented in Table 2. In accordance with the USCS classification system, the plastic granules 197 

are found to be uniformly graded while the demolition wastes are classified as well graded 198 

gravel-like materials. In terms of particle shape, as presented in Table 2 sphericity of 199 

LDCAL particles was the greatest (0.87). This value is close to that of an ideal cylinder with 200 

sharp edges (0.874). Sphericity of HDPE and LDPE is lower and leans towards a half sphere 201 

(0.84) and ideal cone (0.794), respectively. These have one sharp edge, whereas an ideal 202 

cylinder has two edges.  203 

Figure 2 compares the n exponents obtained from gradation curves of control CB, control 204 

RAP and the other blends. Evidently, introducing 3 and 5% contents of plastic granules to CB 205 

and RAP did not cause significant changes in the PSD of the blends. In this figure, the range 206 

of n exponent for the type C gradation of ASTM-D1241 [33] is also presented for comparison 207 

purposes. The gradation properties of the plastic granules/demolition wastes are found to be 208 

suitable for road construction materials, hence ensures high performance, strength and 209 

bearing capacity. Figure 2 shows that the CB blends are within the range required for a road 210 

construction material; however, the RAP blends marginally exceed the recommended range. 211 
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Table 3 presents the results of compaction and bearing capacity (CBR) tests on the plastic 212 

granules/demolition waste blends. These tests were also conducted on control CB and RAP as 213 

a reference bench-mark for evaluating the effect of adding plastic granules to these 214 

demolition wastes. The plastics/RAP blends show a lower bearing capacity compared to 215 

plastics/CB blends. This can be attributed to the plastics/CB blends having a more qualified 216 

PSD that falls within the recommended range of gradation by ASTM-D1241 [33]. Adding 217 

plastic granules to CB and RAP results in a lower MDD due to the lower specific gravity of 218 

the plastic granules. Results also show that introducing plastic granules to CB and RAP 219 

results in the reduction of bearing capacity of the control materials. This can be attributed to 220 

the fact that plastic granules that replace the CB/RAP particles result in a softer surface, 221 

leading to less internal friction and hence, lower bearing capacity. 222 

Using the data obtained from UCS tests, the stress-strain curves of the plastic 223 

granules/demolition wastes are presented in Figure 3. Generally, plastics/CB blends have 224 

greater UCS values compared with their corresponding plastics/RAP blends, as was expected 225 

due to the less qualified PSD of RAP blends. Figure 3 also shows that the LDCAL and 226 

LDPE granules result in samples with high and low UCS peak values, respectively. This can 227 

be due to reduction of sphericity of particles from LDCAL to HDPE to LDPE.  228 

Young’s Modulus (E) and secant modulus at half of the UCS value (E50) are two of the input 229 

parameters for defining soil stiffness. Values of E and E50 were obtained from the stress-230 

strain curve of Figure 3. To investigate whether the samples are identical, in terms of void 231 

ratio (e), values of e for each sample were calculated using soil model phase relationships. 232 

Table 4 presents values of E, and E50, for the blends. In both CB and RAP blends, adding 233 

LDCAL results in the highest and adding LDPE results in the lowest values of E. This means 234 

that under the same load, blends with LDCAL have the least amount of deformation 235 

compared with the other two types of plastics. Similar trend is observed in E50 of demolition 236 
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wastes/plastic blends. Also, increasing the plastic content in all blends results in lower E and 237 

E50 values. This can be due to replacing more relatively rough surfaced particles of CB and 238 

RAP with smooth surfaced particles of plastic. 239 

Figure 4 compares the UCS peak values of all blends of this research with typical range of 240 

UCS values for control CB and RAP [17, 34-36]. The results show that an increase in the 241 

plastic content of the sample results in a reduction of UCS values. Similar to the CBR 242 

outcomes, this can be due to less surface roughness of the plastic particles, compared with 243 

CB and RAP particles. High surface roughness of particles is known to result in high stiffness 244 

of the blends [37].  245 

Figure 5 shows the RLT test results in form of the average of resilient moduli obtained from 246 

15 sequences of the test for CB and RAP blends. This figure also shows the recommended 247 

range of Mr values for base and subbase layers [38]. Resilient moduli of both plastic 248 

granules/CB and plastics/RAP fall between the recommended ranges for Mr. Test results 249 

show that in both the plastics/CB and plastics/RAP blends, increasing the plastic content 250 

causes a subsequent reduction in Mr values. Replacing demolition wastes with smooth-251 

surfaced plastic granules is found to reduce the resilient modulus of the plastics/demolition 252 

wastes. The higher surface roughness of the particles of a compacted sample tends to result in 253 

a higher resilient modulus [39, 40].  254 

Blends of LDCAL with CB and RAP have higher Mr values compared with corresponding 255 

blends of HDPE and LDPE with CB and RAP. The same trend was previously observed with 256 

regards to the Young’s moduli (E) presented in Table 4. Resilient modulus is the ratio of 257 

axial stress over recoverable strain, and E is the slope of the stress-strain curve where strains 258 

are recoverable. Accordingly, the higher E values results in the higher Mr values, since under 259 

the same stress, a plastic blend with high E has a lower recoverable strain. Other causes for 260 
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high Mr values of plastic blends with LDCAL compared with blends with HDPE and LDPE 261 

could be the particle shape and particle roughness. Scanning Electron Micrograph (SEM) of 262 

these particles (Figures 6a, 6b, and 6c) shows that there is no significant difference in the 263 

surface roughness of these particles. These SEM images have magnified the particles’ 264 

surfaces by 2000 times. Therefore, difference in surface roughness cannot be conclusively 265 

attributed to greater Mr values of plastic blends with LDCAL. The resilient properties of 266 

blends of granular materials are reduced when the blend consists of particles with low 267 

sphericity [41], which is the case for the plastics/demolition wastes. Figure 6 also shows the 268 

surface of CB (6d) and RAP (6e) through SEM images that are 8000 times magnified. While 269 

CB particles have both rough and smooth surface zones, in RAP particles the surface is 270 

mostly smooth. This could also be the reason reported earlier for the higher stiffness of 271 

plastics/CB compared with plastics/RAP blends. 272 

Figure 7 shows the resilient modulus versus maximum axial stress graphs for both 273 

plastics/CB and plastics/RAP blends, under two different confinement pressures for each 274 

blend. Evidently, high confinement pressures result in a high resilient modulus. This is due to 275 

the increased particle interlock under high confining stresses as explained through predictive 276 

resilient modulus models by Nguyen and Mohajerani [42]. Greater interlocking of aggregates 277 

results in lower strains and therefore, lower Mr values. Trends in Figure 7 also indicate that 278 

when the confining stress is the same, at greater axial stresses, high Mr values are obtained as 279 

a result of greater stress hardening [43].  280 

Figures 8 and 9 show the predicted versus measured Mr values along a 1:1 line. These 281 

figures also present the model parameters calculated by conducting regression analysis of the 282 

45 data sets for each category. For evaluation of the goodness of fit of test data in the models, 283 

three statistical measurements were used, being Se/Sy (standard accuracy), R
2 

(coefficient of 284 

determination), and RMSD (Root Mean Square Deviation). In the standard accuracy, Sy is the 285 
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standard deviation and Se is standard error of estimate [44, 45]. Based on Witczak, Kaloush 286 

[44] criterion, Se/Sy inclining from 1 to 0 and R
2
 inclining from 0 to 100 indicate better 287 

accuracy of fit. Also, RMSD as proposed by Azam et al. [45] shows a better fit when it leans 288 

towards 0% from 100%.  Se/Sy, R
2
 and RMSD presented in Figures 8 and 9 show an 289 

“Excellent” fit for all blend with plastic content of 3% and “Good” fit for blends with plastic 290 

content of 5%. Therefore, resilient behavior of these blends can be predicted using these well-291 

known models; however, as more plastic particles are introduced in the blends, accuracy of 292 

these models is degraded. 293 

According to the (Puppala et al. [31] model), k2 and k3 are positive, since as shown in Figure 294 

7, Mr value is increased by increasing  σ3 and/or σd and k3 being positive shows that resilient 295 

modulus cannot be a negative value. Similarly, according to the (AASHTO [32] model), k1 296 

and k2 model parameters are positive due to the similar reasons. However, the model 297 

parameter k3 which is an exponent for the octahedral shear stress is negative. It shows that as 298 

the octahedral shear stress increases the Mr value decreases. High shear stress softens the 299 

sample and results in greater deformations under the same load, and accordingly lower 300 

resilient modulus. Figures 8 and 9 show a reduction of k2 (exponent corresponding to σd) and 301 

k3 (exponent corresponding to σ3) according to the Puppala et al. [31] model by increasing 302 

the plastic content in CB blends, but an increase in these parameters in RAP blends. 303 

Similarly, in the AASHTO [32]  model, the model parameter that represents the effect of σb 304 

(k2) is reduced by increasing the plastic content in CB blends and increased in RAP blends. 305 

This shows that by increasing the plastic content, sensitivity of the models to bulk stress, 306 

confining stress, and deviator stress is decreased in CB blends, but increased in RAP blends. 307 

In addition, the true value of k3, regardless of its sign, is greater for plastics/CB blends with 308 

3% plastic content but lower in plastics/RAP blends with 3% plastic content. This shows that 309 
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with respect to octahedral shear stress the models get more sensitive in CB blends and less 310 

sensitive in RAP blends as more plastic particles are introduced in the mixture. 311 

Conclusions 312 

In this research, three types of recycled plastic granules (LDPE, HDPE, and LDCAL) and 313 

two types of demolition wastes (CB and RAP) were blended to evaluate their usage as a road 314 

construction material. These plastics/demolition wastes were then evaluated in terms of 315 

stiffness and resilient characteristics. The following results are obtained from the outcomes of 316 

this research: 317 

1- Adding 3-5% of plastic granules did not cause a noticeable change in the PSD of the 318 

pure CB and RAP. 319 

2- Among the plastics/demolition waste blends, LDCAL show high bearing capacity. 320 

Generally, even though adding 3% and 5% plastic granules to the demolition wastes 321 

degrades their bearing capacity, the bearing capacity (CBR) of the blends shows that 322 

the plastics/demolition wastes blends are suitable in a range of civil engineering 323 

applications, such as bases, subbases, subgrades and embankment fills.  324 

3- Results of UCS tests show that, among the corresponding plastic blends, those with 325 

LDCAL granules have the greatest stiffness and higher Young’s modulus than those 326 

with LDPE granules. Also, in general, introducing more plastic granules lower the 327 

stiffness characteristics of the blends. 328 

4- In terms of resilient behavior, samples prepared from blends with LDCAL granules 329 

result in the highest resilient modulus. RLT test results show that Mr values of all 330 

plastic blends fall within the range recommended for high quality construction 331 

materials, such as base and subbase. In addition, adding 3-5% plastic granules to CB 332 

and RAP would result in sufficient resilient moduli for road construction applications.  333 
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5- SEM images indicate insignificant difference in surface roughness of all three plastic 334 

granules. Therefore, differences in CBR, UCS and Mr values of the corresponding 335 

blends with the same plastic content could be due to difference in sphericity of the 336 

particles. 337 

6-  The bearing capacity, stiffness and resilient modulus of plastics/CB and plastics/RAP 338 

are reduced by adding a larger content of plastic granules. This is due to introducing 339 

smooth-surfaced particles (LDCAL, HDPE, LDPE) to replace the particles with high 340 

surface roughness (CB and RAP).  341 

7- In spite of this, plastic blends with CB/RAP indicate sufficient engineering 342 

characteristics as civil engineering construction material. The optimum limits of the 343 

supplementary plastics content that can be used in combination with demolition 344 

wastes would bring new knowledge to civil engineering construction industries and 345 

expedite the adoption of recycled by-products. 346 
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Table 1. Blends of demolition wastes/plastic granules used in this research 502 

Blend Composition Blend Name 

Control CB CB 

3%LDCAL + 97%CB LDCAL3/CB97 

3%HDPE + 97% CB  HDPE3/CB97 

3%LDPE + 97%CB LDPE3/CB97 

5%LDCAL + 95%CB LDCAL5/CB95 

5%HDPE + 95%CB HDPE5/CB95 

5%LDPE + 95%CB LDPE5/CB95 

Control RAP RAP 

3%LDCAL + 97%RAP LDCAL3/RAP97 

3%HDPE + 97%RAP HDPE3/RAP97 

3%LDPE + 97%RAP LDPE3/RAP97 

5%LDCAL + 95%RAP  LDCAL5/RAP95 

5%HDPE + 95%RAP HDPE5/RAP95 

5%LDPE + 95%RAP LDPE5/RAP95 

 503 

 504 

 505 

 506 

 507 

 508 

 509 

 510 

 511 

 512 

 513 

 514 
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515 

516 

Table 2. Physical properties of CB, RAP, LDCAL, HDPE and LDPE 517 

Material Gs Dmax D50 Cu Cc 
USCS 

Classification 

Particle 

Sphericity 

CB 2.64 19.00 4.50 21.4 1.1 Well Graded Gravel - 

RAP 2.52 19.00 4.80 14.6 1.7 Well Graded Gravel - 

LDCAL 1.28 4.75 2.80 1.5 0.9 Uniformly Graded 0.870 

HDPE 0.94 4.75 3.51 2.0 1.0 Uniformly Graded 0.862 

LDPE 0.92 6.30 4.04 1.7 0.9 Uniformly Graded 0.793 

518 

519 

520 
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Table 3. Results of compaction and CBR tests on the blends 521 

Blend 
MDD 

(Mg/m
3
)

OMC 

(%) 
CBR (%) 

CB 1.985 11.3 114-130

LDCAL3/CB97 1.919 11.8 93-109

HDPE3/CB97 1.889 11.6 95-106

LDPE3/CB97 1.878 11.5 91-103

LDCAL5/CB95 1.821 11.6 81-89

HDPE5/CB95 1.793 11.5 80-86

LDPE5/CB95 1.790 11.3 71-79

RAP 2.001 10.8 20-26

LDCAL3/RAP97 1.965 10.0 14-19

HDPE3/RAP97 1.926 9.9 14-17

LDPE3/RAP97 1.919 9.7 11-15

LDCAL5/RAP95 1.951 9.7 13-17

HDPE5/RAP95 1.889 9.5 14-16

LDPE5/RAP95 1.874 9.2 11-14

522 

523 

524 
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525 

Table 4. Young’s modulus and secant modulus of the blends 526 

Blend E  (MPa) E50  (MPa) 

LDCAL3/CB97 25.0 23.9 

HDPE3/CB97 20.0 19.7 

LDPE3/CB97 16.7 15.6 

LDCAL5/CB95 12.5 12.0 

HDPE5/CB95 10.8 10.7 

LDPE5/CB95 6.9 5.6 

LDCAL3/RAP97 10.0 9.4 

HDPE3/RAP97 8.3 8.3 

LDPE3/RAP97 7.7 7.5 

LDCAL5/RAP95 7.8 6.8 

HDPE5/RAP95 6.9 6.9 

LDPE5/RAP95 5.0 4.9 
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